Computing and Software for Big Science (2025) 9:12
https://doi.org/10.1007/541781-025-00140-9

RESEARCH q

Check for
updates

SymbolFit: Automatic Parametric Modeling with Symbolic Regression

Ho Fung Tsoi' - Dylan Rankin' - Cecile Caillol? - Miles Cranmer? - Sridhara Dasu* - Javier Duarte® - Philip Harris5” -
Elliot Lipeles' - Vladimir Loncar®

Received: 3 March 2025 / Accepted: 16 May 2025
© The Author(s) 2025

Abstract

We introduce SymbolFit (API: https://github.com/hftsoi/symbolfit), a framework that automates parametric modeling by
using symbolic regression to perform a machine-search for functions that fit the data while simultaneously providing uncer-
tainty estimates in a single run. Traditionally, constructing a parametric model to accurately describe binned data has been
a manual and iterative process, requiring an adequate functional form to be determined before the fit can be performed. The
main challenge arises when the appropriate functional forms cannot be derived from first principles, especially when there
is no underlying true closed-form function for the distribution. In this work, we develop a framework that automates and
streamlines the process by utilizing symbolic regression, a machine learning technique that explores a vast space of candidate
functions without requiring a predefined functional form because the functional form itself is treated as a trainable parameter,
making the process far more efficient and effortless than traditional regression methods. We demonstrate the framework in
high-energy physics experiments at the CERN Large Hadron Collider (LHC) using five real proton-proton collision datasets
from new physics searches, including background modeling in resonance searches for high-mass dijet, trijet, paired-dijet,
diphoton, and dimuon events. We show that our framework can flexibly and efficiently generate a wide range of candidate
functions that fit a nontrivial distribution well using a simple fit configuration that varies only by random seed, and that the
same fit configuration, which defines a vast function space, can also be applied to distributions of different shapes, whereas
achieving a comparable result with traditional methods would have required extensive manual effort.

Vladimir Loncar: Also at Institute of Physics Belgrade, Serbia.

>4 Ho Fung Tsoi
ho.fung.tsoi@cern.ch
1 University of Pennsylvania, Philadelphia, PA, USA

European Organization for Nuclear Research (CERN),
Geneva, Switzerland

University of Cambridge, Cambridge, UK
4 University of Wisconsin-Madison, Madison, WI, USA
5 University of California San Diego, La Jolla, CA, USA

Massachusetts Institute of Technology, Cambridge, MA,
USA

Institute for Artificial Intelligence and Fundamental
Interactions, Cambridge, MA, USA

Published online: 01 July 2025 @ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s41781-025-00140-9&domain=pdf
https://github.com/hftsoi/symbolfit

12 Page 2 of 45

Computing and Software for Big Science (2025) 9:12

Introduction

Traditional parametric modeling methods, such as poly-
nomial regression, require specifying and fixing an ade-
quate functional form before fitting the data. Identifying
suitable functional forms for distributions with arbitrary
shapes is often challenging and time-consuming, as, in
most cases, these functions cannot be derived from first
principles and must be determined through trial and error.
Instead, symbolic regression (SR) is a more flexible and
powerful technique that performs a machine-search for
functions that best fit the data. In SR, the functional form
itself is treated as a trainable parameter that is dynami-
cally adjusted throughout the fitting process, eliminating
the need to predefine an exact function—an empirical
task that is often challenging. We refer the reader to Refs.
[1-18] for a review of the subject and some recent works.
Genetic programming [19] is a popular approach to
SR [5, 15-18]. In this approach, a function is represented
as an expression tree, where the building blocks—math-
ematical operators, variables, and constants—are denoted
as nodes, connected to represent their algebraic relations.
Different functional forms are generated through the
evolution of these expression trees, where tree nodes are
randomly selected and changed (mutation), and subtrees
from different candidates are swapped to create new can-
didates (crossover), as illustrated in Fig. 1. As a result, the
functional forms evolve during the fitting process, guiding
the model toward convergence. Instead of predefining the
final functional form, SR algorithms based on genetic pro-
gramming need far less prior knowledge about the func-
tions themselves. Only the constraints for constructing the
expression trees need to be specified, such as the allowable
mathematical operators (+, X, /, pow, sin(-), exp(-), etc.).
This flexibility eliminates the need to know the exact fit-
ting function beforehand or to fine-tune one empirically.
Our primary application focus is the intermediary stage of
data analysis in high-energy physics (HEP) experiments at
the CERN Large Hadron Collider (LHC), where parametric
functions are constructed to model data distributions and
subsequently used for downstream statistical inference. In
these analyses, uncertainty modeling is necessary, as the
uncertainties associated with the parametric functions prop-
agate to the final physics results. Standard SR algorithms
generate best-fit functions but do not inherently provide
uncertainty estimates. Our framework bridges this gap by
automatically re-optimizing and estimating uncertainties
for all candidate functions found by SR. This functional-
ity is critical, as parametric models without well-defined
uncertainties cannot be used in the statistical inference work-
flows within HEP. In the following section, we identify two
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analysis scenarios in which parametric modeling is tradi-
tionally used. We discuss the limitations of current methods
in these contexts and how SR, by eliminating the need to
predefine a functional form, can offer a more flexible and
efficient alternative.

We also emphasize that, unlike SR applications in other
domains, where the primary goal is often interpretability,
such as direct extraction of physical laws from data (e.g.,
[5, 10]), our objective is different. We focus on constructing
valid and flexible parametric models for statistical inference,
rather than deriving interpretable expressions to uncover
underlying physical laws from data. Our goal is to model
arbitrary distribution shapes, as commonly encountered in
LHC analyses, where no single underlying physical law gov-
erns the data. In such cases, interpretability is not a relevant
requirement. Instead, the key criteria for a suitable paramet-
ric function in this setting are: (1) it should smoothly and
accurately describe the shape of the distribution, and (2) its
associated uncertainty should be well-behaved and capable
of capturing the uncertainty in the data.

Challenges in Traditional Methods
Scenario 1: Signal and Background Modeling

When analyzing proton—proton collision data at the LHC in
the search for new physics signatures, the data are typically
binned and presented as histograms representing physical
observables, such as the invariant mass of the final-state par-
ticles. Each bin records the observed or expected number
of collision events with mass values within that range. To
search for new physics signatures, which are often hypoth-
esized as narrow and small peaks over a smoothly falling
background in the invariant mass distribution, parametric
functions are required to model both the signal and back-
ground based on these binned distributions. These models
are then used to perform hypothesis testing.

In the traditional approach to parametric modeling, one
typically relies on manually guessing the appropriate family
of functions that might describe the shape of the distribu-
tion. Although these distributions often represent physical
observables, they are usually obtained after applying a series
of selection cuts on various variables, which can introduce
arbitrary shape effects into the final distributions being
modeled. As a result, these distributions generally do not
have a known underlying true function, making it impossi-
ble to derive a suitable functional form from first principles
and leaving empirical constructions as the only option. In
some cases, when a suitable function cannot be found to
describe the distribution after many trials, one is forced to
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Fig. 1 Genetic programming
approach to symbolic regres-
sion. Functions are represented
by expression trees. New
functions are generated through
mutation of tree nodes (left)
and crossover between subtrees

(right)
exp ()

(a) Node mutation.

compromise by adjusting the analysis strategy, say splitting
the main distribution into multiple sub-distributions and fit-
ting them separately, which could lead to a more complicated
combined likelihood function. This empirical approach has
been the standard strategy in the HEP community, requiring
significant manual effort to craft a candidate function and
iteratively fine-tune it.

For example, a search for new physics in high-mass trijet
events performed by the CMS experiment [20] modeled the
background by fitting the trijet invariant mass distribution,
my;;, using three families of empirical functions. One of these
functions takes the form:

po(l —x)
I, pilog )]

f:N) = €))

where x = mjjj/\/E is a dimensionless variable (\/E is the
center-of-mass energy of the collisions), p; are free param-
eters, and N is a hyperparameter for the function form. The
function was fitted multiple times with different trial N val-
ues, and the optimal value was determined through a sepa-
rate statistical test, such as an F-test [21].

Note that the functional form in Eq. 1 was constructed
empirically, rather than derived from first principles, to
reproduce the observed spectrum. This reflects the fact that
the trijet distribution arises from events that have passed
through multiple stages of selection, including triggering,
reconstruction, and optimization, rather than being deter-
mined by a single underlying physics law. The same is true
for other similar analyses at the LHC.

The challenge lies in the need to empirically craft a spe-
cific functional form, such as Eq. 1, for each individual
distribution. These empirical functions are tailored to the
particular distribution being fitted, making them rigid and

tanh(x)

tanh(x) “

tanh pow
tanh(x)
.

(b) Subtree crossover.

potentially ineffective if there are slight changes in the data.
For instance, variations in final-state objects, event selec-
tion strategies, and detector conditions during data collection
can all introduce arbitrary modifications in the shape of the
distribution. In such cases, function families that worked for
past datasets may no longer be effective for future datasets,
even within the same analysis channel, and an empirical
searching for suitable functions must be repeated.

Analyses at the LHC have traditionally relied on this
empirical fitting method when modeling signal and back-
ground processes from binned data. Examples include the
milestone analyses that led to the discovery of the Higgs
boson in 2012 [22-24], as well as some recent results from
CMS searches for high-mass resonances in dijet [25], paired-
dijet [26], trijet [20], diphoton [27], and dimuon [28] events.

In this context, SR has the potential to transform
the approach to parametric modeling. By conducting a
machine-search for suitable functional forms, SR signifi-
cantly reduces the manual effort required in the modeling
process, providing a more efficient and adaptive alternative
to traditional methods.

Scenario 2: Derivation of Smooth Descriptions
from Binned Data

When predicting signal and background processes using
simulation, there is always some degree of mismatch with
the observed data, which may result from inaccuracies in
theoretical predictions, mis-modeling of detector effects, or
measurements errors. These discrepancies are corrected by
applying data-to-simulation scale factors (measured from
isolated control regions) to the simulated events, ensuring
that the simulation provides a more realistic representation
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Fig.2 A schematic sketch of the internal steps within the SymbolFit
framework illustrates how it interfaces with PySR [5] and LMFIT [37]
to automate parametric modeling using SR. The process begins with
an input dataset that does not require a predefined functional form.

of the observed data. Examples include jet energy scale cor-
rections parameterized by the jet p and n' [29], heavy-flavor
jet tagging efficiency corrections parameterized by the jet py
and # [30], hadronic tau identification efficiency corrections
parameterized by the tau p, 7, and decay modes [31].

These scale factors are typically derived from binned data
and applied as binned weights, resulting in coarse-grained
corrections. When smooth scale factors are desired, the pro-
cess often follows the same empirical approach as described
in Sec. “Scenario 1: signal and background modeling”, fac-
ing the same limitations discussed earlier. In cases where
the scale factor is parameterized by more than one variable,
it becomes even more challenging to empirically construct
an adequate functional form, forcing one to rely on coarse-
grained corrections.

Another common scenario involves data-driven back-
ground estimation methods, where transfer factors are
derived to estimate events in the signal region based on
those in the sideband region. For example, in a search for
a boosted Higgs boson decaying to b quarks performed by
the CMS experiment [32], the QCD multijet background
was estimated from observed data, where the transfer factor

! Common coordinate system used to define particle kinematics in
collider physics: py is transverse momentum and # is the pseudora-
pidity angle.
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Functional forms are generated using SR, parameterized, and then re-
optimized through standard nonlinear least-square minimization. The
output is a batch of candidate functions, each with associated uncer-
tainty estimates

was parameterized and empirically constructed as the sum
of products of Bernstein polynomials:

fGgox) = < D D Ayl Foby, <x1>> X g(xg %)),

p=0 v=0
(@)
where b, (%) is the nth Bernstein basis polynomial of degree
N, a, are parameters to be extracted from a fit to observed
data, and g(x, x,) is a function fitted separately to simulated
events. The degrees of the Bernstein polynomials, n, and
n, , are determined separately using an F-test.
By using SR, these empirical steps for deriving smooth
scale factors can be significantly simplified into a single SR
fit, without knowledge of the final functional form.

An Alternative Method: Gaussian Process
Regression

An alternative fitting method is Gaussian process regres-
sion (GPR), which has been explored for these scenarios
[33-35]. GPR models the dependent variable as following
a Gaussian distribution at each point along the independ-
ent variable. The smoothness of the probability function is
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controlled by a chosen covariance kernel between bins. As
a result, GPR provides a probabilistic prediction, yielding
both a smooth mean function and a variance function, which
define a very generic distribution of functions that describe
the data instead of a single exact function.

Fitting a GPR model to n data points requires inverting an
n X n covariance matrix, which scales with a time complex-
ity of O(n®) [36]. This can become computationally prohibi-
tive, especially for datasets with more than one independent
variable. Additionally, integrating Bayesian GPR outputs
into the standard HEP search framework requires subtle
treatments [33], whereas SR directly provides explicit func-
tion templates that can be straightforwardly integrated into
existing workflows.

Despite the potential of alternative methods like GPR, but
due to the limitations described above, the empirical method
remains the primary approach to parametric modeling within
the HEP community. There is currently a lack of an efficient
framework or a package based on an alternative method that
can be readily used out-of-the-box.

Proposed Solution with Symbolic Regression

For the scenarios discussed above, we propose using SR to
replace traditional methods, shifting the paradigm of para-
metric modeling in HEP.

In this paper, we introduce a Python API® for the
SymbolFit framework, which interfaces with PySR [5] (a
high-performance SR library) and LMFIT [37] (a nonlinear
least-square minimization library), aimed at automating par-
ametric modeling of binned data using SR. We demonstrate
the effectiveness of the framework in two common HEP
applications: parametric modeling of signal and background,
and the derivation of smooth scale factors. These applica-
tions are validated using five real datasets from new physics
searches at the CERN LHC, along with several toy datasets.
The key features of the framework are summarized below:

e Pre-determined functional forms are no longer
needed. With SR, only minimal constraints are required
to define the function space, such as specifying the
allowed mathematical operators (+, X, /, pow, sin(-),
exp(-), etc.). This does not demand extensive and prior
knowledge of the final functions that describe the distri-
bution. The search for suitable functions is automatically
performed by machine, eliminating the empirical and
manual process. We show that a simple SR configura-
tion can flexibly fit a wide variety of distribution shapes.

2 https://github.com/hftsoi/symbolfit

Toy Dataset 1
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Fig.3 Toy Dataset 1: a 1D binned dataset with uncertainties repre-
sented by vertical error bars. The data points are manually generated
without reference to an underlying function

¢ Generating multiple candidate functions per fit. SR
based on genetic programming generates and evolves
successive generations of functions, producing a batch
of candidate functions in each search iteration. The same
search configuration can be repeated with different ran-
dom seeds to explore different suitable functions from the
vast function space. This flexibility in generating a vari-
ety of candidate functions allows for adaptability across
different downstream tasks.

¢ Inclusion of uncertainty measure. While SR algorithms
alone are dedicated to function searching and do not
inherently provide any uncertainty estimation, our frame-
work bridges the gap by incorporating a re-optimization
process for the candidate functions. This step improves
the best-fit models and generates uncertainty estimation
needed to access the modeling reliability.

e Modeling of multidimensional data. The framework
easily accommodates modeling data with multiple varia-
bles, which is particularly useful in HEP scenarios where
scale factors are sometimes parameterized by more than
one variable.

Moreover, the framework is designed to automate the pro-
cess as much as possible, minimizing manual effort. Results
are evaluated and plotted automatically, which are saved in
readable formats such as CSV and PDF files, including diag-
nostic plots that allow users to visually assess the fit qual-
ity and data comparison. The candidate functions generated
can be seamlessly integrated into downstream statistical
inference tools commonly used in HEP, such as Combine
[38] and pyht [39, 40], as the output models are in identical
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Fig.4 Goodness-of-fit scores vs. function complexity. A total of 46
candidate functions (labeled #0—#45) were obtained from a single
fit on Toy Dataset 1 in Sec. “Toy Dataset 1 (1D) [signal modeling]”.
Candidate functions #10, #17, #27, and #38 are listed in Table 1, and

representation to those from traditional methods—closed-
form functions. The efficiency of SR in generating a wide
range of well-fitted functions per fit also allows flexible
modeling as the function choice can be treated as a source of
systematic uncertainty through the discrete profiling method
[41].

The rest of the paper is structured as follows:
Sec. “Method” describes the SymbolFit framework;
Sec. “Demonstrations” presents demonstrations using a real
LHC dataset as well as several toy datasets; Sec. “Summary”
provides a summary of the work. More demonstrations are
presented in Appendix A.
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their combined uncertainty coverage is presented in Fig. 7. Specifi-
cally, individual parameter variations for candidate function #38 are
shown in Fig. 5, with its parameter correlation matrix shown in Fig. 6

Method

The SymbolFit framework is illustrated in Fig. 2 and
explained in the following:

1. Input data. We consider the input dataset
{9, yip, ygown)};’:l, where x' represents one or more
independent variables, y' is the dependent variable with
associated uncertainties y’ at one standard devia-

i
up/down
tion, and » is the number of data points. In the context

of binned histograms, which are commonly used in HEP
data analysis, there are n bins. Here, x' represents the
center of the i-th bin, and y' is the bin content, represent-
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Table 1 Nine examples from the 46 candidate functions obtained
from a single fit to Toy Dataset 1. These functions were fitted to a
scaled dataset (to enhance fit stability and prevent numerical over-
flow), which can be rescaled to describe the original dataset using
the transformation: f(x) — 165 X f(0.00211(x — 12.5)). The com-
parison between the y?/NDF scores before and after the ROF step is

presented. The total uncertainty coverage of candidate functions #10,
#17, #27, #38 is shown in Fig. 7. Individual parameter variations for
candidate function #27 are plotted in Fig. 5. The function complexity
values, providing a rough estimate of the model size, are computed
before algebraic simplification. Numerical values are rounded to three
significant figures for display purposes

Complexity Candidate function

#param.  »2/NDF x*/NDF p-value

(after ROF) (before ROF) (after ROF) (after ROF)

12 (#10) 0.101 + 23.3gauss(—3.74x)x 2 3743718 3743/18 10768

19 (#17) 0.061 + (5.11x + 5.11gauss(—2.34 + 12.6x))gauss(2.52x) 4 54.06/ 16 53.59/16 10706

22 (#20) 0.0837 + (4.76gauss(—15.7x + 2.84) + 10.4 tanh(x))gauss(2.99x) 6 4847/ 14 17.76 /1 14 0.218

27 (#24) (4.79gauss((—5.5 + 2x)(—0.538 + 3x)) + 10.2x)gauss(—3.03x) 6 16.88/ 14 16.31/ 14 0.2951
+0.0841

31 (#26) (4.9x + 4.9gauss(—2.79 + 15.4x) + 4.9 tanh(x))gauss(3x)+ 4 15.79/16 15.45/16 0.4919
0.0789gauss(x) exp(x)

32 (#27) (5.13gauss(—16.7x + 3.05) + 13.1x)gauss(x(—4.68 + x) + x) 6 12/14 10.04/ 14 0.760
+0.0661

37 (#32) (5.07gauss((—4.42 + 2x)(—0.724 + 4x)) + 5.07 tanh(x) + 7.79x)x 6 8.359/ 14 7.655/ 14 0.9065
gauss(x(—4.65 + x) + x) + 0.066

44 (#38) (5.08gauss((—4.7 + 4x)(—0.719 + 4x)) + 12.7x)x 6 6.278 / 14 5.826/ 14 0.971
gauss(x(—4.66 + x) + x) + 0.0662

52 (#41) 0.0657 + (5gauss((—4.96 + 6x)(—0.712 + 4x)) + 12.4 tanh(x))X 6 3.564/ 14 3.032/ 14 0.999

gauss(x(—4.6 + x) + x) — 0.00624x

ing the number of events within the bin. The associated

uncertainties yflp/ down &€count for measurement errors or

modeling inaccuracies.

2. Symbolic regression. The core of the framework is to
leverage SR to perform a machine-search for suitable
functions to model the data, without predefining a func-
tional form. We utilize PySR [5], a Python library for
genetic programming-based SR, which is highly con-
figurable in defining the function space for the search.
The configuration process is highly simplified, requiring
only the specification of allowed mathematical operators
(+, %X, /, pow, sin(-), exp(-), etc.) and the constraints for
the functional form. The objective of the search is to
minimize:

C fa) -y :
e3( )

=1 \Vip Ll —i20 T Yiownbrx)—i<0

where fis the candidate function. Since PySR uses a
multi-population strategy to evolve and select functions,
each run generates a batch of candidate functions. These
functions are then re-optimized in subsequent steps to
improve the fit and provide uncertainty estimates.

3. Parameterization. SR algorithms search for exact
functions but do not inherently provide any uncertainty

measures. However, uncertainty estimation is essen-
tial in HEP data analysis to gauge the reliability of the
observation and prediction. To address this, we freeze
the functional forms found by SR and then re-optimize
all constants in each function using standard nonlinear
minimization techniques. The uncertainties in these re-
optimized constants are used as the uncertainty measure
for the candidate functions. First, within each candidate
function, the constants are automatically identified and
parameterized as {a,,a,, ...}, with the original values
stored as initial values for the re-optimization process.
4. Re-optimization fit (ROF). To perform ROF of the
candidate functions, we utilize LMFIT [37], a nonlinear
least-square minimization library, to perform a second-
fit for the parameters while keeping the functional forms
fixed. The objective is to minimize y? defined in Eq. 3.
The parameterized functions are parsed to identify the
set of parameters to be varied, and initially, all param-
eters are allowed to vary in the fit. In some cases, the
minimization may fail to converge due to a too com-
plex objective function. To handle these cases, a loop
for ROF is implemented in the framework. This loop
progressively reduces the number of degrees of freedom
(NDF) by freezing more parameters to their initial val-
ues until the fit succeeds and all relative errors are below

@ Springer
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«Fig.5 Individual parameter variations in candidate function #27
from a fit to Toy Dataset 1. The parameterized form of this function
is shown at the top of each subfigure, along with the best-fit values
of the parameters and their associated uncertainties. Each subfigure
shows the same function, but with one parameter shifted by its +1
standard deviation (green/blue), while the other parameters remain
fixed at their best-fit values. The function with all parameters held at
their best-fit values is plotted in red and compared to the data, rep-
resented by black data points. The middle panel shows the weighted

Data—Fit
Data unc.”
tion with the uncertainty variations to the best-fit function

residual error: The bottom panel shows the ratio of the func-

a predefined threshold. Finally, the candidate functions
are evaluated and ranked in the outputs.

To summarize, SymbolFit automates all these steps in the
modeling process, including the computation of various
goodness-of-fit scores and the evaluation of correlations
between the parameters. This integration streamlines the
workflow and minimizes manual intervention while provid-
ing full information for downstream statistical analysis. The
computation time of the workflow is primarily due to the
search for functional forms, for which we utilize a highly
optimized SR algorithm PySR. As a result, the process is not
computationally intensive and can be flexibly configured.
As the function space is usually huge even when under con-
strained, one can repeat the fit with the same configuration
but with a different random seed to obtain a different batch
of candidate functions.

Demonstrations

We demonstrate the effectiveness of our framework using
five real LHC datasets from new physics searches published
recently, as well as several toy datasets.

The LHC datasets consist of real proton—proton collision
data at a center-of-mass energy of \/E = 13 TeV, collected
by the CMS experiment during Run 2. These datasets cover
various search channels: dijet [25] in Sec. “CMS dijet dataset
(1D) [background modeling]”, diphoton [27] in Appendix
A.2, trijet [20] in Appendix A.3, paired-dijet [26] in Appen-
dix A.4, and dimuon [28] in Appendix A.5. Each dataset
consists of 1D binned data of the invariant mass of the

respective objects, where smooth background predictions are
obtained through parametric modeling and then tested for
excess events indicative of new physics. In all these analyses,
CMS reported no evidence of new physics is observed in the
data. Therefore, for our demonstrations, we assume that each
invariant mass spectrum contains no signal. We also perform
experiments to validate the SR outputs for signal extraction
in these LHC datasets, and details of these steps are given
in Sec. “CMS dijet dataset (1D) [background modeling]”.

In addition to the real LHC datasets, we also generate
toy datasets for demonstration purposes. While SR has
been shown to successfully identify the correct underly-
ing function from noisy data [1, 5], here we focus on toy
data generated by hand without an underlying function to
illustrate SR’s capability in modeling arbitrary distribution
shapes. Toy Dataset 1, presented in Sec. “Toy Dataset 1 (1D)
[signal modeling]”, is a 1D binned distribution featuring a
sharp peak and a high-end tail. Toy Dataset 2, presented in
Sec. Appendix A.1, consists of three 1D binned distributions
with various shapes. Toy Dataset 3, presented in Sec. “Toy
dataset 3 (2D) [arbitrary shapes]”, consists of three 2D
binned distributions.

Toy Dataset 1 (1D) [Signal Modeling]

Figure 3 shows Toy Dataset 1, which consists of a 1D binned
distribution. The distribution has a shape characterized by a
sharp peak and a high-end tail, and it is generated by hand
without reference to an underlying function.

In spite of the lack of a true functional form, we dem-
onstrate that our framework using SR can replace the
empirical process with minimal efforts. This can be seen
from the simple Python snippet shown in List. 1°, which
defines the function space and configures PySR to perform
a machine-search for functions to fit this dataset. In this
example, the maximum function complexity is set to 60 to
constrain the model size, ensuring that the total number of
nodes in an expression tree does not exceed 60, with each
operator equally weighted with a complexity of one. The
allowed operators include two binary operators (+ and X)
and three unary operators (exp(:), tanh(:), and a custom-
defined gauss(-) = exp(—(-)%)). Constraints on operator nest-
ing are imposed to prohibit scenarios like tanh(tanh(-)). The
loss function used is y2.

3 The option definitions can be found at https:/github.com/Miles
Cranmer/PySR and Ref. [5].
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Fig.6 Correlation matrix for the parameters of candidate function #27 from a fit to Toy Dataset 1 (see Table 1 and Fig. 5). The parameter uncer-

tainties and their correlation define the uncertainty model associated with the function
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Fig.7 Convergence of candidate functions to the data (Toy Dataset
1), from lower to higher function complexity values. To visualize
the total uncertainty coverage of each candidate function, the green
band in each subfigure represents the 68% quantile range (+1o) of
functions obtained by sampling parameters, taking into account the
best-fit values and the covariance matrix within a multidimensional

300 400 500

(d) Candidate function #38.

normal distribution. The red line denotes the mean of the function
ensemble. At the top of each subfigure, the candidate function and the
fitted parameters are shown. The middle panel shows the weighted

. Data—Mean
residual error: —————
Data unc.

quantile range to the mean

. The bottom panel shows the ratio of the 68%
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Table 2 The candidate functions are obtained from three separate fits using the same fit configuration but with different random seeds, fitted to
the pseudodata of the dijet spectrum with the (injected) signal region blinded

Candidate function # param. x*/NDF x*/NDF p-value
(after ROF) (before ROF) (after ROF) (after ROF)

SR model 1 (570x(x(—0.423 exp(2x) + exp(x)) + x) + 149)x 5 400.5 /30 29.21/30 0.507
(0.00328 + 0.0304 tanh(x))*87™

SR model 2 (145(0.958 + x)anh(-0.711+4.329) 4 145 tanh(x))x 5 103.8/30 29.91/30 0.47
(0.00591 + 0.0522 tanh(x))>48*

SR model 3 pow(149(0.0101x + 0.0101 tanh(0.171 + 0.724x)), 5 214.8/30 30.93/30 0.419

x+ (2.38x tanh(=0.71 + x) + 2.39) tanh(x) + tanh(x))

The fits were performed on a scaled dataset (to enhance fit stability and prevent numerical overflow), and the functions can be transformed
back to describe the original spectrum using the transformation:x — 0.000145(x — 1568.5). These functions are plotted and compared with the
blinded pseudodata in Fig. 9.Numerical values are rounded to three significant figures for display purposes

1 from pysr import PySRRegressor
2 import sympy

. pysr_config = PySRRegressor (
5 model_selection =
€ timeout_in_seconds =
7 niterations = 200,
8 maxsize = 60,

9 binary_operators =
10 unary_operators = [
11 "exp",

12 "gauss (x) =
13 "tanh"
14 1,

15 nested_constraints = {
16 "tanh": {"tanh":
17 "exp": {"tanh":
18 "gauss": {"tanh":
19 R {"tanh":

20 },

[||+n’

exp (-x*x)",

= O O O

extra_sympy_mappings={"gauss":
weights) =

21
22 loss = "loss(y, y_pred,

"accuracy",
60%100,

s llexpll:
s "exp":
s "exp":
s "exp":

n*n] s

0, "gauss": 0, "x": 2},
0, "gauss": 0, "x": 2},
0, "gauss": 0, "x": 2},
1, "gauss": 1, "x": 2}

lambda x: sympy.exp(-x*x)1l},

(y - y_pred) "2 * weights"

Listing 1 The Python code snippet that configures PySR to search for candidate functions for Toy Datasets 1 and 3

We run SymbolFit with the PySR configuration shown
in List. 1. In particular, the parameter “maxsize” controls
the maximum complexity of the functions, which is up to
the user to choose if simpler or more complex functions
are desired. This single fit generates 46 candidate functions
(labeled #0 to #45), with function complexity values rang-
ing from 1 to 60. These complexity values provide a rough
estimate of the model size and are computed before any alge-
braic simplification. Four goodness-of-fit scores, including
the y?/NDF and p-value, are plotted against function com-
plexity in Fig. 4. As expected, more complex functions tend
to offer better fits to the data, as their higher complexity
makes them more expressive. The variety of functions pro-
duced provides flexibility, allowing one to choose a candi-
date function based on the desired fit quality for downstream

@ Springer

tasks. For example, nine of the 46 candidate functions are
listed in Table 1, showing y?/NDF values above 1, around
1, and below 1, offering a range of fit qualities.

In general, the y?/NDF score improves significantly after
ROF compared to the original function found from SR. This
is because SR algorithms are typically focused on finding
optimal functional forms rather than fine-tuning a specific
function. As a result, the ROF step improves the constants in
each function to achieve a better fit and provides uncertainty
estimates for the parameters.

As an example, Fig. 5 shows candidate function #27.
This candidate function has six parameters, with uncer-
tainty variations for each plotted separately. The correla-
tion matrix for these parameters is shown in Fig. 6. The
correlation matrix, along with the parameter uncertainties,
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Fig.8 The three SR models fitted to the pseudodata of the dijet
spectrum with the signal region blinded (see Table 2). To visualize
the total uncertainty coverage of each candidate function, the green
band in each subfigure represents the 68% quantile range of functions
obtained by sampling parameters, taking into account the best-fit val-
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4+ Data
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(c¢) SR model 3.

Data—Mean

Data unc.
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ues and the covariance matrix within a multidimensional normal dis-

defines the uncertainty model associated with the function
and is required for propagating uncertainties to the final

statistical inference results.

To compare various candidate functions obtained from
a single fit in the framework, Fig. 7 shows four candidate
functions with a range of fit scores from very low to very

Mean

tribution. The red line denotes the mean of the function ensemble. At
the top of each subfigure, the candidate function and the fitted param-
eters are shown. The middle panel shows the weighted residual error:
. The bottom panel shows the ratio of the 68% quantile range

high. This demonstrates that within the variety of func-
tions generated per fit, there is a convergence from poorer

to better-fitted functions, providing flexibility in choices.

To illustrate the uncertainty coverage for a candidate func-
tion, an ensemble of functions is generated by sampling
parameters from a multidimensional normal distribution,
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considering their best-fit values and covariance matrix.
The 68% quantile range of the function ensemble is shown
for each candidate function, representing the total uncer-
tainty coverage by simultaneously accounting for uncer-
tainties in all parameters. These computations are all auto-
matically performed within the SymbolFit framework.

CMS Dijet Dataset (1D) [Background Modeling]

CMS performed a search for high-mass dijet resonances
using proton—proton collision data at a center-of-mass
energy of \/E = 13 TeV and reported no significant devia-
tions from the Standard Model prediction [25]. The data-
set for the dijet spectrum is publicly available on HEP-
DATA at Ref. [42]. In the analysis, CMS used an empirical
4-parameter function to model the background contribu-
tion in the distribution of the dijet invariant mass, my:

_ po(l —x)p
f('x) - xp2+p31n(x) i

“

where x = mjj/\/g is dimensionless and pg 3, are free
parameters. While this function fits the current dijet spec-
trum reasonably well, it may be too rigid to accommodate
potential future changes in the dijet spectrum due to modifi-
cations in analysis strategies or detector performance.

For our experiments, we use the PySR configuration
shown in List. 2 to fit the dijet dataset. The main differ-
ence between List. 2 and List. 1 used in Sec. “Toy Dataset
1 (1D) [signal modeling]” is that it does not explicitly
include a Gaussian operator, as the mass spectrum assumes
no peaks in the background. This same SR configuration

1 from pysr import PySRRegressor

; pysr_config = PySRRegressor (
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Fig.9 Pseudodata of the dijet spectrum with the injected sig-
nal shown in the blinded signal region. The three SR models (see
Table 2) are compared against the empirical model used by CMS.
The lower panel shows the residual error per bin, measured in units
of the data uncertainty. It can be seen that the three SR models, gen-
erated easily from three separate fits using the same simple fit con-
figuration with different random seeds, yield results that are readily
comparable to the CMS empirical model that would have required
extensive manual effort to obtain

is also applied to the other LHC datasets as well as Toy
Dataset 2, generating a range of well-fitted functions for
each case despite their very different distribution shapes,
demonstrating the flexibility of the SR approach.

1 model_selection = "accuracy",
timeout_in_seconds = 60%100,
niterations = 200,
7 maxsize = 80,
binary_operators = [
¢ 1,
11 unary_operators = [
12 "exp",
13 "tanh",
14 1,
15 nested_constraints = {
1 "exp": {"exp": 0, "tanh": O, "*x": 2, "/": 1, """: 1},
17 "tanh": {"exp": 0, "tanh": O, "*x": 2, "/": 1, "°~": 1},
1 RE {"exp": 1, "tanh": 1, "x": 2, "/": 1, "°": 1},
19 =g {"exp": 1, "tanh": 1, "x": 2, "/": 1, "°": 0},
2( /A {"exp": 1, "tanh": 1, "x": 2, "/": 0, """: 1},
¥,

loss="loss(y, y_pred,

weights) = (y - y_pred) "2 * weights",

Listing 2 The Python code snippet configures PySR to search for candidate functions for the dijet dataset. This same
configuration is used for the other four LHC datasets and Toy Dataset 2 with variations in the maximum complexity values
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Fig. 10 Comparison of the b-only fits and the s+b fits to the unblinded pseudodata of the dijet spectrum. The lower panel shows the residual
error per bin, measured in units of the data uncertainty. The shape of the injected signal is also shown

Table 3 Comparison of the y?/NDF scores from three types of fits to the dijet dataset: the b-only fits to the blinded pseudodata, the b-only fits
to the unblinded pseudodata, and the s+b fits to the unblinded pseudodata

2 /NDF (b-only, blinded) 2 /NDF (b-only, unblinded) 2 /NDF (s+b, unblinded)
SR model 1 29.21/30=0.974 54.48 /37 =147 36.19/35=1.03
SR model 2 29.91/30=0.997 51.25/37=1.39 36.28/35=1.04
SR model 3 30.93/30=1.03 65.33/37=1.77 39.98/35=1.14
Emp. model (CMS) 29.65 /31 =0.956 54.63 /38 =1.44 35.07/36 =0.974

The background models used for the fits are listed in Table. 2, and the fits are shown in Fig. 9 (blinded) and Fig. 10 (unblinded)

@ Springer



12 Page 16 of 45

Computing and Software for Big Science (2025) 9:12

Fig. 11 Fitted values vs. the
true values of the parameters

of the injected signal in the
dijet dataset. The bottom panels
show the residual error in units
of the fitted uncertainty
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Toy Dataset 3a
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Fig. 12 Toy Dataset 3: three 2D binned sub-datasets manually generated without reference to an underlying function

To validate the SR approach in background modeling
and signal extraction, we start with the original dijet spec-
trum and generate pseudodata by injecting a small and

X—S 2
- %
at my; = 3.1 TeV (s;), with a width of 0.2 TeV (2s,) and a
signal strength of 5, = 10. The injected signal intensity per
bin is perturbed by 10% random noise.

To model the background, we first blind the signal region
by masking the m;; bins near the injected signal peak, specifi-
cally between 2.7 and 3.5 TeV, and then perform fits to this
blinded pseudodata. We conduct three separate SymbolFit
runs on the blinded pseudodata, using the same fit configu-
ration but with different random seeds. This demonstrates
that a variety of well-fitted functions can be obtained from
the same fit configuration, given the vast function space in
the SR search. From each of the three fits, one candidate
function is selected, referred to as “SR model 17, “SR model
2”7, and “SR model 37, respectively. These three background
models are then compared with the empirical function in
Eq. 4 used by CMS, referred to as the “empirical model
(CMS)”.

. . 1
narrow Gaussian signal, s0\/2_— exp ( ), centered
TSy

Table 2 lists the three SR models, each obtained from a
fit initialized with a different random seed. The y?/NDF
scores improve significantly after the ROF step compared to
the original functions returned by PySR, with the final scores
close to 1. The three background models fit the blinded pseu-
dodata well, as shown in Fig. 8 for the total uncertainty cov-
erage and Fig. 9 for a comparison with the empirical model
used by CMS.

Once the background models are established, we incor-
porate a parameterized Gaussian signal template into each
model f(x):

1 ex (_(x_51)2>
\/ﬁsz p 2S§ ° (5)

In the following analysis, when the model is fitted to the
unblinded pseudodata with s, = 0 held fixed, it is referred
to as a background-only (b-only) fit. When s, is allowed to
vary, it is referred to as a signal-plus-background (s+b) fit.

Now, we unblind the pseudodata and perform b-only fits
and s+b fits on the full dijet spectrum. Since the pseudodata

f®) + 5y
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Fig. 13 p-value vs. function
complexity. A total of 22, 41,
and 46 candidate functions
(labeled #0-#21, #0—#40, and
#0—#45) were obtained from a
single fit to Toy Dataset 3a, 3b,
and 3c, respectively
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Fig. 14 Candidate function #12 for Toy Dataset 3a (see Table 4). The
parameterized form of this function is shown at the top of the figure,
along with the best-fit values and associated uncertainties. Upper left:
the binned data being fitted. Lower left: the candidate function plot-

contain an injected signal, we expect to observe an excess of
events over the background model around the signal location,
provided the background is properly modeled and not overly
fitted. When performing the s+b fits, we expect that the excess
of events observed in the b-only fits will diminish as the sig-
nal is accounted for by the model template. The results of the
b-only and s+b fits for each model are compared and shown in
Fig. 10. In all three SR models, as well as the CMS empirical
model, the excess of events over the background around the
injected signal location observed in the b-only fits is reduced
in the s+b fits, demonstrating that the models are sensitive to
the injected signal. Table 3 lists the y?/NDF scores for each
model, indicating the fit performance in response to the pres-
ence of the injected signal.
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Additionally, to assess whether the SR models can extract
the injected signals, we generate multiple sets of pseudo-
data by injecting Gaussian signals with varying mean values
between 2980 to 3150 GeV and signal strengths ranging
from 2 to 38. We then perform the s+b fits to extract the cor-
responding signal parameters. Figure 11 shows the extracted
signal parameters (mass and strength) plotted against their
injected values. All three SR models are capable of extract-
ing the correct signal parameter values within reasonable
uncertainties. They perform comparably to the empirical
model used by CMS and, in some cases, yield more accurate
fitted values, demonstrating that functions obtained from SR
are effective for such tasks.
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Fig. 15 Candidate function #38 for Toy Dataset 3b (see Table 4). The
parameterized form of this function is shown at the top of the figure,
along with the best-fit values and associated uncertainties. Upper left:
the binned data being fitted. Lower left: the candidate function plot-

We demonstrated that our framework can easily generate
multiple suitable candidate functions using a very simple fit
configuration. By simply changing the random seed, addi-
tional candidate functions can be obtained as needed, and
these functions are readily comparable to the empirical func-
tion obtained by CMS, which required extensive manual and
iterative effort. This shows that our method is preferable to
traditional methods, as the labor-intensive step of finding
adequate functional forms is now automated using machine
learning.

SymbolFit

Candidate #38
X2/NDF = 52.06/144, p-value = 1.0, RMSE = 0.4166

Fit (finer binning)

X1
|
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Data — Fit
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ted with the same binning as the fitting data. Upper right: the candi-
date function plotted with a finer binning. Lower right: the residual
Data—Fit

€rror.
’ Uncertainty

, in units of the data uncertainty

Toy Dataset 3 (2D) [Arbitrary Shapes]

In Toy Dataset 3, we consider three 2D binned sub-datasets,
labeled 3a, 3b, and 3c, as shown in Fig. 12. These datasets
are manually generated without reference to an underlying
function and are used to demonstrate applications such as
deriving smooth scale factors from binned data with more
than one independent variable. The framework can be easily
extended to datasets with multiple independent variables.
We use the same PySR configuration applied to Toy Data-
set 1, as shown in List. 1, to fit these 2D binned datasets. For
each sub-dataset, a single run of SymbolFit is performed
to generate a batch of candidate functions. Figure 13 shows
the p-value plotted against function complexity. Several

@ Springer
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Fig. 16 Candidate function #34 for Toy Dataset 3c (see Table 4). The
parameterized form of this function is shown at the top of the figure,
along with the best-fit values and associated uncertainties. Upper left:
the binned data being fitted. Lower left: the candidate function plot-

candidate functions for each sub-dataset are selected and
listed in Table 4.

A candidate function is shown for each of the three sub-
datasets: #26 for sub-dataset 3a in Fig. 14, #39 for sub-data-
set 3b in Fig. 15, and #37 for sub-dataset 3c in Fig. 16.

Summary
We have developed a framework called SymbolFit that
automates parametric modeling without the need for a priori

specification of a functional form to fit data. The framework
utilizes symbolic regression to machine-search for suitable
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functional forms and incorporates a re-optimization step to
improve the candidate functions and provide uncertainty
estimates. Due to the nature of genetic programming, each
symbolic regression fit generates a batch of candidate func-
tions with a variety of forms that can potentially model the
data well. This offers flexibility and allows users to select the
most suitable candidates for their downstream tasks.

Our primary focus is on applications in high-energy
physics data analysis, specifically in signal and background
modeling, as well as the derivation of smooth scale factors
from binned data. There is no reason it cannot be applied to
other fields where parametric modeling is needed. We have
demonstrated our framework using five real proton—proton
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collision datasets from new physics searches at the CERN
LHC, as well as several toy datasets, including two-dimen-
sional binned data. Our framework has been shown to easily
generate a variety of suitable candidate functions for non-
trivial distributions using a very simple fit configuration,
even without prior knowledge of the final functional forms.
The candidate functions obtained from our framework are
readily comparable to the empirical functions derived from
traditional methods, which would have required extensive
manual and iterative effort. This suggests that our method
is preferable to traditional methods since the labor-intensive
process of finding adequate functional forms is now auto-
mated using machine learning.

Since the fit outputs in this approach are parametric
closed-form functions, the resulting model representation
is identical to that from traditional parametric modeling
methods. This allows seamless integration with established
downstream statistical tools used in LHC experiments such
as Combine and pyhf for hypothesis testing. Furthermore,
the ease of generating a wide range of well-fitted functions
within this framework facilitates flexible modeling, as the
choice of functions can be treated as a source of systematic
uncertainty using well-established techniques, such as the
discrete profiling method.

We have developed an API for the framework, designed
for easy use by the high-energy physics community. This
API automates and streamlines the process of finding suit-
able functions with uncertainty estimates for modeling
binned data, significantly reducing manual effort. Our goal
is to transform the approach to parametric modeling in high-
energy physics experiments, moving away from traditional
fitting methods that rely on manually determining empiri-
cal functions on a case-by-case basis, which is both time-
consuming and prone to bias.

Appendix A: More Examples
Toy Dataset 2 (1D) [Arbitrary Shapes]

In Toy Dataset 2, we consider three 1D binned sub-datasets,
labeled 2a, 2b, and 2c, as shown in Fig. 17. These datasets
are manually generated without reference to an underlying
function and are used to demonstrate applications such as
deriving smooth scale factors from binned data.

We use the same PySR configuration applied to the five
LHC datasets, as shown in List. 2, to fit these 1D binned
datasets. For each sub-dataset, a single run of SymbolFitis

performed to generate a batch of candidate functions. Fig-
ure 18 shows the p-value plotted against function complex-
ity. Several candidate functions for each sub-datasets are
selected and listed in Table 5.

Figure 19 shows candidate functions #13, #21, and #21
with uncertainty coverage, for sub-datasets 2a, 2b, and 2c,
respectively.

CMS High-Mass Diphoton Dataset (1D) [Background
Modeling]

CMS performed a search for high-mass diphoton reso-
nances using proton—proton collision data at a center-of-
mass energy of \/E = 13 TeV and reported no significant
deviations from the Standard Model prediction [27]. The
dataset for the diphoton spectrum is publicly available on
HEPDATA at Ref. [43]. In the analysis, CMS considered
four empirical functions to model the background contribu-
tion in the distribution of the diphoton invariant mass, m,,,
and one of them is:

f(x) =P0XP1+P210g(X)’ (A1)

where x = myy/\/g is dimensionless and py, 5, are free
parameters.

We perform the same experiments conducted on the dijet
dataset, as detailed in Sec. “CMS dijet dataset (1D) [back-
ground modeling]”. Starting from the original diphoton
spectrum, we generate pseudodata by injecting a perturbed
Gaussian signal centered at m,, = 1320 GeV (s,), with a
width of 74 GeV (2s,) and a signal strength of s, = 15. To
model the background, we blind the signal region by mask-
ing the m,,, bins between 980 and 1400 GeV in the pseudo-
data and perform the fits.

Three SymbolFit runs using different random seeds are
carried out, applying the same PySR configuration as used
for the dijet dataset (see List. 2), except that the maximum
complexity is set at 20 instead of 80, since the diphoton
distribution shape is less complex. Table 6 lists the three
SR models, each obtained from a fit initialized with a dif-
ferent random seed. The y?/NDF scores improve signifi-
cantly after the ROF step compared to the original func-
tions returned by PySR. The three background models fit the
blinded pseudodata well, as shown in Fig. 20 for the total
uncertainty coverage and Fig. 21 for a comparison with the
empirical model used by CMS.

Next, we unblind the pseudodata and perform b-only fits
and s+b fits on the full pseudodata spectrum. These results
are shown in Fig. 22. In all three SR models, as well as the
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CMS empirical model, the excess of events over the back-
ground around the injected signal location observed in the
b-only fits is reduced in the s+b fits, demonstrating that the
models are sensitive to the injected signal. Table 7 lists the
2 /NDF scores for each model, showing the fit performance
in response to the presence of the injected signal.

To assess whether the SR models can accurately extract
the injected signals, we generate multiple sets of pseudodata
by injecting Gaussian signals with different mean values
ranging from 1080 to 1120 GeV and varying signal strengths
between 5 and 50. We then perform the s+b fits to extract
the corresponding signal parameters. Figure 23 shows the
extracted signal parameters plotted against their injected val-
ues. All three SR models are capable of extracting the cor-
rect signal parameter values within reasonable uncertainties
and are comparable to the empirical model used by CMS.

CMS Trijet Dataset (1D) [Background Modeling]
CMS performed a search for high-mass trijet resonances

using proton—proton collision data at a center-of-mass energy
of 4/s = 13 TeV and reported no significant deviations from

Toy Dataset 2a

the Standard Model prediction [20]. The dataset for the trijet
spectrum is publicly available on HEPDATA at Ref. [44].
In the analysis, CMS considered four empirical functions to
model the background contribution in the distribution of the
trijet invariant mass, my;, and one of them is:

i
~ po(l =

f&) = xP2Hpslog() (A2)

where x = my;/ \/E is dimensionless and pq ; 3, are free
parameters. Equation A.2 corresponds to Eq. 1 with N =3
determined by an F-test.

We perform the same experiments conducted on the
dijet dataset, as detailed in Sec. “CMS dijet dataset (1D)
[background modeling]”. Starting from the original tri-
jet spectrum, we generate pseudodata by injecting a per-
turbed Gaussian signal centered at m; = 4000 GeV (s;)
with a width of 400 GeV (2s,) and a signal strength of
5o = 50000. To model the background, we blind the signal
region by masking the my; bins between 3000 and 5000
GeV in the pseudodata and perform the fits.

Three SymbolFit runs using different random seeds are

carried out, applying the same PySR configuration as used

Toy Dataset 2b
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Fig. 17 Toy Dataset 2: three 1D binned sub-datasets manually generated without reference to an underlying function

@ Springer



Computing and Software for Big Science (2025) 9:12

Page250f45 12

Fig. 18 p-value vs. function
complexity. A total of 26, 28,
and 28 candidate functions
(labeled #0—#25, #0—#27, and
#0—#27) were obtained from a
single fit to Toy Dataset 2a, 2b,
and 2c, respectively
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Table 5 Example candidate functions for Toy Dataset 2 are listed

Toy Dataset 2a

Complexity Candidate function # param. 12 /NDF 12 /NDF p-value
(after ROF) (before ROF) (after ROF) (after ROF)

12 (#3) 0.667 X 0.991%PM)x + 1.44 /x 3 5.273/6 =0.8789 4.382/6=0.7303 0.6251

19 (#13) 0.697 x 0.991PWx + 0.697*PWx + 1.16/x 3 2.863/6=0.4772 2.619/6 =0.4365 0.8549

38 (#25) 0.9070:0993exp(™x(0.0609 + tanh(0.596%632/%))+ 3 1.776 / 6 = 0.2961 1.771/6 = 0.2951 0.9395
0.948/x + 0.948°%p(:63%) _ 0 115

Toy Dataset 2b

Complexity Candidate function # param. 2 /NDF 12 /NDF p-value
(after ROF) (before ROF) (after ROF) (after ROF)

14 (#13) —0.0219 exp(x) + 1.96 + tanh(x)~0-386+* 5.613/7=0.8018 5.501/7=0.7858 0.5991

19 (#18) —0.0161 exp(x) + 0.177 + 3.02 x 0.825*+ 2.092/5=0.4184 1.084 /5 =10.2169 0.9555
tanh(0.177x")

22 (#21) —0.0149 exp(x) — 0.00659 + 4.11 tanh(0.787%)+ 4 0.857/5=0.1714 0.8561/5=0.1712 0.9733
tanh(0.16x")

Toy Dataset 2¢

Complexity Candidate function # param. 12 /NDF 12 /NDF p-value
(after ROF) (before ROF) (after ROF) (after ROF)

13 (#10) 0.626x exp(—1.38%) + tanh(x*-32) 1675716 =1.047 12.45/16 = 0.7784 0.7122

15 (#11) x/(2x + exp(1.41%)) + tanh(x*-305) 2 10.67/17 = 0.6276 10.48 /17 = 0.6165 0.8823

29 (#21) (1.02x + 1.02 tanh(x?)) tanh(x)/(2.58x' 3% + x+ 4 7767115 =0.5178 4.079/15=02719 0.9975

exp(1.39%)) + 1.02 tanh(x38%)

The example candidate functions—#13 for Toy Dataset 2a, #21 for 2b, and #21 for 2c—are plotted in Fig. 19. Numerical values are rounded to

three significant figures for display purposes

for the dijet dataset (see List. 2). Table 8 lists the three SR
models, each obtained from a fit initialized with a different
random seed. The y? /NDF scores improve significantly after
the ROF step compared to the original functions returned by
PySR. The three background models fit the blinded pseu-
dodata well, as shown in Fig. 24 for the total uncertainty
coverage and Fig. 25 for a comparison with the empirical
model used by CMS.

Next, we unblind the pseudodata and perform b-only fits
and s+b fits on the full pseudodata spectrum. These results
are shown in Fig. 26. In all three SR models, as well as the
CMS empirical model, the excess of events over the back-
ground around the injected signal location observed in the
b-only fits is reduced in the s+b fits, demonstrating that the
models are sensitive to the injected signal. Table 9 lists the
2 /NDF scores for each model, showing the fit performance
in response to the presence of the injected signal.

To assess whether the SR models can accurately extract
the injected signals, we generate multiple sets of pseudodata

@ Springer

by injecting Gaussian signals with different mean values
ranging from 3600 to 4500 GeV and varying signal strength
between 25000 and 100000. We then perform the s+b fits
to extract the corresponding signal parameters. Figure 27
shows the extracted signal parameters plotted against their
injected values. All three SR models are capable of extract-
ing the correct signal parameter values within reasonable
uncertainties and are comparable to the empirical model
used by CMS.

CMS Paired-Dijet Dataset (1D) [Background
Modeling]

CMS performed a search for high-mass four-jet resonances
using proton—proton collision data at a center-of-mass
energy of \/E = 13 TeV and reported no significant devia-
tions from the Standard Model prediction [26]. The dataset
for the four-jet spectrum is publicly available on HEPDATA
at Ref. [45]. In the analysis, CMS considered four empirical
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Fig. 19 Example candidate functions for Toy Dataset 2 (see Table 5). dimensional normal distribution. The red line denotes the mean of the
To visualize the total uncertainty coverage of each candidate func- function ensemble. At the top of each subfigure, the candidate func-
tion, the green band in each subfigure represents the 68% quantile tion and the fitted parameters are shown. The middle panel shows the
range of functions obtained by sampling parameters, taking into weighted residual error: w. The bottom panel shows the ratio
ata unc.

account the best-fit values and the covariance matrix within a multi- of the 68% quantile range to the mean
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Fig.20 The three SR models fitted to the pseudodata of the diphoton
spectrum with the signal region blinded (see Table 6). To visualize
the total uncertainty coverage of each candidate function, the green
band in each subfigure represents the 68% quantile range of functions
obtained by sampling parameters, taking into account the best-fit val-
ues and the covariance matrix within a multidimensional normal dis-
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tribution. The red line denotes the mean of the function ensemble. At
the top of each subfigure, the candidate function and the fitted param-
eters are shown. The middle panel shows the weighted residual error:
Data-Mean ppe bottom panel shows the ratio of the 68% quantile range

Data unc.
to the mean
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Table 6 The candidate functions are obtained from three fits using different random seeds, fitted to the pseudodata of the diphoton spectrum

with the (injected) signal region blinded

Candidate function # param. x?/NDF x*/NDF p-value
(after ROF) (before ROF) (after ROF) (after ROF)
SR model 1 33.3(0.017 4 0.177x)6-93 3 47.12 /136 = 0.3465 46.83 /136 = 0.3443 1.0
SR model 2 35.0 exp(—16.0x0834) 3 63.44 /136 = 0.4665 53.37 /136 = 0.3925 1.0
SR model 3 0.0226 exp(0.975x)(0.158 + x)=>% 3 48.94 /136 = 0.3598 47.22/136 = 0.3472 1.0

The fits were performed on a scaled dataset (to enhance fit stability and prevent numerical overflow), and the functions can be transformed back
to describe the original spectrum using the transformation: x — 0.000287(x — 503). These functions are plotted and compared with the blinded
pseudodata in Fig. 21. Numerical values are rounded to three significant figures for display purposes

102

—— SR model 1, xX/NDF=46.83/136
~ SR model 2, x*/NDF=53.37/136
R A PPN SR model 3, x?/NDF=47.22/136
Emp. model (CMS), x?/NDF=46.78/136
-—- Injected signal

M + Pseudodata (signal injected, blinded)

=
o
A
;
e 3
>

[y
o
o

dN/dm,, [1/TeV]

10724

IR

o] gt

Data — Fit
Uncertainty

103
Diphoton mass [GeV]

Fig.21 Pseudodata of the diphoton spectrum with the injected sig-
nal shown in the blinded signal region. The three SR models (see
Table 6) are compared against the empirical model used by CMS.
The lower panel shows the residual error per bin, measured in units
of the data uncertainty. It can be seen that the three SR models, gen-
erated easily from three separate fits using the same simple fit con-
figuration with different random seeds, yield results that are readily
comparable to the CMS empirical model that would have required
extensive manual effort to obtain

functions to model the background contribution in the distri-
bution of the four-jet invariant mass, m...., and one of them is:

il
po(1 —x'/y
xP2tp3logx+p, log?x’

J) = (A.3)
where x = my; / \/E is dimensionless and py( 34, are free
parameters.

We perform the same experiments conducted on the
dijet dataset, as detailed in Sec. “CMS dijet dataset (1D)

[background modeling]”. Starting from the original four-jet
spectrum, we generate pseudodata by injecting a perturbed
Gaussian signal centered at my; = 3500 GeV (s) with a
width of 400 GeV (2s,) and a signal strength of 5, = 2. To
model the background, we blind the signal region by mask-
ing the m;; bins between 3000 and 4000 GeV in the pseu-
dodata and perform the fits.

Three SymbolFit runs using different random seeds
are carried out, applying the same PySR configuration as
used for the dijet dataset (see List. 2). Table 10 lists the
three SR models, each obtained from a fit initialized with
a different random seed. The y2/NDF scores improve sig-
nificantly after the ROF step compared to the original func-
tions returned by PySR. The three background models fit the
blinded pseudodata well, as shown in Fig 28 for the total
uncertainty coverage and Fig. 29 for a comparison with the
empirical model used by CMS.

Next, we unblind the pseudodata and perform b-only fits
and s+b fits on the full pseudodata spectrum. These results
are shown in Fig. 30. In all three SR models, as well as the
CMS empirical model, the excess of events over the back-
ground around the injected signal location observed in the
b-only fits is reduced in the s+b fits, demonstrating that the
models are sensitive to the injected signal Table 11 lists the
2 /NDF scores for each model, showing the fit performance
in response to the presence of the injected signal.

To assess whether the SR models can accurately
extract the injected signals, we generate multiple sets of
pseudodata by injecting Gaussian signals with different
mean values ranging from 3350 to 3750 GeV and varying
signal strength between 0.5 and 10. We then perform the
s+Db fits to extract the corresponding signal parameters.
Figure 31 shows the extracted signal parameters plotted
against their injected values. All three SR models are
capable of extracting the correct signal parameter values
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Fig. 22 Comparison of the b-only fits and the s+b fits to the unblinded pseudodata of the diphoton spectrum. The lower panel shows the residual
error per bin, measured in units of the data uncertainty. The shape of the injected signal is also shown

Table 7 Comparison of the y%/NDF scores from three types of fits to the diphoton dataset: the b-only fits to the blinded pseudodata, b-only fits
to the unblinded pseudodata, and s+b fits to the unblinded pseudodata

22/NDF (b-only, blinded) 22/NDF (b-only, unblinded) 22/NDF (s+b, unblinded)
SR model 1 46.83 /136 = 0.3443 70.27 / 166 = 0.4233 62.34 /164 = 0.3801
SR model 2 53.37/ 136 = 0.3924 79.94 /166 = 0.4816 69.62 / 164 = 0.4245
SR model 3 47227136 = 0.3472 70.59 / 166 = 0.4252 63.26 / 164 = 0.3857
Emp. model (CMS) 46.78 /136 = 0.344 70.02 / 166 = 0.4218 62.2/164 =0.3793

The background models used for the fits are listed in Table 6, and the fits are shown in Fig. 21 (blinded) and Fig. 22 (unblinded)
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Fig. 23 Fitted values vs. the
true values of parameters of the
injected signal in the diphoton
dataset. The bottom panels
show the residual error in units
of the fitted uncertainty
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Fig.24 The three SR models fitted to the pseudodata of the trijet
spectrum with the signal region blinded (see Table 8). To visualize
the total uncertainty coverage of each candidate function, the green
band in each subfigure represents the 68% quantile range of functions
obtained by sampling parameters, taking into account the best-fit val-
ues and the covariance matrix within a multidimensional normal dis-
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tribution. The red line denotes the mean of the function ensemble. At
the top of each subfigure, the candidate function and the fitted param-

eters are shown. The middle panel shows the weighted residual error:
%. The bottom panel shows the ratio of the 68% quantile range
to the mean
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Table 8 The candidate functions are obtained from three fits using different random seeds, fitted to the pseudodata of the trijet spectrum with the

(injected) signal region blinded

Candidate function

# param. 2 /NDF 2 /NDF p-value
(After ROF) (Before ROF) (After ROF) (After ROF)
SR model 1 (1.08 x 107°)'h0) /((0.165 + x)X 3 50.46 /26 =1.941 49.04 /26 = 1.886 0.00408
exp(x3(—1.96 + 4x))tanh1-17:%)
SR model 2 exp(x(—10.8 + x))/(—0.26 1x tanh(xx 4 39.49/25=1.58 33.15/25=1.326 0.1273
(=10.9 + x)) + 0.165 + tanh(x))
SR model 3 0.055470:622+4.03x(0 568 tanh(2x)+ 4 38.4/25=1.536 37.31/25=1.492 0.05395

(0.00302 exp(x)/(1.92 + x))*)

The fits were performed on a scaled dataset (to enhance fit stability and prevent numerical overflow), and the functions can be transformed back
to describe the original spectrum using the transformation: f(x) — 38458 X f(0.000184(x — 1790)). These functions are plotted and compared
with the blinded pseudodata in Fig. 25. Numerical values are rounded to three significant figures for display purposes

Fig. 25 Pseudodata of the trijet 107
spectrum with the injected sig- —— SR model 1, y2/NDF=49.04/26
nal shown in the blinded signal 106 4 SR model 2, x?/NDF=33.15/25
region. The three SR models - 1 SR model 3, x2/NDF=37.31/25
(see Table 8) are compared 5 e, Emp. model (CMS), x2/NDF=41.75/25
against the empirical model C 10° ; e S ——- Injected signal
o
used by CMS. The lower panel — T, 4 Pseudodata (signal injected, blinded)
shows the residual error per bin, 0O 7104, RS
measured in units of the data ~-
uncertainty. It can be seen that 0N 103
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easily from three separate fits - ) i
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figuration with different random e / N +*
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empirical model that would 100 ! '
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within reasonable uncertainties and are comparable to the
empirical model used by CMS.

CMS High-Mass Dimuon Dataset (1D) [Background
Modeling]

CMS performed a search for high-mass dimuon resonances
using proton—proton collision data at a center-of-mass

Trijet mass [GeV]

energy of \/E = 13 TeV and reported no significant devia-
tions from the Standard Model prediction [28]. The dataset
for the dimuon spectrum is publicly available on HEPDATA
at Ref. [46]. In the analysis, CMS considered three different
functions to model the background contribution in the dis-
tribution of the dimuon invariant mass, m o These functions
include a simple exponential, a power-law, and a first-order
Bernstein polynomial. Since the dimuon distribution in the
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Fig.26 Comparison of the b-only fits and the s+b fits to the unblinded pseudodata of the trijet spectrum. The lower panel shows the residual
error per bin, measured in units of the data uncertainty. The shape of the injected signal is also shown

Table 9 Comparison of the
2 /NDF scores from three

types of fits to the trijet dataset: SR model 1

the b-only fits to the blinded

pseudodata, b-only fits to the SR model 2
SR model 3

unblinded pseudodata, and s+b
fits to the unblinded pseudodata

#2/NDF (b-only, blinded) y2/NDF (b-only, unblinded) y2/NDF (s+b, unblinded)

49.04 /26 = 1.886
33.15/25=1.326
37.31/25=1.492
Emp. model (CMS) 41.75/25 =1.67

93.04 /40 = 2.326
48.07 /39 =1.233
5423 /39 =1.391
65.69 /39 = 1.684

181.3/42=4.317
92.92/41 =2.266
74.5/41 =1.817

117.6 / 41 = 2.868

The background models used for the fits are listed in Table 8, and the fits are shown in Fig. 25 (blinded)

and Fig. 26 (unblinded)
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Fig. 27 Fitted values vs. the Slgna| Strength = 60000
true values of parameters of the
injected signal in the trijet data- 44001 % Emp. model (CMS)
set. The bottom panels show ; { SR model 1 *
the residual error in units of the () I SR model 2 % I
fitted uncertainty O 42001
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@ Springer



12 Page 36 of 45

Computing and Software for Big Science (2025) 9:12

1.0%(a*((x0 - 1568.5) * 0.000136221))*(a3*((x0 - 1568.5) * 0.000136221))/(a2*((x0 - 1568.5) SymbolFit
*+0.000136221)**((x0 - 1568.5) * 0.000136221) + a4*((x0 - 1568.5) * 0.000136221)))

al=1.13e-05, a2=0.14323+)7003%(0-322%)
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Fig.28 The three SR models fitted to the pseudodata of the paired-
dijet spectrum with the signal region blinded (see Table 10). To vis-
ualize the total uncertainty coverage of each candidate function, the
green band in each subfigure represents the 68% quantile range of
functions obtained by sampling parameters, taking into account the
best-fit values and the covariance matrix within a multidimensional

signal region is statistically limited, simpler functions are
preferred to avoid over-fitting the background. For our com-
parison, we take the first-order Bernstein polynomial as the
empirical model used by CMS.

@ Springer

normal distribution. The red line denotes the mean of the function
ensemble. At the top of each subfigure, the candidate function and the
fitted parameters are shown. The middle panel shows the weighted
residual error: 222=Mean The pottom panel shows the ratio of the 68%

i Data unc.
quantile range to the mean

We perform the same experiments conducted on the
dijet dataset, as detailed in Sec. “CMS dijet dataset (1D)
[background modeling]”. Starting from the original dimuon
spectrum, we generate pseudodata by injecting a Gaussian
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Table 10 The candidate functions are obtained from three fits using different random seeds, fitted to the pseudodata of the four-jet spectrum with

the (injected) signal region blinded

Candidate function # param. % /NDF x*/NDF p-value
(after ROF) (before ROF) (after ROF) (after ROF)
SR model 1 (1.13 X 10751287 /(0.143x* + 1.63x) 3 47.95/34 =141 39.07/34 =1.149 0.2524
SR model 2 6.98x0857% (x + exp(x))~118 47.36 /34 =1.393 39.83/34=1.171 0.2267
SR model 3 ((6.52 x 107% + 0.000378x) tanh(0.641+ 3 71.24 /34 =2.095 35.57/34 = 1.046 0.3942

3x))x+tanh(x)/ tanh(0.145 + x)

The fits were performed on a scaled dataset (to enhance fit stability and prevent numerical overflow), and the functions can be transformed
back to describe the original spectrum using the transformation: x — 0.000136(x — 1568.5). These functions are plotted and compared with the
blinded pseudodata in Fig. 29. Numerical values are rounded to three significant figures for display purposes

Fig. 29 Pseudodata of the 104
fO}lf-je;SI?ectr;lTl With_theh —— SR model 1, ¥*/NDF=39.07/34
injected signal shown in the ) _
blinded signal region. The three —_ SR model 2, XZ/NDF 39.83/34
SR models (see Table 10) are > 102 1 e SR model 3, x“/NDF=35.57/34
compared against the empirical () Emp. model (CMS), x2/NDF=32.5/33
model used by CMS. The lower t e, ---Injected signal
panel shows the residual error 3 0 e VY + Pseudodata (signal injected, blinded)
per bin, measured in units of the 10”1 e,
data uncertainty. It can be seen 8‘ +*=+++
that the three SR models, gener- — )
ated easily from three separate = 10-21 N
fits using the same simple fit E
configuration with different ran- o)
dom seeds, yield results that are S~
readily comparable to the CMS ) 104 -
empirical model that would ©
have required extensive manual
effort to obtain
107
2.5 |2
[y =
0.0 + - L1e
L Slo
8le
- 2 B 5 7 o )
2x10° 3x103 4x103 6 x 103

signal centered at m,, = 500 GeV (s,), with a width of 20
GeV (2s,) and a signal strength of 5, = 350. To model the
background, we blind the signal region by masking the m,,,
bins between 450 and 550 GeV in the pseudodata and per-
form the fits.

Three SymbolFit runs using different random seeds are
carried out, applying the same PySR configuration as used
for the dijet dataset (see List. 2), except that the maximum

Four-jet mass [GeV]

complexity is set at 20 instead of 80, since the dimuon
distribution shape is less complex. Table 12 lists the three
SR models, each obtained from a fit initialized with a dif-
ferent random seed. The y?/NDF scores improve signifi-
cantly after the ROF step compared to the original func-
tions returned by PySR. The three background models fit the
blinded pseudodata well, as shown in Fig. 32 for the total
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Fig. 30 Comparison of the b-only fits and the s+b fits to the unblinded pseudodata of the four-jet spectrum. The lower panel shows the residual
error per bin, measured in units of the data uncertainty. The shape of the injected signal is also shown

Table 11 Comparison of the y?/NDF scores from three types of fits to the paired-dijet dataset: the b-only fits to the blinded pseudodata, b-only

fits to the unblinded pseudodata, and s+b fits to the unblinded pseudodata

2 /NDF (b-only, blinded) 2 /NDF (b-only, unblinded) 2 /NDF (s+b, unblinded)
SR model 1 39.07/34 =1.149 93.41/41=2.278 54.38 /39 = 1.394
SR model 2 39.83/34=1.171 107.1/41 =2.612 59.14/39=1.516
SR model 3 35.57/34 =1.046 90.1/41=2.198 51.88/39=1.33
Emp. model (CMS) 32.5/33=0.985 71.84 /40 =1.796 44.86 /38 = 1.181

The background models used for the fits are listed in Table 10, and the fits are shown in Fig. 29 (blinded) and Fig. 30 (unblinded)
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Fig.31 Fitted values vs. the Signal strength = 4.0
true values of parameters of the
injected signal in the paired- ¥ Emp. model (CMS) }}
dijet dataset. The bottom panels < 37001 | SR model 1 . | 11
show the residual error in units Q 7 SR model 2 % +
of the fitted uncertainty O] ' 1|{
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Fig.32 The three SR models fitted to the pseudodata of the dimuon tribution. The red line denotes the mean of the function ensemble. At
spectrum with the signal region blinded (see Table 12). To visualize the top of each subfigure, the candidate function and the fitted param-
the total uncertainty coverage of each candidate function, the green eters are shown. The middle panel shows the weighted residual error:

band in each subfigure represents the 68% quantile range of functions %, The bottom panel shows the ratio of the 68% quantile range
obtained by sampling parameters, taking into account the best-fit val- to the mean
ues and the covariance matrix within a multidimensional normal dis-
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Table 12 The candidate - .

fi # . 2 2 -val
functions are obtained from Candidate function param.  y*/NDF x°/NDF p-value
three fits using different random (after ROF) (before ROF) (after ROF) (after ROF)
seeds, fitted to the pseudodata L5240 _ _
of the dimuon spectrum with SR model 1  (4.25exp(—x))!7?*+ 2 3.469/10=0.3469 3.007/10=0.3007 0.9813
the (injected) signal region SRmodel 2 9.68 +x(—=7.39+x) 2 3.484/10=0.3484 3.075/10=0.3075 0.9796
blinded SRmodel 3  0.0213°5.44 +3.46 2 3.456/10=0.3456 3.066/10=0.3066 0.9798

The fits were performed on a scaled dataset (to enhance fit stability and prevent numerical overflow),
and the functions can be transformed back to describe the original spectrum using the transformation:
x — 0.00487(x — 397.4). These functions are plotted and compared with the blinded pseudodata in Fig. 33.
Numerical values are rounded to three significant figures for display purposes

Fig. 33 Pseudodata of the 30
dimuon spectrum with the —— SR model 1, x?/NDF=3.007/10
injected signal shown in the SR model 2, x2/NDF=3.075/10
blinded signal region. The three 254 e SR model 3, x?/NDF=3.066/10
SR models (see Table 12) are Emp. model (CMS), x2/NDF=3.046/10
compared against the empirical & --- Injected signal
model used by CMS. The lower © 20 1 4 Pseudodata (signal injected, blinded)
panel shows the residual error S
per bin, measured in units of the ©
data uncertainty =~
o 15
)
c
) 10
>
L
5 -
0 T T T T T
i |2
........ w(s
........... 118
01 s 0 "B W = c|E
....... |
........... © g
R R .. [ S

uncertainty coverage and Fig. 33 for a comparison with the
empirical model used by CMS.

Next, we unblind the pseudodata and perform b-only fits
and s+b fits on the full pseudodata spectrum. These results
are shown in Fig. 34. In all three SR models, as well as the
CMS empirical model, the excess of events over the back-
ground around the injected signal location observed in the
b-only fits is reduced in the s+b fits, demonstrating that the
models are sensitive to the injected signal. Table 13 lists the
12 /NDF scores for each model, showing the fit performance
in response to the presence of the injected signal.

450 500 550
Dimuon mass [GeV]

To assess whether the SR models can accurately extract
the injected signals, we generate multiple sets of pseu-
dodata by injecting Gaussian signals with different mean
values ranging from 490 to 510 GeV and varying signal
strength between 350 and 600. We then perform the s+b fits
to extract the corresponding signal parameters. Figure 35
shows the extracted signal parameters plotted against their
injected values. All three SR models are capable of extract-
ing the correct signal parameter values within reasonable
uncertainties and are comparable to the empirical model
used by CMS.
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Fig.34 Comparison of the b-only fits and the s+b fits to the unblinded pseudodata of the dimuon spectrum. The lower panel shows the residual
error per bin, measured in units of the data uncertainty. The shape of the injected signal is also shown

Table 13 Comparison of the
2 /NDF scores from three

types of fits to the dimuon SR model 1 3.007 / 10 = 0.3007 62.98 /18 = 3.499 15.44 /16 = 0.965
dataset: the b-only fits to the

#2/NDF (b-only, blinded) y2/NDF (b-only, unblinded) y2/NDF (s+b, unblinded)

. SR model 2 3.075/10 =0.3075 64.89 /18 = 3.605 14.32/16 = 0.895
blinded pseudodata, b-only fits
to the unblinded pseudodata, SR model 3 3.066 /10 = 0.3066 62.97 /18 = 3.498 15.87/16 =0.9919
and s+b fits to the unblinded Emp. model (CMS) 3.046/10 = 0.3046 64.43 /18 =3.579 14.79 /16 = 0.9244

pseudodata
The background models used for the fits are listed in Table 12, and the fits are shown in Fig. 33 (blinded)
and Fig. 34 (unblinded)
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Fig. 35 Fitted values vs. the Signal strength = 350
true values of parameters of the
injected signal in the dimuon f Emp. model (CMS)
dataset. The bottom panels ';' 507.5 | SR model 1
show the residual error in units Q 7 SR model 2
of the fitted uncertainty O 505.0
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