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Abstract: Tidal disruption events occur when astrophysical objects are destroyed by black holes due

to strong tidal force effects. Tidal forces have been studied in a variety of black hole spacetimes,

including Reissner-Nordström and Kerr spacetimes. Despite the vast literature on the subject, tidal

forces around black holes in static equilibrium have never been investigated before. The aim of this

work is to fill in this gap and explore tidal forces in the Majumdar-Papapetrou spacetime describing

two extremely charged binary black holes in equilibrium. We focus on tidal forces associated with

radial and circular geodesics of massive neutral particles moving on the plane equidistant to the black

holes. In particular, we study the behavior of the tidal forces as a function of the distance from

the black holes and as a function of the energy of the geodesics. We also investigate the numerical

solutions of the geodesic deviation equation for different initial conditions.

Keywords: black holes; Majumdar-Papapetrou; tidal forces; geodesic deviation

1. Introduction

Recent observational results [1–3] have increased the interest of the physics community
and the general public in black holes (and also in the wide range of phenomena associated
with them). The possibility of detecting and studying effects like quasinormal ringing,
shadows, and superradiance through radio telescopes and gravitational wave detectors
has become a reality in the last decade. The prospect of new groundbreaking results of
gravitational physics related to black holes and other compact objects is very promising.

Since the first detection of gravitational waves, more than 90 events consisting of
the inspiralling and merger of binary systems of compact objects have been observed
by the LIGO-Virgo collaboration in its first three observing runs [4]. Theoretical and
numerical studies of such binaries are crucial for a greater understanding of current and
future observations. Unfortunately, there are no known analytical solutions of Einstein’s
equations that describe astrophysical binary systems. Nevertheless, exact and simple
solutions corresponding to the metrics of non-coalescing pairs of black holes exist. One of
such solutions is the Majumdar-Papapetrou (MP) metric [5,6] of extremely charged black
holes in static equilibrium. The MP spacetime has been successfully used in the past as a
toy model to investigate how the presence of a second black hole influences quasinormal
ringing, shadows, Penrose energy extraction, and other typical black hole effects [7–14].

Building on recent articles [15–23] that have analyzed tidal forces in black hole space-
times (including Reissner-Nordström and Kerr), the objective of this work is to investigate
tidal forces acting on neutral massive particles that move along geodesics in the spacetime
of two static black holes described by the MP metric. Tidal forces arise, for instance, when
one considers a body falling towards the Earth. Due to the gravitational interaction, the
body suffers stretching in the direction of motion and compression in transverse directions.
In particular, tidal forces in the Schwarzschild spacetime can be used to describe the orbital
motion of satellites around Earth and estimate deviations in their trajectories [24].
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This work is organized as follows. In Section 2, after introducing the MP spacetime for
two black holes in equilibrium, we obtain the equations of motion for massive particles
moving along geodesics that lie on the plane that is equidistant from the black holes. In
Section 3, we determine a freely falling frame, which is adapted to the geodesics discussed
in Section 2. In Section 4, we review the geodesic deviation equation of General Relativity
and write it down explicitly for the MP metric. Using this equation, we analyze the
properties of the tidal forces acting on radial and circular geodesics. In Section 5, we solve
the geodesic deviation equation numerically and analyze the behavior of the corresponding
solutions as a function of the radial distance. Finally, in Section 6, we review the main
results of our work and discuss future research directions.

2. The Majumdar-Papapetrou Spacetime

The MP spacetime describes a collection of maximally charged black holes that are in static
equilibrium due to the balance of electromagnetic and gravitational interactions [5,25,26]. The
MP metric, in Weyl cylindrical coordinates (t, ρ, ϕ, z), is

ds2 = − 1

U2(ρ, z)
dt2 + U2(ρ, z)

(
dρ2 + ρ2dϕ2 + dz2

)
, (1)

where U(ρ, z) denotes the associated electromagnetic potential. In this work, we focus on a
binary system of equal-mass black holes and assume that the black holes are located along
the z-axis, at z = ±b (the quantity 2b, hence, measures the separation between the black
holes). With these assumptions, the electromagnetic potential takes the explicit form:

U(ρ, z) = 1 +
M√

ρ2 + (z − b)2
+

M√
ρ2 + (z + b)2

, (2)

where M denotes the mass of each black hole (each black hole has electric charge Q = M).
In particular, when b = 0, the metric describes a single extremal Reissner-Nordström black
hole of mass 2M. In our numerical analyses and figures, we have chosen M = 1, which
corresponds to normalizing the variables and parameters with respect to the mass of the
black holes.

We consider timelike geodesics that correspond to the trajectories of massive parti-
cles subjected exclusively to the gravitational interaction. Geodesics, being curves that
maximize the proper time between two events in a spacetime, can be determined from the
Euler-Lagrange equations for the following Lagrangian L:

L = gµνvµvν = − ṫ2

U2
+ U2

(
ρ̇2 + ρ2ϕ̇2 + ż2

)
, (3)

where

vµ =
d

dτ
(t, ρ, ϕ, z) = (ṫ, ρ̇, ϕ̇, ż) (4)

L = −1. (5)

Taking advantage of the fact that t and ϕ are cyclic coordinates of the Lagrangian, one
can determine two invariants of motion [11,27]: the energy E and the angular momentum
L, defined, respectively, as

E =
1

U2
ṫ, (6)

L =ρ2U2ϕ̇. (7)
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These constants of motion can also be obtained from the fact that ∂t and ∂ϕ are
Killing vector fields of the spacetime-associated, respectively, with the stationarity and the
axisymmetry of the MP metric (1).

We restrict our analysis to timelike geodesics confined to the plane z = 0. Note that
these planar geodesics only exist when the masses of the black holes are the same (as
we have assumed in this work). The restriction z = 0, together with (5)–(7), implies the
following equation of motion:

ρ̇2 = E2 − Veff(ρ) = E2 − 1

U2(ρ, 0)
− L2

ρ2U4(ρ, 0)
, (8)

where Veff denotes the associated effective potential. This is a first-order ordinary differen-
tial equation for ρ, which can be solved after one chooses an initial condition. From the
solution ρ(τ) of (8), one can determine t(τ) using Equation (6) and ϕ(τ) using Equation (7)
to find the complete trajectory (t(τ), ρ(τ), ϕ(τ), 0). To investigate tidal forces in the z = 0
plane, we shall assume that the geodesics are either radial (in which case, ϕ̇ = 0 and,
consequently L = 0) or circular (in which case, ρ̇ = 0 and L ̸= 0).

Note that, according to Equation (8), radial geodesic motion on the z plane, corre-
sponding to ϕ(τ) = ϕ0 = constant, is possible only if the absolute value of the energy is
greater than a minimum value Emin given by

Emin =
b

b + 2M
. (9)

In particular, if Emin ≤ |E| < 1, the trajectory is bounded and has a turning point at

ρ = ρmax =

√(
2ME

1 − |E|

)2

− b2. (10)

Additionally, according to Equation (8), circular geodesic motion on the z plane,
corresponding to ρ(τ) = ρ0 = constant, is only possible when E, L, and ρ0 satisfy the
following requirements:

∂Veff

∂ρ
= 0 ⇒ ∂U

∂ρ
(ρ0, 0) +

L2U(ρ0, 0)

2L2ρ0 + ρ3
0U2(ρ0, 0)

= 0 (11)

and

E2 = Veff ⇒ E2 =
1

U2(ρ0, 0)
+

L2

ρ2
0U4(ρ0, 0)

. (12)

Given L, one can first use (11) to determine the value of ρ0 corresponding to a circular
geodesic. The associated energy E can then be directly determined from (12). From
Equation (7), we find that the angle changes linearly with respect to the proper time for
circular geodesics:

ϕ(τ) = ϕ0 +
L

ρ2
0U2(ρ0, 0)

τ, (13)

where ϕ0 is the angle at τ = 0. In Figure 1, we show the values of E and L as a function
of the radius of the circular geodesic and the separation between the black holes. We
have observed that the values of E and L grow without bound when b and ρ0 approach
the white dashed line in Figure 1. Inside the black region, Equations (11) and (12) do not
yield real solutions, meaning that circular geodesics are not allowed for the corresponding
parameters b and ρ0.
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Figure 1. Contour plots of the energy E (left) and of the angular momentum L (right) associated

with circular geodesics in the z = 0 plane, as a function of the distance b between the black holes

and the radius ρ0 of the geodesic. The black region corresponds to the parameters for which circular

geodesics are not allowed.

3. Freely Falling Frames in the Majumdar-Papapetrou Spacetime

To investigate tidal forces along a geodesic, it is convenient to define a freely falling frame,
i.e., a tetrad basis, which is adapted to the corresponding trajectory (meaning that the elements
of the tetrad are parallel propagated along the geodesic). A tetrad basis {eâ} = {e0̂, e1̂, e2̂, e3̂}
is a non-coordinate basis that follows a prescribed normalization [28–30]. We denote each
component (according to the coordinate basis ∂µ) of the tetrad element eâ as eµ

â. The compo-
nents of the corresponding dual vectors are eµâ. We assume that the tetrad basis is normalized
according to eµ

âeµb̂ = ηâb̂, where ηâb̂ = diag (−1, 1, 1, 1). We set the first element of the tetrad

basis as the tangent vector of the timelike geodesic we are interested in, i.e., eµ
0̂ = vµ. The re-

maining elements of the tetrad basis are determined using the normalization prescribed above
and the requirement that the tetrad elements are parallel transported along the trajectory, i.e.,

Deµ
â

Dτ
= 0, (14)

where D/Dτ = vµ∇µ = eµ
0̂∇µ is the directional derivative along the geodesic.

We derive below a general expression for a freely falling frame associated with
geodesics confined to the plane z = 0 of the MP spacetime. Equations (6)–(8) deter-
mine the tangent vector of the geodesic and, therefore, also determine the first vector of the
tetrad basis:

vµ = λµ
0̂ =

(
EU2(ρ, 0),−

√
E2ρ2U4(ρ, 0)− ρ2U2(ρ, 0)− L2

ρU2(ρ, 0)
,

L

ρ2U2(ρ, 0)
, 0

)
. (15)

By definition, λµ
0̂ is parallel propagated along the geodesic. It is straightforward to

find another vector, which is parallel propagated along the geodesic and which satisfies the
requirements of the tetrad basis. In fact, the symmetries of the problem, together with the
fact that the geodesic is confined to the z = 0 plane, lead to:

λµ
3̂ =

(
0, 0, 0,

1

U(ρ, 0)

)
. (16)

The difficult part is to find two extra vectors that are parallel propagated along the
geodesic. In order to do so, we follow the idea used in Ref. [31] to investigate tidal effects
in the Kerr metric. We start by determining two vectors, λµ

1̂ and λµ
2̂, which, although not

parallel propagated along the geodesic, are such that λµ
âλµb̂ = ηâb̂:
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λµ
1̂ =

(
−U

√
E2ρ2U4 − L2 − ρ2U2

L2 + ρ2U2
,

EρU√
L2 + ρ2U2

, 0, 0

)
,

λµ
2̂ =

(
ELU2

√
L2 + ρ2U2

,− L

ρU2

√
E2ρ2U4 − L2 − ρ2U2

L2 + ρ2U2
,

√
L2 + ρ2U2

ρ2U2
, 0

)
.

(17)

To simplify the notation, we have omitted the dependence (ρ, 0) from U(ρ, 0) in the
expression above.

Note that one can rotate the vectors λµ
1̂ and λµ

2̂ by an arbitrary angle while maintaining
the orthonormalization λµ

âλµb̂ = ηâb̂. Using this property, we can determine under which

conditions the rotated vectors become parallel transported along the geodesic. More
precisely, if Ψ = Ψ(τ) denotes the rotation angle, the rotated vectors are given by

eµ
1̂ = λµ

1̂ cos Ψ + λµ
2̂ sin Ψ,

eµ
2̂ =− λµ

1̂ sin Ψ + λµ
2̂ cos Ψ.

(18)

By requiring that D(eµ
1̂)/Dτ = D(eµ

2̂)/Dτ = 0, we find that the angle Ψ must satisfy
the equation

dΨ

dτ
= − EL

L2 + ρ2U2(ρ, 0)

(
U(ρ, 0) + ρ

∂U(ρ, 0)

∂ρ

)
. (19)

Hence, if we choose Ψ according to (19) and define eµ
0̂ = λµ

0̂, eµ
3̂ = λµ

3̂, the tetrad basis
{eâ} will be parallel propagated along the geodesic, whose tangent vector is (15).

Note that, in general, the angle Ψ will change along the geodesic. Since E cannot be
zero, Ψ will remain constant along the geodesic only when L = 0. In fact, if we let L = 0
and Ψ = 0, Equations (15)–(18) reduce to:

eµ
0̂ =

(
EU2(ρ, 0),−

√
E2U2(ρ, 0)− 1

U(ρ, 0)
, 0, 0

)
,

eµ
1̂ =

(
−U(ρ, 0)

√
E2U2(ρ, 0)− 1, E, 0, 0

)
,

eµ
2̂ =

(
0, 0,

1

ρU(ρ, 0)
, 0

)
,

eµ
3̂ =

(
0, 0, 0,

1

U(ρ, 0)

)
,

(20)

which, therefore, constitutes a freely falling frame for radial geodesics on the z plane.
The angle Ψ also takes a simple form for circular geodesics. Considering the fact that

ρ = ρ0 is constant along such geodesics, one finds that dΨ/dτ is also constant. Taking
into account Equations (11)–(12), one finds the following freely falling frame for circular
geodesics:

eµ
0̂ =

(
EU2(ρ0, 0), 0,

L

ρ2U2(ρ0, 0)
, 0

)
,

eµ
1̂ =

(−L sin Ψ

ρ0
,

cos Ψ

U(ρ0, 0)
,−E sin Ψ

ρ0
, 0

)
,

eµ
2̂ =

(
L cos Ψ

ρ0
,

sin Ψ

U(ρ0, 0)
,

E cos Ψ

ρ0
, 0

)
,

eµ
3̂ =

(
0, 0, 0,

1

U(ρ0, 0)

)
,

(21)

where

Ψ = Ψ(ϕ) = Ψ0 −
Eρ2

0U3(ρ0, 0)

2L2 + ρ2
0U2(ρ0, 0)

ϕ. (22)
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The parameter Ψ0, which is independent of ϕ, represents the rotation angle between
the tetrads {eâ} and {λâ} when ϕ = 0. In particular, if we choose Ψ0 = 0, then the tetrads
will coincide when ϕ = 0. More generally, we can always set Ψ0 so that the tetrads coincide
at a particular angle ϕ (or, equivalently, at a particular proper time τ).

4. Tidal Forces in the Majumdar-Papapetrou Spacetime

Tidal forces in General Relativity are associated with the geodesic deviation equation:

D2ξµ

Dτ2
= Rµ

νρδvνvρξδ, (23)

which determines the evolution of the geodesic deviation vector ξµ that connects infinitesi-
mally close geodesics in terms of the Riemann tensor Rµ

νρδ and the tangent vector vµ(τ) of
the geodesic. In simple terms, a non-vanishing Riemann tensor indicates the existence of
acceleration between neighboring geodesics and, consequently, the presence of tidal forces.

To derive the geodesic deviation equation, one chooses a one-parameter family of
geodesics around a reference geodesic xµ(τ) [29,32]. The family of geodesics defines
a smooth two-dimensional surface x̃µ(s, τ) on the spacetime in such a way that, for
each s = s0, the curve x̃µ(s0, τ) is a geodesic parametrized by the affine parameter τ
with corresponding tangent vector ṽµ(s0, τ) = (∂x̃µ/∂τ)(s0, τ). The parameter s, de-
fined in a neighborhood of s = 0, parametrizes deviations from the reference geodesic
x̃µ(0, τ) = xµ(τ). The deviation vector of a given geodesic in the family is defined by
ξ̃µ(s0, τ) = (∂x̃µ/∂s)(s0, τ). In particular, we denote the deviation vector ξ̃µ(0, τ) of the
reference geodesic as ξµ(τ). Since (s, τ) can be used as a coordinate system on the two-
dimensional surface, the Lie derivative of the vector field ξ̃µ along ṽµ must vanish, meaning
that the vector fields ξ̃µ and ṽµ commute [29,32]:

Lṽ ξ̃µ = [ṽ, ξ̃]µ = 0 ⇒ ξ̃ν∇νṽµ = ṽν∇ν ξ̃µ. (24)

By taking the derivative of the equation above along the direction of ṽµ, one obtains
the geodesic deviation equation after some algebraic manipulation.

Note that there is a critical difference between Equations (23) and (24). While
Equation (23) is a second-order differential equation that is well defined independently
of the choice of the one-parameter family of geodesics around xµ(τ), Equation (24) is a
first-order differential equation that only makes sense if the family of geodesics is given a
priori. This difference can be understood in the following sense: Equation (23) has a larger
space of solutions in comparison to Equation (24) since the arbitrariness of choosing the
family of geodesics around xµ(τ) has not been used in Equation (23). In fact, the extra
degrees of freedom in the initial conditions of Equation (23) (in comparison to the initial
conditions of Equation (24)) correspond to this freedom of choosing the one-parameter
family of geodesics. In the language of Riemannian and pseudo-Riemannian manifolds,
the geodesic equation is typically referred to as the Jacobi equation. A key result in the
mathematical literature is that every solution of the geodesic Equation (23) corresponds to
a one-parameter family of geodesics defined around xµ(τ) (see, e.g., Proposition 10.4 of
Ref. [33]).

When analyzing geodesic deviations, it is convenient to apply the projection operator
hµ

ν = δµ
ν − vµvν on the deviation vector ξµ to obtain the so-called orthogonal connection

vector ηµ:
ηµ = hµ

νξν. (25)

The components of the orthogonal connection vector in the tetrad basis, η â, can be
related to the components in the coordinate basis through

ηµ = eµ
âη â. (26)
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An important characteristic of the orthogonal connection vector is the fact that the

component along the direction of the associated geodesic vanishes, i.e., η0̂ = 0. With the
help of the projection operator, the geodesic deviation equation in terms of η â becomes [29]

D2η â

Dτ2
= Rµ

νρδeâ
µvνvρeδ

b̂ηb̂ = Râ
0̂0̂b̂ηb̂ = Kâ

b̂ηb̂, (27)

where Kâ
b̂ denotes the tidal tensor associated with the geodesic. Note that we can replace

D/Dτ in the equation above by d/dτ = eµ
0̂∂µ.

To determine the explicit form of the tidal forces in the MP spacetime, we need the
nonzero components of the Riemann tensor, which are (apart from the trivial symmetries
Rµνϵδ = Rϵδµν = −Rνµϵδ):

R1010 =
1

U4

[
−
(

∂U

∂z

)2

+ 3

(
∂U

∂ρ

)2

− U

(
∂2U

∂ρ2

)]
,

R1030 =
1

U4

(
4

∂U

∂z

∂U

∂ρ
− U

∂2U

∂ρ∂z

)
,

R2020 =− 1

U4

[
ρ2

(
∂U

∂z

)2

+ ρU
∂U

∂ρ
+ ρ2

(
∂U

∂ρ

)2
]

,

R2121 =− ρ2

(
∂U

∂z

)2

+ ρ2

(
∂U

∂ρ

)2

− ρU
∂U

∂ρ
− ρ2U

∂2U

∂ρ2
,

R2132 =− 2ρ2 ∂U

∂z

∂U

∂ρ
+ ρ2U

∂2U

∂ρ∂z
,

R3030 =
1

U4

[
3

(
∂U

∂z

)2

− U
∂2U

∂z2
−
(

∂U

∂ρ

)2
]

,

R3131 =

(
∂U

∂z

)2

+

(
∂U

∂ρ

)2

− U
∂2U

∂z2
− U

∂2U

∂ρ2
,

R3232 =ρ2

(
∂U

∂z

)2

− ρ2

(
∂U

∂ρ

)2

− ρ2U
∂2U

∂z2
− ρU

∂U

∂ρ
.

(28)

4.1. Radial Geodesics

For radial geodesics in the z = 0 plane, we employ the freely falling frame given
by (20) and find that the associated tidal tensor is diagonal. The non-trivial components of
the geodesic deviation equation are given by

η̈1̂ =
1

U4

[
U

∂2U

∂ρ2
− 3

(
∂U

∂ρ

)2
]

η1̂,

η̈2̂ =
1

U4

[(
∂U

∂ρ

)2

− U

(
1

ρ

∂U

∂ρ
+

∂2U

∂ρ2

)
+ E2U3

(
2

ρ

∂U

∂ρ
+

∂2U

∂ρ2

)]
η2̂,

η̈3̂ =
1

U4

[(
∂U

∂ρ

)2

− U

(
∂2U

∂ρ2
+

∂2U

∂z2

)
+ E2U3

(
∂2U

∂ρ2
+ 2

∂2U

∂z2

)]
η3̂.

(29)

We remark that the potential U and its derivatives in the expression above must be
evaluated at z = 0. The tidal forces in each direction correspond to the ratios between
η̈ â and η â. The tidal forces along the radial (ρ), angular (ϕ), and vertical (z) directions are
shown, respectively, in Figures 2–4. For the sake of comparison, we have included in the
left panels of each figure the corresponding tidal force when the MP metric describes an
extremal Reissner-Nordström black hole (i.e., when b = 0).
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Figure 2. Tidal force along the radial direction for radial timelike geodesics confined in the z = 0

plane. (Left) Plots for several black hole separations b. (Right) Contour plot as a function of b and

ρ (the dashed contour corresponds to the curve given by Equation (31) and indicates the transition

from compression to stretching).

Figure 3. Tidal force along the angular ϕ direction for radial timelike geodesics confined in the z = 0

plane. (Left) Plots for several black hole separations b and energies E. (Right) Contour plot as a

function of b and ρ for E = 1.

Figure 4. Tidal force along the vertical z direction for radial timelike geodesics confined in the z = 0

plane. (Left) Plots for several black hole separations b and energies E. (Right) Contour plot as a

function of b and ρ for E = 1 (the red dashed contour indicates the transition from compression to

stretching).

Figure 2 tells us that, for sufficiently large values of the radial coordinate ρ, the radial
tidal force is positive, meaning that it is a stretching force. As the origin ρ = 0 is approached,
the tidal force component attains a maximum value and then decreases, becoming negative
(compression force) for sufficiently small values of ρ, attaining a minimum value at ρ = 0.
According to (29), we see that the radial tidal force is independent of the energy E. The
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dependence on the separation b, however, is non-trivial. We note that increasing the
separation b between the black holes typically decreases the magnitude of the tidal forces
at z = 0. This is expected, since the black holes move away from the geodesics at z = 0
when b is increased.

Unlike the radial tidal force, the angular force is always compressive for radial
geodesics on the z = 0 plane. This compressive force increases in magnitude with de-
creasing ρ. The magnitude of the compressive force also increases when the separation b
between the black holes decreases and when the energy E associated with the geodesics
increases. Finally, the vertical component of the tidal force is compressive for large values
of the radial coordinate ρ and stretching for small values of ρ. The stretching force is most
intense at the origin and, then, decreases monotonically with increasing ρ, changes sign,
and reaches a local minimum, where the compressive force is most intense. As in the case
of the angular component, the tidal force along the z direction increases with the energy E
and decreases with the separation b.

We note that the explicit form of Equation (29), after the substitution of the potential
U given in Equation (2), does not provide any useful analytical insights for the angular
and vertical components. The expression for the radial component, on the other hand, is
sufficiently simple, allowing one to determine an analytical expression of the coordinate
where the tidal force vanishes. Explicitly, one has

η̈1̂ =
2M
(

2ρ2 − b2 − 2M
√

b2 + ρ2
)

√
b2 + ρ2

(
2M +

√
b2 + ρ2

)4
η1̂, (30)

meaning that the radial tidal force vanishes when

ρ =

√
M2 + b2 +

√
M2 + 6b2

2
. (31)

4.2. Circular Geodesics

For circular geodesics in the z = 0 plane, we employ the freely falling frame given
by (21) and find that the corresponding tidal tensor mixes the radial and angular compo-
nents. The non-trivial components of the geodesic deviation Equation (27) are




η̈1̂

η̈2̂

η̈3̂


 =

[
K
]



η1̂

η2̂

η3̂


 =




κ1 + α sin2
Ψ β sin 2Ψ 0

β sin 2Ψ κ2 − α sin2
Ψ 0

0 0 κ3







η1̂

η2̂

η3̂


 (32)

The coefficients κ1, κ2, κ3, α, and β of the matrix
[

K
]
, which are constant along the

circular geodesic, are given by

κ1 =− 2L4(2ρ2
0U2 + 3L2)

ρ4
0U4

(
ρ2

0U2 + 2L2
)2

+

(
ρ2

0U2 + 2L2

ρ2
0U5

)
∂2U

∂ρ2
,

κ2 =− L2
(
ρ2

0U2 + L2
)

ρ2
0U2

(
ρ2

0U2 + 2L2
)2

,

κ3 =

(
ρ2

0U2 + 2L2

ρ2
0U5

)
∂2U

∂z2
,

α =− L2(ρ4
0U4 − 3L2ρ2

0U2 − 6L4)

ρ4
0U4

(
ρ2

0U2 + 2L2
)2

−
(

ρ2
0U2 + 2L2

ρ2
0U5

)
∂2U

∂ρ2
,

β =− L2(ρ4
0U4 − 3L2ρ2

0U2 − 6L4)

2ρ4
0U4

(
ρ2

0U2 + 2L2
)2

−
(

ρ2
0U2 + 2L2

2ρ2
0U5

)
∂2U

∂ρ2
.

(33)
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We remark that the potential U and its derivatives in (33) must be evaluated at (ρ, z) =
(ρ0, 0). According to (32), the component of the tidal force in the z direction is always
decoupled from the other components, while the components in the other directions are
coupled and oscillate as Ψ = Ψ(ϕ) changes along the geodesic. The tidal forces decouple
when Ψ = Ψ(ϕ) is an integer multiple of π.

As mentioned previously, we have the freedom to align the tetrads {eâ} and {λâ} at a
specific point of the circular geodesic. In other words, we can choose Ψ0 so that Ψ = Ψ(ϕ)
vanishes at a specific angle ϕ of the circular geodesic (or, equivalently, at a specific proper
time τ). If we do that, then the tidal tensor becomes diagonal at that specific angle. For
instance, if we set ϕ0 = 0 in (13) and choose Ψ0 = 0 in (22), then the tidal forces in the
radial and angular directions decouple at time τ = 0. In fact, whenever Ψ is an integer
multiple of 2π, the tidal forces decouple according to:

η̈1̂ = κ1η1̂, η̈2̂ = κ2η2̂, η̈3̂ = κ3η3̂. (34)

Hence, at the points where Ψ is an integer multiple of 2π, the tidal forces along the
directions e1̂, e2̂, and e3̂ are given, respectively, by κ1, κ2, and κ3. We plot such tidal forces
as a function of the radius ρ0 of the circular geodesic in Figures 5–7. For the sake of
comparison, we have included in the left panels of each figure the corresponding tidal
force when the MP metric describes an extremal Reissner-Nordström black hole (i.e., when
b = 0). These figures tell us how the tidal forces change when we move from one circular
geodesic to another. In contrast, Figures 2–4 exhibit how the tidal forces change along a
given radial geodesic. Note that tidal forces associated with radial geodesics do not change
as we move from one radial geodesic to another while keeping the distance ρ constant
(since Equation (29) does not depend on the angle ϕ).

We see in Figure 5 that the tidal force in the radial direction is stretching for circular
geodesics of sufficiently large radius, while for small radii, it is compressive. On the other
hand, according to Figure 7, the behavior of the vertical tidal force is the opposite: stretching
for small radii and compressive for large radii. From the explicit form of the potential U,
given in Equation (2), we find that the vertical tidal force vanishes when the radius of the
geodesic is

ρ0 =
√

2b. (35)

The angular force shown in Figure 6, in contrast, is always compressive. We have also
observed that, as the white dashed line in the right panels of Figures 5–7 is approached,
the radial and vertical components of the tidal force diverge while the angular component
remains finite.

Figure 5. Tidal force along the radial direction for circular timelike geodesics confined in the z = 0

plane when Ψ is an integer multiple of 2π. (Left) Plots for several black hole separations b as a

function of the radius ρ0 of the geodesic. (Right) Contour plot as a function of b and ρ0 (the dashed

black contour indicates the transition from compression to stretching).
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Figure 6. Tidal force along the angular ϕ direction for circular timelike geodesics confined in the

z = 0 plane when Ψ is an integer multiple of 2π. (Left) Plots for several black hole separations b as a

function of the radius ρ0 of the geodesic. (Right) Contour plot as a function of b and ρ0.

Figure 7. Tidal force along the vertical z direction for circular timelike geodesics confined in the

z = 0 plane when Ψ is an integer multiple of 2π. (Left) Plots for several black hole separations b

as a function of the radius ρ0 of the geodesic. (Right) Contour plot as a function of b and ρ0 (the

dashed black contour, which indicates the transition from compression to stretching, corresponds to

the curve given by Equation (31)).

We close this section by noting that the eigenvalues of the matrix
[

K
]

are exactly κ1,
κ2, and κ3. The corresponding eigenvectors are, respectively,

[
w1

]
=




cos Ψ

− sin Ψ

0


,

[
w2

]
=




sin Ψ

cos Ψ

0


,

[
w3

]
=




0
0
1


 (36)

Consequently, if we rotate back the vectors eµ
1̂ and eµ

2̂ by the angle Ψ, we obtain a new
basis where the matrix

[
K
]

is diagonal. In other words, if we rotate the tetrad {eâ} back
to {λâ} at every point along the geodesic (consequently, undoing the rotation described
in (18)), the tensor Kâ

b̂ becomes diagonal. However, since {λâ} is not parallel propagated
along the geodesic (i.e., it is not a freely falling frame), the left-hand side of Equation (32)
would not be the second derivative of the rotated vectors.

5. Numerical Solutions of the Geodesic Deviation Equation

We can also investigate tidal effects by determining the components of the deviation
vector η â. We proceed as in [15–23] by directly solving the geodesic deviation Equation (23)
with appropriate initial conditions. Being a second-order differential equation, the initial-
value problem for Equation (23) requires an initial condition for both the deviation vector
and its first-order derivative.
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We impose boundary conditions at the starting time τ = τ0, corresponding to the
spacetime event x0 = x(τ0) = (t0, ρ0, ϕ0, 0). In our calculations, we have set ρ0 = 10 and
ϕ0 = 0 (we also set Ψ0 = 0 in Equation (22) and leave t0 unspecified since the results do
not depend on it). We consider two different initial conditions (denoted by IC-I and IC-II)
to solve the geodesic deviation equation:

IC-I : η â(τ0) = 1, η̇ â(τ0) = 0; (37)

IC-II : η â(τ0) = 0, η̇ â(τ0) = 1. (38)

Initial condition IC-I can be understood as representing the deviation between two
geodesics that are initially parallel (in the sense that the rate of change of the their deviation
vanishes at τ = τ0). Initial condition IC-II, on the other hand, corresponds to two initially
diverging geodesics that intercept at the initial time τ0 (at the point xµ(τ0)).

5.1. Radial Geodesics

When analyzing radial geodesics, it is convenient to replace derivatives with respect
to the proper time τ by derivatives with respect to the radial coordinate ρ. To accomplish
this, we use the relation:

d

dτ
=

dρ

dτ

d

dρ
= −

√
E2 −− 1

U2(ρ, 0)

d

dρ
, (39)

which follows from Equation (8), to transform Equation (29) into:

d

dρ

[(
E2U2(ρ, 0)− 1

)3/2

U3(ρ, 0)

d

dρ

(
U(ρ, 0)η1̂

√
E2U2(ρ, 0)− 1

)]
= 0, (40)

d

dρ

[
ρ2U(ρ, 0)

√
E2U2(ρ, 0)− 1

d

dρ

(
η2̂

ρU(ρ, 0)

)]
= 0, (41)

d

dρ

[
U(ρ, 0)

√
E2U2(ρ, 0)− 1

d

dρ

(
η3̂

U(ρ, 0)

)]
+

2E2U2(ρ, 0)− 1√
E2U2(ρ, 0)− 1

∂2U(ρ,0)
∂z2

U(ρ, 0)
η3̂ = 0. (42)

The equations for the radial and the angular components of the geodesic deviation
can be integrated by quadratures:

η1̂(ρ) =

√
E2U2(ρ, 0)− 1

U(ρ, 0)

(
K1 + K2

∫ ρ

ρ0

U3(ρ′, 0)

(E2U2(ρ′, 0)− 1)
3/2

dρ′
)

, (43)

η2̂(ρ) = ρU(ρ, 0)

(
K3 + K4

∫ ρ

ρ0

dρ′

ρ′2U(ρ′, 0)
√

E2U2(ρ′, 0)− 1
dρ′
)

, (44)

where K1, K2, K3, and K4 are constants of integration that can be associated with the initial
conditions for the differential equations. The component of the geodesic deviation along
the z direction, on the other hand, cannot be cast in terms of simple integrals.

In order to solve the differential Equations (40)–(42), we impose the initial condi-
tions (37) and (38). Note that, in terms of the radial coordinate, the initial condition for the
derivative becomes:

dη â

dρ
(ρ0) = − U(ρ0, 0)√

E2U2(ρ0, 0)− 1
η̇ â(τ0). (45)

Additionally, due to Equation (8), the energy of the associated geodesics must satisfy
the constraint |E| ≥ 1/U(ρ0, 0). The numerical solution of Equations (40)–(42), correspond-

ing to the radial η1̂(ρ), angular η2̂(ρ), and vertical η3̂(ρ) components of the orthogonal
connection are shown in Figures 8–10, respectively. In each plot, we indicate the separation
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b between the black holes and the energy E of the corresponding geodesic. The left panel
in each figure corresponds to the initial condition IC-I, while the right panel corresponds to
IC-II. We see that the radial deviation is largest at ρ = 0 and decreases as one moves away
from the origin for both IC-I and IC-II. On the other hand, the angular deviation for IC-I
increases with ρ, while the qualitative behavior for IC-II depends on the choices of b and

E. Regarding the vertical z direction, we see that, while the qualitative behavior of η3̂ is
sensitive to the specific values of b and E for IC-I, it is monotonically decreasing with ρ
for IC-II.

Figure 8. Component η1̂ of the connection vector associated with radial geodesics in the z = 0 plane

as a function of ρ for IC-I (left) and for IC-II (right). Each curve corresponds to a radial geodesic

specified by the parameters b and E indicated in the panels.

Figure 9. Component η2̂ of the connection vector associated with radial geodesics in the z = 0 plane

as a function of ρ for IC-I (left) and for IC-II (right). Each curve corresponds to a radial geodesic

specified by the parameters b and E indicated in the panels.

Figure 10. Component η3̂ of the connection vector associated with radial geodesics in the z = 0 plane

as a function of ρ for IC-I (left) and for IC-II (right). Each curve corresponds to a radial geodesic

specified by the parameters b and E indicated in the panels.
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Figure 8 also shows that, when the energy of the geodesic increases, the radial deviation
typically decreases as well. The same behavior with respect to the energy is observed for

the angular η2̂(ρ) and vertical η3̂(ρ) components of the orthogonal connection, shown,
respectively, in Figures 9 and 10, when IC-II is considered. On the other hand, for IC-I,
we see that an increase of the energy typically increases the deviation in the angular and
vertical directions.

5.2. Circular Geodesics

When considering circular geodesics, it is convenient to replace the derivatives with
respect to the proper time τ by the derivatives with respect to the angular coordinate ϕ. To
accomplish this, we use the relation:

d

dτ
=

dϕ

dτ

d

dϕ
=

L

ρ2
0U2(ρ0, 0)

d

dϕ
, (46)

which follows from Equation (7). As a consequence, the derivatives in the left-hand side of
Equation (32) are replaced by the derivatives with respect to the angle ϕ, while the matrix[

K
]

is multiplied by ρ4
0U4(ρ0, 0)/L2. Analogously, in terms of ϕ, the initial condition for

the derivatives in (37) and (38) becomes:

dη â

dϕ
(ϕ0) =

L

ρ2
0U2(ρ0, 0)

η̇ â(τ0). (47)

In Figures 11 and 12, we show the numerical solutions of Equation (32) for both
initial conditions IC-I (left panels) and IC-II (right panels).1 In each panel, we indicate the
separation b between the black holes and the radius of the corresponding circular geodesics
(the associated values of energy E and angular momentum L are given in Figure 1). We
have observed that the geodesic deviation in the directions e1̂ and e2̂ will diverge with the
angle ϕ unless b is sufficiently large. Conversely, the deviation in the vertical direction e3̂
will diverge unless b is sufficiently small.

Figure 11. Components η1̂ (top) and η2̂ (bottom) of the connection vector associated with circular

geodesics in the z = 0 plane as a function of ϕ for IC-I (left) and for IC-II (right). Each curve

corresponds to a circular geodesic specified by the parameters b and ρ0 indicated in the panels.
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Figure 12. Components η3̂ of the connection vector associated with circular geodesics in the z = 0

plane as a function of ϕ for IC-I (left) and for IC-II (right). Each curve corresponds to a circular

geodesic specified by the parameters b and ρ0 indicated in the panels.

Such a behavior can be understood analytically for the vertical component η3̂ (since η1̂

and η2̂ are coupled, a similar analysis for the radial and angular components is not possible).
After plugging in the explicit form of U into Equation (32) and using Equation (11), we find

that the differential equation for η3̂ becomes

d2η3̂

dϕ2
+

(
ρ2

0 − 2b2

ρ2
0 + b2

)
η3̂ = 0. (48)

The corresponding solution is

η3̂(ϕ) = K5 exp

(√
2b2 − ρ2

0

ρ2
0 + b2

ϕ

)
+ K6 exp

(
−
√

2b2 − ρ2
0

ρ2
0 + b2

ϕ

)
, (49)

where K5 and K6 are constants associated with the initial conditions. It is straightforward
to see that the solutions will be exponentially growing if b is sufficiently large (b > ρ0/

√
2)

and oscillatory otherwise (b < ρ0/
√

2). In fact, considering that the vertical tidal force,
shown in Figure 7, vanishes exactly when b = ρ0/

√
2, we conclude that the deviation

vector in the vertical direction will be bounded if the tidal force in the vertical direction
is compressive.

6. Discussion

In this work, we investigated tidal forces acting on geodesics of the MP spacetime
that describes two extremely charged black holes in equilibrium. We focused on radial
geodesics (vanishing angular momentum L = 0) and circular geodesics (constant ρ = ρ0)
that live on the plane equidistant to two black holes of equal masses. In Section 4, we
analyzed the radial, angular, and vertical components of the tidal forces, while in Section 5,
we analyzed the numerical solutions of the geodesic deviation equation for two classes of
initial conditions.

In particular, we have seen that the tidal forces in the radial direction, for both radial
and circular geodesics, can be either compressive or stretching: near the origin, they are
compressive, and far away, they are stretching. A similar behavior has been observed for
Reissner-Nordström black holes in Ref. [15]. However, unlike Reissner-Nordström black
holes, the tidal forces in the angular direction are always compressive for the geodesics
of the MP that were analyzed. The tidal forces in the vertical direction, as in the case of
the radial component, exhibit a sign change with respect to the distance. Nevertheless, the
qualitative behavior is quite the opposite of their radial counterparts: for small radii, the
force is stretching, and for large radii, it is compressive. Finally, we solved numerically
the differential equations that determine the geodesic deviation vector as a function of the
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radial distance. We employed two types of initial conditions and analyzed the behavior of
the corresponding solutions.

As a future research direction, one could investigate tidal forces in a binary system of
rotating black holes [34–37] or in deformed Kerr spacetimes [38–40]. Another interesting
line of investigation would be to consider geodesics in analog black hole spacetimes [41,42].
In particular, one possibility would be to explore analog tidal effects in the double-sink
solution of hydrodynamics [11] or in vortices that form in condensates [43–49].

Author Contributions: Conceptualization, E.A. and M.R.; methodology, E.A. and M.R.; formal

analysis, E.A. and M.R.; investigation, E.A. and M.R.; writing—original draft preparation, E.A. and

M.R.; writing—review and editing, E.A. and M.R; supervision, M.R. All authors have read and agreed

to the published version of the manuscript.

Funding: This research was partially financed by the Coordenação de Aperfeiçoamento de Pessoal

de Nível Superior (CAPES, Brazil)—Finance Code 001. M.R. also acknowledges partial support

from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Brazil), Grant

No. FA 315664/2020-7, and from The São Paulo Research Foundation (FAPESP, Brazil), Grant

No. 2022/08335-0.

Data Availability Statement: An ancillary file (Mathematica notebook), which can be used to

reproduce the plots of the article, is provided in doi.org/10.5281/zenodo.10607824. Further inquiries

can be directed to the corresponding author.

Acknowledgments: The authors would like to thank Haroldo C. D. Lima Junior and Luís C. B.

Crispino for enlightening discussions.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations

The following abbreviations are used in this manuscript:

MP Majumdar-Papapetrou

IC Initial condition

Note

1 Since η1̂ and η2̂ are coupled through Equation (32), to avoid ambiguities, we specify that IC-I (similarly, IC-II) means that the

condition (37) (similarly, (38)) is imposed simultaneously on η1̂ and η2̂.
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Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole. Astrophys. J. Lett. 2019, 875, L1. [CrossRef]

4. Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adhikari, N.; Adhikari, R.X.; Adya, V.B.; Affeldt, C.; Agarwal, D.;

et al. GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo during the Second Part of the Third Observing Run.

Phys. Rev. X 2023, 13, 041039.[CrossRef]

5. Majumdar, S.D. A Class of Exact Solutions of Einstein’s Field Equations. Phys. Rev. 1947, 72, 390–398. [CrossRef]

6. Papapetrou, A. A Static solution of the equations of the gravitational field for an arbitrary charge distribution. Proc. Roy. Irish

Acad. (Sect. A) 1947, 51, 191–204.

7. Contopoulos, G. Periodic Orbits and Chaos around Two Black Holes. Proc. R. Soc. Lond. Ser. A 1990, 431, 183–202. [CrossRef]

8. Contopoulos, G. Periodic Orbits and Chaos around Two Fixed Black Holes. II. Proc. R. Soc. Lond. Ser. A 1991, 435, 551–562.

[CrossRef]

9. Bohn, A.; Throwe, W.; Hébert, F.; Henriksson, K.; Bunandar, D.; Scheel, M.A.; Taylor, N.W. What does a binary black hole merger

look like? Class. Quant. Grav. 2015, 32, 065002. [CrossRef]

10. Shipley, J.; Dolan, S.R. Binary black hole shadows, chaotic scattering and the Cantor set. Class. Quant. Grav. 2016, 33, 175001.

[CrossRef]

doi.org/10.5281/zenodo.10607824
http://doi.org/10.1103/PhysRevLett.116.061102
http://dx.doi.org/10.1103/PhysRevLett.119.161101
http://dx.doi.org/10.3847/2041-8213/ab0ec7
http://dx.doi.org/10.1103/PhysRevX.13.041039
http://dx.doi.org/10.1103/PhysRev.72.390
http://dx.doi.org/10.1098/rspa.1990.0126
http://dx.doi.org/10.1098/rspa.1991.0160
http://dx.doi.org/10.1088/0264-9381/32/6/065002
http://dx.doi.org/10.1088/0264-9381/33/17/175001


Universe 2024, 10, 62 17 of 18

11. Assumpcao, T.; Cardoso, V.; Ishibashi, A.; Richartz, M.; Zilhao, M. Black hole binaries: Ergoregions, photon surfaces, wave

scattering, and quasinormal modes. Phys. Rev. D 2018, 98, 064036. [CrossRef]

12. Shipley, J.O. Strong-Field Gravitational Lensing by Black Holes. Ph.D. Thesis, University of Sheffield, Sheffield, UK, 2019.

13. Bini, D.; Geralico, A.; Gionti, G.; Plastino, W.; Velandia, N. Scattering of uncharged particles in the field of two extremely charged

black holes. Gen. Rel. Grav. 2019, 51, 153. [CrossRef]

14. Sanches, L.T.; Richartz, M. Energy extraction from non-coalescing black hole binaries. Phys. Rev. D 2021, 104, 124025. [CrossRef]

15. Crispino, L.C.B.; Higuchi, A.; Oliveira, L.A.; de Oliveira, E.S. Tidal forces in Reissner–Nordström spacetimes. Eur. Phys. J. C 2016,

76, 168. [CrossRef]

16. Lima, H.C.D.; Crispino, L.C.B. Tidal forces in the charged Hayward black hole spacetime. Int. J. Mod. Phys. D 2020, 29, 2041014.

[CrossRef]

17. Lima Junior, H.C.D.; Crispino, L.C.B.; Higuchi, A. On-axis tidal forces in Kerr spacetime. Eur. Phys. J. Plus 2020, 135, 334.

[CrossRef]

18. Sharif, M.; Kousar, L. Tidal Forces in Dyonic Reissner-Nördstrom Black Hole. Commun. Theor. Phys. 2018, 69, 257. [CrossRef]

19. Shahzad, M.U.; Jawad, A. Tidal Forces in Kiselev Black Hole. Eur. Phys. J. C 2017, 77, 372. [CrossRef]

20. Hong, S.T.; Kim, Y.W.; Park, Y.J. Tidal effects in Schwarzschild black hole in holographic massive gravity. Phys. Lett. B 2020,

811, 135967. [CrossRef]

21. Li, J.; Chen, S.; Jing, J. Tidal effects in 4D Einstein–Gauss–Bonnet black hole spacetime. Eur. Phys. J. C 2021, 81, 590. [CrossRef]

22. Vandeev, V.P.; Semenova, A.N. Tidal forces in Kottler spacetimes. Eur. Phys. J. C 2021, 81, 610. [CrossRef]

23. Uniyal, R. Tidal forces around Schwarzschild black hole in cloud of strings and quintessence. Eur. Phys. J. C 2022, 82, 567.

[CrossRef]

24. Philipp, D.; Puetzfeld, D.; Lämmerzahl, C. On the applicability of the geodesic deviation equation in General Relativity. Fundam.

Theor. Phys. 2019, 196, 419–451. [CrossRef]

25. Hartle, J.B.; Hawking, S.W. Solutions of the Einstein-Maxwell equations with many black holes. Commun. Math. Phys. 1972,

26, 87–101. [CrossRef]

26. Semerák, O.; Basovník, M. Geometry of deformed black holes. I. Majumdar-Papapetrou binary. Phys. Rev. D 2016, 94, 044006.

[CrossRef]

27. Mazharimousavi, S.; Halilsoy, M. Revisiting the dyonic Majumdar-Papapetrou black holes. Turk. J. Phys. 2016, 40, 163–174.

[CrossRef]

28. Chandrasekhar, S. The Mathematical Theory of Black Holes; Oxford University Press: Oxford, UK, 1983.

29. d’Inverno, R. Introducing Einstein’s Relativity; Oxford University Press: Oxford, UK, 1992.

30. Yepez, J. Einstein’s Vierbein Field Theory of Curved Space. arXiv 2011, arXiv.1106.2037. [CrossRef]

31. Marck, J.A. Solution to the Equations of Parallel Transport in Kerr Geometry; Tidal Tensor. Proc. R. Soc. Lond. Ser. A 1983,

385, 431–438. [CrossRef]

32. Wald, R.M. General Relativity; Chicago University Press: Chicago, IL, USA, 1984. [CrossRef]

33. Lee, J. Introduction to Riemannian Manifolds; Graduate Texts in Mathematics; Springer International Publishing: Cham, Switzerland,

2018. [CrossRef]

34. Cabrera-Munguia, I. Unequal binary configurations of interacting Kerr black holes. Phys. Lett. B 2018, 786, 466–471. [CrossRef]

35. Manko, V.S.; Ruiz, E. Metric for two arbitrary Kerr sources. Phys. Lett. B 2019, 794, 36–40. [CrossRef]

36. Ramírez-Valdez, C.J.; García-Compeán, H.; Manko, V.S. Thermodynamics of two aligned Kerr black holes. Phys. Rev. D 2020, 102.

[CrossRef]

37. Baez, A.; Breton, N.; Cabrera-Munguia, I. Energy extraction in electrostatic extreme binary black holes. Phys. Rev. D 2022,

106, 124042. [CrossRef]

38. Konoplya, R.; Zhidenko, A. Detection of gravitational waves from black holes: Is there a window for alternative theories? Phys.

Lett. B 2016, 756, 350–353. [CrossRef]

39. Franzin, E.; Liberati, S.; Oi, M. Superradiance in Kerr-like black holes. Phys. Rev. D 2021, 103, 104034. [CrossRef]

40. Siqueira, P.H.C.; Richartz, M. Quasinormal modes, quasibound states, scalar clouds, and superradiant instabilities of a Kerr-like

black hole. Phys. Rev. D 2022, 106, 024046. [CrossRef]

41. Barcelo, C.; Liberati, S.; Visser, M. Analogue gravity. Living Rev. Rel. 2005, 8, 12. [CrossRef]

42. Jacquet, M.J.; Weinfurtner, S.; König, F. The next generation of analogue gravity experiments. Phil. Trans. Roy. Soc. Lond. A 2020,

378, 20190239. [CrossRef] [PubMed]

43. Garay, L.J.; Anglin, J.R.; Cirac, J.I.; Zoller, P. Black holes in Bose-Einstein condensates. Phys. Rev. Lett. 2000, 85, 4643–4647.

[CrossRef]

44. Jacquet, M.J.; Boulier, T.; Claude, F.; Maître, A.; Cancellieri, E.; Adrados, C.; Amo, A.; Pigeon, S.; Glorieux, Q.; Bramati, A.; et al.

Polariton fluids for analogue gravity physics. Phil. Trans. Roy. Soc. Lond. A 2020, 378, 20190225. [CrossRef]

45. Giacomelli, L.; Carusotto, I. Ergoregion instabilities in rotating two-dimensional Bose-Einstein condensates: Perspectives on the

stability of quantized vortices. Phys. Rev. Res. 2020, 2, 033139. [CrossRef]

46. Patrick, S.; Geelmuyden, A.; Erne, S.; Barenghi, C.F.; Weinfurtner, S. Quantum vortex instability and black hole superradiance.

Phys. Rev. Res. 2022, 4, 033117. [CrossRef]

http://dx.doi.org/10.1103/PhysRevD.98.064036
http://dx.doi.org/10.1007/s10714-019-2642-y
http://dx.doi.org/10.1103/PhysRevD.104.124025
http://dx.doi.org/10.1140/epjc/s10052-016-3972-5
http://dx.doi.org/10.1142/S021827182041014X
http://dx.doi.org/10.1140/epjp/s13360-020-00342-7
http://dx.doi.org/10.1088/0253-6102/69/3/257
http://dx.doi.org/10.1140/epjc/s10052-017-4935-1
http://dx.doi.org/10.1016/j.physletb.2020.135967
http://dx.doi.org/10.1140/epjc/s10052-021-09400-5
http://dx.doi.org/10.1140/epjc/s10052-021-09427-8
http://dx.doi.org/10.1140/epjc/s10052-022-10520-9
http://dx.doi.org/10.1007/978-3-030-11500-5_13
http://dx.doi.org/10.1007/BF01645696
http://dx.doi.org/10.1103/PhysRevD.94.044006
http://dx.doi.org/10.3906/fiz-1506-19
https://doi.org/10.48550/arXiv.1106.2037
http://dx.doi.org/10.1098/rspa.1983.0021
http://dx.doi.org/10.7208/chicago/9780226870373.001.0001
http://dx.doi.org/10.1007/978-3-319-91755-9
http://dx.doi.org/10.1016/j.physletb.2018.10.037
http://dx.doi.org/10.1016/j.physletb.2019.05.027
http://dx.doi.org/10.1103/PhysRevD.102.024084
http://dx.doi.org/10.1103/PhysRevD.106.124042
http://dx.doi.org/10.1016/j.physletb.2016.03.044
http://dx.doi.org/10.1103/PhysRevD.103.104034
http://dx.doi.org/10.1103/PhysRevD.106.024046
http://dx.doi.org/10.12942/lrr-2005-12
http://dx.doi.org/10.1098/rsta.2019.0239
http://www.ncbi.nlm.nih.gov/pubmed/32684138
http://dx.doi.org/10.1103/PhysRevLett.85.4643
http://dx.doi.org/10.1098/rsta.2019.0225
http://dx.doi.org/10.1103/PhysRevResearch.2.033139
http://dx.doi.org/10.1103/PhysRevResearch.4.033117


Universe 2024, 10, 62 18 of 18

47. Patrick, S.; Geelmuyden, A.; Erne, S.; Barenghi, C.F.; Weinfurtner, S. Origin and evolution of the multiply quantized vortex

instability. Phys. Rev. Res. 2022, 4, 043104. [CrossRef]

48. Cardoso, T.A.S.; Richartz, M. Dissipative quantum vortices and superradiant scattering. Phys. Rev. A 2022, 106, 063310. [CrossRef]

49. Solnyshkov, D.; Septembre, I.; Malpuech, G. Towards Analogue Black Hole Merger. arXiv 2023, arXiv:2309.06269. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1103/PhysRevResearch.4.043104
http://dx.doi.org/10.1103/PhysRevA.106.063310
https://doi.org/10.48550/arXiv.2309.06269

	Introduction
	The Majumdar-Papapetrou Spacetime
	Freely Falling Frames in the Majumdar-Papapetrou Spacetime
	Tidal Forces in the Majumdar-Papapetrou Spacetime
	Radial Geodesics
	Circular Geodesics

	Numerical Solutions of the Geodesic Deviation Equation
	Radial Geodesics
	Circular Geodesics

	Discussion
	References

