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The existing transformation from a relativistic real scalar field to a complex nonrelativistic scalar field by
Namjoo, Guth, and Kaiser is generalized from Minkowski space to a more general background metric. In
that case the transformation is not purely algebraic any more but determined by a differential equation. We
apply the generalized transformation to a real scalar with ¢* interaction on an Friedmann-Lemaitre-
Robertson-Walker cosmologically expanding background and calculate the resulting nonrelativistic action
up to second order in small parameters. We also show that the transformation can be interpreted as a
Bogoliubov transformation between relativistic and nonrelativistic creation and annihilation operators and
comment on emerging symmetries in the nonrelativistic theory.
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I. INTRODUCTION

The exact nature of dark matter is an open problem that
reaches across multiple areas of physics from cosmology to
particle physics. Compared to baryonic matter, the energy
density of dark matter is about five times as large.
Observational data implies that models of cold and colli-
sionless dark matter are good candidates for a cosmological
description [1]. From the side of particle physics, a well-
motivated candidate for dark matter particles are axions [2].
Axions arise as the Goldstone bosons of a spontaneously
broken U(1) symmetry which is introduced to solve the
strong CP problem and behave as pseudoscalars under
Lorentz-transformations [3-5]. In the later universe we can
expect such axions to have nonrelativistic momenta [6].
Thus, a nonrelativistic effective approach is appropriate. A
nonrelativistic limit of scalar field theories is needed in
other contexts such as Bose-Einstein condensates and
condensed-matter systems.

The precise relation between the relativistic theory and
an effective nonrelativistic description is important for
interesting phenomenological questions, such as whether
scalar field dark matter resembles a Bose-Einstein con-
densate or whether it could show superfluid behavior
[6-19].
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Moreover, this question is important to understand the
infrared regime in of relativistic quantum field theories and
the corresponding universality classes. Specifically, rela-
tivistic scalar field theories can show condensation phe-
nomena and one would like to understand in detail how
they are related to various types of condensate in a
nonrelativistic field theoretic description [20-24].

Several different methods have been developed to arrive
at an effective nonrelativistic description for real scalars. In
ref. [25], Ruffini and Bonazzola developed a description for
gravitationally bound, noninteracting bosons in Bose
stars which was later generalized by Eby, Suranyi, and
Wijewardhana in Ref. [26]. Mukaida, Takimoto and
Yamada calculated an effective Lagrangian for the non-
relativistic field by integrating out regions of the phase
space not close to the mass pole in [27]. Their ansatz was
shown in Ref. [28] to be equivalent up to a field redefinition
by Braaten, Mohapatra and Zhang to their effective
Lagrangian from Ref. [13]. Namjoo, Guth, and Kaiser
discovered an exact transformation between a relativistic
real scalar field ¢ and a nonrelativistic complex scalar field
w which has a Schroedinger-like equation of motion [29].
This paper expands on their ideas by generalising
their transformation to systems in curved space-time. For
cosmological applications we are specifically interested in
real scalars on a Friedmann-Lemaitre-Robertson-Walker
(FLRW) metric. We managed to find a general class of
transformations for a free real scalar which is minimally
coupled to a classical background metric. The formalism
preserves the invariance under coordinate transformations
until the nonrelativistic limit is taken and can naturally be
extended to complex scalar fields. In FLRW space-time,
introducing a potential term in the relativistic theory

introduces a term proportional to Im(w*ﬁzw) in the
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effective potential for the nonrelativistic field which not is
not present on a time-independent background.

A kinetic description for real scalar fields in an expand-
ing geometry has also been developed in Refs. [30,31]
while Ref. [32] discusses a field theoretic approach and
connects it to a kinetic description through the two-particle
irreducible effective action formalism.

In Sec. II, we give a quick overview over methods
applied in order to obtain nonrelativistic limits of theories
in Minkowski space-time and point out problems that arise
when applying this to real scalar fields on a non-
Minkowskian background metric. In Sec. Il A, we intro-
duce a generalization of the transformation proposed by
Namjoo, Guth, and Kaiser in Ref. [29] to general
Hamiltonian systems with linear equations of motion.
Section III B covers a way to formulate this transformation
in a covariant fashion which allows us to maintain
invariance under coordinate transformations. In Sec. III C,
this method is applied to a free real scalar on a Friedman-
Lemaitre-Robertson-Walker background. Section III D
contains the derivation of an effective nonrelativistic
potential for the same system with an added A¢* inter-
action in the relativistic theory. The natural extension of
the formalism to complex scalar fields is discussed in
Sec. IITE. Section III F deals with the symmetries that
emerge in the transformed theory and their breaking under
the addition of interaction terms. In Sec. IV, we interpret
the nonrelativistic limit as a Bogoliubov transformation
between the annihilation and creation operators of rela-
tivistic and nonrelativistic particles.

In this paper we choose units such that 7 = 1 and ¢ = 1
in all sections except for Sec. II A in which the factors of ¢
are explicitly written out and eventually taken to the
limit ¢ — oo.

II. PREVIOUS WORKS

A. The ¢ — oo limit

A simple way to take the nonrelativistic limit in a
classical field theory for a complex relativistic scalar field
¢ is to take the limit ¢ — oo in the equations of motion.
One may start from the equations of motion for a free field
in the form

éa%¢—€2¢+m2c2¢ =0. (1)

One splits off an oscillation with frequency mc? to define
the nonrelativistic field y through the relation

¢ — 1 e—imczrw. (2)

V2m

Substituting this into the Eq. (1) leads to

1 =2
—— Py — 0y ——Vy =0. 3
S5Oy —i0y — 5 Vy (3)
In the limit ¢ — oo one can drop the first term and ends up
with the Schrodinger equation for a free particle,

. I s
—i0,w — %V%p =0. (4)

Note that we now have a first order differential equation in
time so that the Cauchy initial data consist only of the field
itself. In contrast, for the Klein-Gordon equation one must
also specify the time derivative J,¢ at some initial time or
on an appropriate Cauchy surface. This shows that the
Schroedinger equation propagates less information than the
complex Klein-Gordon equation. In terms of the quantized
theory, during the transition from Eq. (3) to Eq. (4), we
have dropped the information about possible antiparticle
excitations.

Similarly, we can start with a free complex scalar field in
a Friedmann-Lemaitre-Robertson-Walker (FLRW) space-
time described by a scale factor a(¢). The equation of
motion is

1 3H -
200+ 30— a2V +micip=0 (5

where H = a/a is the Hubble rate. Using the same relation
(2) we are first led to
1 <)
— Vi =0.
2mc? v
(6)

The formal limit ¢ — oo yields then a Schrodinger equation
with additional Hubble damping or dilution term,

. . 3H 3H 1
3?W"<1+lm>f’f“’"7‘”‘zazm

1

=2 3.
2a2mv w— ElHl// =0. (7)

While the method above works fine for some applications,
we encounter problems if we try to use it for real scalar
fields. A common ansatz to transform between the real
scalar ¢ and the complex nonrelativistic field y is

1
=

This leads to an equation of motion for y which contains

terms proportional to w*. These terms contain fast oscil-
+2imc’t

Re(e™my). (8)

lations proportional to e and are usually neglected
because at macroscopic time scales they are expected to
average to zero. To avoid these terms altogether, at least in
the noninteracting theory, we turn to a modified trans-
formation proposed in Ref. [29].
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B. Exact transformations

1. Minkowski space

For a free, real scalar field in Minkowski space-time we
have the Lagrangian density (we choose now units with
c=1)

1 1
L= Ei/lﬂy(aﬂ(ﬁ)(abqs) - 5 m2¢27 (9)
the Hamiltonian density

1 1,2 = 1
H= 5”2 + E(V@ (Vo) + 5’"2452’ (10)

and equations of motion

—

bp=n w=(V —me. (11)

To bring this problem into a form where the non-
relativistic limit is more apparent, Ref. [29] proposed the
transformation to a new complex field v,

y/:\/%e“m‘(??%cthiP‘%éﬁ),

2 m

e M iy ot

W —\/;e <77¢ mP (f)). (12)

This uses the nonlocal derivative operator

2 =2 =2
\ vo)?
P = 1_72:1_7—( 2‘+ (13)

8m

where the right-hand side is actually a low energy expan-
sion. It can often be truncated after the second term, which
yields then the standard nonrelativistic limit.

With the identification 7 = ¢, Eq. (12) can be under-
stood as a canonical transformation (see also Sec. IIT A and
Appendix A). The two real first order equations of motion
(11) are now combined into a single first order complex
equation

—iy + m(P — 1)y = 0. (14)

Note that to leading order in the expansion on the right-
hand side of Eq. (13) one recovers Schrodinger’s equation
from (14). Also, the equations of motion for y do not have
any fast oscillating terms like e*™y* for this derivation
based on the transformation (12). For completeness, we
note also the inverse relation to (12),

1 L )
¢ — 2 P—E(e—lmtw + e+1mtw*)’

m
q.ﬁ = _igﬁ(e—imtw _ e+imtl// )

Note that the transformation (12) and its inverse (15) are,
as a consequence of the definition (13), nonlocal in space
but local with respect to time. Mathematically, the operator
P it is defined through an eigenvalue decomposition of the

(15)

Laplace-Beltrami operator V°. Under many circumstances,
the latter has real and negative (or vanishing) eigenvalues.

We will refer to (12) as the Namjoo-Guth-Kaiser (NGK)
transformation.

2. Expanding space-time

For some applications such as the description of axions as
a dark matter candidate it is interesting to consider an
expanding Friedmann-Lemaitre-Robertson-Walker (FLRW)
geometry. The equation of motion for a real scalar field
becomes Eq. (5). One may attempt to use a similar trans-
formation as previously in Eq. (12) with the operator in (13)
replaced by

Po=\l1-—— (16)

However, this does not lead to an equation of motion
involving ¢ only, but to one which still contains fastly
oscillating terms. Essentially the reason is that (16) has an
explicit time dependence because a # 0. This motivates the
more general approach to the problem to which we turn next.

III. MORE GENERAL ANSATZ

A. Time dependent formalism

Our goal in this section is to find a linear transformation
from the original real scalar field and its time derivative or
conjugate momentum to a complex scalar field and its
complex conjugate which allow for an easy interpretation
of the nonrelativistic limit. This means that the transformed
field y should have a Schrodinger-like equation of motion

(17)

A

iy = Oy,

where O is a linear operator. From the NGK trans-
formation we can expect this transformation to be non-
local in space. However, we want it to be local in time
even in more complex geometries than just Minkowski
space-time. Furthermore, the transformation between the
original scalar field and its conjugate momentum and the
real and imaginary part of the transformed field should
preserve the Poisson-brackets (or commutators in a
quantized theory).
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As a first step, we restrict ourselves to systems with
Hamiltonians which lead to linear equations of motion and
do not depend on the direction of spatial momenta. Without
loss of generality we can assume that there are no mixed
terms between fields and their conjugate momenta as we
could otherwise get rid of such terms via a canonical
transformation. The most general Hamiltonian under these
conditions then has the form

1 - 1 =3
H:/d3x{§n’A(t,—V2)ﬂ+§¢B(t, —V2)¢}, (18)

where ¢ and 7z are the scalar field and its conjugate
momentum and A(t, p?) and B(t, p*) are two operators

which are analytical expressions of the operator p> = ~V.
(Note that A and B commute.) The equations of motion
are now

=2

¢ =A(t, -V,  i=-B(t-V)p. (19)

As an example, for an expanding FLRW geometry one
would have A = a3 and B = a3(m? - V' /d?).

Let us now make the ansatz for a new, complex field y as
a linear combination of the real field ¢ and its conjugate
momentum,

w = a(t,—V*)¢ + ip(t, =V ), (20)

where a and S are also functions of time and of p” in
momentum space. We further assume that they are invert-
ible. Because all appearing operators commute we can be
ignorant about their ordering and express them all as

functions of the eigenvalues p> of —V”. The time derivative
of (20) follows with (19) as

= (aa™' — ifBaVYag + (B~ — iaAp~")ipr. (21)

We demand that (21) can be written as y ~ y to avoid fast-
oscillating terms that appear together with w*. It is
convenient to define

r=a’'p, (22)

which is also a function of p? and time f. From this
definition and the Hamiltonian equations of motion, the
proportionality we ask for becomes equivalent to the
differential equation for time- and j*-dependent functions

7(t.p*) +iB(t. p)y (1. p*)* — iA(t. p?) = 0. (23)

Note that this equation is fully fixed by the Hamiltonian
(18) although the solution needs in addition also an initial
condition y(ty, p?). To determine the specific solution
which allows for an easy interpretation as nonrelativistic

limit, we demand that the resulting transformation becomes
the NGK transformation in the limit of Minkowski space.

For a y that solves Eq. (23) and y = a(¢ + iyx), the
equation of motion is then

yr = (a~'a—iBy)y. (24)

In the Minkowski space case we can read off from (10) that
A=1and B=(m?- 62) This is indeed solved by y =
m~'"P~1 = B~1/2 50 that y = 0, as was used in Ref. [29].

The second important property that the transformation is
supposed to have is that it should preserve the Poisson
brackets (or equal time commutation relations). To discuss
this, we split y into its real and imaginary parts with
standard normalization as

1

V=175 (1 + iga). (25)
We want ¢, and its conjugate momentum to have the same
Poisson brackets as the original real scalar and its conjugate
momentum. For a complex nonrelativistic field with first
order time derivative in the Lagrangian one expects that
the conjugate momentum of the real part is proportional
to the imaginary part and vice versa. With our normaliza-
tion the conjugate momentum of ¢, is ¢, and the one of ¢,
is —@,.

One way to ensure that the Poisson brackets are
preserved is to demand that the transformation be canoni-
cal. Here this means that it can be derived from a generating
function F, via

n(p. @) = —anéZ, ¢) .

The Hamiltonian for the transformed field is then

01(d.92) 2%2;02)- (26)

OF
Huew (@1, 92) = Hoa(d(@1,92). 7(@1, 02)) + 8—t2 (27)

We now start with the transformation we already have
and search for a generating function that matches it in order
to confirm that the transformation is canonical. From
Egs. (20) and (25) we find

(cﬁ) _ 1 <Re<a7) Im(ar)) <co1> (28)
7) " V2laPRe(y) \~Im(a) Re(a) ) \ g
In order to find a generating function F,(¢,q,) that

fulfills Eq. (26) we need to first invert ¢(¢@,, ¢,) for ¢,.
Rearranging (28) we get

91 = VIRe(ay)" (—%lrn(ay)qoz . |a|2Re<y>¢). (29)

Second, we need to express z in terms of ¢ and ¢,,

036024-4



REAL SCALAR FIELD, THE NONRELATIVISTIC LIMIT, AND ...

PHYS. REV. D 102, 036024 (2020)

£ =Relar) (o - m@p).  (30)

Integration of these expressions to get F, yields the
condition for the transformation to be canonical,

laf* = (2Re(y))~". (31)

In other words, once Eq. (23) has been solved, this fixes
immediately also |a|. The complex phase of « is still left
undetermined, however. As we will see later, this phase is
related to a constant offset in the potential energy. Our
choice in this paper will be arg(a) = (m — V,)t. A shift of
the chemical potential is then realized as a phase shift of the
nonrelativistic field y as (expected). The transformation
then takes the form

y = " (Re(y)) "2 (p + iym),
y* = e Re() 2= iya). (32)

The Poisson brackets / commutation relations are now
related through

[}, 7] = @1, 2] = iy, w]. (33)

Now let us look at the influence of this condition on the
equation of motion yy = (&/a — iBy)y. We can decompose
a = |ale!™=Y0), then

di 0;|a]

a |a| + l(m - Vo), (34)
such that
Q B d,|al B _lazRe(V)
Re(a) “Tal 2 Re) (33)

If we now assume that the eigenvalues of A(7) and B()
are real, the real part of (23) gives

_ latRe(]/)
S 2 Re(y)

Blm(y) (36)

Thus, the real parts of —iBy and a/a exactly cancel which
leaves us with the linear equation of motion

ivr = [BRe(y) — (m = Vo)l (37)
This result is also in agreement with Eq. (27) (see also

Appendix A).
The action corresponding to (37) is

s= [ {36w - v BRelr) - (vl . (9

Note that this is still an exact rewriting and equivalent to the
Hamiltonian (18). Given A and B one needs to solve
Eq. (23) to determine y which in turn gives the trans-
formation (32). The real nonrelativistic limit involves in
addition also an expansion in orders of the Laplace-
Beltrami operator.

As mentioned, for the Minkowski case we have B =
(mP)? and y = Re(y) = (mP)~! with P as defined in (13).
The lowest nontrivial order of the expansion in v /m? is the

Schroedinger equation with Hamiltonian H = e /(2m) +
Vo, higher orders add relativistic corrections. Here we see
that V is indeed only a constant offset in the energy which
can be changed at will, Vj — V + AV, by shifting the
phase of the nonrelativistic field, y — e~*AVoly,

B. Covariant formalism

While the above transformation works well in
Minkowski space-time or an expanding cosmological
space, time is somewhat singled out in the formalism
and we would like to generalize this somewhat. We start
from the action of a free massive real scalar field in a
general space-time (using a mostly plus convention for the
metric),

1 1
s= [ @xmi {3 EaT - w9
Then the Euler-Lagrange equation for ¢ is
-9V, 0,¢ + m?¢ = 0. (40)

We now use a real, timelike vector field u* (normalized to
gu'u” = —1) to define y as a linear combination of ¢ and
its derivative u*0,¢,

W = ag + ifu'd,. (41)
We further define the projector perpendicular to u# as
Ay = Gy + Uyl (42)

The vector “frame” field u* can be used to define those
velocities as nonrelativistic that are mostly parallel to it, i.e.,
the velocity »* is called nonrelativistic if

A v vY [ (u-v)? < 1. (43)

Note that the frame field u” resembles somewhat a
(relativistic) fluid velocity.
From the equation of motion (40) we get
Wy = [u'd,a+ ip(—m* + V,A"0,)]¢p
T ot 0,6 - ipV,w) (D, p).  (44)

036024-5
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Demanding that this be proportional to y and introducing
y =a ', we end up with a differential equation for y
which is very similar to (23),

ud,y + iBy* — (Vut)y —i=0, (45)
where we have here
B=m?— VﬂA/‘”a,,. (46)

If we want (y, ") to have the same commutation relations
as (¢, u'd,¢) up to a factor i, we end up with the same
condition for a, Eq. (31), and we can infer

1u"O,Re(y) 1

PIn) =3 Refy)

~5 V. (47)

The resulting equation of motion for the complex field
iS now

i ut o,y + % (V' )y | = —[u"d, arg(a) — BRe(y)|y.
(48)

With the choice arg(a) = (m — V)t this equation of
motion corresponds to a Lagrangian very similar to the
usual one for nonrelativistic scalars,

L= é[(u“aﬂw)w* —w(W'o,y)]
+ y*[u"0, arg(a) — BRe(y)]y. (49)

Going back to Minkowski space-time g,, = 7,,, We can
choose u* = (1,0,0,0) and arg(a) = (m — V,)t which
leads to the same differential equation for y as in the
previous section and the action reduces to (38).

C. Application to the FLRW case

Now we can go back to the problem of an explicitly time-
dependent space-time geometry. In FLRW space-time the
metric is g,, = diag(—1,d?, a? a*) We now choose our
frame fields as w* = (1, 0,0, 0) which fulfils the conditions
from the previous section. The the differential operator
u'V, reduces to the time derivative in this frame (when
acting on a scalar),

Wy = O, (50)
and similarly
V, Ay = a2 Vy. (51)

The next step is to solve differential equation (45)
using that V,u* =3H. This can be done by making

the assumption that y can be written as a power series
in H,

1= S P, (52)
n=0

where the coefficients f, are analytical functions of the
operator in (16). The form of the f, is determined by a
recursive formula discussed in Appendix B. There is an
interplay of two frequency scales, one is given by the rest
energy m the other by the expansion of the universe or
Hubble rate a/a = H. While not strictly necessary, for
simplicity we are going to make the assumption H/m < 1
corresponding to late times. The coefficient functions up to
linear order in H are

fo(Py) =m™'P.

FP) == (P +2P2). (59)

For the choice V|, = 0 this gives us the transformation

m : 1 iH
a= \/:P}/ze““‘, y=— Pt == (P;* +2P%)|,
2 m 2m

(54)

such that

w = \/gfptll/zeimtcﬁ

1 . H
n 1/2 elm{ml_ ;_m (P7* +2P72) . (55)

\V2m ¢

The particular choice V; = 0 then leads to the equation of
motion

z[y'/ + %Hy/} =m(P, - y. (56)

This is a Schrodinger equation with a dilution term due to
the expansion, sometimes called Hubble damping.

D. Effective Lagrangian for a A¢* theory

The following derivation of an effective Lagrangian and
equation of motion for y in an interacting theory follows
closely the procedure used by Namjoo, Guth, and Kaiser
[29]. For the relativistic theory we take the action as

036024-6
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S = /d4xa3{%(6,¢)2 - %Cl_3(§¢) : (647)
1 A
—§m2¢2—ﬂ¢4}. (57)

The equation of motion for y is

I{W‘FEHW} =m(P, - 1)w+§a7(a rw + ayy*)?

=m(P, - Dy +-—-—0G, (58)

where we define

. . iH
G =em (73;‘/2 — = (P + 2Py 2))
2m
X (lpe—imt 4 T*eimt)?a, (59)

and use
_ H _
‘P:( a”2+;—m(7’a7/2+27’u3/2)>w- (60)

We split now the field y into oscillations with different
multiples of arg(a) = mt,

W= i ey, (61)

UV=—00

We also work with ¥, which is related to y, linearly

completely analogous to (60). We also expand G into a
similar Fourier series,

[Se]

G: Z eivmtéw (62)

UV=—00

and find then for the components

m

~ _ H ,__ _
G, = ( 01/2 - %(Pa”z + 2Pg3/2)>

x Z {ql”lPﬂ/lP2+D_ﬂ_ﬂ/+lP;\P;,‘{‘*

d—v—p—y
Hop'=—00

39,

e IV, (63)

This lets us write equations of motion for each individual
Fourier component v,

. 3 Y
i[wy+—H%} =m(P,— 1 +v)y +—-—G,, (64)
2 4\m

or similarly
g 3
i ‘P,,—K‘P-FEH‘PD =m(P,—1+v)¥
A 12 HH o _9p 324\ £
a a 2 a 1)
+4!m2 (73 +2m (Pa""+2P,77) |G (65)

where
K=0In (P;‘” - —;H (P2 + 2P 2)), (66)
m

is proportional to the Hubble rate H.
This can be rewritten to give an expression for ¥,

. 3
¥, = —il, <le -KY¥Y, + EHT”> +1G,, (67)

with the abbreviation
[, =—(m(P,—1+v)", (68)
and

_ 1 —12 , H __9p _3/2
Gb—4!m21—',,< P —I—Zm(Pa +2P;77) |G, (69)

For the nonrelativistic limit we want to end up with an
effective equation of motion for the slow field v, = v,
and assume that all other y, and their time derivatives
(corrected to account for the spatial expansion) are small.
For this purpose we expand ¥, and G, in orders of several

small parameters namely A, (¥, — KW, + (3/2)HY,)/¥,,
and eventually also v’ /m?.

We write formally the Fourier components of the field as
a perturbative series

v, =Y W, (70)

n=0
where at leading order only the slow field ¥, is non-
vanishing, \}‘,(,0) = 6,0¥,. Moreover, the slow field has no
contributions from higher orders in the perturbative expan-
sion, ‘PE)’DO) = 0. The first order in the perturbative expan-

sion gives for v # 0 the relation
R Te (71)

Higher orders are then governed by a recursive formula,

(n—1

) . 3 ) e
T£>1)——iFu(Ty—K‘PU+§HLPv> +aG07Y. (72)

036024-7
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While it might seem problematic that there is ‘i‘l, on the
right-hand side, a term like this also arises in the
Minkowski space-time case and was discussed in [29]
(and shown to be unproblematic in the Appendix). We use

|

. 3
l|}//s +_HWS:| = m(Pa - l)l//s +/1F61 <

2

(71) to expand the equation of motion for y; up to second
order in small parameters (except for the spatial deriva-
tives). For simplicity, we consider only terms up to linear
order in (H/m). This yields

B H o\
a'/2+l—(7?a7/2+27>a3/2)> Go
2m

A 2 H ___9p 32 5
~ -1 ] — a I a 2 a lPs LPS
Py D+ g (P22 = 327 4 2P0 )
12
T (315 + 615 + I + T |y, [P, (73)

Expanding also in the spatial derivatives then yields

. 3 1 =2 A 1 A =y} =) =)
] —H ~———V Py, ———=V* —— WAV + 2y, [PV \% 2
i {ws +3 ws} 52m Y Vs T Wl = g s Vi o sV 2l PV V(s Py
TAH =2 =5 =y 1722
s VWS 2 PV = V)] = s iy (74)
This equation of motion then corresponds to an effective Lagrangian
i . . = > 1 =) =)
et = 5 sy =yis) = o5 (Vs ) (V) = 1o s Il + o5 (Viws ) (Vivs)
A =y => . . 1AH =y =2 1722
—W|Ws|2(%v ws +w,Vys) - lWWsP(%V v, — v, V) T . (75)

Notably, we have a term with an imaginary coefficient in the
effective Lagrangian. This term 1is proportional to
both coupling strength 4 and the Hubble rate H. It does
however not break unitarity because (wﬁﬁzws - wsﬁzwﬁ) =
2iIm(y/§T§2y/§) is purely imaginary.

Let us note that while the last term in (75) seems to imply
an instability (because the coefficient of |y|® is positive
and therefore contributes negatively to the effective poten-
tial), this is not necessarily a problem. In a relativistic
context the effective potential needs to be bounded from
below because otherwise the theory would become unsta-
ble and energy could be gained by making the spatially
homogeneous part of the field grow. In the nonrelativistic
setup, fast oscillating modes have been integrated out and
the contribution of particles rest masses ~mc* x N has
already been subtracted from the Hamiltonian. The residual
energy is not always bounded. However, as a consequence
of the global U(1) symmetry in the nonrelativistic theory,
particle number is strictly conserved. This forbids a growth
of the homogeneous part of .

One can also understand this phenomenon from another
point of view. The analytic structure of the nonrelativistic
propagator (related to nonrelativistic causality) leads to a
decoupling between different sectors of the theory familiar

from quantum mechanics. The single particle problem can
be solved independent of the two particle problem, the
two particle problem can be solved independent of the
three particle problem and so on [33]. This decoupling
also excludes the possibility that energy is gained from an
instability of the vacuum.

Despite these arguments, the positive sign in front of the
lyrs|® term in (75) is still interesting, specifically in the
context of a many body calculation at nonvanishing density
and temperature. A more detailed calculation must show
how it influences the form of the full quantum effective
potential and the (quantum) phase diagram.

E. Complex scalar fields

Let us now turn to complex relativistic fields and study
their nonrelativistic limit, as well. We may decompose a
complex scalar field in terms of two real fields,

1 .
@ = 7 (&1 + igh2). (76)

The behaviour of the real scalar fields ¢; and ¢, is given by
the Hamiltonian dynamics in Eq. (19). For simplicity, let us
discuss two noninteracting real scalars in Minkowski
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space-time such that the Lagrangian can be written in terms
of the complex field,

L = —(0,8")(3,®) — m DD, (77)

The conjugate momenta for the complex scalar and its
complex conjugate are

H:%:d)*, =25 _ 6. (78)
19,0 o0D”

The Hamiltonian assumes the form
H =TT + (V") (Vo) + m>D . (79)

We now transform the real scalars ¢; and ¢, into (non-
relativistic) complex fields y; and y, respectively, follow-
ing the same steps as previously. The Lagrangian becomes

2 .
l M * .k *
L= Z (l//nl//n _l//nl//n) _l//n(m(P_ 1) + VO)Wn' (80)

Similarly to the transformation for the real scalars we define

. 1 .
¥ = a(®+ iyIl") = 75(1//1 + i),
. 1 .
¥y = a(®" +iyll) = 7§(V/l — iy). (81)

These two fields are for particles and antiparticles, respec-
tively. The Lagrangian can be rewritten in terms these
fields as

2

L= Z{% (W, — W, %) — W (m(P—1) + vom}.

n=1

(82)

While we used Minkowski space-time as an example, the
transformation and resulting Lagrangian holds in general
for systems in which the transformation of the real scalars
can be performed.

In covariant notation,

. 1 :
¥ =a(®+iyu'V,@) = 7§(W1 + iyr),

. . 1 .
¥, = a(®* + iyu'V,0%) = 7§(lm —iyy).  (83)

The Lagrangian becomes

£= Y { 5 (w0 w)w; - v w0, w;)
+ ¥, (w0, arg(a) — BRe(y))‘Pn}. (84)

While a noninteracting relativistic theory will always lead
to a Lagrangian that decomposes into separate ¥, and ¥,
parts for particles and antiparticles respectively, interactions
in the relativistic theory will introduce mixed terms into the
nonrelativistic Lagrangian.

To lowest order in V° the equation of motion matches
with the simpler limit from the introduction for Minkowski
and FLRW space-time if we make the choices arg(a) = mf,
u = (1,0,0,0) and set ¥,(x) = 0. This last choice is the
point at which we decide to neglect any possible anti-
particle excitations which are not present in the simpler
limit. For Minkowski space-time in lowest order approxi-
mation the equation of motion becomes the one obtained
from the naive formalism (4),

F. Symmetries

The Lagrangian of the free real scalar field has for a
general space-time metric a Z, symmetry. In the trans-
formed Lagrangian (38) this symmetry is upgraded to a
global U(1) symmetry. The associated Noether charge is

0- / Frygwl. 0=0.  (85)

For Minkowski space-time we have something that resem-
bles the conservation of the particle number in quantum
mechanics. In FLRW space-time the determinant of the
metric introduces a factor that accounts for the spatial
expansion over time which implies [ d*x|y|* o a73(1).

Note that this emergent U(1) symmetry is in principle
broken by any interaction term ¢" in the original
Lagrangian. However, the low energy perturbative expan-
sion we have made in Sec. III D enforces it even in the
approximation to the interacting theory. Beyond this
approximation, inelastic processes such as 2 — 4 and 4 —
2 should be possible that also break the emergent U(1)
symmetry.

In the case of the complex scalar field, the Lagrangian
has a global U(1) symmetry already before the trans-
formation. After the transformation there are two indepen-
dent U(1) symmetries for ¥; and ¥, each as well as a U(2)
symmetry for the duplet (¥,,¥,). The U(1) symmetries
again correspond to something akin to conserved individual
particle numbers. If there is an interaction term present in
the original action that preserves the U(1) symmetry of @,
the individual U(1) symmetries for ¥, and ¥, as well
as the U(2) symmetry break down to a single global U(1)
symmetry realized by
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¥, - e, ¥, - e7i0Y,, (86)

The corresponding Noether charge then is

0- / Ex(W - WP, 0=0. (87)

which resembles charge conservation. Notably, this sym-
metry does not have to be explicitly enforced in the
approximation to be maintained in the nonrelativistic limit.

G. Transformation of the functional integral

We start from the Hamiltonian form of the path integral
for the relativistic scalar theory in Minkowski space,

7= / Dg{)Dzrexp{i / d4x{ﬂ¢—H(¢,ﬂ)]}. (88)

This form of the functional integral is most directly related
to a nonrelativistic functional integral

z= / DyDy exp {iSly.y*]}. (89)

Indeed, the complex field y is just a linear combination of
¢ and the conjugate momentum field z as displayed by
Eq. (20), cf. also Ref. [34]. We use Fujikawa’s method
(cf. [35]) to identify potential anomalies. In order for the
transformation to possibly be free of anomalies, we must
show that the transformation of the integral measure does
not add further terms. For this purpose we decompose both
relativistic and nonrelativistic fields into orthonormal

—

eigenfunctions ;1,1 of the Laplace-Beltrami operator v
with eigenvalues 4, as

¢ = Zan(t)j’m
v =3,

7= b,(1)i
w =D byt (90)

The transformation of the path integral measure is given by
the Jacobian of the transformation between primed and
unprimed coefficients. The connection between the rela-
tivistic and nonrelativistic coefficients is given by

ay(t) = 4y -y = a(d,)a, (1) + iy(2,)ba(1)],
b/n(t> = j'rTz Yt = a*(/ln)[an(t) - iy*(’ln)bn(t>]' (91)

The Jacobian of the transformation is now the determinant
of a block matrix

det 5mna n

dal,  da,,

da ob,
=|det| _"

ob,,  0bl,

Ba, Ob,

10,547 () )‘
=10 @* (A)7" (An)
zmnla( )\( () + 7))
i8,)| = 1. (92)

= | det

(=
= | det(—
We infer that the measure of the path integral seems to have

no obvious anomalies under the NGK transformation, at
least for the charge neutral fields we have investigated.

IV. INTERPRETATION AS BOGOLIUBOV
TRANSFORMATION

In Minkowski space-time it is possible to decompose the
scalar field operator into annihilation and creation operator as

K alem ). (93)

d3
4= | Gy

In a time-dependent situation such as a cosmological
expansion one can write similarly

&3k o . =
b= [ G 0™ + alz0e ™). (04)

but there is an additional freedom in the choice of the mode
functions f;. The latter are only restricted by a differential
equation and a normalization condition. Different choices of
mode functions correspond to different choices of annihila-
tion and creation operators and also have different vacua.

This change between operators can be expressed as a
linear transformation

[
by = uza; +v_ga_g. (95)

If the new set of operators (b7, b;) can be written in this
way in terms of the old ones (aj, a%) and the condition

luz|* — |v_z[* = 1 holds, this is called a Bogoliubov trans-
formation. This type of transformation leaves the commu-
tation relations invariant, [b;, bl = [a k,ai].

k k

However, a vacuum state with respect to a certain choice
of operators might not be vacuum state with respect to the
transformed ones. The density of b-particles in the a-
vacuum is given by |1J~|2 As we are working in the context
of quantum fields on curved backgrounds, it is interesting
to express our transformation between relativistic and
nonrelativistic fields as a Bogoliubov transformation.
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A. Minkowski space-time

The canonical transformation introduced can also be
interpreted as a Bogoliubov transformation between two
sets of annihilation and creation operators (a;,,a;) and
(bp. b;). To see this we start with the standard definition of

these operators for a real scalar in Minkowski space-time,

ipE |t PR
(ape’”* + aze )

’

2E~

. d3p JEs, 5% -
ﬂ':—l/<2ﬂ_)3 TP(aﬁe””‘—a e

with Ej = +/ p> +m?*. We then define the creation and
annihilation operators for the transformed fields through

&*p ip¥ x Ep oy i
W:/(2ﬂ)3bﬁ€p ’ v :/(Zﬂ)3bﬁe o)

Using the transformation w = a(¢ + iyz) and comparing
yields relation (95) between operators with the mode
functions

75, (%)

STy

(o + iarEp)
Uy = a+iayEj),
2E;
1 .
v (a* +ia'y Ep) = v_p, (98)

2F;

.

where a and y are now no longer differential operators, but
=2 .

each V~ is replaced by —p”. To confirm that the trans-

formation indeed leads to the correct commutation relations

for the new operators we have to check

— o = lal*(y* +7) = 1, (99)

Jup|* -
which is equivalent to condition (31). A consequence of the

Bogoliubov transformation is that a vacuum state defined
with respect to (aj, a;) is not in general a vacuum state
with respect to (b5, b;) The number density of b-particles

in the a-vacuum is

d’p

ol = [ SZelusP. (100
with
2 1 . .
v3|* = \/Ej(“*+la*7’*Eﬁ)
| § 212

EZ). 101
~3lallr+7) + g (PR, (101

After applying condition (31), the first term becomes —1/2.
The second term requires us to substitute the actual

transformation we chose. In the case of the real scalar in
Minkowski space-time that means
21 2 2
la* = EE;,, ly|* = l/Eﬁ. (102)
With this we find v, = 0 which implies also that relativistic
and nonrelativistic theory have the same vacuum state,
|0,) = |0,), This result is very intuitive since it confirms
that, even on the level of a quantum theory, the free theory
before and after the transformation describe the same
particle excitations.

B. Cosmologically expanding space-time

In FLRW space-time the expansion of the relativistic
fields is usually done with a mode function f7. We assume
fi = f_; and write

47 oy

. 3 . i . 1 N
n:¢:E/%[fg(t)a;e’k"—Q—f;‘;(t)a;:e_’kx]. (103)

lkX_"_f*( ) T —lkx]’

If we demand that both (¢, 7 = u"V ¢ = $) and (az. a']_i.)
fulfill the usual commutation relations

(1.9 2( P =i6F-).  lap.all=6(k-p). (104)
we get the condition for the mode function
m(f5(0f(1) = - (105)

Let now U; € GL(2,C) be an invertible linear trans-
formation on which we will impose further conditions later
and (7 a function of time and momentum. We define b; and

bz through

(v) =3/ e

Again, we demand that the standard equal time commu-
tation relations hold,

Ck(f)fk( )by

(106)
)f*()b;e-**

[y (1.5). " (1.5)] =8(F~7),  [bpby]=6(k—p). (107)
This imposes a constraint on the modulus of {7,

£z det(U7)

G = (108)

After substituting y = a(¢ + iyx) and inverting uy, we

identify transformation coefficients between (a;,a%) and
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(b;, bll() as in the Minkowski space-time case (95). In order

for this to possibly be a Bogoliubov transformation, the
matrix U has to obey

(U,;)u = (Uz')5 =1,
(U = U5 =p

With this the
expressed as

(109)

transformation coefficients can be

up = (Cpf0) " walf; + irfy) + var(f; — ir' 7).
vp = (Cof9) alfy + irfp) +wa (fp =iy )l (110)

The last requirement for this to be a Bogoliubov trans-
formation is |uz|* — |vz[* = 1. One may check that this is
indeed fulfilled. For an appropriate choice of U; and {7 the
transformation from (az, a]ic) to (by, blic) can be interpreted as

a Bogoliubov transformation, indeed. Notably, the condi-
tions imposed on U; when combined with the normalization
det(U) = 1 constrain Uy exactly to the group of Bogoliubov
transformations.

V. CONCLUSIONS

In this paper, we have extended the methods for taking
the nonrelativistic limit of a field theory developed by
Namjoo, Guth, and Kaiser [29] to more general space-time
metric. This requires introducing a normalized timelike
vector that defines nonrelativistic velocities as being
parallel to it except for small deviations. One is then led
to a differential equation, the solution of which fixes the
precise form of the canonical transformation between (real)
relativistic and (complex) nonrelativistic fields.

The method we developed allows the Lagrangian of the
nonrelativistic field to still be invariant under general
coordinate transformations at an intermediate step. This
invariance is then lost later in the actual low energy
approximation. The formalism extends naturally to com-
plex scalar fields and leads to a nonrelativistic description
of both particles and antiparticles. Neglecting either one
and expanding only to lowest nontrivial order in momenta
however agrees with the more naive ¢ — oo limit; this is a
good check of consistency.

We applied the generalized transformation to a real scalar
field in FLRW space-time. This introduces a nonvanishing
imaginary part in the prefactor y of the momentum field that
is not present in Minkowski space-time. The mechanism
for obtaining an effective theory for the nonrelativistic field
still works very similar in an expanding FLRW space-time.
In this geometry we calculated the effective nonrelativistic
action corresponding to a ¢*-interaction in the relativistic
theory up to second order in small parameters. The main
differences compared to Minkowski space-time are the
scale factors accompanying each spatial derivative and a

term proportional to Im(w*ﬁzw) in the effective non-
relativistic action which is caused by the imaginary part
of the transformation parameter y.

For free theories the transformation from relativistic to
nonrelativistic description causes symmetries to emerge or
to extend. For real scalars, a global U(1) symmetry of the
nonrelativistic field emerges while for complex scalars the
U(1) symmetry is extended to a U(2) symmetry. These
emergent symmetries are in general broken by interaction
terms. The most direct low energy approximation scheme
for obtaining the effective nonrelativistic action however
preserves the U(1) symmetry of the nonrelativistic field
corresponding to a relativistic real scalar. The associated
conserved charge is the spatial integral over the particle
density p = |y,|* in Minkowski space-time. The density of
nonrelativistic particles in expanding space-time behaves as
expected, scaling as p~a=3. The U(1) symmetry of a
complex relativistic scalar translates into a conservation of
the difference of particle and antiparticles numbers ¥ |> —
|¥,|?> which resembles charge conservation, independent of
low energy approximations.

Furthermore, we showed that, provided the transforma-
tion does not introduce an anomaly, in a quantum theory the
creation and annihilation operators of relativistic and non-
relativistic fields can be expressed in terms of each other
through a Bogoliubov transformation. In Minkowski space-
time this transformation consists only of a multiplication by
a time-dependent phase factor and thus leads to the same
vacuum for relativistic and nonrelativistic particles. While
the representation as a Bogoliubov transformation still
works in FLRW space-time, the freedom of choice of
the mode function does not allow for a similarly general
statement about the vacuum state.

The effective low energy theory for the nonrelativistic
fields does at leading orders not account for any particle
number changing processes (e.g., a 4 to 2 scattering in a ¢*
theory). Such processes would introduce further imaginary
terms into the effective potential to account for the loss of
slow nonrelativistic particles to higher velocities. One way
these terms can be included is by matching 7-matrix
elements of relativistic and nonrelativistic theory in the
limit of vanishing ingoing 3-momenta as done by Braaten,
Mohapatra, and Zhang [36].

In the present paper we have considered the trans-
formation from relativistic to nonrelativistic fields as a
rewriting of the microscopic action S[¢] — S[y]. However,
because it is a linear transformation, one may equally well
relate the one-particle irreducible or quantum effective
actions I'[¢] — ['[y] which are now functions of field
expectation values.

What we have not addressed fully here is the question of
anomalies. Because the transformation between real rela-
tivistic and complex nonrelativistic fields is linear it is
plausible that it remains anomaly free, but this may need a
more detailed investigation in the future.
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Finally, it would also be interesting to extend the
discussion presented here to fermionic fields, and specifi-
cally to study the nonrelativistic limit of Majorana fermions
by similar means.
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Note added.—While preparing the present manuscript,
we became aware of a recent preprint by Salehian,
Namjoo and Kaiser [37] with a similar aim. More specifi-
cally, the relation between a real relativistic scalar field and
a complex, nonrelativistic scalar field in the context of
a cosmologically expanding space-time is discussed there,
as well. However, Ref. [37] differs from ours in several
aspects. While the authors of Ref. [37] agree with us that
the nonlocal field transformation proposed in Ref. [29] is
not directly applicable for an expanding space-time, they
do not generalize it in the way we will describe below, but
instead work with an approximate local transformation with
the problem that rapidly oscillating terms still appear in the
equations of motion. A more detailed comparison between
the approaches is left for future work.

APPENDIX A: CANONICAL TRANSFORMATION
OF THE HAMILTONIAN

From the condition (19) we find that the Hamiltonian has
to be of the form

1 1
Hold = EﬂAﬂ + §¢B¢

The Hamiltonian of the new fields after canonical trans-
formation is given as

(A1)

OF
Hnew((pla (ﬂ2> = Hold(¢’ ”) + th .

From (29) and (30) we can read off the generating function
of the transformation

=L )

2 ian )}

Substituting the new variables into the old Hamiltonian
gives

(A2)

(A3)

Hosg = 51 [BRel(7) — 2Im(a)Re(ct)

- %‘Pz [BIm(y) + 2Re(a)Im(ay)]g,

+ @2 [Re(a?7)] g1, (A4)
and doing so for 0,F, yields
o0 () - ()
il
" Re(ay)d, (ﬁ)]go
O Y 0] PR

Adding these gives us the Hamiltonian for the new
variables which assumes the form

1
Hnew = 5402(_8[ arg(a) + BRG(Y))(pZ

1
T (=0, arg(a) + BRe(y))g1.  (A6)
or written in terms of y and y*,
H = -y (0, arg(a) — BRe(y))y. (A7)

This agrees nicely with Eq. (37).

APPENDIX B: ANALYTICAL SOLUTION
FOR y IN FLRW SPACE-TIME

In FLRW space-time Eq. (45) takes the form
O,y + im*P2y? —3Hy —i = 0. (B1)

We now assume there is a solution for gamma which is
analytical in H and hence can be expressed as a power series

[Se]

Y= an(Pa)Hn' (BZ)
n=0
We further assume that the ratio
_ H

(directly related to the deceleration parameter, ¢ = 2 — 1) is
constant. Now we can look at the individual terms of the
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differential equation at each order in H. The constant term
only contributes at order H°. The linear term shifts the
coefficient functions f, by one order,

—3Hy = =3 fu1(P,)H". (B4)
n=1

The quadratic term contains all coefficient functions up to the
order we are looking at,

im*Pyy?
=i PSS SuP) o (PH
=0 k=0
= im*P? i H"
" n—l
S CEERTTCATACAES STACATC AL
(B5)
To calculate the time derivative of the f,(P,) we use
9P, = H(P;' = P,), (B6)
which we can then write as
0ifn(Pa) = H(PZ' = Pu)fu(Pa), (B7)

where f), is to be understood as the derivative 0, f,(x)
evaluated at the given argument. With assumption (B3)
we get

8,H" = —nZH"1, (BS)

This means that a time derivative always increases the order
in H by one. Thus the time derivative term in the differential
equation can be written as

Dy =S H(PZ =P (P) - (n = DEF,a(P)].
(B9)

At zeroth order in H only the constant and quadratic terms
contribute and we get

im*Pifo(P,)? —i =0, (B10)
which is solved by
fo(Pa) =m™'P". (B11)

The negative solution does not lead to a valid transformation
as it makes it impossible for « to fulfill condition (31). At
order H", n > 1, we have a recursive solution for the f,,

i
- 2mP,

fn (Pb_ll _Pa) :1—1 - (3 + (}’l - I)E)fn—l

n—1
+im*P2 Y fi f,,_,(} . (B12)
k=1

By induction one can prove using the above formula that for
neN
Im(f5,(P,)) =0,

Re(f2n1(Pa)) = 0. (BI13)

As the Lagrangian for the free nonrelativistic field only
depends on Re(y), this implies that it is an even function of
the Hubble rate H.
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