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Abstract

Optimizing the dynamics of quantum systems enables the design of high precision experiments

and the development of quantum technologies. To date, such optimizations have been predom-

inantly performed based on theoretical models and numerical simulations; given the size and

intricacy of the systems that can now be controlled, this approach is reaching its limits. Opti-

mizing dynamics based solely on experimental data provides a mean to exceed these limitations.

However, the probabilistic nature of quantum measurements, combined with the relatively low

repetition rates and high noise levels in many current experiments, render these optimizations

uniquely difficult. Inspired by recent developments in the field of machine learning, we develop

new methods for the efficient optimization of quantum dynamics in experimental situations.

First, we establish Bayesian optimization as a methodology well suited for these optimization

problems. After thoroughly assessing its benefit on a paradigm problem of quantum optimal

control, we refine the original framework to take into consideration the statistical features of

quantum measurements. This allows to maximize the utility of each measurement data and

results in enhanced convergence of the framework.

Going further, we investigate an aspect of optimization often ignored, namely the choice of the

figure of merit. This figure, which for any optimization problem is identified as the quantity to

be maximized, is not unique, thus leaving room for its refinement. After establishing criteria

for adequate figures of merit, we show that improved figures, compared to several canonical

ones, can be designed.

Finally, to fully reap the benefits of experimental optimizations, it is often desirable that not

only one but many related optimizations are performed concurrently. To this intent, we propose

two novel frameworks which are found to yield substantial improvements compared to existing

methodologies.
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Introduction

Following decades of theoretical and experimental progress, quantum technology has matured

to a widely recognized field, holding hopes for pervasive applications in a not–too–distant

future. Quantum computers, albeit small and noisy, are now routinely accessed through the

cloud [1], and quantum supremacy has recently been claimed [2, 3]. Already the ability to

manipulate physical systems at elementary levels, whilst taking into consideration quantum

mechanical effects, has permitted the realization of some of the most accurate measurement

devices [4, 5]. These, in turn, can be employed to test further fundamental physic proposals

and refine our understanding of the laws of nature [6, 7]. Still, more general applications of

quantum technology are yet to be demonstrated.

The most anticipated applications – including the simulation of molecules and materials beyond

the reach of classical computation [8], solving algebraic and graph problems [9, 10], and many

more besides [11–13] – often presume the availability of flawless quantum devices. However, the

current state of affairs, known as the noisy intermediate–scale quantum (NISQ) era [14], is rather

characterized by relatively small quantum systems, subject to imperfect control and prone to

errors. Crucially, due to the lack of systematic correction such errors accumulate, rendering any

attempt of quantum computation or simulation quickly impractical. Ultimately, it is thought

that these limitations will be overcome by means of quantum-error correction [15, 16] enabling

the detection and correction of faulty operations faster than they occur. The advent of such

fault-tolerant quantum devices is actively pursued, but is only expected in several years or

decades, and requires steady improvement along the way. In the meantime, a new breed

of quantum algorithms is being developed, aiming at exploiting the limited quantum resources

that are already available, and taking into consideration their shortcomings to perform practical

tasks. A significant part of this effort to develop future generations of quantum platforms and

also to make the most of current technology can be seen through the lens of optimization.

A recurring theme in the improvement of quantum computers, and more generally within

quantum experiments, is the necessity to devise adequate controls. Designing control protocols

which allow to realize a specific quantum dynamics, as accurately and as fast as possible, forms

the field of quantum optimal control (QOC). QOC [17, 18] proposes to formulate this design

problem as an optimization: a figure of merit quantifying the success of a given control sequence

is established, and controls are adjusted to maximize this figure. In particular, when applied to

1



2 Introduction

systems where imperfections and experimental limitations need to be taken into account, QOC

provides the tools to discover non trivial controls resulting in improved performances. Further-

more, due to its generic optimization approach, QOC has emerged as a versatile methodology

which has been employed in virtually all implementations of quantum physics.

The optimization of (typically time-dependent) control fields has been predominantly performed

based on theoretical models and numerical simulations. This approach has the advantage of

making the most of cheap and abundant classical computing resources. However, it assumes

a precise characterization of the system of interest and the ability to numerically simulate it.

Given the increasingly complex quantum systems that we are gaining control over, it often

becomes infeasible to find a sufficiently accurate model, let alone to simulate its dynamical

behaviour. The design of control fields based solely on experimental observations, hence without

resort to modeling, allows to circumvent such limitations. Still, performing optimizations based

on measurements remains challenging. Due to the intrinsic probabilistic nature of quantum

measurements, each step of the optimization requires many repetitions of the same experiment

in order to accurately estimate the relevant figure of merit. This experimental effort, combined

with the scarcity of near-term quantum resources, and the additional sources of noise found

in any experimental setup, make such optimization uniquely demanding. Devising efficient

optimization frameworks, robust to these various stochastic effects, which can identify close-to-

optimal controls in realistic experimental conditions, would allow us to unlock the full range of

possibilities offered by this measurement–based QOC approach.

In addition to these problems of accurate control, optimization is also at the core of the nascent

field of variational quantum algorithms (VQAs) [19]. With error-corrected devices remaining

years or decades away, it has become urgent to develop quantum algorithms which are tolerant

to near-term technological limitations. For that purpose, VQAs propose to mitigate control

errors and noise, found in current quantum devices, by means of optimization. Broadly speak-

ing, a VQA consists of the preparation of a quantum state given a quantum circuit which

parameters can be freely varied. These circuit parameters can then be iteratively refined to

minimize a figure of merit characterizing the problem to be solved. Crucially, this figure is

measured experimentally, thus permitting to directly probe quantum states which would have

been intractable in classical computations. Additionally, resorting to optimization has the ben-

efit of reducing the length of the quantum circuits involved, and compensating for some of the

noise presents in NISQ devices. Due to these appealing features, combining advantages of both

quantum and classical routines, many problems of interest have now been formulated in such

variational forms [20–23].

For any VQA to be of practical use, it is crucial that the optimization of its circuit parameters

can be performed in realistic experimental effort. Akin to problems of QOC based on experi-

mental data, several challenges impeding the success of these optimizations have been identified
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[22, 23]. To date, these have limited the largest experimental realizations of VQAs [24, 25] to

address problems which could have been solved numerically. Overcoming these difficulties is

required to further explore the potential offered by VQAs, with the hope that they could find

practical applications behind what can be achieved classically.

The main goal of this thesis is to develop novel methods enabling the efficient optimization

of quantum systems dynamics – depending on either analog control fields (in problems of

QOC), or quantum circuits parameters (in problems of VQAs) – based on experimental data.

In particular, we aim at leveraging advances from the field of machine learning (ML) [26] to

facilitate these optimizations. ML provides a fresh perspective on optimization1, along with

practical tools. Among the flagship ML techniques, deep neural networks [27] have already

made their way to the realm of quantum physics, and have been employed for problems of

classification of quantum phases [28], of compact representation of quantum states [29, 30],

and of control of quantum systems [31, 32]. However, typical ML algorithms often assume the

availability of vast amount of data and processing power. Less studied, but more relevant to

our purpose, is the field of probabilistic machine learning [33, 34]. Similar to ML, probabilistic

ML provides the methodology to model and to predict based on observed data, but comes with

the additional benefit of capturing the uncertainty entailed in such predictions. Such a feature

is critical when data is scarce and noisy, as of interest here, and provides the basis for principled

decision making as needed in an optimization context.

Outline of the thesis

Part I provides the necessary background for the thesis. In Chapter 1, we introduce the opti-

mization tasks of interest, namely problems originating from the fields of QOC and VQAs. A

summary of the problems which will be considered is provided in Figure 1.1. This is followed

in Chapter 2 by a presentation of the methods permitting the optimization of the dynamics

of a quantum system. First, we review widely used optimization frameworks, and also intro-

duce Bayesian optimization from the probabilistic ML toolbox. Second, we detail elements of

the statistical methodology necessary for the characterisation of quantum systems properties

based on experimental data. The results of this thesis are then thematically grouped over three

chapters forming Part II.

In Chapter 3, we study the choice of an adequate routine to perform optimization. In particular,

we argue for the adoption of Bayesian optimization as particularly well-suited for problems of

optimization based on experimental outcomes. First, its benefit is demonstrated for a paradigm

control problem of the crossing of a quantum phase transition (in faster–than–adiabatic times).

Next, we improve on the existing Bayesian optimization framework. By carefully integrating

1”Learning” in machine learning invariably entails ”optimizing”.
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statistical details of quantum measurements, we enable the framework to converge even in

cases where only a few measurement repetitions (up to a single repetition) are performed at

each optimization step. Overall, this allows optimization with reduced quantum resources,

a particularly appealing feature in the current NISQ era where quantum data is scarce and

expensive.

In Chapter 4, we study the importance of the choice of the figure of merit. This figure, which

is identified as a measure of success guiding any problem of optimization, is not unique and

thus can be refined. First, quantitative criteria for appropriate figures of merit are established.

Then, these are used to study and devise more experiment–friendly figures, and we show in

distinct examples that alternatives to figures commonly used could facilitate their corresponding

optimization. As orthogonal to the choice of the optimization routine, these figures can provide

an advantage to be combined with the improvements showcased in Chapter 3.

In Chapter 5, we take a step forward and consider the situation where many related optimiza-

tions need to be performed all together. As we will see, this situation is common in quantum

technological applications, and calls for principled optimization methodologies. Rather than

treating each of the many optimization tasks independently, we propose two frameworks aim-

ing at exploiting their commonalities. A first framework is developed for families of VQAs

such that measurement data can be shared in between each of the individual optimizations.

A second framework is proposed to extend the QOC methodology from the optimization of a

single target dynamics to the optimization of continuous families of such targets. Its training is

performed assuming exact numerical simulations, and we discuss how it can also be optimized

directly based on experimental data. Overall, the two schemes presented are shown to solve

families of problems with significantly reduced effort compared to existing methods.

Overall, we address the problem of efficiently optimizing the dynamics of quantum systems

from several angles, and devise novel methodologies which are found to surpass current ap-

proaches. The proposed frameworks are developed with general applications in mind, rather

than being tied to too specific experimental details. The results presented are either obtained

on public–access quantum chips or numerical simulations, in which case care is taken to incor-

porate imperfections and limitations mimicking experimental constraints. While demonstrated

on relatively small system sizes and problems, we discuss and challenge the scalablity of the

methods presented along the way. Overall, it is our belief that the methods developed in this

thesis can find application in a wide array of situations relevant to the current effort to scale

quantum technology to practical problems.
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Chapter 1

Optimization tasks

In this chapter, we introduce the optimization tasks of interest. These originate from the fields

of quantum optimal control, reviewed in Section 1.1, and variational quantum algorithms,

reviewed in Section 1.2. We conclude by defining more precisely the objective of this thesis in

Section 1.3, and provide in Figure 1.1 a summary of concrete problems which will be investigated

to assess the performances of the methods proposed in Part II.

1.1 Quantum optimal control

Technological advances in the control toolbox have enabled the realization of quantum physics

experiments at unprecedented level of sophistication [35–39]. With this ability to precisely

control physical systems at the elementary level, has emerged the question of how to design

such controls optimally. Exploiting the possibility to vary the amplitude of a laser pulse in time

was first envisioned in [40] to enhance the product of chemical reactions, and was experimentally

demonstrated in [41, 42]. While originally intended for the tailoring of laser fields, the idea of

optimizing any experimental degrees of freedom (which can be time–dependent or static) to

achieve a specific objective has now been applied in many more situations, forming the field of

quantum optimal control (QOC) [17, 18]. Due to its versatility, QOC has been recognized as

a pillar supporting the development of quantum technology [43] to the benefit of, for instance,

quantum computing, simulation and metrology experiments. In the following, we provide an

overview of its current applications, before formalizing the general task of QOC.

State-of-the-art

Application to quantum computers. Digital quantum computers aim at storing and ma-

nipulating information encoded over register of qubits. A typical realization of a quantum

computer relies on the implementation of few elementary operations, known as gates, acting on

single qubit or pairs of qubits. When repeated and combined, such gates enable any operation

7



8 Chapter 1. Optimization tasks

to be carried out on the whole register of qubits up to arbitrary precision, that is, permit uni-

versal quantum computing [44]. Any realization of a quantum computer strives for high speed

and high accuracy gates which can be refined by means of QOC. QOC has been successfully

applied to such quantum gate engineering problems over a wide array of platforms, such as,

superconducting qubits [45, 46], trapped ions [47–49] or neutral atoms [50–52]. In particular,

when control limitations, noise and other experimental imperfections are taken into account

QOC enables the discovery of control protocols far from trivial but resulting in improved perfor-

mances [53–56]. Most recent applications of QOC have considered operations acting on larger

subsystem than the 2–level qubit model, including qudits or logical qubits [57–61], which are

hoped to prove more robust to errors. Additionally, while QOC has primarily focused on the

enhancement of gates operated individually, it has become of great interest to also improve on

their realizations when acted in parallel [49, 62–64]. It is such ability to perform accurately and

simultaneously many operations which will enable the scaling of quantum computing platforms.

Application to quantum simulators. As an appealing alternative to digital quantum

computation, analogue quantum simulation [65] propose to utilize quantum resources toward

the simulation of quantum physics, that is, without resorting to exponentially demanding nu-

merical simulations. Broadly speaking, quantum simulation aims at imitating the behavior of

a quantum system of interest by means of an auxillary quantum system that is easier to control

and to measure. Among the many platforms suited for this purpose, ultra-cold atoms [66–68]

and ions [69, 70], are often recognized as the most promising ones. These offer high levels

of controllability, including the ability to realize tuneable potentials and interactions, comple-

mented with the capability to resolve particles at the individual level. Taken together, these

characteristics enable the synthesis and study of a vast range of physics. Still, realizations of

such experiments remain demanding and prone to errors. In particular, the many steps involved

in their preparation are often relatively slow, and can be improved by means of optimization.

For instance, the trapping, cooling, displacement and loading of atoms (or ions) into a desired

potential, have all been refined by means of QOC [71–76]. Overall, QOC offers the tools to

improve on the preparation and manipulation of quantum states of increasing complexity, and

ultimately to increase the quality and reach of current quantum simulators.

Application to quantum sensing. Finally, quantum sensing and metrology [77, 78] can also

benefit from the design of better controls by means of QOC. Exploiting specificities of quantum

mechanics such as entanglement, squeezing, and freedom in the measurements which can be

performed can, in theory, enable precision measurement beyond what is possible classically [79,

80]. Still, maintaining such advantage in the presence of experimental noise requires great care.

General quantum sensing protocols involve the creation of an initial quantum state sensitive

to a physical quantity to be measured, its evolution, and a measurement of its final state. All

these aspects can be refined by QOC to enhance the sensitivity of the system. In particular, the

accurate preparation of initial entangled or squeezed states, despite experimental imperfections,
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have been optimized in many different experiments [81–86]. Additionally, the driving of the

system during its evolution, can also be taylored to limit detrimental environmental effects and

to magnify the susceptibility of the system to the field to be measured [87–93].

Overall, QOC has found applications in many quantum experimental realizations. Despite the

wide disparities in the practical details of the problems tackled, any QOC scheme can always

be conceptualized as (i) the evolution of a quantum system under control fields which can be

varied, (ii) the choice of a figure of merit quantifying the success of a given control, and (iii)

the maximization of such figure. In the following subsection we review further this general

formalism.

Formulation of the problem

A typical problem of optimal control is understood as the identification of a time-dependent

control f(t) in order to achieve a desired dynamical behavior of the system. In the realm

of quantum physics, the evolution of a closed system is prescribed in terms of an ordinary

differential equation, namely the Schrödinger equation (taking ~ = 1)

i
d

dt
|ψ(t)〉 = H

(

f(t)
)

|ψ(t)〉, (1.1)

which relates changes in the quantum state |ψ(t)〉, belonging to some Hilbert space H, to the

Hamiltonian operator H encoding the physical details of the controlled system.

In tasks of quantum state preparation, one aims at transforming a fixed initial state |ψ(t =

0)〉 = |ψ0〉 into a target state |ψtgt〉 at later time t = T . For such purpose, the merit F (f)

of the control function f is measured in terms of the similarity between the final state |ψ(T )〉
under control, and the targeted one. This is often defined as the overlap F (f) = |〈ψtgt|ψ(T )〉|2
between the two states, which adopts a maximal value of F = 1 for identical prepared and

target states. The corresponding task of QOC is the identification of the control f which

maximizes the figure of merit F .

While it was previously assumed a fixed initial state |ψ0〉, a more general problem of QOC aims

at controlling the evolution of a system given an arbitrary initial state. Due to the linearity of

Equation (1.1), the entire dynamics of a closed quantum system is uniquely described in terms

of the unitary operator U(t) that propagates any initial state |ψ0〉 to the state |ψ(t)〉 = U(t)|ψ0〉
satisfying Equation (1.1). It can be shown that the evolution of such propagator follows the

differential equation

i
d

dt
U(t) = H(f(t))U(t), (1.2)

given initial conditional U(t = 0) = I, with I being the identity operator acting on H. Denoting

U tgt the target propagator to be realized at fixed time t = T , such QOC problem is defined



10 Chapter 1. Optimization tasks

as the maximization of a similarity measure F (f) = S(U tgt, U(T )) between the target and the

realized propagators. Such objective is central to the engineering of faithful quantum computing

gates (where the target U tgt is the gate to be realized) and is commonly referred as a task of

quantum gate engineering.

More broadly, a QOC problem can always be formulated as the maximization of a figure of

merit F (f) depending on one (or several) time–dependent control function f . This figure F

can be the similarity between states or propagators at final time T , as was just discussed, but

could also quantify any other properties of the dynamical system, and could even depend on

its trajectory over time t ∈]0, T [. Additionally, when treating open quantum systems (that is

when the system of interest interacts with an external environment), the representation of the

system state as a pure state |ψ(t)〉 needs to be generalized to a mixed state ρ(t) which evolution

ρ(t) = Λ(t)(ρ(t = 0)) is understood in terms of a quantum process Λ(t) rather than the unitary

evolution U(t) which was described. While the dynamics of such systems are notoriously more

involved than for closed systems, the exact same QOC principles, of establishing and maximizing

a figure of merit F , equally apply.

With the notations introduced, a general problem of QOC is formulated as the maximization

problem:

f ∗ = arg max
f

F (f). (1.3)

Equation (1.3) could be supplemented with constraints on the control, to reflect, for instance,

bandwidth limitations or maximal values that it can adopt. Most often, however, we will enforce

these constraints directly when parametrizing the control function f(t), as we now discuss.

From functional to discrete optimization

The optimization problem over functions in Equation (1.3) is often found to be impractical, and

is rather reformulated as an optimization over a discrete set of continuous parameters. This

is achieved by parameterizing the control f(t) in terms of a finite set of control parameters θ.

For instance, it is common to decompose the control function as a weighted sum

f(t) =
P<∞
∑

i=1

θiφi(t) (1.4)

of a finite set {φi(t)}1≤i≤P of P basis functions. Typical choices of basis include the Fourier

harmonics defined as






φi(t) = cos(ωlt), if i is odd

φi(t) = sin(ωlt), if i is even
(1.5)
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with respect to a finite set of frequencies ωl. These frequencies can be chosen with respect to

well–defined energy scales of the controlled system when possible, but could even be chosen

randomly [94]. Alternatively, in the time-domain, piece-wise constant functions







φi(t) = 1, if i−1
T−1

≤ t < i
T−1

φi(t) = 0, otherwise
(1.6)

have also been frequently employed, as they permit faster numerical simulations of the con-

trolled system. The parameterization in Equation (1.4) can further be composed with other

functions [46, 94] to enforce, for instance, bounded values or boundary conditions for the control

amplitudes, or to incorporate informed guesses on the optimal control functions.

More generally, any parameterization ensuring a well defined correspondence between control

parameters and time-dependent control functions can be adopted. In particular, we will often

resort to parameterization by means of cubic splines fitted to values of the controls taken at

constant intervals, or even to neural networks, both as a flexible way to parameterize smooth

control functions with a finite number of parameters. These will be described further in due

course.

Given a choice of parameterization, the dependencies on the control function f can be replaced

by dependencies on the control parameters θ. For instance, F (f) → F (θ), resulting in a

formulation

θ
∗ = arg max

θ

F (θ) (1.7)

of the general QOC problem to be solved. Despite the apparent simplicity of Equation (1.7),

this will be the task that will occupy us for the rest of this thesis.

Taxonomy

The general QOC problem stated in Equation (1.3), or in its discrete form in Equation (1.7),

has been approached with a wide range of methodologies [31, 46, 94–99]. It is not our intent

to cover the peculiarities of each of these frameworks, still it is insightful to broadly categorize

them.

Analytical and numerical optimizations. It is only in restricted cases that analytical

solutions of the functional QOC problem expressed in Equation (1.3) can be obtained. Such

solutions are most often derived by means of optimal control theory, typically based on the

Pontryangin maximum principle [100], but remain limited to low dimensional problems (see

for instance [97] for a recent review of optimal control theory applied to QOC). More general

problems of QOC, however, evade such analysis, and rather require numerical optimizations

over a finite number of parameters such as appearing in Equation (1.7).
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Model–based and experiment–based QOC.1 QOC is most often performed based on as-

sumptions of a theoretical model describing the system under control. In such cases, the op-

timization of the control field can be performed based on numerical simulations of the model.

Such approach bears the advantage of decoupling experimental realizations and numerical sim-

ulations, and of employing cheap and abundant classical computation resources. However, it

necessitates a precise characterization of the controlled system in the first place, and is limited

to problem sizes for which numerical simulations are possible. An alternative path toward

QOC is to perform optimization directly based on experimental outcomes [98, 99], thus avoid-

ing discrepancies between an idealized model and its physical realization. Furthermore, this

approach does not restrict the optimizations to system sizes which can be numerically simu-

lated. This, however, comes at the expense of more challenging optimization. In particular,

the figure F needs to be estimated based on measurement outcomes (as opposed to the exact

evaluations obtained in numerical simulations), which requires many rounds of preparations

and measurements and limits the number of optimization iteration which can realistically be

performed.

1.2 Variational quantum algorithms

In addition to these tasks of quantum control, optimization is also central to the field of varia-

tional quantum algorithms (VQAs). With fault-tolerant computers still years or decades away,

VQAs aim at exploiting current quantum resources towards practical applications. In particu-

lar, it is hoped that some of the limitations imposed by current technology could be overcome

by classical optimization. For that purpose, VQAs propose to embed the preparation of a quan-

tum state into a classical optimization loop in charge of refining its preparation. Such hybrid

quantum–classical frameworks were first motivated for problems of quantum chemistry, leading

to the development of the variational quantum eigensolver (VQE) [20], and of combinatorial

optimization, with the quantum approximate optimization algorithm (QAOA) [21]. VQAs have

now been extended to a wide array of problems (see [22, 23] and references therein). Fast ad-

vances in the field have been facilitated by the development of powerful numerical libraries

[101–103], allowing to quickly prototype new algorithms, and by an increased accessibility to

cloud quantum computing resources [1]. Still, it remains the case that optimizing such algo-

rithms at scale remains arduous, such that only proofs of concept, over relatively small system

sizes (most often involving in between 1 to 10 qubits), have been experimentally demonstrated.

In the following, we present a general formulation of a VQA, and detail some of the main

challenges faced when attempting to apply these algorithms to large problem sizes. We conclude

1This dichotomy between model–based and experiment–based optimizations has found many names in the
literature such as open–loop and closed–loop, or in–situ and ex–situ, or off–line and on–line optimizations.
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this section by highlighting connections and differences with QOC. These are important as

these two fields have grown separately, driven by different motivations, but still share many

similarities.

Guiding principles

A general VQA problem consists of:

1. The mapping of a problem to be solved, to a synthetic qubit operator (the problem

operator) Hprob which ground-state provides a solution to the problem.

2. The preparation of a quantum state |ψ(θ)〉 by means of a parametrized quantum circuit

U(θ) applied to a fixed initial state |ψ0〉. This circuit is typically comprised of single– and

two–qubit gates, which rotation angles form the set of parameters θ that can be freely

varied. Examples of parametrized quantum circuits can be found in Figure 1.1(c,d).

3. The estimation of the expectation value 〈Hprob〉θ = Tr[Hprob|ψ(θ)〉〈ψ(θ)|] (or its gradient)

of the problem operator with respect to the prepared stated. This is achieved by means

of repeated rounds of preparation of the same state |ψ(θ)〉 and measurements of the

constituents of Hprob.

4. The variation of the parameters θ of the circuit in order to decrease the expectation value

〈Hprob〉θ.

The steps (2-4), which form the outer-loop of classical optimization of the circuit parameters

(often referred as the training of a VQA), are repeated until convergence of the algorithm. An

optimization is deemed successful if the parameters θ∗ corresponding to the preparation of the

ground state of Hprob (that is the state minimizing the expectation value 〈Hprob〉θ) has been

found. To be of practical interest, it is necessary that the mapping in step (1) can be performed

in polynomial time (with respect to the size of the underlying problem to be solved), and that

the number of constituents of Hprob, which needs to be estimated independently in step (3),

scales at most polynomially with the problem size [104]. Ultimately, the success of any VQA

lies in its ability to be trained in realistic conditions, for instance, in a limited number of rounds

of state preparations, or in timescales during which the quantum device, used to perform the

state preparations, does not have to be re-calibrated.

Since its recent inception, the field of VQAs has quickly developed and is now often perceived as

a promising path toward a practical quantum advantage, that is, the ability to exploit quantum

resources to solve problems of practical relevance (that could not have been solved by means

of classical computations). On one hand, the freedom in the choice of the parameter values

of the quantum circuits involved in any VQA permits the reduction of their depths compared

with the lengthier (and fixed) circuits employed in non–variational quantum algorithms. Such
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depth, which is the minimum number of gates that need to be sequentially performed, directly

relates to the time required for a circuit to be executed. Given the limited coherence times2

of NISQ devices, a shallow depth (thus entailing short execution times) is a prerequisite to

obtain meaningful results. Additionally, errors known to plague NISQ devices can be, at

least partially, mitigated during optimization [105]. For instance, systematic errors of over–

or under–rotations in the gates implementation, could be compensated with correspondingly

altered rotation parameters. For these reasons, VQAs are thought to be well–suited to overcome

the shortcomings of NISQ devices, and already many quantum algorithms have been recast in

such a variational form [106–108].

Despite these appealing properties, the training of VQAs in systems of more than a few qubits

remains challenging. In addition to the fundamental limits imposed by the accuracy of cur-

rent quantum devices, most of the challenges identified as limiting the scaling of VQAs can

be understood from an optimization perspective. In particular, the Barren plateaus [109] phe-

nomenon (this will be discussed further in Chapter 4) has been diagnosed as a generic issue

preventing the optimization of a large variety of parameterized circuits when randomly initial-

ized. More generally, the experimental effort in accurately estimating the expectation values

of the operator Hprob in step (2) often becomes excessive, and, given the relatively low repeti-

tion rates of NISQ devices [110], quickly limits the number of optimization steps which can be

performed [111]. Such issues, combined with the presence of local minima in the optimization

landscape [112, 113], render the optimization of quantum circuits particularly challenging.

While intended for different purposes, VQAs are conceptually similar to QOC when performed

based on experimental data. In both cases, a classical optimizer works in tandem with an

experimental realization of a quantum system, to minimize a figure3 which is estimated ex-

perimentally. Along with their growth, the exact demarcation in between the two fields has

become thinner. Still, a few conceptual differences deserve to be highlighted. First, in VQAs

optimizations are typically performed at the gate level (that is, over rotation angles of a discrete

set of gates) rather than at the pulse level (that is, over analog physical control fields) as is

the case in QOC. Nonetheless, gates are always realized by means of physical pulses, such that

one could reformulate any VQAs as an optimization over pulses rather than gates [114]. In

particular, this allows to bypass the need for a decomposition of the state preparation in terms

of gates to be applied sequentially, and could result in shorter preparation times. A second

distinctive feature of VQAs, is that due to the specific dynamics induced by the structure of the

quantum circuits, exact gradients of the figure of merit can often be estimated experimentally

[115]. As such a significant body of research has focused on gradient-based methods for the

optimization of VQAs. We discuss further these gradient-based methods and their limitations

2These are the timescales over which a quantum state remains sufficiently decoupled from its external envi-
ronment.

3For consistency, we call this figure the figure of merit in both cases, albeit it is often referred as cost or
objective function in the field of VQAs.
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in Section 2.1.1. In any case, it is highly desirable to investigate more efficient optimization

frameworks which could ease the training of VQAs.

1.3 Scope of the thesis

As alluded previously, the main goal of this research is to develop novel methodologies enabling

the efficient optimization of quantum dynamics based on experimental outcomes. These can

benefit both problems of experimental QOC and also VQAs. As such, the techniques presented

in Part II will be evaluated on a variety of problems, sketched in Figure 1.1, drawing from these

two fields.

While more challenging, experimental optimization allows, in the field of QOC, to circumvent

the need for an accurate characterization of the system of interest, and to avoid prohibitively

lengthy numerical simulations. This is of critical importance given the size and complexity

of the quantum systems that are now controlled. For instance, modern quantum simulation

experiments can manipulate hundreds to thousands of individual particles, making them al-

ready intractable numerically (at least, without resorting to approximations). Furthermore,

in the context of quantum computers, it has become crucial to ensure accurate and simulta-

neous gate operations over large registers of qubits. However, addressing a targeted array of

qubits often results in undesired effects (that are generically referred as cross-talk [116]) af-

fecting other parts of the register. Given that such effects remain often hard to characterize

precisely, experimental optimization can provide a viable approach towards the improvement of

such intricate platforms. These optimizations are also central to the field of VQAs which bears

the hope for a practical quantum advantage in a foreseeable future. More generally, the opti-

mization approach considered in this thesis may be of particular relevance in the current effort

of translating quantum physics to quantum technologies in a more industrial capability. This

will involve gradually moving from extremely well controlled laboratories to mass production

facilities, which calls for efficient and automated calibration and optimizations routines.

It remains the case that quantum dynamics optimizations have been predominantly performed

based on models, which evidences the unique difficulties of experimental optimization. Given

the several challenges which were identified in this chapter, we will strive to develop methods

which should be

1. Efficient. Good solutions need to be obtained within realistic experimental effort. This

is particularly relevant in complex experimental setups with low repetition rates.

2. Robust to noise. It is important to recognize that a figure of merit can only be esti-

mated with finite accuracy, and that accurate estimates require the repetition of many
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measurements. As such, it is key that the frameworks presented should be robust to

noise.

3. Scalable. Ideally, the methods presented should benefit optimization problems defined

over large system sizes. Still, most of the results that will be presented in this thesis

are obtained based on relatively small problem sizes (either numerically simulated, or

executed on NISQ devices). As such, it is important to assess that, at least in principle,

the methods advocated here could be applied to larger problems.
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QOC VQAs

Time

(a)

(b)

(c)

(d)

State preparation
G

ate engineering

Figure 1.1: The optimization tasks considered in this thesis originate both from the field of
quantum optimal control (QOC) and variational quantum algorithms (VQAs). (a-b) In QOC
one aims at identifying the time-dependent controls which allow the realization of a desired
dynamics at a time t = T . For instance in (a), the potential depth V (t) is optimized such as
to transform an initial state |ψ0〉 into a desired target state |ψtgt〉. Alternatively in (b), the
local f iσ(t) and collective fXX(t) controls are jointly optimized such that the induced dynamics
of the system resembles as much as possible a target gate Utgt. In VQAs (c-d) the objects of
optimization are the parameters (denoted θi) of a quantum circuit, and correspond to rotation
angles of single or two–qubit gates. In a typical VQA (c) these angles are optimized such
that the output state |ψ(θ)〉, resulting on the action of the circuit onto an initial state |ψ0〉,
minimizes the expectation value 〈H〉θ = 〈ψ(θ)|H|ψ(θ)〉 of an operator H of interest. (d)
Alternatively, these angles can be optimized such that the dynamics realized by the circuit
U(θ) mimics a target unitary Utgt. These are examples of optimization of quantum dynamics
which are investigated in this thesis.
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Methods

Apart from a few exemplary problems for which analytical solutions can be derived, it is

common to approach the optimization problems detailed in the previous chapter equipped

with numerical routines, consisting of iterative updates of the parameters to be optimized.

As depicted in Figure 2.1, a general framework of optimization can be broken down in two

parts: (i) an optimization routine in charge of suggesting new parameters to be tried, (ii) the

simulation of the quantum system which permits the evaluation of the figure of merit F to be

maximized. When performed experimentally, this last part involves many repetitions of the

same experiment in order to gather necessary measurements to the estimation of F . These

two aspects of optimization and estimation are central to the success of any optimization task

based on experimental data, and are detailed in this chapter.

Measurements

Quantum
experiment

Optimizer

QOC

iterations

repetitions

VQA

t

Figure 2.1: Sketch of a general optimization routine based on experimental data. At each
iteration, the optimizer suggests a set of parameters θi to be tried. These parameters correspond
to rotation angles of a quantum circuit in problems of VQAs, or permit to reconstruct a time-
dependent control field f(t) in problems of QOC. An estimate F̃ (θi) of the figure of merit F (θi),
for this choice of parameters, is obtained based on N rounds of experiments and measurements,
and fed back to the optimizer. Such optimization step is repeated M times until convergence
of the algorithm, or until an experimental budget has been exhausted.
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Among the different optimization routines that are presented in Section 2.1, a particular em-

phasis is put on the description of Bayesian optimization (Section 2.1.3) which will enable the

development of novel optimization frameworks studied in Chapter 3 and Chapter 5. Similarly,

when presenting the statistical framework of estimation in Section 2.2, care is taken when

deriving the expressions relating accuracy of the estimates and details of the figures to be es-

timated, as these will central to the comparison and engineering of alternative figures of merit

in Chapter 4.

2.1 Optimization frameworks

Along with the adoption of QOC as a practical tool to improve the control of quantum exper-

iments and the development of VQAs, the importance of employing the right optimization

routine has been quickly recognized, spurring the development of a rich variety of strate-

gies [31, 46, 94–96, 115, 117–119]. Here, we review the most prominent methods grouped

in a thematic way, highlighting their range of applicability and limit. Gradient-based methods

(Section 2.1.1) provide a straightforward path toward optimization but are limited to well-

behaved optimization landscapes. Gradient-free methods (Section 2.1.2) offer an alternative in

cases where accurate estimation of the gradients is not possible, and are at the core of most

optimizations that have been performed based on experimental outcomes. Also considered as

gradient–free, but treated separately, we introduce Bayesian optimization (Section 2.1.3) which

presents a distinct approach toward optimization, and which will be central to many of the

results presented later.

In this section, we consider the general task of maximizing a figure of merit F : θ ∈ χ ⊂
RP → R, with θ the P–dimensional input parameters. In practice, these parameters would

correspond to the tuneable control fields in QOC problems, or to parameterized–rotation angles

in VQAs. Subscripts are used to index different sets of parameters, for instance as explored

during the course of an optimization, while superscripts index the different elements of the

same input parameter vector. Hence, θ
(j)
i corresponds to the j–th element of the i–th set of

input parameters. In experimental situations, only noisy evaluations of the figure of merit are

accessible, and are denoted yi ≈ F (θi), for input parameters θi.

2.1.1 Gradient methods

Gradient-based optimization holds a special appeal due to its simplicity. In its simplest flavour,

it involves repeated steps of parameters updates in the direction of the steepest ascent of F .

This corresponds to the iterative rule θi+1 = θi + η∇θi
F , where the scalar η > 0 is the step
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size, and where

∇θF =
[ ∂F

∂θ(1)
, . . . ,

∂F

∂θ(P )

]

(2.1)

denotes the vector of gradients of F with respect to each of the parameters entries θ
(j). For

sufficiently small step sizes these updates ensure monotonic converge of F to a local maximum.

More refined methods, typically resorting to higher order derivatives [119, 120] or adaptive step

sizes [121] extend the simple iterative rule presented, and can result in improved convergence.

In addition to its conceptual simplicity, gradient optimization has proven to scale well to high–

dimensional problems such as the optimizations of neural networks routinely performed over

millions if not billions [122] of parameters. However, as is the case for any local optimization

strategy, gradient ascent only guarantees convergence to a local minimum. Furthermore ob-

taining exact gradients (or unbiased estimates when these need to be estimated experimentally)

is not always possible. In such situation, these gradients need to be approximated by means of

finite differences. In the following, we review the different flavours of gradient schemes which

have commonly been employed when optimizing quantum controls and circuits. We first take

a detour to discuss gradients obtained based on numerical simulations of quantum dynamics.

This will help us to contrast this numerical situation to the case when gradients need to be

assessed experimentally, which is presented afterwards.

Exact gradients in numerical simulations

Obtaining the gradients of numerically simulated quantum systems is at the core of many QOC

frameworks. The now widely adopted, gradient–ascent pulse engineering (GRAPE) algorithm

[95] took a first step in this direction by providing the methodology permitting the efficient

computation of approximate gradients in cases when the control fields are discretized in times

(that is, with the piece–wise constant parameterization of Equation (1.6)). Such methodology

was subsequently extended to the evaluation of exact gradients [118], and higher order deriva-

tives [120]. The more general situation, where the optimized control fields can be taken to

be continuous functions (still parameterized by a finite number of parameters), has now also

been solved in [46]. As based on numerical simulations, the application of all the methods just

mentioned is limited to system sizes which can be numerically evolved. Still, recent work [123]

has shown that it was also possible to derive and to exploit gradients obtained for larger system

sizes when treated by means of approximate evolution.

In parallel with the development of these specialized frameworks, the field of machine learning

(ML) – where gradients are prominently featured – has matured and now offers flexible tools

which are also well suited for the study and optimization of quantum dynamics. In partic-

ular auto–differentiation (AD) frameworks provide efficient methods (benefiting from careful

implementations and leveraging GPUs capacities) to obtain gradients in numerical computa-
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tion. In a nutshell, AD [124, 125] develops the machinery to systematically extend an arbitrary

numerical computation to permit the evaluation of its gradients, at the cost of only a mod-

est computational overhead. Such capacity is now integrated into any modern ML libraries

[126, 127], and is central to the training of almost all ML architectures where it is known as

back-propagation. Still, AD is not limited to the training of neural networks but enables differ-

entiation over virtually any computational programs. For instance, it has been applied recently

to numerical routines encountered in the realm of quantum physics, such as the contraction

of tensor networks [128, 129], the eigendecomposition of Hermitian operators [130], the simu-

lation of parameterized quantum circuits [101, 102], and the discretized evolution of quantum

systems [131–134]. Latest progress in the field [135] have improved the implementation of AD

for numerical solvers of ordinary differential equation (such as the Schrödinger equation in

Equation (1.1)), thus broadening its applicability to problems of QOC. Resorting to AD tools,

rather than more specialized QOC frameworks, has the additional advantage of facilitating its

integration into larger optimization frameworks; this will be explored in Section 5.2.

Overall, it is the case that any quantum dynamics which can be numerically simulated could

also be optimized by means of gradient methods. In contrast, assessing exact gradients based

on experimental outcomes is only possible in certain situations that are now discussed.

Exact gradients in experimental situations

Outside the realm of numerically simulated systems, exact gradients are known to be accessible

only for specific problems [115, 136–139]. For instance, this is the case when (i) a quantum state

is evolved by means of a quantum circuit (or follows an equivalent dynamics) with parameters

corresponding to single-qubit rotation angles, and when (ii) the figure of merit F is taken to

be the expectation value of an operator with respect to the output state of the circuit. In such

situation, the gradients of F can be reformulated in the form [115, 136]

∂F

∂θ(j)
=
F (θ + sej) − F (θ − sej)

2sin(s)
, (2.2)

that is, in terms of the figure F evaluated for the shifted parameters θ ± sej, with scalar shift

s > 0, and where ej denotes the unit vector with all entries equal to zero except e
(j)
j = 1.

Equation (2.2), which is often referred as the parameter-shift rule, ensures that if F can be

estimated for arbitrary parameters, so can be its gradients. It should be noted that, as estimated

on a finite number of measurements, evaluations of F are not exact but rather stochastic. Still

assuming that estimates of F are unbiased, that is, are equal to the true value of F in average,

it follows that gradients estimates based on Equation (2.2) are also unbiased. It is in such sense

that should be understood the ”exactness” of the parameter-shift rule: stochastic but unbiased

estimates of the true gradients.
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This possibility to assess gradients experimentally enables the optimization of parameterized

quantum circuits by means of stochastic gradient ascent, akin to the way that neural net-

works are trained1. This brings hope that similar success, as attained in training large neural

networks, could also be achieved when optimizing parameterized quantum circuits. Still, it re-

mains to ascertain if such optimization approach can truly permit the scaling of VQAs. First,

when Equation (2.2) is repeated over all the P entries of the gradient vectors, it entails evalu-

ations of F for a number 2m of different parameter values, which quickly renders experimental

estimations of the full gradient vector demanding. Second, it should be stressed that Equa-

tion (2.2) relies on the implicit assumption that the implemented quantum circuits behave as

expected. However, the presence of cross-talk, control errors, or any additional uncontrolled

terms, resulting from an experimental realization of the circuit, signifies that Equation (2.2)

should be treated as an approximation. To which extent this approximation is accurate enough

remains to be studied further. Taken together, these two reasons may explain the disparities

between experimental realizations of VQAs, which have mostly been performed without the

parameter-shift rule, and the many numerical proofs of concept of VQAs, which often assume

exact gradients. As such, it is desirable to consider alternatives to the parameter-shift rule

for the training of VQAs, and, also for any other situation where Equation (2.2) (or similar

rules [137–139]) does not apply.

Finite-differences gradients

In the general case where the exact gradients cannot be decomposed in terms of measurable

quantities, they still can be approximated by means of the finite differences

∂F

∂θ(j)
≈ F (θ + εej) − F (θ − εej)

2ε
, (2.3)

given ej the unit vector previously defined, and ε > 0 a scalar perturbation. In the limit of

vanishing perturbation ε → 0, Equation (2.3) recovers the definition of exact gradients. As

such, it would be tempting to take ε to be as small as can be resolved by the experimental

control apparatus. While such intuition would be true for exact evaluations of F , in the case of

finite errors in the values of F , originating for instance from finite sampling, the overall variance

of Equation (2.3) scales as ε−2. Hence, in practice it is desirable to identify (often empirically)

values of ε which are small enough to avoid too large approximation errors, but large enough

to ensure reasonable statistical errors.

As before, approximating the full gradient vector requires evaluating 2m times the figure F .

This unfavourable scaling in the number of parameters m can be avoided by perturbing the

1In the context of neural networks, numerical gradients are exact, but are evaluated on partial batch of data
randomly sampled yielding stochastic deviations from the true gradients (which would have been assessed on
the whole dataset).
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parameters simultaneously rather than individually. This insight forms the basis of the Simul-

taneous Perturbation Stochastic Ascent (SPSA) algorithm [140] which proposes to approximate

the whole gradient vector in terms of a single finite difference

∇θF ≈ F (θ + ε∆) − F (θ − ε∆)

2∆
, (2.4)

along a global direction ∆ ∈ RP which elements are randomly drawn at each iteration of the

algorithm. In such case, the evaluation of Equation (2.4) only requires evaluations of F for

the two set of parameters θ ± ε∆ per iteration. Furthermore, SPSA prescribes for both the

magnitude of the perturbation ε and the step size η, taken in the approximate gradient direction,

to be decreased during the course of the optimization. Given an appropriate decreasing schedule

(see [141] for guidelines), SPSA presents similar convergence guarantees than a finite–difference

scheme performed over each individual parameter, but offers a practical advantage in terms of

the total number of function evaluations required. Furthermore, as opposed to Equation (2.2)

SPSA does not rely on any assumption about the underlying dynamics of the system. As such,

it has been used in many experimental optimizations [142–144], and we will regard it as a

competitive benchmark when assessing the merit of the methods that we develop in Chapter 3.

2.1.2 Gradient-free methods

While gradient methods only consider local updates of the parameters, gradient-free meth-

ods permit a broader range of optimization strategies. Among such methods, Nelder-Mead

and genetic algorithms have traditionally been applied both to problems of QOC and VQAs.

Additionally, techniques inherited from the field of ML have recently been explored.

Nelder-Mead

Nelder-Mead algorithm provides a simple, off the shelve optimization routine for black box

optimization. In a nutshell, Nelder-Mead works by maintaining a simplex of P + 1 affinely

independent set of parameters {θi}1≤i≤P+1 which are sequentially updated according to a de-

terministic rule. At each iteration, the worst set of parameters (based on evaluations of the

figure of merit), is replaced by its partial reflection to the centroid of the remaining P points.

Such strategy is usually fast in converging to local minima of the problem, and, due to its

simplicity it has frequently been used in problems of QOC [45, 71, 76, 89, 94, 145, 146] and

in experimental implementation of VQAs [20]. For these reasons, we will also consider it as a

benchmark in Chapter 3.
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Genetic algorithms

Differential evolution and other types of genetic algorithms [147], belong to a class of opti-

mization heuristics inspired by natural evolution. They have been used since the infancy of

QOC [40, 42] and are still drawing interest both for problems of QOC and VQAs [117, 148].

Most of these algorithms rely on maintaining a collection {θi} (named in this context popu-

lation) of candidate solutions, each corresponding to a distinct set of parameters, which are

evolved according to a set of stochastic rules. Such evolution typically involves (i) a probabilis-

tic selection of the most appropriate candidates, at each round, based on evaluations of their

figures of merit, (ii) crossover between different candidates solutions, and (iii) the introduction

of additional element of randomness. The main appeal of genetic algorithms, compared to any

local optimization, lies in its ability to explore more globally the parameter space. In partic-

ular, in the first iterations of the algorithm, candidates solutions remain widespread over the

whole parameter space, and only converge after many iterations. As such, these strategies are

particularly well suited for problems of optimization with optimization landscapes presenting

many local extrema [117]. Given that these algorithms provide a distinct approach compared

to gradient–based methods, and that implementations of genetic algorithms are plenty, we will

also include them for benchmarking purposes in Chapter 3.

Reinforcement learning

Following recent breakthroughs in problems of artificial intelligence [149, 150], reinforcement

learning (RL) [151] has emerged as a powerful paradigm with broad applicability to many

domains of science. Roughly speaking, RL envisions the task of learning as repeated interactions

between a learner and an unknown environment, along which the learner is able to iteratively

refine its strategy (that is how it interacts with the environment) in order to achieve a specific

objective. Rather than a monolithic framework, RL has developed in a wide array of techniques,

many of which are now based on neural networks. In the realm of quantum physics, these

have been employed for the design of quantum experiments [152], problems of quantum error

correction [32, 153–155] and tasks of QOC, including quantum state preparation [31, 54] and

quantum gate engineering [55, 155].

To date, only a few results have demonstrated the applicability of RL to problems of QOC

or VQAs based on experimental data (with the exception of [152, 155]). Such applicability

may be limited by the large amount of training data that RL frameworks typically require.

Still, it should be acknowledged that due to the flexibility of the RL principles, these can be

applied to problems exceeding the scope of this thesis. In particular, RL is naturally suited for

tasks of control where partial observations of the system under control can be obtained during

its evolution [32], or for problems involving both continuous and combinatorial optimizations,
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such as finding the optimal parameters and circuit structures in problems of VQAs [156].

Furthermore, bridging the gap between numerical simulations and real world experiments is an

active field of research [157], and may soon bring the advances easing the applicability of RL in

experimental situations. Given that any implementation of RL requires a significant amount of

care and expertise, we will not actively consider RL frameworks as benchmarks for the methods

presented in Chapter 3, but will provide qualitative comparison whenever is possible.

2.1.3 Bayesian Optimization

We now turn our attention to an optimization technique originating from the field of prob-

abilistic machine learning [34], namely Bayesian optimization (BO). BO [158–160] has been

recognized as a prime choice for black-box optimization, that is, when the evaluation of the

function to be optimized is expensive and potentially noisy. As such, it has been applied to

demanding problems such as the optimization of the structure of neural networks [161], prob-

lems of robotics [162], or the design of new molecules [163], and may be perfectly suited for

problems of experimental optimizations. Still, at the beginning of this thesis, applications of

BO to the realm of quantum physics were scarce [99].

In sharp contrast to the methodologies previously mentioned, BO advocates the construction

of a surrogate model of the function F to be maximized, in order to accelerate its optimiza-

tion. Given limited and noisy evaluations of F , such model can only be approximate, and

understanding how likely it is to deviate from F , that is understanding the uncertainty entailed

by the modeling approach, is key to its appropriate use. Probabilistic modeling provides the

methodology to capture such uncertainty. Broadly speaking, the model considered in BO relies

on an initial distribution p(f) over conceivable model functions f , that is refined (by means of

Bayesian inference) to be consistent with the set of observations y which have been obtained.

The resulting distribution p(f |y) allows to formulate the choice of the next parameters to be

evaluated as a Bayesian decision problem. These two aspects of modeling and deciding under

uncertainty form the basis of an iterative optimization procedure, and are now described.

Modeling functions with Gaussian processes

Prior distribution. In the spirit of Bayesian inference, a first step toward probabilistic

modeling is the definition of a prior distribution. Here, this needs to be done over model

functions2f , rather than over a discrete set of random variables. Furthermore as the exact

nature of the function F to be optimized is unknown, this choice can only be made based on

2Here, f always refers to the functions modeling F , and not to the control fields to be optimized in problems
of QOC (discussed in the previous chapter).
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general considerations. For problems of control of physical systems it seems reasonable to expect

well–behaved functions without wild unnatural oscillations or discontinuities. In practice, such

general assumptions can be formulated in terms of a Gaussian process distribution [164] denoted

p(f), which technicalities are deferred to Appendices A.1 and A.2. In essence, p(f) allows to

favor smooth and regular functions f to describe the unknown F . As this distribution does not

yet incorporate any observed data it is therefore referred as the prior distribution.

Likelihood. The next step consists in updating this prior distribution p(f) to take into

consideration the evaluations of F that have been acquired. For that purpose, observations and

model need to be connected. At an arbitrary step D of the optimization, D of such evaluations

would have been obtained, and we denote the vector of observations y = [y1, . . . , yD], which

corresponds to the noisy values of F for input parameters θ1, . . . ,θD. In the general situation

where the exact details of the noise in the observed data is unknown, it is convenient to

approximate it by means of a phenomenological Gaussian noise. More exactly, it is typically

posited that yj = f(θj) + εj, where the noise terms εj are assumed to be independently

drawn from the same Gaussian distribution, with zero mean and variance σ2
N , denoted p (εj) =

N (0, σ2
N).

For a noisy evaluation yi obtained for input θi, these assumptions yield a likelihood

p(yi|f(θi)) = N (f(θi), σ
2
N)

=
1

σN
√

2π
exp

[

− (yi − f(θi))
2

2σ2
N

]

(2.5)

to observe yi given a model function f (with the explicit density function of the Gaussian

distribution provided in the second line). Given independence of the noise terms, the likelihood

of the full body of observations y to be observed given a model f , is the multivariate Gaussian

distribution

p(y|f) = N (f , σ2
NI)

=
1

σN
√

2π

exp
[

− (y − f)T (σ2
NI)−1(y − f)

]

√

(2π)D|σ2
NI|

(2.6)

with mean vector f = [f(θ1), . . . , f(θD)], which is the vector of values taken by f for the

parameters {θi}, and with covariance matrix σ2
NI, where I denotes the D×D identity. Again

we explicitly provide the expression of the probability density function (of this now multivariate

Gaussian distribution) in the second line, where |A| denotes the determinant of the matrix A.

For noiseless data, σn = 0, this reduces to the delta function p(y|f) = δy=f . In the more general

case where σn > 0, the noise variance σ2
N is often not known beforehand but can be fitted to

the observed data (Appendix A.3).

Posterior distribution and predictions. Having connected data y to model f (Equa-
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tion (2.6)), we can now proceed to express the posterior distribution p(f |y) by means of the

Bayes rule

p(f |y) =
p(f)p(y|f)

p(y)
, (2.7)

which features, in addition to the terms already defined, the marginal likelihood p(y) =
∫

df p(f)p(y|f) that normalizes the overall distribution. In general, this term is notoriously

difficult to evaluate as resulting from a D–fold integral over the values that can take each of

the variables f(θi). However, given the choice of the prior Gaussian process p(f) and of the

Gaussian likelihood p(f |y), Equation (2.7) admits an analytical expression. In particular, the

posterior distribution of the value f(θ∗) taken by the model at arbitrary parameter θ
∗ also

follows a Gaussian distribution:

p(f(θ∗)|y) = N
(

µf (θ∗), σ2
f (θ∗)

)

, (2.8)

with mean µf (θ∗) and variance σ2
f (θ∗) (both depending implicitly on y). The detailed expres-

sions of these two functions are provided in Equation (A.5) (of the Appendix A.4), where it is

highlighted that their evaluations entail a computational effort scaling as D3, that is, growing

cubically with the number D of observations available.

The distribution in Equation (2.8) is central to BO as it allows to make prediction for arbitrary

inputs θ
∗ (even in the absence of corresponding observations), and is thus often referred as

the predictive distribution. Notably, rather than a single deterministic value f(θ∗) (as would

be predicted by a non–probabilistic ML model), it provides a full probabilistic account of the

values that the unknown function could take.

Illustration. This predictive distribution is illustrated in Figure 2.2 for a dataset of 10

observations (red dots) and a one–dimension parameter θ. Given the body of 10 observations,

Equation (2.8) (and its explicit expression in Equation (A.5)) is evaluated and depicted in

terms of its mean µf (θ) (plain dark blue) and the 95% confidence interval centered around the

mean which, given the Gaussian nature of Equation (2.8), has bounds µf (θ)± 1.96× σf (θ). In

addition, the full probability distributions p(f(θ)|y) for specific values of the parameters θ = 0.2

and 2.8 are also reported (in shaded gray and in units chosen to ease their visualizations). In

particular, for θ = 0.2(2.8) the predictive distribution exhibits a small(large) confidence interval

corresponding to the presence(absence) of observations in the vicinity of the parameter value.

In other words, it can be seen that the model uncertainty naturally grows when further away

from the training data points. This ability to capture modeling uncertainty is central to the

choice of the next parameters to be probed, that we now discuss.
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Figure 2.2: From [165]: Gaussian process model fitted to a vector y of 10 observations (red
dots). The predictive distribution p(f(θ)|y) from Equation (2.8) is represented by its mean
(thick blue line), and a 95% confidence interval (light blue around the mean). In addition, the
full probability distributions are plotted for values of θ = 0.2 and 2.6 (in shaded gray).

Choice of the next parameter

We now detail how the predictive probability distribution (Equation (2.8)) is employed when

deciding which set of parameters θD+1 needs to be evaluated next. One could choose it where the

model adopts a maximal mean value µf . However, as based on a finite number of evaluations,

it should be acknowledged that this model can only be approximate and is likely to miss some

important features of the underlying function F , especially at the beginning of the optimization

when only a few evaluations have been obtained. Thus, it is also of interest to evaluate F where

the uncertainty in the model is high, that, is where the standard deviation σ2
f is large.

This trade-off3 between exploiting the model to accelerate the original optimization problem,

and exploring new regions of the parameter space to refine the model, can be formulated in

terms of the utility α(θ) in evaluating F given the set of parameters θ. In the context of

BO such utility function is called an acquisition function. Given the choice of an acquisition

function, the next set of parameters to be evaluated is chosen where the acquisition function

adopts its maximal value:

θD+1 = arg max
θ

α(θ), (2.9)

that is, where the parameters are deemed to be the most useful.

Among the several acquisition functions encountered in the literature [159], we limit the dis-

cussion to the upper confidence bound (UCB) which was found to be the most adequate for

3It is often referred as exploitation–exploration trade–off.
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the problems that are considered in Part II. This acquisition function is defined as:

αUCB(θ) = µf (θ) + kσf (θ), (2.10)

where the scalar k ≥ 0 balances the bias toward exploration of the parameter space (for large

values of k) or exploitation (for small value of k). In practice we choose the value of k to

be linearly decreasing (from an initial value k0 to a final value of 0) during the course of

the optimization. Such decreasing schedule encourages exploration at the beginning of the

optimization, but as the optimization progresses it limits the choice of the new parameters to

be evaluated to the most promising ones (according to the model). An adequate value of k0

(typically in the range [1, 10]) can be chosen by means of a few trial–and–errors.

It should be highlighted that, as based exclusively on the surrogate model, the auxiliary opti-

mization problem in Equation (2.9) is much simpler than the original problem of maximizing

F . In particular, it does not require any additional evaluations of F . Finally, once the set

of parameter θ
D+1 maximizing Equation (2.9) is identified, the corresponding evaluation of F

is performed and its result is added to the body of observations. Given this new dataset the

model (that is, the predictive distribution in Equation (2.8)) is refined.

Overall, repetitions of these steps of modeling and deciding the next parameters to be evaluated,

that have been described, form the basis of BO. This is now illustrated on a toy problem.

Iterations of Bayesian optimization

A whole run of BO involves repeated cycles of updates of the surrogate model, to include the

latest observations obtained, and choices of the next set of parameters to be evaluated. This is

illustrated in Figure 2.3 for the optimization of a toy function

F (θ) = sin2
(1

2
sin

(

3θ +
9

10

)

+
3θ

2
+

9

20

)

, (2.11)

depending on a one–dimension parameter θ. In this simple example, Gaussian noise, with zero

mean and 5% standard deviation, is added to the evaluations of F to imitate experimental

noise.

Similar to Figure 2.2, the predictive distribution of Equation (2.8) is depicted, in the top panels

of Figure 2.3, in terms of its mean value (thick blue) and a 95% confidence interval (shades of

blue). This is to be compared to the true value of F (depicted in dashed red). The model is

built for the first time, in Figure 2.3(a), after a stage of initialization where F is evaluated for

10 values of θ randomly sampled. Already, the model captures some of the most salient features

of the unknown function, but misses the central peak. Nonetheless, this lack of certainty is

reflected in wide confidence intervals, especially when further away from any observation.
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Figure 2.3: From [165]: Bayesian optimization (BO) of the toy function in Equation (2.11)
after (a) 10, (b) 11 and (c) 20 noisy evaluations. The top panel depicts the underlying function
F to be maximized (dashed red), and the available measurements (red circles and green square
for the last measurement obtained). Similar to Figure 2.2, the model is represented by its
mean (solid blue line) and a 95% confidence interval (solid gray). The lower panel depicts the
acquisition function α (Equation (2.10) with k = 4 for (a) and (b) and k = 0 for (c)), the
maximum of which determines the parameter to be evaluated next.

The acquisition function in Equation (2.10) is plotted in each of the bottom panels. At the

initial stage of Figure 2.3(a) this function is found to be maximized for θ ≈ 2.8. Consequently,

F is measured for this new parameter, and its noisy evaluation (depicted in green square in

Figure 2.3(b)) is added to the body of observations. This yields an updated model which is

in closer agreement with the unknown function F , and a reduced confidence interval in the

vicinity of to the new data point. After 10 iterations of BO, Figure 2.3(c), the algorithm has

identified the optimal parameter (vertical green line) with high precision. As can be seen in

this last step, given the 10 additional evaluations which have been obtained over the course

of the optimization, the model replicates accurately F for promising regions of the parameter

space (that is, around the two largest local maxima), but BO has avoid the effort of too many

evaluations in other regions which were identified as of less interest.

In summary, BO offers a distinct alternative to more traditional optimization approaches.

Its ability to select observations in a principled way over the entire parameter space may be

particularly well suited to situations where data is scarce and convexity of the optimization

landscape is not guaranteed. This will be assessed in Section 3.1 where a thorough comparison

to the other optimization routines presented in this section is performed. Furthermore BO,

has the additional advantage of integrating probabilistic elements of data acquisition in its

modeling approach. This was presented here under the common assumption of Gaussian noise

(Equation (2.6)), but can be refined further to take into consideration more precise knowledge

of the measurement statistics, in order to increase the overall efficiency of BO. This will be

demonstrated in Section 3.2. Lastly, it should be highlighted that the model, as expressed

in Equation (2.8), allows to make predictions based on the whole body of observations which

are available. As such it always benefits from the inclusion of more data. This feature will
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be central to the framework presented in Section 5.1, where it is shown that measurements

obtained over the course of distinct optimizations can be shared, to enhance the individual

optimizers performances.

This concludes our review of the algorithms which can be applied to optimize the dynamics of

quantum systems. We now proceed to discuss the second aspect which needs to be considered

when performing optimization based on experimental data, namely the estimation of the figure

of merit F .

2.2 Estimation of the figure of merit

Any optimization relies on the ability to evaluate a figure of merit at each iteration of the routine

(Figure 2.1). For numerically simulated systems this figure is readily available. However, when

dealing with experimental outcomes one can only estimate its value based on a finite set of

measurements. Quantum mechanics postulates that the process of measuring a quantum system

is intrinsically probabilistic, and that measurements only reveal partial information about the

underlying state measured. As such, it becomes necessary to repeat many measurements to

accurately characterize a quantum state.

If not treated carefully, the experimental effort entailed by these measurement repetitions can

quickly become prohibitive. This issue is magnified in the case of optimization, where the

estimation of the figure of merit needs to be performed, not only once, but at each iteration.

A naive approach towards estimating properties of a quantum state consists of performing

tomography, that is, fully reconstructing the unknown state, and subsequently evaluating any

desired property of the state based on such reconstruction. In general, the measurement effort

necessitated by such approach scales exponentially with the size of the system, making the

tomography of states with n > 10 qubits already very demanding. Still, it is often the case that

one does not require the full knowledge of the unknown state, but rather only aims at assessing

some specific properties. In particular, in this thesis we will always be concerned with figures

of merit taken to be expectation values of operators with respect to the unknown state. In such

situations, more efficient estimation schemes have been devised [166–168].

After reviewing elements of the quantum measurement formalism in Section 2.2.1, we detail

in Section 2.2.2 a sampling scheme [166, 167] enabling the estimation of figures of merit. This

will permit us to establish general expressions relating details of the figure to be estimated and

accuracy in its estimation. Finally, these expressions are put into practice in Section 2.2.3 for

the case of the state fidelity, a figure of interest for many tasks of quantum state preparation.

The methodology developed in this chapter will serve us as a basis for the comparison and

design of experiment–friendly figures of merit in Chapter 4.



32 Chapter 2. Methods

2.2.1 Measuring quantum systems

Quantum measurements

A quantum measurement is defined as a set of measurement operators {Mm} satisfying the

completeness relation
∑

mM
†
mMm = I. Quantum mechanics postulates that measuring a

(potentially mixed) state ρ in this setting results in an outcome m with probability pm(ρ) =

Tr[M †
mMmρ], which is known as the Born’s rule [44]. Projective measurements, which are

the most common type of measurements encountered in experimental realizations of quantum

physics, restrict the measurement operators Mm to be orthogonal projectors, that is, operators

which satisfy the relations MmMm′ = δm,m′Mm and M †
m = Mm, in which case pm(ρ) = Tr[Mmρ].

To such operators can be associated an observable M admitting a decomposition

M =
∑

m

λmMm, (2.12)

with real values λm.

For a given state ρ, measuring the observable M is understood as assessing its expectation

value, defined as Tr[M †ρ] and that we denote4

〈M〉ρ ≡ Tr[M †ρ]. (2.13)

This expectation can be recast in terms of measurement probabilities:

〈M〉ρ =
∑

m

λmTr[Mmρ] =
∑

m

λm pm(ρ), (2.14)

showing its operational meaning as the average value of the random variable which takes a

value of λm for measurement outcome m.

In addition to its first statistical moment (the average, or expectation value), the second moment

(the variance) of this measurement random variable is defined as

∆2
ρ[M ] =

∑

m

pm(ρ)
[

λm − 〈M〉ρ
]2

= 〈M2〉ρ − 〈M〉2ρ.
(2.15)

This variance quantifies fluctuations in the measurement values and is bounded in

0 ≤ ∆2
ρ[M ] ≤ (λmax − λmin)2

4
, (2.16)

4We will often resort to this shorthand notation in the rest of this thesis.
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where λmax(λmin) denotes the largest(lowest) eigenvalue of M . These fluctuations vanish when

the underlying state measured is an eigenstate of M , and are maximal for any state in equal

superposition of the lowest and highest eigenvectors of M .

Operators of the form Equation (2.12) are called physical observables as they can be related

to physical observations, permitting the estimation of their expectation values. In particular,

the figures of merit that are presented and employed in this thesis will always be expectation

values of such operators, and we now detail how they are estimated in practice.

Estimation of expectation values of physical observables

Without exact knowledge of the measured state ρ one can only estimate, rather than exactly

evaluate, expectations values. This is done by first estimating the unknown probabilities pm(ρ),

appearing in Equation (2.14), in terms of the outcomes frequencies fm(ρ) = Nm/N , where Nm

is the number of measurement outcomes m recorded over a total number of N repetitions.

Consequently, an estimate M̃ρ of the (true) expectation value 〈M〉ρ is obtained as

M̃ρ =
∑

m

λmfm(ρ). (2.17)

Importantly, this estimate is unbiased, that is, its average equals the true expectation value:

E[M̃ρ] = 〈M〉ρ, (2.18)

where E[·] denotes an average taken over the probably distribution of the measurement out-

comes p(N1, . . . , NS). Additionally, the variance of this estimate is given by

∆2
ρ[M̃ ] = E[(M̃ρ − 〈M〉ρ)2] =

∆2
ρ[M ]

N
, (2.19)

which depends on the variance of a single measurement outcome defined in Equation (2.15),

and on the number of measurement repetitions N . For bounded eigenvalues λm, this variance

scales as N−1, and as expected vanishes with increased N . That is, in the limit of an infinite

number of measurements one can estimate expectation values of M up to arbitrary precision.

However, in the realistic situations discussed in this thesis, this sampling number N is taken

finite entailing non–vanishing estimation errors ∆2
ρ[M̃ ] > 0.

Estimation with restricted measurement settings

In principle, any Hermitian operator M = M † can be recast in the form of Equation (2.12)

and thus could be estimated as was just described. In practice, however, measurements are
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physical processes which need to be engineered, and experimental restrictions put constraints

on the sets of the measurements {Mm} which can be performed accurately. In particular, as

entangling operations are often unreliable compared to local operations, it is common to only

consider local measurements. These are defined as the projectors Mm = M
(1)
m1

⊗ . . . ⊗M
(n)
mn

resulting from a tensor product of projectors M
(i)
mi acting locally on each of the n individual

parts of the system. To make the distinction clear between general observables M = M † and

the observables corresponding to measurements which can accurately be performed, we will

refer to the later explicitly as experimental observables and denote them {Wi} in the rest of

the thesis.

Assuming that the observable of interest M can be decomposed as a weighted sum over D

experimental observables Wi such as

M =
D
∑

i=1

α(i)Wi, (2.20)

with real coefficients α(i) 6= 0, one can proceed by first assessing the individual expectation

values 〈Wi〉ρ in terms of the estimates W̃i,ρ (obtained as previously discussed), and by recon-

structing the estimate

M̃ρ =
∑

α(i)W̃i,ρ (2.21)

of the expectation value 〈M〉ρ. This estimate is guaranteed to be unbiased by virtue of the

linearity of the expectation, that is,

E[M̃ρ] =
D
∑

i=1

α(i)E[W̃iρ] =
D
∑

i=1

α(i)〈Wi〉ρ

= 〈M〉ρ.
(2.22)

Given access to a set of experimental observables {Wi} spanning the space of linear operators,

one can always decompose an arbitrary observable M according to Equation (2.20) and estimate

it. Followed naively this approach entails the estimation of as much as D = d2 individual

terms. Already, for system sizes of N = 10 qubits one would need to estimate 410 ≈ 106 of such

terms and it would seem, at first glance, hopeless to consider larger systems. This argument

counting, however, fails in recognizing the importance of the distributions of the weights α(i).

Furthermore, this strategy does not prescribe how to allocate measurements over the different

operators Wi. In particular, it would seem natural to allocate more measurements to the terms

contributing the most to the decomposition Equation (2.20). Building up on these intuitions,

we now detail an estimation scheme following the treatment presented in [166, 167].
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2.2.2 Estimation by means of importance sampling

With the goal of building better estimates in mind, we start this section by formalizing the

notion of efficient estimation, then provide details of an estimation scheme (called importance

sampling) based on Monte Carlo sampling which can be shown to be efficient. This will permit

us to derive analytical expressions relating the details of a general observable to be measured,

to the variance of its estimate. These expressions will be applied in the next section to more

specific observables.

In the following, it is assumed the existence of a fixed orthonormal basis of d2 experimental

observables {Wi}, such that Tr[W †
iWj] = δi,j. In this basis, an arbitrary observable M admits

the decomposition

M =
D
∑

i=1

α(i)Wi, with α(i) = Tr[W †
iM ] 6= 0. (2.23)

Efficient estimation

The accuracy in an estimate X̃ of the true quantity X is quantified by the variance ∆2[X̃ −
X] in the estimation error X̃ − X. That is, high(low) estimation accuracy corresponds to

low(high) variance. For unbiased estimates (as systematically considered in this thesis), such

that E[X̃] = X, this variance in the estimation error equals the variance of the estimate

itself, ∆2[X̃ − X] = ∆2[X̃]. An alternative version of accuracy is sometimes expressed as

the probability p(|X̃ − X| > ε) for the absolute value of the estimation error to be larger

than a quantity ε > 0 [166, 167, 169]. However, we find the use of the variance, as a single

quantity to gauge estimation accuracy, to be more adequate as it leads to more compact and

easy–to–interpret expressions. Nonetheless, one can relate these two quantities by means of the

Chebyshev’s inequality, which specifies that, for an unbiased estimate X̃ with variance ∆2[X̃],

p(|X̃ −X| ≥ ε) ≤ ∆2[X̃]

ε2
. (2.24)

Overall, an (unbiased) estimate is deemed better than another (unbiased) one if, for the same

number N of measurements, it presents a lower variance.

Importance sampling

To allow for freedom in the allocation of the number Ni of measurements to be performed for

each observable Wi, and to avoid issues in non integer values of Ni (for instance, when the
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Figure 2.4: Estimation with importance sampling. (a) Estimation of the expectation value
〈M〉ρ of an operator M =

∑

α(i)Wi, with respect to a fixed state ρ. Each sample corresponds
to (i) the random choice of the experimental observable Wi to be measured according to an
importance sampling distribution Pr(i), and (ii) a single measurement of Wi which outcome is
rescaled by a factor β(i). An estimate of the expectation value 〈M〉ρ is obtained by averaging
the sampled values over N repetitions of (i-ii). Both the importance distribution and the scaling
factors can be chosen to modify the statistics of this estimate. The choices resulting in unbiased
estimates with minimal variance are provided in Equation (2.26) and Equation (2.31). (b) This
scheme can be extended to situations where both the observable Wi and the state ρj to be
measured can be varied. The importance distribution Pr(i, j) and the scaling factors β(i, j)
can be adapted to this extended setup.

total number N of measurements is smaller than the number D of experimental observables

to be measured), we follow the statistical treatment presented in [166, 167]. As sketched in

Figure 2.4(a) each measurement involves (i) sampling an index i ∈ {1, . . . , D} according to

an importance distribution Pr(i), (ii) performing a single measurement of the corresponding

observable Wi, and rescaling its outcome value by β(i). The random variable resulting from

steps (i-ii) is denoted Yρ and an estimate of 〈M〉ρ can be obtained by averaging the values taken

by Y
(s)
ρ over N measurement repetitions such as

M̃ρ =
1

N

N
∑

s=1

Y (s)
ρ , (2.25)

with s = 1, . . . , N indexing the measurement repetitions.

Notably, the importance distribution Pr(i) > 0 (with
∑

Pr(i) = 1) specifies how to allocate (in

average) measurements to a particular observable Wi, while the terms β(i) ensure consistency

of the outcomes of the sampling scheme with the desired expectation value. In particular it is

necessary to choose

β(i) =
α(i)

Pr(i)
(2.26)

to ensure that Yρ (and thus also its average M̃ρ) is unbiased. Indeed, for the choice of β(i) in
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Equation (2.26), we obtain

E[Yρ] =
D
∑

i=1

Pr(i)β(i)〈Wi〉ρ = 〈M〉ρ. (2.27)

The variance of Yρ (which effectively follows a mixture distribution) can be recast as

∆2[Yρ] = E[Y 2
ρ ] − E[Yρ]

2

=
D
∑

i=1

Pr(i)E
[

(β(i)Wi)
2
]

− 〈M〉2ρ

=
D
∑

i=1

α2(i)

Pr(i)
〈W 2

i 〉ρ − 〈M〉2ρ,

(2.28)

where the second line results from the decomposition of the expectation E[Y 2
ρ ] over the different

choices of measurement indices and from replacing E[Yρ] according to Equation (2.27). The

last line follows from the choice of β(i) in Equation (2.26).

Finally, it should be noted that the estimate M̃ρ in Equation (2.25), which is averaged over

N outcomes of Yρ, has an expected value E[M̃ρ] = 〈M〉ρ and a variance ∆2[M̃ρ] = ∆2[Yρ]/N .

That is, both Yρ and M̃ρ are unbiased estimates of 〈M〉ρ, with variances ∆2[Yρ] and ∆2[M̃ρ]

only differing by a factor N . As such when discussing estimate accuracy of 〈M〉ρ we may refer

to one or the other.

Allocation of the measurements

Having chosen the scaling coefficients ensuring unbiased estimates in Equation (2.26), it is left

to decide how measurements should be allocated over the observables Wi. The most common

distribution advocated in the literature [166, 167] is given as

Pr(i)∗ =
α2(i)〈W 2

i 〉ρ
∑

i α
2(i)〈W 2

i 〉ρ
. (2.29)

The variance of the estimate corresponding to this choice of distribution is obtained by inserting

Equation (2.29) into Equation (2.28) resulting in the expression

∆2[Yρ] = D
∑

i

α2(i)〈W 2
i 〉ρ − 〈M〉2ρ, (2.30)

which relates the variance of the estimate to details of the observable M of interest, which

appears through the coefficients α(i) and the number D of non vanishing coefficients in Equa-

tion (2.23).



38 Chapter 2. Methods

To explicitly evaluate Equations (2.29) and (2.30) it remains to assess the values of the statistics

〈W 2
i 〉ρ = Tr[(W 2

i )†ρ]. As we will see, in many situations of interest – which involve a choice

of operator Wi such that W 2
i is proportional to the identity, this is discussed in Section 2.2.3

– these values do not depend on the unknown state ρ, and can be directly evaluated. Still, in

the more general case where the expectations 〈W 2
i 〉ρ depend on ρ, one can still approximate

them. For instance, these could be approximated by the maximum or, the average, of 〈W 2
i 〉ρ

over random states, which can be evaluated (this is discussed further in due course).

In addition to the popular choice of importance probability distribution given in Equation (2.29),

we derive in Appendix B.1 the probability distribution which explicitly minimizes the variance

in Equation (2.28), and obtain an optimal choice of

Pr(i)∗ =
|α(i)

√

〈W 2
i 〉ρ|

∑

i |α(i)
√

〈W 2
i 〉ρ|

, (2.31)

for the probabilities, which yields an variance

∆2[Yρ] =
(

∑

i

|α(i)
√

〈W 2
i 〉ρ|

)2

− 〈M〉2ρ. (2.32)

This variance is guaranteed to be lower or equal compared to Equation (2.30). That is, one

should in principle favour the distribution in Equation (2.31) compared to the choice of Equa-

tion (2.29). We note that, in some of the examples that we are going to explore both these prob-

ability distributions coincide with the simple uniform distribution Pr(i) = 1/D, and thus would

result in the same variance. In such situation, we will use the formula in Equation (2.30) which

is easier to manipulate. In any case, given Equation (2.28) (and Equations (2.30) and (2.32)

for specific choices of importance distribution) we are now in position to evaluate the variance

of estimates corresponding to arbitrary observables.

Extension in case of varied observables and varied input states

The methodology developed so far can be extended to situations involving several experimental

observables Wi, and, also several states ρj to be measured (illustrated in Figure 2.4(b)). For

instance, a more general general figure F is given in terms of the decomposition

F =
∑

i,j

α(i, j)〈Wi〉ρj (2.33)

over expectation values 〈Wi〉ρj of varied observables and states, indexed by i and j respectively.

For such figure F , the importance sampling strategy and formulas reported can simply be

extended to take into consideration the changes i → (i, j), 〈·〉ρ → 〈·〉ρj and D → Dij, with

Dij now denoting the number of non–null coefficients α(i, j). For instance, the importance
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distribution in Equation (2.29) becomes

Pr(i, j)∗ =
α2(i, j)〈W 2

i 〉ρj
∑

i,j α
2(i, j)〈W 2

i 〉ρj
, (2.34)

and the resulting variance Equation (2.30) transforms to

∆2[Y ] = DiDj

∑

i,j

α2(i, j)〈W 2
i 〉ρj − 〈F 〉2. (2.35)

This extended scenario is investigated further in Section 4.2.3.

In summary, we have detailed a scheme for the estimation of general physical observables. The

overall methodology, relying on formalizing the choice of the measurement to be taken as a

sampling procedure, is depicted in Figure 2.4 and the explicit expressions of the scaling coeffi-

cients and of the sampling probabilities were provided in Equation (2.26) and Equation (2.29)

(or Equation (2.31)) respectively. The variances of the resulting estimates were derived in

Equation (2.30) (or Equation (2.32)). These expressions relate details of the decomposition of

an observable in a specific basis, to its estimation accuracy (variance of its estimate).

Before proceeding further, it should be highlighted that we have assumed the ability to seam-

lessly vary the measurement observable Wi (and also the initial state ρj in the extended setup

which was just discussed) at each step of the sampling procedure. In practice, these changes

may incur a significant experimental overhead, such that it would become sensible to repeat

several times the same measurement. The sampling scheme presented could be extended to

also take into consideration a number m > 1 of measurements to be performed for each of

the measurement settings sampled (for instance, see Appendix.A [170]), but this will not be

investigated in this thesis. Furthermore, we note that the general approach towards estimation

which is adopted here (and sometimes referred as direct estimation) only considers measur-

ing experimental observables which explicitly appear in the decomposition of the observable

of interest (Equation (2.23)). Recent work [168] has also advocated the use of measurements

performed in random basis, but is out of the scope of this thesis.

2.2.3 Application to the state fidelity

To exemplify the formulas obtained in the previous section, we now examine the task of esti-

mating the state fidelity in the context of n–qubit systems. We start by detailing the basis of

experimental observables which is chosen – this basis will be used many times in the rest of the

thesis when investigating qubit systems – before defining further the state fidelity. Then, we

apply the methodology developed, and derive the variance of the estimates of the state fidelity

for several families of target states.
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Basis of Pauli observables

The basis of experimental observables considered is taken to be formed of tensor products of

single–qubit Pauli operators (X, Y and Z) and identity (I). Denoting the set P = {X, Y, Z, I},

these Pauli observables are defined as the d2 distinct operators of the form

{Wi =
1√
d
Pj1 ⊗ ...⊗ Pjn |Pj ∈ P}, (2.36)

with scaling factor 1/
√
d ensuring their unit norms (Tr[W †

iWi] = 1). Notably, such observables

only involve local measurements (over each of the n qubits) which are deemed more reliable than

measurements requiring entangling operations. Indeed, for state-of-start quantum computing

platforms, two-qubit gates are typically one or two order of magnitudes less accurate than

single-qubit rotations. Given that we will often resort to such basis {Wi} of observables, it is

worth detailing further its properties.

First, any of the Pauli observables Wi = W †
i is Hermitian, and square to the (scaled) identity

W 2
i = In/d (with In the identity acting on n–qubit states). Second, the set {Wi} forms an

orthonormal basis for the space of linear operators. That is, given any operators Wi and Wj,

Tr[W †
iWj] = δi,j. Third, any operator Wi admits an eigendecomposition

Wi =
d=2n
∑

k=1

λik|λik〉〈λik| (2.37)

with eigenvalues λik only adopting values of ±1/
√
d, and with eigenvectors |λik〉 which are tensor

products of the eigenvectors of the individual Pauli matrices (or identities) composing to Wi.

It follows that their expectation values are bounded in

− 1/
√
d ≤ 〈Wi〉ρ = Tr[W †

i ρ] ≤ 1/
√
d, (2.38)

for any state ρ.

State fidelity for problems of quantum state preparation

As discussed in Chapter 1, any task of quantum state preparation requires the definition of a

similarity measure between a realized state ρ and a target state σtgt = |ψtgt〉〈ψtgt|5. This can

be assessed by means of the state fidelity F defined as

F(ρ) = Tr[σtgtρ], (2.39)

5In tasks of quantum state preparation this target is most often taken to be a pure state, as considered here,
but could equivalently be taken as a mixed state.
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with values bounded in [0, 1] and with maximal value of F(ρ) = 1 attained only when the

prepared state ρ matches exactly its target σtgt (up to a global phase). Such features, and

other appealing properties detailed in [44, 171], make the state fidelity a popular choice when

comparing quantum states.

The fidelity in Equation (2.39) can be understood as the expectation value 〈σtgt〉ρ of the pro-

jector σtgt = |ψtgt〉〈ψtgt| with respect to the unknown state ρ, such that we can apply the

methodology previously developed. For that purpose, we first decompose σtgt in the basis

{Wi}, which yields the d2 coefficients

αtgt(i) = Tr[W †
i σtgt] ∈ [− 1√

d
,

1√
d

]. (2.40)

For pure target states, these coefficients satisfy the equality

d2
∑

i=1

α2
tgt(i) = 1, (2.41)

that follows from the purity rule [44] Tr[σ2
tgt] = 1 (in case of a mixed target state this equality

becomes Tr[σ2
tgt] ≤ 1).

Next, Equation (2.41) can be used to simplify the estimation variance given in Equation (2.30).

This yields the expression

∆2[F̃ ] =
1

N

(D

d
−F

)

, (2.42)

relating the variance of an estimate F̃ of the fidelity F (obtained over N measurements), to

the number D of non vanishing coefficients αtgt(i) 6= 0 in Equation (2.40). In particular, this

variance does not depend on the state ρ.

Given the constraints on the coefficients α(i) provided in Equations (2.40) and (2.41), it follows

that D ≥ d (and by definition of the coefficients D ≤ d2). Hence, we obtain bounds on the

variance of the fidelity estimate (with respect to an arbitrary target state) given by:

1 −F
N

≤ ∆2[F̃ ] ≤ d−F
N

. (2.43)

We now discuss specific scalings of this variance for several families of target states of interest.

As can be seen in Equation (2.42), for any target state which can be decomposed over D = d =

2n (to be compared to the maximal number of D = d2) Pauli observables, the variance of the

fidelity estimates does not scale with the dimension d of the target. That is, it would require the

same experimental effort N ≈ ε−2 to reach an estimate accuracy of ∆2[F̃ ] = ε2, independently

of the size of the system considered. Target states satisfying such decompositions include the

computational basis states (that are tensor products of qubits in either the |0〉 or |1〉 state), or
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more generally, any other tensor product of eigenvectors of the Pauli operators6.

More interestingly, any stabilizer states [15] (Appendix D) can also be decomposed over D = d

elements of the Pauli basis of observables (with coefficients α(i) = ±1/
√
d), thus ensuring that

estimates of the fidelity with fixed accuracy can be obtained in constant effort, independently

of d. These states include the Greenberger-Horne-Zeilinger(GHZ) state and other graph states

that are commonly used for quantum information and computing purposes. This may have

come as a surprise, given that such states can exhibit non-trivial entanglement [172]. Still,

given their particular structure it is now known [166, 167] that they can be probed, and thus

could be optimized, in a scalable way.

Other families of states of interest include the W states defined as

|ψW 〉 =
1√
n

(

|10 . . . 0〉 + |01 . . . 0〉 + . . .+ |00 . . . 1〉
)

(2.44)

which are known to display a different form of entanglement compared to the GHZ state

previously mentioned [173], and which can be decomposed over (at most) D = n2d operators

Wi [166]. In such situation, the variance in Equation (2.42) scales as n2.

However, for more general target states with support over ∼ d2 elements of the operator basis

{Wi}, the variance of the fidelity estimates will grow as the dimension d of the underlying

state space, that is exponentially with the system size n. This quickly precludes the accurate

estimation of the corresponding fidelities (given a bounded number of measurement repetitions

N).

Overall, these results show that the methodology established in this section enables to quickly

assess the estimation accuracy of arbitrary observables. We will resort to it, and develop it

further, in Chapter 4, in order to compare different figures of merit, in light of their estimation

accuracy.

With this ability to estimate and to optimize, that have been developed in this chapter, we

are now in position to improve on problems of optimization of quantum dynamics, and now

proceed to present the results of this thesis.

6It should be noted that for such target states, it is more sensible to perform projective measurements directly
onto these states, rather than decomposing them in terms of Pauli observables.
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Chapter 3

Bayesian optimization for efficient ex-

perimental optimization

Central to the success of any task of optimization is the choice of an adequate optimizer. In

this chapter, we investigate the benefits of Bayesian optimization (BO) to perform optimization

based on experimental data. BO was suggested in Section 2.1.3 as a promising optimization

routine in case when data is noisy and scarce. This situation is common in quantum physics,

and particularly prominent in complex experimental setups such as ultracold–atoms quantum

simulators.

To demonstrate the potential benefits of BO, we apply it to a paradigm control problem found

in the realm of many-body physics: the crossing of a quantum phase transition in faster–than–

adiabatic times. This problem is investigated in Section 3.1 to thoroughly benchmark BO

against more traditional optimizers. In Section 3.2, we extend the existing BO framework to

the poor statistics regime, that is, when the figure of merit is estimated based on very few

measurement repetitions. To assess the benefit of this novel approach, we first revisit the task

of the quantum phase transition. Later, the framework is applied to two problems of quantum

state preparation with parameterized quantum circuits, one performed on numerical simulations

and the other one on public–access IBM quantum chips [1]. In all cases, we report an improved

convergence of the method proposed compared to other routines commonly employed (these

were detailed in Section 2.1). Most of the results and discussions presented in this chapter can

be found in [165, 174].

3.1 Application and benchmarking in the context of ultracold–

atoms systems

Due to their excellent controllability, ultracold–atoms experiments have been recognized as a

platform of choice for the simulation of complex quantum many-body systems [67, 68, 175].

Typical experimental routines involve many steps of preparation, which are followed by further

44
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dynamical transformations of the initial state. All these can be refined by means of QOC

[71–74]. In particular, many of the control protocols that are involved often rely on adiabatic

or empirical schemes [176–179] which, despite their intuitive appeals, are lengthy and prone to

errors (due to detrimental and prolonged interactions with the environment). Devising faithful

control protocols over shorter timescales can thus directly enhance the quality of the corre-

sponding simulations, and can extend the reach of physics which could be probed accurately.

Still, optimizing such protocols remains challenging. Due to the many-body nature of the dy-

namics typically involved, performing accurate numerical simulations of the systems is often not

possible, leaving only the option of measurement–based optimization advocated here. Addi-

tionally, ultracold atoms simulations typically exhibit low repetition rates, such that one cannot

assume access to a large amount of experimental data. These unique challenges in optimizing

the control of these experiments call for well–crafted optimization methods and are identified

as a situation for which BO may be particularly suitable.

To illustrate the potential of BO in this context, we apply it to an optimal control task of

transitioning from a superfluid to a Mott insulator phase (SF–MI transition) in faster–than–

adiabatic times. As a well studied problem [176, 180, 181], it will serve us as a perfect example

for establishing the merits of BO. Furthermore, preparing many-body states with spatial cor-

relations resembling solid-state matter, such as the Mott insulating state and also many more

states [177, 179], is of great interest to the condensed matter community. More generally, the

task of QOC, that is addressed here, corresponds to the optimization of a ground–state to

ground–state transition in short times, which has broad applicability. For instance, it could

permit the acceleration of adiabatic quantum computing schedules [182] or the discovery of

swift particles shuttling protocols [183, 184].

In Section 3.1.1 we describe the underlying physics of the system considered and introduce the

optimal control problem to be tackled. Later, in Section 3.1.2, we discuss an example of optimal

control protocol discovered with BO, and present results of a thorough comparison between BO

and the alternative optimization routines which were detailed in Section 2.1.

3.1.1 The superfluid to Mott insulator control problem

The controlled system

The Bose-Hubbard model, that we consider here, is a widely studied model in many-body

physics. Although conceptually simple, it cannot be mapped to a single particle problem and

contains a transition between a superfluid (SF) and a Mott insulating (MI) quantum phases

[180]. For a system of N bosonic atoms in a lattice with L sites, the Bose-Hubbard Hamiltonian
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Figure 3.1: From [165]. Illustration of the superfluid to Mott insulator (SF–MI) control problem.
The system considered here is a one–dimension bosonic chain (a-b) described by Equation (3.1).
We aim at driving the system from an initial superfluid (a) to a Mott insulating phase (b) at
time t = T by dynamically changing the depth of the optical potential V (t) (blue). (c) Energy
spectrum of the Hamiltonian in Equation (3.2) for different values of the control parameter Γ,
and with ground state energies highlighted in blue.

is given as

H(t) = −J(t)
L
∑

i=1

(bib
†
i+1 + bi+1b

†
i ) +

U(t)

2

L
∑

j=1

n̂j(n̂j − 1), (3.1)

where bi(b
†
i ) denotes the annihilation (creation) operator of a boson at site i and n̂i = b†ibi

denotes the number operator. These bosonic operators follow the usual commutation relation,

[b†i , bj] = δij. The first term of the r.h.s. in Equation (3.1) describes the tunneling of bosons

between neighboring sites with energy J(t), and favours the delocalization of the atoms over

the lattice. The second term of the r.h.s captures the on–site interactions between two (or

more) bosonic atoms with strength U(t).

As sketched in Figure 3.1(a-b), such model can be realized in terms of bosonic particles in an

optical lattice potential (in blue) [66, 68, 175]. Dynamical changes in the depth of the lattice

potential V (t) allow to vary both the energies J(t) and U(t) in time. The tunneling J(t) changes

depending on the energy barrier between neighboring lattice sites, while variations in the on-site

interaction U(t) result from changes in the confinement of the atoms at each site. The exact

expressions relating the depth of the lattice potential to the interaction and tunneling energies

can be found, for instance, in [181]. To make the optimization problem more tractable, we

introduce a single dimensionless quantity to be controlled, defined as Γ(t) = U(t)/(U(t) +J(t))

such that Γ(t) ∈ [0, 1] (for the positive values of U and J that are considered here). Given this
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new quantity, the Hamiltonian in Equation (3.1) is recast as

H(t) = −(1 − Γ(t))
L
∑

i=1

(bib
†
i+1 + bi+1b

†
i ) +

Γ(t)

2

L
∑

j=1

n̂j(n̂j − 1). (3.2)

Depending on the energy ratio U/J , this Hamiltonian admits two distinct ground states, that

we now describe. In the limit where Γ(t) = 0 (U ≪ J), the interaction term vanishes and the

ground state of each atom is delocalized over the entire lattice. This superfluid (SF) ground

state is described as a superposition of different Fock states

|ψSF 〉 ∝
(

L
∑

i

b†i

)N

|0〉, (3.3)

where |0〉 is the many-body vacuum state in the Fock basis. This SF state is characterized by

a well-defined global phase but variance ∆2[n̂i] > 0 in the number operator.

In the opposite limit where Γ(t) = 1 (U ≫ J), the hopping between adjacent sites is suppressed

and the ground state of the system consists of localized particles that minimize the interaction

energy. For a commensurate filling of N/L atoms per lattice site, this Mott insulating (MI)

ground state is a product of local Fock states over each lattice site:

|ψMI〉 ∝
L
∏

i

(b†i )
N/L|0〉. (3.4)

In this case, the global phase coherence of the atomic wave function is lost and the variance in

the number operator vanishes. To provide further insights on the energies at play in between

these two extreme values of Γ = 0 or Γ = 1, we now study the eigenspectrum of Equation (3.2).

In the rest of this section, we restrict our attention to the control of a chain with L = 5 lattice

sites, unit filling (L = N = 5) and periodic boundary conditions.

Many-body energy spectrum

The energies En of the many-body eigenstates |n〉 of H are obtained by means of exact di-

agonalization for varied values of Γ, and are displayed in Figure 3.1(c). Given the size and

translation invariance of the system considered, we obtain a total of 16 distinct eigenvalues,

with further degeneracy at Γ = 1. The ground energies of the spectrum are highlighted in blue,

ranging from the SF ground energy on the left (Γ = 0) to the MI ground energy on the right

(Γ = 1) with specific values of E0(Γ = 0) = −2N and E0(Γ = 1) = 0 respectively. As we will

see, the control task corresponds to a ground to ground state transition (from left to right),

which from an energy perspective, is complicated by the reduced energy gap around Γ ≈ 0.9
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and the presence of multiple avoided crossings in the spectrum. We now discuss further the

exact details of the QOC task.

Optimal control problem

We aim at identifying the optimal control function Γopt(t) which transforms an initial SF state

into a targeted MI state, at time t = T . Furthermore, we impose boundary conditions of

Γ(t = 0) = 0 and Γ(t = T ) = 1, such that the initial and target state should be ground states

of the Hamiltonian of the system at initial and final times. In addition to this general objective

of state preparation, to fully specify the QOC problem we still need to define the figure of merit

to be maximized, the duration T allowed for the transformation, and the finite set of control

parameters θ which will be optimized over.

First, the control Γ(t) is parametrized in terms of a vector θ of P = 10 parameters θ
(j) ∈

[0, 1]. Each parameter corresponds to the value adopted by the control at fixed time steps

∆t = T/(P + 1). That is, Γ(t = j × ∆t) = θ
(j) with (j = 1, . . . , 10). The values of the

control at intermediate times are obtained by fitting a cubic spline to these P values and the

two boundary conditions Γ(0) = 0 and Γ(T ) = 1. Such parametrization ensures that any set

of control parameters θ defines a unique control function Γ(t) that varies smoothly.

Second, we consider the fidelity (with respect to the target MI state) as the figure of merit

to be maximized. It is defined as FMI(θ) = |〈ψMI |ψθ(T )〉|2, where |ψθ(T )〉 denotes the state

realized at time t = T given the control parameters θ. While the state fidelity is a natural

choice for any quantum state preparation problem, experimentally assessing its value may not

always be possible. Hence, a second choice of figure of merit will be explored, and discussed in

due course.

Lastly, the duration T of the protocol is defined with respect to the quantum speed limit (QSL)

which is given in [76, 185] for this problem as TQSL = π/∆, with ∆ being the minimum energy

gap between the ground and first excited state (this gap is evaluated based on the numerical

energy values that were found in Figure 3.1(c)). Such QSL [186] theoretically bounds the min-

imum time necessary for a perfect preparation of the MI state. However, there is no guarantee

that perfect preparation can be achieved in such time, especially given the restricted family of

control functions (parametrized by a finite number of 10 parameters) that are optimized over.

Importantly, the durations T that will be considered are taken to be close to TQSL, that is

shorter than the adiabatic timescales Tadiab ≫ 1/∆ of the system, which are also defined with

respect to the energy gap ∆.
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Figure 3.2: From [165]. Two control strategies for the SF–MI transition are presented: a linear
driving of the system (a), and a driving optimized with BO (c). The evolution of the population
of the instantaneous eigenstates (defined in the main text) is reported for the linear (b) and
the optimized (d) controls. For clarity, these populations are grouped by ground state only
(blue), first to fifth (green), and higher (turquoise) energy eigenstates. In each case, the final
ground state populations P0(TQSL) is equal to the fidelity of the realized state with respect to
the target MI state.

3.1.2 Results and discussions

Before proceeding to a more systematic study of BO, we start by presenting the results obtained

for a single optimization problem, defined for T = TQSL and assuming that the optimizer has

access to the exact values of the fidelity at each iteration. In this situation, BO consistently

converges in a few hundred of iterations to values of the fidelity of FMI ≈ 90%. The optimized

control is plotted in Figure 3.2(c), where it can be compared to a more naive strategy, depicted

in Figure 3.2(a), consisting in a linear increase of the values of Γ from 0 to 1.

To understand the dynamics involved, it is insightful to examine the squared overlaps be-

tween the system state |ψ(t)〉 and the instantaneous eigenvectors |n(t)〉, which are obtained

by repeated eigendecomposition of the Hamiltonian at varied time t. These overlaps Pn(t) =

|〈ψ(t)|n(t)〉|2, that are called instantaneous populations, are reported in Figure 3.2(b),(d) for

the linear control and the optimized control respectively. Given that the MI state is the ground

state of the Hamiltonian of the system at final time T = TQSL, the ground state instantaneous

population P0(TQSL) is effectively equal to the fidelity FMI of the realized state with respect

to the MI one, and can be assessed directly from the plots.

It can be seen, in Figure 3.2(b), that in case of linear driving, most of the system remains

in the ground state until around t = 0.75 × TQSL. However, at later time, for values of Γ
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inducing a smaller energy gap in between the ground and first eigenstate (as can be observed

in Figure 3.1(b)), excitations to the excited instantaneous eigenstates (green curve) quickly

build up. Notably, the population in these excited states is found to monotonically increase,

resulting in a final fidelity of only FMI ≈ 30%. In contrast, as seen for the optimized driving in

Figure 3.2(d), part of the initial state gets quickly promoted to excited eigenstates, but, revert

to the ground state over the course of the synamics. This ability to recover a large overlap, found

to be FMI ≈ 90%, with the MI state is attributed to the taylored oscillations in the optimized

control which are seen in Figure 3.2(c). Similar patterns were recently reported [187] – for a

comparable control problem but with larger system size – suggesting a potential generalization

of the drivings found by BO.

Finally, we also assess the minimal time that it would have taken for a linear driving of the

system to yield a similar value of the fidelity to the one obtained with the optimized controls.

This minimal time is estimated by repeating simulations of the system with linearly increased

control over varied durations T . We find that it would have taken around 7 times longer for

the linear protocol to reach a value FMI ≈ 90% of the fidelity. Hence, we saw that optimized

controls can yield similar fidelity than simpler control protocols, but, in shorter timescales. In

experimental conditions this would permit to limit errors occurring due to lengthy interactions

with the environment. These results highlight the appeal of QOC, provided that these optimized

controls can be efficiently discovered in the first place.

Benchmarking methodology

To appreciate further the appeal of BO, it is appropriate to compare it to other optimization

routines commonly employed. Hence, in addition to BO we will also study the differential

evolution (DE), from the family of evolutionary techniques, the Nelder–Mead (NM), and the

Simultaneous Perturbation Stochastic Ascent (SPSA) algorithms, which were all reviewed in

Section 2.1. Both NM and DE are implemented using Scipy [188], SPSA is implemented

following [140], and BO relies on the implementation which can be found in [189]. Additionally,

a simple random search (RANDOM) is also included in the list of the optimizers considered.

It relies on randomly sampling a new set of parameters at each iteration and will serve us as

a benchmark. When design choices (often known as hyperparameters) in the implementation

of the algorithms investigated are known to affect their performances, we do our best effort to

select them adequately.

The performance of each of the optimizers mentioned is judged by its ability to reach low

infidelity, defined as I = (1 − FMI), in as few iterations as possible. Furthermore, since any

optimization relies on the choice of random initial parameters, and may be affected by further

stochastic effects, we repeat each optimization 30 times and systematically report the median
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values (displayed by means of filled symbols) and interquartile ranges (displayed by means of

shaded regions) when presenting the results in Figure 3.31.

To be instructive, the comparison between BO and the other optimizers will be performed over

different problem configurations that are now described. First, the duration T is known to

have a strong influence on the complexity of many QOC tasks. For instance, it was reported

that close to the QSL, quantum state preparation problems often become harder [31, 117], with

hardness characterized by the presence of many local extrema in the optimization landscape.

As we aim at finding optimal controls in relatively short timescales, we will investigate three

different situations corresponding to a duration of T = 0.5 × TQSL, TQSL, and 1.2 × TQSL.

Additionally, the convergence of any optimizer may be tied to the choice of the figure of merit

employed. Hence, in addition to the fidelity that was discussed, we will also resort to a second

figure of merit. With ∆2[n̂i] the variance in the occupation number n̂i at site i, this second

figure is defined as the average 〈∆2[n̂i]〉i=1,...,L over each lattice site. In principle, this figure can

be assessed in ultracold atoms experiments permitting site resolution [190]. Furthermore, as

this variance is minimized(maximized) for the MI(SF) state, it could serve as a figure of merit

for each of the corresponding problem of state preparation. As such, this average variance

is deemed of particular interest, and we will also perform optimization with this new figure.

Finally to make it more experimentally realistic, we will limit its evaluation to be based on

a finite number N = 1000 of repeated measurements, thus introducing sampling noise in its

values, in contrast to the exact values of the fidelity.

Benchmarking results

The results obtained for the 6 configurations that has just been described (corresponding to

3 durations and 2 figures of merit) are displayed in Figure 3.3. As can be seen, over most of

the different configurations investigated, BO (orange curve) exhibits faster convergence towards

low infidelity compared to any other alternative. We now discuss more in–depth these results

starting with the case where exact values of the fidelity are available to each optimizer (first

row).

For the short evolution time of T = 0.5 × TQSL (first column), it can be seen that most of

the optimizers converge to what seems to be the global optimum in circa 100 iterations. In

particular, the two local optimizers (NM and SPSA) exhibit the fastest convergence towards

the control solution. However, the maximum fidelity reached is only of the order of 50%. These

findings of easy optimization (that is with a landscape seemingly devoid of local extrema) for

durations shorter than the QSL are in accordance with the results presented in [31].

1We follow this methodology for all the optimization results that are reported in this thesis.
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Figure 3.3: From [165]. Benchmarking of BO (orange) against 4 other optimization strategies
(colours in legend and described further in main text) for the SF–MI control problem. The
convergence of each optimizer is reported in terms of the infidelity I = 1 − FMI as a function
of the number of iteration steps (both in log scales). The comparison is performed for different
control durations of T = 0.5 × TQSL (first column), T = TQSL (middle column) and T =
1.2×TQSL (last column), and also for different figures of merit with either the exact evaluation
of the fidelity FMI (first row), or a more experiment–realistic figure (second row) estimated
with a finite number of measurements, and defined in the main text. In all cases, the median
(filled symbols) and interquartile range (shaded regions) are evaluated over 30 repetitions of
the same task.
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For longer durations T ≥ TQSL, however, only DE and BO consistently find solutions with

infidelities below 10%, with BO converging in roughly an order of magnitude less iterations.

The presence of many local minima is evidenced by the performance of the SPSA optimization

routine. For T = TQSL the 30 optimization runs of SPSA get trapped in local minima with

a low fidelity I ≈ 50%. The situation is improved for T = 1.2 × TQSL, but closer inspection

of the interquartile intervals (depicted as shaded regions) shows that more than one fourth of

the SPSA runs remain trapped until up to 4 × 104 iterations. This feature of the optimization

landscape was also noticed in [31] and explains the substantial performance gap between the

global optimizers (such as DE and BO) and the local optimizers (such as NM and SPSA) which

are studied. Furthermore, it can be seen that for the increased duration T = 1.2 × TQSL the

performances of the optimizers are globally ameliorated. This suggests that finding the right

balance between short control durations, thus limiting accumulated errors, and longer times,

which facilitate the identification of the optimal controls, may play an important role when

identifying appropriate experimental controls.

The results for the optimizations performed based on the noisy evaluations of the second figure

of merit are reported in Figure 3.3(second row). In this more experimentally realistic situation,

NM is found to underperform the simple random strategy, highlighting the extreme sensitivity

of NM to noise. Surprisingly, for the case T ≥ TQSL performances of SPSA are improved. This

can be partially explained by the ability of SPSA, which is originally designed for situations of

stochastic gradients [140], to benefit from noise in the evaluation of the figure of merit in order

to escape local minima. Akin to the noiseless scenario, for T ≥ TQSL BO is found to converge

substantially faster than any of the other optimization strategies studied. Overall the final

fidelities attained have dropped by roughly 5%, compared to the noiseless situation, indicating

the additional difficulty in performing optimization with noisy observations.

Discussion

These results aim at encouraging the use of BO as a practical tool when optimizing the dynamics

of complex quantum systems. By resorting to an extensive comparison, permitted by the use of

numerical simulations of limited system sizes, we were able to characterize the potential of BO,

and found it to outperform the other alternative investigated in the most relevant situations,

that is when T ≥ TQSL. Ultimately, we argue for the adoption of BO in experimental setups,

rather than based on the numerical simulations employed here. Still, it is expected that the

results reported, especially when incorporating sampling noise, should be representative of the

difficulties that any optimization will encounter in realistic situations.

During the course of this thesis, BO has gained in popularity and has been applied to several

experimental realizations of QOC and VQAs [191–193], confirming further its appeal. We note
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however, that in all these examples only a few 100s of iterations were performed, compared

to the maximum of 1000 that was studied here. Such limited numbers of iterations can be

explained by the experimental effort required per iteration, which typically involves many re-

peated measurements. A large number of sampling repetitions ensures low statistical variance

when estimating the figure of merit, which in general facilitates the optimization, but, comes

at the expense of an increased experimental effort at each iteration. In the following section

we explore further the importance of this sampling number, and extend BO to also operate in

regimes where this number is taken small.

3.2 Optimization with poor statistics

Most of the optimization results presented in problems of QOC and VQAs feature the con-

vergence of a figure of merit as a function of a number of optimization iterations. When

optimizations are performed based on experimental outcomes, it is important to recognize that

the experimental effort associated with any of these iterations depends on the desired accuracy

in the estimates of the figure of merit. Good estimates, that are estimates with high statistical

accuracy, are obtained by repeating the same experiment many times. This is typically the

regime in which operate experimental optimizations [45, 56, 191, 192], where this number of

repetitions (the sampling number) is often found to be in the range of a few hundreds up to

more than tens of thousands of repetitions per optimization step. This raises several questions

that we aim at addressing in this section: can one still be able to perform optimization with

poor statistical estimates, that is, with estimates obtained with very few measurement repeti-

tions? And if so, is it beneficial when convergence is judged based on the overall experimental

effort required, rather than the bare number of iterations?

In the following, we study the importance of the choice of the sampling number N when

performing optimization. In Section 3.2.1, we motivate and present a framework extending

BO to operate in the poor statistics regime, up to the case of single-shot measurements (that

is, when only a single N = 1 measurement repetition is performed). This is achieved by

incorporating precise details of measurement statistics, as found in typical quantum physics

experiments. This new framework is then judged based on its ability to find good solutions with

minimal experimental effort. For that purpose, in Section 3.2.2, we revisit the SF–MI transition

problem and show enhanced convergence of the proposed framework. This is confirmed, in

Section 3.2.3, on additional problems of state preparation with parametrized quantum circuits.

In all cases, the proposed framework is compared to a traditional implementation of BO and to

the SPSA algorithm, and is found to require one or two orders of magnitude less experimental

repetitions that its competitors.
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3.2.1 Bayesian optimization with binomial noise

Recall from Section 2.1.3 the main steps involved in building a (surrogate) model in BO.

First, prior assumptions p(f) on the functions f – modeling the unknown figure of merit F

to be maximized – are formulated in terms of a Gaussian process distribution. Next, this

prior distribution is conditioned, by means of Bayes rules, on the vector y = [y1, . . . , yD]

of observations available. These observations correspond to noisy evaluations of F for input

parameters [θ1, . . . ,θD]. Relating these noisy observations to the underlying model is achieved

by specifying the likelihood p(y|f) = p(y|f) of observing y given a function f which adopts

values of f = [f(θ1), . . . , f(θD)].

As was discussed in Section 2.1.3, the likelihood effectively contains assumptions about the

noise induced by the physical measurement process. For instance, the likelihood

P (y|f) = N (f , σ2
NI), (3.5)

which is employed in traditional BO, and which appeared in Equation (2.6), carries the assump-

tion of independent and identically distributed (i.i.d.) additive Gaussian noise. Such likelihood

allows for an analytical treatment of the Gaussian process. that is, it yields an analytical ex-

pression of the posterior distribution (given in Equation (2.8)), but, may not always be justified.

In particular, we will see that the assumptions entailed by Equation (3.5) are too strong when

the values of F are estimated based on a small number of measurement repetitions. While a

general figure of merit F is function of several experimental observables – or equivalently a

function of probabilities of outcomes of several measurements – we first elaborate on the case

of a single observable.

Poor statistics of a single observable

Consider a quantum measurement with binary outcomes as involved, for instance, when esti-

mating the expectation value of a tensor product of Pauli operators. Given the two possible

outcomes, the expected value of an operator M associated with such measurement can be

evaluated based solely on the probability of observing one of the outcomes (the probability of

observing the other outcome directly follows), and we call the outcome corresponding to the

largest eigenvalue of M a success. Hence, estimating the expectation value of M only requires to

estimate the probability of observing a success, which is denoted p(θ) and which would depend

on some control parameters θ. This probability can be estimated in terms of the frequency

ñ = n/N of recording n success outcomes over a total of N repetitions. This number n follows
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N
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Figure 3.4: Comparison between the statistics of an estimate ñ obtained according to the true
binomial distribution (grey) of the measurement outcomes (Equation (3.6)) and its approxi-
mation (blue) in terms of a Gaussian distribution (Equation (3.7)). The probabilities p(ñ) are
reported for different number of repetitions with values N = 1 (first row), 25 (second row), 100
(last row) and for different values of the underlying probability of success with values p = 0.05
(first column), 0.5 (second column) and 0.95 (last column). Qualitatively, it is only in the
case of enough repetitions N & 100 that the Gaussian approximation becomes justified. This
motivates us to extend BO to take into consideration the true nature of the binomial measure-
ment outcomes, rather than resorting to the approximate Gaussian distribution, commonly
employed.
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the binomial distribution

P (n|p(θ)) =

(

N

n

)

(

p(θ)
)n(

1 − p(θ)
)N−n

, (3.6)

with average value 〈n〉 = Np(θ) and variance ∆2[n] = Np(θ)(1 − p(θ)).

Given a sufficiently large number N of measurement repetitions, and provided that the prob-

ability of success is sufficiently different from p(θ) = 0 and p(θ) = 1, it is known that the

distribution of the frequencies ñ is well approximated by the Gaussian distribution

N
(

p(θ),
p(θ)(1 − p(θ))

N

)

. (3.7)

A rule of thumb for Equation (3.7) to be a good approximation is that for

Np(θ) ≥ 5, and for N(1 − p(θ)) ≥ 5 (3.8)

to be simultaneously satisfied. In other cases, in particular for small number of repetitions N ,

this Gaussian approximation is not justified anymore. That is, the distribution of the discrete

and bounded values that ñ can adopt will deviate strongly from the Gaussian distribution in

Equation (3.7).

This can be qualitatively observed in Figure 3.4 where the exact distributions (in grey) of

the values of ñ obtained according to the true binomial nature of the measurements (Equa-

tion (3.6)) and its approximation (in blue) in terms of a Gaussian distribution (Equation (3.7))

are compared for different sampling number N and different underlying success probabilities p

(dropping the dependency to θ). For the minimum number of repetitions N = 1 (first row), it

can be seen that the Gaussian distribution systematically fails in approximating the true distri-

bution of the estimates ñ. Similarly, inconsistencies between the two distributions are observed

for an increased number N = 25 of repetitions (second row) and values of the probabilities

p = 5% and 95%. It is only in the case of larger number of repetitions N = 100 (last row) than

the two distributions qualitatively agree.

Additionally, it is also the case that the variance ∆2[ñ] = p(θ)(1 − p(θ))/N of the estimate ñ

depends on the underlying probability p(θ) ∈ [0, 1], and varies in the range [0, 1/(4N)]. This is

in contrast with the assumption of identical noise contained in the likelihood in Equation (3.5).

Again, these inconsistencies between the assumed and true estimates statistics are exacerbated

when the number N of measurement repetitions is taken small. As we are interested in exploring

the use of BO in the regime of small N , it seems unproductive to rely on the Gaussian noise

assumption. This motivates us to extend BO to incorporate details of the binomial distribution

as appearing in Equation (3.6).
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Modeling with binomial noise

In order to achieve an accurate modeling of the statistical noise found in the estimates of a

figure of merit, several refinements of the original framework of BO need to be undertaken. A

full account of the technical implementation details required can be found in [174](Sec. II), and

here we only highlight the main conceptual aspects.

1. As we aim at modelling the outcome probabilities p(θ), it is crucial that the values of

the model remain bounded in the interval [0, 1]. While functions f following a Gaussian

process distribution do not naturally satisfy such condition, their values can be squashed

to [0, 1] by composing f with any monotonic function satisfying π : R 7→ [0, 1]. In practice,

we resort to the cumulative distribution function of a standard normal distribution π(x) =
∫ x

−∞
dy exp(−y2/2)/

√
2π, resulting in modeling probabilities g(θ) = π(f(θ)) ∈ [0, 1] of

the true probabilities p(θ).

2. Measurement data is included by means of the proper binomial likelihood. Equation (3.6)

only specifies the probability P (n|π(f(θ)) to observe n successes for fixed parameters θ,

and needs to be extended to take into consideration a whole dataset of measurements

outcomes n = [n1, . . . , nD] obtained for parameters θ1, . . . ,θD. Given the independence of

the measurement outcomes obtained for varied parameters θ, it follows that the likelihood

of observing n given a model f is the product

P (n|f) =
D
∏

j=1

P (nj|π(f(θj)), (3.9)

which will be used.

3. The predictive distribution resulting from the changes listed in Items 1 and 2 does not

admit an analytical solution anymore, but is rather obtained by means of the Laplace

approximation (detailed in [164]), which permits its efficient evaluation.

4. Items 1 to 3 only consider the modeling of a single measurement probability p. A general

figure of merit F = Q(p1, . . . , pk) is function of several measurement probabilities pk

which are individually modeled in terms of gj (following the guidelines in Items 1 to 3).

The overall model g of F is taken to be g = Q(g1, . . . , gk).

Other aspects of BO, such as the choice of the next parameters to be evaluated (Section 2.1.3),

remain unchanged. Despite our claim of accurate modeling of measurement noise, it should

be stressed that the practical implementation of the framework requires the numerical routine

listed in Item 3. This consists in an approximation permitting efficient use of the model, rather

than fundamental assumptions on data acquisition. As such, it is expected that despite this

approximation, the overall scheme would perform better than the traditional BO framework,

especially for small number of repetitions. This will be verified in the following examples. The
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new flavour of BO is referred as BO with binomial modelling (and sometimes simply binomial

BO) as opposed to a traditional BO with Gaussian modeling of the noise. To assess the

correct implementation of Items 1 to 4, we start by applying the framework to a one–dimension

optimization problem, for which visual inspection of the model is possible.

Illustrative example

Here, we revisit the problem of maximization of the toy function defined in Equation (2.11).

This function, which is depicted in Figure 3.5 (dashed red line in the top panels), takes value

F (θ) ∈ [0, 1] for θ ∈ [0, 4], and thus provides a synthetic example of a measurement probability

to be maximized. This probability F (θ) could correspond, for instance, to the measurement

of a single Pauli observable with respect to a state prepared with control parameter θ. In

order to validate the ability of the framework to optimize in the poor statistics regime, we

investigate the extreme case where estimates of F are obtained based on a single (N = 1)

measurement repetition. These measurements (red dots in the top panel) are randomly sampled

with probability F (θ) to take a value of 1 (and probability 1 − F (θ) to take a value of 0).

Despite this very limited amount of measurement information, we aim at quickly identifying

the parameter θ∗ which maximizes F .

Different stages of BO are plotted in Figure 3.5 after that 30 (a), 31 (b) and 100 (c) single-

shot measurements have been taken. The surrogate model of BO with binomial modelling, is

depicted in the top panels of each of the subfigures, in terms of its mean value (blue), a 95%

confidence interval (gray contours) and the actual probability density (in shades of blue). The

acquisition function corresponding to each of the three models is displayed (red curve) in the

lower plots.

We first consider the initialization stage, depicted in Figure 3.5(a), when the surrogate model

is built for the first time based on 30 single-shot measurements which have been taken for

random values of the parameter θ. As can be seen, the model already replicates (in average)

some of the main features of the unknown function F , but given the very limited data, fails

to distinguish in between local and global maxima. Close inspection of the model confirms

the proper implementation of binomial BO. First, as expected, its values are well behaved and

bounded in the interval [0, 1]. As would also be the case for the Gaussian modeling of noise,

it can be observed that the width of the confidence interval increases when further away from

any observations. More subtly, this width also widens for probabilities identified to be close

to 50% (for instance, around θ = 3.5), that is, when the variance in the measurement data is

expected to be maximal and thus when binomial measurement data is the less informative. Such

feature would not have been captured by the Gaussian likelihood, and indicates an adequate

implementation of the framework.
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Figure 3.5: From [174]. We revisit the optimization of the toy function F (θ) ∈ [0, 1] defined
in Equation (2.11) and depicted in the top panels (dashed red lines). This function serves the
purpose of a synthetic measurement probability to be maximized. Each evaluation of F consists
in a single measurement repetition (N = 1). These measurements (red dots) are randomly
drawn such that they take a value of 1 (or 0) with probability F (θ) (or 1 − F (θ)). Three
stages of BO with binomial modeling after (a) 30, (b) 31, and (c) 100 single-shot measurements
have been obtained. In all three cases, the surrogate model is represented in the top panel
in terms of its mean value (solid blue line), a 95% confidence interval (solid gray line) and its
actual probability density (shades of blue). Additionally, the lower panel depicts the acquisition
function (plain red line), which maximum (dashed vertical line) determines the next parameter
to be evaluated. Details of this acquisition function are the same as used in Figure 2.3.

As is usual in BO, the next parameter to be evaluated is chosen where the acquisition function

(bottom panel) is maximized (red vertical line). At the initial step in Figure 3.5(a), this

acquisition is maximized close to θ = 0.1. The resulting measurement of 0, obtained for this

parameter, is added to the dataset of observations, and can be seen in Figure 3.5(b) (green

square). Given this additional measurement, the model now exhibits a closer fit to the true

function F , and a reduced confidence interval (that is, an increased confidence in its prediction)

close to the newly acquired data. Still, as this additional binary data only reveals very limited

information, this increase in confidence remains slender.

During the course of the optimization (from left to right), the surrogate model becomes a

better approximation of the actual landscape especially in the vicinity of the two most probable

maxima but, as desired, the algorithm avoids the unnecessary effort that would be required

to approximate the landscape well in other domains. After 70 iterations, the algorithm has

identified the parameter θf ≈ 1.86 (indicated by the vertical green line in Figure 3.5(c)) as

optimal. This choice of parameter yields a value of F (θf ) = 1 − 4 × 10−3, close to the true

maxima of F = 1, and was found given a total number of 100 measurements that would have

only been enough to assess the value of F with a resolution of 0.01 for a single parameter.

Already, this allows us to appreciate the advantage of resorting to a small number of measure-

ments over many different parameter values, rather than concentrating too many measurements

on a single parameter value. Exploring further this toy problem, we find similar performances

for BO given a number of N = 10(25) measurement repetitions after around S = 25(15)
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evaluations. These would have required a total of Nr = 250(375) individual measurements,

substantially larger than the total number Nr = 100 that was required for the single-shot,

S = 1, case. For this simplistic model, it would thus seem that reducing N is beneficial for al-

gorithmic convergence when judged based on the overall experimental effort necessitated (that

is, based on the total number Nr of measurements required). To confirm such assertion, and to

study more systematically the improvement enabled by the new flavour of BO, we now revisit

the SF–MI control task.

3.2.2 The superfluid to Mott insulator transition revisited

Control problem

As was the case in Section 3.1.1, the system under control is described by the Bose-Hubbard

Hamiltonian, which was defined in Equation (3.2), with periodic boundary conditions and with

a system size of B = 5 bosons and L = 5 sites. Recall that our aim is to find an optimal

control of the system permitting the transformation of a superfluid (SF) initial state to a

Mott insulating (MI) state at time t = T . The control function Γ(t) to be optimized is here

parameterized in terms of P = 5 parameters (with cubic spline interpolation as detailed before),

and the final time allowed for the transition is taken to be T = 1.5 × TQSL (with the quantum

speed limit TQSL defined in Section 3.1.1).

Rather than considering the state fidelity as the figure to be maximized, we resort to an

alternative figure of merit, defined in terms of local observables that could be experimentally

probed (provided single–site resolution of the lattice [190]). Denoting the probability to observe

exactly one atom at site i by pi, we will strive to maximize the average unit filling

U =
1

L

L
∑

i=1

pi, (3.10)

over the L lattice sites. As does the fidelity, this figure yields a maximal value only for deter-

ministic unit filling of each site, that is, when the target MI state has been realized. As such

it is equally well qualified as a guide for the optimization problem at hand. In contrast to the

state fidelity, however, states with an atom distribution similar to the MI state yield a close to

optimal value, and we found this new figure of merit to be advantageous in terms of scalability

and statistical accuracy, but, defer its study to Section 4.2.1. Hence, in the following we aim at

maximizing Equation (3.10), and we now detail how this figure can be related to experimental

measurement data.

Given the (discrete) translation invariance of the system Hamiltonian in Equation (3.2) and

of the superfluid initial state in Equation (3.3), any local observable is also invariant under



62 Chapter 3. Bayesian optimization for efficient experimental optimization

lattice–site translation. In particular, the probability of unit filling is independent of the site

location i, such that pi = U in Equation (3.10). Assuming independence of the measurements

at each lattice site, it follows that for a single (N = 1) measurement, the number n1 ∈ [0, L] of

sites observed (over the whole lattice) with a single atom follows a binomial distribution with

success probability U and number L of trials. For N repeated measurements, the total number

n ∈ [0, NL] of sites observed with a single atom has thus a binomial likelihood of

P (n|U) =

(

NL

n

)

(

U
)n(

1 − U
)NL−n

, (3.11)

given the unit–filling probability U and corresponding to a number NL of trials. This is the

likelihood used when implementing the binomial flavour of BO. Note that the assumption of

independence in the measurement outcomes at each lattice site is an approximation. In par-

ticular, close to the MI state, measurements over each site will become increasingly correlated.

This approximation allows us to avoid modeling each probability pi individually (which can be

done for the system size studied but would require extensive computational effort for larger

systems), and, as we will see, already yields significantly increased optimization performances.

To assess the merit of binomial BO, we will compare it both to BO with Gaussian modeling

(that is, a traditional implementation of BO) and to the SPSA algorithm which was found

earlier to be robust, and even to improve, in the presence of noise. The efficiency of any

optimizer is judged by its ability to converge towards good solutions, that is, to low filling

errors defined as E = 1 − U , with minimal experimental effort. This effort is quantified as the

total number Nr of experimental runs (consisting of individual cycles of preparation, evolution,

and measurements) that would have been required. This number takes into account both the

number N of measurement repetitions and the number S of optimization steps performed. As

usual, any given optimization is repeated 30 times and the statistics, such as the median and

the interquartile intervals, assessed over these repetitions are reported. Finally, we will also

compare the results of optimizations performed with finite number of measurement repetitions

to the results of optimizations without noise, that is, performed given exact values of the figure

of merit. In the latter case, all the optimizations converge reliably to the same solution yielding

a minimum filling error Emin ≈ 1.6% which will be reported.

Results

Figure 3.6(a) shows the results obtained with BOs with binomial and Gaussian modeling, for a

varied number of measurement repetitions N in between 1 to 100 (colours in legend). All the

optimizations are limited to a number S = 2000 of iterations. As can be seen, binomial BO

(filled symbols) exhibits significantly faster convergence than its Gaussian counterpart (empty

ones). In particular, with N = 25 or fewer repetitions the Gaussian version fails to improve
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(a) (b)

Figure 3.6: From [174]. Optimization with poor statistics (or equivalently, with small number
N ≤ 100 of measurement repetitions per iteration) for the SF–MI control problem. The
convergence of each optimization strategy is judged in terms of the filling errors E that it
can achieve given the total number of runs Nr that would have been required. The median
results (symbols) and interquartile intervals (shaded eras) are obtained over 30 repetitions of
the same problem. The best control solution found for this task results in an error Emin ≈ 1.6%
(horizontal dashed red line). (a) Results obtained with BO with binomial (filled symbols)
or Gaussian (open ones) noise modeling are reported for different number N of measurement
repetitions (colours in the legend). (b) Binomial BO with the adaptive strategy described in the
main text (black) is compared to SPSA optimization for different numbers N of measurement
repetitions (colours in legend).

beyond the mediocre value of E = 10% of the filling error, while the binomial one converges

steadily towards the minimum Emin (vertical dashed line). It is only in cases with more frequent

measurement repetitions (N = 50 and N = 100 in Figure 3.6(a)) that the Gaussian version

manages to converge towards the low filling error Emin, with convergence rates at par, or slightly

better than binomial BO. Overall, this confirms our intuition that a detailed description of

the measurement noise is critical when N is taken small, such that despite the approximations

needed for the practical implementation of binomial BO, it is found to substantially outperform

the original version of BO. Given this improved ability to optimize with poor statistics, we now

discuss further the choice of an optimal number N of measurement repetitions.

It can be seen in Figure 3.6(a) that, given a fixed target error E > Emin , resorting to smaller

N is in general favorable (except for the extreme case with N = 1). It thus seems to be always

preferable to explore many parameters with poor statistics rather than trying to estimate too

accurately the figure of merit for a few ones. Reducing the number N of repetitions of the

same measurement, however, implies an additional computational overhead. As discussed in

Section 2.1.3, the numerical complexity in building the models used in BO scales as S3, with

the number S of observations. For a fixed total number Nr ∝ SN of measurements a reduction

of N implies an increase in S. That is, whereas fundamentally optimizations with the fewest

repetitions seem to perform best, these necessitate an increased computational effort which



64 Chapter 3. Bayesian optimization for efficient experimental optimization

may slow down the optimization.

One option to overcome this increased computational requirement would be to scale the compu-

tational resources in accordance to the number S of observations expected. Alternatively, one

could devise an optimization schedule ensuring that this computational effort never becomes too

excessive. When studying optimizations with large total number Nr > 105 of measurements,

we find it practical to start the optimizations with few measurement repetitions (in this case

N ≤ 10), which as seen in Figure 3.6(a) permits the rapid identification of good solutions in

parameter space. As the search circles in closer to the optimal solution, and as the observations

accumulate, one can restrict the subsequent steps of optimization to a smaller domain. This

is achieved by reducing the parameter space around the best parameters encountered, and by

dropping the data outside this reduced domain, thus attenuating the numerical effort. As the

search approaches a high-fidelity solution, subsequent optimizations can be performed with an

increased number of repetitions N in which case we resort to Gaussian modeling, as the latter

was found to display similar convergence than the former for large N , but, is numerically faster.

Results for this adaptive schedule are presented in Figure 3.6(b) (black curve). The first 4

points of the curve pertain to the first stage of optimization with a small number of repetitions

(here N = 10). Binomial modeling is there used for up to to S = 1500 steps. After this, the

parameter space is reduced around the 5% best set of parameters explored, and the number of

repetitions is increased. Results of this second round for 1000 extra iterations steps and several

choices for the increased number of repetitions N = 50, 100, 200 are shown as the remaining

three points of the curve. This strategy converges towards the supposed minimum Emin after

a total number of Nr ≈ 105 runs. Overall, we find this ad-hoc strategy to be appropriate

when exploring the advantage offered by binomial BO in the limit of large number Nr of total

repetitions.

Finally, results obtained with SPSA optimization for different numbers of measurement rep-

etitions are depicted in colour in Figure 3.6(b). As can be seen, the convergence with SPSA

is substantially slower than with the adaptive schedule of BO. The optimizations with SPSA

using N = 10 and N = 100 repetitions manage to converge close to Emin, but only did so after

one, or two, orders of magnitude more runs than with the adaptive method (or even without

the adaptive strategy, as can be seen when comparing these results with Figure 3.6(a)).

Overall, we found significantly improved convergences with binomial BO. For a limited total

number Nr < 104 of repetitions, it permits the identification of solutions already close to the

true minimum, when a traditional implementation of BO and the SPSA algorithm only im-

prove marginally compared to randomly generated control parameters. This regime is relevant

to many complex experimental setups where, as opposed to the numerical simulations employed

here, only a limited number of repetitions is possible. For instance, ultracold–atoms experi-
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ments often exhibit preparation times of the order of 0.1 second to more than 10s of seconds2,

thus making optimizations necessitating more than 104 repetitions either demanding or unreal-

istic. Nonetheless, even for increased number of repetitions, binomial BO compares favorably

with the other alternatives that were studied, and can be extended further by means of the

adaptive strategy presented. Finally, we note that additional results showcasing the robustness

of binomial BO with respect to a noisy preparation of the initial SF state are presented in [174].

3.2.3 Further results and outlook

Having demonstrated the applicability of binomial BO on a problem of QOC, we now aim at

exploring further its potential when optimizing parameterized quantum circuits. For that pur-

pose, two tasks of quantum state preparation by means of the circuits depicted in Figure 3.7(a,b)

are studied. The first example is explored based on thorough numerical simulations, while the

second one is performed on public–access IBM quantum chips. In both cases, the figure of merit

to be maximized is taken to be the fidelity F , between realized and target states, which is de-

composed over a Pauli basis of observables (defined in Section 2.2.3). Compared to the previous

example, this figure now depends on several experimental observables which each requires an

individual model of its corresponding measurement probability (discussed in Item 4). This will

allow us to verify the ability of the framework to cope with this more general situation.

We first consider the problem of preparing a three-qubit Greenberger–Horne–Zeilinger (GHZ)

state |Ψ1〉 = (|000〉 + |111〉)/
√

2 given the parameterized circuit depicted in Figure 3.7(a).

The goal is to find suitable angles θj ∈ [0, 2π] such that the circuit maps the initial state

|000〉 into the GHZ state |Ψ〉. In Figure 3.7(b) we compare optimizations relying on BO

with binomial (filled symbols) and Gaussian modeling (empty symbols), for varied numbers of

repetitions ranging from N = 1 to N = 1000 (these repetitions are performed per observable

and per iteration). Results are reported in terms of the infidelity I = 1 − F as a function of

the number Nr of repetitions, that is, the total number of circuit executions. In the case of

N = 1 measurement (depicted in black), the optimizations based on Gaussian modeling mostly

fail, whereas binomial modeling already yields infidelities in the percent regime in a couple

of thousands circuit executions. More generally, for up to N = 100 measurement repetitions

we find binomial BO to systematically outperform its Gaussian counterpart, and it is only for

larger N = 1000 repetitions, that the two flavours become at par.

With this enhanced capability of binomial modeling to converge even with poor statistics of the

fidelity, one can appreciate the advantage of choosing small values N of measurement repetitions

in order to accelerate the optimization convergence. As can be seen in Figure 3.7(c), in any

2See for instance Fig.3.8 [194] for details of a typical experimental sequence, or [99, 176, 191, 195, 196] for
timescales in different setups.
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(b)

(c)

(a)

(d)

(e)

Numerical IBM chips

Figure 3.7: From [174]. Two tasks of quantum state preparation with parameterized quantum
circuits (a,b). In each case, the aim is to identify the optimal circuit angles θi permitting the
realization of a predefined target state. (c) The optimization results for the state preparation
of a GHZ state with the circuit (a) are plotted in terms of the infidelities achieved as a function
of the total number Nr of circuit runs which were required. Results are systematically obtained
based on 30 repetitions of the same configuration and the median results (filled symbols) and
interquartile intervals (shaded regions) are plotted. The Gaussian (empty symbols and dashed
lines) and binomial (filled symbols and plain lines) flavours of BO are compared for different
number of measurement repetitions N (colours in legend). (d,e) Results for the preparation of a
single–qubit state performed on publicly accessible IBM quantum chips with the circuit (b). (d)
Median fidelity results (and their standard deviations in parenthesis) given varied total numbers
Nr of circuit executions and numbers N of measurement repetitions. The optimizations are
performed with Gaussian and binomial BOs, and also SPSA. (e) Comparison of the fidelities
measured for the optimized angles θopt found by BO (given Nr = 1500 and N = 5) and for the
ideal (that is, in case of perfect realization of the circuit) solution of the problem θid, over 5
different optimization runs.

case where there is comparable data for a fixed budget of Nr circuit executions (or for a fixed

infidelity I), a choice of the smallest N available results in the lowest infidelities (or the smallest

number of circuit executions). Such effect can be verified further in the inset of Figure 3.7(c)

where a comparison of binomial BO for a varied number of repetitions N in between 1 and 10

is provided. These results strengthen our intuition, built on the previous two examples, that it

is often preferable to resort to poorly resolved measurement data taken over many parameters,

rather than highly accurate data over only a few points.

Further results for this task of GHZ state preparation can be found in [174]. In particular

we study the convergence of the framework in the presence of additional noise, such as the

inclusion of random rotations and also errors in the measurement readouts. It is found that
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despite these additional sources of noise, the framework keeps converging, albeit at a slower

pace, and remains more competitive that the other alternatives studied. Instead of presenting

such results – based on theoretical modeling and simulation of the noise – into more details,

we rather focus our attention on a problem of optimization performed with uncharacterized

sources of noise.

As a final demonstration, we study a problem of state preparation, performed on public–access

IBM quantum chips [1], aiming at realizing a single-qubit target state

|Ψ2〉 = cos(π/8)|0〉 + exp[−iπ/4] sin(π/8)|1〉, (3.12)

using the circuit depicted in Figure 3.7(c). Such problem admits a solution θid = (π/4, π/4) in

case of flawless implementation of the circuit. However, due to control errors commonly featured

in NISQ devices, the true optimal parameters θopt permitting the accurate realization of the

state in Equation (3.12) may differ from such ideal solution. Furthermore, when performed

directly on the chip, the identification of these optimal parameters is complicated by stochastic

errors in the execution of the circuits and in the measurement readouts (in addition to the

statistical noise arising from finite measurements).

Results of optimizations performed with a total number of circuit executions limited to 1500

runs, but with final results verified on a large enough number of 200 000 measurements (en-

suring statistical errors of the order of 10−3) are presented in Figure 3.7(d,e). The fidelities

estimated with the parameters optimized with binomial BO, Gaussian BO and SPSA, are re-

ported in Figure 3.7(d). These are obtained over varied configurations consisting of a total

of either Nr = 300 (with either N = 1 or 5 measurement repetitions) or 1500 (with N = 5

repetitions) circuit executions. The optimizations performed for each of these 3 configuration

are repeated in between 5 and 15 times, such that we can report statistics accurate enough to

be distinguished. Medians and their standard errors are reported in Figure 3.7(d). Consistently

with the findings based on numerical simulations, we find binomial BO to systematically yield

the highest fidelities. Furthermore, for the total of Nr = 300 circuit executions it is also verified

that optimizations with a single N = 1 repetition per measurement perform better than with

5 measurement repetitions.

Finally in Figure 3.7, we report the results for the 5 individual runs of optimizations performed

with binomial BO given Nr = 1500 circuit executions (corresponding to the results reported in

the top right entry in Figure 3.7(d)). The fidelities found for the parameters θopt optimized by

BO are compared to the fidelities found for the idealized solution θid. These two quantities are

systemically estimated at the end of any of the BO runs (which were performed over a time

window of one week). Over these 5 runs the fidelities for the optimal and idealized parameters

are found comparable with deviations in the sub-percent range. Such deviations are smaller

than the intrinsic fluctuations of the device, which can be characterized in terms of the standard
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deviation of 0.92% in the fidelities which are estimated based on the fixed parameters θid, but

at different times. The overall average obtained for both sets of parameters is almost identical

with values of 98.2%, consistent with the readout errors reported on the chips which, at the

time of the study, were ranging between 1% and 5%.

Overall, these results of optimization performed on the IBM chips are found consistent with

our earlier conclusions based on numerical simulations, and establish further binomial BO as

a very frugal alternative to other optimization algorithms. Despite the simplicity of this last

example, it is already remarkable that close-to-optimal parameters are identified in a total

number of circuits executions (Nr = 1500) that is typically used in a single step of optimization

of parametrized quantum circuits [56, 144, 192, 197].

3.3 Concluding remarks

The ability to find close–to–optimal solutions solely based on limited experimental data can

advance technological developments and precision experiments on a wide range of quantum

physics platforms. It offers a very resource-efficient pathway towards the optimal use of exist-

ing quantum hardware comprised, for instance, of tens to hundreds of superconducting qubits,

or hundreds to thousands of atoms. Given the availability of cheap resources for classical com-

putation, it is essential to leverage them as much as possible to support the limited capabilities

of near-term quantum hardware. For that purpose, we have explored the use of (and have

improved on) BO.

For the SF–MI transition task presented in Section 3.1, the performance of BO was found

superior to the other optimization routines which were studied. This was attributed to the

ability of BO to select the control parameters to be probed in a principled way balancing

local improvement and global exploration of potentially rewarding domains of the parameter

space. In situations where the presence of local minima (as observed for the task of the SF–MI

transition close to the quantum speed limit) impedes the success of optimizations, BO reached

better solutions than the local optimizers studied, while remaining more efficient than the global

optimizer that was considered. Given that this situation is commonly found in many problems

of QOC and VQAs [31, 112, 113, 117], this encourages the adoption of BO as an appealing

alternative to traditional optimization strategies. In Section 3.2, we have studied the effect

of varying the number of measurement repetitions performed at each step of the optimization.

While such number has traditionally been kept large to permit accurate estimation of the figure

of merit, here we have rather considered the opposite regime characterized by poor statistical

estimates resulting from a small number of repetitions. By incorporating precise details of the

measurement statistics, as obtained in typical quantum experiments, we endowed BO with the

ability to operate even in the presence of very noisy data. Given this new ability, it was found
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that choosing a small number of measurement repetitions was in general favorable for enhanced

convergence, in stark contrast with current practices.

Having showcased the benefits of BO, it is also in order to stress out its limitations. In the

several examples studied, the number of parameters was taken to be around P = 10 parameters.

Such number could be enough to parameterize a couple of experimental control fields, but may

fell short in situations were many experimental degrees of freedom could be optimized over, or in

large scale implementations of parameterized quantum circuits. In practice, directly optimizing

over high–dimension parameter spaces, with P & 30, is challenging. Still, several methods

extending BO to this regime have been proposed and could be incorporated. These often rely

on the optimization over a reduced parameter subspace, which can either be learnt [198] or

randomly selected [199]. Going even further, this could form the basis of an iterative strategy.

For instance, in a problem of QOC one would optimize over perturbations of the control field,

parameterized by a small number P ′ ≪ P of parameters, which could be iteratively resampled

[146]. The success of such iterative procedure could be made experimentally feasible when used

in conjunction with the low data requirement of BO.

It should be highlighted that the conclusion that was drawn regarding the use of a small number

of measurement repetitions was based on the assumption that changes in the control parameters

do not incur a large experimental overhead. When this overhead becomes significant, compared

to the time required to repeat the same experiment, it should be taken into consideration. In

this case, convergence of the algorithms should be studied in terms of the experimental time

required, rather than the number of experimental repetitions as was done here. Given specific

experimental timescales, the results presented in Section 3.2 could directly be recast in such

form.

Going further, we remark that the probabilistic modeling approach adopted in BO offers room

for even more refinement. Akin to the methodology developed for binomial BO one could

also include other sources of noise, in addition to the statistical noise resulting from finite

sampling. For instance, values of readout errors, which are often well characterized, could

be directly incorporated into the models by means of altering the likelihoods involved. More

generally, the field of probabilistic machine learning is advancing at fast pace and has a lot to

offer to the characterization and optimization of quantum dynamics. Faster implementations

of the models used have been developed for exact [200] or approximative [201] inferences with

Gaussian processes. These can accelerate the algorithms studied here, especially when the

number of iterations becomes substantial. Alternative probabilistic models such as ensembles

of neural networks [202] could also provide a substitute for Gaussian processes in case of high–

dimension parameter space and large number of iterations.

Finally, it should be acknowledged that the system sizes optimized over in this chapter were

taken relatively small, such that a thorough study of BO was possible. Ultimately, we argue
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for the adoption of the methods developed in larger experimental situations. As such, it is of

interest to identify potential roadblocks in the scaling of the techniques presented and, more

generally, in the scaling of any experiment–based optimization, to large system sizes. For in-

stance, the binomial flavour of BO, which takes into consideration the statistics of projective

quantum measurements, requires to model each of the measurement probabilities involved indi-

vidually. This can quickly become overwhelming for figures of merit, such as the fidelity, which

often need to be decomposed in terms of a large number of experimental observables. More

generally, difficulties of accurate estimation of the fidelity, and concentration of its values to

a narrow range, are known to complicate optimization tasks defined over large Hilbert spaces.

Such detrimental effects are discussed in the next chapter, where we argue that these could be

overcome, or at least mitigated, by means of engineered figures of merit.
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Engineering the figure of merit

Any optimization, be it a task of QOC or a VQA, relies on iterative evaluations of a figure of

merit which value guides an optimizer toward the solution of a problem. Importantly, for a given

problem the choice of this figure is not unique, thus leaving freedom in its design. Choosing

the right figure could result in accelerated convergence or even could enable an optimization

which otherwise would have failed. For instance, recent works [203, 204] have resorted to ad-hoc

figures of merit intended to overcome (or at least to limit) issues related to Barren plateaus

[109] in the training of VQAs. These Barren plateaus, which arise due to the concentration of

the figure of merit to almost identical values over most of the parameter space, are not limited

to problems of VQAs but are rather relevant to any problem of optimization of quantum

dynamics. In addition to such issues, it is also important to consider the experimental effort

which is required to estimate a figure of merit up to desired accuracy during the course of an

optimization. As we will see, both of these aspects need to be carefully taken into consideration

when performing optimization over large Hilbert spaces.

In this chapter, we discuss the engineering of more experiment–friendly figures of merit. We

start in Section 4.1 by listing the desirable properties of these figures, and by establishing quan-

titative criteria allowing their study. These criteria are taken general enough to be relevant to

any optimization performed based on experimental outcomes. Their use is illustrated in Sec-

tion 4.2.1, where an alternative to the state fidelity is investigated for problems of preparation

of separable quantum states. This alternative was introduced in [204] but was only discussed

in the context of Barren plateaus in qubit systems. The discussion is extended here to also

encompass a study of its estimation properties and its application to boson systems. This is

followed in Section 4.2.2 by the engineering of improved figures of merit for the preparation of

stabilizer states. Finally, in Section 4.2.3 we study the 0-fidelity proposed in [170] as an alter-

native to the process fidelity, and which can be used for task of quantum gate engineering. In

all cases, the alternative figures which are investigated in this chapter are shown to outperform

their alter egos in light of the criteria developed.

71
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(a) (b)

Estim
ate

Accuracy

Discriminative range

Figure 4.1: Sketch of a good (a) and a bad (b) figure of merit. These two figures are maximized
for the same parameter θ∗, and thus are faithful to the same optimization problem admitting
solution θ∗. Still, they present different characteristics making them more or less suitable in the
context of optimization. Two quantitative criteria are employed when judging a figure of merit.
First, it should be experimentally accurate, that is it should be possible to accurately estimate
its values based on a realistic number of experimental repetitions. This statistical accuracy
is quantified by the variance ∆2[F̃ ] in the estimate F̃ of the figure F , and is represented by
means of a vertical gray arrow and shaded region. Second, a figure of merit should be able to
discriminate between parameters, that is, it should adopt different values for varied parameters
θ. This ability to discriminate is quantified by the variance Dθ(F ), defined in Equation (4.2), of
the figure F over the parameter space and is depicted by means of a horizontal blue arrow. The
good figure F1 (a) adopts different values for different set of parameters, and when estimated
over a realistic number of measurement repetitions results in small statistical variance. As
such a general optimization algorithm should be able to distinguish between good and bad
parameters and is likely to succeed. In contrast, the bad figure F2 (b) adopts almost everywhere
similar values (in other words, values of F2 concentrate to a narrow interval), which cannot
be distinguished due to the large statistical variance. Hence, any optimization starting from
parameters not close enough to the solution θ∗ is most likely to fail.
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4.1 Desirable properties

Three properties are established as desirable when developing a figure of merit F : it should be

faithful to the problem at hand, experimentally accurate and discriminative (or equivalently

it should not concentrate to experimentally indistinguishable values). These properties are

illustrated in Figure 4.1 and are now discussed in greater details.

Faithfulness

A prerequisite for any figure of merit to be adequate for a given problem is faithfulness [203],

that is, it should reach its maximum value if and only if the desired solution has been attained.

This restriction, however, does not single out a unique figure. For instance consider the expec-

tation values of two Hermitian operators M1 and M2 represented in the same basis, and with

eigenvalues λ1 = 1 > λ2 ≥ . . . ≥ λd ≥ 0 arranged in decreasing order, as

M1 =













λ1 = 1 0 . . . 0

0 0 . . . 0
...

. . .
...

0 . . . 0













, and M2 =















λ1 = 1 0 . . . 0

0 λ2 < 1
... 0

...
. . .

...

0 . . . 0 ≤ λd















. (4.1)

Despite their differences, they both reach their maximal expectation value, max〈Mi=1,2〉 = 1, for

the same state. As such, the figures of merit corresponding to the expectation values of M1 and

M2 are deemed adequate for the same problem of preparing the eigenstate |λ1〉 (corresponding

to the eigenvalue λ1). This freedom in designing many operators of the form M2 for the same

task, will be exploited when engineering alternative figures of merit. Before that, we need to

establish further criteria allowing to compare figures of merit which are faithful to the same

problem.

Experimental accuracy

To be of practical interest experimentally, one should be able to accurately estimate a figure

of merit based on a realistic number of measurement repetitions. As discussed in Section 2.2,

accuracy is understood in terms of the statistical variance of the estimation errors. While some

(bounded) amount of noise can be tolerated by the optimization routine (in particular with BO

and up to the case of single shot binomial noise as demonstrated in Section 3.2), it remains

the case that a reduced level of noise is in general beneficial from an optimization perspective.

For unbiased estimates, as considered in this thesis, recall that the variance of the estimation

errors is equal to the variance of the estimate itself.
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With estimation accuracy in mind, and denoting F̃1(F̃2) the (unbiased) estimates of F1(F2), the

figure F1 is deemed better than F2 if, for similar number of measurement repetitions, it entails

a smaller estimation variance, that is, ∆2[F̃1] < ∆2[F̃2]. Equivalently, this criterion implies that

in order to reach the same accuracy ∆2[F̃1] = ∆2[F̃2], a smaller experimental effort would be

necessary for the figure F1. Such variances will be evaluated based on the expressions obtained

in Section 2.2.2.

Discriminative

Finally, as these figures are used in the context of optimization we also need to consider their

ability to distinguish between different realizations of a quantum dynamics; these different

realizations result from the choice of different values of the control parameters θ of the system

under study (that is, different control fields in QOC or different angles of parameterized gates

in VQAs). In particular, it seems sensible to require that a figure a merit does not adopt similar

values for the vast majority of the parameter space. This ability to discriminate is quantified

in terms of the variance Dθ(F ) in the values of the figure F over a distribution of parameters

p(θ), and is defined as

Dθ(F ) =

∫

p(θ)
(

F (θ) − 〈F 〉θ
)2
, (4.2)

with 〈F 〉θ =
∫

p(θ)F (θ) the average of F (over the same distribution). A typical distribution

p(θ) would be a uniform distribution over the domain of θ.

Notably, the variance in Equation (4.2) is evaluated for a distribution of parameter values rather

than a distribution of probabilistic measurement outcomes, as is the case for the estimation

accuracy discussed earlier. Still, this variance Dθ(F ) should be understood in light of the esti-

mation accuracy ∆2[F̃ ]: to distinguish between typical values of F one would need to estimate

them with an accuracy ∆2[F̃ ] of the order of Dθ(F ), that is, with a number of measurement

repetitions scaling as Dθ(F )−1. In particular, a vanishing variance Dθ(F ) indicates that the

values of F will concentrate into a very narrow range1 indistinguishable experimentally, thus

impeding the success of any optimization starting from random, or at least not close to the

optimal parameters θ∗. With this ability to discriminate in mind, a figure of merit F1 is deemed

better than F2 if its values are more wildly distributed, that is when Dθ(F1) > Dθ(F2), and we

now discuss how such variances can be assessed.

It is only in certain situations that the variance in Equation (4.2) can be exactly evaluated. For

instance, assuming that random values of the parameters θ result in a distribution of random

1Recall that Chebyshev inequality imposes that the probability of a value F to differ from its mean value
〈F 〉θ by more than ε is bounded by Pr(|F − 〈F 〉θ| ≥ ε) ≤ Dθ(F )/ε2. Hence for a vanishing value of Dθ, the
deviation ε must also be vanishing for the probability to be significant enough.
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states2 facilitate the evaluation of Equation (4.2). Given a figure of merit F corresponding

to the expectation value of an operator M , the variance Drdm(F ) over such random states

distribution can be expressed as (derived in Equation (C.10) of the Appendix C)

Drdm(F ) =
Tr[M2]

d(d+ 1)
− Tr2[M ]

d2(d+ 1)
≤ Tr[M2]

d(d+ 1)
, (4.3)

which depends only on the eigenvalues of the operator M (entering Equation (4.3) through the

traces involved), and on the dimension d of the system (which grows exponentially with the

size n of a system).

Already, Equation (4.3) permits to appreciate the contribution of the eigenspectrum of M

in the variance Drdm(F ), and also to unveil some of the challenges in optimizing figures of

merit defined over large Hilbert spaces. For an operator with a single non-null eigenvalue – for

instance, a projector |ψtgt〉〈ψtgt| onto a target state |ψtgt〉, as involved in the fidelity measure –

Tr[M2] has constant value, and the variance Drdm(F1) scales at best as d−2. This exponential

decay of the variance, with respect to the system size n, highlights prominent issues when using

the fidelity as a figure of merit [205] for large value of n. A choice of an operator of the form

M2 in Equation (4.1) with a number d of non vanishing eigenvalues would result instead in an

improved scaling of (at best) d−1, as Tr[M2] now scales as d. This is deemed favorable as it

delays phenomena of concentration to larger values of n. Still, in both situations it can be seen

that the variance in the values of the figure of merit will inevitably vanish for large system sizes,

thus preventing the success of any optimization starting with non–informed initial parameters.

The scalings just discussed, however, rely on the assumption of states randomly distributed,

which may not be justified. In the following, we will rather consider the true distributions

realized by the specific controlled quantum systems that are investigated. In such cases, Dθ(F )

does not admit an analytical expression, but, can be approximated by means of Monte Carlo

sampling, as the empirical variance

Demp(F ) =
1

S

S
∑

s=1

(

F (θs) − F̄
)2
, (4.4)

of the values of the figures of merit F evaluated for a finite number S of parameters θs sampled

from p(θ), and where F̃ denotes the empirical mean F̄ =
∑

F (θs)/S.

This ability to discriminate, as quantified by Equation (4.2), is closely related to the phe-

nomenon of Barren plateaus [109], which has been exposed in the context of VQAs. Such

Barren plateaus are characterized by vanishing amplitudes of the gradients of the figure of

merit. In such situation, a choice of random initial parameters (of the parameterized quantum

2These are pure states which are uniformly distributed over the d−1 hypersphere, or more technically, which
have a Haar measure. This technical aspect is discussed in greater length in Appendix C.
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circuits involved) will almost inevitably corresponds to gradients close to zero, such that any

gradient-descent method would fail. Here, rather than considering the variance in the ampli-

tudes of the gradients, we consider instead the variance in the values of the figure of merit as

the most relevant quantity to be studied. This is motivated by the fact that our optimizer

of choice, BO, and many other optimizers used in QOC do not rely on gradients but only on

evaluations of F . Nonetheless, under reasonable assumptions [206], a vanishing variance in the

values of the figure of merit and the Barren plateaus phenomenom are equivalent.

Overall we propose three criteria to evaluate the adequateness of a figure of merit. The advan-

tage of choosing these criteria lies in the fact that they can be easily assessed and are general

enough to be relevant to any optimization problem, or to any optimization strategy considered.

This makes them appealing when comparing and developing new figures of merit as we now

proceed to show.

4.2 Engineering and assessment of alternative figures of

merit

4.2.1 Preparation of separable states

So far, the discussion about the desirable properties of a figure of merit has remained general.

We now apply the quantitative criteria freshly established to compare two alternative figures

adequate for the preparation of separable states. For the sake of concreteness we first restrict

the discussion to the preparation of the n–qubit target state |0〉 = |0〉⊗n. Despite the apparent

simplicity of the state to be realized, we conclude this section by discussing several practical

applications.

State fidelity and local fidelity

As considered in Section 3.1.1 and Section 3.2.3, a canonical choice of figure of merit for

problems of quantum state preparation is the state fidelity. For a prepared state ρ and the

target |0〉, it is defined as

F(ρ) = Tr
[

|0〉〈0|ρ
]

. (4.5)

Given the separable physical nature of the target state, an alternative to the fidelity [204] can

be engineered based on the local probabilities Fi(ρ) = Tr[|0〉〈0|iρ] of each part i of the state ρ

to match its corresponding target |0〉i. More explicitly, the local fidelity Floc is defined as the
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expectation value of the operator

Floc =
1

n

n
∑

i=1

|0〉〈0|i ⊗ Ĩ i, (4.6)

with Ĩ i being the identity acting on all qubits but qubit i. By construction, Floc is diagonal

in the computational basis, with eigenvalues λb equal to the number of |0〉 qubits in the basis

state |b〉 (divided by n), such that Floc ∈ [0, 1]. Furthermore Floc reaches its maximal value

only when the target state |0〉 has been prepared, that is, is faithful to the state preparation

problem and can thus be compared further to the fidelity.

Variance in estimates of the state and local fidelities

Given that the fidelity F(ρ) is effectively the probability to observe a bitstring outcome 0 ≡
(0 . . . 0) (when measuring ρ in the computational basis), an estimate F̃(ρ) obtained over N

measurement repetitions is the frequency of such 0 outcome. This estimate has a variance

(dropping the dependency on ρ)

∆2[F̃ ] =
F(1 −F)

N
. (4.7)

Akin to the fidelity, estimating Floc only requires measurements in the computational basis. In

this case, each of the probability Fi with (i = 1, . . . , n) is estimated based on the measure-

ment outcomes of the corresponding qubit i, and averaged over the n qubits. It is shown in

Appendix B.2 that the variance in the estimates of Floc, based on N measurements, can be

bounded by

∆2[Floc] ≤
Floc(1 −Floc)

N
, (4.8)

with the higher bounds saturated only in cases when the measurement outcomes over each

of the n qubits are perfectly correlated. Hence, in general, the variance in Equation (4.8) will

exhibit a better scaling than the variance of the state fidelity estimates shown in Equation (4.7).

In particular, for uncorrelated measurement outcomes for each of the n qubits – arising for

separable states ρ = ρ(1) ⊗ . . . ⊗ ρ(n) – this variance will scale as 1/(Nn), which decreases

with the system size n due to the fact that each of the n qubit outcomes, per measurement,

contributes independently to the estimate. We now verify numerically these scalings, and also

probe more general cases than the independent and perfectly correlated measurement outcomes

just discussed.

In Figure 4.2, we report the variances obtained when estimating the two figures given a fixed

number of N = 10 000 measurement repetitions, and for varied system sizes in between n = 2

to 9 qubits. In any case, the errors between the true value of the figure of merit F and its

estimate F̃ are rescaled by a factor F (1 − F ), such that the scalings in Equation (4.7) and
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(a) (b)

Figure 4.2: Comparison of the variance ∆2[F̃ ] of the rescaled (see main text) estimation errors
for (a) the state fidelity F defined in Equation (4.5), and for (b) the local fidelity Floc defined
in Equation (4.6). In all cases, the estimates are obtained given N = 10 000 measurement
repetitions, and the variances are obtained over a total of S = 10 000 states sampled from 3
different ensembles. In addition to a distribution of random states (blue), we also consider
two ensembles of states which result in either independent (orange) or fully correlated (green)
qubit measurement outcomes. These ensembles are defined more precisely in the main text.
Variances are reported for system sizes ranging from n = 2 to 9 qubits.

Equation (4.8) can be decoupled from the underlying values of the figures estimated. For each

system size n studied, the variances in these (rescaled) errors are obtained and averaged over

10 000 states which are randomly drawn from 3 different ensembles. We consider the case of

random states (in blue), separable states (in orange) in which case each of the n qubit states

is randomly generated, and states of the form |ψcorr〉 ∝ (|0〉⊗n + α|1〉⊗n) which entail fully

correlated measurement outcomes in the computational basis (in green).

In accordance to Equation (4.7)(a), it is verified in Figure 4.2 that the variance of the estimation

errors for the fidelity neither depends on the system size n nor on the nature of the states

measured, but remains constant with value of ∆2[F̃ ] ∝ 1/N = 10−4. However, as can be seen

in Figure 4.2(b), the situation differs when considering errors in the local fidelity measure. As

expected, for the specific case of fully correlated measurements (green), variances of the errors

are found with the same constant value of 1/N = 10−4 as for the fidelity. This corresponds

to the upper bound of Equation (4.8). For separable states the expected scaling of n−1 is

also verified. Interestingly, for states randomly generated, we numerically observe a similar

scaling, inversely proportional to the system size, albeit with a larger constant factor. Already,

this increased experimental accuracy points toward a practical advantage when performing

optimization based on the local fidelity Floc (especially for increased values of n). Even more

importantly, as we now see, the local fidelity can also avoid issues of concentrations that were

mentioned earlier.
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Concentrations of the values of the state and local fidelities

We saw that, when evaluated over an ensemble of random states, any figure of merit taken

to be the expectation value of an operator (with bounded eigenvalues) will exhibit a variance

Drdm(F ) scaling at best as d−1, that is, exponentially decreasing with the system size. We now

show that, for more structured distributions of states, such exponentially vanishing scaling can

be avoided, provided an adequate choice of the figure of merit. For that purpose, we return

to the task of preparation of the Mott-insulator state which was studied in Section 3.1.1. In

Section 3.2.2 we argued for the merits of an alternative to the state fidelity, especially regarding

its scalability to large system sizes, and deferred its study. We now develop further this aspect.

Recall that for the QOC task of preparing the Mott-insulator (MI) state, which is a (separable)

Fock state, an alternative to the state fidelity was defined in Equation (3.10) as the expectation

value of the operator

U =
1

N

n
∑

i=1

|1〉〈1|i ⊗ Ĩ i, (4.9)

with the local projector |1〉〈1|i corresponding to the occupation of lattice site i with exactly

1 boson, and the identity Ĩ i acting on all sites but i. This operator corresponds to the local

fidelity which was defined in Equation (4.6) for a |0〉 target state, but here adapted to the

target MI state.

The controlled system considered, which is sketched in Figure 4.3(a) and was detailed in Sec-

tion 3.2.2, consists of an initial superfluid (SF) state driven by means of a time-dependent

control function Γ(t). A random realization of such system is obtained by evolving the SF state

under a random control function. These random control functions are obtained by uniformly

sampling the control parameters θs and reconstructing the time–dependent functions associ-

ated. This is repeated S = 250 times, and at the end of each control sequence, we record the

exact values of the fidelity F(θs) and the local fidelity Floc(θs) (called average probability in

Section 3.2.2).

In Figure 4.3(b), we report the statistics obtained over these 250 repetitions for different system

sizes ranging from L = 4 to 10 lattice sizes, with unit filling B = L. The empirical average

〈F 〉θ and the variances Dθ(F ) for both the figures are displayed in the top and bottom panels

respectively. For the fidelity F (blue), it can be seen that both its average value and its variance

decay exponentially with the size of the system. That is, even under this new distribution

of states, issues of concentration remain present. In sharp contrast, the average values and

variances of the alternative figure Floc (orange) are found to remain constant with increased

system size. Provided that this scaling holds for larger systems, this suggests that for large

values of L and B any optimization based on the fidelity would systematically fail (or would

have required extremely good initial guess in the control parameters), but that optimization
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(a)

Time Time

(b)

Statistics

Figure 4.3: Comparison of two figures of merit employed for the SF–MI control problem: the
state fidelity and the average probability of unit filling (which effectively corresponds to the
local fidelity adapted to the target MI state). (a) The statistics are obtained empirically by
drawing S = 250 set of random control parameters θs from which can be reconstruct the full
time–dependent control functions. The initial superfluid state is evolved according to these
controls, and for each of the S realizations we evaluate the values of the resulting figures
of merit. (b) Plot of the empirical average and variances of the fidelity (blue) and average
probability (orange).

with the alternative figure is, in principle, possible.

Finally, we highlight that the lack of concentration of the local fidelity that is reported here for

a boson system which is (i) driven over a short period of time (when compared to adiabatic

timescales) and with (ii) short–range interactions and hopping, is similar to the findings in

[204] obtained for a qubit state evolved by means of a (i) shallow quantum circuit and with (ii)

short–range interactions (m–qubit gates acting on adjacent qubits). Given these similarities,

it may be expected that the analytical results for quantum circuits presented in [204] could be

extended to more general systems, and dynamics.

Concluding remarks

Overall, the local fidelity studied in this section was found to exhibit improved characteris-

tics, both in terms of estimation accuracy and variances of its values, compared to the state

fidelity. Resorting to this alternative could thus accelerate, or even enable, tasks of quantum

state preparation of product states in many-body quantum experiments, such as the MI state

considered earlier and also others [179]. Additionally, even improving on the preparation of the

seemingly trivial |0〉⊗n qubit state could find practical applications. For instance, it could be

employed in problems of optimal control for the fast initialization and reset of qubit registers.
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Also, we remark that the fidelity with respect to the |0〉⊗n state, is a quantity of interest when

characterizing the average error over a set of gates by means of randomized benchmarking [207–

209]. Given that such measure has been used for problems of quantum gate engineering [45, 56],

the proposed alternative could be substituted to the fidelity and may prove advantageous, es-

pecially when optimizing over larger system sizes than the 1–qubit quantum gates which were

optimized in [45, 56].

4.2.2 Preparation of stabilizer states

As highlighted in the previous example, despite its popularity, the state fidelity may not be the

most adequate figure of merit for quantum state preparation purposes. However the alternative

figure of merit proposed in Equation (4.6) can only be constructed for separable states, limiting

its applicability. We now consider the more challenging task of preparing stabilizer states [15].

This family of quantum states holds a particular appeal in the quantum computing and in-

formation toolbox as being entangled but with a well defined structure, compared to random

states, facilitating their study and practical utilization. As such, they have often be used to

benchmark quantum computing capabilities [210–213], and are central resources in quantum

metrology [214] and measurement-based quantum computing [215]. Being able to prepare such

states faithfully is thus of great importance and has been approached by means of QOC [81, 84].

Following the methodology employed to develop entanglement witnesses in [216], we devise a

suite of alternative figures of merit, that are called witness fidelities, for the preparation of

generic stabilizer states, and show their advantage compared to the state fidelity measure. We

then discuss how such advantage can even be further increased when considering realization of

specific stabilizer states, such as the popular GHZ state.

Witness-inspired figure of merit

Elements of the stabilizer formalism [15, 217] are presented in Appendix D. Here, we only

review the aspects necessary for the construction of the new figure of merit. We denote the

group generated by n-qubit operators Gi (i = 1, . . . , l) – that we restrict to be n–fold tensor

products of Pauli matrices and identity, with prefactor ±1 – as < G1, . . . , Gl >. Given a

group S generated by n independent and commuting generators3 Gi, it can be shown that

there exists a unique (up to global phase) state |ψS〉 which remains invariant under the action

of any of the generators Gi, and thus under the action of any of the operators of the group

3The exact conditions that these generators need to satisfy are listed in more details in Appendix D.1
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S =< G1, . . . , Gn >. That is,

|ψS〉 ⇔ ∀O ∈ S, O|ψS〉 = |ψS〉. (4.10)

This state |ψS〉 is said to be stabilized by the group S, and we now detail how an alternative

to the state fidelity, with respect to |ψS〉, can be constructed.

Given that each of the n generators Gi has eigenvalues λGi ∈ {−1, 1}, it follows that |ψS〉 is

the only state maximizing simultaneously all their expectation values. Hence, |ψS〉 is also the

only state maximizing the expectation value of the operator

G =
n

∑

i=1

Gi, (4.11)

resulting from the sum of each of the n generators. As such, similarly to the projector

F = |ψS〉〈ψS|, G permits the characterization of |ψS〉, and could thus be substituted to F .

Additionally, the operator G presents the advantage of being decomposed into n separable

operators, rather than the 2n required for the projector F .

To be comparable to the fidelity, the alternative figure of merit FW (ρ) is defined as the expec-

tation value 〈FW 〉ρ of the operator

FW =
1

2
+

G
2n
, (4.12)

with respect to the prepared state ρ. Akin to G, the expectation value of FW is maximized

only for |ψS〉 (that is, FW is faithful to the task of preparing the state |ψS〉), but yields values

of FW bounded in the range [0, 1], such that it can be compared with F .

Given the general formula of the variance of an estimate (obtained by importance sampling)

established in Equation (2.30) and the decomposition of FW in Equation (4.12), the variance

of an estimate F̃W (based on N measurement repetitions) of FW is readily obtained as

∆2[F̃W ] =
n
∑n

i=1 1

(2n)2N
=

1 −FW

4N
. (4.13)

This is to be contrasted to the variance of an estimate of the fidelity, which was found in

Section 2.2.3 to be

∆2[F̃ ] =
1 −F
N

, (4.14)

for any stabilizer states.

Hence, at fixed estimation accuracy (and assuming similar values of the two figures), the estima-

tion of FW will require 4 times less measurements than for the fidelity. Furthermore, it can be

shown (Appendix D.2) that FW decomposes over ∼ d eigenvectors with non–vanishing eigenval-

ues, resulting in a variance Drdm(FW ), in the values of FW over a distribution of random states,
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scaling as (nd)−1 (with the exact expression derived in Equation (C.16) of the Appendix C.3).

Again, this compares favorably with the fidelity, but still signals issues of concentration. As

we now see, such advantages, both in terms of estimation accuracy and concentration, can be

improved further when considering more practical problems.

Preparation of a GHZ state with shallow quantum circuits

Here, we restrict our focus to the preparation of a n–qubit GHZ state of the form |ψtgt〉 =

1/
√
n(|0〉⊗n + |1〉⊗n). Such state is stabilized by the n generators [216]







G1 =
⊗n

j=1Xj

G2≤j≤n = Zj−1 ⊗ Zj.
(4.15)

Crucially, as any pair of operators G2≤j≤n commute, their expectation values can be estimated

given the same measurement setting, entailing a measurement of all the qubits in the com-

putational basis. Hence, estimating the alternative figure in Equation (4.11) only requires to

consider two measurement settings for the case of GHZ states. To highlight this decomposition,

GGHZ from Equation (4.11) is rewritten as the sum

GGHZ = GX + GZ , with GX =
n

⊗

j=1

Xj, and GZ =
n−1
∑

j=1

ZjZj+1. (4.16)

When estimating GGHZ , one could distribute uniformly the measurements to be taken for the

estimation of the expectation values of GX and GZ . However, we saw that such allocation may

not be optimal, and rather derived optimal allocation of the measurements in Equation (2.31).

For the GHZ state, this yields the two (importance) sampling probabilities Pr(i = GX ,GZ),

with i specifying the index of the measurement to be taken.

Recall that determining such optimal allocation requires evaluating the expectation values of

〈G2
Z〉ρ and 〈G2

X〉ρ. Given that G2
X = I, it follows that 〈G2

X〉ρ = 1 which does not depend on the

exact details of the underlying state ρ measured. Values of 〈G2
Z〉ρ, however, depend on the state

ρ which is unknown and would vary over the course of an optimization. Still, in such case one

can approximate these values by their average obtained over a distribution of random states.

This average is evaluated in Appendix C.4 as 〈G2
Z〉rdm = n− 1. Following Equation (2.31), this

yields the distribution

Pr(i = GX) =
1√

n− 1 + 1
, and Pr(i = GZ) =

√
n− 1√

n− 1 + 1
, (4.17)

which allocates (in average) more measurements to the observable GZ as it contributes the most
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to the overall variance of G. The variance of the estimates obtained with such allocation, when

averaged over random states, can be bounded as (derivations in Appendix C.5)

∆2
2obs[F̃W ] ≤ 1

4n
+

√
n− 1

2n2
− 1

4n(d+ 1)
, (4.18)

which, for large n, scales as n−1. This is an improvement of a factor n compared to the general

case where F̃W requires n distinct measurement settings (as given in Equation (4.13)). We now

proceed to verify such scalings numerically for random states, and also assess if they hold in

the case of the preparation of a GHZ states by means of a shallow quantum circuit.

Numerical results for the GHZ state

In this section we present a numerical comparison of the estimation accuracy ∆2[F ] and of the

variances Dθ(F ), between the state fidelity F = F (blue), and the witness fidelity F = FW

(orange), both constructed with respect to a n–qubit GHZ target state. These statistics are

evaluated over a total of S = 10 000 states, and for different system sizes ranging from n = 2

to 9 qubits.

Statistics presented in the first row of Figure 4.4 are based on an ensemble of random states.

The values of the variances Dθ(F ), reported in Figure 4.4(a), exhibit an exponential decay with

the system size n, following closely the analytical scalings (depicted in dashed lines) of d−2 and

(nd)−1 expected for the state fidelity and the witness fidelity respectively.

Variances of the estimates, displayed in Figure 4.4(b), are obtained given a fixed number of

N = 10 000 measurements. In the case of the witness fidelity, we report results assuming

either that n distinct experimental observables need to be measured separately (orange), which

is representative of the estimation of a generic stabilizer state, or that only two measurement

settings (green) are required, as is possible for the GHZ state. For the latter case, the allocation

of the measurements is performed according to Equation (4.17). As can be seen, the estimates

of the witness fidelity are always at least 4 times more accurate than the estimates of the state

fidelity. Furthermore when only 2 distinct measurement settings are required, the variance of

the corresponding estimates is found to be inversely proportional to the system size n. Again,

these numerical results confirm the scalings (depicted in dashed lines) which were provided in

Equation (4.14) for the case of the state fidelity, and in Equations (4.13) and (4.18) for the

witness fidelity decomposed over n and 2 observables, respectively. Overall, we have verified the

correctness of the analytical results established earlier, and we can now proceed to reexamine

these statistics for an ensemble of states differing from the random states.

We now consider the n–qubit states prepared by means of a shallow quantum circuit, sketched

in Figure 4.4 (bottom left). This circuit is structured as a sequence of n − 1 controlled NOT
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\

(a) (b)

(c) (d)

Figure 4.4: Comparison of the state fidelity F and the alternative witness fidelity FW with
respect to a target GHZ state. For each figure of merit, we report the variance in its values
D(F ) (a,c) and the variance ∆2[F̃ ] in its estimates given N = 10 000 measurements (b,d),
for different system sizes ranging from n = 2 to 9 qubits. These statistics (depicted with
filled symbols and plain lines) are systematically evaluated given an ensemble of S = 10 000
states which are either random states (first row) or states generated by a quantum circuit
with random parameters (second row, with the circuit sketched on the left). (a,c) The witness
fidelity (orange) concentrates less than the state fidelity (blue), and in particular, does not
decay exponentially with the system size n for the ensemble of circuit–output states (c). (b,d)
Comparison of the variances in estimates of the state (blue) and witness fidelities. For the
witness fidelity F ′

W two strategies are presented, one where n distinct observables are measured
(orange), and one where this number is compressed to 2 (green), as is possible for GHZ states.
The scalings (dashed lines) either obtained analytically, or fitted to the numerical data are
discussed in the main text.

gates with a fixed control qubit (i = 1) and targeting each of the remaining qubits (i > 1),

to which has been prepended and appended 2n parameterized single-qubit rotations. Each of

these parameterized rotations is defined as

R(θi) = RX(θ
(1)
i )RZ(θ

(2)
i )RX(θ

(3)
i ), (4.19)

in terms of the Pauli rotations Rσ∈{X,Y,Z}(θ) = exp−i θ
2
σ, and can realize an arbitrary single-qubit

rotation for an appropriate choice of the parameters θi.

Given an initial Hadamard gate applied to the first qubit of the system, and any of the remaining

2n−1 parameterized rotations fixed to be the identity, this circuit is known to realize perfectly

the desired GHZ state. However, due to control errors that are typically found in NISQ devices,

such idealized circuit is likely to produce a different state when implemented on a real hardware.
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Deviations between the realized state and the desired GHZ state could be (at least partially)

compensated by means of optimizing the 2n parameterized rotations (and thus the 6n angles).

In such a way, the circuit presented could be used to refine the preparation of a GHZ state

on a quantum computing platform. Furthermore, it is representative of some shallow quantum

circuits (with a number of sequential gates and a number of parameters to be optimized scaling

linearly in the number of qubits) which are often found in VQAs.

The distribution of states corresponding to this circuit is obtained by randomly sampling nay of

the free rotation angles θ uniformly over the domain [0, 4π], and evolving an initial state |0〉⊗n
with the resulting circuit. Similar study as the one performed in the case of random states is

repeated with this new ensemble of states. Crucially, one can see in Figure 4.4(c) that while the

variance in the values of the state fidelity (blue) remains exponentially vanishing in the system

size n, this is not the case anymore for the witness fidelity (orange). Instead, for the latter, a

scaling of 1/n (displayed in dashed orange line) is empirically found to match the numerical

data. Consequently, the optimization of such circuits, for large values of n, would only be

possible with the witness fidelity. Additionally, scalings in the variances of the estimates shown

in Figure 4.4(d) are empirically found similar to the ones obtained for the ensemble of random

states in Figure 4.4(b), that is, with enhanced accuracy for the witness fidelity.

Concluding remarks

In conclusion, in light of our criteria for a good figure of merit, we find that the witness

fidelity defined in Equation (4.12) provides a practical advantage when compared to the state

fidelity. In particular, the values of the latter are found to systematically concentrate, such

that, for even moderately large system sizes n, any problem of quantum state preparation

(relying on the state fidelity measure) started from random parameters would most likely fail.

In contrast, in the case of the witness fidelity, such effect is either retarded or suppressed

depending on the specificities of the preparation routine considered. These findings are similar

to the ones reported for the local fidelity, which was defined in the previous section for separable

states. Additionally, it was shown that the witness fidelity can be more efficiently estimated,

especially in the case of GHZ states. Given that the GHZ state is a popular state in quantum

information and metrology, requiring accurate preparation, the alternative figure presented

could find immediate application. More generally, these results highlight the limits of the state

fidelity for optimization purposes, and should encourage the development of substitutes. In

addition to these problems of quantum state preparation, we now discuss alternative figures for

problems of gate engineering.
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4.2.3 Alternative to the process fidelity

Quantum gate engineering aims at the optimization of the dynamics of a quantum system such

as to mimic the action of a target unitary, typically taken as an elementary gate central to

the development of any quantum computing platform. Such optimization relies on the ability

to measure similarities between the target and the realized dynamics. As briefly mentioned

earlier, randomized benchmarking (RB) [207–209] provides a scalable path towards the char-

acterization of errors averaged over a set of gates, and has the benefit to decouple such errors

from state preparation and measurement errors. However, its application is often limited to

the characterization of a specific gate–set, typically Clifford gates, and the interpretation of the

errors that RB measures relies on assumptions which do not always hold [218]. A more general

figure of merit, commonly adopted in problems of quantum gate engineering, is the process

fidelity [171, 219].

In this section we recall the definition of the process fidelity, and derive formulas quantifying

the statistical errors incurred when estimating such quantity experimentally. As we will see, for

general target unitaries, acting on Hilbert space with dimension d, the number of measurement

repetitions required to achieve constant estimate accuracy scales as d2. Such scaling quickly

limits the use of the process fidelity to the optimization of gates acting on small system sizes.

An alternative to the process fidelity is proposed in [170] under the name of 0–fidelity. Amongst

its properties making it well–suited for problems of quantum gate engineering, we derive its

estimation accuracy, showing a quadratic improvement compared to the process fidelity. Finally,

we discuss the use of this new figure of merit in the context of the optimization of a 3–qubit

gate with a parameterized quantum circuit.

It is stressed that the author contributed to [170] in regards to the analytical derivations of the

variances of the estimates for both the process and 0–fidelity, which form the core of this section.

His contribution, however, does not extend to neither the original construction of the 0–fidelity,

nor its application to the variational optimization of a 3–qubit gate on an IBM quantum chip.

Still, to put our work into perspective, we will review the definition of the 0–fidelity, and also

briefly discuss the optimization results achieved.

Process fidelity for quantum gate engineering

Definition. The process fidelity naturally extends the state fidelity, which measures the overlap

between states, to quantum processes. This extension is achieved by leveraging the fact that

quantum processes can be mapped to quantum states in larger spaces, such that the state

fidelity can be employed. More precisely, there exists an one-to-one mapping between any

quantum process Λ acting on the Hilbert space H, with dimension d, and a state ρΛ belonging
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to the set of operators acting on the extended space H′ = H ⊗ H which has dimension d2.

Given an arbitrary basis {|i〉} of H, this mapping, known as the Jamiolkowski isomorphism

[220], is defined as

ρΛ = (I ⊗ Λ)|Φ〉〈Φ|, (4.20)

with the input |Φ〉 =
∑ |j〉|j〉/

√
d ∈ H′ being a state with maximal bipartite entanglement in

between the two copies of H.

The process fidelity between two processes Λ and Γ is defined as the state fidelity between their

corresponding states ρΛ and ρΓ:

Fpro(Γ,Λ) = F(ρΓ, ρΛ). (4.21)

By construction it inherits properties of the state fidelity such as, having bounded values Fpro ∈
[0, 1], and reaching its maximal value if and only if Γ = Λ. In problems of gate engineering one

aims at reducing discrepancies between an implemented process Γ, and a targeted one Λ. For

unitary targets of the form Λ(ρ) = UtgtρU
†
tgt, the process fidelity can be expressed [219] as the

averaged overlap

Fpro(Γ,Λ) =
1

d2

d2
∑

j=1

Tr
[

Γ(W †
j )Λ(Wj)

]

, (4.22)

between d2 pairs of operators, Γ(Wj) and Λ(Wj), resulting from the action of the two processes

on each element Wj of an orthonormal basis {Wj} of unitary operators (which are scaled here

by a factor 1/
√
d). In the following, we restrict the discussion to n–qubit systems, and this

basis {Wj} is taken to be the set of the Pauli observables with unit norm. These observables

were defined in Section 2.2.3 as the n–fold tensor products of either Pauli matrices (X,Y and

Z) or the identity (I), rescaled by a factor 1/
√
d. Given that such operators are Hermitian, we

will often substitute Wj for its Hermitian transpose W †
j , and Λ(Wj) for Λ(Wj)

†.

Estimation by importance sampling. In order to relate the process fidelity to quantities

which can be experimentally measured, it is necessary to rearrange Equation (4.22). First, it

is required for the inputs entering the implemented channel Γ to be physical states which can

be accurately prepared. Recall that the operators Wj have eigendecompositions

Wj =
d

∑

k=1

λkj |λkj 〉〈λkj |, (4.23)

with eigenvalues λkj = ±1/
√
d, and eigenvectors |λkj 〉 that are tensor products of 1–qubit states

(these states are the eigenvectors of the individual Pauli operators, or identities, that form Wj).

Since the preparation of |λkj 〉 only requires local operations which can be realized faithfully, these

states are deemed adequate input states. Second, the operators Λ(Wj) to be measured need to
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be decomposed in terms of the experimental observables {Wi}, that is,

Λ(Wj) =
d2
∑

i=1

Tr[Λ(Wj)Wi]Wi. (4.24)

Inserting Equations (4.23) and (4.24) into Equation (4.22) results in an expression of the process

fidelity given as a sum

Fpro(Γ,Λ) =
d2
∑

i,j=1

d
∑

k=1

α(i, j, k)〈Wi〉ρkj ,

with







α(i, j, k) = λkjTr[Λ(Wj)Wi]/d
2

ρkj = Γ(|λkj 〉〈λkj |)

(4.25)

of elements 〈Wi〉ρkj which can be estimated experimentally, weighted by the scalars α(i, j, k).

Both these terms are function of a triplet (i, j, k) of integers. Each triplet corresponds to a

unique experimental setting comprised of the choice of the observable Wi to be measured, and

of the choice of the input eigenstate |λkj 〉 to be initially prepared.

The formulas obtained in Section 2.2.2 (regarding the estimation of observables by means

of importance sampling) are directly applicable to the estimation of the process fidelity in

Equation (4.25), provided that the indices i → (i, j, k) and the expectation values 〈Wi〉ρ →
〈Wi〉ρkj are relabelled appropriately. In particular, the probability of choosing one setting to be

measured, which was given in Equation (2.29), becomes

Pr(i, j, k)∗ =
α2(i, j, k)〈W 2

i 〉ρkj
∑

i α
2(i, j, k)〈W 2

i 〉ρkj
. (4.26)

In turn, the corresponding variance of an estimate Y (obtained for a single measurement) of

the process fidelity Fpro, which was given in Equation (2.30), becomes

∆2[Y ] = D

d2
∑

i,j=1

d
∑

k=1

α2(i, j, k)〈W 2
i 〉ρkj − 〈Fpro〉2, (4.27)

where D denotes the number of distinct non-zero coefficients α(i, j, k). Equation (4.27) can be

simplified, and we now detail the steps of derivation involved.

Evaluating the estimation accuracy. First, remark that for any unitary target of the form
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Λ(ρ) = UtgtρU
†
tgt, we have

Λ2(Wj) = U †
tgtWjUtgtU

†
tgtWjUtgt

= U †
tgt

I

d
Utgt =

I

d
,

(4.28)

which follows from W 2
j = I/d. Second, note that

Tr[Λ2(Wj)] = Tr
[(

d
∑

i=1

Tr[Λ(Wj)Wi]Wi

)(

d
∑

i=1

Tr[Λ(Wj)Wi′ ]Wi′

)]

=
d2
∑

i,i′=1

Tr[Λ(Wj)Wi]Tr[Λ(Wj)Wi′ ]Tr[Wi′Wi]

=
d2
∑

i=1

Tr2[Λ(Wj)Wi].

(4.29)

The first equality in Equation (4.29) results from the decomposition of each operator Λ(Wj) in

the basis {Wi(i′)}. The second line results from the linearity of the trace. Finally, due to the

orthonormality of the basis {Wi}, Tr[WiWi′ ] = δi,i′ permitting the simplification of the sum

and yielding the final expression. It follows from Equations (4.28) and (4.29) that

d2
∑

i=1

Tr2[Λ(Wj)Wi] = 1. (4.30)

Given this last result, we can now simplify the expression of the variance of the estimates of

the process fidelity, which was given in Equation (4.27).

∆2[Y ] =
D

d6

d2
∑

i,j=1

d
∑

k=1

Tr2[Λ(Sj)Wi] − 〈Fpro〉2

=
D

d6

d2
∑

j=1

d
∑

k=1

1 − 〈Fpro〉2

=
D

d3
− 〈Fpro〉2.

(4.31)

The r.h.s. of the first line is obtained by inserting the expression of α(i, j, k) from Equa-

tion (4.25), recalling that (λkj )
2 = 1/d, and that W 2

i = I/d which entails 〈W 2
i 〉ρ = 1/d for any

state ρ. The second line follows from Equation (4.30) which allows us to simplify the summation

over the index i. Given that the remaining indices j and k run over d2 and d terms respectively,

the overall sum becomes d3. This yields the final expression relating the variance ∆2[Y ] to

the number D of non–zero coefficients α(i, j, k). We now discuss further this number, and the

corresponding variances that it entails, for general and specific families of target unitaries.
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Scaling for general and Clifford unitaries. As corresponding to the input states to be

prepared, the indices j and k always run over the d2 elements of the basis {Wj}, and over the

d eigenvectors of the operator Wi respectively. However, the number of indices i resulting in

non-zero values of α(i, j, k) can vary depending on the exact details of the target channel Λ.

Given the definition of α(i, j, k) provided in Equation (4.25), it can be seen that this coefficient

becomes null when Tr[Λ(Wj)Wi] = 0. Hence, for a fixed choice of indices (j, k), the number

Di(j, k) of non–null coefficients will always adopt integer values in the interval [1, d2] resulting

in a number D of non-null coefficients in the interval [d3, d5]. The variance of an estimate of

the process fidelity, given in in Equation (4.31), can thus be bounded as

1 − 〈Fpro〉2 ≤ ∆2[Y ] ≤ d2 − 〈Fpro〉2. (4.32)

We now discuss these lower and upper bounds.

For general channels Λ such that any of the terms Tr[Λ(Wj)Wi] 6= 0, one obtains a number

Di(j, k) = d2 yielding a number Dgen = d5 of non-zero values of α(i, j, k). When inserted in

Equation (4.31), it results in a variance of the estimate Y of Fpro given by

∆2
gen[Y ] = d2 − 〈Fpro〉2, (4.33)

and scaling as d2. Such scaling shows that any attempt to estimate the process fidelity with

respect to general unitary targets will quickly require a large number of measurement repeti-

tions. For instance, given a system size of n = 10 qubits, aiming at an estimation accuracy

of ∆2
gen[F̃ ] = 10−4 (that is, a standard deviation of 1%) would already necessitate a number

N ≈ 104 × 220 ≈ 1010 of measurement repetitions. Nonetheless, for more specific unitary tar-

gets a better scaling than d2 can be achieved. In particular, we now characterize the targets

resulting in the lower bound variance seen in Equation (4.32).

Recall the definition of a Clifford gate C as a normalizer of the Pauli group, that is, which

action on any of the Wj Pauli observables result in another Pauli observable Wj′ (that is,

C†WjC = Wj′). Therefore, given a Clifford target gate Λ(ρ) = C†ρC, the terms Tr[Λ(Wj)Wi] =

Tr[Wj′Wi] = δi,j′ which are non–null only for a single index i = j′, per input Wj. Hence, for any

of the input states |λkj 〉〈λkj | (eigenstates of Wj) it is only required to measure the operator Wj′ .

This translates into a reduced number of experimental settings DCliff = d3, and a variance of

the estimate Y of the process fidelity given by

∆2
Cliff [Y ] = 1 − 〈F2

pro〉, (4.34)

which is bounded in [0, 1].

As was the case when estimating the state fidelity with respect to a target stabilizer state
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(discussed in Section 2.2.3), the estimation of the process fidelity with respect to a target

Clifford gate can be achieved with a number of measurements which does not depend on the

system size. For instance, achieving the estimate accuracy of ∆2
Cliff [F̃ ] = 10−4 mentioned earlier

would require a number N ≈ 104 of measurement repetitions for any Clifford unitary. Such

results are encouraging4 given that Clifford gates are central to many quantum computation

schemes. Nonetheless, improving on the scaling of the estimate accuracy for more general target

unitaries (as seen in Equation (4.33)) would ease the optimization of gates which do not belong

to the Clifford group. We now discuss an alternative to the process fidelity which exhibits

improved estimate properties for general targets.

Zero-fidelity for quantum gate engineering

Alternatives to the process fidelity are presented in [170]. These are provided as a hierarchy of k-

fidelities Fk, with k varying from 0 to n, which are each an approximation of the process fidelity.

While the case k = n recovers exactly the process fidelity, we rather restrict our attention to

the k = 0–fidelity measure F0 which presents desirable properties when used in the context of

optimization. We briefly review the definition and properties of F0, before comparing it to the

process fidelity.

Definition and properties of F0. Consider a set of 4 single–qubit states {ρ1i } which have

a minimal overlap
∑

i 6=i′ Tr[ρ
1
i ρ

1
i′ ]. These states, known as symmetric informationally complete

(SIC), have analytical solutions [223] which can be visualized as the 4 vertices of a tetrahedron

on the Bloch sphere. While these are often employed as optimal measurements in quantum

state tomography, as we are interested in processes rather than states, we will employ them as

input states to the channels to be characterized. When probing a general n–qubit process, we

will consider their n–fold tensor products5, which are denoted ρj = ρ1j1 ⊗ . . .⊗ ρ1jN . Given such

a set {ρj} of d2 states spanning the full space of n–qubit states, the 0–fidelity is defined as

F0(Γ,Λ) =
1

d2

d2
∑

i,j=1

Tr[Γ(ρj)Wi]Tr[Λ(ρj)Wi], (4.35)

with {Wj} denoting, as usual, the orthonormal basis of Pauli observables (Section 2.2.3).

Notably, it can be shown that F0 is maximized if and only if the process fidelity Fpro is max-

imized [170], that is, when both the target and the realized processes wholly agree, Λ = Γ.

The 0–fidelity is thus faithful to the original task of gate engineering. Furthermore it adopts

4This ability to characterize Clifford gates with an experimental effort which does not depend on the system
size has been reported several times, for instance in [166, 221, 222] but with explanations often tied to several
additional technical details.

5These tensor product states are not the most general states minimizing the overlap
∑

i 6=i′
Tr[ρiρi′ ], which

are only known for specific dimensions [223], but are optimal among the set of separable states [170]
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bounded values F0 ∈ [0, 1] which makes it directly comparable to Fpro, to which it can be

related further by means of the bounds [224]:

1 − 3

2
(1 −F0) ≤ Fpro ≤ F0. (4.36)

Finally, as can be seen in Equation (4.35), F0 can be decomposed in terms of a total of d4 unique

experimental settings which are indexed by the pair of integers (i, j) both varying in between 1

and d2. Given this reduced number of terms appearing in the decomposition of F0 (compared

to the maximal number of d5 terms for Fpro), one may except an improved estimation accuracy,

a feature which is now verified.

Variance of the estimates. In the following, we adopt the same methodology as used for

the process fidelity in order to derive the variance of an estimate of F0 obtained by means of

importance sampling. For that purpose, Equation (4.35) is first recast as the weighted sum

F0(Γ,Λ) =
d2
∑

i,j=1

α0(i, j)〈Wi〉Γ(ρj)

with α0(i, j) = Tr[Λ(ρj)Wi]/d
2

(4.37)

over the expectation values 〈Wi〉Γ(ρj) of the operator Wi with respect to the state Γ(ρj), which

can be directly estimated. It follows that the probability of selecting one setting (i, j) corre-

sponding to a measurement of 〈Wi〉ρj is given by

Pr(i, j)∗ =
α2
0(i, j)〈W 2

i 〉Γ(ρj)
∑

i α
2
0(i, j)〈W 2

i 〉Γ(ρj)
. (4.38)

This results in an estimate Y0 (obtained given a single measurement) of F0 with variance

∆2[Y0] = D0

d2
∑

i,j=1

α2
0(i, j)〈W 2

i 〉ρj − 〈F0〉2

=
D0

d5
− 〈F0〉2,

(4.39)

where we have performed similar derivation steps as in Equation (4.31), and with D0 denoting

the number of distinct non–zero coefficients α0(i, j).

Given that the indices i and j run over the d2 input states ρj and the d2 experimental observables

Wi respectively, we can bound the number of coefficients as D0 ≤ d4. This yields a variance

∆2[Y0] ≤ d− 〈F0〉2. (4.40)

Compared to the variance of the process fidelity given Equation (4.32), it can be observed a
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quadratic improvement in the scaling of (the higher bound of) the variance with respect to the

dimension d of the system. Despite this improvement, it remains the case that the variance of

the estimate Y0 grows with d. Still, F0 offers a practical advantage compared to Fpro: at given

system size and estimation accuracy, the former will necessitate d times less measurements.

Returning to our example of a targeted accuracy of ∆2
gen[F̃0] = 10−4 for a system size of 10

qubits, this entails a number N ≈ 104 × 210 ≈ 107 (which was 1010 for the process fidelity) of

measurements.

Overall, we have seen that, akin to the case of the state fidelity, an alternative to the process

fidelity can be constructed. This alternative ensures faithfulness to the same target gate, and

has the benefit of being easier (in general) to estimate. Additionally, as based on the state

fidelity, the process fidelity would display similar problems of concentration in its values, which

may be improved when resorting to the 0–fidelity. We leave the study of the concentration in

the values of F0 to future work, and now rather briefly discuss the application of the 0–fidelity

in the context of optimization.

Variational optimization of a quantum gate based on the 0–fidelity

The 0–fidelity is used in [170] to optimize the implementation of a controlled NOT gate6 acting

on next–neighbour qubits on an IBM quantum chip. The (3–qubit) quantum circuit to be

optimized is composed of a fixed sequence of gates – entailing the perfect realization of the

target gate in the case of flawless operation of the chip – to which is appended and prepended

parameterized single-qubit rotations (as defined earlier in Equation (4.19)). In the same spirit

as the circuit discussed for the realization of a GHZ state in Figure 4.4(c,d), such additional free

rotations could, if properly tuned, compensate for intrinsic control errors as found in current

NISQ devices.

This task of quantum gate engineering involves a total of P = 18 parameters to be optimized

with the aim of minimizing discrepancies between the target gate and the realized process. This

optimization was performed based on the 0–fidelity measure and with BO. Over 10 repeated

optimization runs, the optimized circuits were found to perform systematically better than the

idealized implementation of the gate (that is, with the 6 free rotations fixed to be the identity).

Such improvement was assessed in terms of the process fidelity, rather than the approximate

0–fidelity that was employed during optimization, and it was found an average of 12(17)% of

absolute(relative) improvement after optimization.

6Note that for such gate belonging to the Clifford group, the process fidelity could have been preferred to the
0–fidelity as per the scaling in Equation (4.34). Still, given that the amplitudes of the 0–fidelity estimation errors
do not depend on the target gate, the optimization results presented in in [170] can be equally representative
of any other problem of quantum gate engineering defined over similar system sizes.
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4.3 Concluding remarks

In addition to the choice of the right optimizer which was studied in Chapter 3, here we have

investigated an aspect of optimization often ignored, namely the choice of the right figure of

merit. As was shown in several examples, it is often the case that alternative figures (compared

to the figures of merit commonly employed) can be discovered and could reveal beneficial.

Deciding which figure of merit is appropriate requires clear guidelines. For that purpose, we

have started this chapter by establishing criteria for adequate figures of merit. These were

taken general enough to be relevant to many problems of optimizations, and such that they

can be easily assessed. For instance, ensuring that bounded estimates error can be obtained,

is required for any optimization performed on experimental data. Quickly characterizing the

magnitudes of such errors was made possible by means of the general statistical methodology

for estimation presented in Section 2.2. This was extended in Section 4.2.3 to the case when

varied input states need to be taken into consideration (as needed, for instance, to characterize

quantum gates). Additionally, ensuring that the values of a figure of merit do not concentrate to

an (experimentally) indistinguishable range is also a prerequisite for any successful optimization

starting from random parameters. The scaling of such concentrations can be studied over small

system sizes and extrapolated to larger sizes. Taken together, these criteria allow assessing the

feasibility of an optimization problem, and can be used to contrast different figures of merit.

Based on these criteria, we compared several figures of merit relevant to problems of state

preparation and gate engineering. In any case, we found improved characteristics for the

alternatives which were studied. These results, should encourage the discovery of new figures

exceeding the examples studied. Ultimately, the figures suggested should be judged on full–

fledged optimizations, rather than on the study of their properties, as presented here. For that

purpose, we discussed several practical applications along the way. These could be explored

to benchmark and validate further the alternatives proposed. For instance, the preparation

of large-scale GHZ state [81, 165, 225] can provide an ideal testbed for assessing the benefits

of the witness fidelity discussed in Section 4.2.2. Similarly, the preparation of many-body

product states in ultracold–atoms platforms [179], or the optimization of gate sets by means of

randomized benchmarking [45, 56] could be improved by employing the local fidelity presented

in Section 4.2.1. Given that such tasks are of great interest for quantum computing, simulation

and metrology purposes, the proposed figures of merit could find immediate application.

It was discussed at the end of Section 4.2.3 a successful optimization of a 3–qubit gate using

BO and the alternative 0–fidelity. This optimization was performed on a NISQ device, and

enabled the improvement of a controlled NOT gate (over non adjacent qubits) compared to

its idealized implementation. This permits to appreciate the advantage that can be obtained

by optimizing the dynamics of a quantum system directly based on experimental outcomes,
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rather than relying on a flawed model. Still, to fully reap the benefits of such approach, and to

improve on the implementation of a general quantum circuit, one would need to optimize not

only a single gate, as was detailed here, but many of such gates. Such situation, involving many

optimizations to be performed jointly, calls for even more principled optimization methodologies

and is discussed in the next chapter.



Chapter 5

From one to many optimizations

So far we have been concerned with individual tasks of optimization, such as the realization of

a Mott insulating state in Section 3.1, the creation of a single target GHZ state in Section 3.2

or the optimization of a controlled NOT gate discussed in Section 4.2.3. In practice, however,

optimization tasks often come in families. Consider for instance the following problems:

1. Resolve the electronic ground-state energies of an molecule for different nuclear separa-

tions [20].

2. Resolve the ground-state energies of an Ising model over varied model parameters [25].

3. Maximize the state transfer between 2 levels in a 3–level system given varied values of

the energies detunings which could originate, for instance, from manufacturing imperfec-

tions [54].

4. Learn to optimally control continuous families of 2-qubit entangling gates [226–228].

All these examples share the common feature that many optimizations have to be performed all

together. Undertaking these extended problems requires a principled and efficient optimization

methodology.

A naive approach towards the optimization of a family of problems would consist of performing

each of the many optimization tasks independently. For instance, in situation Item 1, one

would start by discretizing the values of the nuclear separation and would perform separate

optimizations for each of the configurations. This, however, becomes quickly prohibitively

demanding for a fine discretization, or for configuration space with dimension greater than one

(for instance, with more than one inter-atomic distance to be varied). In all the examples

mentioned above, Items 1 to 4, it is important to recognize that the many tasks to be solved

belong to a same family, and share similarities. Hence, one would hope to leverage information

gained from one task to another. For that purpose, we present two frameworks intended to

efficiently address the situation where optimizations over many related problems need to be

performed, one for the case of VQAs and one for QOC problems.

In Section 5.1 we leverage the model-based approach of BO (presented in Section 2.1.3) to reuse

97
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measurements obtained over the course of one optimization in order to accelerate any other

optimization. The scheme that is presented in [229] lends itself both to parallel or sequential

optimization of VQAs. When applied to families of variational quantum eigensolver (VQE)

problems, it is found to provide one, or two, order–of–magnitude improvement compared to

independent optimizations. Additionally, in Section 5.2 we propose to lift the task of optimal

control of a single target operation (for instance, a controlled NOT gate) to the optimal control

of continuous families of targets (for instance, controlled X(α) rotations with a variable rotation

angle α). For that purpose, we develop a framework based on neural networks producing

controls conditioned on the details of the target to be realized. This framework is applied to

the control of continuous families of 1– to 3–qubit gates and achieves low control errors and

improved operational times. In contrast to the rest of this thesis, the training of this last

framework assumes exact numerical simulations. Nonetheless, we discuss how it could also be

trained directly based on experimental data. In all cases, the schemes presented permit us

to solve families of optimization problems with considerable reduced effort when compared to

existing approaches.

The framework of BO with information sharing, that is presented in the next section, is the

fruit of a collaborative effort [229]. The author of this thesis contributed to the conceptual idea

and to the implementation of the optimization methodology which permits its applicability to

general problems of VQAs. These aspects form the core of Section 5.1. However, the author’s

contribution does not extend neither to the choice of the problems which are addressed nor

to the choice of the circuit ansatzes which are used. Still, to exemplify the applicability of

the framework, we give an overview of the results which were made possible by its adoption.

Finally, we note that a strategy exhibiting some similarities with the framework presented

was also proposed in [230], but with details only briefly sketched, and applied to sequential

optimization which is in contrast to the parallel approach that we now describe.

5.1 Variational quantum algorithms with information shar-

ing

In this section, we consider the problem of finding the (many) ground states, and energies, of

a family of n–qubit Hamiltonians

H(α) =
∑

i∈I

wi(α)Pi (5.1)

decomposed over the same subset {Pi}i∈I ⊂ {X, Y, Z, I}⊗n of tensored Pauli operators (and

identity), and with weights w(α) = {wi(α)}i∈I depending on a problem index α. This problem

index α can be a scalar or a vector, adopting either discrete or continuous values which would
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typically correspond to the parameters of a physical model. In the spirit of VQAs (Section 1.2),

these ground states preparations are attempted with a parameterized quantum circuit U(θ),

with variational parameters θ, applied to an initial state |ψ0〉. We stress that both the circuit

structure and the initial state are kept fixed independently of α. Hence, each problem to be

solved is understood as the optimization of the figure of merits

Fα(θ) = 〈H(α)〉θ, (5.2)

where we have used the compact notation 〈M〉θ = Tr[M |ψ(θ)〉〈ψ(θ)|] to denote the expectation

value of the operator M with respect to the output state |ψ(θ)〉 = U(θ)|ψ0〉 of the circuit.

This general formulation encompasses many problems of interests found in the field of quantum

chemistry and condensed-matter physics, where ground states often need to be obtained over

varied configurations of a model. For instance, understanding bond dissociation of a molecule

requires to resolve its potential energy for varied inter-atomic distances. Similarly, studying a

condensed-matter model typically consists of understanding the properties of its ground (and

sometimes excited) states over varied configurations of the model parameters.

As alluded previously, a straightforward but inefficient approach would involve choosing dis-

cretized values αj, over the domain of the parameters α under study, and performing inde-

pendent optimizations for each of the corresponding figures of merit Fαj
in Equation (5.2).

However, the overhead incurred by these repeated optimizations quickly becomes excessive.

For instance, it was reported in [20], an experimental time of more than 6 days to apply the

VQE algorithm to find the ground state energies of a small molecule He −H+ given a single

atomic separation α which was discretized over 90 values. Going to larger molecules, and adding

a second inter-atomic distance to be varied over (and assuming a similar discretization), would

incur more than a year of quantum computations. Experimental progress have been achieved

since this first demonstration of VQE [20], still these figures highlight the urgent necessity for

more frugal optimization frameworks.

Bayesian optimization with information sharing

As discussed in Section 2.1.3, a key distinction of BO compared to more traditional optimizers,

lies in its ability to build a surrogate model of the function to be maximized based on the

available body of observations. In particular, recall that the predictive distribution p(f(θ)|y),

which was given in Equation (2.8) and used at each BO step, is conditioned on the full dataset of

observations y. Given an additional evaluation y∗ of the figure of merit at arbitrary parameters

θ
∗, this dataset is readily extended to y → y′ = y ∪ y∗. In principle, this would result in an

improved predictive distribution p(f(θ)|y′). Such feature is in stark contrast to non model-

based optimizers. Indeed, these require evaluations of the figure of merit (or its gradients)
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according to a predefined strategy, and thus cannot benefit from additional data if obtained for

arbitrary parameter values. We build on this specific feature of BO to allow for measurement

information obtained over the course of distinct optimizations to be shared. In the following,

this strategy is referred as information sharing (IS), and is now detailed.

We first consider the case where two optimization tasks, indexed by αj with j = 1 or 2, are

performed in parallel. This is illustrated in Figure 5.1(a), where we denote B(αj) the two

Bayesian optimizers aiming at minimizing the figures of merit Fαj
. At every iteration of the

algorithm, each optimizer requests the evaluation of its corresponding figure of merit for a

distinct set of parameters θj. For instance B(α1) will suggest a new set of circuit parameters θ1

to be implemented in order to evaluate Fα1
(θ1). In practice, this evaluation entails measuring

the expectation values 〈Pi〉θ1 of the Pauli operators appearing in Equation (5.1) given the circuit

parameters θ1. In turn, these expectation values are used to recompose the figure Fα1
(θ1) =

∑

iwi(α1)〈Pi〉θ1 given the set of weights w(α1). Crucially, the same Pauli measurements can

also be used to evaluate Fα2
(θ1) =

∑

iwi(α2)〈Pi〉θ1 , provided that the Pauli measurements are

now weighted with w(α2). This measurements sharing is depicted in Figure 5.1(a) as a dashed

diagonal arrow. A similar arguments applies to the evaluation of Fα1
(θ2) given measurement

data originally intended for Fα2
(θ2). Hence, any set of Pauli measurements obtained can be

systematically shared in between the two optimizers.

This scheme, described so far for the case of two optimizations ran in a parallel, can be ex-

tended to an arbitrary number of parallel, or sequential, optimizations. In the case of parallel

optimizations over M different problems, each iteration involves Pauli measurements for the

M distinct set of parameters (suggested by each of the M optimizers). These measurements

enable the evaluation of a total of M2 figures Fαj
(θj′) with (j, j′ = 1, . . . ,M), and each opti-

mizer effectively benefits from M new observations per iteration. In the sequential case, any

new optimization would start with a body of observations corresponding to all the parameters

that have been evaluated over the course of the previous optimizations. A hybrid strategy al-

ternating parallel and sequential BOs with IS could even be envisioned. A first batch of parallel

optimizations over coarse-grained values of α would be performed. This would be followed by

a second (or more) batch of parallel optimizations over a new discretization of α chosen based

on the previous results. In all these cases, IS ensures that all the measurements available at a

certain point in time can be maximally exploited.

While, in principle, it should always be beneficial to share as much information as possible, that

is to broadcast measurement data obtained for the task αj to any of the optimizers B(αj′), it is

also the case that the computational effort in updating the model in BO grows cubically with

the number of observations available (this is discussed in Section 2.1.3). In situations where

this computational burden becomes excessive, it may be beneficial to share only a curated set

of measurements. Different sharing strategies are depicted in Figure 5.1(b). The cases of inde-
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Figure 5.1: Adapted from [229]. (a) Schematic of one iteration of BO with information sharing
(IS). In situation when several problems, indexed by αj, need to be optimized concurrently,
information (in terms of measurement results) can be shared in between the optimizers in
order to increase their individual performances. Distinct optimizers B(αj) optimize for distinct
problems with corresponding figures of merit Fαj

, defined in Equation (5.2). Each optimizer
B(αj) requests the evaluation of its figure of merit for a new set of circuit parameters θj.
These evaluations require measurements of the Pauli operators 〈Pi〉θj which, when weighted
by the coefficients w(αj), allow to assess Fαj

(θj) (horizontal plain arrows). When weighted
with w(αj′ 6=j), the same measurements also permit the assessment of any figure Fαj′

(θj) and
thus provide additional information that can be used by the optimizer B(αj′) (this information
sharing is depicted by diagonal dashed arrows). This forms the basis of the IS scheme, enabling
to maximally utilize each measurement data. (b) Different rules can be used when sharing
measurements in-between the different optimizers. Here, are depicted (in dashed arrows) the
additional measurements received by the optimizer B(αi). In the extreme case of independent
optimization (first row) no measurement is shared in-between the optimizers. In the opposite
limit of all-to-all sharing (last row) all the measurements are systematically shared in between
the optimizers. Intermediate strategies, such as the nearest–neighbour sharing (middle row)
allow to restrict measurement sharing to neighbouring optimization tasks.
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pendent optimization (first row), where no measurement is shared, and of all-to-all sharing (last

row), where all the measurements are shared, have both already been discussed. Additionally,

one can limit the measurements to be shared only between optimizers corresponding to values

of α close in parameter space. The case of nearest-neighbour sharing is depicted in the middle

row of Figure 5.1(b) for a one–dimension parameter α. Overall, it allows to balance the amount

of information to be shared and the computational burden entailed. In the following we present

numerical results which permit to appreciate the differences between these strategies.

Numerical results for a spin model with information sharing

To demonstrate the effectiveness of IS, we will discuss results obtained in [229] for the ground

state preparations of a quantum spin chain with Hamiltonians

H(αX , αZ) =
∑

〈i,j〉

ZiZj −
∑

i

(αXXi + αZZi) (5.3)

indexed by the parameters αX and αY which are dimensionless transverse and longitudinal

fields respectively. Values of these parameters are limited to αX = αZ = h ∈ [0, 0.9] for which

the ground states of Equation (5.3) remain in the same phase. These values are discretized

over 15 uniformly spaced points h0≤i≤14 = i × δ with δ = 0.9/14, thus forming a family of

15 problems to be solved. The system is taken to be comprised of four spins, with open

boundary conditions. In experimental realizations, the success of any VQA is sensitive to

different sources of experimental noise, such as sampling effects due to the finite number of

measurement repetitions, and device noise which may fluctuate in time. To decouple such

effects to the analysis of the IS scheme, the results presented are obtained based on exact

numerical evaluations of the expectation values of Equation (5.3). Further technical details,

such as the choice of the ansatz, can be found in [229] and are not discussed here.

The performance of four different flavours of the IS scheme are reported in Figure 5.2. In ad-

dition to the ”Independent” (Figure 5.2(a)), the ”Nearest-neighbour” (Figure 5.2(c)) and the

”All-to-all” (Figure 5.2(d)) sharing strategies already discussed, we also include an ”Indepen-

dent+Random” setting (Figure 5.2(b)) which will allow us to probe further the importance of

data acquisition in BO. This latter setting corresponds to independent runs of BO for each of

the 15 problems, and, with each optimizer receiving two additional evaluations of the figure

of merit taken at random parameters, per iteration. Results are systematically reported in

terms of the difference between the minimum energies E∗ found after optimization and the

true ground state energies Eexact. Each configuration is repeated 100 times, with the empirical

means and histograms of the results plotted for each of the 15 values of h. Furthermore, to

facilitate the comparison between the different strategies, the total number of exact evaluations

performed and the number of evaluations effectively available per Bayesian optimizer are re-
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Figure 5.2: From [229]. Comparison between 4 different information sharing strategies (a-d)
for BO of the ground states of the Hamiltonian in Equation (5.3) over 15 discretized values of
h = αX = αZ ∈ [0, 0.9] (this effectively corresponds to 15 optimization tasks to be solved). In
all cases, histograms (gray scales) and means (blue line) of the differences E∗ −Eexact between
optimized and exact ground states are obtained over 100 repetitions. The total number of
evaluations and the number seen per optimizer are provided in boxes. (a) Optimizers do
not share any information. (b) Similar as before, except than each optimizer now receives 2
additional random evaluations per iteration. (c) Measurements are shared in between neighbor
optimizers. (f) All the measurements are shared in between all the optimizers.

ported (in boxes). Each strategy is ran for a total of 30 iterations, following an initial stage

where the figure of merit is evaluated for 10 random parameters.

Starting with a comparison of Figure 5.2(a) and Figure 5.2(b), one can see that the additional

evaluations, obtained at random parameter values for the ”Independent+Random” strategy,

translates into improved optimization performances. This highlights the ability of the model

approach of BO to benefit from the inclusion of additional data, even when not curated. How-

ever, as can be seen in Figure 5.2(b), this improvement remains limited, and the optimized

energies are still far from the true minimum energies. In the case of the ”Nearest-neighbour”

sharing strategy, displayed in Figure 5.2(c), each Bayesian optimizer B(h) shares measurements

only with its two closest neighbors, that is with B(h ± δ). As these additional measurements

originate from similar problems, they are deemed more informative than the ones obtained for

random parameters. Indeed, despite having access to exactly the same number of 100 eval-

uations per Bayesian optimizer, the IS scheme used in Figure 5.2(c) is found to significantly

outperform the strategy displayed in Figure 5.2(b).

Finally, the full potential of the IS scheme can be appreciated in Figure 5.2(d) which displays

performances of BO in the case where all measurements are shared. The substantial improve-

ment compared to the independent optimizations (which results are displayed in Figure 5.2(a)),

and also compared to any other setting, highlights the appeal of reusing data as much as is

possibly permitted by the IS strategy. Only in the case where h ≈ 0.9, for which the ground

states are the most entangled [229], that the optimizers are found to not always fully converge.

Nonetheless, already with only 30 iterations per optimizer, several runs of BO already conver-

gence fully. In any case, the IS strategy largely outperforms independent optimizations, that
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is, optimizations as commonly performed.

Further results and outlook

In addition to these numerical results for the spin model of Equation (5.3), IS is also studied

experimentally in [229] on IBM quantum chips for the VQE of the two-atom molecules H2 and

LiH, and the three-atom linear chain H3. In the latter case, the two inter-atomic distances

(in between the first and second, and second and third atoms) are varied, thus entailing a

two–dimension ground energy surface to be resolved. In all cases, convergence is reached in

10 − 50 evaluations per problem. This is to be contrasted to typical numbers of evaluations

in the 100s or 1000s with non BO and non IS optimizations. For instance, a single iteration

of gradient descent may already involve 10s or more of such evaluations, which are needed in

order to estimate each element of the gradient vector (Section 2.1.1). Furthermore, for the

linear chain of H3, which is the largest configuration space considered (with two–dimension

parameters α), only 10 evaluations per problem were required. This hints to the potential good

scalability of the IS strategy for increased dimension of α: for larger configuration spaces many

more optimizations need to be performed, but, at the same time many more measurements are

collected and re-used. In conclusion, we have introduced IS as a pragmatic strategy to make

maximum use of quantum measurements in the common situation where many related VQAs

have to be optimized jointly. The scheme presented here is prone to further extensions that we

now discuss.

First, while presented in tandem with BO, the IS scheme could equally be applied to any

model-based optimization strategy [231, 232], which may prove more practical than BO in

case of very large number of parameters and observations. Second, in the example of the spin

chain discussed, parameters of the spin system were chosen such as no phase transition was

crossed. In the case of a phase transition, it is expected that the optimal circuit parameters will

change drastically in between the different phases. As such, one may expect that measurements

obtained for close-to-optimal parameters in one phase may not be informative to problems

pertaining to another phase. Still, the inclusion of additional data, even when taken at random

parameters, improves the success of BO in general (as was seen in Figure 5.2(b)). Furthermore

the explorative nature of BO ensures that measurements are collected in different regions of

the parameter space, and are thus likely to benefit any of the optimization tasks. As such,

we would still expect some significant advantage offered by IS, and it would instructive to

investigate further this situation.

Finally, it should be stressed that the sharing strategy relies on the choice of a fixed ansatz U ,

and on families of Hamiltonians in Equation (5.1) decomposed over the same subset of Pauli

operators. Exceeding these limitations would broaden further the applicability of IS, and could
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be achieved when combining it to the latest proposals in the field of VQAs. For instance,

resorting to classical shadows [168] could enable the estimation of the expectation values of

broader families of operators, for which IS could be employed. Additionally, one could envision

a scenario where a core circuit, shared by any problems of the same family, is optimized by

means of IS, and later quickly specialized to each of the individual problems. This last stage

could be achieved, for instance, by appending additional ad-hoc layers [233, 234]. Such are

examples of the possibilities offered by the sharing scheme.

In any case, the methodology proposed here addresses a central challenge in quantum technol-

ogy, namely data reusability. Quantum resources are, and will remain in a foreseeable future,

scarce and expensive. Still, in most situations quantum measurements cannot be recycled. Here

we have taken a step towards more systematic reuse of measurements, and have shown how

this can provide concrete benefits for the optimization of many VQAs. Note, however, that

the approach presented here relies on the ability to communicate measurements, but does not

attempt to learn how optimal circuit parameters relate to the details α of the different prob-

lems. Learning directly such parameter–problem dependency, rather than treating the various

tasks independently, could also provide a distinct path towards more efficient optimization over

many problems. This aspect is studied further in the following section, in the context of the

optimal control of many quantum operations.

5.2 Optimal control of continuous families of gates

To date, QOC has been successfully applied to a wide variety of quantum platforms, each time

focusing on the improvement of a single, or a few, specific operations. As quantum technologies

mature it becomes equally important to also enlarge the range of operations which can be

accurately performed by the same platform. For the sake of concreteness, this is now further

discussed in the context of – but not limited to – quantum computing platforms.

Current quantum computers implement a restricted set of elementary operations, typically

single-qubit gates and fixed two-qubit entangling gates, which have been carefully optimized for.

This small set of operations already permits the execution of arbitrary quantum circuits [235],

but requires such circuits to be decomposed in terms of often lengthy sequences of elementary

gates. Given the current lack of error correction, errors accrue at each step of the decomposition,

quickly rendering the outcomes of the computation noisy and impractical. Augmenting the

set of elementary gates which can be composed would lead to shorter decompositions, and

thus would result in more faithful computations. Already, it was shown that the inclusion

of specific continuous families of two-qubit gates entails significant gate-count reductions in

popular quantum algorithms [226–228]. More generally, the ability to optimize a broad range

of operations has the potential to substantially increase the utility of current quantum hardware.
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While one would have hoped the QOC methodology to accompany and to facilitate the opti-

mization of large set of operations, it remains the case that QOC only considers the realization

of a single target operation at a time, but is not naturally suited for the optimization of families

of related targets. A straightforward path towards learning to control more operations, is to re-

peat independent QOC optimizations many times. However, this approach fails in recognizing

that similar targets could be achieved with similar controls, and quickly becomes impractical

for large, and potentially continuous, families of operations. In cases when the optimal controls

are expected to vary smoothly with changes in the target, one would aim at exploiting such

regularities to devise more effective control frameworks.

In the following, we lift the original scope of QOC from the control of a single quantum gate to

the control of a continuous family of gates. This new objective is formalized in Section 5.2.1,

where it is contrasted to a traditional problem of QOC. Then, in order to efficiently address

this extended problem, we propose a framework aiming at learning how to adapt the controls

as a function of the target to be realized. This is achieved by introducing a neural network

modeling this target–control dependency, and we detail its training. Next, in Section 5.2.2, we

exemplify the benefit of this approach in the context of quantum gate engineering for families of

1– to 3–qubit quantum gates. In particular, it is verified that the framework proposed enables

the accurate (analog) control of continuous families of multi–qubit gates, with the benefit of

reducing the overall implementation times compared to the time that would have been entailed

by a sequential gate decomposition. In Section 5.2.3, we conclude by pointing towards several

extensions of the framework. In particular, we detail how it could be trained directly based on

experimental data, as opposed to the exact numerical simulations which are assumed here.

5.2.1 Methodology

As was presented in Section 1.1, the central objective in a traditional QOC problem of quan-

tum gate engineering is the identification of the time-dependent controls f(t) that induce a

propagator U(t = T ) mimicking the action of a target gate U tgt at time T. Given a measure of

similarity S(U tgt, U(T )) between the target and realized gates, such aim is formulated in terms

of the figure of merit F (f(t)) = S(U tgt, U(T )) that has to be maximized. A common example

would be the task of realizing a two–qubit controlled NOT gate U tgt = |0〉〈0| ⊗ I + |1〉〈1| ⊗X.

Instead, a QOC problem of continuous families of target gates aims at the accurate realization

of the family of gates U tgt
α = |0〉〈0| ⊗ I − i|1〉〈1| ⊗ exp(iαX) for a continuous angle α. In such

situation, the problem to be solved becomes the identification of a continuum of controls {fα(t)},

indexed by the angle α, such that any of the propagators Uα(t) induced by fα(t) approximates



5.2. Optimal control of continuous families of gates 107

its corresponding target U tgt
α , as accurately as possible, at t = T . Given the individual figures

Fα(fα(t)) = S(U tgt
α , Uα(T )) (5.4)

to be maximized for each target angle α, the (global) figure of merit for the continuous problem

becomes the average

F ({fα(t)}) = 〈Fα(fα(t))〉α, (5.5)

taken over α.

Such continuous problem could be addressed in terms of (i) many control tasks to be solved

separately over a finite number of values {αi}, combined with an additional step of (ii) in-

terpolation for any angle α′ /∈ {αi}. Already, the choice of an appropriate discretization of

the values of α and of the interpolation scheme to be employed is not straightforward. On

one hand, given that the most adequate interpolation scheme is unknown, any coarse grained

discretization of the values of α would likely result in rough approximations of the interpolated

controls. Too fine discretization, on the other hand, quickly entails an excessive effort of solving

many independent tasks which becomes prohibitive for dimension of α greater than one. Even

more fundamentally, there is no guarantee for the controls fα1
and fα2

, found as optimal for

similar values of α1 and α2, to be themselves similar. In general, many solutions of the same

control task could exist, making any attempt to interpolate in between fα1
and fα2

inconsistent.

In order to avoid such issues, it is highly desirable to require that the optimized controls change

smoothly with α.

This requirement can be realized in terms of a continuous parametrization of the dependence

of fα(t) with respect to α. Resorting to an adequate parametrization could ensure well behaved

changes in the controls over the whole family of targets, thus avoiding problems of erratic

interpolations. Furthermore, as we will see, this approach permits a distribution of the training

effort over many more values of αi compared to what is permitted by the naive approach

described in the previous paragraph. Ultimately, the continuum of control solutions {fα(t)} will

depend on the choice of the parametrization adopted, and there would always be a compromise

between the requirement of smoothness in α and the aim of finding good solutions. Since

neural networks1 (NN) provide a convenient way to approximate continuous functions up to

any desired precision [240], these are deemed ideally suited for our purpose. In the following

we discuss more precisely the structure of the NNs considered and their training.

1Reviewing the working details of neural networks is out of the scope of this thesis, as many resources are now
available. For instance, the reader is referred to [236, 237] for a comprehensive treatment of neural networks,
or to [238, 239] for a more pedagogical introduction geared towards physicists.
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Controls conditioned on target details by means of neural networks

An appropriate NN for our purpose takes parameters α and time t as input, and produces

controls fα(t) as output. Hence, these output control values depend both on the time and on

the details α of the target U tgt
α to be realized. Such NN is sketched in Figure 5.3(a) for the case

of 2–dimension target parameters α (that is, a total of 2 + 1 = 3 inputs) and a single control

function fα(t) to be learnt (that is, a single output). This can be adapted to arbitrary problem

dimensions by changing the dimensions of the inputs and outputs of the NN.

A fixed choice of NN weights2 φNN entirely specifies a continuum of functions {fα(t)}, with any

individual set of functions fα(t) corresponding to a fixed input α, but varied input t ∈ [0, T ]

of the NN. In turn, fα(t) permits the construction of the system Hamiltonian Hα(t). Given

this (time–dependent) Hamiltonian, the system can be evolved such as to obtain its propagator

Uα = Uα(t = T ) at final time t = T . Finally, comparing this propagator to its corresponding

target U tgt
α yields the figure of merit Fα (Equation (5.4)). When numerically performed, the

step of evolution (dashed lines in Figure 5.3(a)), requires to solve numerically an ordinary

differential equation (ODE), typically the Schrödinger equation in Equation (1.1), governing

the dynamics of the system.

This evaluation of the figure of merit Fα discussed for a single α can be repeated for any value

of α. Overall, the optimal control problem of continuous targets amounts to training the NN

weights to produce controls maximizing the figure of merit F in Equation (5.5), which is the

average of Fα over α.

Training the framework by gradient descent

The optimization of the NN (that is, the training of the framework) could be achieved with a

variety of techniques, but gradient-descent training has the advantage of simplicity and scal-

ability to high-dimension parameter space. As depicted in Figure 5.3(b), evaluations of the

gradients ∇φNN
F of the figure of merit with respect to the weights of the NN, require to obtain

and combine gradients (illustrated with green arrows) over each of the computational steps

involved. These include the evolution of the system and the NN processing. To facilitate such

tedious task, we resort to auto–differentiation tools (discussed in Section 2.1.1), which allow

us to automatically keep track and to compose gradients. While automatic differentiation over

NNs is readily available in any machine–learning framework, the ability to efficiently differ-

entiate over numerical ODE solver remains less widely spread. For that specific purpose, we

resort to techniques presented recently in [135], with implementation in [241], built on top of

the popular machine learning library Pytorch [127]. Equipped with this machinery, it is only

2These weights are the free parameters of the NN, which can be trained.
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Figure 5.3: (a) Quantum optimal control of a continuous family of targets U tgt
α , indexed by the

target variable α (which can be a scalar or a vector). We propose to model the controls fα(t),
which depends both on the time t and on the variable α, by a neural network (NN). This NN
effectively parameterizes a continuous family of controlled operations Uα where each element
corresponds to the propagator obtained by evolving the system in time (dashed arrows) under
the controls produced by the NN. Accurate control is realized when the similarity F between
the controlled and target families is maximized. For that purpose, the weights φNN of the NN
are trained by gradient descent. (b) Given a fixed value of α but variable t, the NN produces
the controls fα(t), permitting the construction of the time–dependent Hamiltonian Hα(t) used
to evolve the system. This evolution is performed by numerically solving the Schrödinger
equation, yielding the propagator Uα realized by the controlled system at time T . Finally,
comparison of this propagator Uα to its corresponding target U tgt

α permits the evaluation of the
individual figure of merit Fα. Gradients of this figure can be back–propagated (green arrows)
to the weights φNN of the NN (and optionally to the time T , if treated as variable). At each
iteration, several values of α are randomly sampled, and the evaluation of Fα (and its gradients)
are averaged accordingly (as seen in Equation (5.6)).
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required to define how the system is propagated and how the figure of merit is evaluated, but, it

is left to the underlying numerical libraries to deal with the intricacies of gradient computation.

Then, each step of optimization corresponds to an update of the weights φNN of the NN

performed by gradient descent. Even though the evaluation of the averaged figure of merit F ,

and its gradients, would always be based on an average over a finite number nB of values of α

such as

F ({fα(t)}) ≈ 1

nB

nB
∑

s=1

Fαs(fαs(t)), (5.6)

rather than the proper integral in Equation (5.5), the outputs of the neural network are still

continuous in α, and systematically choosing different random sampling points αs at each

iteration minimizes artifacts resulting from finite sampling.

Such training of the NN performed with values of αs that are resampled at each step of the

optimization, is in contrast with the approach of fully solving control problems for specific

values of αs (and subsequently interpolating the control solutions) that was discussed before.

At fixed numerical effort, the former will be trained on much more diverse values of α than the

latter. In addition to the general methodology that has been presented, we now discuss more

explicit details of the training and of the choice of the NNs employed.

Choice the hyperparameters

It is known that the quality of the solutions found by a NN can be affected by many design

choices commonly referred as hyperparameters [242]. In particular, the choice of the size of the

NN, the way its weights are initialized, and the learning rates employed during its optimization

are often considered as of particular importance.

As the optimal hyperparameters values are not known beforehand, they need to be identified

by means of trial–and–error. For instance, it is common to randomly sample [243] many

hyperparameters configurations and to select a posteriori the ones resulting in optimal training.

As each of these random configurations is evaluated independently, this approach has the benefit

of being straightforward to parallelize and we will follow this methodology. However, in order

to reduce the overall computational effort, we base this search on only partial training of the

NNs, consisting on a reduced number of training steps in the range of 10 to 50 iterations.

This already permits the identification of the most promising hyperparameters values. Once

identified, these configurations are reused to perform a complete training of the framework.

Explicit details of the range of hyperparameters which are explored are provided in the next

section.
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5.2.2 Results for problems of quantum gate engineering

In the following we study the control of a n–qubit system evolving under the prototypical

Hamiltonian

Hn(t) =
n

∑

i<j=1

f
(i,j)
XX (t)XiXj +

n
∑

i=1

[f
(i)
Y (t)Yi + f

(i)
Z (t)Zi], (5.7)

with tuneable XX interactions between each pair of qubits, local controls over Y and Z Pauli

terms and amplitudes systematically bounded in f ∈ [−1, 1]. Such a choice of Hamiltonian

allows for the controllability of the system [244], that is, ensures that any unitary U tgt could

be realized provided sufficient time T . Still, finding how to realize an arbitrary unitary, without

decomposing it in terms of elementary gates, remains non-trivial and require resorting to the

QOC machinery. For the system sizes of n = 1,2 and 3 qubits that we investigate, this will

necessitate learning a total of C = 2, 5 and to 9 time–dependent (and target–dependent) control

functions respectively.

The measure of similarity S between realized and target unitaries is taken to be the process

fidelity3, which was defined for general processes in Equation (4.25). In the case of unitaries U

and V it simplifies to

S(U, V ) = Fpro(U, V ) = | 1

2n
Tr[U †V ]|2. (5.8)

This measure is used when evaluating the individual figures of merit Fα in Equation (5.4) both

during the training and testing of the framework. Global and individual errors are defined as

E = 1 − F and Eα = 1 − Fα respectively, with low values indicating accurate control, and

with the minimal value of E = 0 reached when any of the unitaries belonging to the continuous

family of targets is exactly realized.

For all the control problems that we consider, we perform a search of good hyperparameters over

the same domain which is now detailed. The NNs considered are taken to contain in between 4

and 10 layers with, in between 100 to 300 nodes per layer. The inner layers are systematically

chosen to be ReLU layers [245], which are known to limit issues of gradient vanishing when

training NNs. However the output layer is taken to be a sigmoid layer. Compared to the

values ranging from 0 to infinity produced by a ReLU function, a sigmoid function ensures

bounded output in [0, 1] which can further be shifted and rescaled in order to produce control

amplitudes bounded in the desired range [−1, 1]. Optimization of the weights of the NNs is

performed using Adam [121], with learning rates l in the range [10−4, 10−2], which is a common

choice when training NNs. Additionally, we find the amplitudes of the initial weights of the

NN to be critical to the successful training of the framework. In particular, we notice that

the default distribution [246] of the initial weights results in small initial control amplitudes,

3The 0–fidelity defined in Section 4.2.3 could also have been used. However, as its benefit was shown for
experimental situations, rather than the numerical evolution of the system employed here, we do not resort to
this alternative.



112 Chapter 5. From one to many optimizations

and which are often found to quickly converge to 0. To avoid such effect, we rescale the initial

weights by a factor β ∈ [1.8, 2.2] such that the initial control values produced by the NNs are

different enough from 0. With this explicit formulation of the problems to be tackled, and of

the training to be performed, we can now proceed to discuss the results obtained with the NN

control framework.

Optimal controls for arbitrary single-qubit rotations

To gain insights in the working of the framework we start by applying it to the Hamiltonian in

Equation (5.7), in the case when n = 1 qubit, and with the aim of controlling the manifold of

single–qubit rotations defined as

U1q(α = [α1, α2, α3]) = RZ(α1)RY (α2)RZ(α3), (5.9)

in terms of the Pauli rotations Rσ∈{X,Y,Z}(α) = e−iασ/2, and with target parameters α taken in

the domain χ = [0, π]3. Despite the choice of target representation appearing in Equation (5.9),

we aim at realizing any of such rotations in a single analog control sequence, that is, without

resorting to a decomposition in terms of atomic Pauli rotations. The framework is trained for

M = 400 iterations, and each iteration involves averaging the process fidelity in Equation (5.8)

over nB = 128 control problems (corresponding to values of α randomly sampled).

To assess the success of the NN, after its training we apply it to the control of new target

rotations. To this intent, new values of α are sampled and fed to the NN which, in turn,

produces the control functions to be employed. As an example, these controls are plotted

in Figure 5.4(a) for 4 control tasks. Given these controls, the system is propagated in time

such that errors between the realized and target gates can be evaluated. These errors are also

reported in Figure 5.4(a). As can be seen, in any of these four examples the NN succeeds in

producing controls tailored to the individual targets resulting in low errors Eα ≤ 10−4.

A more thorough assessment of the performances of the framework requires repeating such

study over a larger ensemble of targets. For 250 rotations, we find an average (and standard

deviation denoted in square brackets) error of E = 2[3] × 10−4. With this more exhaustive

study, we can conclude that despite having been trained only on a finite number of tasks, the

NN is able to accurately control any of the rotations belonging to the continuous family of gates

U1q.

To visualize further the dependency in between the controls and the targets we report as

a 3–d plot in Figure 5.4(b) the control functions obtained for varied α3 ∈ [0, π] and fixed

α1 = α2 = 3π/4. As can be seen, both the control values fY (t) and fZ(t) change smoothly over

the whole range of targets and times considered. Similar results are found for varied α1 and α2
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(a) (b)

Figure 5.4: Problem of optimal control of the continuous family of single–qubit rotations
U1q(α1, α2, α3) defined in Equation (5.9), with the Hamiltonian in Equation (5.7). After train-
ing, the framework is tested on new control problems (corresponding to parameters αi randomly
sampled). (a) Results for 4 test problems. The values of the amplitudes fY (t) (blue) and fZ(t)
(orange) produced by the NN are plotted, and the corresponding errors Eα are reported for
each of these tasks. In all cases, the NN has learnt to produce tailored control resulting in
low errors. (b) To visualize the dependency between the controls learnt and the target details,
α1 = α2 = 3π/4 are fixed and α3 = απ is varied in α ∈ [0, 1]. The amplitudes of the two
control fields fY (left panel), and fZ (right panel) vary continuously with the time t and target
variable α.

but are not displayed here. This ability to smoothly adapt the controls to the specific targets

is key to the accurate control of, not only a finite set of rotations, but rather of the whole

continuous family of targets. In addition to this ability to learn how to control continuous

targets in fixed time, we now show how the framework can also be extended to learn the final

time to be adopted, or even to learn such final time taylored to each of the individual rotations.

Optimization of both the controls and times for arbitrary single-qubit rotations

In the previous example the final time, T = π, was taken large enough to ensure the accurate

realization of any of the target rotations. Defining a minimum final time Tmin ensuring that any

of the control targets can be realized accurately is in general non-trivial, and it is common to

assess it empirically by means of repeated optimizations for varied values of T . Here, this extra

effort can be avoided by leveraging the fact that the derivatives ∇TF can also be evaluated

(Appendix.C [135]). Hence, by treating the final time T as a variable, one can optimize jointly

the weights of the NN and the time, to maximize a new figure of merit

F ′({fα(t)}, T ) = F ({fα(t)}) − λTT, (5.10)

which consists of the original figure of merit F , and an additional term −λTT , with λT > 0,

which penalizes long control durations T . Values of λT can be varied to put more on less

emphasize on the objective of accurate control or on the objective of fast operations. We find
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the value of λT = 10−2 to be a good compromise, and use this value in the following.

Extending the framework even further, it is also possible to learn target–dependent final times

Tα. This is achieved by introducing a second NN, with input α and output Tα. This time Tα

is used when evolving the system (for the control of U tgt
α ) and now depends on the target to be

controlled. The two NNs, one producing the control values and the other one the final times,

can be trained in parallel to maximize the figure of merit

F ′′({fα(t)}, T ) = F ({fα(t)}) − λT 〈Tα〉α, (5.11)

which is similar to Equation (5.10), with the exception that now the final times Tα varying

with α need to be averaged.

Given that the controls produced by the (original) NN should change depending on the control

duration T (or Tα), we extend it to also take T (or Tα) as an input. Note that this additional

input is only required when the control times vary during the course of the optimization, that

is, this refinement is not needed when T is fixed (as was the case in the previous set of results

presented). In the following, we revisit the control problem of realizing continuous single–qubit

rotations U1q, but now aim at learning both the optimal controls and the optimal times which

maximize Equation (5.11).

As before, after 400 steps of training the framework is tested on 250 new target rotations. The

average of the testing errors is found to be E = 4[5] × 10−4 and the averaged control times,

which now depend on the targeted rotations, is found to be T̄ = 1.66[0.47]. That is, both the

control functions and times were successfully learnt, resulting in a substantial decrease in the

average time taken per control task (roughly half of the fixed time that was considered earlier)

at the cost of only a modest increase in the errors.

To dissect further these results, we restrict our attention to a 2–dimension subset of rotations,

corresponding to a fixed value of α3 = 3π/4, which allows for visual examination. Values of

α1 and α2 are discretized over a 75 × 75 grid. In Fig. 5.5(a) we plot as a heat-map the testing

errors found for each of the 75 × 75 = 5625 corresponding rotations. As can be seen, most of

the errors are of the order of 10−4 or less, except for a few outliers lying at the edge of the

domain with errors around 10−3. The control times produced by the framework are plotted

in Fig. 5.5 (b). A minimum value of T ≈ 3π/8 is obtained for the target rotation RZ(3π/4),

which corresponds to α1 = α2 = 0 (bottom left of the heat-map). Such rotation can indeed be

realized with constant values of fZ(t) = 1 and fY (t) = 0 applied for a duration of T = 3π/8.

For non–null values of α1 and α2, these times are found to be increasing with values of αi as

would have been expected.

In Figure 5.5(c) we report the relative improvement in time achieved by the controlled rota-

tions compared to the time TZY Zα that would have been entailed by the Pauli decomposition
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Relative speed up (%)Error (log10) Final time (c)(a) (b)

Figure 5.5: Similar problem as depicted in Figure 5.4, except that now both the controls and
final times are learnt jointly to minimize Equation (5.11). For the sake of visualization only
a 2–d subset of the 3–d family of target rotations is shown, with α3 = 3π/4, and values of
α1, α2 ∈ [0, π] discretized over a grid of 75× 75 regularly spaced points. For each of these 5625
targets, a heat-map indicates the values of the individual control errors (a, in log scale), the
control times predicted by the framework (b), and the relative speed up (c) entailed by the
controls learnt compared to a decomposition of the target gates in terms of Y and Z Pauli
rotations as appearing in Equation (5.9).

appearing in Equation (5.9). TZY Zα is assessed assuming that each of the rotations Rσ∈{Y,Z}(±θ)
is performed in time θ/2, which is the fastest that can be achieved under the Hamiltonian in

Equation (5.7) with control amplitudes f bounded in the range [−1, 1] considered here. With

Tα being the controlled times learnt by the NN, the speed up reported in Figure 5.5(c) is de-

fined as (TZY Zα − Tα)/Tα. In almost all cases, the dynamics learnt by the NN is found to be

the fastest, up to a speed up of 80%. Such results highlight the advantage of analog control

compared to a decomposition in terms of a limited set of elementary gates.

Control of continuous families of 2– and 3–qubit gates

Having presented the foundations and extensions of the framework for single-qubit gates, we

now apply it to larger control problems, with n = 2 and 3 qubits. A summary of the results

obtained is presented in Table 5.1 detailing the families of targets learnt, the average testing

errors achieved and the hyperparameters which were used. For all these problems, the time T

is taken to be trainable but shared among different targets belonging to the same family, and is

also reported. As before, the training of the NN consists of M = 400 iterations, with nB = 128

targets sampled at each iteration, and the statistics reported are systematically evaluated over

250 new targets randomly generated.

For the system sizes of n = 2 qubits, a total of 4 families of targets are studied. These include the

controlled-Z gate CZ(α1) and the unitary e−iα1ZZ which are both central to popular quantum

algorithms [9, 21]. Additionally, we also investigate the control of higher–dimension families of

targets such as the unitaries e−i(α1XX+α2Y Y+α3ZZ). This family already encompasses all possi-

ble 2–qubit rotations up to local rotations [247], and is representative of unitaries commonly
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Table 5.1: Control of the Hamiltonian in Eq. 5.7, to realize many continuous families of n = 2–
and 3–qubits gates (corresponding to C = 5 and 9 control functions to be learnt respectively).
For each problem the family of target U tgt

α and the domain χ of the target parameters α
are reported. After 400 steps of training, the average E (and standard deviation in square
brackets) of the errors is evaluated over 250 randomly sampled elements of the target families.
Additionally the times T learnt (in unit of π), and the details of the hyperparameters used
(with the number nL of layers, the number nU of units, and the learning rate l) are reported.

U tgt
α χ n E T/π nL × nU l(10−3)

CZ(α1) = |0〉〈0| ⊗ I + |1〉〈1| ⊗ RZ(α1) [0, π] 2 0.01[1]% 1.0 6 × 150 1
e−iα1ZZ [0, π

2
] 2 0.00[0]% 1.0 6 × 150 1

e−i(α1XX+α2Y Y+α3ZZ) [0, π
2
]3 2 0.04[4]% 1.7 8 × 300 3

CU1q(α1, α2, α3) [0, π]3 2 0.03[4]% 1.0 8 × 300 1
e−iα1ZZZ [0, π

2
] 3 0.01[0]% 1.0 10 × 200 4

e−i(α1XXX+α2Y Y Y+α3ZZZ) [0, π
2
]3 3 0.30[25]% 2.0 10 × 300 2

CCU1q(α1, α2, α3) [0, π
2
]3 3 0.17[8]% 1.5 10 × 300 4

employed in digital quantum simulation [248–251]. These unitaries are typically implemented

by successive applications of their individual components e−i(ασσ), which themselves need to

be decomposed further in terms of elementary gates. Finally, we also investigate the case of

the controlled-unitary CU1q(α) = |1〉〈1| ⊗ U1q(α) + |0〉〈0| ⊗ I, with the single-qubit arbitrary

rotation U1q defined earlier.

As seen in Table 5.1, the framework was successfully trained for any of these problems, re-

sulting in averaged testing errors E systematically smaller than 5 × 10−4, and with the largest

values of E = 3 and 4 × 10−4 obtained for the 3–dimension families of targets studied. Ad-

ditionally, we can compare the times T learnt by the framework to the times Tdec entailed by

gate decomposition. The circuit decompositions permitting to assess Tdec are obtained using

Qiskit [252] routines, assuming a set of elementary gates composed of single–qubit Y and Z ro-

tations and 2–qubit XX rotations (as permitted by the Hamiltonian in Equation (5.7)). Given

such methodology, we find the NN controlled gates to be 1.25 to 2.25 faster, in average, than

their corresponding decompositions.

Going further, we also investigate the control of unitaries generated by more than two–qubit

interactions [253–255]. These can benefit the simulation of exotic phase of matter, the prepara-

tion of topological states and the realization of quantum error correction protocols. For system

sizes of n = 3 qubits a total of 3 families of targets are studied, which results can be seen in

the last 3 lines of Table 5.1.

For gates generated by an effective αZZZ interaction term, low control error of E = 1×10−4 is

achieved by the framework. For the more general unitaries of the form e−i(α1XXX+α2Y Y Y+α3ZZZ)

and the control–control–unitaries CCU1q(α) = |11〉〈11| ⊗ U1q(α) + (I − |11〉〈11|) ⊗ I, we note

an increase in the testing errors up to E = 3 × 10−3 and E = 1.7 × 10−3 respectively. For
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the fixed number of training steps adopted here, these increased errors are to be expected as

they correspond to the most challenging problems that are addressed, necessitating to learn 9

time-dependent functions in order to control 3–dimension families of targets. Nonetheless, we

discuss in the next section how these errors can be further reduced.

As before, we also compare the times T learnt by the framework and the times Tdec entailed

by gate decomposition. For these families of 3–qubit gates, the controlled gates are found to

be at least twice faster than their decompositions, and up to 10 times faster for the case of

the control–control–unitaries CCU1q. It should be highlighted that the decomposition used to

assess Tdec, based on Qiskit routines, may not be optimal. However, we leave the identification

of potentially better gate decompositions to future work.

Overall, given the test errors systematically found in the sub-percent regime for the 7 families

of gates studied, and the reduced control times which were reported, we can see that fast and

accurate control over (multidimensional) continuous families of targets can indeed be achieved

by means of the framework that was presented. We now discuss how its training can be further

refined.

Improving the training of the NN controller

In all the cases studied, the largest errors are found to be close to the edge of the domain χ

(as can already be seen in Fig. 5.5(a)), that is, where less neighbouring training points are to

be found. A simple strategy to avoid such boundary effects consists in training the NN on a

larger domain χ′ ⊃ χ but restrict its use to its initial domain χ after training.

Furthermore, by inspecting (a posteriori) the controls learnt by the NN framework, one can

notice patterns which can be exploited. For instance, for the control task of the CCU1q family

of gates we observe that (i) the amplitudes of the Z terms of the two control qubits are fixed

to zero, (ii) the amplitudes of the Y terms of the control qubits adopt identical values, and (iii)

the amplitudes of the XX interaction terms in between each of the two pairs of control–target

qubits are identical. Pruning the redundant degrees of freedom (corresponding to observations

i-iii) permits the reduction of the effective number of control functions that has to be learnt,

and ease the training of the framework. For the example of the CCU1q family discussed, this

results in a reduced number of 5 independent control functions to be learnt (after pruning),

compared to the 9 originally considered.

With this more advanced training strategy – taking into consideration both the use of a larger

parameter domain χ′ during training, and the pruning of the redundant control degrees of

freedom – we achieve average test errors of E = 9[5]×10−4 and E = 6[2]×10−4 for the families

of e−i(α1XXX+α2Y Y Y+α3ZZZ) and CCU1q unitaries respectively, that is, a three–fold improvement
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compared to the results reported in Table 5.1.

Even further improvement is expected with increased training effort, or faster identification of

optimal hyperparameters. In all the examples detailed above, the training was limited to 400

iterations and to a maximal wall-time of 1 day (with CPU–only resources). Already, the use of

GPU resources will permit to perform many more training steps in similar time, which is likely to

yield reduced errors. Also, as noted earlier, among the hyperparameters studied we identified

the initialization of the weights of the NN as affecting the most the training performances.

Default weights were rescaled by a factor β > 1 to avoid collapse of control values to 0. More

principled approaches towards weights initialization such as [256] could result in accelerated

convergence . More generally, any of the recent proposals aiming at accelerating the training of

NNs, for instance [257, 258], can be beneficial to the framework. All these will directly improve

on the training of the framework, and in turn, could permit us to explore its applicability to

even larger problems than the ones considered here.

5.2.3 Conclusion and outlook

In this section, we have extended the original scope of QOC, from the control of a single

targeted operation to the control of continuous families of such operations. To this intent,

we have proposed to model the dependency between targets to be realized and controls to

be applied by means of a NN. Its training was demonstrated on families of popular quantum

computing gates, resulting in low errors (systematically assessed on new control targets which

were not seen during training) and improved operational speed. Ultimately, this ability to

optimize the control of families of targets, can broaden the range of operations that could

be performed accurately by a same device, and thus increase the utility of current quantum

hardware.

We note that QOC schemes already relying on the use of NNs [31, 54, 55, 133, 134, 259],

could directly benefit from the ideas introduced here. In particular, extending the inputs

of the NNs involved (in these cited frameworks) to include the target parameters α would

avoid inefficient optimizations over many targets treated independently. To overcome such

inefficiencies, a heuristic strategy was proposed in [54, 55] which consists in reusing the control

parameters optimized for one target as initial parameters for the optimization of the another

target. Even with such strategy, it is reported in [55] a maximum wall-time of 5 hours per

target rotation (which are 2–qubit gates parameterized by a single rotation angle α). For

the 31 discrete values of the angle α that the authors consider, this results in more than 6

days of computations. Introducing a second(third) rotation angle with similar discretization

would have resulted in 200 days(17 years) of computations. These figures assume a sequential

treatment of each optimization problem (as was done in [55]) but could be, at least partially,
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parallelized to reduce the overall wall-time. Nonetheless, these show the limits of independent

optimization, even when supplemented with an improved initialization strategy, and should be

contrasted with the maximum wall-time of 24 hours that we allowed for any of the families of

gates which were studied.

For the sake of concreteness, we limited ourselves to demonstrations in the idealized situation

specified by the system Hamiltonian in Equation (5.7). Still, the applicability of the framework

presented does not limit to such cases. Resorting to auto-differentiation tools, as done here,

ensures that, as long as the system dynamics can be numerically simulated, the framework can

be trained. For instance, the inclusion of experimental limitations, such as finite ramp times

or distortion of the controls, or the treatment of large system sizes by means of approximate

evolution could all equally be coped with. Even the case where the dynamics of the system is

described by a stochastic ordinary differential equation is amenable to such framework [260],

thus extending its application to the control of some quantum systems with active feedback

[261, 262].

Other interesting lines of research include the training of the framework directly based on ex-

perimental outcomes, thus avoiding the necessary steps of precise Hamiltonian characterisation

and numerical simulations assumed here. For such purpose two options are conceivable. First,

this could simply be achieved by resorting to non-gradient optimization. While BO could be

used in principle, for problems of optimization over a large number of NN weights more local

optimization strategies, such as explored in [263], may be favoured. Another option would be to

restrict the time-dependency of the controls and the dynamics of the system to situations where

gradients can be estimated experimentally (see for instance [137]). With the identification of

such parametrization – which would typically involve a piece-wise constant parametrization of

the control fields, as seen in Equation (1.6) – the NN displayed in Figure 5.3(a,b) would be

adjusted to only take parameters α (but not the time) as input, and to output the values of

the control parameters. For instance, in the case of a single control field parameterized with

10 piece-wise constant values, the output of the NN would now consist of 10 output nodes,

corresponding to the 10 parameters needed to reconstruct the control field.

Taking a step further, we envision the task of learning how to accurately control a quantum

experiment in varied contexts. Here, this context was in one to one correspondence with the

target operation to be realized, but, could be more inclusive. For instance, the inputs α of the

NN could incorporate details of the system under control (such as its energy splittings [54] or its

size [76]) and also details of its environment (such as heating rates [264] or information about

nearby operations resulting in cross-talk [64]). Provided that the effects of varying these context

variables can be simulated and that the optimal controls are expected to vary continuously with

these variables, one could learn, with the framework developed here, to accurately operate a

quantum system in very broad context.
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5.3 Concluding remarks

In this chapter, we have addressed the demanding situation where many optimizations need to

be performed concurrently. This setup naturally arises in applications of VQAs to quantum

chemistry and condensed-matter models, and also in the extended problems of QOC that were

introduced. As such, the ability to efficiently optimize over many related tasks was identified

as an important aspect, and potential roadblock, in the scalability of quantum technologies.

Still, to date families of related optimization problems, have been predominantly approached

independently, quickly limiting the reach of current methodologies. In contrast, we have devised

two frameworks aiming at exploiting commonalities in between the different problems to be

solved in order to accelerate the corresponding optimizations.

Given that quantum data is expensive and limited, it is of great interest to reuse it as much

as possible. For that purpose, we have developed a framework based on BO permitting the

reusability of measurement data and illustrated its benefit for families of VQAs. A second

approach towards many optimizations was proposed in the context of QOC over families of

targets. In cases where control solutions are expected to change continuously with details of

the underlying targets, we show that it was more efficient to directly learn such control–target

functional dependency. Adopting a typical machine–learning perspective, we modeled the un-

known dependency by means of a NN, and demonstrated its training for tasks of quantum gate

engineering, where low control errors over families of target gates were achieved. When direct

comparison was possible, we found the frameworks to significantly outperform existing method-

ologies. While each framework was developed with a specific application in mind, the general

underlying principles – of either sharing measurement data or learning unknown relationship

between optimal parameters and details of a problem – which were laid down in this chapter

could inspire many more applications, exceeding the examples tackled.

As novel, the methods proposed here are prone to further refinements, and several extensions

were discussed along the way. For instance, combining the scheme of information sharing

with the recently developed technique of classical shadows could greatly extend our ability to

reuse quantum measurement data. For the tasks of QOC of continuous targets by means of a

NN controller, it will be particularly appealing to validate its applicability in situations where

optimizations are performed directly based on experimental data. Overall, we believe that the

conceptual developments and concrete implementations detailed in this chapter could advance

our ability to efficiently utilize quantum devices at larger scale than was previously possible.



Conclusion

In this thesis, we have sought to develop new methodologies for the efficient optimization of

quantum dynamics based on experimental data. This broad objective was undertaken from

three distinct, but complementary, perspectives.

In Chapter 3, we established BO as an appealing alternative to traditional optimization frame-

works. Its merit was validated based on thorough numerical comparisons and experiments

performed on a NISQ device. Furthermore, it was demonstrated that the original framework

can be taylored to the peculiarities of quantum physics experiments, in order to enhance its

ability to converge in minimal experimental effort. This advantage offered by BO comes at

the expense of an increased computational effort, and we identified its application to com-

plex experimental setups (such as the ones found in ultracold–atoms quantum simulations) as

particularly promising. More generally, given the availability of cheap resources for classical

computation, compared to the scarcity of near-term quantum resources, we expect that the

methods presented will accompany and enable technological developments on a wide range of

quantum physics platforms.

Complementary to the choice of an adequate optimizer, we argued in Chapter 4 for the con-

sideration of alternative figures of merit. For that purpose, we established quantitative criteria

enabling their study. These were formulated to be general enough such as to indicate the po-

tential success, or failure, of any corresponding optimization. Based on these criteria, it was

shown in distinct examples that new figures can be discovered and prove superior to the ones

commonly employed. Taken together, these findings should encourage the design of new figures

of merit as a compelling path toward more efficient optimization.

In Chapter 5, we tackled the demanding situation where many optimization problems need

to be solved simultaneously. As was exemplified for the problems of VQAs and QOC that

were investigated, we identified such situations (of simultaneous optimisation) as of particular

interest to the practical use of near-term quantum computers. Still, with a handful number

of exceptions, principled methodologies that allow families of optimisation problems to be

efficiently solved are lacking. Rather than performing each optimization independently, as

would typically be done, we devised two frameworks aiming to exploit commonalities in between

the different tasks to be solved. When direct comparison was possible, these frameworks were
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shown to substantially outperform existing approaches which quickly necessitate a prohibitive

optimization effort.

Overall, we have addressed several key aspects affecting the success of optimizations based

on experimental data. To this intent, we have developed novel methods inspired from recent

advances in the field of ML, and principally probabilistic ML. In particular, we saw fruitful

applications of BO and Gaussian processes to the realm of quantum technology. Given that the

field of probabilistic ML is moving at fast pace and has remained, as yet, mostly unexplored,

we expect the results found in this thesis to pave the way to further research. Ultimately,

the methodologies presented should be employed – and would reveal their true potential –

on large experimental realizations, exceeding the numerical simulations and the small–scale

demonstrations on NISQ devices that were possible within the scope of this thesis.
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T. Schulte-Herbrüggen, “Comparing, optimizing, and benchmarking quantum-control al-

gorithms in a unifying programming framework,” Phys. Rev. A 84, 022305 (2011).

[119] J. Stokes, J. Izaac, N. Killoran, and G. Carleo, “Quantum Natural Gradient,” Quantum

4, 269 (2020).

[120] D. Goodwin and I. Kuprov, “Auxiliary matrix formalism for interaction representation

transformations, optimal control, and spin relaxation theories,” The Journal of chemical

physics 143, 084113 (2015).

[121] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint

(2014).

[122] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Nee-

lakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger,

T. Henighan, R. Child, A. Ramesh, D. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen,

E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford,

I. Sutskever, and D. Amodei, “Language models are few-shot learners,” in Advances in

Neural Information Processing Systems , Vol. 33, edited by H. Larochelle, M. Ranzato,

R. Hadsell, M. F. Balcan, and H. Lin (Curran Associates, Inc., 2020) pp. 1877–1901.
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dynamics on a 51-atom quantum simulator,” Nature 551, 579–584 (2017).

[180] M. P. A. Fisher, P. B. Weichman, G. Grinstein, and D. S. Fisher, “Boson localization

and the superfluid-insulator transition,” Phys. Rev. B 40, 546–570 (1989).

[181] D. Jaksch, C. Bruder, J. I. Cirac, C. W. Gardiner, and P. Zoller, “Cold bosonic atoms

in optical lattices,” Phys. Rev. Lett. 81, 3108–3111 (1998).

[182] T. Albash and D. A. Lidar, “Adiabatic quantum computation,” Rev. Mod. Phys. 90,

015002 (2018).

[183] A. Walther, F. Ziesel, T. Ruster, S. T. Dawkins, K. Ott, M. Hettrich, K. Singer,

F. Schmidt-Kaler, and U. Poschinger, “Controlling fast transport of cold trapped ions,”

Phys. Rev. Lett. 109, 080501 (2012).

[184] S. Simsek and F. Mintert, “Quantum control with a multi-dimensional Gaussian quantum

invariant,” Quantum 5, 409 (2021).

[185] T. Caneva, M. Murphy, T. Calarco, R. Fazio, S. Montangero, V. Giovannetti, and

G. Santoro, “Optimal control at the quantum speed limit,” Physical review letters 103,

240501 (2009).

[186] S. Deffner and S. Campbell, “Quantum speed limits: from heisenberg’s uncertainty prin-

ciple to optimal quantum control,” Journal of Physics A: Mathematical and Theoretical

50, 453001 (2017).

[187] J. H. M. Jensen, F. S. Møller, J. J. Sørensen, and J. F. Sherson, “Achieving fast high-

fidelity control of many-body dynamics,” arXiv preprint (2020).

[188] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau,

E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett, J. Wilson,

K. J. Millman, N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey,
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Chapter A

Bayesian Optimization

In this appendix, we review the technical elements of Bayesian optimization (BO) that were

glossed over in the main text. First, we provide a formal definition of the Gaussian pro-

cesses (Appendix A.1) which are employed as surrogate models in BO. Then, we review the

choice of the kernel and mean functions (Appendix A.2), and of the hyperparameters (Ap-

pendix A.3). We end this appendix by providing the full expression of the predictive distribution

(Appendix A.4), which is used at each step of BO.

A.1 Gaussian processes

A random process (sometimes called stochastic process or even random function) extends the

concept of a probability distribution defined over a finite set of random variables, to a prob-

ability distribution over an infinite collection of random variables. Any function f can be

understood as the continuum limit of a set of discrete random variables {f(θi)}, and since we

are interested in functions F of continuous control parameters θ, random processes are the

appropriate mathematical structure for the probabilistic modelling of such functions. In par-

ticular, Gaussian processes extend Gaussian distributions over finitely many random variables

to infinitely many (that is, to functions).

A random process such that any finite subset of random variables [f(θ1), . . . , f(θN)] follows a

Gaussian distribution is a Gaussian Process. Recall that a (multivariate) Gaussian distribution,

over a finite set of random variables X = [X1, . . . , XN ], is defined as

p(X = X) = N (m, C) =
exp

[

− (X−m)TC−1(X−m)
]

√

(2π)D|C|
, (A.1)

which is entirely specified by a mean vector m and a (symmetric positive semidefinite) covari-

ance matrix C. In contrast, Gaussian processes are specified in terms of a mean function m
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and a (symmetric positive semidefinite) kernel function k

m(θ) = 〈f(θ)〉,
k(θ,θ

′

) = 〈f(θ)f(θ
′

)〉 − 〈f(θ)〉〈f(θ
′

)〉,
(A.2)

which define respectively the mean value (denoted with symbols 〈·〉) of any of the (infinitely

many) f(θ) random variables, and the covariance in between any pair of f(θ) and f(θ′) vari-

ables.

More explicitly, if f follows a Gaussian process distribution (with mean m and kernel k) then,

for an arbitrary set of parameters [θ1, . . . ,θN ] the vector of random variables [f(θ1), . . . , f(θN)]

follows the (multivariate) Gaussian distribution:

p([f(θ1), . . . , f(θN)] = f) = N (m, C), (A.3)

with mean vector m = [m(θ1), . . . ,m(θN)] and covariance matrix C with entries Cij = k(θi,θj).

Hence, the full specification of a Gaussian process corresponds to a particular choice of the

functions m and k. which defines the global properties of f , such as its periodicity or smooth-

ness.

A.2 Choice of the mean and kernel functions

Without particular knowledge of the underlying function F to be modeled, it is advised [164]

to choose the mean function to be the zero function m(θ) = 0, and rather, to standardize

the observed values of F , thus ensuring that their empirical mean is also 0. Additionally, a

common choice for the kernel is the Matérn 5/2 function that only assigns non–null probabilities

to functions f which are (at least) twice differentiable [164]. This kernel is defined as:

k5/2(θ,θ
′) = k5/2(x = |θ − θ

′|) = V (1 +
x

l
+
x2

3l2
)e−x/l, (A.4)

which depends on the distance x = |θ − θ
′ | scaled by a correlation length l, and on a constant

scalar variance V .

Essentially, the variance V = k5/2(x = 0) = 〈f 2(θθθ)〉 specifies to which extend any variable f(θθθ)

is expected to deviate from its mean value (here 0 with our choice of mean function m). The

length-scale l, appearing in the exponentially decaying term, scales the distance between the

parameters θθθ and θθθ′, and is indicative of the extent of the correlation between the corresponding

variables f(θθθ) and f(θθθ′). In particular, the exponential decay in the distance x ensures that

function values f(θ) and f(θ′) are highly correlated when close in parameter space (x/l . 1),
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but that their correlations quickly fade away over larger distances. The values of V and l are

considered as hyperparameters of the model that can be fitted to the data (this is discussed in

the next section).

Other choices of kernel could be adopted. For instance, another Matérn function (similar to

Equation (A.4) but with a different degree of the polynomial function depending on x) would

permit to favour smoother or more irregular functions f [164]. Still, we find the choice of the

kernel function in Equation (A.4) to be adequate for the problems that we have considered.

We note that the Matérn 5/2 function is frequently used in other applications of BO, and is

often considered as a standard choice of kernel [189].

A.3 Fitting the hyperparameters

Both the values of the variance V and of the correlation length l entering the kernel function

in Equation (A.4), and the variance σ2
N of the Gaussian noise contained in the observations

(which is discussed in details in Section 2.1.3) are considered as hyperparameters of the model.

In general, it is not possible to have a precise idea of the values of these hyperparameters in

advance, but, they can be fitted at any stage of the optimization to the available observations

y = [y1, . . . , yD]. These hyperparameters are typically chosen [164] to maximize the marginal

likelihood (discussed in Equation (2.7)) p(y) =
∫

df p(f)p(y|f), with the probability p(f) de-

pending (implicitly) on the values of the hyperparameters. Such optimization is implemented

in any Gaussian processes library (for instance [265]) and can be performed automatically.

In summary, the prior distribution is entirely defined by the choice of the functions k and m,

discussed in the previous section, and of the hyperparameters V , and l, discussed in this section.

A.4 Predictive distribution

Given a choice of mean function m, kernel function k and corresponding hyperparameters we

can evaluate the predictive distribution central to BO. The sought–after predictive distribution

p(f(θθθ∗)|y) permits to make (probabilistic) predictions about the values that can adopt the un-

known function F at arbitrary parameters θ∗. Given the assumptions detailed in Section 2.1.3,

this distribution admits the analytical expression [164]

p(f(θ∗)|y) = N
(

µf (θ∗), σ2
f (θ∗)

)

,

with,







µf (θ∗) = k∗(K + σ2
nI)−1y

σ2
f (θ∗) = V − k∗(K + σ2

nI)−1kT∗

(A.5)
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where the row vector k∗ has entries k
(j)
∗ = k(θ∗,θj), and the covariance matrix K has entries

Ki,j = k(θi,θj). Note that, both the mean and standard deviation of this predictive distribution

depend implicitly on θθθ∗ as the elements of k∗ are function of θ∗. Evaluation of this (Gaussian)

predictive distribution is illustrated in Figure 2.2. The most computationally demanding part

when evaluating values of the mean and variance in Equation (A.5) originates from the inversion

of the matrix K + σ2
NI which scales as D3, where D is the number of observations.



Chapter B

Estimation

In this appendix, we derive several expressions related to the estimation of the figures of merit.

These include the optimal importance probability distribution (Appendix B.1), which was dis-

cussed in Section 2.2.2, and a higher bound on the variance of the local fidelity estimates

(Appendix B.2), which was provided in Section 4.2.1.

B.1 Optimal importance probability distribution

Here, we derive the optimal importance distribution which was provided in Equation (2.31).

Recall from Equation (2.28), that the variance ∆2[Yρ], of an unbiased estimate Yρ (obtained

with importance sampling) of the expectation value 〈M〉ρ of the operator M with respect to

the state ρ, can be expressed as

∆2[Yρ] =
D
∑

i=1

α2(i)

Pr(i)
〈W 2

i 〉ρ − 〈M〉2ρ. (B.1)

We aim at finding the importance probability distribution Pr(i) which minimizes Equation (B.1).

This corresponds to the optimization problem

Pr(i)∗ = arg min
∑

i Pr(i)=1

∆2[Yρ], (B.2)

under the additional constraints that for all i, Pr(i) ≥ 0. This can be recast as the minimization

of the Lagrangian function

L(Pr(i), λ) = ∆2[Yρ] − λ
(

∑

i

Pr(i) − 1
)

, (B.3)
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with respect to λ and each of the probabilities Pr(i). Equating the derivatives ∂L/∂Pr(i) and

∂L/∂λ to zero, results in the set of conditions







− α2(i)
Pr(i)2

〈W 2
i 〉ρ − λ = 0,

∑

i Pr(i) − 1 = 0,
(B.4)

to be simultaneously satisfied. It follows from the first line of Equation (B.4), that

Pr(i) = ±|α(i)
√

〈W 2
i 〉ρ|√

λ
. (B.5)

Inserting these equalities into the second line of Equation (B.4) yields

√
λ = ±

∑

i

|α(i)
√

〈W 2
i 〉ρ|. (B.6)

Finally, given that each probability is greater or equal than 0, we obtain the sought–after

optimal distribution

Pr(i)∗ =
|αi

√

〈W 2
i 〉ρ|

∑

i |αi
√

〈W 2
i 〉ρ|

. (B.7)

B.2 Estimation of the local fidelity

Here, we derive the bounds (Equation (4.8)) on the variance of estimates of the local fidelity,

which was introduced in Section 4.2.1. Akin to the treatment provided in Section 4.2.1, these

are derived assuming the target state to be the n–qubit |0〉⊗n, but the same bounds can be

obtained for any separable target state.

First, recall the definition of the local fidelity as the average

Floc(ρ) =
1

n

n
∑

i=1

Fi(ρ), (B.8)

of the probabilities

Fi(ρ) = Tr
[

|0〉〈0|iρ
]

, (B.9)

of measuring the qubit i of ρ in state |0〉.

The estimates p̃i of each of the individual probabilities Fi are the frequencies ni/N of having

observed ni times qubit i in state |0〉 over N measurements. Each of these estimates has

a variance ∆2[p̃i] = Fi(1 − Fi)/N . An estimate F̃loc of Floc is obtained by averaging the

individual estimates over each of the qubits, that is, F̃loc = 1/n
∑

p̃i. It can be shown that the
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variance in such an estimate is bounded by:

∆2[F̃loc] = ∆2
[ 1

n

∑

p̃i

]

≤ 1

n2

(

n

n
∑

i=1

∆2[p̃i]
)

=
1

n

n
∑

i=1

Fi(1 −Fi)

N

≤ 1

n

n
∑

i=1

Floc(1 −Floc)

N

≤ Floc(1 −Floc)

N
.

(B.10)

The first inequality is obtained in case of maximal correlation (that is, unit correlation) between

each of the random variables p̃i and is saturated when each ∆2[p̃i] has the same value. Inserting

the expressions of the variance ∆2[p̃i] of the individual estimates p̃i yields the equality in the

second line. The new inequality in the third line arises from the maximization of the previous

expression, with respect to the terms Fi and under the constraints that nFloc =
∑Fi. The

maximal bound is saturated for Fi = Floc for all qubits i. Finally, the sum over the constant

terms simplifies, yielding the inequality provided in Equation (4.8). It follows from these

derivation steps, that the higher bound of the final inequality is saturated in case when (i) all

the local probabilities Fi are equal to Floc, and (ii) the measurement outcomes of each qubit

are fully correlated. These two conditions are simultaneously satisfied when measuring states

of the form |ψcorr〉 ∝ (|0〉⊗n + α|1〉⊗n). This is verified numerically in Figure 4.2.



Chapter C

Random unitaries and states

In this appendix, we first recall the definition of the Haar measure (Appendix C.1) over random

unitaries and states. Then we review some of its properties (Appendix C.2) which permit us to

derive analytical expressions of the average and variance of the expectation values of operators

over an ensemble of random states. We then proceed to apply these formulas to the case of the

witness fidelity which was studied in Section 4.2.2 (Appendices C.3 and C.4).

C.1 Random unitaries and states under the Haar mea-

sure

The normalized Haar measure dµ(U), over elements U of the unitary group U(d), is defined [266]

as the unique measure invariant by (right or left) action of any of the element of the group,

such that

dµ(V U) = dµ(UV ) = dµ(U), (C.1)

for any U, V ∈ U(d). Normalization further imposes that

∫

dµ(U) = 1, (C.2)

with integration, if not otherwise stated, always performed over U(d). We call the ensemble of

unitaries admitting such measure the random unitaries. Numerical sampling from this ensem-

ble is implemented in many statistical packages, such as Scipy [188], or specialized quantum

computing library such as Qutip [267].

We extend the definition of random unitaries to random states, which are defined as the dis-

tribution of states resulting from the action of random unitaries onto an arbitrary, but fixed,

initial state |ψ0〉, such that the pure state |ψ〉 = U |ψ0〉 has measure (dropping the ket notation)

dµ(ψ) = dµ(U), (C.3)
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which, similarly to dµ(U), is invariant under action of any element of U(d).

C.2 Statistics of expectation values under the Haar mea-

sure

The first two moments of U(d) under the Haar measure admit simple analytical expressions (see

[268] for instance), that we now recall. For a fixed basis {|0〉, . . . , |d− 1〉}, the matrix elements

of U are denoted Ui,j (with conjugate U∗
i,j) such that U =

∑

Uij|i〉〈j| and U † =
∑

U∗
ji|i〉〈j|.

The first moment under the Haar measure is expressed as

∫

dµ(U)UijU
∗
i′j′ =

δi
′j′

ij

d
, (C.4)

with δji = 1 only if i = j and 0 otherwise. The second moment is given by

∫

dµ(U)UijUklU
∗
i′j′U

∗
k′l′ =

δi
′j′k′l′

ijkl + δk
′l′i′j′

ijkl

d2 − 1
−
δk

′j′i′l′

ijkl + δi
′l′k′j′

ijkl

d(d2 − 1)
. (C.5)

Equipped with Equations (C.4) and (C.5), one can simplify the expressions of the average and

variances of the expectation values of an operator M . As usual, the expectation value of an

operator M with respect to a state ψ is denoted 〈M〉ψ = Tr[ψM ] = 〈ψ|M |ψ〉, and we denote

〈M〉rdm its average over random states, which is defined as

〈M〉rdm =

∫

dµ(ψ)〈M〉ψ. (C.6)

Furthermore, the variance of 〈M〉ψ is denoted Drdm(M), which is defined as Drdm(M) =
∫

dµ(ψ)[〈M〉ψ − 〈M〉rdm]2, but which can also be expressed as

Drdm(M) =

∫

dµ(ψ)
[

〈M〉2ψ − 〈M〉2rdm
]

. (C.7)

We now proceed to solve Equations (C.6) and (C.7).

To facilitate the derivations, it is convenient to represent the random unitaries U in the eigen-

basis of M , and we denote their entries Uij = 〈λi|U |λj〉, given M =
∑

i λi|λi〉〈λi|. The average



C.2. Statistics of expectation values under the Haar measure 155

of 〈M〉ψ over a random states distribution can then be expressed as

〈M〉rdm =

∫

dµ(ψ) 〈ψ|M |ψ〉 =

∫

dµ(U) 〈λ1|UMU †|λ1〉

=
d

∑

i=1

λi

∫

dµ(U) 〈λ1|U |λj〉〈λj|U †|λ1〉

=
d

∑

i=1

λi

∫

dµ(U)U1jU
∗
1,j

=
d

∑

i=1

λi
d

=
Tr[M ]

d
,

(C.8)

where the eigendecomposition of M is used to obtain the second line, and Equation (C.4) is

used to simplify the third line. Similarly,

∫

dµ(ψ)〈M〉2ψ =

∫

dµ(ψ)
(

〈ψ|F |ψ〉
)2

=

∫

dµ(U) 〈λ1|UMU †|λ1〉〈λ1|UMU †|λ1〉

=
d

∑

i,j=1

λiλj

∫

dµ(U) 〈λ1|U |λi〉〈λi|U †|λ1〉〈λ1|U |λj〉〈λj|U †|λ1〉

=
d

∑

i,j=1

λiλj

∫

dµ(U)U1jU1kU
∗
1,jU

∗
1,k

=
d

∑

i,j=1

λiλj

[1 + δji
d2 − 1

− 1 + δji
d(d2 − 1)

]

=

∑

i λ
2
i +

∑

i,j λiλj

d(d+ 1)
=
Tr[M2] + Tr2[M ]

d(d+ 1)
,

(C.9)

where the eigendecomposition of M is used to obtain the third line, and where Equation (C.5) is

used to obtain the fifth one. Finally, inserting the two previous expressions into Equation (C.7)

yields the variance Drdm(F ) of 〈M〉ψ over random states:

Drdm(M) =

∫

dµ(ψ)〈M〉2ψ − 〈M〉rdm

=
Tr[M2]

d(d+ 1)
− Tr2[M ]

d2(d+ 1)
,

(C.10)

which is reported in Equation (4.3) and enables the comparison of the variances of varied figures

of merit (provided that they are constructed as expectation values of an operator with known

eigenvalues) in Chapter 4.
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C.3 Average and variance of the witness fidelity values

Here, we detail the derivations of the average and variance (over random states) of values of

the witness fidelity FW , that was introduced in Section 4.2.2 as an alternative of the fidelity

for stabilizer states. FW was defined as the expectation value of the operator

FW = 1/2 + G/2n, (C.11)

with n the number of qubits, and G the sum of the n generators of a stabilizer group. Notably,

the operator G has n+1 eigenvalues λGj = n−2j (j = 0, . . . , n), with corresponding eigenspaces

of dimension
(

n
j

)

(this is detailed in Appendix D.2). Given these details, we can proceed to

evaluate its average and variance.

To apply the formulas of the average and variance, established in Equations (C.8) and (C.10)

respectively, to G we need to evaluate the traces of the operators G and G2. For that purpose,

we first recall formulas of sums with binomial coefficients. In particlular,

n
∑

j=0

(

n

j

)

= 2n,
n

∑

k=0

(

n

j

)

j = n2n−1 and,
n

∑

j=0

(

n

j

)

j2 = (n2 + n)2n−2. (C.12)

It follows that

Tr[G] =
n

∑

j=0

(

n

j

)

(n− 2j) = (n2n − 2n2n−1) = 0, (C.13)

and that

Tr[G2] =
n

∑

j=0

(

n

j

)

(n− 2j)2 =
n

∑

j=0

(

n

j

)

(n2 − 4nj + 4j2)

= n22n − 4n22n−1 + 4(n2 + n)2n−2 = nd,

(C.14)

where d = 2n.

It follows from Equations (C.8) and (C.13) that the average of the operator G is 〈G〉rdm = 0,

such that the average of the witness fidelity FW (which is shifted by 1/2) is equal to

〈FW 〉rdm =
1

2
. (C.15)

It follows from Equations (C.10), (C.13) and (C.14) that the variance of the operator G is

Drdm(G) = n/(d + 1), and that the variance of the witness fidelity FW (which is rescaled by a
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factor 1/4n2 due to the 1/2n scaling in the definition of FW ) is equal to

Drdm(FW ) =
1

4n(d+ 1)
, (C.16)

which is reported in Section 4.2.2.

C.4 Average of 〈G2
Z〉

When estimating the witness fidelity for the GHZ state, it is only necessary to perform mea-

surements in two distinct basis (Section 4.2.2). In order to evaluate the importance sampling

probabilities (that is, the probabilities to take a measurement in one of the two specific basis),

which was given in Equation (2.31), it is necessary to evaluate the statistics 〈G2
Z〉ψ of the oper-

ator GZ =
∑

Zj−1Zj. As these depend on the unknown state ψ, it needs to be approximated

by, for instance, the average 〈G2
Z〉rdm of 〈G2

Z〉ψ taken over random states, and we now proceed

to evaluate this quantity.

GZ can be eigendecomposed over n distinct eigensubspaces with eigenvalues λj = n − 1 − 2j

(j = 0, . . . , n− 1) and with dimension 2
(

n
j

)

(this is detailed in Appendix D.3). It follows from

this eigendecomposition and Equation (C.8), that the average 〈G2
Z〉rdm =

∫

dµ(ψ)〈G2
Z〉ψ can be

expressed as:

〈G2
Z〉rdm =

Tr[G2
Z ]

d
=

1

d

n−1
∑

j=0

2

(

n

j

)

(n− 1 − 2j)2

=
2

d

n−1
∑

j=0

(

n

j

)

[

(n− 1)2 − 4(n− 1)j + 4j2)
]

=
2

d

[

(n− 1)22(n−1) − 4(n− 1)22n−2 + 4
(

(n− 1)2 + (n− 1)
)

2n−3
]

= n− 1,

(C.17)

which is used in Section 4.2.2 to derive the importance probabilities reported in Equation (4.17).

C.5 Average variance in the estimates of FW for the GHZ

state

Finally we can also evaluate the variance in an estimate Yρ of G obtained with importance

sampling over the two measurement settings (corresponding to measurements of the operators

GX and GZ defined in Equation (4.16)), and averaged over random states. For that purpose,
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recall that 〈G2
X〉ψ = 1 and that G = GX + GZ . This permits to simplify the general variance,

given in Equation (2.32), to

∆2[Yψ] =
(

1 +
√

〈G2
Z〉ψ

)2

− 〈G〉2ψ

= 1 + 2
√

〈G2
Z〉ψ + 〈G2

Z〉ψ − 〈G〉2ψ.
(C.18)

While we already know how to average over the term 〈G2
Z〉ψ (see Equation (C.17)) we also need

to perform this average over
√

〈G2
Z〉ψ, which does not seem to admit analytical solution. Still,

Jensen’s inequality permits to bound this average as

∫

dµ(ψ)
√

〈G2
Z〉ψ ≤

√

∫

dµ(ψ)〈G2
Z〉ψ =

√

〈G2
Z〉rdm (C.19)

It follows that the average variance ∆2
rdm[Yψ] =

∫

dµ(ψ)∆2[Yψ] can be bounded as

∆2
rdm[Yψ] ≤ 1 + 2

√

〈G2
Z〉rdm + 〈G2

Z〉rdm −
∫

dµ(ψ)〈G〉2ψ, (C.20)

where each term in the r.h.s. can be evaluated. Already 〈G2
Z〉rdm follows from Equation (C.17),

and it only remains to assess
∫

dµ(ψ)〈G〉2ψ. Given the expressions of the trace of G (Equa-

tion (C.13)) and G2 (Equation (C.14)), Equation (C.9) yields

∫

dµ(ψ)〈G〉2ψ =
Tr[G2] + Tr2[G]

d(d+ 1)
=

n

d+ 1
. (C.21)

It follows that

∆2
rdm[Yψ] ≤ n+ 2

√
n− 1 − n

d+ 1
. (C.22)

Finally, recalling that one needs to rescale G by 1/2n to obtain FW , we obtain the higher bound

for the variance (averaged over random states) of an estimate F̃W of FW

∆2
rdm[F̃W ] ≤ 1

4n
+

√
n− 1

2n2
− 1

4n(d+ 1)
, (C.23)

which was reported in Equation (4.18) and plotted in Figure 4.4.



Chapter D

Stabilizer states

In this appendix, we start (Appendix D.1) by reviewing elements of the stabilizer formal-

ism [15, 217], before detailing the eigendecompositions of the operators G (Appendix D.2)

and GZ (Appendix D.3), which permit the construction and the study of the witness fidelity

developed in Section 4.2.2.

D.1 Elements of the stabilizer formalism

As a starting point, consider the set of 1–qubit matrices, formed by the Pauli matrices (X,Y

and Z) and the identity (I) with prefactor ±1 or ±i,

P1 = {±I,±iI,±X,±iX,±Y,±iY,±Z,±iZ}. (D.1)

This set forms a group (under matrix multiplication), called the Pauli group. It is extended to

n–qubit systems as

Pn = {P1 ⊗ . . .⊗ Pn|Pi ∈ P1} (D.2)

containing any distinct n–fold tensor product of elements of P1.

A state which remains invariant when acted on by any element of a group of operators is said

to be stabilized by such group, that is,

|ψ〉 is stabilized by S ⇔ ∀O ∈ S, O|ψ〉 = |ψ〉, (D.3)

with S a group of operators O. Similarly, the subspace formed by all the states that are

stabilized by a group S, is called the stabilized subspace and denoted VS. Finally, given a set

of l operators Gi, we denote the group generated by such operators (that is, the group which

contains all possible products of Gi) < G1, . . . , Gl >.

Having established the notations and terminology needed, we can proceed to recall one of the

main aspect of the stabilizer formalism. Given S =< G1, . . . , Gl >, it can be shown [217] that

159
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if the l generators Gi ∈ Pn (i) are independent (ii) commute and if (iii) −I /∈ S, then the

vector space VS stabilized by S has dimension dim(VS) = 2n−l. In particular, for n generators

Gi satisfying (i-iii), there exists a single state (up to a global phase) which is stabilized by the

group S. In such case, we denote this state |ψS〉. Finally, we note that condition (iii) entails

that each generator Gi (and each element of the group S) is a Hermitian operator, such that

its expectation value can be estimated experimentally.

These properties of a stabilized state |ψS〉 permitted us, in Section 4.2.2, to identify the sum

of its n generators Gi,

G =
n

∑

i=1

Gi, (D.4)

as an observable which expectation value is maximized only for |ψS〉, and, thus which can be

used to construct a figure of merit alternative to the fidelity.

D.2 Eigendecomposition of G

In this section, we study further the properties of the operator G (corresponding to a stabilizer

state |ψS〉) and follow the derivations presented in [269]. For that purpose, we first define

the set of states {|ψi
S〉}, indexed by a n–bit string i, as the states stabilized by the groups

Si = 〈(−1)i1G1, . . . , (−1)inGn〉. Note that the state |ψ0
S〉 is the original stabilizer state |ψS〉.

We now show how these states can be used to decompose G.

By construction, the 2n (distinct) states |ψi
S〉 are eigenvectors of any of the operators Gl, with

eigenvectors 1 (or−1) if il = 0 (or 1). Hence, one can always eigendecompose Gl as

Gl =
∑

i

λGl

i |ψi
S〉〈ψi

S|, with λGl

i = 1 − 2il. (D.5)

Given that G is the sum of the n operators Gl, it admits the decomposition

G =
n

∑

l=1

Gl =
∑

i

λGi |ψi
S〉〈ψi

S|, with λGi = n− 2
∑

l

il. (D.6)

That is, G has n+1 distinct eigenvalues λGi = n−2j ∈ [−n, n] (j = 0, . . . , n) and corresponding

eigensubspaces Ej with dimension dim(Ej) =
(

n
j

)

. It directly follows that the operator FW =
1
2

+ G
2n

, used to define the witness fidelity, has n + 1 distinct eigenvalues λGj = 1 − j/n ∈ [0, 1]

and corresponding eigensubspaces with dimension
(

n
j

)

.
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D.3 Eigendecomposition of GZ

Recall the definition of the operator GZ (given in Equation (4.16)) as the sum of the n − 1

operators Zj−1Zj (j = 2, . . . , n)

GZ =
n

∑

i=2

Zi−1Zi. (D.7)

Given that the operators Gj−1 = Zj−1Zj are n − 1 (out of n) generators stabilizing the GHZ

state, it can be shown (following the same derivations as in the previous section) that

GZ =
n−1
∑

l=1

Gl =
∑

i

λGi |ψi
S〉〈ψi

S|, with λGi = n− 1 − 2
n−1
∑

l=1

il. (D.8)

That is, GZ has n distinct eigenvalues λGi = n − 1 − 2j ∈ [1 − n, n − 1] (j = 0, . . . , n − 1) and

corresponding eigensubspaces Ej with dimension dim(Ej) = 2
(

n
j

)

.
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