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Resumen

Se presenta el cálculo del decaimiento del bosón de Higgs a dos quarks con cambio de
sabor a nivel de 1 lazo H → qiqj, el cual es inducido por un bosón de norma cargado W±

en el contexto del Modelo Estándar. El cálculo anaĺıtico de su amplitud asociada hace uso
del mecanismo de GIM, el cual ayuda a la eliminación de términos divergentes y espurios
que no dependen de la masa del quark virtual mqk ; esto se consigue al expresar las funcio-
nes escalares de Passarino-Velteman en términos de los factores de supresión Inamı́-Lim.
Adicionalmente bajo la misma metodoloǵıa trabajamos también el mismo decaimiento pero
en una extensión del Modelo Estándar inducido por un bosón de norma masivo Z ′ en los
distintos modelos Z ′

S , Z
′
L,R, Z

′
χ, Z

′
ψ y Z ′

η. Contrastamos nuestros resultados con datos expe-
rimentales y literaturas asociada.

Palabras claves: Bosones, part́ıculas, cambio, sabor, término.
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Abstrac

The calculation of the decay of the Higgs boson to two quarks with a change of flavor at
the 1-loop level H → qiqj, which is induced by a charged gauge boson W± in the context of
the Standard Model. The analytical calculation of its associated amplitude makes use of the
GIM mechanism, which helps to eliminate divergent and spurious terms that do not depend
on the mass of the virtual quark mqk ; this is achieved by expressing the Passarino-Velteman
scalar functions in terms of the Inamı́-Lim suppression factors. Additionally, under the same
methodology we also work on the same decay but in an extension of the Standard Model
induced by a massive gauge boson Z ′ in the different models Z ′

S , Z
′
L,R, Z

′
χ, Z

′
ψ and Z ′

η. We
contrast our results with experimental data and associated literature.
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Introducción

En el siglo V antes de nuestra era, Demócrito propuso que el cosmos estaba constituido
por átomos, definidos como elementos indivisibles, y vaćıo. Se continó con esta ĺınea de
pensamiento hasta 1897 con el descubrimiento del electrón gracias a los experimentos de
dispersión que indicaron que los átomos no son fundamentales. Los experimentos ayudaron
a los cient́ıficos a determinar que los átomos están constituidos por un núcleo y una nube de
electrones, y que a su vez los núcleos están formados por neutrones y protones. Con el avance
en los experimentos y técnicas de medición se descubrieron que estos últimos también poseen
una estructura interna. Actualmente sabemos que las part́ıculas elementales son los bloques
más fundamentales de los cuales está constituida la materia. Una part́ıcula se considera
elemental si no hay evidencia experimental de que está compuesta por entes más pequeños.

Varios siglos después de emprender la búsqueda de los constituyentes fundamentales
que forman el universo y la manera en que interaccionan, surgió una teoŕıa conocida como
el Modelo Estándar de la f́ısica de part́ıculas elementales (ME). El ME fue desarrollado a
lo largo de la segunda mitad del siglo XX. La formulación actual se concibió en la década
de 1970 después de la confirmación experimental de la existencia de los quarks. Matemáti-
camente, el ME es una teoŕıa consistente con la mecánica cuántica y la relatividad especial,
se basa en la simetŕıa de norma no Abeliana (teoŕıa de Yang Mills) con la implementación
del rompimiento espontáneo de la simetŕıa (mecanismo de Higgs). El ME describe tres de
las cuatro interacciones conocidas en la Naturaleza: la electromagnética, la fuerza débil (in-
volucrada en la formación de elementos qúımicos) y la fuerza fuerte (la cual mantiene a los
protones, neutrones y núcleos juntos). La gravedad no es descrita por el ME debido a que
la interacción es muy débil, y como resultado de ello no tiene efectos medibles a la escala
de la f́ısica de part́ıculas ni manifestaciones que nos puedan guiar a una teoŕıa cuántica
de campos. El ME asegura que la materia en el universo está constituida por fermiones
elementales que interactúan a través de campos, de los cuales ellos mismos son las fuentes.
Las part́ıculas de fuerza asociadas con los campos de interacción son los bosones de norma.

Los cuantos del campo de la interacción electromagnética entre fermiones cargados
eléctricamente son las part́ıculas sin masa llamadas fotones, mientras que los cuantos de los
campos de la interacción débil entre fermiones esta mediada por los bosones cargados W+ y
W− y el bosón neutro Z. Debido a que estos bosones de norma son masivos, la interacción
débil es de corto alcance (≈ 10−3fm). En cuanto a la interacción fuerte, los cuantos se
llaman gluones, tienen masa cero como los fotones, por ello podrá esperarse que tuvieran
un alcance infinito. Sin embargo, a diferencia del campo electromagnético, los gluones están
confinados.

La materia estable se compone de fermiones, que son part́ıculas de esṕın 1/2, en uni-
dades de ~ , que cumplen el principio de exclusión de Pauli y en aislamiento podŕıan ser
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Introducción

descritos por la ecuación de Dirac. En el ME existen 12 fermiones elementales. La ecuación
de Dirac para fermiones masivos cargados predice la existencia de una antipart́ıcula de la
misma masa y con el mismo esṕın pero carga opuesta y momento magnético opuesto rela-
tivo a la dirección del esṕın, aśı que cada fermión tiene una antipart́ıcula correspondiente.
Los fermiones se clasifican de acuerdo con la forma en la que interactúan. Actualmente se
conoce la existencia de 6 quarks, por lo que se dice que poseen 6 grados de libertad llamados
sabores. Un sabor de quark puede cambiar a otro sabor a través de las interacciones débiles
mediadas por los bosones débiles cargados W±; además los quarks tienen otro grado de
libertad llamado color. Las interacciones entre quarks debidas a la carga de color, la cual no
es nada más que la interacción fuerte, es mediada por los gluones, pero los quarks también
interactúan a través de la fuerza electromagnética. Una de las dificultades en la investiga-
ción experimental de los quarks es que los quarks aislados jamás han sido observados. Los
quarks siempre están confinados en sistemas compuestos que se extienden sobre distancias
de alrededor de 1 fm. Los quarks se pueden agrupar formando bariones, compuestos por
tres quarks, y los mesones, formados por un par de quarks (quark-antiquark). Los otros 6
fermiones elementales son los llamados leptones, los cuales interactúan solamente a través
de la interacción electromagnética (si están cargados eléctricamente) y débil.

Para comprender un poco más de las interacciones descritas por las part́ıculas mencio-
nadas, no podemos dejar de lado el concepto de decaimiento o desintegración, mediante
el cual nos es posible visualizar ciertos sucesos, por eso decimos que un decaimiento es un
proceso en el que una part́ıcula, elemental o compuesta, se transforma o transmuta en otras.
En el caso de la desintegración de núcleos atómicos se habla de desintegración radiactiva.
Otras part́ıculas, como los hadrones y las part́ıculas elementales del ME, también sufren
desintegraciones. Una part́ıcula que decae en otras más ligeras de forma espontánea se dice
inestable. En general, una part́ıcula de un tipo dado puede desintegrarse de diversas formas,
según qué interacción esté involucrada y cuáles sean las part́ıculas finales. Cada una de estas
formas se denomina un canal. A priori no es posible predecir el canal mediante el que se
desintegrará una cierta part́ıcula, es aleatorio, aunque si las probabilidades relativas para
cada uno de ellos. En los decaimientos se respetan leyes de conservación que aseguran que
el valor de ciertas cantidades es igual tanto al comienzo como al final del proceso. Estas
pueden ser la enerǵıa, el momento, la carga eléctrica u otros números cuánticos relacionados
con las especies de part́ıculas involucradas: el número leptónico, el número bariónico, etc.

La producción y decaimiento de los leptones es descrita satisfactoriamente por el ME de
las interacciones electrodébiles. En el ME los fermiones se clasifican en tres generaciones o
familias: cada generación contiene un par de leptones y un par de quarks. Salvo por la dife-
rencia en su masa, los fermiones de la segunda y tercera familia exhiben un comportamiento
f́ısico similar a los fermiones de la primera familia [1].

En cuanto al higgs, denotado por H, ha sido la part́ıcula más importante y de interés
fundamental desde el surgimiento del ME, debido a que ésta juega un rol fundamental en el
mecanismo de rompimiento espontáneo de la simetŕıa, y es responsable de dotar de masa a
las part́ıculas elementales [2]. En 2012 se dio a conocer evidencia de una nueva part́ıcula en el
Gran Colisionador de Hadrones (LHC por las siglas en ingles de Large Hadron Collider) del
CERN, la cual tiene todas las propiedades del bosón de Higgs predicho por el ME. Puesto
que los modos de decaimiento raros del bosón de Higgs serán medidos con mucha precisión
en el futuro, conviene estudiar los efectos de posibles contribuciones de part́ıculas predichas
por modelos extendidos, las cuales se acoplen al bosón de Higgs y den una contribución
mayor a sus decaimientos en comparación con lo que se espera que suceda en el ME [3].
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Introducción

Espećıficamente es nuestro interés investigar el acoplamiento Hqiqj en el sector de
quarks, dentro del ME y sus interacciones en el sector de quarks acompañado de un bosón
cargado W±, además, trabajar adicionalmente en una extensión del ME que involucre el
mismo decaimiento en presencia del bosón masivo Z ′, cuyas mediciones experimentales e
interacciones en el LHC han sido de interés en los últimos años, por lo tanto, es importante
explorar nuevas teoŕıas que puedan explicar los fenómenos detrás de los datos experimen-
tales a futuro.
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Caṕıtulo 1

Modelo Estándar

El ME es una teoŕıa de norma basada en el grupo de simetŕıas locales

SUC(3)⊗ SUL(2)⊗ UY (1), (1.1)

que describe las interacciones fuerte, débil y electromagnética (con excepción de la gravedad)
hasta las escalas que han sido exploradas, desde el radio de Hubble de 1030cm hasta escalas
del orden de 10−6cm mediante el intercambio de los correspondientes campos de espin 1
(bosones de norma): 8 gluones sin masa (gi, i = 1, ..., 3) y un fotón (γ) sin masa para las
interacciones fuertes y electromagnéticas, respectivamente, y tres bosones masivos ( W±,
Z) para la interacción débil. El ME es una teoŕıa no lineal y contiene 19 parámetros libres:

constantes de acoplamiento de los grupos de norma g1, g2, g3;

masas de los bosones mH ,mW ,mZ ;

masas de los leptones me,mµ,mτ ;

masas de los quarks mu,md,ms,mc,mb,mt;

parámetros de la matriz de Cabbibo-Kobayashi-Maskawa.

De acuerdo con el ME, los fermiones se dividen en leptones y quarks, son part́ıculas
elementales, representaciones irreducibles del grupo de simetŕıa de norma del ME, es de-
cir, no poseen estructura interna. Las part́ıculas que poseen estructura interna se llaman
hadrones, están constituidos por quarks: bariones cuando están formados por tres quarks
o tres antiquarks, y mesones cuando están constituidos por un quark y un antiquark [4].

El contenido de materia fermiónica consiste en tres familias de quarks y tres familias de
leptones, clasificados en tres generaciones (sabores o familias), las cuales las describimos a
continuación:
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Leptones :

• Tipo up: neutrino del electrón (νe), neutrino del muón (νµ) y neutrino del tau
(ντ ), con carga eléctrica 0.

• Tipo down: electrón (e), muón (µ) y tau (τ), con carga eléctrica −1.

Quarks : existen seis quarks en tres estados posibles de color, rojo, verde y azul, por
lo tanto hay 18 quarks.

• Tipo up: up (u), charm (c), top (t), con carga eléctrica 2/3.

• Tipo down: down (d), strange (s), bottom (b), con carga eléctrica −1/3.

Una caracteŕıstica especial de los quarks es poseer carga eléctrica fraccionada +2/3e y
−1/3e. Sin embargo, no se han detectado quarks libres, están siempre confinados formando
hadrones, de tal modo que la suma aritmética de las cargas de los quarks que conforman a
un determinado hadrón es siempre un multiplo entero de e [4].

A cada part́ıcula le corresponde una antipart́ıcula, entonces existen en total 12 leptones
y 36 quarks. Cada familia está formada por dos part́ıculas de esṕın 1/2, f y f

′

, misma
masa, mismo esṕın pero carga opuesta y momento magnético opuesto relativo a la dirección
del esṕın. En el ME los neutrinos tienen masa cero, por esa razón no tienen componente de
quiralidad derecha.

La clasificación de las part́ıculas del ME está dada en la Tabla 1.1. Las part́ıculas
mediadoras de fuerza descritas por el ME también tienen esṕın al igual que los fermiones,
pero en este caso el valor del esṕın es 1, por lo que las part́ıculas mediadoras de fuerza son
los bosones. Consecuentemente no siguen el principio de exclusión de Pauli. En las Tablas
1.2 y 1.3 se muestran en detalle las caracteŕısticas de las part́ıculas elementales del ME.

Campo de interacción Mediador (Bosón) Esṕın

Campo gravitacional Gravitón 2
Campo débil Bosones de norma (W+,W−, Z) 1

Campo electromagnético Fotón(γ) 1
Campo fuerte Gluón (g) 1

Tabla 1.1: Propiedades de las part́ıculas mediadoras de fuerza.

Quark Carga eléctrica (e) Masa (×c−2)

Up (u) +2/3 2.2+0.6
−0.4 MeV

Down (d) −1/3 4.7+0.5
−0.4 MeV

Charm (c) +2/3 1.28 ± 0.03 Gev

Strange (s) −1/3 96+8
−4 MeV

Top (t) +2/3 173.1 ± 0.6 GeV

Bottom (b) −1/3 4.18+0.04
−0.03 GeV

Tabla 1.2: Propiedades de los quarks.

8 gluones gα que son los bosones de norma del grupo de color SUC(3), que con la
interacción de los quark determinan la fuerza fuerte.

6



Modelo Estándar

Leptones Carga eléctrica (e) Masa(×c−2)

Electrón (e−) −1 0.5110MeV
Neutrino del electrón (νe) 0 < 3x10−6 MeV

Muón (µ−) −1 105.658 Mev
Neutrino del muón (νµ) 0 < 0.17MeV

Tau (τ−) −1 1.777 GeV
Neutrino del tau(ντ ) 0 < 15.5MeV

Tabla 1.3: Propiedades de los leptones.

4 bosones de norma W±, Z y γ que son las part́ıculas portadoras de las interacciones
electrodébiles SUL(2) ⊗ UY (1).

Las principales propiedades f́ısicas de estos bosones de norma son: los gluones gα no
tienen masa, son eléctricamente neutros, pero tienen carga de color. Como consecuencia
de esto los gluones no solamente interactúan con los quarks sino también consigo mismo.
Los bosones W± y Z son part́ıculas masivas y también interactúan entre śı. El bosón Z
es eléctricamente neutro, mientras que los bosones W± tienen carga eléctrica Qem = ±1,
respectivamente, finalmente el fotón γ es eléctricamente neutro y no autointeractúa consigo
mismo. El conjunto de campos de norma del grupo SUC(3)⊗ SUL(2)⊗ UY (1) se divide en
tres subgrupos:

1. Para SUC(3) se le asocian los ocho campos gluónicos Gaµ,

2. Para SUL(2) se le asocian los tres campos electrodébiles W i
µ,

3. Para UY (1) se le asocia el campo de la hipercarga Bµ.

Los campos se agrupan en multipletes (representaciones irreducibles) bajo las transforma-
ciones del grupo. Los quarks son tripletes y los leptones son singletes bajo el grupo SUC(3)
de color. Bajo el grupo SUL(2) las componentes levógiras (left) se transforman de forma
distinta que las dextrógiras (right): los campos left son dobletes y los right son singletes
de isospin débil T . El ı́ndice Y se refiere a la hipercarga. La carga eléctrica, el isosṕın y la
hipercarga de los campos están relacionados mediante Q = T3 + Y [5].

Las tres familias de quarks y leptones tienen las mismas propiedades (interacciones de
norma), solo difieren en las masas y en el número cuántico de sabor de sus campos. Las
generaciones de fermiones se denotan por ψi, i = 1, 2, 3, donde i es el ı́ndice de la familia de
sabor. Las familias se encuentran en orden jerárquico de acuerdo a la magnitud de su masa.

1.1. Teoŕıa electrodébil

Cuando la teoŕıa de Glashow-Weinberg-Salam (GWS) fue propuesta fue revolucionaria
porque unificaba la interacción débil y electromagnética. Sin embargo, para ser una teoŕıa
exitosa en f́ısica, la completez matemática no es suficiente, pues tiene que describir fenóme-
nos que realmente están sucediendo y se comprueban experimentalmente. Por su construc-
ción, fue hecha para reproducir la interacción de Fermi en los ĺımites de bajas enerǵıas. Por
lo tanto, cubre la menor cantidad de datos experimentales que han sido observados hasta el
momento de su propuesta. Su verificación tiene que hacerse, bien mediante la reproducción
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Teoŕıa electrodébil

de los procesos de altas enerǵıas que aún no se han llevado a cabo correctamente o nuevos
fenómenos que no fueron incluidos en la teoŕıa de Fermi. La teoŕıa GWS requeŕıa la exis-
tencia de las corrientes neutras y predijo la masa de los bosones de norma, los cuales no se
encontraron cuando fue propuesta.

En esta teoŕıa electrodébil la dinámica de los fermiones es descrita mediante un lagran-
giano de Dirac invariante de norma bajo el grupo SU(2)⊗U(1). Una de las caracteŕısticas
primordiales de dicho modelo es que la interacción electrodébil actúa sobre fermiones de-
rechos e izquierdos de manera distinta, por lo que las corrientes cargadas de Yang-Mills
incluyen solo fermiones izquierdos. Además, no se incluye a los neutrinos derechos dado que
experimentalmente no se han observado. De esta forma, los campos fermiónicos izquierdos
se agrupan en dobletes y los campos derechos en singletes del grupo SU(2)L, con simetŕıa
de isosṕın, donde L (izquierdo) indica la asimetŕıa existente entre fermiones de distinta
helicidad. Los campos fermiónicos entonces estarán dados de la siguiente forma

Leptones:

(

νeL
eL

)

,

(

νµL
µL

)

,

(

ντL
τL

)

, eR, µR, τR,

Quarks:

(

uL
dL

)

,

(

cL
sL

)

,

(

tL
bL

)

, uR, dR, cR, sR, tR, bR.

En el modelo no se introducen términos con masa en el lagrangiano fermiónico a me-
nos que se rompa expĺıcitamente la simetŕıa de norma. Por otro lado las fuerzas electro-
magnéticas y débil no pueden ser descritas por separado ya que actúan sobre los mismos
campos fermiónicos, por ello el grupo de norma que describe la interacción eletrodébil es
SU(2)L ⊗ U(1)Y , el cual es el mı́nimo grupo de norma posible que permite describir lo
observado en la naturaleza. La exigencia de que el lagrangiano de los campos fermiónicos
sea invariante bajo transformaciones del grupo antes mencionado, introduce de forma na-
tural cuatro campos bósonicos no masivos, W k

µ (k = 1, 2, 3) y Bµ(x) asociados a los grupos
SU(2)L y U(1)Y respectivamente.

El lagrangiano de la teoŕıa electrodébil se divide en dos partes, una contiene solamente
los campos bosónicos y otra contiene campos fermiónicos y bosónicos. La parte bosónica
se divide a su vez en los sectores de Higgs y de Yang-Mills. El sector bosónico-fermiónico
está comprendido por los sectores de corrientes y de Yukawa, por lo que el lagrangiano
electrodébil se puede escribir como:

L
ED = L

fer + L
boson, (1.2)

donde

L
fer = L

C + L
Y , (1.3)

L
boson = L

H + L
YM , (1.4)

donde LC , LY , LH , LYM , representan los sectores de corrientes, Yukawa, Higgs y Yang-
Mills, respectivamente. En seguida se describen de manera breve cada uno de los sectores.
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Modelo Estándar

1.1.1. Sector de Higgs

La simetŕıa gauge está rota espontáneamente, lo que exige la introducción de un campo
escalar, el campo de Higgs, y permite que los bosones débiles y los fermiones sean masivos,
tal y como los observamos en la naturaleza.

El bosón de Higgs es una part́ıcula predicha en 1964 por Peter Higgs. En la interacción
electrodébil exist́ıa una contradicción muy seria referente a las part́ıculas W+, W− y Z.
El corto alcance de sus interacciones exiǵıa masas relativamente elevadas. Sin embargo, la
simetŕıa de esa teoŕıa requiere que las masas sean nulas. Esta paradoja se supera si las masas
de W+, W− y Z, son proporcionadas por otras part́ıculas que son los bosones de Higgs,
mediante el llamado mecanismo de Higgs, el cual afirma que las part́ıculasW y Z interactúan
constantemente con campo de bosones de Higgs, lo que le proporciona masa. El mecanismo
está considerado como el origen de las masas de todas las part́ıculas elementales. Tanto las
part́ıculas W y Z, como el fotón son bosones sin masa propia. Los primeros muestran una
enorme masa porque interactúan fuertemente con el campo de Higgs y el fotón no muestra
ninguna masa porque no interactúa en absoluto con el campo de Higgs. El bosón de Higgs
tiene esṕın cero, no posee carga eléctrica ni carga de color, por lo que no interacciona con
el fotón ni con los gluones. Sin embargo, interacciona con todas las part́ıculas del modelo
que poseen masa: los quarks, los leptones cargados y los bosones W+,W− y Z0.

El rompimiento espontáneo simetŕıa (RES) aparece cuando el vaćıo del sistema (estado
de mı́nima enerǵıa) está degenerado. El vaćıo f́ısico es uno entre los posibles estados de
mı́nima enerǵıa conectados por las simetŕıas del lagrangiano. Cuando la naturaleza lo elige
se rompe la simetŕıa de los estados f́ısicos, aunque se preserva la del lagrangiano.

El resultado del RES depende del tipo de simetŕıa. Si el lagrangiano es invariante bajo
un grupo continuo de simetŕıas G, pero el vaćıo es invariante sólo bajo un subgrupo H ⊂ G,
entonces aparecen tantos estados sin masa y spin 0 (bosones de Goldstone) como generadores
de G que no lo son de H, es decir, el número de simetŕıas que se han roto (teorema de
Goldstone). Si las simetŕıas del lagrangiano son locales (gauge o norma) estos bosones de
Goldstone son absorbidos por los bosones de gauge asociados a las simetŕıas rotas dotándolos
de una masa (mecanismo de Higgs-Kibble) [6].

Veamos ahora cómo implementar este mecanismo para dar masa a los bosones de gauge
débiles del ME. En el ME la simetŕıa está rota del siguiente modo,

SU(2)L ⊗ U(1)Y →RES U(1)QED. (1.5)

Para lograr este esquema de RES hemos de introducir un doblete de campos escalares
complejos (cuatro campos reales: dos cargados y dos neutros),

Φ =

(

φ(+)

φ(0)

)

, (1.6)

y el lagrangiano invariante bajo SU(2)L × U(1)Y ,

LS = (DµΦ)
†DµΦ− µ2Φ†Φ− λ(Φ†Φ)2, (1.7)

con λ > 0, µ2 < 0 y

DµΦ = [∂µ − igW̃µ + ig′yΦBµ]Φ, (1.8)

donde yΦ = QΦ − T3 = 1
2 .
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Teoŕıa electrodébil

El potencial escalar es similar al anterior y el mı́nimo degenerado corresponde a

|〈0|Φ(x)|0〉| ≡ |Φ0(x)| =
1√
2

(

0
v

)

, (1.9)

con v =
√

−µ2
λ

. Solo los campos escalares neutros pueden adquirir un valor esperado en el

vaćıo (VEV) pues la carga es una cantidad conservada. Nótese que el fotón sólo se acopla a
los campos escalares cargados, cuyo VEV es nulo, lo que será crucial para que el fotón no
adquiera masa, como veremos. Al elegir uno entre todos los posibles estados fundamentales
(1.8), todos ellos conectados por transformaciones SU(2)L⊗U(1)Y (cuatro generadores), se
rompe espontáneamente esta simetŕıa quedando como remanente U(1)QED (un generador),
lo que da lugar a la aparición de tres escalares sin masa.

Parametrizamos ahora el doblete escalar en término de excitaciones sobre el vaćıo f́ısico,

Φ(x) = exp{iσi
2
θi(x)} 1√

2

(

0
v +H(x)

)

, (1.10)

donde sigue habiendo cuatro campos escalares reales, θi(x) y H(x). Los tres campos θi(x),
son los que seŕıan bosones de Goldstone pero haciendo uso de la invariancia gauge del
langrangiano podemos transformar Φ(x) en cada punto x por un campo en el que éstos
desaparecen, preservándose como único campo escalar f́ısico el bosón de Higgs H(x). Aśı,
en el llamado gauge unitario,

Φ(x)→G exp{−iσi
2
θi(x)}Φ(x) = 1√

2
[v +H(x)]

(

0
1

)

. (1.11)

Los tres grados de libertad que aparentemente se pierden se convierten en el estado de
polarización longitudinal de W± y Z pues, tras el RES, Wµ y Zµ se convierten en campos
masivos de spin 1. En efecto,

(DµΦ)
†DµΦ→G 1

2
∂µH∂

µH + (v +H)2{g
2

4
W †
µW

µ +
g2

8 cos2 θW
ZµZ

µ}, (1.12)

que contiene los términos de masa para los bosones débiles,

MZ cos θW =MW =
1

2
vg, (1.13)

mientras que el fotón permanece sin masa. Todo ello preserva la simetŕıa gauge del lagran-
giano. El precio que hemos de pagar es la introducción del campo de Higgs.

1.1.2. Sector de Yukawa

El sector de yukawa, tiene como propósito dotar de masa a los fermiones por medio de
un rompimiento espontáneo de la simetŕıa electrodébil. Como los estados de helicidad se
definen en diferentes representaciones del grupo, no es posible definir sus masas en forma
invariante de norma. Además, dicho sector contiene invariantes que se construyen como
producto de campos de norma que vinculan fermiones de diferente helicidad acoplados al
doblete de Higgs.
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Modelo Estándar

Como los neutrinos no tienen helicidad derecha no tienen representación f́ısica en el
sector de Yukawa. El lagrangiano que describe la interacción de los bosones de Higgs y los
fermiones está definida como

LY = −Y uij ψ̄LφcψR − Y d
ijψ̄LφψR + h.c., (1.14)

donde φc se transforma covariantemente bajo SUL(2), definido como

φc = iτ2φ
∗ =

(

φ0∗

−φ−
)

, (1.15)

el isodoblete φc a veces denotado φ̃ tiene hipercarga Y = 1, τ2 es la segunda matriz de
Pauli, φ∗ es el complejo conjugado del campo de Higgs.

Las matrices de Yukawa, Y u
ij y Y d

ij , son parámetros libres que definen la intensidad de
los vértices y consecuentemente las reglas de Feynman del lagrangiano, donde i, j son los
ı́ndices de la familia. Este lagrangiano es una cantidad invariante bajo el grupo de simetŕıa
SU(2)L × U(1)Y , entonces el lagrangiano de Yukawa se puede escribir como

LY = −Y u
ij Q̄

i
Lφ

cuiR − Y d
ijQ̄

i
Lφd

i
R − Y u

ij l̄
i
Lφ

cliR − Y d
ij l̄
i
Lφl

i
R + Lh.c., (1.16)

es el lagrangiano de Yukawa leptones quarks, los campos de Higgs pueden ser tantos como
el modelo del mecanismo de Higgs lo permita.

1.1.3. Sector de Yang-Mills

La estructura de este sector está completamente determinada por el carácter no abeliano
del grupo electrodébil. El lagrangiano de Yang-Mills tiene la propiedad de ser invariante
bajo una transformación de norma local, describe a los grupos de norma del ME, SU(3)
para el color, SU(2) para el isoesṕın y U(1) para la hipercarga, y está dada por:

LYM = −1

4

8
∑

A=1

GaµνG
µν
a −

1

4

3
∑

a=1

W a
µνW

µν
a −

1

4
Ba
µνB

µν
a . (1.17)

Los campos de fuerza de color están dados por

Gaµν = ∂µG
a
ν − ∂νGaµ + g3f

ijkGiµG
k
ν (1.18)

i, j, k = 1, ..., 8.

Gaµν son los tensores de norma antisimétricos construidos a partir de los ocho campos Gaµ(X)

de los gluones, correspondientes a los ocho generadores de SU(3), f ijk las constantes de es-
tructura del grupo SU(3) y g3 la constante de acoplamiento de color. Los campos de fuerza
de isoesṕın son

W a
µν = ∂µW

a
ν − ∂νW a

µ + g2ǫ
ijkW j

µW
k
ν , (1.19)

i, j, k = 1, 2, 3.
Con W a

µν los tensores de norma antisimétricos construidos a partir de los campos de

norma W a
µ (X) correspondientes a los tres generadores de SU(2), ǫijk es la constante de

estructura del grupo SU(2) que coincide con el tensor de Levi-Civita y g2 la constante de
acoplamiento del grupo de isoesṕın. Finalmente, el campo de fuerza de hipercarga es

Ba
µν = ∂µB

a
ν − ∂νBa

µ, (1.20)

Bνµ son los tensores de norma antisimétricos construidos a partir de los campos de norma
Bµ(X) asociados a U(1).

11



Teoŕıa electrodébil

1.1.4. Sector de corrientes

En el sector cinético de quarks y leptones se representan las interacciones de los campos de
norma del grupo electrodébil con los fermiones.

A los acoplamientos de pares de fermiones con el bosónW± se le conoce como corrientes
cargadas, mientras que a los acoplamientos de pares de fermiones con los bosones Z y γ se
les denominan corrientes neutras. El lagrangiano asociado, con la propiedad de invariancia
de norma, se puede descomponer en dos partes, a saber:

L
C = L

C
q + L

C
l (1.21)

donde L
C
q y L

C
l y representan los sectores de quarks y leptones, respectivamente.

La presencia de corrientes cargadas con cambio de sabor a nivel árbol da lugar a la
aparición de corrientes neutras con cambio de sabor a nivel de un lazo.

Interacciones de corrientes cargadas

El lagrangiano LF dado por

LF = i

3
∑

j=1

ψ̄j(x)/Dψj(x), (1.22)

contiene interacciones entre fermiones y bosones de gauge,

LF ⊃ gψ̄1γ
µW̃µψ1 − g′Bµ

3
∑

j=1

yjψ̄jγ
µψj . (1.23)

El término que contiene la matriz

W̃µ =
σi
2
W i
µ =

1

2

(

W 3
µ

√
2W †

µ√
2Wµ −W 3

µ

)

, (1.24)

da lugar a interacciones de corrientes cargadas con el campo vectorial cargado de las W±,

Wµ ≡
W 1

µ+iW
2
µ√

2
y su complejo conjugado W †

µ ≡ W 1
µ−iW 2

µ√
2

,

LCC =
g

2
√
2
W †
µf̄(x)γ

µ(1− γ5)f ′(x) + h.c. (1.25)

Interacciones de corrientes neutras

La ecuación (1.22) también contiene interacciones con los campos de gauge neutrosW 3
µ y Bµ.

Nos gustaŕıa identificar estos bosones con el Z y el fotón. Sin embargo, como el fotón tiene
las mismas interacciones con ambas quiralidades fermiónicas, el bosón de gauge singlete Bµ
no puede ser el campo electromagnético Aµ. Para ello habŕıa que imponer y1 = y2 = y3 =
y g′yj = eQj , lo que no puede cumplirse simultáneamente.

Como ambos campos son neutros, podemos probar con una combinación arbitraria de
ellos:

(

W 3
µ

Bµ

)

=

(

cos θW − sin θW
sin θW cos θW

)(

Zµ
Aµ

)

. (1.26)
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En términos de Zµ y Aµ el lagrangiano de corrientes neutras queda:

LNC =

3
∑

j=1

ψ̄jγ
µ(−Aµ[gT3 sin θW + g′yj cos θW ] + Zµ[gT3 cos θW − g′yj sin θW ])ψj , (1.27)

donde T3 = σ3/2(0) es la tercera componente del isosṕın del doblete (singlete). Para obtener
la electrodinámica cuántica (QED) de la parte con Aµ hay que imponer las condiciones:

g sin θW = g′ cos θW = e , Y = Q− T3, (1.28)

donde Q es el operador de carga eléctrica,

Q1 =

(

Qf 0
0 Qf ′

)

, Q2 = Qf , Q3 = Qf ′ . (1.29)

La primera igualdad relaciona los acoplamientos g y g′ de SU(2) y U(1), respectivamente,
con el acoplamiento electromagnético e, lo que proporciona la unificación de las interacciones
electrodébiles. La segunda fija las hipercargas fermiónicas Y en términos de las cargas
eléctricas y los números cuánticos de isosṕın débil:

y1 = Qf −
1

2
= Qf ′ +

1

2
, y2 = Qf , y3 = Qf ′ . (1.30)

Sustituyendo las cargas de los quarks y los leptones, observamos que los neutrinos right
tienen carga e hipercarga nulas, es decir no se acoplan ni al fotón ni a la Z, y tampoco se
acoplan a los W±, pues sólo lo hacen los campos left. Por tanto los vR son estériles y, si
los neutrinos no tuvieran masa, no haŕıa falta introducirlos.

El lagrangiano de corrientes neutras queda finalmente:

LNC = LQED + L
Z
NC , (1.31)

donde
LQED = −eAµQf(′) f̄ (′)(x)γµf (′)(x), (1.32)

L
Z
NC = eZµf̄

(′)(x)γµ(vf − afγ5)f (′)(x), (1.33)

con vf = (T fL3 − 2Qf sin
2 θW )/(2 sin θW cos θW ) y af = T fL3 /(2 sin θW cos θW ).

1.2. Electrodinámica cuántica

Un ejemplo ilustrativo de una teoŕıa de norma lo ofrece la electrodinámica cuántica, que
es la teoŕıa que incorpora la mecanica cuántica con la relatividad especial (QED por sus
siglas en ingles). El campo en este caso representa part́ıculas cargadas de esṕın 1/2. La
invariancia ante una transformación de norma global implica la conservación de la carga
eléctrica a través de una corriente conservada. La invariancia ante una transformación de
norma local implica la existencia de un campo vectorial de interacción, el campo electro-
magnético, cuyo cuanto es el fotón. La constante de acoplamiento entre el campo del fotón
y los otros campos es la carga eléctrica [7].
El lagrangiano de esta teoŕıa es invariante de norma ante el grupo U(1). La ley de trasfor-
mación para los campos es

ψ′ = Urψ, (1.34)
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donde Ur = eiqθ ∈ U(1). Haciendo variaciones infinitesimales de θ en el espacio-tiempo
obtenemos

ψ′ = Urψ ≈ (1 + iqθ)ψ. (1.35)

La densidad lagrangiana correspondiente al campo de Dirac para un fermión libre es

LD = iψ̄γµ∂µ −mψ̄ψ, (1.36)

la cual es invariante bajo (1.40), siempre y cuando intercambiemos la derivada ordinaria ∂µ
por la derivada covariante Dµ, la cual debe satisfacer la relación siguiente:

(Dµψ)
′ = UDµψ, (1.37)

donde
Dµ = ∂µ + iqAµ, (1.38)

siendo Aµ el campo electromagnético, que se debe transformar de la siguiente manera:

Aµ → A′
µ = Aµ − ∂µθ. (1.39)

Por otro lado el tensor de intensidad del campo electromagnético Fµν tiene asociada una
densidad lagrangiana que define la dinámica de este campo

LN = −1

4
FµνF

µν , (1.40)

donde
Fµν = ∂µAν − ∂νAµ. (1.41)

Esta densidad lagrangiana es invariante ante transformaciones de norma. Usando (1.37) y
(1.41) se obtiene la densidad lagrangiana que describe completamente la electrodinámica
cuántica (QED):

LQED = −1

4
FµνF

µν + iψ̄γµ∂µψ −mψ̄ψ − JµAµ, (1.42)

donde Jµ = qψ̄γµψ es la densidad de corriente electromagnética [8].
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Caṕıtulo 2

Modelos Extendidos

2.1. Lagrangiano de corriente neutra con violación de sabor

En el marco de modelos extendidos que contienen sectores generalizados de corrientes,
consideramos el lagrangiano renormalizable más general que incluye violación de sabor
fermiónica mediada por un nuevo bosón de norma masivo neutro de esṕın 1, procedente de
algún modelo de gran unificación o extendido que es expresado de la siguiente forma [9]

LNC =
3
∑

i,j=1

(

fLiγ
αΩLfifjfLj + fRiγ

αΩRfifjfRj
)

Z ′
α + h.c.

=
3
∑

i,j=1

[(

fLiγ
αΩLfifjfLj + fRiγ

αΩRfifjfRj
)

+
(

fLjγ
αΩ∗

LfjfifLi + fRjγ
αΩ∗

RfjfifRij
)]

Z ′
α

=

3
∑

i,j=1

[

f̄iγ
α(ΩLfifjPL +ΩRfifj PR)fj + f̄j γ

α(Ω∗
Lfjfi PL +Ω∗

Rfjfi PR)fi
]

Z ′
α, (2.1)

donde fi (fj) es cualquier fermión del ME, PL,R = 1
2 (1∓γ5) son los proyectores de quiralidad

y Z ′
α es el nuevo bosón de norma neutro masivo predicho por diversas extensiones del ME.

Los parámetros ΩLfifj , ΩRfifj representan las intensidades de los acoplamientos Z ′fifj. Por
simplicidad, se asumirá que ΩLfifj = ΩLfjfi y ΩRfifj = ΩRfjfi [9].

Los acoplamientos que conservan sabor, QfiL,R, cuyos valores se muestran en la Tabla 2.1,
están relacionados con las constantes de acoplamiento Ω de la siguiente manera: ΩLfifi =

−g2QfiL y ΩRfifi = −g2Q
fi
R , donde g2 es el acoplamiento de norma del bosón Z ′. Para varios

modelos extendidos los acoplamientos de norma del Z ′ son

g2 =

√

5

3
sin θW g1λg, (2.2)

donde g1 = g/ cos θW , λg depende del patrón de rompimiento de simetŕıa siendo del orden de
la unidad y g es la constante de acoplamiento débil. En el modelo secuencial el acoplamiento
de norma g2 = g1.

Consideraremos Z ′ en los siguientes modelos: Z ′
S modelo secuencial, Z ′

LR momento
simétrico izquierda derecha, Z ′

χ bosón que surge de la ruptura SO(10)→ SU(5)⊗ U(1), el
Z ′
ψ que surge como resultado de E6 → SO(10)⊗U(1) [10], y el Z ′

η inspirado en los modelos
de super cuerdas [11–14].
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′

(1)

Z ′
S Z ′

LR Z ′
ξ Z ′

ψ Z ′
η

QuL 0.3456 -0.08493 −1
2
√
10

1√
24

−2
2
√
15

QuR -0.1544 0.5038 1
2
√
10

−1√
24

2
2
√
15

QdL -0.4228 -0.08493 −1
2
√
10

1√
24

−2
2
√
15

QdR 0.0772 -0.6736 1
2
√
10

−1√
24

2
2
√
15

QeL -0.2684 0.2548 3
2
√
10

1√
24

1
2
√
15

QeR 0.2316 -0.3339 −3
2
√
10

−1√
24

−1
2
√
15

QνL 0.5 0.2548 3
2
√
10

1√
24

1
2
√
15

Tabla 2.1: Acoplamientos diagonales de quiralidad de los modelos extendidos.

2.2. Modelos U
′

(1)

Existen varios tipos de modelos U(1)′ que predicen Z ′ quq interacciona con quarks y
leptones, se distinguen entre ellos por la masa del Z ′. A continuación se mencionan algunos
de estos tipos de modelos:

El bosón ZME secuencial se define con los mismo acoplamientos del bosón Z del ME.

La carga eléctrica Q y la hipercarga Y = Q− T 3
R pueden ser escritas como

Q = T 3
L + Y = T 3

L + TBL, (2.3)

donde TBL = (B − L)/2, con (BL) el número barionico (léptonico). En modelos tipo
izquierda-derecha (LR), que pueden surgir de SUL(3) ⊗ SUR(2) ⊗ UY (1), se tiene una co-
rriente neutra dada por

−LCN = gJµ3LW
3
Lµ + gRJ

µ
3RW

3
Rµ + gBLJ

µ
BLWBLµ, (2.4)

Aqúı es conveniente reescribir (2.4) rotando W 3
R y WBL a una nueva base B y Z0

2 como se
hace en el ME. Esto deja invariante el término cinético. Se puede considerar B = cos γW3R+
sin γWBL y tomar a γ de tal forma que B se acopla a g

′

Y , se puede observar que

1

e2
=

1

g2
+

1

g′2
=

1

g2
+

1

g2R
+

1

g2BL
, (2.5)

Z2
2 = sen γW3R − cos γWBL está asociada a la carga

QLR =

√

3

5

[

αT3R −
1

α
TBL

]

, (2.6)

con α = tan γ = gR
gBL

=
√

κ2 cotg2 θW − 1 y κ ≡ gR
g
.
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Caṕıtulo 3

Decaimiento del bosón de Higgs a

dos quarks con cambio de sabor en

el Modelo Estándar

El bosón escalar observado en el LHC es compatible con lo predicho en el ME [15, 16],
donde a través del mecanismo de Higgs, que es responsable de dotar de masa al resto de las
part́ıculas elementales conocidas, de ah́ı la importancia de su descubrimiento y las diversas
implicaciones que se derivan a partir de ello, en particular, búsqueda del bosón de Higgs
asociado al fenómeno del cambio de sabor con corrientes neutras (CSCN), que es estudiado
mediante el acoplamiento Hqiqj, siendo uno de los temas de mayor interés en la comunidad
de la f́ısica de part́ıculas. Este tipo de interacciones, también es conocida como violación de
sabor en el sector de Yukawa y no esta presente a nivel de árbol en el ME, sin embargo, los
vértices que surgen a nivel de fluctuación cuántica a un lazo, a ese nivel, pueden estudiarse
a través de los decaimientos H → uc, ds, db, sb, involucrando el mecanismo de GIM [17] que
puede ser suprimido severamente por el CSCN.

Hasta donde sabemos en el contexto del ME, se estima una razón de decaimiento para el
canal H → sb considerando que mH < 2mW del orden de 10−7 [18]. Además, la referencia
[19] es el único estudio disponible que ha abordado estos cuatro decaimientos del higgs,
datos disponibles hasta la fecha. Sin embargo, los autores utilizaron LoopTool [20] para
evaluar algunas funciones escalares de Passarino-Veltman (PaVe), lo que no debe hacerse
de esta manera ya que las PaVes contienen partes espurias (divergencias) que pueden ser
eliminados mediante el mecanismo de GIM. Para lograrlo debemos considerar los PaVes de
los factores de forma completos y a través del uso de la aplicación de las expansiones de
serie de Taylor, permite considerar las partes que realmente contribuyen al decaimiento en
términos de los factores de supresión Inami-Lim [21], es decir m2

qk
/m2

W ≪ 1, dondemqk es la
masa del quark virtual circulando dentro del lazo, con excepción del quark top, ya que por
la naturaleza del valor de su masa lleva consigo un tratamiento distinto que se mencionara
más adelante.

Por todo lo anteriormente mencionado, nos hemos motivado a recalcular los decaimientos
H → qiqj, lo que nos ha llevado a encontrar discrepancias en dos de los cuatro resultados
obtenidos en la referencia [19]. Cabe mencionar que en el contexto de la notación a utilizar,
la escritura H → qiqj hace referencia a la suma incoherente de los modos qiq̄j y q̄iqj los
cuales deben ser considerados en el cálculo.
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Decaimiento H → qiqj en el Modelo Estándar

3.1. Decaimiento H → qiqj en el Modelo Estándar

El decaimiento del bosón de Higgs a dos quarks distintos H → qiqj consiste en la suma
incoherente de dos modos H → q̄iqj y H → qiq̄j, cuya anchura de decaimiento Γ(H → q̄iqj)
y Γ(H → qiq̄j) son la misma, debido a la invarianza de la conjugación de carga, paridad y
la simetŕıa de la inversión del tiempo (CPT). En concreto nos referimos a ello como H →
qiqj ≡ q̄iqj+qiq̄j, que es una notación habitual en la literatura. En este sentido, establecemos
la configuración H(p3)→ qi(p1)q̄j(p2), con la cinemática p3 = p1 + p2, p

2
3 = m2

H , p
2
1 = m2

qi
,

p22 = m2
qj
, p1 · p2 = (m2

H −m2
qi
−m2

qj
)/2.

3.1.1. El decaimiento H → uiuj

La única descomposición del bosón de Higgs a dos quarks tipo up, H → uiuj, corresponde a
uiuj = ūc+uc̄, compuesto por cuatro diagramas de Feynman que contribuyen al decaimiento
mostrados en Figura 3.1, donde dentro del lazo circulan virtualmente quarks tipo down
dk = d1, d2, d3 = d, s, b. Del lagrangiano

L = − g√
2
ūiγ

µPLdjW
+
µ Vuidj −

g√
2
d̄jγ

µPLuiW
−
µ V

∗
ujdi

, (3.1)

obtenemos los acoplamientosW±qiqj en donde se obtienen las reglas de Faynman mostradas
en la Figura 3.2, complementando con las reportadas en la literatura.

H(p3)
ui, di(p1)

ūj, d̄j(p2)

dk, uk

W−,W+

W−,W+

(1)

dk, uk
H(p3)

ui, di(p1)

ūj, d̄j(p2)

W−,W+

dk, uk

(2)

H(p3)

dk, uk

W−,W+

ui, di(p1)

ūj, d̄j(p2)

uj, dj

(3)

H(p3)
ui, di(p1)

ūi, d̄i

dk, uk

W−,W+

ūj, d̄j(p2)

(4)

Figura 3.1: Diagramas de Feynman para los decaimientos H → uiuj con uiuj = uc̄+ ūc y
dk = d, s, b y H → didj con didj = ds̄+ d̄s,db̄+ d̄b, sb̄+ s̄b con uk = u, c, t en el ME.
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H H

W−
ν

W+
µ

−i gmf

2mW

igmWgµν

W+
µ W−

µ

f(k)→ i
6k+mf

k2−mf

i
k2−m2

W
(−gµν + kµkν

m2

W
)W±(k)

dj → ← ūi ui → ← d̄j

−i g√
2
γµPLV

∗
uiuj

−i g√
2
γµPLVuiuj

q → ← q̄

Figura 3.2: Reglas de Feynman para el decaimiento H → uiuj y H → didj en el ME.

Dicho lo anterior, construimos las amplitudes para cada diagrama como se muestra a
continuación

M1 =

∫

d4k

(2π)4
ū(p1)

(

−ig
√
2
γα1PLVuidk

)

(

i
/k +mdk

k2 −m2
dk

)

(

−ig
√
2
γα4PLV

∗

ujdk

)

v(p2)

×

{

i

(k − p1)2 −m2
W

[

−gα1α2
+

(k − p1)α1
(k − p1)α2

m2
W

]}

(igmW gα2α3)

×

{

i

(k + p2)2 −m2
W

[

−gα3α4
+

(k + p2)α3
(k + p2)α4

m2
W

]}

=
(−1)2i6g3mW

2

3
∑

k=1

VuidkV
∗

ujdk

∫

d4k

(2π)4
ū(p1)γ

α1PL

(

/k +mdk

)

γα4PLv(p2)
(

k2 −m2
dk

)

[(k − p1)2 −m2
W ][(k + p2)2 −m2

W ]

×

[

−gα1α2
+

(k − p1)α1
(k − p1)α2

m2
W

]

gα2α3

[

−gα3α4
+

(k + p2)α3
(k + p2)α4

m2
W

]

, (3.2)

M2 =

∫

d4k

(2π)4
ū(p1)

(

−ig
√
2
γα1PLVuidk

)

[

i
/k + /p1 +mdk

(k + p1)2 −m2
dk

]

(

−igmdk

2mW

)

[

i
/k − /p2 +mdk

(k − p2)2 −m2
dk

]

×

(

−ig
√
2
γα2PLV

∗

ujdk

)

v(p2)

[

i

k2 −m2
W

(

−gα1α2
+

kα1
kα2

m2
W

)]

=
(−1)3i6g3mdk

4mW

3
∑

k=1

VuidkV
∗

ujdk

∫

d4k

(2π)4

ū(p1)γ
α1PL

(

/k + /p1 +mdk

)(

/k − /p2 +mdk

)

γα2PLv(p2)

(k2 −m2
W )
[

(k + p1)2 −m2
dk

] [

(k − p2)2 −m2
dk

]

×

(

−gα1α2
+

kα1
kα2

m2
W

)

, (3.3)
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M3 =

∫

d4k

(2π)4
ū(p1)

(

−ig
√
2
γα1PLVuidk

)

(

i
/k +mdk

k2 −m2
dk

)

(

−ig
√
2
γα2PLV

∗

ujdk

)

(

i
/p1 +muj

p21 −m2
uj

)

(

−igmuj

2mW

)

v(p2)

×

{

i

(k − p1)2 −m2
W

[

−gα1α2
+

(k − p1)α1
(k − p1)α2

m2
W

]}

=
(−1)3i6g3muj

4mW

∑3
k=1 VuidkV

∗

ujdk

m2
ui

−m2
uj

∫

d4k

(2π)4

ū(p1)γ
α1PL (/k +mdk) γ

α2PL

(

/p1 +muj

)

v(p2)
(

k2 −m2
dk

)

[(k − p1)2 −m2
W ]

×

[

−gα1α2
+

(k − p1)α1
(k − p1)α2

m2
W

]

, (3.4)

M4 =

∫

d4k

(2π)4
ū(p1)

(

−igmui

2mW

)[

i
−/p2 +mui

p22 −m2
ui

](

−ig
√
2
γα2PLVuidk

)

(

i
−/k +mdk

k2 −m2
dk

)

(

−ig
√
2
γα1PLV

∗

ujdk

)

v(p2)

×

{

i

(k − p2)2 −m2
W

[

−gα1α2
+

(k − p2)α1
(k − p2)α2

m2
W

]}

=
(−1)3i6g3mui

4mW

∑3
k=1 VuidkV

∗

ujdk

m2
uj

−m2
ui

∫

d4k

(2π)4

ū(p1)
(

−/p2 +mui

)

γα2PL (−/k +mdk) γ
α1PLv(p2)

(

k2 −m2
dk

)

[(k − p2)2 −m2
W ]

×

[

−gα1α2
+

(k − p2)α1
(k − p2)α2

m2
W

]

, (3.5)

resolvemos las integrales para cada lazo con el método de descomposición tensorial de
Passarino-Veltman [22], mediante el uso de la paqueteŕıa especializada FeynCalc [23, 24] y
Package-X [25] en Mathematica. Cabe mencionar que hasta esta etapa del cálculo no se
han hecho aproximaciones.

El resultado total de la amplitud puede expresarse como

M = ū(p1)
(

F1 + F2γ
5
)

v(p2) , (3.6)

donde los factores de forma Fa con a = 1, 2 tienen la estructura

Fa =
3
∑

k=1

VuidkV
∗
ujdk

f

=

3
∑

k=1

VuidkV
∗
ujdk

[

fA1
a Ao(1) + fA2

a Ao(2) + fB1
a Bo(1) + fB2

a Bo(2)

+fB3
a Bo(3) + fB4

a Bo(4) + fC1
a Co(1) + fC2

a Co(2)
]

, (3.7)

los cuales son dependientes de las funciones escalares Passarino-Veltman (PaVe) A0(1) ≡
A0(m

2
dk
), A0(2) ≡ A0(m

2
W ), B0(1) ≡ B0(m

2
ui
,m2

dk
,m2

W ), B0(2) ≡ B0(m
2
uj
,m2

dk
,m2

W ), B0(3)

≡B0(m
2
H ,m

2
dk
,m2

dk
), B0(4)≡B0(m

2
H ,m

2
W ,m

2
W ), C0(1) ≡ C0(m

2
ui
,m2

uj
,m2

H ,m
2
dk
,m2

W ,m
2
dk
),

C0(2) ≡ C0(m
2
ui
,m2

uj
,m2

H ,m
2
W ,m

2
dk
,m2

W ), con sus subfactores de forma fA1, ..., fC1, depen-
dientes de todas las masas de las part́ıculas.

En está etapa la amplitud (3.6) es ultravioleta divergente (UV ), ya que la amplitud aún
contiene el término (polo) 1/ǫ

UV
procedente de A0 y B0, que no depende de la masa mdk

y consecuentemente es eliminada por el mecanismo de GIM
∑3

k=1 VuidkV
∗
ujdk

= 0, por lo
tanto, conservando la parte UV la amplitud tiene la forma

MUV ∼ −
3
∑

k=1

VuidkV
∗
ujdk

1

ǫ
UV

ig3m2
H

256π2m3
W

ū(p1)
[

(mui +muj )− (mui −muj)γ
5
]

v(p2) , (3.8)
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.
A Continuación para hacer uso del mecanismo de GIM, debe realizarse la expensión

de serie de Taylor sobre los factores de forma Fa con respecto a la masa de la part́ıcula
virtual mqk , siempre y cuando se cumpla la condición mqk/mW ≪ 1. Adicionalmente,
también aplicamos expanción de serie de Taylor para las masas de los quarks en los estados
finales mqi y mqj , debido a que mqi ,mqj/mH ≪ 1, y finalmente consideramos la jerarqúıa
de las masas involucradas mH > mW ≫ mui , muj , mdk , estas consideraciones simplifican
ampliamente los resultados. Después de aplicar el mecanismo GIM obtenemos

Fa =
3
∑

k=1

VuidkV
∗
ujdk

fa(mdk) , (3.9)

con

f1(mdk) =
ig3

256π2
mui +muj

mW

FW

1− rW
m2
dk

m2
W

,

f2(mdk) =
−ig3
256π2

mui −muj

mW

FW

1− rW
m2
dk

m2
W

, (3.10)

donde FW y rW se muestran en el apéndice A. Nótese que el término de Inami-Lim
m2
dk
/m2

W ≪ 1 es muy pequeño, por lo que es la razón principal por la que se obtiene

un valor altamente suprimido Br(H → uc) ∼ 10−20; se muestra a detalle en el apéndice B
apartado (a).

3.1.2. El decaimiento H → didj

Para el caso del bosón de Higgs decayendo a dos quaks distintos tipo down, H → didj ,
con didj = ds̄ + d̄s, db̄ + d̄b, sb̄ + s̄b, y con una contribución de quarks tipo up circulando
virtualmente dentro del lazo uk = u, c, t como se aprecia en la Figura 3.1. Construimos
la amplitud en analoǵıa al caso H → uiuj de la sección 3.1.1, haciendo el cambio de
etiquetas de las part́ıculas en interacción, es decir: ui → di, uj → dj , W

− → W+ y
VuidkV

∗
ujdk
→ V ∗

ukdi
Vukdj . De la misma forma, el mecanismo de GIM aplicado en Fa satisface

∑3
k=1 V

∗
ukdi

Vukdj = 0. En este caso consideramos que u y c son quarks ligeros y t es un
quark pesado, esto implica que hay dos escenarios de jerarqúıas de masas diferentes para
los factores de forma en la aplicación de las expansiones de serie de Taylor, debido a la
diferencia de la nataraleza de la masa del quark top respecto a los atros quarks tipo up, aśı
obtenemos las partes que realmente contribuyen en los factores de forma, como

Fa =

3
∑

k=1

V ∗
ukdi

Vukdjfa(muk) , (3.11)

con a = 1, 2, por los tanto las expansiones deben aplicarse de la siguiente forma
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(a) Para la contribución virtual de los quarks u y c, donde mH > mW ≫ mdi , mdj , mu,
mc, la expansión es análoga a la implementada al H → uiuj. Los factores de forma
pueden expandirse respecto a las masas pequeñas externas, debido a que cumplen
mdi ,mdj/mH ≪ 1, e internamente dado que muk/mW ≪ 1. Por lo tanto fa puede
escribirse como

f1(muk) =
ig3

256π2
mdi +mdj

mW

(

FW

1− rW
m2
uk

m2
W

+ F
′
W

)

,

f2(muk) =
−ig3
256π2

mdi −mdj

mW

(

FW

1− rW
m2
uk

m2
W

+ F
′
W

)

, (3.12)

para uk = u, c. F′
W está dada en el apéndice B.

(b) Para la contribución del quark t realizamos las expansiones de serie de Taylor úni-
camente respecto a las masas externas mdi y mdj en los estados finales, ya que
mdi ,mdj/mH ≪ 1, por consiguiente, los factores de forma correspondientes fa(mt)
relacionados al t resultan ser

f1(mt) =
ig3

256π2
mdi +mdj

mW
2FWt

m2
t

m2
W

,

f2(mt) =
−ig3
256π2

mdi −mdj

mW
2FWt

m2
t

m2
W

, (3.13)

con FWt definido en el apéndice B.

Sumando las ecuaciones (3.12) y (3.13), la expresión final para Fa de la ecuación (3.11)
es

F1 =
ig3

256π2
mdi +mdj

mW

[

2
∑

k=1

V ∗
ukdi

Vukdj

(

FW

1− rW
m2
uk

m2
W

+ F
′
W

)

+ V ∗
tdi
Vtdj2FWt

m2
t

m2
W

]

,

F2 =
ig3

256π2
mdi −mdj

mW

[

2
∑

k=1

V ∗
ukdi

Vukdj

(

FW

1− rW
m2
uk

m2
W

+ F
′
W

)

+ V ∗
tdi
Vtdj2FWt

m2
t

m2
W

]

.

(3.14)

3.2. Predicción del H → qiqj en el Modelo Estándar

Debido a que H → qiqj ≡ q̄iqj + qiq̄j debe considerarse la suma incoherente de los estados
finales qiq̄j y ¯qiqj , por simetŕıa CPT, por lo que resulta

Γ(H → qiqj) = Γ(H → qiq̄j) + Γ(H → q̄iqj),

= 2 Γ(H → qiq̄j) , (3.15)

donde

Γ(H → qiq̄j) =
1

16πmH

√

[

1−
(mqi +mqj)

2

m2
H

] [

1−
(mqi −mqj)

2

m2
H

]

|M|2,

≃ 1

16πmH
|M|2, (3.16)
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con la amplitud cuadrada

|M|2 = NC

∑

spin

|M|2,

≃ 2NCm
2
H

(

|F1|2 + |F2|2
)

. (3.17)

Las apróximaciones de las ecuaciones (3.16) y (3.17) son posibles debido a que mH ≪
mqi ,mqj , Por lo tanto, la expresión para la razón de decaimiento toma la forma

Br(H → qiqj) =
Γ(H → qiqj)

ΓH

≃ NCmH

4πΓH

(

|F1|2 + |F2|2
)

, (3.18)

con una anchura total de decaimiento para el bosón de Higgs de ΓH = 4.18×10−3 GeV [26].

Para el caso H → uiuj, consideramos las ecuaciones (3.9) y (3.18) por lo que la razón de
decaimiento se expresa como

Br(H → uiuj) =
NCg

6mH

217π5ΓH

m2
ui

+m2
uj

m2
W

∣

∣

∣

∣

∣

FW

1− rW

3
∑

k=1

VuidkV
∗
ujdk

m2
dk

m2
W

∣

∣

∣

∣

∣

2

. (3.19)

donde uiuj = uc y dk = d1, d2, d3 = d, s, b. Para el caso H → didj consideramos las
ecuaciones (3.11) y (3.18), la expresión resultante es

Br(H → didj) =
NCg

6mH

217π5ΓH

m2
di
+m2

dj

m2
W

∣

∣

∣

∣

∣

2
∑

k=1

V ∗
ukdi

Vukdj

(

FW

1− rW
m2
uk

m2
W

+ F
′
W

)

+2FWtV
∗
tdi
Vtdj

m2
t

m2
W

∣

∣

∣

∣

2

, (3.20)

con didj = ds, db, sb y uk = u1, u2, u3 = u, c, t.

Nuestras cuatro predicciones se muestran en la Tabla 3.1. Los datos utilizados en nuestros
cálculos numéricos provienen del PDG 2020 [27] y se muestran en el apéndice A. Cabe
señalar que para las masas de los quarks en estados finales utilizamos sus valores en la
escala de masas del bosón de Higgs, es decir, consideramos el desplazamiento de las masas
en las correspondientes ecuaciones de grupo de renormalización (en sus siglas en ingles RGE,
Renormalization Group Equations), a partir de los valores de las masas de los quarks dadas
en el esquema MS [27], dicho ajuste se realizo usando la paqueteŕıa RunDec [28, 29]. Aśı,
nuestros resultados son

H → qiqj Br

H → uc 5·00×10−20

H → ds 1·19×10−11

H → db 5·16× 10−9

H → sb 5·00× 10−7

Tabla 3.1: Razones de decaimiento para H → qiqj ≡ q̄iqj + qiq̄j.
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Conclusión

En los casos de los canales H → db̄+ d̄b, sb̄+ s̄b, concordamos con lo reportado en [19],
por el contrario, tenemos diferentes resultados para los modos H → uc̄ + ūc,ds̄ + d̄s, ya
que ellos reportan una razón de decaimiento Br(H → uc) ∼ 10−15 y Br(H → ds) ∼ 10−8

en estos dos modos. Vale la pena resaltar por que no estamos de acuerdo con dos de las
cuatro predicciones de la referencia [19]. De hecho, comentemos cómo proceden: enseguida
de su ecuación (21) reconocen que el software LoopTools no puede usarse para evaluar las
funciones B0 de manera adecuada, porque estas podŕıan contener una parte independiente
de mqk que debeŕıa ser eliminada por el mecanismo GIM. Sin embargo, tal afirmación
debe aplicarse a cualquier función PaVe que dependa de la masa del quark virtual mqk si
mqk/mW ≪ 1. Además, arriba de su ecuación (43) afirman que sus C ′

0s se evaluaron por
completo con LoopTools, para todos los casos (consulte la Tabla 2 de la referencia [19]),
por lo que algunas de sus evaluaciones no son apropiadas.

Espećıficamente encontramos que Br(H → uc) = 5·00 × 10−20. En este caso, la parte
dominante proviene de los quarks virtuales s y b, se espera que sea suprimida debido a
la factor Inami-Lim m2

dk
/m2

W ≪ 1 y por el término (m2
u +m2

c)/m
2
W ∼ 10−5, factor en la

ecuación (3.19); esta razón de decaimiento es la más afectada por el mecanismo GIM. Para
más detalles ver el apéndice B.

Nuestra predicción para el caso Br(H → ds) = 1·19 × 10−11, la contribución relevante
proviene de los pequeños quarks virtuales u y c, ya que la contribución del quark virtual t
está fuertemente suprimida por su parte correspondiente a la matriz CKM, donde V ∗

tdVts ∼
10−4, ver ecuación (3.20) y apéndice B; además, también el factor (m2

d +m2
s)/m

2
W ∼ 10−7

provoca que tengamos una razón de decaimiento suprimida. Aqúı, el mecanismo de GIM
elimina los términos independientes a la masa mqk de los tres quaks que se encuentran circu-
lando virtualmente dentro del lazo, sin embargo, sobrevive el término F

′
W

en las expansiones
realizadas para los quarks u y c. Recordamos que mt/mW no puede ser expandido por Tay-
lor, entonces los factores de forma correspondientes del quark t en analoǵıa a la ecuación
(3.7) pueden ser evaluados directamente en loopTools como en la referencia [19], obiamente
esto aplica para los casos H → db̄+ d̄b, sb̄+ s̄b.

Para los procesos H → db̄ + d̄b, sb̄ + s̄b obtenemos las razones de decaimiento de
Br(H → db) = 5·16 × 10−9 y Br(H → sb) = 1·15 × 10−7. En estos resultados sobresale la
contribución del quark virtual t, que en este caso no es tan suprimido por los elementos de
la matriz CKM (ver apéndice B). En este cálculo no existe expansión con respecto al mt

virtual, por lo que el mecanismo de GIM no se puede aplicar en su totalidad en este caso,
por lo que nuestra evaluación coincide con la de referencia [19].

3.3. Conclusión

Hemos presentado resultados anaĺıticos para los decaimientos H → uc̄ + ūc, ds̄ + d̄s, db̄ +
d̄b, sb̄ + s̄b en el ME a nivel de un lazo. Nuestras predicciones, coinciden con dos de las
cuatro reportadas en [19], estamos de acuerdo en los casos H → db, sb, y por el contrario
contrastamos en las razones de decaimiento reportadas para los casos Br(H → uc) ∼
10−15 y Br(H → ds) ∼ 10−8, mientras con nuestras predicciones obtenemos ∼ 10−20

y ∼ 10−11 respectivamente. La razón por la que no estamos de acuerdo con dos de los
cuatro decaimientos de la referencia [19] es porque no separaron adecuadamente los términos
dependiente e independientes de las masas virtuales mqk lo cual es obligatorio para aplicar
con éxito el mecanismo GIM, lo que nos lleva a una diferencia relevante para los decaimientos
H → uc̄+ ūc,y H → ds̄+ d̄s.
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Nuestros resultados suprimidos se deben al hecho de que hemos realizado expansiones de
Serie de Taylor a los factores de forma completos en cada decaimiento: una paraH → uc̄+ūc
y otra para los casos H → ds̄+ d̄s, db̄+ d̄b, sb̄+ s̄b, lo cual se justifica por las diferencias de
las jerarqúıas de las masas de los quarks que se encuentran circulando virtualmente dentro
del lazo en cada modo de decaimiento. Lo anterior nos permitió aprovechar al máximo el
mecanismo GIM, es decir, dicho de otra manera, eliminar todos aquellos términos espurios
que no contribuyen al decaimiento y fueron removidos.

Aunque el interés experimental va dirigido hacia los decaimientos H → db̄+ d̄b, sb̄+ s̄b,
vale la pena indagar los modos más ligeros H → uc̄+ūc, ds̄+d̄s y el por qué son severamente
tan suprimidos.

Además, cabe destacar que en los modos de decaimiento H → db̄+ d̄b y H → sb̄+ s̄b la
contribución principal proviene del quark virtual t, por lo que estos canales son relevantes en
el contexto de la f́ısica del quark t. Dado que el quark top es la part́ıcula más pesada del ME,
es probable que pueda tener interacciones con posibles nuevas part́ıculas pesadas. Por lo
tanto, si las detecciones futuras de los modos de estos decaimientos rarosH → db̄+d̄b, sb̄+s̄b
en el contexto del CSCN difieren de la predicción del ME, podŕıan ser efectos de nueva f́ısica.
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Caṕıtulo 4

El decaimiento del bosón de Higgs

a dos quarks mediado por Z ′ con
cambio de sabor

Como se ha mencionado con anterioridad, una de las posibles manifestaciones de nueva
f́ısica, la cual se esta intentando medir experimentalmente con precisión, es el fenómeno
del CSCN. El cambio de sabor o violación de sabor, llamado aśı como este último, cuando
se consideran interacciones fuera del ME, abren de manera natural una brecha para la
búsqueda de nueva f́ısica en el CSCN, tanto en el sector leptónico como en el sector de
quarks, dado que este tipo de acoplamientos constituyen predicciones puras a nivel de
fluctuación cuántica que dan lugar a manifestaciones de nueva f́ısica a enerǵıas alcanzables
para los experimentos actuales. En el ME, las corrientes neutras conservan sabor: Zff̄ , Hff̄
y γf f̄ son acoplamientos donde los fermiones son part́ıculas cargadas, y neutras en el caso
Zνν̄. Una de las posibles manifestaciones de nueva f́ısica puede ocurrir en los fenómenos de
cambio de sabor de corrientes neutras, por ejemplo: Hff̄ ′, tanto en el sector leptónico como
en el sector de quarks. Nos interesa trabajar con el bosón Z ′ asociado al grupo de simetŕıa
U ′(1) predicho en extensiones del ME, dado que permite el cambio de sabor de corrientes
neutras.

El estudio de la violación de sabor ha cobrado interés debido al descubrimiento de osci-
laciones de neutrinos, donde un neutrino creado con un sabor leptónico espećıfico (electrón,
muon o tau), es posteriormente medido con un sabor distinto, esto nos indica que la propie-
dad de conservación de sabor en el ME está violada en la naturaleza. Por lo que es impor-
tante estudiar fenómenos que violan sabor como posibles precursores de nuevas teoŕıas que
nos permitan explicar con mayores detalles la naturaleza de las part́ıculas elementales. La
presencia de un nuevo bosón de norma masivo Z ′ es predicha en el estudio de numerosos
modelos que son extensiones del ME de las interacciones fundamentales. El grupo de norma
electrodébil SUC(3) ⊗ SUL(2) ⊗ UY (1) ⊗ U ′(1) es el modelo más simple capaz de predecir
la existencia del bosón Z ′ [30].

Nuestro trabajo consiste en estudiar el fenómeno conocido como violación de sabor en
el sector de quarks mediado por la presencia del nuevo bosón de norma Z ′, espećıficamente
investigar el acoplamiento Hqiqj, que no está predicho por el ME, sin embargo, este tipo de
interacciones es predicho en algunas extenciones. Esta interacción rara puede ser considerada
mediante el decaimiento H → qiqj, donde qiqj son quarks tipo up o tipo down.

Una de las caracteŕısticas más interesantes de estos modelos es que contienen secto-
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res generalizados de corrientes, las cuales favorecen las transiciones por part́ıculas neutras
masivas de esṕın 1, es decir, part́ıculas como el bosón de norma masivo Z ′.

4.1. El decaimiento H → qiqj mediado por Z ′

A partir de la experiencia adquirida en el caso ME en el apartado del caṕıtulo 3, ahora
trajaremos el caso H → qiqj = qiq̄j + q̄iqj en una extensión efectiva del ME que contiene
un Z ′ con cambio de sabor fermiónico análogamente. Las constantes de acoplamiento de
esta teoŕıa efectiva las empataremos con las correspondientes, ya acotadas, de los métodos
extendidos comentados en el apartado 2.1 y consideramos los diagramas de Feynman de la
Fig. 4.1 que contribuyen al decaimiento.

Del lagrangiano efectivo de corriente neutra con cambio de sabor dado en (2.1) obte-
nemos las reglas de Feynman descritas en la Fig. 4.2. En analoǵıa al vértice HZZ del ME
proponemos el vértice HZ ′Z ′, puesto que es imprescindible para lograr finitud mediante
el mecanismo de GIM tal como ocurre con el vértice HW+W− en el proceso del cálculo
anterior. Las condiciones cinemáticas son semejantes a las ya realizadas en el apartado 3.1,
y finalmente, trabajaremos con las interacciones izquierdas fLf ′LZ

′ del lagrangiano (2.1).

Z ′

Z ′

H(p3)
uk, dk

ui, di(p1)

ūj, d̄j(p2)

(1)

Z ′
H(p3)

uk, dk

ui, di(p1)

ūj, d̄j(p2)uk, dk

(2)

Z ′

H(p3)

uk, dk

ui, di(p1)

ūj, d̄j(p2)

uj, dj

(3)

Z ′

H(p3)

uk, dk

ūj, d̄j(p2)

ui, di(p1)

ūi, d̄i

(4)

Figura 4.1: Diagramas de Feynman para los decaimientos H → uiuj con uiuj = uc̄+ ūc y
uk = u, c, t y H → didj con didj = ds̄+ d̄s, db̄+ d̄b, sb̄+ s̄b con dk = d, s, b mediado por Z ′.
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H H

Z ′ν Z ′µ

−i gmf

2mW

ig
m2

Z′

mW
gµν

Z ′µ Z ′µ

f(k)→ i
6k+mf

k2−mf

i
k2−m2

Z′

(−gµν + kµkν
m2

Z′

)Z ′(k)

f →

fj → ← f̄i

← f̄

fi → ← f̄j

−iγα(Ω∗Lfifj PL + Ω∗Rfifj PR)−iγα(ΩLfifj PL + ΩRfifj PR)

Figura 4.2: Reglas de Feynman para el decaimiento H → uiuj y H → didj mediado por Z ′.

4.1.1. El decaimiento H → uiuj mediado por Z ′

Para trabajar el decaimiento del higgs a dos quark distintos tipo up, H → uiuj con
uiuj = uc̄ + ūc mediado por Z ′, consideramos que estamos trabajando en el sector de
corrientes neutras, por conservación de carga, circulando virtualmente dentro del lazo tene-
mos uk = u, c, t y uiuj = uc̄+ ūc. Dicho lo anterior contruimos las amplitudes de la Fig. 4.1
a continuación

M1 =− i6
m2
Z′

mW

∫

d4k

(2π)4
ū(p1,mui)γ

α1(ΩLuiukPL)(6 k +muk)
[(

k + p21
)

−m2
uk

] [

(k − p2)2 −m2
uk

] [

k − p1)2 −m2
Z′

]

× γα4(Ω∗
Lujuk

PL)v(p2,muj )

[

−gα1α2 + (k − p1)α1(k − p1)α2
m2
Z′

]

gα2α3

×
[

−gα3α4 + (k − p1)α3(k − p1)α4
m2
Z′

]

,

(4.1)

M2 =− i6
gmuk

2mW

∫

d4k

(2π)4
ū(p1,mui)γ

α1(ΩLuiukPL)(6 k+ 6 p1 +muk)
[(

k + p21
)

−m2
uk

] [

(k − p2)2 −m2
uk

] [

k − p1)2 −m2
Z′

]

× (6 k− 6 p2 +muk)γ
α2(Ω∗

Lujuk
PL)v(p2,muj )

[

−gα1α2 + kα1kα2

m2
Z′

]

,

(4.2)
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M3 =
−i6gmuj

2mW (m2
ui
−m2

uj
)

∫

d4k

(2π)4
ū(p1,mui)γ

α1(ΩLuiukPL)(6 k +muk)
(

k2 −m2
uk

) [

(k − p1)2 −m2
Z′

]

× γα2(Ω∗
Lujuk

PL)(6 p1 +mfj ).v(p2,muj )

[

−gα1α2 + (k − p1)α1(k − p1)α2
m2
Z′

]

,

(4.3)

M4 =
−i6gmui

2mW (m2
uj
−m2

ui
)

∫

d4k

(2π)4
ū(p1,mui)(mui− 6 p2)γα1(ΩLuiukPL)

(k2 −m2
uk
)[(k + p)2 −m2

Z′ ]

× (6 k +muk)γ
α2(Ω∗

Lujuk
PL)v(p2,muj )

[

−gα1α2 +
(k + p2)α1(k + p2)α2

m2
W

]

.

(4.4)

De igual forma al caso ME, resolvemos las integrales con el método de descompo-
sición tensorial de Passarino-Veltman mediante la paqueteŕıa especializada FeynCalc en
Mathematica, aśı, similarmente obtenemos la amplitud análoga a (3.6). Donde los factores
de forma Fa con a = 1, 2 tienen la estructura de (3.7), salvo los parámetros de las intensi-
dades de acoplamiento ΩR,Lfifj

, es decir, intercambiamos VuidkV
∗
ujdk

→ ΩLuiukΩ
∗
Lujuk

, por

lo tanto nuestra amplitud es

Fa =

3
∑

k=1

ΩLuiukΩ
∗
Lujuk

f

=

3
∑

k=1

ΩLuiukΩ
∗
Lujuk

[

fA1
a Ao(1) + fA2

a Ao(2) + fB1
a Bo(1) + fB2

a Bo(2)

+fB3
a Bo(3) + fB4

a Bo(4) + fC1
a Co(1) + fC2

a Co(2)
]

, (4.5)

los cuales son dependientes de las funciones escalares Passarino-Veltman (PaVe) A0(1) ≡
A0(m

2
uk
), A0(2) ≡ A0(m

′2
Z ), B0(1) ≡ B0(m

2
ui
,m2

uk
,m′2
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2
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C0(2) ≡ C0(m
2
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,m2

uj
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H ,m
′2
Z ,m

2
uk
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Z), con sus subfactores de forma fA1, ..., fC1, depen-
dientes de todas las masas de las part́ıculas nuevamente.

Nuevamente la amplitud tiene la estructura de (3.6), que en esta estapa es ultravioleta
divergente (UV), ya que la amplitud aún contiene el término (polo) 1/ǫ

UV
procedente de

A0 y B0, la parte UV la amplitud tiene la forma

MUV ∼ −
3
∑

k=1

ΩLuiukΩ
∗
Lujuk

1

ǫ
UV

ig3m2
H

128π2m
W
m2
Z′

ū(p1)
[

(mui +muj )− (mui −muj)γ
5
]

v(p2) ,

(4.6)
que no depende de la masa muk y consecuentemente es eliminada por el mecanismo de GIM
de la misma forma que en el caso ME, es decir

∑3
k=1ΩLuiukΩ

∗
Lujuk

= 0.

En este caso, para hacer uso del mecanismo de GIM (haciendo uso de notación de forma
general), es importante recordar que la aplicación de las expansiones de serie de Taylor sobre
los factores de forma Fa, se hace respecto a la masa del quark virtual mqk , siempre que se
cumpla la condición mqk/mZ′ ≪ 1, y tambien lo hacemos para el caso de las part́ıculas en
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los estados finales mqi y mqj cuando mqi,mqi/mH ≪ 1 en el caso del ME, debido a estas
condiciones, para el caso quark top, nos llevó a considerar dos escenarios distintos debido
a su jerarqúıa de masa ya mencionados con anterioridad; en ambos casos para la correcta
fragmentación de los factores de forma en su parte dependiente e independiente de mqk .
Para este caso extendido inducido por Z ′, debemos considerar la gran diferencia de masa
mZ′ ≪ mt, por lo que en consecuencia se cumple que muk/mZ′ ≪ 1 y mui ,muj/mH ≪ 1,
en todos los casos, tanto H → uiuj con uiuj = uc̄ + ūc y uk = u, c, t como H → didj
con didj = ds̄ + d̄s, db̄ + d̄b, sb̄ + s̄b con dk = d, s, b mediado por Z ′, por lo tanto, el
procedimiento es análogo al caso del apartado 3.3.1 consecuentemente en ambos casos. En
concreto, en los dos casos, aplicaremos expansiones de Serie de Taylos respacto a la masa de
las part́ıculas en los estados finales mqi , mqj y a la part́ıcula virtual mqk bajo la jerarqúıa
MZ′ ≫ mH > mW ≫ mqi ,mqj y mqk > 0. Bajo este argumento, despues de aplicar el
mecanismo de GIM nuevamente tenemos

Fa =

3
∑

k=1

ΩLuiukΩ
∗
Lujuk

fa(muk), (4.7)

donde fa con a = 1, 2 análogo a (3.10), ahora en términos de mZ′ .

4.1.2. El decaimiento H → didj mediado por Z ′

Para el caso H → didj con didj = ds̄+ d̄s, db̄+ d̄b, sb̄+ s̄b y dk = d1, d2, d3 = d, s, b considera-
mos los diagramas de Feynman mostrados en la Fig. 4.1. Construimos nuevamente la ampli-
tud análoga a H → uiuj de la sección 4.1.1 y realizamos el cambio de etiquetas de las nuevas
part́ıculas involucradas, es decir: ui → di, uj → dj , uk → dk y ΩuiukΩ

∗
ujuk
→ Ω∗

dkdi
Ωdkdj . De

igual manera aplicamos Series de Taylor y mecanismos de GIM para quedarnos únicamente
con la parte dependiente de la masa virtual mdk que contribuye al decaimiento de manera
general como los casos anteriormente abordados, es decir

Fa =

3
∑

k=1

ΩLdidkΩ
∗
Ldjuk

fa(mdk). (4.8)

4.2. Predicción del H → qiqj inducido por Z ′

Para calcular la razón de decaimiento del H → qiqj a dos quarks tipo up y dos quarks
tipo down, usamos los valore de las constantes de acoplamiento de quiralidad que conservan
sabor QfiL,R de los distintos modelos extendidos dados en la Tabla 2.1 mencionados en el
Caṕıtulo 2 que están relacionadas con las constantes efectivas ΩL,R cuyos valores fueron
tomados de [?, 32]. Los datos utilizados en nuestros cálculos numéricos provienen del PDG
[27] mostrados en el apéndice A.

En la Fig.4.3 podemos apreciar las graficas de los distintos decaimientos H → qiqj con
H → uiuj con uiuj = uc̄+ ūc y uk = u, c, t y H → didj con didj = ds̄+ d̄s, db̄+ d̄b, sb̄+ s̄b
con dk = d, s, b mediado por Z ′ en los distintos modelos Z ′

s, Z
′
L,R, Z

′
χ, Z

′
ψ y Z ′

η cuya variaŕıa
desde 2.5 TeV a 5 TeV .

Para el caso de la razón de decaimiento Br(H → uc) obtenemos una predicción del
orden de ∼ 10−17, podemos apreciar un empate en la gráfica de todos los modelos al hacer

31



Predicción del H → qiqj inducido por Z ′

variar la mZ′ , esto es debido a que la contribución más relevante proviene del quark t,
por lo que al evaluarlo cuando se encuentra circulando virtualmente dentro del lazo en
nuestros factores de forma Fa con a = 1, 2 numéricamente en nuestra razón de decaimiento
su contribución en todos los modelos del Z ′ es del mismo orden de magnitud a medida que
la mZ′ incrementa.
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Figura 4.3: Razones de decaimiento para H → uiuj con uiuj = uc̄ + ūc y uk = u, c, t y
H → didj con didj = ds̄+ d̄s, db̄+ d̄b, sb̄+ s̄b con dk = d, s, b mediado por Z ′.

En la razón de decaimiento Br(H → sd), el quark b proporciona la señal más alta,
como en el caso anterior las gráficas se empatan en el mismo orden de magnitud en todos
los modelos debido a que el quark b proporciona la mayor contribución e igual en todos los
modelos del orden de ∼ 10−27.

Para Br(H → db), obtenemos nuevamente la contribución relevante del quark b, en esta
ocasión tenemos una variación en los distintos modelos del Z ′, siendo Z ′

s con el mayor orden
de magnitud de ∼ 10−21, mientras que el resto de modelos varia de ∼ 10−22 a ∼ 10−23; este
comportamiento es debido a que la contribución del quark b a pesar de otorgar la señal más
alta, varió en todos los modelos al ser evaluado numéricamente en la razón de decaimiento
para el caso de los estados finales didj = db̄ + d̄b, por lo que el comportamiento de las
gráficas varia en orden de magnitud de ∼ 10−20 a ∼ 10−23 con excepción de los modelos
Z ′
ψ y Zη cuya contrición del b fue la misma en ambos modelos, cuyo comportamiento en

todos los casos es forma descendente como en los casos anteriores. Finalmente de la misma
forma sucede para el caso del Br(H → sb), de la misma forma la mayor señal proviene del
quark b en todos los modelos, con una mayor señar del modelo Z ′

s del orden de magnitud
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∼ 10−20, mientras que los otros modelos de ∼ 10−21 a ∼ 10−22 respectivamente. En general,
cabe mencionar que las razones de decaimiento de cada uno de los cuatro casos y en cada
modelo presenta un comportamiento de desacoplo en función de la variación de mZ′.

4.3. Conclusión

Hemos calculado efectos debidos al CSCN en el decaimiento H → qiqj inducido por un
nuevo bosón de norma Z ′ con cambio de sabor. Para dichos decaimientos hemos presentado
expresiones anaĺıticas de las amplitudes en similitud al caso ME de los diagramas de Feyn-
man a nivel de 1 lazo, se ha aplicado estrictamente el mecanismo de GIM en los factores
de forma: conservamos solamente la parte dependiente de la masa del quark interno mqk y
eliminamos los términos espurios o independientes de ésta, para lo cual fue prioridad obte-
ner soluciones anaĺıticas apropiadas de los factores de forma acompañados de las funciones
escalares Passarino-Veltman en términos de los factores de supresión de GIM o Inami-Lim.
Realizamos predicciones del decaimiento para varios modelos extendidos que contienen al
Z ′, usamos cotas conocidas de las constantes de los acoplamientos quirales de tales mo-
delos. Consideramos una masa del bosón de norma de mZ′ = [2.5, 5] TeV , obtuvimos un
Br(H → uc) = 10−17 y Br(H → sd) = 10−27 empatados en todos los modelos, mientras
que Br(H → db) = [10−21, 10−23] y que Br(H → sb) = [10−20, 10−22] siendo ambos casos
el bosón Z ′

s el responsable de la mayor señal con 10−21 y 10−20 respectivamente. Este tipo
de procesos con violación de sabor a nivel de 1 lazo que involucran mecanismo de GIM,
están condenados a predecir señales extraordinariamente suprimidas y fuera del alcance de
la detección experimental hasta el momento en un futuro cercano. La futura comproba-
ción experimental de este tipo de procesos será una pieza más en el complejo saber del
comportamiento de la Naturaleza.
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Apéndice A

Funciones auxiliares

Los valores del PDG 2020 [27] usados son g = e/sW , e =
√
4πα, α = α(mW ) = 1/128,

s2W = s2W (mZ) = 0.23121, la masa del bosón de Higgs mH = 125.1 GeV, y las masas de
los quarks mu = 0.00216, md = 0.00467, ms = 0.093, mc = 1.27, mb = 4.18, mt = 172.76
GeV, las masas de los quaks se dan en el esquema MS a escala de baja enerǵıa, sus va-
lores correspondientes generados a la escala de enerǵıa de la masa del bosón de Higgs se
puede lograr usando la paqueteŕıa RunDec [28,29], de tal manera que: mu = 0.001198 GeV ,
md = 0.002591 GeV , ms = 0.05160 GeV , mc = 0.6033 GeV , y mb = 2.799 GeV . Además
la matriz CKM es





Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb



 =





0.9737 0.2245 0.00382
0.221 0.987 0.041
0.008 0.0388 1.013



 .

A continuación presentamos las funciones constantes FW , F′
W y FWt que dependen de las

masas mW , mt and mH . La FW que aprece en la ecuacion (3.12), está dada

FW ≡ 2(rW − 1)(βW ln 2 + βW rW ln 4− 6rW + 4) + π2(rW − 1)
(

2r2W + rW − 1/3
)

−2iπ(rW − 1)(4rW − 1) + {−2(βW + 1) + 2rW [βW (2rW − 1) + 3]

−2iπ(rW − 1)rW (4rW + 1)} l1 − (rW − 1)rW (4rW + 1)l21

−2βW (rW − 1)(2rW + 1)l2 − 2(2rW − 1)[−βW + (βW − 3)rW + 1]l3

+2(rW − 1)(2rW − 1)[(βW − 1)l4 − (βW + 1)l5]

+2(2rW − 1)[−βW + (βW + 3)rW − 1]l6 − 2(rW − 1)rW (4rW + 1)L1

+2(rW − 1)
(

2r2W − rW + 1
)

(L2 − L3 + L4 − L5 + L6)

= 3.943 − 2.565i, (A.1)

donde rW ≡ m2
W /m

2
H = 0.413 y βW ≡

√
1− 4rW = 0.807i, con la abreviatura li y Li se

etiquetan algunas expresiones que se muestran a continuación.
La F

′
W que aparece en la ecuación (3.12) es

F
′
W = 4rW (2rW − 1)

(

L2 − L3 + L4 − L5 + L6 − π2/6
)

= 0.916 . (A.2)
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La FWt que aparece en la ecuación (3.13), esto es

FWt ≡ 2(rW + rt − 1) + l1 − l7 + βW (2rW + 1)l8 − βt(4rW + 2rt − 1)l9

− 1

rt

[

−4r3W + 2r2W (rt + 1) + rW (2rt − 1)rt + r2t + rt
]

m2
HC

t
0(1)

+
(

4r2W − 2rW rt + rW − 2r2t
)

m2
HC

t
0(2)

= 1.928 , (A.3)
donde rt ≡ m2

t/m
2
H = 1.907, βt ≡

√
1− 4rt = 2.575i y rWt ≡ rW − rt = −1.494, y

m2
HC

t
0(1) = m2

HC0(0, 0,m
2
H ,m

2
W ,m

2
t ,m

2
W )

=
1

2
l210 + L13 − L14 + L15 − L16 + L17 + L18

= −0.80288, (A.4)

m2
HC

t
0(2) = m2

HC0(0, 0,m
2
H ,m

2
t ,m

2
W ,m

2
t )

= −L7 + L8 + L9 − L10 + L11 − L12

= −0.40548. (A.5)
Los logaritmos abreviados li y dilogaritmos Li son

l1 ≡ ln rW , l2 ≡ ln(−βW + 2rW − 1), l3 ≡ ln βW−1
βW−2rW+1 ,

l4 ≡ ln βW+1
βW−2rW+1 , l5 ≡ ln βW−1

βW+2rW−1 , l6 ≡ ln βW+1
βW+2rW−1 ,

l7 ≡ ln rt, l8 ≡ ln 2rW
βW+2rW−1 , l9 ≡ ln 2rt

βt+2rt−1 ,

l10 ≡ ln βW+1
βW+2rWt−1 , L1 ≡ Li2(rW + 1), L2 ≡ Li2

rW−1
rW

,

L3 ≡ Li2
2−2rW

−2rW+βW+1 , L4 ≡ Li2
−2rW

−2rW+βW+1 , L5 ≡ Li2
2rW−2

2rW+βW−1 ,

L6 ≡ Li2
2rW

2rW+βW−1 , L7 ≡ Li2
r2Wt

r2
Wt

+rW
, L8 ≡ Li2

r2Wt+rWt

r2
Wt

+rW
,

L9 ≡ Li2
−2rWt

−2rWt+βt−1 , L10 ≡ Li2
2rWt+2

2rWt−βt+1 , L11 ≡ Li2
2rWt

2rWt+βt+1 ,

L12 ≡ Li2
2rWt+2

2rWt+βt+1 , L13 ≡ Li2
r2Wt−rWt

r2
Wt

+rt
, L14 ≡ Li2

r2Wt

r2
Wt

+rt
,

L15 ≡ Li2
2−2rWt

βW+1 , L16 ≡ Li2
2−2rWt

−2rWt+βW+1 , L17 ≡ Li2
−2rWt

−2rWt+βW+1 ,

L18 ≡ Li2
2rWt

2rWt+βW−1 .
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Apéndice B

Evaluación de los factores de forma

Aqúı, detallamos la evaluación de los factores de forma |F1|2+|F2|2 que aparecen en la ecua-
ción (3.18) en la razón de decaimiento. Es suficiente mostrar expĺıcitamente la evaluación
F1, ya que la única diferencia entre F1 y F2 es el factor de proporcionalidad F1 ∝ mqi +mqj

y F2 ∝ −(mqi−mqj), por lo tanto son similares, F1 & F2; se puede encontrar en la ecuación
(3.9) para H → uc y en la ecuación (3.14) para H → ds, db, sb. Por lo tanto, mostramos la
participación expĺıcita de cada contribución de quark virtual en los canales de decaimiento
de la siguiente manera.

(a) Para el decaimiento H → uc, de la ecuación (3.9), los datos son: VudV
∗
cdf1(md) =

(2.15× 10−1)(3.74+5.75i)× 10−15 , VusV
∗
csf1(ms) = (2·22× 10−1)(1.48+2.28i)× 10−12 ,

VubV
∗
cbf1(mb) = (1·57× 10−4)(4.36 + 6.71i) × 10−9, de este modo

F1 = VudV
∗
cdf1(md) + Vus + V ∗

csf1(ms) + VubV
∗
cbf1(mb)

= (1.01 + 1.56i) × 10−12, (B.1)

bajo la misma idea ocurre para

F2 = (1.01 + 1.55i) × 10−12. (B.2)

Despues, |F1|2 + |F2|2 = 6.87 × 10−24, esto en la ecuación (3.18) nos lleva a Br(H →
uc) = 5.00× 10−20.

(b) Para H → ds, de la ecuación (3.11), los datos son: V ∗
udVusf1(mu) = (2.19×10−1)(7.17×

10−17 + 6.76 × 10−8i), V ∗
cdVcsf1(mc) = (2.18 × 10−1)(1.82 × 10−11 + 6.76 × 10−8i),

V ∗
tdVtsf1(mt) = (4.10 × 10−4)(1.32 × 10−6i), de esta manera

F1 = V ∗
udVusf1(mu) + V ∗

cdVcsf1(mc) + V ∗
tdVtsf1(mt)

= 3.96 × 10−12 + 2.71 × 10−8i, (B.3)

de la misma forma

F2 = 3.58 × 10−12 + 2.99 × 10−8i. (B.4)

Donde la contribución más alta proviene del quark c, es decir, |F1|2+|F2|2 = 1.63×10−15

y Br(H → ds) = 1.19 × 10−11.
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(c) Para H → db, de la ecuación (3.11), tenemos los datos: V ∗
udVubf1(mu) = (3.72 ×

10−3)(3.70× 10−15 +3.50× 10−6i), V ∗
cdVcbf1(mc) = (9.06× 10−3)(9.39× 10−10 +3.50×

10−6i), V ∗
tdVtbf1(mt) = (8.10 × 10−3)(6.80 × 10−5i), se obtiene

F1 = V ∗
udVubf1(mu) + V ∗

cdVcbf1(mc) + V ∗
tdVtbf1(mt)

= 8.51 × 10−12 + 5.96 × 10−7i, (B.5)

análogamente

F2 = 8.50 × 10−12 + 5.95 × 10−7i. (B.6)

Donde el quark t arroja la mayor contribución, esto es: |F1|2 + |F2|2 = 7.08 × 10−13 y
Br(H → db) = 5.16 × 10−9.

(d) H → sb, de la ecuación (3.11), tenemos que: V ∗
usVubf1(mu) = (8.58 × 10−4)(3.77 ×

10−15 + 3.56 × 10−6i), V ∗
csVcbf1(mc) = (4.05 × 10−2)(9.56 × 10−10 + 3.56 × 10−6i),

V ∗
tsVtbf1(mt) = (3.93 × 10−2)(6.92 × 10−5i), encontramos que

F1 = V ∗
usVubf1(mu) + V ∗

csVcbf1(mc)V
∗
ts + Vtbf1(mt)

= 3.87 × 10−11 + 2.87 × 10−6i, (B.7)

de la misma manera

F2 = 3.73 × 10−11 + 2.76 × 10−6i. (B.8)

Donde nuevamente el quark t arroja la mayor contribución, esto es: |F1|2 + |F2|2 =
1.58× 10−11 y Br(H → sb) = 1.15 × 10−7.
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