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Abstract
Topological crystalline insulators (TCI) have been experimentally manufactured
and studied. We propose a minimal tight-binding model for thin films made of
TCI on the basis of the mirror and discrete rotational symmetries. The basic term
consists of the spin–orbit interaction describing a Weyl semimetal, where gap-
less Dirac cones emerge at all the high-symmetry points in the momentum space.
We then introduce the mass term providing gaps to Dirac cones. They simulate
the thin films made of the [001], [111] and [110] TCI surfaces. TCI thin films are
two-dimensional topological insulators protected by mirror symmetry. The
mirror symmetry is broken by introducing an electric field Ez perpendicular to
the film. We first note that the band structure can be controlled using the electric
field. We then analyze the mirror-Chern number and the edge modes taking into
consideration the bulk–edge correspondence, even for ≠E 0z . We also calculate
the conductance as a function of Ez. We propose a multi-digit topological field-
effect transistor by applying an electric field independently to the right and left
edges of a nanoribbon. Our results will open up a new route to topological
electronics.
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1. Introduction

The topological insulator is one of the most fascinating concepts found in this decade [1, 2].
The recent flourishing of research on it is based on the discovery of the time-reversal invariant
topological insulator [3–6]. Electrons obey the Dirac equation in almost all topological
insulators. A system may contain several Dirac cones in the momentum space. In such a case
we may assign a topological number to each of them. Let N be the number of Dirac cones. The
total topological number is the Chern number, and there appear −N 1 valley-Chern numbers.
(There are also spin-Chern and spin–valley-Chern numbers if the spin is a good quantum
number.) The valley degree of freedom leads to valleytronics [7–20]. The decisive advantage of
a topological object is that its stability is protected topologically against dissipation and
fluctuation even in the presence of large defects as long as the relevant symmetries are unbroken
[21–26]. Hence they may serve as key components in designing nanodevices for future
topological electronics. Since electronics is based on circuits in two dimensions, two-
dimensional (2D) topological insulators will be particularly important. The best candidate is
silicene containing two Dirac cones. An electrically tunable band gap and a topological phase
transition are proposed [27, 28]. Edge states show various characters depending on the
topological phase [29, 30]. This provides an ideal playground in which to develop various ideas
on topological electronics and valleytronics [14, 31]. In spite of all the merits, however, silicene
has so far been manufactured only on a metallic substrate, such as silver [32, 33], whose effect
seems to obscure the topological character [34].

Very recently, a new class of topological insulators, namely the topological crystalline
insulators (TCI), has been discovered [35–50]. An example is provided by Pbx −Sn x1 Te. There
are three kinds of surface states, namely the [001], [111] and [110] surfaces, which have
discrete rotation symmetries CN with N = 4, 6 and 2, respectively. Gapless Dirac cones emerge
inevitably on the surface of a topological insulator. Indeed, it has been experimentally observed
that there are gapless Dirac cones at the X and Y points in the [001] surface [37–39], and at the
Γ and three M points in the [111] surface [40, 41].

Although there are as yet no experimental measurements, theoretical studies [42, 43] have
been presented on thin film made of TCI. It is characterized by the same discrete rotation
symmetry CN , and additionally by the mirror symmetry about the 2D plane. When the film is
thin enough, the gap opens due to hybridization between the front and back surfaces, and this
turns the system into a 2D topological insulator protected by the mirror symmetry. Accordingly
the topological number is the mirror-Chern number [51, 52]. A prominent feature is that we can
break the mirror symmetry simply by applying an external electric field. This is greatly in
contrast to the case of the time-reversal invariant topological insulator, where the time-reversal
breaking should be caused by the magnetic field or the exchange field induced by a
ferromagnet. The magnetic field and the exchange field are hard to control precisely. On the
other hand, a precise control of the electric field is possible within current techniques.

The aim of this work is to explore the physics of the TCI thin film by applying various
ideas cultivated in the study of silicene. For this purpose we start with constructing a minimal
tight-binding model based on the discrete rotation symmetry CN and the mirror symmetry about
the 2D plane. The tight-binding model is essential for obtaining a deeper understanding of the
system, which is not attained by first-principles calculation and low-energy effective Dirac
theory. For instance, according to the low-energy theory [42], the [001] thin film made of
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Pbx −Sn x1 Te has two Dirac cones at the X and Y points, where the chiralities are identical.
However, the Nielsen–Ninomiya theorem [53] dictates that the total chirality is zero.
Consequently, there must be two additional Dirac cones with chirality opposite to that of the X
and Y points. In our tight-binding model these two Dirac cones emerge at the Γ and M points,
though they are removed from the low-energy spectrum. Furthermore, all of these Dirac cones
contribute to the Chern number, which is obtained by integrating the Berry curvature over all
occupied states of electrons in the momentum space. The tight-binding model is also useful for
analyzing the edge states, which transport the ordinary electric current reflecting the topological
properties of the thin film.

This paper is composed as follows. In section 2, we propose 2D Hamiltonian systems
where the spin–orbit interaction (SOI) dominates the transfer term. We demonstrate that such a
system is a Weyl semimetal consisting of multiple Dirac cones at all the high-symmetry points.
In section 3, we analyze the square lattice with theC4 symmetry. Four Dirac cones appear at the
X, Y, Γ and M points. We introduce mass terms to give gaps to the Dirac cones. The system
may describe well the TCI thin film made of Pbx −Sn x1 Te with an appropriate choice of
phenomenological mass parameters. We investigate the topological numbers. They are the
mirror-Chern number and three valley–mirror-Chern numbers. (We note that the spin is not a
good quantum number.) All of these are symmetry-protected topological numbers [26]. They
are no longer quantized but change continuously when we break the mirror symmetry by
introducing the perpendicular electric field Ez. We also investigate the gap structure of
nanoribbons in order to explore how gapless edge modes emerge and transport electric charges.
The conductance is calculated in the presence of Ez. The conductance is switched off by the
electric field. Namely, it acts as a topological field-effect transistor [54]. By attaching two
independent gates to the sample, we can separately control the right and left edge states. The
conductance can be 0, 1 and 2, which forms a multi-digit topological field-effect transistor,
where the conductance is quantized and topologically protected. In section 4, we analyze the
triangular lattice with theC6 symmetry. The system contains six Dirac cones at the Γ , K, ′K , M1,
M2, M3 points. We thus have the mirror-Chern number and five valley–mirror-Chern numbers.
All other studies are quite similar to those of the square lattice with the C4 symmetry. In
section 5, we briefly discuss the square lattice with the C2 symmetry.

2. Tight-binding hamiltonians

Our main proposal is a phenomenological construction of minimal tight-binding Hamiltonians
for the TCI thin film, based upon which we carry out an analysis of electrically controllable
conductance and edge modes of a nanoribbon considering the bulk–edge correspondence. In
this section we construct the tight-binding Hamiltonian such that it is invariant under the
discrete rotation symmetry CN in addition to the mirror symmetry M to be defined later in (11).
The generator of CN is

π σ= −
⎡
⎣⎢

⎤
⎦⎥C R

N
exp

i
, (1)N z z
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with the π
N

2 -rotation of the momentum:
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We note that theCN transformation rotates the direction of spin by π N . The rotation angle
is restricted to being =N 2, 3, 4, 6 due to the crystal group of the lattice symmetry,
corresponding to the rectangular lattice for N = 2, the hexagonal lattice for N = 3, the square
lattice for N = 4, and the triangular lattice for N = 6.

The SOI plays a key role in the physics of topological insulators. We consider a model
where the SOI dominates the system. The simplest example is the Rashba SOI:

∑ ∑λ σ= ×
ℓ=

ℓ
† ℓ⎡⎣ ⎤⎦dH c ci . (3)

i j
i ij jSO

1 ,

Alternatively we may think of

∑ ∑λ σ= ·
ℓ=

ℓ
† ℓ⎡⎣ ⎤⎦dH c ci , (4)

i j
i ij jSO

1 ,

or even take a sum of these. Here, σ σ σ σ= ( ), ,x y z represents the Pauli matrix for the spin, and

= −ℓd r rij i j connects a pair of the ℓ th-nearest neighbor sites i and j in the lattice with λℓ the

coupling strength. As is easily shown (see section 5), the results based on the Hamiltonian (3)
are obtained from those on the Hamiltonian (4) simply with the replacement of a set of

momenta ( )k k,x y by −( )k k,y x . Furthermore, the low-energy theory derived from a first-

principles calculation [42] supports the choice of (4) rather than (3). Hence we concentrate on
(4) hereafter.

Let ℓN be the number of ℓ th neighbor sites. In the momentum representation the
Hamiltonian is rewritten as

∑= ˆ† ( ) ( ) ( )k k kH c H c , (5)
k

SO SO

with

∑ ∑λ σˆ = ·
ℓ=

ℓ
=

ℓ ·
ℓ

ℓ

( )k dH e , (6)d k

n

N

n
i

SO
1 1

n

where ℓdij is determined by requiring invariance under the discrete rotational symmetry CN . For

instance, ℓdn for the nearest neighbor sites (ℓ = 1) is expressed as

θ θ θ π= =( )d d
n

N
cos , sin ,

2
(7)n n n n n

1 1

for the triangular (N = 3) and square (N = 4) lattices: see figures 1(a) and (c). We shall soon see
that this model has multiple Dirac cones at the high-symmetry points known, such as the X, Y,
Γ and M points in the square lattice and the Γ , K, ′K , M1, M2, M3 points in the triangular lattice
[55]. The Hamiltonian (3) describes a Weyl semimetal.
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The minimal tight-binding Hamiltonian of a TCI thin film would be a four-band model due

to the spin and pseudospin (surface) degrees of freedom. Let τ τ τ τ= ( ), ,x y z be the Pauli matrix

for describing the pseudospin representing the front (τ = 1z ) and back (τ = − 1z ) surfaces. When
the film is thin enough, the symmetric state becomes the ground state, opening a gap in all Dirac
cones due to hybridization. We employ the Hamiltonian (3) to describe the symmetric state.
Furthermore we apply the electric field Ez between the two surfaces.

These effects are realized by considering the four-band effective tight-binding
Hamiltonian,

τ τ τˆ = ˆ + ˆ +H H H E , (8)y m x z zSO

together with ĤSO given by (6) and Ĥm obtained from

∑ ∑ν=
ℓ=

ℓ
ℓ †H m c c , (9)m

i j
ij i j

0 ,

where νℓ
ij is a number characteristic for the lattice structure and determined by the vector ℓdij , so

as to preserve the crystalline symmetry, and i j, runs over the sites of the ℓth-nearest neighbors.
We take ν δ=ij ij

0 and show νij
1 in figures 1(c) and (d) for the square and triangular lattices. As we

shall soon see, the gap at each Dirac point is adjusted by choosing the mass parameters ℓm
appropriately.
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Figure 1. Nearest and next-nearest neighbor sites in real space. We give the value of
σ · ℓdij for the nearest (ℓ = 1, magenta) and next-nearest (ℓ = 2, cyan) neighbor sites for
the square lattice (a) and the triangular lattice (b) in the Hamiltonian (4). We also give
the value of νij for the nearest neighbor site (ℓ = 1, magenta) for the square lattice (c)
and the triangular lattice (d) in the Hamiltonian (9).



In the absence of the external electric field ( =E 0z ), the Hamiltonian (8) is invariant under
the mirror symmetry about the 2D plane:

=−( ) ( )k kMH M H , (10)1

where the mirror operator is given by

σ τ= −M
i
2

. (11)z x

The mirror symmetry is broken by the external electric field ( ≠E 0z ) as follows:

τ τ= −−( )M E M E . (12)z z z z
1

When the system is an insulator, the mirror-Chern charge is defined and calculable even in a
broken phase of the mirror symmetry [26].

3. The square lattice with C4 symmetry

We first consider the square lattice with the C4 symmetry. Let us set =E 0z . First, taking the
contributions from the nearest neighbor sites (ℓ = 1) and the next-nearest neighbor sites
(ℓ = 2), we obtain from the Hamiltonian (4)

σ σˆ = +H A A (13)x x y ySO

with

λ λ= +A k k ksin sin cos , (14)x x x y1 2

λ λ= +A k k ksin sin cos . (15)y y y x1 2

See the illustration in figures 1(a) and (b). The energy spectrum is given by

= ± +E A A . (16)x y
2 2

There are gapless Dirac cones at the X, Y, Γ and M points, as illustrated in figure 2, where
the band structure is shown. The Hamiltonian describes a Weyl semimetal.

The effective low-energy Hamiltonian is given by (13) near each Dirac point with

= ˜ = ˜A v k A v k, , (17)x x x y y y

where vx and vy are the velocities

λ λ λ λ= + = +( ) ( )v n n v n n, , (18)x x y y y x1 2 1 2

and k̃x and k̃y are the renormalized momenta

π π˜ = +
− ˜ = +

−
k k

n
k k

n1

2
,

1

2
, (19)x x

x
y y

y

as follows from (14). One set of numbers ( )n n,x y is −( )1, 1 for X, −( )1, 1 for Y, ( )1, 1 for Γ ,

− −( )1, 1 for M. The chirality of the Dirac cone is given by n nx y at each point. An anisotropy

( ≠v vx y) has been introduced into the system by introducing the nearest and next-nearest

neighbor contributions (λ λ≠ ≠0, 01 2 ).
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We illustrate the spin direction around each Dirac point in figure 2. The spin direction
yields one negative chirality apiece at the X and Y points, while it yields one positive chirality
apiece at the Γ and M points. The total chirality is zero over the Brillouin zone, as required by
the Nielsen–Ninomiya theorem [53].

We proceed to consider the total Hamiltonian (8) with =E 0z , which reads

σ σ τ τˆ = + +⎡⎣ ⎤⎦H A A m , (20)x x y y y x

with (14) and

= + +( )m m m k kcos cos . (21)x y0 1

The energy spectrum is now given by

= ± + +E A A m . (22)x y
2 2 2
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Figure 2. Band structure and spin direction on a square lattice. (a) A contour plot of the
band structure of the Hamiltonian (8) on the square lattice. We have set λ λ= = 01 2 ,

= =m m 01 2 . The energy is lower in darker regions. (b) The band structure along the
lines shown in magenta in (a). We have set λ λ= = 01 2 for all three curves. Cyan
curves are for = =m m 01 2 . Magenta curves are for =m 0.41 , =m 00 . Black curves are
for =m 0.41 , =m 0.10 . (c) The spin direction in the thin film with the C4 symmetry for
the whole Brillouin zone, around (d) the Y point, (e) the M point, (f) the Γ point and (g)
the X point. The spin structure is hedgehog-like around the Γ and M points with the
opposite directions, both yielding positive chirality (magenta), while it is anti-
hedgehog-like around the X and Y points with the opposite directions, both yielding
negative chirality (cyan). They contribute to the mirror-Chern number.



We see that m1 opens a gap at the Γ and M points, while m0 opens a gap at all Dirac points,
as illustrated in figure 2(b). Note that, if we set =m 00 , massless Dirac cones appear at the X
and Y points (figure 2(b)). The term τm x0 is understood to simulate the effect of a gap opening
due to hybridization between the front and back surfaces in a thin film. The Dirac cones at the Γ
and M points are removed from the low-energy theory when we take a large value of m1.

The low-energy Dirac theory is extracted from (20) around the X and Y points as

σ σ τ τ= − +( )H v k v k m , (23)X x x y y y x1 2

σ σ τ τ= − +( )H v k v k m , (24)Y x x y y y x2 1

with the velocities v1 and v2 being given by

λ λ λ λ= − = +v v, . (25)1 1 2 2 1 2

It is worth noting that this low-energy Hamiltonian agrees with the one derived on the
basis of a first-principles calculation and the Dirac theory of the TCI surface [42].

Our Hamiltonian is capable of simulating various models by controlling ℓm . For instance, a
massless Dirac cone emerges only at the Γ point on setting = −m m20 1, as illustrated in
figures 3(a3) and (b3). Similarly a massless Dirac cone emerges only at the M point on setting

=m m20 1, as illustrated in figures 3(a4) and (b4).
Next we introduce an external electric field Ez perpendicular to the film. The energy

spectrum is given by

= ± + + +E A A m E , (26)x y z
2 2 2 2

which shows that the band gap is controllable by applying an external field.

3.1. Mirror-Chern numbers

The thin film is an insulator, since a gap is given to all Dirac points by the term τm x0 . When
=E 0z , the mirror symmetry is a good symmetry. Namely, the mirror operator (11) commutes

with the Hamiltonian, =[ ]H M, 0, which enables us to divide the Hilbert space by the

eigenvalues ( = ±M i) of the mirror operator [52]. The mirror-Chern number CM is defined by
the difference of the Chern numbers in these two sectors,

= − −( )C C C
1
2

, (27)M i i

where ±C i is the Chern number for the subspace with the mirror eigenvalue = ±M i.
The mirror-Chern charge can actually be defined even for ≠E 0z . It is given by [26]

∫ ∫
π

ε ω Γ Γ Γ= μυρ μ ν ρ
−∞

∞ ⎡⎣ ⎤⎦
( )

k G G G
1

6 2
d d Tr (28)M 2

2

in terms of the Matsubara Green function,

ω
=

−
( ) ( )
k

k
G

H

1
i

, (29)
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Figure 3. Band structure and topological phase diagram for the square lattice. (a) Birdʼs
eye views and (b) projected views of the bulk band structure. ((c), (d)) The band
structure of nanoribbons, where the gapless edge states are depicted using magenta
curves. They emerge in topological insulators with nonzero mirror-Chern numbers. We
have taken λ = 11 and λ = − 0.52 in all figures. The values of m0 and m1 are indicated in
each figure. The vertical axis is the energy in units of λ1 in all figures. The horizontal
axes are π π− < ⩽kx , π π− < ⩽ky in (a), π π− < ⩽kx in (b), π π− < ⩽k in (c) and
(d). (e) The topological phase diagram in the m0–m1 plane. A green line represents a
phase boundary. The numbers 0 and ±2 are the mirror-Chern numbers. A circle with a
symbol, such as c3, shows a point where the band structure is calculated in (c3).



where ωi refers to the Matsubara frequency (ω: real), H is the Hamiltonian, and

Γ Γ Γ= ∂ = ∂ = ∂− − −{ }M G G G
1
2

, , , , (30)x x y y
1 1

0 0
1

with M the mirror-symmetry generator (11). When the mirror symmetry is a good symmetry,
the formula (28) agrees with the standard definition (27).

To analyze the low-energy physics near the Fermi level, we may take the Dirac
Hamiltonian at each Dirac point as the Hamiltonian H in (29). Then we obtain four mirror-
Chern numbers, which are explicitly calculated [26] as

=
+

( )C n n E n n
m

m E
, ;

1
2

(31)M x y z x y

z
2 2

for Dirac cones characterized by = ±n 1x and = ±n 1y with m given by (21). As →E 0z , they

are reduced to =( ) ( )C n n n n m, sgnM x y x y and quantized. They explicitly read as

= − − − = +( ) ( ) ( ) ( )C m m C m m1, 1
1
2

sgn 2 , 1, 1
1
2

sgn 2 , (32)M M0 1 0 1

− = − = −( ) ( ) ( )C C m1, 1 1, 1
1
2

sgn , (33)M M 0

each of which is a symmetry-protected topological charge.
When we adopt the tight-binding Hamiltonian as H in (29), the mirror-Chern number is the

sum of these four terms:

∑= = + + − −
=± =±

( ) ( ) ( ) ( )C C n n m m m m m,
1
2

sgn 2
1
2

sgn 2 sgn . (34)M
n n

M x y
1, 1

0 1 0 1 0

x y

We show the topological phase diagram in the ( )m m,0 1 plane with respect to CM in
figure 3(e). The edge states protected by the mirror symmetry emerge when the mirror-Chern
number is nonzero. The sign of the mirror-Chern number reflects the place where the edge
modes emerge: the edge modes emerge at the Y point when >C 0M , while the edge modes
emerge at the X point when <C 0M .

At low energy near the Fermi level, since the four Dirac Hamiltonians describe the system,
we can additionally define three valley–mirror-Chern numbers:

∑= = − + + −
=± =±

( ) ( ) ( )C n C n n m m m m,
1
2

sgn 2
1
2

sgn 2 , (35)VM
n n

x M x y1
1, 1

0 1 0 1

x y

∑= = − + + −
=± =±

( ) ( ) ( )C n C n n m m m m,
1
2

sgn 2
1
2

sgn 2 , (36)VM
n n

y M x y2
1, 1

0 1 0 1

x y

∑= = +

+ − +

=± =±
( ) ( )

( ) ( )

C n n C n n m m

m m m

,
1
2

sgn 2

1
2

sgn 2 sgn , (37)

VM
n n

x y M x y3
1, 1

0 1

0 1 0

x y
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where two of them become identical due to the C4 symmetry, =C CVM VM1 2. We note that the
concept of the valley–mirror-Chern number is lost at higher energy far away from the Fermi
level, where the Dirac Hamiltonians merge into the tight-binding Hamiltonian.

The thin film is a topological insulator indexed by the mirror-Chern number and the
valley–mirror-Chern numbers in the absence of the electric field ( =E 0z ). They are symmetry-
protected topological numbers since they are no longer quantized when the mirror symmetry is
broken by switching on the electric field ( ≠E 0z ) as in (31).

3.2. Nanoribbons

With the tight-binding Hamiltonian to hand, we are able to demonstrate the band structure of
nanoribbons, as shown in figure 3 for various values for parameters m0 and m1. We have set

=E 0z . We take the direction of the nanoribbon as the x-axis. The momentum component kx in
the bulk band gives the momentum k of the nanoribbon, while the momentum component ky is

quantized. Accordingly, the X and M points are projected to the same momentum π=k , while
the Y and Γ points are projected to k = 0. The projected view of the bulk band shown in
figure 3(b) is the same as the band structure of the nanoribbon except for the edge states.
Namely we can identify the edge states by comparing the projected band structure of the bulk
band and the band structure of the nanoribbon. The edge states are shown in magenta in
figures 3(c) and (d).

We examine the bulk–edge correspondence. We have shown that the system is indexed by
the mirror-Chern number and the valley–mirror-Chern numbers. However, since the valley
degree of freedom is ill defined in the vacuum, there is no bulk–edge correspondence for them
[31]. Indeed, gapless edge modes emerge when a nanoribbon has a nonzero mirror-Chern
numberCM. It is interesting that the gapless edge states emerge at =k 0 for >C 0M and at π=k
for <C 0M . There are no edge states when the system is trivial ( =C 0M ). There is an exactly one
to one correspondence between the mirror-Chern number CM and the appearance of edge states
in the band structure of a nanoribbon.

The nonzero mirror-Chern number indicates ‘quantum mirror-Hall effects’. However it is a
highly nontrivial task to experimentally detect the ‘mirror-Hall conductivity’ since ‘mirror-Hall
currents’ convey neither charge nor spin. On the other hand, there emerge CM gapless states in
the edges of a nanoribbon made of a topological insulator with the mirror-Chern number CM.
Without the electric field, these edge states transport merely the mirror charge M. Once we
apply external electric field parallel to the nanoribbon direction, one edge state contributes one
quantum unit to the electric conductance, as we show in figure 4(d1). Hence we are able to
determine the absolute value of the mirror-Chern number by measuring the conductance.

3.3. The electric field and conductance

We switch on the electric field Ez between the front and back surfaces in order to control the
edge modes and the conductance in nanoribbons (figure 4(a)). The mirror symmetry is broken
by the electric field as in (12).

We show the band structure of a nanoribbon under the electric field Ez in figures 4(b) and
(c). The edge states become gapped due to the mixing of the right- and left-going edge states as
a result of the mirror-symmetry breaking.
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The gapless edge mode transports the electric current. In order to calculate the conductance
we separate a nanoribbon into three parts: the left (L) lead, the device (D) and the right (R) lead.
The low-bias conductance σ ( )E at the Fermi energy E is given by [56]

σ Γ Γ= †⎡⎣ ⎤⎦( ) ( ) ( ) ( ) ( )E
e

h
E G E E G ETr , (38)

2

L D R D

where Γ Σ Σ= − †⎡⎣ ⎤⎦( ) ( ) ( )E E Ei( ) ( ) ( )R L R L R L with the self-energies Σ ( )EL and Σ ( )ER , and

( )G ED is the single-particle Green function of the device,

Σ Σ
=

− − −
( ) ( ) ( )

G E
E H E E

1
, (39)D

D L R
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Figure 4.Multi-digit topological transistor, edge modes and conductance for the square
lattice. (a) We apply electric fields independently to the right and left edges of a
nanoribbon. ((b), (c)) Gapless edge modes emerge without electric fields since they are
protected by the mirror symmetry. The gap can be controlled using an electric field
independently on the right and left edges. (d) We have calculated the conductance as a
function of the gap energy. The conductance can take quantized values 0, 1 and 2 as in
(d4), hence providing us with a basic mechanism of a multi-digit topological transistor.



with the Hamiltonian HD of the device region. The self-energy Σ ( )E( )L R describes the effect of

the electrode on the electronic structure of the device, where the real part results in a shift of the
device levels while the imaginary part provides a lifetime. It is to be calculated numerically
[12, 54, 57–59].

We have calculated the conductance in the presence of Ez, which we show in figure 4(d).
The conductance near the Fermi energy is 2 for =E 0z (figure 4(d1)) since the edge states are
doubly degenerate. Once we turn on the electric field, the conductance falls to zero since the
edge states disappear due to the anticrossing (figure 4(d2)). Namely, it acts as a field-effect
transistor [42]. It is possible to apply different electric fields Ez1 and Ez2 to the right and left edge
states (figure 4(a)). The conductance can be 0, 1 and 2, which forms a multi-digit field-effect
topological transistor (figure 4(d4)). The conductance is quantized and topologically protected.

4. The triangular lattice with C6 symmetry

We proceed to study the triangular lattice with the C6 symmetry. Note that the triangular lattice
has hexagonal symmetry. By substituting N = 3 into the Hamiltonian (4), and taking only the
nearest neighbor sites (ℓ = 1), we obtain

λ= − +
⎡
⎣
⎢⎢

⎤
⎦
⎥⎥A

k k
k2 sin

2
cos

3

2
sin , (40)x

x y
x1

λ= −A
k k

2 3 cos
2

sin
3

2
. (41)y

x y
1

We show the band structure in figure 5. There are six massless Dirac cones, in which one
Dirac cone resides at the Γ point, three Dirac cones at the M points and two Dirac cones at the
K and ′K points. In the vicinity of each Dirac cone, we obtain the low-energy Dirac theory

= =A v k A v k, , (42)x x x y y y

with a set of velocities ( )v v,x y as λ λ− −( )3 , 31 1 for Γ , λ λ−( ), 31 1 for M1, λ λ( )3 2, 3 21 1 for K

and ′K . The chiralities of the Dirac cone at the Γ , K and ′K points are identical, while the three
M points have opposite chirality. This is in contrast with the case of graphene, where the
chiralities of K and ′K points are opposite.

We show the band structure of nanoribbons in figure 5. It is interesting that there exists a
flat band in the region π− ⩽ ⩽ − πk 2

3
and in π⩽ ⩽π k2

3
: see figure 5(f1). One is connecting the

K and M points, and the other is connecting the ′K and M points.
Like for the square lattice, we introduce the mass term (9) to the Hamiltonian. The leading

and the next-to-leading terms are

= + −
⎡
⎣
⎢⎢

⎤
⎦
⎥⎥m m m

k k k
4 sin

2
cos

3

2
cos

2
. (43)x y y

0 1
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On introducing the mass term, the Dirac cones at the K and ′K points become gapped. The
resultant spectrum has four Dirac cones, in which one Dirac cone resides at the Γ point and the
other three Dirac cones are at the M points.

Since there are six spin-degenerate Dirac cones, we have the mirror-Chern number and the
five valley–mirror-Chern numbers subject to the C6 symmetry. The mirror-Chern number is
given by

= + + − −( ) ( ) ( )C m m m m m
1
2

sgn 3 3
1
2

sgn 3 3 sgn . (44)M 0 1 0 1 0

This should be compared with the mirror-Chern number (34) for the square lattice with the
C4 symmetry. It follows that the phase diagram is essentially given by the same form as for
figure 3(e).
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Figure 5. Band structure and spin direction for the triangular lattice. (a) A contour plot
of the band structure of the Hamiltonian (8) on the triangular lattice. We have set
λ = 01 , = =m m 01 2 . The energy is lower in darker regions. (b) The band structure
along the lines shown in red in (a). We have set λ = 11 for all three curves. Cyan curves
are for = =m m 01 2 . Magenta curves are for =m 0.21 , =m 00 . Black curves are for

=m 0.21 , =m 0.10 . (c) The spin direction in the thin film with the C6 symmetry for the
whole Brillouin zone. (d) Birdʼs eye views and (e) projected views of the bulk band
structure. ((f), (g)) The band structure of nanoribbons, where the gapless edge states are
depicted using magenta curves. They emerge in topological insulators with nonzero
mirror-Chern numbers. We have taken λ = 11 in all figures. The values of m0 and m1 are
indicated in each figure. The vertical axis is the energy in units of λ1 in all figures. The
horizontal axes are π π− < ⩽kx , π π− < ⩽ky in (d), π π− < ⩽kx in (e), π π− < ⩽k
in (f) and (g).



We show the band structure of nanoribbons in figure 5 in the presence of the mass term
(43). The flat bands turn into the dispersive edge modes. The position of the edge modes is
between the K ( ′K ) and =M M2 3 points when <C 0M ( >C 0M ). As in the case of the square
lattice, there is a perfect agreement between the mirror-Chern number and the edge states of
nanoribbons, as dictated by the bulk–edge correspondence.

5. Discussion

The minimal tight-binding Hamiltonian of a TCI thin film is a four-band model, in order to take
into account the spin and pseudospin (surface) degrees of freedom. We have constructed such a
model on the basis of a symmetry analysis. The prominent features are that gapless Dirac cones
emerge at all the high-symmetry points and that we can provide them with gaps
phenomenologically at our disposal.

We have analyzed the square lattice with the C4 symmetry and the triangular lattice with
theC6 symmetry in detail. The results may well describe the thin films made of the [001] surface
(C4 symmetry) and the [111] surface (C6 symmetry) made of Pbx −Sn x1 Te, by choosing the mass
parameters appropriately. According to experimental observations and a first-principles
calculation, there are large gaps at the Γ and M points in the [001] surface [37–39, 42]. This
is realized by taking a large value of m1 in our model. On the other hand there are small gaps at
the X and Y points, which is taken care of by introducing a small value of m0.

We may similarly discuss the square lattice with the C2 symmetry, with the mass term
being = +m m m kcos x0 1 . When =m m0 1, there are Dirac cones only at X and M points, as is
consistent with theoretical results [42, 47] on the [110] surface of Pbx −Sn x1 Te. The model with
theC3 symmetry is also constructed on the honeycomb lattice. We find Dirac cones at the K and

′K points and two degenerate Dirac cones at the Γ point.
Our basic Hamiltonian consists of SOI of the type σ · ℓdij as in (4). We have made this

choice since it reproduces the low-energy Dirac theory [42]. The same spectrum is obtained
even if we take a SOI of the Rashba type σ × ℓdij as in (3), although the low-energy Dirac theory

now reads

σ σ τ τ= + +( )H v k v k m , (45)X y x x y y x1 2

σ σ τ τ= + +( )H v k v k m , (46)Y y x x y y x2 1

and is different from (22). We predict that another TCI may be found in the future, where the
Rashba-type Hamiltonian (3) plays the basic role.

In passing, we make comments on similarities between TCI thin film and silicene. In both
cases, we can control the band gap externally by applying an electric field. Furthermore, both
have the valley degree of freedom. Nevertheless, there are two main differences. One is that the
roles of the perpendicular electric field are very different. For TCI thin film, it acts as a mirror-
symmetry breaking term. As a result, the edge state disappears in the presence of the external
electric field. In the case of silicene, it does not act as a symmetry breaking term, where there is
symmetry whether the spin sz is a good quantum number or not. As a result, the edge state does
not disappear in the presence of the electric field. Second, the electric field induces a topological
phase transition in silicene since it may compete with the spin–orbit interaction. On the other
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hand, it does not induce a topological phase transition in TCI thin film since the electric field is
off-diagonal with respect to the other terms.

A TCI thin film may be used to design a nanodevice for topological electronics. Edge
states can be gapped by applying electric fields independently to the right and left edges. We
have proposed a multi-digit field-effect topological quantum transistor with the use of gapless
edge states of a TCI thin film nanoribbon. This could be a basic component of future topological
quantum devices. Our results open up a new route to electric-field-controllable topological
electronics.
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