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Abstract
The Gross–Neveu model with UL(Nf) × UR(Nf) chiral symmetry is reconsid-
ered in the large Nc limit. The known analytical solution for the time dependent
interaction of any number of twisted kinks and breathers is cast into a more
revealing form. The (x, t)-dependent factors are isolated from constant coeffi-
cients and twist matrices. These latter generalize the twist phases of the single
flavor model. The crucial tool is an identity for the inverse of a sum of two
square matrices, derived from the known formula for the determinant of such a
sum.

Keywords: multiflavor Gross–Neveu model, twisted kinks, inverse of a sum of
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1. Introduction

Exactly solvable model problems play a central role in teaching as well as in ‘intellectual
body building’ (John Negele). This is well documented in textbooks on basic subjects like
classical mechanics, electrodynamics, thermodynamics, or quantum mechanics. In advanced
subjects like quantum field theory, it becomes increasingly difficult to identify such problems.
Here one has to compromise, for example by resorting to a lower number of dimensions. In
1 + 1 dimensions in particular, a number of quantum field theories are accessible by analytical
means, either exactly or at least in certain limits. A famous example is the Gross–Neveu (GN)
model featuring self-interacting Dirac fermions with point interactions in 1+ 1 dimensions [1].
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Different variants of this model are distinguished by their symmetries. In the case of continuous
chiral symmetry, they are referred to as chiral GN models or 2D Nambu–Jona-Lasinio (NJL)
models [2]. The model of interest here belongs to this category and possesses the non-Abelian
chiral symmetry group UL(Nf) × UR(Nf). Its Lagrangian reads

L =

Nc∑
k=1

Nf∑
α=1

ψ̄k,αi∂/ψk,α +
g2

4

N2
f −1∑

a=0

⎡⎣( Nc∑
k=1

Nf∑
α=1

ψ̄k,α(λa)αβψk,β

)2

+

(
Nc∑

k=1

Nf∑
α=1

ψ̄k,αiγ5(λa)αβψk,β

)2
⎤⎦

= ψ̄i∂/ψ +
g2

4

N2
f −1∑

a=0

[
(ψ̄λaψ)2 + (ψ̄iγ5λ

aψ)2
]
. (1)

The upper line shows explicitly the way in which ‘color’ indices (k) and ‘flavor’ indices (α, β)
are contracted. Note that both of these refer to flavor in the present context, but color does
not enter into the four-fermion interaction vertices. The lower line is the conventional short-
hand notation in this context where indices are suppressed whenever possible. The λa denote
the N2

f − 1 SU(Nf) generators in the fundamental representation with the usual normalization,
supplemented by λ0 =

√
2/Nf (proportional to a unit matrix) to account for U(1),

Trλaλb = 2δab, a, b = 0 . . .N2
f − 1

N2
f −1∑

a=0

λa
αβλ

a
γδ = λa

αβλ
a
γδ = 2δαδδβγ . (2)

The prefactor g2/4 in (1) has been chosen such as to match the convention of the standard
chiral GN model with UL(1) × UR(1) chiral symmetry,

L = ψ̄i∂/ψ +
g2

2

[
(ψ̄ψ)2 + (ψ̄iγ5ψ)2

]
(Nf = 1). (3)

In 3 + 1 dimensions, Lagrangian (1) is well known from the SU(3)-flavor version of the NJL
model [3]. There one usually adds a term which breaks UA(1) (the ‘t Hooft determinant), but
we see no reason to do so in 1+ 1 dimensions. In order to validate a semiclassical approach, we
shall only consider the ‘t Hooft limit Nc →∞, Ncg2 = constant, in the present work. We do not
include a bare fermion mass term, as this would prevent us from treating the problem analyti-
cally. The basic semiclassical tools for a fermionic theory are the Hartree–Fock (HF) approach
for static problems and the time dependent Hartree–Fock (TDHF) approach for dynamical
problems.

Studies of GN type field theories fall roughly into two categories: thermodynamics and
phase diagrams, or solitonic bound states and their interactions. The issue which has perhaps
received most attention in nuclear and particle physics are the phase diagrams as a func-
tion of temperature and chemical potentials. In condensed matter physics on the other hand
where closely related models arise in the context of quasi-one dimensional systems (polymers,
superconductors, trapped ions), the focus has typically been on soliton spectra and dynamics.
In this context, soliton refers to the behavior of the mean field, related to the fermionic sin-
gle particle wave functions by self-consistency. This type of bound state is a toy model for
composite, relativistic objects, mimicking hadrons in real life.
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In strong interaction physics and quantum chromodynamics (QCD), the method of choice
has become the lattice Monte Carlo calculation in Euclidean space. Unfortunately, neither
of the issues just mentioned can be fully handled by this method. In the case of dense
matter, the sign problem is still a serious obstacle against working at finite chemical potential.
Time dependent problems like hadron scattering can only indirectly be dealt with, for instance
by calculating scattering lengths with Lüscher’s method [4]. These limitations make it desir-
able to gain some experience with interacting relativistic bound states of massless fermions
in a reliable way, complementary to numerical studies of lattice QCD. GN type models offer
exact, analytical solutions for both phase diagrams and bound state dynamics, if only in 1 + 1
dimensions.

In the present work, we reconsider the problem of soliton dynamics in the multiflavor chiral
GN model (1). To put our study into perspective, let us briefly recall the state of the art of
solving time dependent problems in GN models.

Static solitons have been found early on [5] and have thoroughly been studied since then
[6]. The subject of soliton dynamics in the original GN model with discrete chiral symmetry
also starts with reference [5] where the first time dependent mean field solution was found, the
breather. This is a collectively excited soliton, vibrating in its rest frame. The authors guess
its form by analogy with the sine-Gordon breather. They point out that it should be related to
kink–antikink scattering by analytic continuation. This idea was taken up again in reference [7]
where kink–antikink scattering was solved in detail. The generalization to any number of col-
liding kinks followed soon afterwards [8]. The twisted kink in the one-flavor chiral GN model
was discovered by Shei using inverse scattering theory [9]. It is a ‘chord soliton’ in the sense
that its mean field traces out a straight line between two different vacua on the chiral circle.
Bound states of an arbitrary number of twisted kinks were first found in reference [10] and
generalized to time dependent scattering and breather phenomena in reference [11]. Compact
analytical formulas are given for any number and complexity of solitons or breathers. More
recently, these works have been further extended to the multiflavor case, first by using methods
akin to inverse scattering theory in condensed matter physics [12]. It turns out that the formal-
ism of reference [13] from the particle physics side can also be generalized rather easily to
Nf flavors, see reference [14] for the case Nf = 2. As a matter of fact, the restriction to Nf = 2
is unnecessary, as the formalism is practically independent of Nf . The fact that the Nf flavor
model can still be solved exactly is non-trivial. The static case was explored in more depth in
reference [15], a paper which has some overlap with the present one.

Summarizing, we already have at our disposal all the tools needed to compute bound and
scattering states of twisted solitons or breathers. Exact expressions are available for both mean
field and spinors in closed analytical form. Self-consistency has been established quite gener-
ally. If the only goal was to present figures or animations of specific collision events, this would
be sufficient. However, in view of the pedagogical thrust of such studies, one would like to bet-
ter understand what is going on, in particular concerning the role of flavor degrees of freedom.
Reference [15] has already provided us with useful additional insights for the static case, for
instance for widely spaced solitons and the vacua in between. Here we propose to extend this
study to the most general time dependent solution, trying to disentangle flavor from the other
degrees of freedom as much as possible.

This paper is organized as follows. In section 2, we collect some basic facts about the chiral
GN model with Nf flavors. Section 3 briefly reviews the analytical mean field solution for any
number of solitons and/or breathers. We then proceed from there and transform the result for
mean field and spinors into a more illuminating form. To this end, we first had to derive an
exact expression for the inverse of a sum of two matrices which may also be of interest for
other purposes, see section 4. In section 5 we apply it to the case where there are no breathers
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but only solitons (twisted kinks or bound states thereof). The general case including breathers
is the subject of section 6. This is followed by illustrative examples covering the single twisted
kink, section 7, scattering or bound states of two kinks, section 8, and the breather, section 9.
Finally, section 10 contains a short summary and conclusions. The proof of a mathematical
identity is relegated to the appendix.

2. Basic facts about the model

Lagrangian (1) has an obvious U(Nc) symmetry and a somewhat less obvious UL(Nf) × UR(Nf)
chiral symmetry. The latter becomes manifest once we decompose the spinors into left- and
right-handed chiralities,

ψ =
1 + γ5

2
ψR +

1 − γ5

2
ψL. (4)

Using the representation

γ0 = σ1, γ1 = iσ2, γ5 = γ0γ1 = −σ3 (5)

of the Dirac matrices together with light cone coordinates

z = x − t, z̄ = x + t, ∂0 = ∂̄ − ∂, ∂1 = ∂̄ + ∂, (6)

we find

L = 2iψ†
R∂̄ψR − 2iψ†

L∂ψL + 2g2(ψ†
L,αψR,β)(ψ†

R,βψL,α). (7)

Again, color indices within bilinears are contracted to singlets. As U(Nf ) acts only on the
flavor indices, the interaction term is manifestly UL(Nf) × UR(Nf) chirally invariant, as is the
free Lagrangian for massless Dirac fermions. The Euler–Lagrange equations

2i∂ψL,α = 2g2(ψL,αψ
†
R,β)ψR,β ,

2i∂̄ψR,α = −2g2(ψR,αψ
†
L,β)ψL,β ,

(8)

lead directly to the TDHF equations in the large Nc limit,

2i∂ψL = −Δ†ψR,

2i∂̄ψR = ΔψL. (9)

Here, the mean field Δ is a color singlet, but a Nf × Nf matrix in flavor space. The self-
consistency condition reads

Δαβ = −2Ncg
2〈ψR,αψ

†
L,β〉, (10)

where we have replaced bilinears by expectation values and pulled out the factor Nc by per-
forming trivial color sums. Due to the dyadic structure of Δ, it is now evident that both
the TDHF equation and self-consistency are preserved under global chiral UL(Nf) × UR(Nf)
transformations,
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ψL → ULψL, ψR → URψR, Δ→ URΔU†
L. (11)

This observation can be used to simplify the vacuum problem. Due to spontaneous symmetry
breakdown, the (homogeneous) vacuum is characterized by a constant matrix Δ. Using the
freedom of performing global chiral transformations, we map it onto the unit matrix times a
scale factor,

Δαβ = mδαβ. (12)

The constant m plays the role of dynamical fermion mass. The HF vacuum energy density can
be evaluated as the sum over single particle energies plus a double counting correction,

Evac = Esp(m) + Edc(m),

Esp(m) = −NcNf

∫ Λ/2

−Λ/2

dk
2π

√
k2 + m2

= −NcNf

[
Λ2

8π
− m2

4π

(
ln

m2

Λ2 − 1

)]
,

Edc(m) = Nf
m2

2g2
. (13)

The gap equation follows by minimizing Evac with respect to m,

0 = 1 +
Ncg2

2π
ln

m2

Λ2 , (14)

and is indistinguishable from that of the one-flavor model. The renormalized vacuum energy
density

Evac = −NcNf
m2

4π
(15)

is just Nf times the known energy density of the one-flavor model. The fermion mass m which
arises from dimensional transmutation can be set equal to 1 by choice of units. This is what
we shall do in the present work. The vacuum manifold then coincides with the group U(Nf), as
can be seen by applying all global chiral transformations to Δ = 1. For one flavor, it reduces
to U(1), i.e. the familiar chiral circle.

3. Reminder of the multisoliton solution

In the large Nc limit, it is possible to solve bound state and scattering problems in model
(1) explicitly. This holds for any number of solitons and/or breathers as well as for any Nf .
Originally, a general solution has been found for the one-flavor model. In reference [12]
(in condensed matter physics) and [14] (in particle physics), this solution was subsequently
generalized to several flavors. In reference [14] in particular, the Nf = 2 case has been treated
in some detail. Since the generalization to arbitrary Nf is trivial, we infer the solution from
this work and present only the necessary definitions and results, referring to [14] for detailed
proofs. The upcoming sections of the present work may then be regarded as an elaboration on
this general solution.
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The starting point for attacking N soliton problems is an N-dimensional vector e with
components [13]

ei = ei(ζ∗i z̄−z/ζ∗i )/2. (16)

The ζ i are complex numbers (Im ζ i > 0) characterizing the pole positions of the TDHF contin-
uum wave functions in the complex ζ plane. Here, ζ is the spectral parameter related to light
cone momentum and energy (‘uniformizing parameter’ in condensed matter language),

k =
1
2

(
ζ − 1

ζ

)
, E = −1

2

(
ζ +

1
ζ

)
. (17)

Note that

kμxμ = −1
2

(
ζ z̄ − z

ζ

)
, (18)

so that ei is recognized as a plane wave evaluated at a complex spectral parameter correspond-
ing to a bound state pole. The crucial step when going from one to Nf flavors consists in dressing
each ei with a flavor vector �pi

ei → ei�pi, ei,α = ei pi,α (no i-sum). (19)

Here, �pi is a Nf-component, constant, complex vector with components pi,α. Its precise mean-
ing will be clarified later on. Since a common real factor multiplying�pi can always be absorbed
in the soliton positions, we can assume that these vectors are normalized (�p†i�pi = 1) without
loss of generality. However they are in general neither orthogonal nor even linearly indepen-
dent. This is obvious since the number of solitons may exceed the number of flavors. We
continue using Greek indices for flavor and suppress the indices i = 1 . . .N referring to the
bound state poles whenever possible. Then we have to modify the results of references [13] as
follows: continuum TDHF spinors are now 2Nf -component objects

ψζ,α =
1√

1 + ζ2

(
ζχ1,α

−χ2,α

)
ei(ζ z̄−z/ζ)/2. (20)

The following ansatz for the χi,α is motivated by the assumed pole structure of the continuum
spinors (N poles, corresponding to N bound states),

χ1,α =

(
δαβ + i

N∑
i=1

1
ζ − ζi

ϕ1,i,αe∗i,β

)
qβ ,

χ2,α =

(
δαβ − i

N∑
i=1

ζ

ζ − ζi
ϕ2,i,αe∗i,β

)
qβ. (21)

The qβ are the amplitudes of the flavor components of the incoming plane wave

ψζ,α|in =
1√

1 + ζ2

(
ζ
−1

)
ei(ζ z̄−z/ζ)/2qα. (22)

The vacuum at x →−∞ will always be chosen as Δvac = 1. When summing over all contin-
uum states, the �q should be chosen in all flavor directions (one component 1, all the others
0) to account for incoming waves in the different flavor channels. The ϕ1,i,α,ϕ2,i,α introduced
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in equation (21) are closely related to the components of bound state spinors. They can be
evaluated by linear algebra as follows: define a Hermitian N × N matrix B,

Bi j = i
ei,βe∗j,β
ζ j − ζ∗i

= i
eie∗j

ζ j − ζ∗i
�p†j�pi. (23)

The ϕ1,i,α,ϕ2,i,α then satisfy the following system of linear, algebraic equations

(ω + B)ϕ1,α = eα,

(ω + B)ϕ2,α = − fα,
(24)

where fi,α = ei,α/ζ
∗
i . Like in the one flavor case, a constant, Hermitian N × N matrix ω encod-

ing further information about the soliton configuration (geometry, initial conditions, breather
frequency and amplitude) has been introduced. The dimension of the linear system (24) does
not increase with the number of flavors, but depends only on the total number of bound state
poles. What is new as compared to the one-flavor case is the factor �p†j�pi in Bi j and the fact that
one gets a pair of linear equations for each flavor component α. The most important result for
the following is the expression for the mean field, now a Nf × Nf matrix

Δαβ = δαβ + ie†β
1

ω + B
fα. (25)

Orthonormal bound states can be constructed as in the one-flavor case by linear combinations
of the ϕi,

ϕ̂i =
∑

j

Ci jϕ j,
∫

dxϕ̂†
i,αϕ̂ j,α = δi j. (26)

The resulting condition coincides with the one in the one-flavor case,

2Cω−1C† = 1. (27)

A central ingredient of the TDHF calculation is the self-consistency condition. We introduce
two diagonal N × N matrices

Mi j = −iδi j ln(−ζ∗i ),

Ni j = 4πδi jνi,
(28)

where ν i is the occupation fraction of bound state i. The self-consistency condition then
assumes the form

ωM† + Mω = C†NC (29)

independently of the number of flavors.
The following observations carry over from the one-flavor to the multiflavor models. Owing

to chiral symmetry, model (1) gives rise to N2
f conserved vector and axial vector Noether

currents

∂μ jaμ = ∂μ(ψ̄γμλaψ) = 0

∂μ ja5,μ = ∂μ(ψ̄γμγ5λ
aψ) = 0. (30)
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In 1 + 1 dimensions, vector and axial vector currents are not independent, but satisfy

ja,0
5 = ja,1, ja,1

5 = ja,0. (31)

Adding and subtracting the conservation laws (30) and introducing light cone coordinates (6),
one finds

∂̄(ψ†
Rλ

aψR) = 0, ∂(ψ†
Lλ

aψL) = 0. (32)

If we take the expectation value of these equations in an arbitrary state, we conclude that
the right-handed density ρa

R = 〈ψ†
Rλ

aψR〉 depends only on z = x − t, the left-handed density
ρa

L = 〈ψ†
Lλ

aψL〉 only on z̄ = x + t, i.e. they can only move with the speed of light to the right or
to the left (or be constant). In a localized, massive state like a solitonic bound state or breather,
these densities must therefore vanish identically. Hence we anticipate that all densities and
current densities must vanish inside an arbitrary soliton or multisoliton state, at least in the
strict thermodynamic and chiral limit. This should hold for left- and right-handed fermions
separately, or, equivalently, for charge and current densities. This can indeed be verified by a
detailed computation (see reference [14]) and holds for all flavor currents including the fermion
current (the a = 0 component).

The formulas given in the present section are sufficient for computing the space-time evolu-
tion of any multisoliton event. However, it turns out that one can convert the result into a more
transparent and useful form, notably in the absence of breathers. Reference [15] has already
dealt with the static case in a similar spirit. The goal of the following sections is to simplify
the time dependent case as well. Thus we shall start from equation (25) for Δ and transform
it to a more instructive expression. The key problem here is how to invert the matrix (ω + B).
Once this has been achieved, the formulas for the spinors can be simplified as well.

4. Inverting a sum of two matrices

Let us go back to equation (25) for the mean field,

Δαβ = δαβ + ie†β
1

ω + B
fα, (33)

with

Bi j = i
eie∗j

ζ j − ζ∗i
σ ji, σ ji = �p†j�pi,

ei,α = ei pi,α, f i,α = (ζ∗i )−1ei,α.

(34)

The constant matrix ω is diagonal for the scattering case (solitons, bound states) and off diag-
onal for problems involving breathers. Although expression (33) is exact, it is not yet very
transparent. Space-time-, flavor- and parameter dependences are inextricably entangled. We
therefore pull out the (x, t) dependent factors from B by introducing a diagonal N × N matrix
E as follows

B = ESE†,

Ei j = δi jei,

Si j =
i

ζ j − ζ∗i
σ ji, S† = S.

(35)

8
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Thus

ω + B = E(v + S)E†, v = E−1ω(E†)−1. (36)

Inserting this expression into (33) yields

Δαβ = δαβ + ie†β(E†)−1 1
v + S

E−1 fα. (37)

In the denominator, the (x, t) dependence has now been shifted to the matrix v. The diagonal
matrices E−1, (E†)−1 acting on the vectors f α, e†β cancel the (x, t) dependence of these vertex

functions. Inserting e†β and fα, Δ is expressed in flavor space via a sum over dyadics �pj�p
†
i ,

Δ = 1 + i
∑

i, j

(
1

v + S

)
i j

1
ζ∗j
�pj�p

†
i . (38)

The coefficients of�pj�p
†
i require inverting the sum of a Hermitian, space-time dependent matrix

v and a Hermitian, constant matrix S. The explicit flavor dependence is through the dyadics
�pj�p

†
i . In addition, there is an implicit flavor dependence through S which still depends on the

flavor scalars σi j = �p†i�pj.
Along the same lines, we rewrite the expressions for the spinors in terms of the inverse of

the matrix (v + S). Using once again arrows for vectors in flavor space, we find

�ϕ1,i =
∑

j

1
e∗i

(
1

v + S

)
i j

�pj,

�ϕ2,i = −
∑

j

1
e∗i

(
1

v + S

)
i j

1
ζ∗j
�pj,

�χ1,�q =

(
1 + i

∑
i, j

1
ζ − ζi

(
1

v + S

)
i j

�pj�p
†
i

)
·�q,

�χ2,�q =

(
1 + i

∑
i, j

ζ

ζ − ζi

(
1

v + S

)
i j

1
ζ∗j
�pj�p

†
i

)
·�q.

(39)

The full continuum spinors become

�ψζ,�q =
1√

1 + ζ2

(
ζ�χ1,�q

−�χ2,�q

)
ei(ζ z̄−z/ζ)/2. (40)

Common to all expressions (38) and (39) is the appearance of the inverse matrix (v + S)−1.
Since all the space-time dependence is now in v, this raises the question about a useful expres-
sion where one can keep track of v and S separately also in 1/(v + S). Since we could not find
an appropriate formula in the literature, we first derive a general expression for the inverse of
a sum of two square matrices.

We start from a known expression for the determinant of a sum of matrices [16]. It reads as
follows:

9
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det(A + B) = det A + det B +

N−1∑
r=1

∑
α,β

(−1)s(α)+s(β) det A[α|β] det B(α|β).

(41)

A and B are N-square matrices. The outer sum is over integers r from 1 to N − 1. For a par-
ticular r, the inner sum is over all strictly increasing integer sequences α and β of length r
chosen from 1, . . . , N − 1. A[α|β] (square brackets) is the r-square submatrix of A lying in the
rows α and columns β. B(α|β) (round brackets) is the (N − r)-square submatrix of B lying in
rows complementary to α and columns complementary to β. s(α) is the sum of all integers
in α.

Before continuing, we introduce the operation of ‘inflating’ a submatrix to the original
matrix size by adding rows and columns filled with zero’s. Given a submatrix B(α|β) as just

described (round brackets), we denote by ˜B(α|β) the N-square matrix obtained by filling rows
β and columns α with zero’s (note the interchange of rows and columns as compared to the
definition of B(α|β)). Since this definition is unfamiliar, we illustrate it with a simple example.
Starting from the 4 × 4 matrix

B =

⎛⎜⎜⎝
b11 b12 b13 b14

b21 b22 b23 b24

b31 b32 b33 b34

b41 b42 b43 b44,

⎞⎟⎟⎠ , (42)

we extract the submatrix

B(13|34) =

(
b21 b22

b41 b42

)
(43)

and ‘inflate’ it to

˜B(13|34) =

⎛⎜⎜⎝
0 b21 0 b22

0 b41 0 b42

0 0 0 0
0 0 0 0

⎞⎟⎟⎠ . (44)

Below we shall also find it convenient to work with inflated submatrices with square brackets.
Since submatrices with round brackets and square brackets are trivially related, we can easily

infer the correct definition of ˜B[α|β] (square brackets) form the definition of ˜B(α|β) (round
brackets). In our example,

B[13|34] = B(24|12) =

(
b13 b14

b33 b34

)
. (45)

Hence

˜B[13|34] = ˜B(24|12) =

⎛⎜⎜⎝
0 0 0 0
0 0 0 0

b13 0 b14 0
b33 0 b34 0

⎞⎟⎟⎠ . (46)

Thus the correct definition of ˜B[α|β] is as follows: take the submatrix B[α|β] and add rows
complementary to β and columns complementary to α filled with zero’s.

10
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We are interested in the inverse matrix (A + B)−1, i.e.

1
A + B

=
adj(A + B)
det(A + B)

. (47)

Here, adj denotes the classical adjoint (or adjugate) matrix, the transpose of the cofactor matrix.
The denominator is taken care of by equation (41). For the numerator, we find a similar equation

adj(A + B) = adj B +

N−1∑
r=1

∑
α,β

(−1)s(α)+s(β) det A[α|β] ˜adj B(α|β), (48)

where one of the det-factors in the sum has been replaced by the tilde-symbol, now applied to
the adjugate matrix. Incidentally, the r = N − 1 term in (48) is equal to adj A.

Actually, equation (48) is a consequence of (41). To show this, consider the (i, j)-matrix
element of equation (48). Left-hand side,

(lhs)i j =
[
adj(A + B)

]
i j
= (−1)i+ j det

[
A( j|i) + B( j|i)

]
. (49)

The determinant of the sum A( j|i) + B( j|i) in turn can again be evaluated with the help of
equation (41) for N → N − 1. In order to apply the formula literally, the row and column indices
should run from 1 to N − 1. Now the indices run from 1 to N with j missing in the row indices
and i missing in the column indices. This does not affect the determinants of submatrices in
(41), but it does affect the phase factor. The correct result is

det
[
A( j|i) + B( j|i)

]
= det A( j|i) + det B( j|i)

+

N−2∑
r=1

∑
ᾱ j,β̄i

(−1)s(ᾱ j)+s(β̄i)+n(ᾱ j)+n(β̄i) det A[ᾱ j|β̄ i] det B( j, ᾱ j|i, β̄i).

(50)

The ᾱ j, β̄i are defined like the α, β above except that ᾱ j does not contain the index j, β̄i does
not contain the index i. Their maximal length is thereby reduced to N − 2. Furthermore, n(ᾱ j)
is the number of elements of the sequence ᾱ j that are > j, n(β̄i) the number of elements of β̄i

that are >i. These modifications of the phase factor are necessary because the labeling of rows
and columns in A( j|i), B( j|i) is not the standard one.

On the right-hand side of (48), we split the index set α into sets α j containing j and sets ᾱ j

not containing j. Similarly for β, βi (containing i) and β̄ i (not containing i). The summation
over α, β then gives rise to 4 terms∑

α,β

→
∑
α j,βi

+
∑
α j,β̄i

+
∑
ᾱ j,βi

+
∑
ᾱ j,β̄i

. (51)

If we take the (i, j)-matrix element of ˜adj(B(α|β)) in equation (48), only the last term in (51)
contributes since the rows filled with zero’s are given by β, the columns filled with zero’s by
α. To get a non-zero row index i, β should not contain i, hence β̄i is needed. To get a non-
zero column index j, α should not contain j, hence ᾱ j is needed. The (i, j)-matrix element of

˜adj B(ᾱ j|β̄ i) in (48) is given by

11
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[
˜adj B(ᾱ j|β̄ i)

]
i j

= (−1)i+ j+n(ᾱ j)+n(β̄i) det B( j, ᾱ j|i, β̄i). (52)

The extra phase factor is again due to the non-standard labeling of rows and columns in the
submatrices. This comes about as follows. When filling the rows labeled by β̄i with zero’s,
the row index increases by the number of elements of β̄i that are <i, i.e. r − n(β̄i). When
filling the columns labeled by ᾱ j with zero’s, the column index increases by the number of
elements of ᾱ j that are < j, i.e. r − n(ᾱ j). This is the reason behind the phase factor in (51). In
addition, we pick up a term from adj B in (48). Putting everything together, the (i, j)-matrix
element of the right-hand side of (48) becomes identical to the left-hand side as given in
equations (49) and (50).

Summarizing, we write down the full expression for the inverse of a sum of two matrices,
expressing the right-hand side by submatrices. To clarify the idea behind this expression, we
multiply A by a formal parameter ε. The terms of the sum then go like εr. Thus one can think
of the formula as representing an exact expression for 1/(εA + B) as a rational function in ε,
to be contrasted to the power series expansion familiar from perturbation theory,

1
εA + B

=
adj B +

∑N−2
r=1 εr

∑
α,β(−1)s(α)+s(β) det A[α|β] ˜adj B(α|β) + εN−1 adj A

det B +
∑N−1

r=1 εr
∑

α,β(−1)s(α)+s(β) det A[α|β] det B(α|β) + εN det A
.

(53)

The numerator (denominator) is a polynomial in ε of degree N − 1(N ). The coefficients are
given explicitly in terms of determinants and adjoints of submatrices of A and B.

An important special case for our purpose is the case where A is diagonal. This covers all
multisoliton interactions without breathers. Let us simplify the notation and formulas for this
particular case. Assume that

Ai j = δi jAi. (54)

Then in both equations (41) and (48) only α = β appears, so that the phase factor drops out.
Using the simplified notation

A[α|α] = A[α], B(α|α) = B(α), (55)

we get

det(A + B) = det A + det B +
∑

α∈KN−1

det A[α] det B(α),

adj(A + B) = adj B +
∑

α∈KN−1

det A[α] ˜adj B(α),
(56)

where Kn denotes the set of all sequences of the type α as defined above with length
r = 1, . . . , n. Moreover, the determinants of A and its submatrices simplify to

det A =
N∏

i=1

Ai, det A[α] =
∏
i∈α

Ai. (57)

12
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5. Multisoliton dynamics without breathers

If we disregard breathers for the moment, the matrix ω is diagonal,

ωi j = δi jωi. (58)

According to (36), v is also diagonal,

vi j = δi jvi, vi =
ωi

|ei|2
=

1
Vi

, (59)

where the Vi are the basic profile functions of the solitons familiar from the one-flavor case
[13]. Their explicit form will be given below when we discuss examples of few soliton prob-
lems. Recall that the mean fieldΔ in the single flavor case could be represented as a ratio of two
multivariate polynomials in the Vi. Our goal is a corresponding expression for the multiflavor
case. Since Δ is a flavor matrix, we expect the coefficients in the numerator to be flavor matri-
ces as well. In fact, equation (56) is exactly what is needed for this purpose. If we replace vi by
1/Vi, the formula gives us directly the numerator and denominator of Δ as polynomials in the
Vi. For the N soliton problem, matrix inversion needs to be done only for constant square matri-
ces S(α) of dimension N and lower. The space-time dependence is contained in the monomials
of Vi’s. By contrast, the original expression for Δ, equation (33), requires matrix inversion for
every (x, t). Besides, as we shall see shortly, the structure of the result is more transparent and
can be used to gain further analytical insights.

Let us introduce the Vi at this stage. If we multiply numerator and denominator of (v + S)−1

by det V = 1/detv = V1 . . .VN , we find that det V[α] now multiplies the determinant or the
adjoint of the matrix S where the rows and columns in α are kept, rather than being removed
(S[α] in the notation of equation (55)). Thus

(v + S)−1 =

∑
α∈KN

det V[α] ˜adj S[α]

1 +
∑

α∈KN
det V[α] det S[α]

. (60)

As pointed out below equation (46), the tilde above adj S[α] instructs us to fill all rows and
columns complementary to the set α with zero’s. Unlike equation (56), the sum overα includes
the term of length r = N, with V[1 . . .N] = V , S[1 . . .N] = S. This is allowed here since
there are no submatrices with round brackets of type B(α) which would be ill-defined for
r = N. Also note that the term in the numerator with α of length 1 equals V . After inserting
(60) into expression (38) for Δ, we arrive at the final result for the mean field,

Δ =
1 +

∑
α∈KN

ξα[V]αUα

1 +
∑

α∈KN
ξα[V]α

(61)

with the shorthand notation

ξα = det S[α],

[V]α = det V[α] =
∏
i∈α

Vi,

Uα = 1 + i
∑

i, j

(
˜S[α]−1

)
i j

1
ζ∗j
�pj�p

†
i .

(62)

13
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We have replaced adj S[α] by S[α]−1 times det S[α] = ξα in Uα.
The result (61) and (62) is very simple indeed. Every single term in the numerator has

the same structure, except that the indices are constrained to the sequence α. One can check
that this result reduces to the known expression in the one-flavor case. To this end, treat �pi

as a one-component object with pi = 1 for all i. Since all σi j = 1, the matrix S[α] becomes a
Cauchy matrix for which the determinant and the inverse matrix are explicitly calculable [17].
In the multiflavor case, the matrices Uα are unitary, as we will now check. For notational sim-
plicity, consider U :=U1...N , the asymptotic vacuum at x →∞. The other Uα’s can be handled
similarly by merely restricting and relabeling the soliton indices. We start from

U = 1 + i
∑
n, j

(
S−1

)
n j

1
ζ∗j
�pj�p

†
n,

U† = 1 − i
∑
i,m

(S−1)im
1
ζi
�pm�p

†
i ,

(63)

where we have used the hermiticity of S. Computing UU† yields a 1, two terms linear and one
term quadratic in the dyadics. The quadratic term just cancels the sum of the linear terms. To
show this, use

(�pj�p
†
n)(�pm�p

†
i ) = σnm�pj�p

†
i , (64)

express σnm by Snm, equation (35), and verify the identity

(S−1)n j(S−1)imσnm = −i(S−1)i j(ζi − ζ∗j ). (65)

Along the same lines, we could insert our expression for (v + S)−1 into the spinors,
equation (39), in the compact form

(
1

v + S

)
i j

=

∑
α∈KN

ξα[V]α
(

˜S[α]−1
)

i j

1 +
∑

α∈KN
ξα[V]α

. (66)

Since the gain of insight is less obvious than in the case of Δ, we shall not write down the
resulting expressions here.

The Uα’s have a simple physics interpretation. This becomes particularly clear if we assume
that the solitons are all well separated, either by choice of bound state configuration (see [15])
or at a certain time during a scattering process. Let us assume that the positions of the solitons
are ordered such that xi � x j � xk . . .. In between two neighboring solitons, the mean field
must reduce to that of a twisted vacuum, characterized by a locally constant matrix ∈ U(Nf).
Proceeding from x →−∞ towards x →∞, the vacua are ordered as 1, Ui, Uij, Uijk, . . .U12. . .N .
The fact that all permutations can occur is responsible for the proliferation of Uα’s in Δ,
necessary to account for all possible orderings. In the one-flavor case, the Vi are the same
as here but the Uα go over into the familiar twist factors. This follows from the remarkable
identity for the Cauchy matrix S,

Uα → 1 + i
∑

i, j

(
S[α]−1

)
i j

1
ζ∗j

=
∏
k∈α

ζk

ζ∗k
∈ U(1) (Nf = 1). (67)

The prefactors ξα also depend on Nf , since the matrix S contains the scalar products �p†i�pj.
Thus we can think of the Uα either as twist matrices, or as possible vacua far away from the
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solitons. If two solitons are close together, the mean field in between is no longer related to a
vacuum, but becomes (x, t)-dependent. However, expression (61) remains valid.

The picture of widely separated solitons which emerges involves a sequence of solitons
connecting the vacua 1 → U1 → U12 → U123 . . . and all permutations. The intrinsic form of a
single kink connects 1 → Ui. By a chiral transformation, we may identify intrinsic solitons with
the sequence 1 → U1, 1 → U12U†

1, 1 → U123U†
12 etc. This corresponds to the decomposition of

the vacua according to

U12 = (U12U†
1)U1,

U123 = (U123U†
12)(U12U†

1)U1,
(68)

etc. Each factor is an elementary twist matrix. It is of some interest to evaluate these elementary
twist matrices, since they clearly show how a soliton is influenced by the flavor structure of
the other twisted kinks. It is sufficient to compute UU†

k for this purpose, where U = U12...N is
the highest U and Uk differs from U by the missing kth row and column. All other products
in (68) can be obtained by restricting and renaming the indices. Here we only give the result,
referring to the appendix for the derivation. Let

U = 1 + i
∑

i, j

(S−1)i j
1
ζ∗j
�pj�p

†
i ,

U†
k = 1 − i

∑
n,m

(S̃−1
k )nm

1
ζn
�pm�p

†
n. (69)

where Sk is the matrix obtained from S by deleting the kth row and column. Then we find

UU†
k = 1 + κk

�Qk
�Q†

k, κk =
(ζk − ζ∗k )

ζ∗k
(no k-sum) (70)

with

�Qk = �Kk(�K†
k
�Kk)−1/2,

�Kk =
∑

j

(S−1)k j
1
ζ∗j
�pj. (71)

The normalization factor entering (71) is given by

�K†
k
�Kk = −i

(
1
ζ∗k

− 1
ζk

)
(S−1)kk (no k − sum). (72)

These results will be used again in the applications in sections 8 and 9.

6. General case including breathers

In the general case, the matrix ω is non-diagonal. This describes breathers, solitons that are
time dependent in their rest frame. The simplest breather requires a 2 × 2 block submatrix
in ω. Additional diagonal elements then describe solitons in interaction with the breather and
each other. Larger block submatrices would correspond to more complex breathers built out
of more than two twisted kink constituents. In the preceding chapter, an important step was
going from the diagonal matrix v to the inverse diagonal matrix V . This enabled us to exhibit
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the flavor structure and the possible intermediate vacua in a clear fashion. Here we generalize
this procedure to non-diagonal matrices v, V.

Recall that

v = E−1ω(E†)−1, vi j =
ωi j

eie∗j
(73)

and introduce the inverse of the matrix v as

V = v−1 = E†ω−1E, Vi j = e∗i (ω−1)i je j. (74)

Our starting point is the identity for the inverse of a sum of two matrices (see section 4),

1
v + S

=
adj(v + S)
det(v + S)

,

adj(v + S) = adj S +

N−1∑
r=1

∑
α,β

(−1)s(α)+s(β) det v[α|β] ˜adj S(α|β),

det(v + S) = det v + det S +

N−1∑
r=1

∑
α,β

(−1)s(α)+s(β) det v[α|β] det S(α|β).

(75)

Using Jacobi’s complementary minor formula, we can express det v[α|β] by the determinant
of a submatrix of V = v−1 as follows

det v [α|β| = (−1)s(α)+s(β) det V(β|α)
det V

. (76)

Replacing det v by 1/det V and expanding numerator and denominator in (75) by det V , we get

1
V−1 + S

=

∑N−1
r=1

∑
α,β det V(β|α) ˜adj S(α|β) + det Vadj S

1 +
∑N−1

r=1

∑
α,β det V(β|α) det S(α|β) + det V det S

. (77)

As in the diagonal case, it is more convenient to switch notation from V(β|α) where rows β
and columns α are missing to V[β′|α′] where the complementary rows β′ and complementary
columns α′ are kept. Since both S and V in (77) now involve round brackets, we can switch
both matrices to square brackets and sum over the complementary sequences α′, β′

V(β|α) = V[β′|α′], S(α|β) = S[α′|β′]. (78)

The range of r from 1 to N − 1 does not change under this transition. Renaming the summation
indices α′, β′ into α, β at the end to ease the notation, we find

1
V−1 + S

=

∑N
r=1

∑
α,β det V[β|α] ˜adj S[α|β]

1 +
∑N

r=1

∑
α,β det V[β|α] det S[α|β]

. (79)

This is the generalization of (60) to non-diagonal V . We now insert this expression into Δ,
equation (38), treating the r = N terms in the sums separately for notational reasons, with the
result
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Δ =
N
D ,

N = 1 +

N−1∑
r=1

∑
α,β

ξαβUαβ det V[β|α] + ξU det V ,

D = 1 +

N−1∑
r=1

∑
α,β

ξαβ det V[β|α] + ξ det V. (80)

Generalizing the ξα in section 5 we have defined

ξαβ = det S [α|β|, ξ = det S. (81)

The twist matrices Uαβ in flavor space are the generalization of Uα in equation (62),

Uαβ = 1 + i
∑

i, j

(
˜S[α|β]−1

)
i j

1
ζ∗j
�pj�p

†
i ,

U = 1 + i
∑

i, j

(S−1)i j
1
ζ∗j
�pj�p

†
i . (82)

The matrix U in the last line is the asymptotic vacuum at x →∞, independently of whether
ω is diagonal or non-diagonal. Unlike the Uα in the preceding section, the Uαβ are no longer
unitary but satisfy the generalised unitarity relation

UαβU†
βα = 1. (83)

The proof is similar to the proof that UU† = 1 following equation (63). Start from

Uαβ = 1 + i
∑
n, j

(
˜S[α|β]−1

)
n j

1
ζ∗j
�pj�p

†
n,

U†
βα = 1 − i

∑
i,m

(
˜S[β|α]−1

)∗

mi

1
ζi
�pm�p

†
i . (84)

Notice that with this choice of dummy indices, we must have n ∈ β, j ∈ α, i ∈ β, m ∈ α due to
the definition of the tilde symbol. The product UαβU†

βα yields 1, two terms linear in the dyadics
and a term quadratic in the dyadics. This last term reads

UαβU†
βα

∣∣∣
quad

=
∑

i, j

1
ζiζ∗j

�pj�p
†
i

∑
n,m

σnm

(
˜S[α|β]−1

)
n j

(
˜S[β|α]−1

)∗
mi

(85)

where

σnm = �p†n�pm = −i(ζn − ζ∗m)Smn. (86)

In the term containing ζ∗m, we perform the summation over n as follows
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∑
n

Smn( ˜S[α|β]−1)n j = δm j. (87)

This term cancels the term linear in the dyadics contained in U†
βα. In the term containing ζn,

we use again (86) together with the hermiticity of S to get∑
m

S∗
nm( ˜S[β|α]−1)∗mi = δni. (88)

The resulting term cancels the term linear in the dyadics contained in Uαβ . This proves the
assertion (83). Finally, products of Vi’s in the diagonal case (62) are replaced by determinants
of submatrices of V depending only on the ei, e∗i and ωi j.

This is the end of the formal part of the present work. The first step has been to trans-
form the original expressions (25) for the mean field and (20), (21) and (24) for the spinors
into (38)–(40) where the flavor structure has been exposed. A central element of all these
expressions is the inverse matrix (v + S)−1. In order to separate space-time dependence from
the other dependencies, we derived a closed expression for the inverse of a sum of two square
matrices, starting from a well-known formula for the determinant of a sum of matrices. The
final result for the mean field Δ is surprisingly simple and given in (61) and (62) for solitons
only (diagonal ω) and in (80)–(82) for the general case including breathers (non-diagonal ω).
In the following sections, we shall use these results as starting point to illustrate the formalism
with simple examples.

7. Example I: single twisted kink

We first have to understand thoroughly a single twisted kink, the basic building block of all
more complex configurations. For one soliton, v + S is a 1 × 1 ‘matrix’ so that there is no issue
of matrix inversion. Nevertheless, the mean field Δ is a Nf × Nf matrix and we focus on the
role of the flavor vector �p1. We start from(

1
v + S

)
11

=
V1

1 + S11V1
, S11 =

i
ζ1 − ζ∗1

. (89)

Upon defining

Ṽ1 = S11V1, (90)

we find a very simple expression for Δ,

Δ =
1 + U1Ṽ1

1 + Ṽ1
(91)

with

U1 = 1 + κ1�p1�p
†
1, κ1 =

ζ1 − ζ∗1
ζ∗1

. (92)

We recall from the one-flavor model that

ζ1 = −e−iθ1

η1
, η1 =

√
1 + v1

1 − v1
, (93)
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where v1 is the velocity of the soliton. The function Ṽ1 is independent of Nf and given by

Ṽ1 =
S11

ω11
e2 sin θ1x′ (94)

with x′ the boosted form of x,

x′ =
x − v1t√

1 − v2
1

. (95)

The twisted kink interpolates between the vacua Δ = 1 at x →−∞ and Δ = U1 at x →∞,
the twist matrix U1 replacing the phase factor e−2iθ1 in the one-flavor case,

U1 = 1 + (e−2iθ1 − 1)�p1�p
†
1 = exp

{
−2iθ1�p1�p

†
1

}
. (96)

Equivalently, U1 may be written in the canonical form of a U(Nf) group element

U1 = exp {−2iθ1naλa} , na = �p†1λ
a�p1, nana = 1. (97)

Thus the twist angle has the same interpretation as in the one-flavor case, namely as a ‘rotation
angle’. The novel vectors �p1 (in the fundamental representation) serve to define the ‘rotation
axis’ na, a unit vector in the adjoint representation. If there is only one soliton, we are free to
choose a frame in which this axis is pointing into the 0-direction. Then everything reduces to
the U(1) case.

Due to the close relationship with the single flavor case, we refrain from discussing the
continuum spinors. It is of some interest though to look at the normalized bound state spinors
with Dirac components

�ϕ1,1 = −ζ∗1 �ϕ2,1 =
1√
2S11

1
e∗1

Ṽ1

1 + Ṽ1
�p1. (98)

In the one flavor case, the total fermion charge of the bound state is given by the occupation
fraction,

Q = ν1 =
θ1

π
, (99)

where we have used the self-consistency condition. The analogous calculation in the multifla-
vor case yields the flavor charge Qa = 〈�ϕ†λa�ϕ〉 in the bound state to be

Qa = ν1�p
†
1λ

a�p1 =
θ1

π
na. (100)

This gives yet another physical interpretation of �p1, namely determining the direction of the
flavor vector (a generalization of the isospin vector) associated with the bound orbit. We
have already mentioned that the full charge density vanishes due to a cancellation between
continuum and bound states, a consequence of chiral symmetry and current conservation.
In the one flavor case, it was recently pointed out that the total charge of a twisted kink is
infrared sensitive and needs some regularization, either by a small bare fermion mass [18] or
a finite box [19]. The conclusion was that the charge is spread out over the whole space in
the thermodynamic and chiral limit and hence becomes invisible. Nevertheless, a regularized
integrated charge can be defined consistently and agrees with the charge of the fermions in the
bound state. For a single soliton, the same arguments could be applied here as well, giving a
more direct physical meaning to the vector na as flavor vector of the twisted kink as a whole.
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8. Example II: scattering and bound state of two twisted kinks

Equations (61) and (62) yield the following mean field Δ for two twisted kinks,

Δ =
1 + ξ1V1U1 + ξ2V2U2 + ξ12V1V2U12

1 + ξ1V1 + ξ2V2 + ξ12V1V2
. (101)

Introducing

Ṽ i = ξiVi, ξ̃12 =
ξ12

ξ1ξ2
, (102)

this goes over into

Δ =
1 + Ṽ1U1 + Ṽ2U2 + ξ̃12Ṽ1Ṽ2U12

1 + Ṽ1 + Ṽ2 + ξ̃12Ṽ1Ṽ2
. (103)

Using equations (35) and (62), we evaluate ξ̃12,

ξi = Sii =
i

ζi − ζ∗i
,

ξ̃12 = 1 − (ζ1 − ζ∗1 )(ζ2 − ζ∗2 )
(ζ2 − ζ∗1 )(ζ1 − ζ∗2 )

σ12σ21. (104)

The twist factors entering the numerator of Δ are

Ui = 1 + κi�pi�p
†
i , κi =

ζi − ζ∗i
ζ∗i

,

U12 = 1 − �p1�p
†
1

(ζ2 − ζ∗2 )ζ∗1 det S
− �p2�p

†
2

(ζ1 − ζ∗1 )ζ∗2 det S

+
σ12�p1�p

†
2

(ζ1 − ζ∗2 )ζ∗1 det S
+

σ21�p2�p
†
1

(ζ2 − ζ∗1 )ζ∗2 det S
,

det S = − 1
(ζ1 − ζ∗1 )(ζ2 − ζ∗2 )

ξ̃12.

(105)

The leftmost solitons (incoming kink I or outgoing kink II) are characterized by intrinsic flavor
vectors �p1,�p2. The rightmost solitons (outgoing kink I or incoming kink II) have the intrinsic
twist matrices

U12U†
2 = 1 + κ1

�Q1
�Q†

1,

U12U†
1 = 1 + κ2

�Q2
�Q†

2,
(106)

with the intrinsic flavor vectors
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�Q1 = N1
[
ζ∗2 (ζ2 − ζ∗1 )�p1 − ζ∗1 (ζ2 − ζ∗2 )σ21�p2

]
,

�Q2 = N2
[
ζ∗1 (ζ1 − ζ∗2 )�p2 − ζ∗2 (ζ1 − ζ∗1 )σ12�p1

]
,

N−2
1 =

ζ2ζ
∗
2

ζ1ζ∗1
N−2

2 = (ζ1 − ζ∗2 )(ζ2 − ζ∗1 )(ζ1 − ζ∗1 )(ζ2 − ζ∗2 )ζ2ζ
∗
2 det S.

(107)

Twisted kinks are now characterized by a twist angle and a twist axis. In the one-flavor case,
the axis is frozen and the angle is conserved during the collision. The only observable of a
two-soliton scattering event is then the time delay. For many flavors, the twist angles are still
conserved, but the twist axes are rotated during the collision. There are now two observables,
the time delay and the change of orientation of the twist axis. Both of these depend on the
relative orientation of the two flavor axes of the colliding solitons. If we choose �p1 = �p2,
the flavor vectors are aligned and everything is concentrated in a single flavor component.
Then we are back at the one-flavor case, including the time delay. In the other extreme, choos-
ing �p1,�p2 or, equivalently, the flavor vectors na

1, na
2 to be orthogonal, the two kinks decouple.

There is no scattering at all and the solitons cross each other without interaction. The novel
feature of the multiflavor model is the fact that we can control the strength of the interaction
between two solitons with the help of the parameter σ12 = �p†1�p2. To see how the theory inter-
polates between the extreme cases σ12 = 1 and σ12 = 0 just discussed, we determine how the
scattering observables depend on this parameter. To this end, we first extract the asymptotic
form of the incoming and outgoing solitons from the full expression for Δ, equation (103),

ΔI
in = lim

Ṽ2→0
Δ =

1 + Ṽ1U1

1 + Ṽ1
,

ΔI
out = lim

Ṽ2→∞
Δ =

(
1 + ξ̃12Ṽ1U12U†

2

1 + ξ̃12Ṽ1

)
U2,

ΔII
in = lim

Ṽ1→∞
Δ =

(
1 + ξ̃12Ṽ2U12U†

1

1 + ξ̃12Ṽ2

)
U1,

ΔII
out = lim

Ṽ1→0
Δ =

1 + Ṽ2U2

1 + Ṽ2
.

(108)

In the 2nd and 3rd line we have exhibited the intrinsic form of the twisted kinks. During the
collision, the intrinsic flavor vector of soliton I changes from �p1 to �Q1, that of soliton II from
�Q2 to �p2, see also figure 1. The change in flavor direction is characterized by

(�p†iλ
a�pi)(�Q

†
i λ

a�Qi) = |�p†i �Qi|2, (i = 1, 2). (109)

The time delay can be found by equating

Vi(x, t − (Δt)i) = ξ̃12Vi(x, t). (110)

Consider two solitons with twist angles θ1, θ2 and equal and opposite velocity ±v. Introducing
the parameter λ = |σ12|2, we find the time delay
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Figure 1. Soliton–soliton scattering. Indicated are the asymptotic mean fields (Δ) and
intrinsic flavor vectors (�p, �Q).

sin θ1(Δt)1 = − sin θ2(Δt)2 =

√
1 − v2

2v
ln

1 + v2 − (1 − v2)[λC− + (1 − λ)C+]
1 + v2 − C+(1 − v2)

≈
√

1 − v2

2v
(1 − v2)(C+ − C−)

1 + v2 − (1 − v2)C+
λ+ O(λ2) (111)

where

C± = cos(θ1 ± θ2). (112)

The change in intrinsic flavor spin orientation of soliton I is

|�p†1�Q1|2 − 1 = − 2 sin2 θ2λ(1 − λ)(1 − v)2

1 + v2 + (1 − v2)[C+(1 − λ) + C−λ]

≈ − 2 sin2 θ2λ(1 − v)2

1 + v2 + (1 − v2)C+
+ O(λ2). (113)

For soliton II, we get the same result except for the substitution v →−v.
Equations (111)–(113) confirm that λ governs the interaction strength between the two

solitons, here exhibited in the observables time delay and flavor spin rotation. As expected, the
scattering observables vanish in the limit λ→ 0. In the opposite limit λ→ 1, the orientation
of the axis is not changed and the time delay reduces to what is known from the one-flavor
model.

Finally, we mention that by choosing v = 0 in the above expressions, we can specialize
the scattering problem to the bound state of two twisted kinks. The parameter λ = |σ12|2 again
allows us to interpolate between the one-flavor bound state (λ = 1) and a pair of non interacting
single twisted kinks (λ = 0).

9. Example III: breathers

Finally, we turn to the twisted breather. A breather at rest can be generated by choosing
η1 = η2 = 1 and a non-diagonal matrix ω. An example for a two-soliton breather has been
discussed in the case Nf = 2 before [14], and we have reproduced these results to test our
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present formalism for non-diagonal matrix ω. Up to translations in space and time, ω can be
chosen as

ω =

(
sec χ tan χ
tan χ sec χ

)
, det ω = 1. (114)

The formalism of section 6 then yields the following expression for the mean field Δ

Δ =
Nb

Db

Nb = 1 + sec χ(ξ1,1U1,1V1 + ξ2,2U2,2V2)

− tan χ(ξ1,2U1,2K21 + ξ2,1U2,1K12) + ξ12,12U12,12V1V2

Db = 1 + sec χ(ξ1,1V1 + ξ2,2V2) − tan χ(ξ1,2K21 + ξ2,1K12) + ξ12,12V1V2 (115)

with

Vi = |ei|2, Ki j = e∗i e j. (116)

The characteristic novel feature of the breather are the Ki j yielding oscillations with the fre-
quencyΩ = cos θ1 − cos θ2. The ξαβ and Uαβ can now easily be constructed from submatrices
of S, see equations (81) and (82). In this way we recover the results from reference [14].
If we choose �p1 and �p2 to be parallel, we come back to the known one-flavor breather. Choos-
ing �p1 and �p2 to be orthogonal one finds that the diagonal components Δ11,Δ22 are static,
whereas the off-diagonal components Δ12,Δ21 oscillate with the same frequency as the one-
flavor breather. For any other choice of the angle between �p1,�p2, all components of Δ start
to oscillate with the same frequency but different phases. Thus, unlike in the soliton case,
the interaction does not disappear if the flavor vectors are orthogonal. It is mediated by the
off-diagonal matrix elements of ω.

The formalism enables us to go beyond this type of complexity. By way of example, we
sketch how one would analyse scattering between a breather and a soliton. This shows that one
gets some analytical insight even without carrying out the full, tedious calculation to the end.
We focus on the asymptotics of the scattering event to get an idea how the breather and the
soliton are affected by a collision.

To this end, we consider a three soliton configuration with the ω matrix

ω =

⎛⎝sec χ tan χ 0
tan χ sec χ 0

0 0 1

⎞⎠ , det ω = 1. (117)

Evaluating the determinants of submatrices of V , one finds that the formalism predicts already
quite a number of terms to account for the breather, the soliton and their interaction,

Δ =
N
D ,

N = Nb + ξ3,3U3,3V3 + sec χ(ξ13,13U13,13V1 + ξ23,23U23,23V2)V3

− tan χ(ξ13,23U13,23K21 + ξ23,13U23,13K12)V3 + ξUV1V2V3,

D = Db + ξ3,3V3 + sec χ(ξ13,13V1 + ξ23,23V2)V3

− tan χ(ξ13,23K21 + ξ23,13K12)V3 + ξV1V2V3.

(118)
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We recognize the breather pieces Nb,Db from equation (115) which we did not spell out
again, terms ∼V3 involving only the soliton and interaction terms. As is always the case, the
denominator can be obtained from the numerator by setting all Uαβ equal to 1. It would now
be straightforward to evaluate all the coefficients and twist factors. However, it is perhaps
more instructive to extract the asymptotics. In the real world, this would contain all scattering
observables. We have to treat V1, V2, K12, K21 as being of the same order and consider as in
equation (108)

Δb,in = lim
V3→0

Δ =
Nb

Db
,

Δb,out = lim
V3→∞

Δ =

(
Nb′

Db′

)
U3,3,

Nb′ = 1 + sec χ
(
ξ13,13ξ

−1
3,3 U13,13U†

3,3V1 + ξ23,23ξ
−1
3,3 U23,23U†

3,3V2

)
− tan χ

(
ξ13,23ξ

−1
3,3 U13,23U†

3,3K21 + ξ23,13ξ
−1
3,3 U23,13U†

3,3K12

)
+ ξξ−1

3,3 UU†
3,3V1V2,

Db′ = 1 + sec χ
(
ξ13,13ξ

−1
3,3 V1 + ξ23,23ξ

−1
3,3 V2

)
− tan χ

(
ξ13,23ξ

−1
3,3 K21 + ξ23,13ξ

−1
3,3 K12

)
+ ξξ−1

3,3 V1V2,

Δs,in = lim
V1→∞

Δ =

(
1 + ξξ−1

12,12V3UU†
12,12

1 + ξξ−1
12,12V3

)
U12,12,

Δs,out = lim
V1→0

Δ =
1 + ξ3,3V3U3,3

1 + ξ3,3V3
.

(119)

The subscripts b and s refer to breather and soliton, respectively.
How are soliton and breather affected during the scattering event? For the soliton, we can

again read off the time delay and the change in flavor orientation. For the soliton–soliton col-
lision discussed in section 7, the time delay was proportional to ln ξ̃12 where ξ̃12 = ξ12ξ

−1
1 ξ−1

2 .
Now the same formula applies except that the argument of the logarithm is ξξ−1

12,12ξ
−1
3,3 . The

intrinsic flavor vector changes from the vector defined by UU†
12,12 to�p3. For the breather, things

are more complicated since the different building blocks are affected differently, so that the
whole internal structure changes. For the time delays, the relevant arguments of the logarithms
are

V1 :
ξ13,13

ξ1,1ξ3,3
, V2 :

ξ23,23

ξ2,2ξ3,3
, V1V2 :

ξ

ξ12,12ξ3,3

K21 :
ξ13,23

ξ1,2ξ3,3
, K12 :

ξ23,13

ξ2,1ξ3,3
.

(120)

All the ξαβ can be evaluated as determinants of submatrices of S. More interesting is perhaps
the observation that the results are so regular that one can guess the general principle behind
them, even for more complicated collisions. Since different parts of the breather suffer different
time delays, the structure changes. This is also true for the changes in internal flavor direction
which are also different for different components of the breather.
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10. Summary and conclusions

The chiral GN model with UL(Nf) × UR(Nf) symmetry is probably one of the most compli-
cated quantum field theories that one can still solve analytically, at least in the large Nc limit
where semiclassical methods become exact. This has incited us to reconsider the question
of soliton dynamics in this model. We were able to build our study on existing results from
both condensed matter and particle theory. Although the most important steps in solving the
problem had already been done, we felt that the analytical results for the interaction of solitons
and breathers had not yet been cast into a sufficiently intuitive form. In the present work, we
have therefore reformulated the general solution. The main idea was to manipulate the formal
expression for the mean field in such a way that the (x, t) dependent factors are neatly sep-
arated from constant coefficients and twist matrices. Explicit expressions for the coefficients
and twist matrices could be derived. We were guided by previous results for scattering of N
solitons in the single flavor model, simpler than the general expressions. At the core of this
problem was the necessity to invert a sum of two square matrices with dimension given by the
number of solitons involved. Starting from a well-known formula for the determinant of a sum
of two matrices, we derived the corresponding formula for the inverse of a sum and applied it
to the problem at hand. If one disregards breathers, the result is particularly simple. The mean
field is represented as a quotient of two multivariate polynomials in the basic exponential soli-
ton functions Vi, much like in the one flavor case. The novel feature as compared to a single
flavor is the fact that the twist factors in the numerator now become unitary Nf × Nf matri-
ces, as opposed to phase factors (or U(1) elements) before. Both the coefficients and the twist
matrices are given by compact, simple formulas involving submatrices of a constant matrix S.
This procedure can be extended in the presence of breathers where things get more involved.
Here, submatrices of S appear where different rows and columns are kept. The Vi have to
be replaced by determinants of block matrices characteristic for breathers. The example of
breather-soliton scattering has been used to illustrate the advantage of the new formulation, for
instance in extracting the asymptotics of the scattering process in a simple manner.

As an outlook, we would like to come back to the formula for inverting a sum of two matri-
ces. From a pragmatic point of view, if one is only interested in the (numerical or analytical)
result, this is of little help. The expression on the right-hand side of equation (53) is obviously
more complicated than the original problem. However we have seen that it has merits for orga-
nizing the analytical result, disentangling the separate contributions from the two matrices in
the inverse sum. In our application, everything seems to fall into place. It will be interesting to
see whether this has other applications in physics as well.
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Appendix. Derivation of equations (70)–(72)

U = U1...N denotes the unitary matrix with the largest number of indices. Uk is the unitary
matrix for the N − 1 soliton term where the index k is missing. We want to derive an expression
for UU†

k , an intrinsic soliton. Our starting point is

U = 1 + i
∑

i, j

(S−1)i j
1
ζ∗j
�pj�p

†
i ,

U†
k = 1 − i

∑
n,m

(
S̃−1

k

)
nm

1
ζn
�pm�p

†
n. (121)

We evaluate

UU†
k − 1 = (U − 1) + (U†

k − 1) + (U − 1)(U†
k − 1)

= A1 +A2 +A3. (122)

We only need to compute A3,

A3 =
∑

j,n

Yk
jn

1
ζ∗j ζn

�pj�p
†
n,

Yk
jn =

∑
i,m

(S−1)i j

(
S̃−1

k

)
nm
σim. (123)

Expressing σim through Smi, find

Yk
jn = −i

∑
i

ζi(S−1)i jX
k
ni + i

∑
m

ζ∗m

(
S̃−1

k

)
nm

X̃m j,

Xk
ni =

∑
m

(
S̃−1

k

)
nm

Smi,

X̃m j =
∑

i

Smi(S−1)i j,

(124)

where

Xk
ni = δni for n 
= k, i 
= k,

Xk
ni = 0 for n = k,

Xk
nk = − (adj S)nk

det(Sk)
,

X̃m j = δm j.

(125)

This yields

Y jn = (1 − δnk)

[
iζ∗j
(

S̃−1
k

)
n j
− iζn(S−1)n j + iζk

(S−1)k j(adj S)nk

det(Sk)

]
. (126)
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Insert this result into A3, equation (123). The first term cancels A2. The second term partially
cancels A1, leaving the n = k term. This combines with the 3rd term to the simple final result

UU†
k − 1 = i

∑
j,n

(S−1)k j(S−1)nk det S
det Sk

1
ζ∗j ζn

�pj�p
†
n. (127)

This factorizes indeed,

UU†
k − 1 = i

ζk det S
det Sk

�Kk�K
†
k,

�Kk =
∑

j

(S−1)k j
1
ζ∗j
�pj,

�K†
k =

∑
i

(S−1)ik
1
ζi
�p†i .

(128)

The norm is

�K†
k
�Kk =

∑
i, j

1
ζiζ∗j

(S−1)ik(S−1)k jσi j

= −i

(
1
ζ∗k

− 1
ζk

)
(S−1)kk (no k-sum). (129)

Using (S−1)kk = det Sk/ det S and introducing normalized vectors �Qk = �Kk(�K†
k
�Kk)−1/2, we

finally arrive at the standard form

UU†
k = 1 + κk

�Qk
�Q†

k, κk =
(ζk − ζ∗k )

ζ∗k
. (130)
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