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Abstract
Okounkov and Pandharipande proved that the equivariant Toda hierarchy gov-
erns the equivariant Gromov–Witten theory of CP1. A technical clue of their
method is a pair of dressing operators on the Fock space of 2D charged free
fermion fields. We reformulate these operators as difference operators in the
Lax formalism of the 2D Toda hierarchy. This leads to a new explanation to
the question of why the equivariant Toda hierarchy emerges in the equivariant
Gromov–Witten theory of CP1. Moreover, the non-equivariant limit of these
operators turns out to capture the integrable structure of the non-equivariant
Gromov–Witten theory correctly.

Keywords: Gromov–Witten theory, Riemann sphere, equivariant Toda
hierarchy, dressing operators, Lax formalism

1. Introduction

The Gromov–Witten theory of the Riemann sphere CP1 is known to be related to integrable
hierarchies of the Toda type. Such a link was first observed by physicists employing random
matrix models [1, 2]. This discovery was enhanced to a mathematical statement called the
Toda conjecture [3–5]. The Toda conjecture was proved by several methods [6–10] and gener-
alized to CP1 with orbifold points [11–14]. The relevant integrable hierarchies are the 1D Toda
hierarchy, the bigraded Toda hierarchy [15, 16] and a kind of the Kac–Wakimoto hierarchies
[17]. Another direction of generalization is the equivariant Gromov–Witten theory of CP1 [7,
18–20]. The integrable hierarchies emerging therein are the equivariant Toda hierarchy [21]
and its bigraded version [19].
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The most exotic among these integrable hierarchies will be the equivariant Toda hierar-
chy. This integrable hierarchy, like the 1D Toda hierarchy, is a reduction of the 2D Toda
hierarchy. Okounkov and Pandharipande [7] encode the Gromov–Witten invariants into the
vacuum expectation value of an operator product on the fermionic Fock space of 2D charged
free fermion fields. This fermionic expression can be converted into a tau function of the 2D
Toda hierarchy, and eventually turns out to be a tau function of the equivariant Toda hierarchy.
Milanov [18] starts from a bosonic expression of the Gromov–Witten invariants in the Givental
theory [22], and derives the Hirota bilinear equations of the equivariant Toda hierarchy. These
results are further generalized to CP1 with two orbifold points [19, 20].

This paper reconsiders Okounkov and Pandharipande’s method for the equivariant Gro-
mov–Witten theory from the perspective of the Lax formalism of the 2D Toda hierarchy. A
central role in their method is played by what they call dressing operators1. These operators on
the fermionic Fock space are used to convert the fermionic expression of the Gromov–Witten
invariants into a standard expression of tau functions of the 2D Toda hierarchy. It is, however,
not very clear from this expression that the tau function is indeed a tau function of the equiv-
ariant Toda hierarchy. We reformulate Okounkov and Pandharipande’s dressing operators as
difference operators like the Lax operators of the 2D Toda hierarchy. This enables us to explain
the relation to the equivariant Toda hierarchy in a more direct manner. Throughout this paper,
the ordinary equivariant Toda hierarchy and its orbifold generalizations are treated on an equal
footing.

2. Equivariant Toda hierarchy as reduction of 2D Toda hierarchy

Let us recall the Lax formalism of the 2D Toda hierarchy (see the recent review [23]).
t = {tk}∞k=1 and t̄ = {̄tk}∞k=1 are the two sets of time variables. s is the spatial coordinate, which
is understood to be a continuous variable throughout this paper. Λ denotes the shift operator

Λ = e∂s , ∂s = ∂/∂s.

The Lax operators L, L̄ of the 2D Toda hierarchy are difference (or pseudo-difference)operators
of the form

L = Λ+

∞∑
n=1

unΛ
1−n, L̄−1 =

∞∑
n=0

ūnΛ
n−1,

un = un(s, t, t̄), ūn = ūn(s, t, t̄), ū0(s, t, t̄) �= 0,

and satisfy the Lax equations

∂L
∂tk

= [Bk, L],
∂L
∂ t̄k

= [B̄k, L],

∂L̄
∂tk

= [Bk, L̄],
∂L̄
∂ t̄k

= [B̄k, L̄],

where

Bk = (Lk)�0, B̄k = (L̄−k)<0.

1 This terminology is somewhat confusing, because dressing operators of a different kind are already used in the Lax
formalism of the 2D Toda hierarchy.
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( )�0 and ( )<0 denote the projection onto the non-negative and negative powers of Λ:(∑
n∈Z

anΛ
n

)
�0

=
∑
n�0

anΛ
n,

(∑
n∈Z

anΛ
n

)
<0

=
∑
n<0

anΛ
n.

Let us mention that these equations should be formulated in the �-dependent form [24] to
accommodate the �-expansion (i.e. genus expansion) of the Gromov–Witten theory. To avoid
notational complexity, however, we dare not to consider the �-dependent form. We can move
to the �-dependent formulation, at least formally, by rescaling the variables as tk → tk/�, t̄k →
t̄k/� and s → s/�.

The Lax operators can be expressed in a dressed form as

L = WΛW−1, L̄ = W̄ΛW̄−1

with the dressing operators

W = 1 +

∞∑
n=1

wnΛ
−n, W̄ =

∞∑
n=0

w̄nΛ
n,

wn = wn(s, t, t̄), w̄n = w̄n(s, t, t̄), w̄0(s, t, t̄) �= 0.

The dressing operators W, W̄ satisfy the Sato equations

∂W
∂tk

= BkW − WΛk,
∂W
∂ t̄k

= B̄kW,

∂W̄
∂tk

= BkW̄,
∂W̄
∂ t̄k

= B̄kW̄ − WΛ−k.

The logarithm of L, L̄ can be defined with the dressing operators as

log L = W log ΛW−1 = ∂s −
∂W
∂s

W−1,

log L̄ = W̄ log ΛW̄−1 = ∂s −
∂W̄
∂s

W̄−1.

Note that logΛ = ∂s.
Let a, b be positive integers. They are related to the orders of two orbifold points of CP1.

The case of a = b = 1 amounts to the ordinary CP1. The equivariant Toda hierarchy of type
(a, b) can be obtained by imposing the reduction condition [5, 19]

La − ν log L = L̄−b − ν log L̄ − ν log Q, (1)

where ν and Q are parameters of the reduction. ν is called the equivariant parameter. In the
non-equivariant limit as ν → 0, the reduced system turns into the bigraded Toda hierarchy of
type (a, b) [16]. Q is related to the particular solution that we shall consider later on.

(1) implies that both sides become an operator of the form

L = Ba + B̄b − ν log Λ. (2)

The Lax equations of the 2D Toda hierarchy turn into the Lax equations

∂L

∂tk
= [Bk,L],

∂L

∂ t̄k
= [B̄k,L]
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for this reduced Lax operator. In the language of tau functions, (1) amounts to the condition
that the tau function depends on s in the particular form

τ = Qs2/2 f ({tk + δkas/ν, t̄k + δkbs/ν}∞k=1). (3)

3. Dressing operators V, V̄

Okounkov and Pandharipande’s dressing operators V , V̄ [7] are elements of the GL(∞) group
acting on the Fock space of 2D charged free fermion fields2. The tau function of the equivariant
Gromov–Witten theory, generalized to CP1 with two orbifold points of orders a, b [20], can
be thereby expressed as

τ = 〈s| exp

( ∞∑
k=1

tkJk

)
g exp

(
−

∞∑
k=1

t̄kJ−k

)
|s〉, (4)

where

g = V−1 eJa/aQL0 eJ−b/bV̄−1. (5)

Jk’s are the generators of the U(1) current algebra of the free fermion system, and L0 is the
zero mode of the Virasoro algebra therein.

Okounkov and Pandharipande’s construction of V , V̄ relies on the correspondence between
fermionic operators and Z× Z matrices. Those matrices can be further represented by
difference operators on the discrete space Z, e.g.

Jk ←→ Λk, L0 ←→ H = s − 1/2. (6)

Actually, Λk and H are meaningful in the continuous space as well. We shall redefine V and V̄
as well to be difference operators on the continuous space.

In our reformulation, V and V̄ are difference operators of the form3

V = 1 +

∞∑
n=1

vnΛ
−n, V̄ = 1 +

∞∑
n=1

v̄nΛ
n,

vn = vn(s), v̄n = v̄n(s),

and satisfy the following intertwining relations:

(Λa + H − ν log Λ)V = V(Λa − ν log Λ), (7)

V̄(Λ−b + H − ν log Λ) = (Λ−b − ν log Λ)V̄. (8)

These operators can be constructed by power series expansion with respect to ν, see section 5.
We shall show in the next section that (7) and (8) lead correctly to a solution of the reduction
condition (1).

2 These operators are denoted by W, W∗ in Okounkov and Pandharipande’s notation. We have changed the notation to
avoid confusion with the aforementioned dressing operators W, W̄ for the Lax operators.
3 This implies that their fermionic counterparts leave invariant the ground state of the charge-s sector in the Fock space
as 〈s|V = 〈s| and V̄|s〉 = |s〉.
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As further evidence for the validity of our reformation, let us mention that (7) and (8) in the
case of a = b = 1 are consistent with Okounkov and Pandharipande’s intertwining relations
between two operators A(z,w) and Ã(z,w) on the fermionic Fock space. The counterparts of
these operators on the difference operator side of the correspondence (6) are

A(z,w) =

(
ζ(w)
w

)z∑
k∈Z

ζ(w)k

(1 + z)k
Ek(w),

Ã(z,w) =
∑
k∈Z

wk

(1 + z)k
Λk,

where

Ek(z) = ez(H+k/2)Λk, ζ(z) = ez/2 − e−z/2, (1 + z)k =
Γ(1 + z + k)
Γ(1 + z)

.

For matching with Okounkov and Pandharipande’s notation, let us introduce the new parameter
u = 1/ν and rewrite (7), specialized to a = b = 1, as

(u(Λ+ H) − log Λ)V = V(uΛ− log Λ). (9)

Proposition 1. (9) implies the intertwining relations

A(m, mu)V = VÃ(m, mu), m = 1, 2, . . . . (10)

Proof. Exponentiating both sides of (9), we have the identity

em(uΛ+uH−log Λ)V = V em(uΛ−log Λ).

The exponential on the right side boils down to

em(uΛ−log Λ) = emuΛΛ−m.

Since [logΛ, H] = 1, we can use the Baker–Campbell–Hausdorff formula to compute the
exponential on the left side as

em(uΛ+uH−log Λ) = eΛ em(uH−log Λ) e−Λ

= eΛ e−mu2/2 emuHΛ−m e−Λ

= eΛE−m(mu)e−Λ.

Therefore

eΛE−m(mu)e−ΛV = V emuΛΛ−m.

Since

A(m, mu) =
m!

(mu)m
eΛE−m(mu)e−Λ,

Ã(m, mu) =
m!

(mu)m
emuΛΛ−m,

we find that (10) holds. �
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(10) takes exactly the same form as the one presented by Okounkov and Pandharipande
[7]. We can derive a similar intertwining relation for V̄ from (8) in much the same way. Thus
Okounkov and Pandharipande’s intertwining relations can be, at least partially, recovered in
our reformulation of the dressing operators V , V̄ .

4. Algebraic relation of Lax operators L, L̄

The dressing operators W, W̄ of the tau function (4) can be captured by the factorization
problem (see the review [23])

exp

( ∞∑
k=1

tkΛ
k

)
U exp

(
−

∞∑
k=1

t̄kΛ
−k

)
= W−1W̄ , (11)

where U is the difference operator

U = V−1 eΛ
a/aQH eΛ

−b/bV̄−1 (12)

that corresponds to the operator (5) on the fermionic Fock space. This operator satisfies the
following intertwining relation, which implies the reduction condition (1) to the equivariant
Toda hierarchy.

Proposition 2.

(Λa − ν log Λ)U = U(Λ−b − ν log Λ− ν log Q). (13)

Proof. We use (7) and the operator identities

eΛ
a/aH e−Λa/a = Λa + H,

e−Λ−b/bH eΛ
−b/b = Λb + H,

log ΛQH = QH(log Λ + log Q)

to derive (13) from (12) as

(Λa − ν log Λ)U = V−1(Λa + H − ν log Λ)eΛ
a/aQH eΛ

−b/bV̄−1

= V−1 eΛ
a/a(H − ν log Λ)QH eΛ

−b/bV̄−1

= V−1 eΛ
a/aQH(H − ν log Λ− ν log Q)eΛ

−b/bV̄−1

= V−1 eΛ
a/aQH eΛ

−b/b(Λ−b + H − ν log Λ− ν log Q)V̄−1

= U(Λ−b − ν log Λ− ν log Q).

�
Proposition 3. The Lax operators obtained from the solution of the factorization problem
(11) satisfy the reduction condition (1).

Proof. Let us rewrite (11) as

U = exp

(
−

∞∑
k=1

tkΛ
k

)
W−1W̄ exp

( ∞∑
k=1

t̄kΛ
−k

)
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and plug it into (13). After some algebra, we find that

W(Λa − ν log Λ)W−1 = W̄(Λ−b − ν log Λ− ν log Q)W̄−1.

This is nothing but (1). �

5. Construction of V, V̄

We construct the dressing operators V , V̄ by the power series expansion

V =

∞∑
k=0

νkVk, V̄ =

∞∑
k=0

νkV̄k (14)

with respect to ν. As it turns out below, Vk’s become difference operators of the form

V0 = 1 +

∞∑
n=1

v0nΛ
−n, Vk =

∞∑
n=ka

vknΛ
−n, k � 1. (15)

V̄k’s, too, take a similar form. Since V̄ can be obtained from the formal adjoint (or transpose)
V∗ of V as

V̄ = V∗|ν→−ν, a→b, (16)

we present the construction of V only.
(7) splits into the following set of equations for Vk’s:

(Λa + H)V0 = V0Λ
a, (17)

(Λa + H)Vk − log ΛVk−1 = VkΛ
k − Vk−1 log Λ, k � 1. (18)

Since V0 is assumed to be invertible, see (15), we can rewrite (17) and (18) as

[Λa, V0] + HV0 = 0, (19)

[Λa, V−1
0 Vk] = V−1

0 [log Λ, Vk−1]. k � 1. (20)

Proposition 4. There are difference operators of the form (15) with polynomial coefficients
vkn = vkn(s) that satisfy (19) and (20).

Proof. We first solve (19). This equation can be translated to the difference equations

v0,n+a(s + a) − v0,n+a(s) = −Hv0n(s) (21)

for the coefficients v0n of V0. Starting from v00 = 1 and v01 = . . . = v0,a−1 = 0, we can find
the v0n’s recursively with the aid of the difference identity

(s + a)s(s − a) . . . (s − (k − 2)a) − s(s − a) . . . (s − (k − 1)a)

= kas(s − a) . . . (s − (k − 2)a) (22)

among the a-step factorial products as follows. Let us examine the difference equation

v0a(s + a) − v0a(s) = −Hv00(s) = −s + 1/2

7
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at the first stage of the recursion. The identity (22) for k = 2 and k = 1 gives

(s + a)s − s(s − a) = 2as, (s + a)s − s = a.

Hence a polynomial solution of the difference equation can be obtained in the form

v0a(s) = − 1
2a

(s + a)s +
1

2a
s.

Since v01 = . . . = v0,a−1 = 0, the subsequent a terms v0,a+1, . . . , v0,2a−1 can be chosen to be
equal to 0. The next non-trivial stage is the difference equation

v0,2a(s + a) − v0,2a(s) = −Hv0a(s).

Expanding−Hv0a(s) into a linear combination of s(s − a)(s − 2a), s(s − a) and s, we can apply
the identity (22) for k = 2, 1, 0 to find a polynomial solution of this equation. Repeating this
procedure, we obtain a set of polynomials v0a that satisfy (21). We now turn to (20) and solve
these equations step-by-step with respect to k. Suppose that Vk−1 has been constructed to be a
difference operator of the form (15) with polynomial coefficients. (20) consists of the difference
equations

v′k,n+a(s + a) − v′k,n+a(s) = f kn(s)

for the coefficients of

V−1
0 Vk =

∞∑
n=ka

v′knΛ
−n, V−1

0 [log Λ, Vk−1] =
∞∑

n=(k−1)a

f knΛ
−n.

Since f kn is a polynomial in s, we can find a polynomial v′k,n+a that satisfies this dif-
ference equation. Thus V−1

0 Vk, hence Vk, becomes a difference operator with polynomial
coefficients. �

Remark 1. The intertwining relations (7) and (8) do not determine V and V̄ uniquely, leaving
the gauge freedom

V → V

(
1 +

∞∑
n=1

cnΛ
−n

)
, V̄ →

(
1 +

∞∑
n=1

c̄nΛ
n

)
V̄

of multiplying difference operators with constant coefficients cn, c̄n.

Remark 2. Since the Vk’s take the particular form as shown in (15), V itself can be expressed
as

V = 1 +

∞∑
n=1

∞∑
k=0

νkvknΛ
−n.

The sum over k is actually a finite sum because vkn = 0 for k > n/a. Therefore the coefficients
vn of V are polynomials in both s and ν. Thus there is no divergence problem for the expansion
into powers of ν. This is also the case for V̄ .
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6. Non-equivariant limit

The leading terms V0, V̄0 in the expansion (14) may be thought of as the non-equivariant limit

V0 = lim
ν→0

V , V̄0 = lim
ν→0

V̄

of V , V̄ . These operators will play a role in the non-equivariant Gromov–Witten theory of CP1.
Similar ideas can be found in the recent papers of Chen and Guo [25] and Alexandrov [26].
Let us consider this issue briefly.

In the non-equivariant limit, the operator U in the factorization problem (11) is replaced by

U0 = V−1
0 eΛ

a/aQH eΛ
−b/bV̄−1

0 . (23)

V0 and V̄0 satisfy the intertwining relations

(Λa + H)V0 = V0Λ
a, V̄0(Λ−b + H) = Λ−bV̄0. (24)

(13) turns into

ΛaU0 = U0Λ
−b, (25)

which implies that L and L̄ satisfy the reduction condition

La = L̄−b (26)

to the bigraded Toda hierarchy of type (a, b) [16].
Actually, we have the refinement

ΛaU0 = U0Λ
−b = V−1

0 eΛ
a/aHQH eΛ

−b/bV̄−1
0 (27)

of (25), which can be derived in the same way as in the derivation of (13). Exponentiating (27)
gives

exp

( ∞∑
k=1

TkΛ
ka

)
U0 = U0 exp

( ∞∑
k=1

TkΛ
−kb

)

= V−1
0 eΛ

a/a exp

( ∞∑
k=1

TkHk

)
QH eΛ

−b/bV̄−1
0 . (28)

The new variables Tk can be identified with coupling constants of the non-equivariant Gro-
mov–Witten theory [6, 25, 26]. In the language of fermions, (28) amount to relations of the
form

〈s| exp

( ∞∑
k=1

TkJka

)
g0|s〉 = 〈s|g0 exp

( ∞∑
k=1

TkJ−kb

)
|s〉

= 〈s|eJa/a exp

( ∞∑
k=1

TkPk

)
QH eJ−b/b|s〉, (29)

where

g0 = V−1
0 eJa/aQH eJ−b/bV̄−1

0 (30)

9
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and Pk’s are fermion operators that correspond to Hk by the correspondence (6). Note that V−1
0

and V̄−1
0 disappear in the last line of (29) because 〈s|V−1

0 = 〈s| and V̄−1
0 |s〉 = |s〉. Thus the

coupling constants Tk can be identified with part of the time variables of the bigraded Toda
hierarchy.

Let us mention that this construction can capture the extended (logarithmic) flows of the
1D/bigraded Toda hierartchy [15, 16] as well. Let T̃ = {T̃k}∞k=1 be time variables of the
extended flows and deform U0 as

U0(T̃) = exp

( ∞∑
k=1

T̃kΛ
ka log Λ

)
U0 exp

(
−

∞∑
k=1

T̃kΛ
−kb log Λ

)
. (31)

By the intertwining relation (25) of U0, the deformed operator U0(T̃) satisfies the differential
equations

∂U0(T̃)

∂T̃k
= Λka[log Λ, U0(T̃)] = Λka ∂U0(T̃)

∂s
(32)

hence turns out to be a genuine difference operator (i.e. does not contain logΛ). Thus the
factorization problem (11) persists to be meaningful. The associated dressing operators W, W̄
satisfy the Sato equations

∂W

∂T̃k
= CkW − WΛka log Λ,

∂W̄

∂T̃k
= CkW̄ − W̄Λ−kb log Λ

of the extended flows [15, 16]. The Ck’s are defined as

Ck = Lk log Λ−
(

WΛkaW−1 ∂W
∂s

W−1

)
�0

−
(

W̄Λ−kbW̄−1 ∂W̄
∂s

W̄−1

)
<0

,

where L denotes the difference operator of finite order defined by both sides of the reduction
condition (26).

7. Conclusion

We have reformulated Okounkov and Pandharipande’s dressing operators as difference oper-
ators that satisfy the intertwining relations (7) and (8). This formulation fits well into the Lax
formalism of the 2D Toda hierarchy. These dressing operators are building blocks of the fac-
torization problem (11) that captures Okounkov and Pandharipande’s tau function in the Lax
formalism. It is a rather immediate consequence of the factorization problem that the Lax
operators satisfy the reduction condition (1) to the equivariant Toda hierarchy. We have thus
found a new explanation to the question of why the equivariant Toda hierarchy emerges in the
Gromov–Witten theory of CP1.
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