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Abstract
We introduce SymbolFit (API: https://​github.​com/​hftsoi/​symbo​lfit), a framework that automates parametric modeling by 
using symbolic regression to perform a machine-search for functions that fit the data while simultaneously providing uncer-
tainty estimates in a single run. Traditionally, constructing a parametric model to accurately describe binned data has been 
a manual and iterative process, requiring an adequate functional form to be determined before the fit can be performed. The 
main challenge arises when the appropriate functional forms cannot be derived from first principles, especially when there 
is no underlying true closed-form function for the distribution. In this work, we develop a framework that automates and 
streamlines the process by utilizing symbolic regression, a machine learning technique that explores a vast space of candidate 
functions without requiring a predefined functional form because the functional form itself is treated as a trainable parameter, 
making the process far more efficient and effortless than traditional regression methods. We demonstrate the framework in 
high-energy physics experiments at the CERN Large Hadron Collider (LHC) using five real proton-proton collision datasets 
from new physics searches, including background modeling in resonance searches for high-mass dijet, trijet, paired-dijet, 
diphoton, and dimuon events. We show that our framework can flexibly and efficiently generate a wide range of candidate 
functions that fit a nontrivial distribution well using a simple fit configuration that varies only by random seed, and that the 
same fit configuration, which defines a vast function space, can also be applied to distributions of different shapes, whereas 
achieving a comparable result with traditional methods would have required extensive manual effort.
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Introduction

Traditional parametric modeling methods, such as poly-
nomial regression, require specifying and fixing an ade-
quate functional form before fitting the data. Identifying 
suitable functional forms for distributions with arbitrary 
shapes is often challenging and time-consuming, as, in 
most cases, these functions cannot be derived from first 
principles and must be determined through trial and error. 
Instead, symbolic regression (SR) is a more flexible and 
powerful technique that performs a machine-search for 
functions that best fit the data. In SR, the functional form 
itself is treated as a trainable parameter that is dynami-
cally adjusted throughout the fitting process, eliminating 
the need to predefine an exact function—an empirical 
task that is often challenging. We refer the reader to Refs. 
[1–18] for a review of the subject and some recent works.

Genetic programming [19] is a popular approach to 
SR [5, 15–18]. In this approach, a function is represented 
as an expression tree, where the building blocks—math-
ematical operators, variables, and constants—are denoted 
as nodes, connected to represent their algebraic relations. 
Different functional forms are generated through the 
evolution of these expression trees, where tree nodes are 
randomly selected and changed (mutation), and subtrees 
from different candidates are swapped to create new can-
didates (crossover), as illustrated in Fig. 1. As a result, the 
functional forms evolve during the fitting process, guiding 
the model toward convergence. Instead of predefining the 
final functional form, SR algorithms based on genetic pro-
gramming need far less prior knowledge about the func-
tions themselves. Only the constraints for constructing the 
expression trees need to be specified, such as the allowable 
mathematical operators ( + , × , /, pow , sin(⋅) , exp(⋅) , etc.). 
This flexibility eliminates the need to know the exact fit-
ting function beforehand or to fine-tune one empirically.

Our primary application focus is the intermediary stage of 
data analysis in high-energy physics (HEP) experiments at 
the CERN Large Hadron Collider (LHC), where parametric 
functions are constructed to model data distributions and 
subsequently used for downstream statistical inference. In 
these analyses, uncertainty modeling is necessary, as the 
uncertainties associated with the parametric functions prop-
agate to the final physics results. Standard SR algorithms 
generate best-fit functions but do not inherently provide 
uncertainty estimates. Our framework bridges this gap by 
automatically re-optimizing and estimating uncertainties 
for all candidate functions found by SR. This functional-
ity is critical, as parametric models without well-defined 
uncertainties cannot be used in the statistical inference work-
flows within HEP. In the following section, we identify two 

analysis scenarios in which parametric modeling is tradi-
tionally used. We discuss the limitations of current methods 
in these contexts and how SR, by eliminating the need to 
predefine a functional form, can offer a more flexible and 
efficient alternative.

We also emphasize that, unlike SR applications in other 
domains, where the primary goal is often interpretability, 
such as direct extraction of physical laws from data (e.g., 
[5, 10]), our objective is different. We focus on constructing 
valid and flexible parametric models for statistical inference, 
rather than deriving interpretable expressions to uncover 
underlying physical laws from data. Our goal is to model 
arbitrary distribution shapes, as commonly encountered in 
LHC analyses, where no single underlying physical law gov-
erns the data. In such cases, interpretability is not a relevant 
requirement. Instead, the key criteria for a suitable paramet-
ric function in this setting are: (1) it should smoothly and 
accurately describe the shape of the distribution, and (2) its 
associated uncertainty should be well-behaved and capable 
of capturing the uncertainty in the data.

Challenges in Traditional Methods

Scenario 1: Signal and Background Modeling

When analyzing proton–proton collision data at the LHC in 
the search for new physics signatures, the data are typically 
binned and presented as histograms representing physical 
observables, such as the invariant mass of the final-state par-
ticles. Each bin records the observed or expected number 
of collision events with mass values within that range. To 
search for new physics signatures, which are often hypoth-
esized as narrow and small peaks over a smoothly falling 
background in the invariant mass distribution, parametric 
functions are required to model both the signal and back-
ground based on these binned distributions. These models 
are then used to perform hypothesis testing.

In the traditional approach to parametric modeling, one 
typically relies on manually guessing the appropriate family 
of functions that might describe the shape of the distribu-
tion. Although these distributions often represent physical 
observables, they are usually obtained after applying a series 
of selection cuts on various variables, which can introduce 
arbitrary shape effects into the final distributions being 
modeled. As a result, these distributions generally do not 
have a known underlying true function, making it impossi-
ble to derive a suitable functional form from first principles 
and leaving empirical constructions as the only option. In 
some cases, when a suitable function cannot be found to 
describe the distribution after many trials, one is forced to 
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compromise by adjusting the analysis strategy, say splitting 
the main distribution into multiple sub-distributions and fit-
ting them separately, which could lead to a more complicated 
combined likelihood function. This empirical approach has 
been the standard strategy in the HEP community, requiring 
significant manual effort to craft a candidate function and 
iteratively fine-tune it.

For example, a search for new physics in high-mass trijet 
events performed by the CMS experiment [20] modeled the 
background by fitting the trijet invariant mass distribution, 
mjjj , using three families of empirical functions. One of these 
functions takes the form:

where x = mjjj∕
√

s is a dimensionless variable ( 
√

s is the 
center-of-mass energy of the collisions), pi are free param-
eters, and N is a hyperparameter for the function form. The 
function was fitted multiple times with different trial N val-
ues, and the optimal value was determined through a sepa-
rate statistical test, such as an F-test [21].

Note that the functional form in Eq. 1 was constructed 
empirically, rather than derived from first principles, to 
reproduce the observed spectrum. This reflects the fact that 
the trijet distribution arises from events that have passed 
through multiple stages of selection, including triggering, 
reconstruction, and optimization, rather than being deter-
mined by a single underlying physics law. The same is true 
for other similar analyses at the LHC.

The challenge lies in the need to empirically craft a spe-
cific functional form, such as Eq. 1, for each individual 
distribution. These empirical functions are tailored to the 
particular distribution being fitted, making them rigid and 

(1)f (x;N) =
p0(1 − x)p1

x
∑N

i=2
pi log

i−2(x)
,

potentially ineffective if there are slight changes in the data. 
For instance, variations in final-state objects, event selec-
tion strategies, and detector conditions during data collection 
can all introduce arbitrary modifications in the shape of the 
distribution. In such cases, function families that worked for 
past datasets may no longer be effective for future datasets, 
even within the same analysis channel, and an empirical 
searching for suitable functions must be repeated.

Analyses at the LHC have traditionally relied on this 
empirical fitting method when modeling signal and back-
ground processes from binned data. Examples include the 
milestone analyses that led to the discovery of the Higgs 
boson in 2012 [22–24], as well as some recent results from 
CMS searches for high-mass resonances in dijet [25], paired-
dijet [26], trijet [20], diphoton [27], and dimuon [28] events.

In this context, SR has the potential to transform 
the approach to parametric modeling. By conducting a 
machine-search for suitable functional forms, SR signifi-
cantly reduces the manual effort required in the modeling 
process, providing a more efficient and adaptive alternative 
to traditional methods.

Scenario 2: Derivation of Smooth Descriptions 
from Binned Data

When predicting signal and background processes using 
simulation, there is always some degree of mismatch with 
the observed data, which may result from inaccuracies in 
theoretical predictions, mis-modeling of detector effects, or 
measurements errors. These discrepancies are corrected by 
applying data-to-simulation scale factors (measured from 
isolated control regions) to the simulated events, ensuring 
that the simulation provides a more realistic representation 

Fig. 1   Genetic programming 
approach to symbolic regres-
sion. Functions are represented 
by expression trees. New 
functions are generated through 
mutation of tree nodes (left) 
and crossover between subtrees 
(right)
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of the observed data. Examples include jet energy scale cor-
rections parameterized by the jet pT and �1 [29], heavy-flavor 
jet tagging efficiency corrections parameterized by the jet pT 
and � [30], hadronic tau identification efficiency corrections 
parameterized by the tau pT , � , and decay modes [31].

These scale factors are typically derived from binned data 
and applied as binned weights, resulting in coarse-grained 
corrections. When smooth scale factors are desired, the pro-
cess often follows the same empirical approach as described 
in Sec. “Scenario 1: signal and background modeling”, fac-
ing the same limitations discussed earlier. In cases where 
the scale factor is parameterized by more than one variable, 
it becomes even more challenging to empirically construct 
an adequate functional form, forcing one to rely on coarse-
grained corrections.

Another common scenario involves data-driven back-
ground estimation methods, where transfer factors are 
derived to estimate events in the signal region based on 
those in the sideband region. For example, in a search for 
a boosted Higgs boson decaying to b quarks performed by 
the CMS experiment [32], the QCD multijet background 
was estimated from observed data, where the transfer factor 

was parameterized and empirically constructed as the sum 
of products of Bernstein polynomials:

where bn.N(x) is the nth Bernstein basis polynomial of degree 
N, a�,� are parameters to be extracted from a fit to observed 
data, and g(x0, x1) is a function fitted separately to simulated 
events. The degrees of the Bernstein polynomials, nx0 and 
nx1 , are determined separately using an F-test.

By using SR, these empirical steps for deriving smooth 
scale factors can be significantly simplified into a single SR 
fit, without knowledge of the final functional form.

An Alternative Method: Gaussian Process 
Regression

An alternative fitting method is Gaussian process regres-
sion (GPR), which has been explored for these scenarios 
[33–35]. GPR models the dependent variable as following 
a Gaussian distribution at each point along the independ-
ent variable. The smoothness of the probability function is 

(2)

f (x0, x1) =

( nx0
∑

�=0

nx1
∑

�=0

a�,�b�,nx0
(x0)b�,nx1

(x1)

)

× g(x0, x1),

Fig. 2   A schematic sketch of the internal steps within the ��������� 
framework illustrates how it interfaces with ���� [5] and ����� [37] 
to automate parametric modeling using SR. The process begins with 
an input dataset that does not require a predefined functional form. 

Functional forms are generated using SR, parameterized, and then re-
optimized through standard nonlinear least-square minimization. The 
output is a batch of candidate functions, each with associated uncer-
tainty estimates

1  Common coordinate system used to define particle kinematics in 
collider physics: p

T
 is transverse momentum and � is the pseudora-

pidity angle.
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controlled by a chosen covariance kernel between bins. As 
a result, GPR provides a probabilistic prediction, yielding 
both a smooth mean function and a variance function, which 
define a very generic distribution of functions that describe 
the data instead of a single exact function.

Fitting a GPR model to n data points requires inverting an 
n × n covariance matrix, which scales with a time complex-
ity of O(n3) [36]. This can become computationally prohibi-
tive, especially for datasets with more than one independent 
variable. Additionally, integrating Bayesian GPR outputs 
into the standard HEP search framework requires subtle 
treatments [33], whereas SR directly provides explicit func-
tion templates that can be straightforwardly integrated into 
existing workflows.

Despite the potential of alternative methods like GPR, but 
due to the limitations described above, the empirical method 
remains the primary approach to parametric modeling within 
the HEP community. There is currently a lack of an efficient 
framework or a package based on an alternative method that 
can be readily used out-of-the-box.

Proposed Solution with Symbolic Regression

For the scenarios discussed above, we propose using SR to 
replace traditional methods, shifting the paradigm of para-
metric modeling in HEP.

In this paper, we introduce a Python API2 for the 
��������� framework, which interfaces with ���� [5] (a 
high-performance SR library) and ����� [37] (a nonlinear 
least-square minimization library), aimed at automating par-
ametric modeling of binned data using SR. We demonstrate 
the effectiveness of the framework in two common HEP 
applications: parametric modeling of signal and background, 
and the derivation of smooth scale factors. These applica-
tions are validated using five real datasets from new physics 
searches at the CERN LHC, along with several toy datasets. 
The key features of the framework are summarized below:

•	 Pre-determined functional forms are no longer 
needed. With SR, only minimal constraints are required 
to define the function space, such as specifying the 
allowed mathematical operators ( + , × , /, pow , sin(⋅) , 
exp(⋅) , etc.). This does not demand extensive and prior 
knowledge of the final functions that describe the distri-
bution. The search for suitable functions is automatically 
performed by machine, eliminating the empirical and 
manual process. We show that a simple SR configura-
tion can flexibly fit a wide variety of distribution shapes.

•	 Generating multiple candidate functions per fit. SR 
based on genetic programming generates and evolves 
successive generations of functions, producing a batch 
of candidate functions in each search iteration. The same 
search configuration can be repeated with different ran-
dom seeds to explore different suitable functions from the 
vast function space. This flexibility in generating a vari-
ety of candidate functions allows for adaptability across 
different downstream tasks.

•	 Inclusion of uncertainty measure. While SR algorithms 
alone are dedicated to function searching and do not 
inherently provide any uncertainty estimation, our frame-
work bridges the gap by incorporating a re-optimization 
process for the candidate functions. This step improves 
the best-fit models and generates uncertainty estimation 
needed to access the modeling reliability.

•	 Modeling of multidimensional data. The framework 
easily accommodates modeling data with multiple varia-
bles, which is particularly useful in HEP scenarios where 
scale factors are sometimes parameterized by more than 
one variable.

Moreover, the framework is designed to automate the pro-
cess as much as possible, minimizing manual effort. Results 
are evaluated and plotted automatically, which are saved in 
readable formats such as CSV and PDF files, including diag-
nostic plots that allow users to visually assess the fit qual-
ity and data comparison. The candidate functions generated 
can be seamlessly integrated into downstream statistical 
inference tools commonly used in HEP, such as ������� 
[38] and ���� [39, 40], as the output models are in identical 

Fig. 3   Toy Dataset 1: a 1D binned dataset with uncertainties repre-
sented by vertical error bars. The data points are manually generated 
without reference to an underlying function

2  https://​github.​com/​hftsoi/​symbo​lfit

https://github.com/hftsoi/symbolfit
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representation to those from traditional methods—closed-
form functions. The efficiency of SR in generating a wide 
range of well-fitted functions per fit also allows flexible 
modeling as the function choice can be treated as a source of 
systematic uncertainty through the discrete profiling method 
[41].

The rest of the paper is structured as follows: 
Sec.  “Method” describes the ��������� framework; 
Sec. “Demonstrations” presents demonstrations using a real 
LHC dataset as well as several toy datasets; Sec. “Summary” 
provides a summary of the work. More demonstrations are 
presented in Appendix A.

Method

The ��������� framework is illustrated in Fig.  2 and 
explained in the following: 

1.	 Input data.  We consider the input dataset 
{(xi, yi, yi

up
, yi

down
)}n

i=1
 , where xi represents one or more 

independent variables, yi is the dependent variable with 
associated uncertainties yi

up/down
 at one standard devia-

tion, and n is the number of data points. In the context 
of binned histograms, which are commonly used in HEP 
data analysis, there are n bins. Here, xi represents the 
center of the i-th bin, and yi is the bin content, represent-

Fig. 4   Goodness-of-fit scores vs. function complexity. A total of 46 
candidate functions (labeled #0–#45) were obtained from a single 
fit on Toy Dataset 1 in Sec. “Toy Dataset 1 (1D) [signal modeling]”. 
Candidate functions #10, #17, #27, and #38 are listed in Table 1, and 

their combined uncertainty coverage is presented in Fig.  7. Specifi-
cally, individual parameter variations for candidate function #38 are 
shown in Fig. 5, with its parameter correlation matrix shown in Fig. 6



Computing and Software for Big Science            (2025) 9:12 	 Page 7 of 45     12 

ing the number of events within the bin. The associated 
uncertainties yi

up/down
 account for measurement errors or 

modeling inaccuracies.
2.	 Symbolic regression. The core of the framework is to 

leverage SR to perform a machine-search for suitable 
functions to model the data, without predefining a func-
tional form. We utilize ���� [5], a Python library for 
genetic programming-based SR, which is highly con-
figurable in defining the function space for the search. 
The configuration process is highly simplified, requiring 
only the specification of allowed mathematical operators 
( + , × , /, pow , sin(⋅) , exp(⋅) , etc.) and the constraints for 
the functional form. The objective of the search is to 
minimize: 

 where f is the candidate function. Since ���� uses a 
multi-population strategy to evolve and select functions, 
each run generates a batch of candidate functions. These 
functions are then re-optimized in subsequent steps to 
improve the fit and provide uncertainty estimates.

3.	 Parameterization. SR algorithms search for exact 
functions but do not inherently provide any uncertainty 

(3)𝜒
2
≡

n
∑

i=1

(

f (xi) − yi

yi
up
1f (xi)−yi≥0 + yi

down
1f (xi)−yi<0

)2

,

measures. However, uncertainty estimation is essen-
tial in HEP data analysis to gauge the reliability of the 
observation and prediction. To address this, we freeze 
the functional forms found by SR and then re-optimize 
all constants in each function using standard nonlinear 
minimization techniques. The uncertainties in these re-
optimized constants are used as the uncertainty measure 
for the candidate functions. First, within each candidate 
function, the constants are automatically identified and 
parameterized as {a1, a2, ...} , with the original values 
stored as initial values for the re-optimization process.

4.	 Re-optimization fit (ROF). To perform ROF of the 
candidate functions, we utilize ����� [37], a nonlinear 
least-square minimization library, to perform a second-
fit for the parameters while keeping the functional forms 
fixed. The objective is to minimize �2 defined in Eq. 3. 
The parameterized functions are parsed to identify the 
set of parameters to be varied, and initially, all param-
eters are allowed to vary in the fit. In some cases, the 
minimization may fail to converge due to a too com-
plex objective function. To handle these cases, a loop 
for ROF is implemented in the framework. This loop 
progressively reduces the number of degrees of freedom 
(NDF) by freezing more parameters to their initial val-
ues until the fit succeeds and all relative errors are below 

Table 1   Nine examples from the 46 candidate functions obtained 
from a single fit to Toy Dataset 1. These functions were fitted to a 
scaled dataset (to enhance fit stability and prevent numerical over-
flow), which can be rescaled to describe the original dataset using 
the transformation: f (x) → 165 × f (0.00211(x − 12.5)) . The com-
parison between the �2∕NDF scores before and after the ROF step is 

presented. The total uncertainty coverage of candidate functions #10, 
#17, #27, #38 is shown in Fig. 7. Individual parameter variations for 
candidate function #27 are plotted in Fig. 5. The function complexity 
values, providing a rough estimate of the model size, are computed 
before algebraic simplification. Numerical values are rounded to three 
significant figures for display purposes

Complexity Candidate function # param. �2∕NDF �2∕NDF p-value
(after ROF) (before ROF) (after ROF) (after ROF)

12 (#10) 0.101 + 23.3gauss(−3.74x)x 2 374.3 / 18 374.3 / 18 10−68

19 (#17) 0.061 + (5.11x + 5.11gauss(−2.34 + 12.6x))gauss(2.52x) 4 54.06 / 16 53.59 / 16 10−06

22 (#20) 0.0837 + (4.76gauss(−15.7x + 2.84) + 10.4 tanh(x))gauss(2.99x) 6 48.47 / 14 17.76 / 14 0.218
27 (#24) (4.79gauss((−5.5 + 2x)(−0.538 + 3x)) + 10.2x)gauss(−3.03x)

+0.0841

6 16.88 / 14 16.31 / 14 0.2951

31 (#26) (4.9x + 4.9gauss(−2.79 + 15.4x) + 4.9 tanh(x))gauss(3x)+

0.0789gauss(x) exp(x)

4 15.79 / 16 15.45 / 16 0.4919

32 (#27) (5.13gauss(−16.7x + 3.05) + 13.1x)gauss(x(−4.68 + x) + x)

+0.0661

6 12 / 14 10.04 / 14 0.760

37 (#32) (5.07gauss((−4.42 + 2x)(−0.724 + 4x)) + 5.07 tanh(x) + 7.79x)×

gauss(x(−4.65 + x) + x) + 0.066

6 8.359 / 14 7.655 / 14 0.9065

44 (#38) (5.08gauss((−4.7 + 4x)(−0.719 + 4x)) + 12.7x)×

gauss(x(−4.66 + x) + x) + 0.0662

6 6.278 / 14 5.826 / 14 0.971

52 (#41) 0.0657 + (5gauss((−4.96 + 6x)(−0.712 + 4x)) + 12.4 tanh(x))×

gauss(x(−4.6 + x) + x) − 0.00624x

6 3.564 / 14 3.032 / 14 0.999
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a predefined threshold. Finally, the candidate functions 
are evaluated and ranked in the outputs.

To summarize, ��������� automates all these steps in the 
modeling process, including the computation of various 
goodness-of-fit scores and the evaluation of correlations 
between the parameters. This integration streamlines the 
workflow and minimizes manual intervention while provid-
ing full information for downstream statistical analysis. The 
computation time of the workflow is primarily due to the 
search for functional forms, for which we utilize a highly 
optimized SR algorithm ���� . As a result, the process is not 
computationally intensive and can be flexibly configured. 
As the function space is usually huge even when under con-
strained, one can repeat the fit with the same configuration 
but with a different random seed to obtain a different batch 
of candidate functions.

Demonstrations

We demonstrate the effectiveness of our framework using 
five real LHC datasets from new physics searches published 
recently, as well as several toy datasets.

The LHC datasets consist of real proton–proton collision 
data at a center-of-mass energy of 

√

s = 13 TeV, collected 
by the CMS experiment during Run 2. These datasets cover 
various search channels: dijet [25] in Sec. “CMS dijet dataset 
(1D) [background modeling]”, diphoton [27] in Appendix 
A.2, trijet [20] in Appendix A.3, paired-dijet [26] in Appen-
dix A.4, and dimuon [28] in Appendix A.5. Each dataset 
consists of 1D binned data of the invariant mass of the 

respective objects, where smooth background predictions are 
obtained through parametric modeling and then tested for 
excess events indicative of new physics. In all these analyses, 
CMS reported no evidence of new physics is observed in the 
data. Therefore, for our demonstrations, we assume that each 
invariant mass spectrum contains no signal. We also perform 
experiments to validate the SR outputs for signal extraction 
in these LHC datasets, and details of these steps are given 
in Sec. “CMS dijet dataset (1D) [background modeling]”.

In addition to the real LHC datasets, we also generate 
toy datasets for demonstration purposes. While SR has 
been shown to successfully identify the correct underly-
ing function from noisy data [1, 5], here we focus on toy 
data generated by hand without an underlying function to 
illustrate SR’s capability in modeling arbitrary distribution 
shapes. Toy Dataset 1, presented in Sec. “Toy Dataset 1 (1D) 
[signal modeling]”, is a 1D binned distribution featuring a 
sharp peak and a high-end tail. Toy Dataset 2, presented in 
Sec. Appendix A.1, consists of three 1D binned distributions 
with various shapes. Toy Dataset 3, presented in Sec. “Toy 
dataset 3 (2D) [arbitrary shapes]”, consists of three 2D 
binned distributions.

Toy Dataset 1 (1D) [Signal Modeling]

Figure 3 shows Toy Dataset 1, which consists of a 1D binned 
distribution. The distribution has a shape characterized by a 
sharp peak and a high-end tail, and it is generated by hand 
without reference to an underlying function.

In spite of the lack of a true functional form, we dem-
onstrate that our framework using SR can replace the 
empirical process with minimal efforts. This can be seen 
from the simple ������ snippet shown in List. 13, which 
defines the function space and configures ���� to perform 
a machine-search for functions to fit this dataset. In this 
example, the maximum function complexity is set to 60 to 
constrain the model size, ensuring that the total number of 
nodes in an expression tree does not exceed 60, with each 
operator equally weighted with a complexity of one. The 
allowed operators include two binary operators ( + and × ) 
and three unary operators ( exp(⋅) , tanh(⋅) , and a custom-
defined gauss(⋅) ≡ exp(−(⋅)2) ). Constraints on operator nest-
ing are imposed to prohibit scenarios like tanh(tanh(⋅)) . The 
loss function used is �2.

Fig. 5   Individual parameter variations in candidate function #27 
from a fit to Toy Dataset 1. The parameterized form of this function 
is shown at the top of each subfigure, along with the best-fit values 
of the parameters and their associated uncertainties. Each subfigure 
shows the same function, but with one parameter shifted by its ±1 
standard deviation (green/blue), while the other parameters remain 
fixed at their best-fit values. The function with all parameters held at 
their best-fit values is plotted in red and compared to the data, rep-
resented by black data points. The middle panel shows the weighted 
residual error: Data−Fit

Data unc.
 . The bottom panel shows the ratio of the func-

tion with the uncertainty variations to the best-fit function

◂

3  The option definitions can be found at https://​github.​com/​Miles​
Cranm​er/​PySR and Ref. [5].

https://github.com/MilesCranmer/PySR
https://github.com/MilesCranmer/PySR
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Fig. 6   Correlation matrix for the parameters of candidate function #27 from a fit to Toy Dataset 1 (see Table 1 and Fig. 5). The parameter uncer-
tainties and their correlation define the uncertainty model associated with the function
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Fig. 7   Convergence of candidate functions to the data (Toy Dataset 
1), from lower to higher function complexity values. To visualize 
the total uncertainty coverage of each candidate function, the green 
band in each subfigure represents the 68% quantile range ( ±1� ) of 
functions obtained by sampling parameters, taking into account the 
best-fit values and the covariance matrix within a multidimensional 

normal distribution. The red line denotes the mean of the function 
ensemble. At the top of each subfigure, the candidate function and the 
fitted parameters are shown. The middle panel shows the weighted 
residual error: Data−Mean

Data unc.
 . The bottom panel shows the ratio of the 68% 

quantile range to the mean
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Listing 1   The Python code snippet that configures PySR to search for candidate functions for Toy Datasets 1 and 3

We run ��������� with the ���� configuration shown 
in List. 1. In particular, the parameter “maxsize” controls 
the maximum complexity of the functions, which is up to 
the user to choose if simpler or more complex functions 
are desired. This single fit generates 46 candidate functions 
(labeled #0 to #45), with function complexity values rang-
ing from 1 to 60. These complexity values provide a rough 
estimate of the model size and are computed before any alge-
braic simplification. Four goodness-of-fit scores, including 
the �2∕NDF and p-value, are plotted against function com-
plexity in Fig. 4. As expected, more complex functions tend 
to offer better fits to the data, as their higher complexity 
makes them more expressive. The variety of functions pro-
duced provides flexibility, allowing one to choose a candi-
date function based on the desired fit quality for downstream 

tasks. For example, nine of the 46 candidate functions are 
listed in Table 1, showing �2∕NDF values above 1, around 
1, and below 1, offering a range of fit qualities.

In general, the �2∕NDF score improves significantly after 
ROF compared to the original function found from SR. This 
is because SR algorithms are typically focused on finding 
optimal functional forms rather than fine-tuning a specific 
function. As a result, the ROF step improves the constants in 
each function to achieve a better fit and provides uncertainty 
estimates for the parameters.

As an example, Fig. 5 shows candidate function #27. 
This candidate function has six parameters, with uncer-
tainty variations for each plotted separately. The correla-
tion matrix for these parameters is shown in Fig. 6. The 
correlation matrix, along with the parameter uncertainties, 

Table 2   The candidate functions are obtained from three separate fits using the same fit configuration but with different random seeds, fitted to 
the pseudodata of the dijet spectrum with the (injected) signal region blinded

The fits were performed on a scaled dataset (to enhance fit stability and prevent numerical overflow), and the functions can be transformed 
back to describe the original spectrum using the transformation:x → 0.000145(x − 1568.5). These functions are plotted and compared with the 
blinded pseudodata in Fig. 9.Numerical values are rounded to three significant figures for display purposes

Candidate function # param. �2∕NDF �2∕NDF p-value
(after ROF) (before ROF) (after ROF) (after ROF)

SR model 1 (570x(x(−0.423 exp(2x) + exp(x)) + x) + 149)×

(0.00328 + 0.0304 tanh(x))4.87x
5 400.5 / 30 29.21 / 30 0.507

SR model 2 (145(0.958 + x)tanh(−0.711+4.32x) + 145 tanh(x))×

(0.00591 + 0.0522 tanh(x))5.48x
5 103.8 / 30 29.91 / 30 0.47

SR model 3 pow(149(0.0101x + 0.0101 tanh(0.171 + 0.724x)),

x + (2.38x tanh(−0.71 + x) + 2.39) tanh(x) + tanh(x))

5 214.8 / 30 30.93 / 30 0.419
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defines the uncertainty model associated with the function 
and is required for propagating uncertainties to the final 
statistical inference results.

To compare various candidate functions obtained from 
a single fit in the framework, Fig. 7 shows four candidate 
functions with a range of fit scores from very low to very 

high. This demonstrates that within the variety of func-
tions generated per fit, there is a convergence from poorer 
to better-fitted functions, providing flexibility in choices. 
To illustrate the uncertainty coverage for a candidate func-
tion, an ensemble of functions is generated by sampling 
parameters from a multidimensional normal distribution, 

Fig. 8   The three SR models fitted to the pseudodata of the dijet 
spectrum with the signal region blinded (see Table  2). To visualize 
the total uncertainty coverage of each candidate function, the green 
band in each subfigure represents the 68% quantile range of functions 
obtained by sampling parameters, taking into account the best-fit val-
ues and the covariance matrix within a multidimensional normal dis-

tribution. The red line denotes the mean of the function ensemble. At 
the top of each subfigure, the candidate function and the fitted param-
eters are shown. The middle panel shows the weighted residual error: 
Data−Mean

Data unc.
 . The bottom panel shows the ratio of the 68% quantile range 

to the mean
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considering their best-fit values and covariance matrix. 
The 68% quantile range of the function ensemble is shown 
for each candidate function, representing the total uncer-
tainty coverage by simultaneously accounting for uncer-
tainties in all parameters. These computations are all auto-
matically performed within the SymbolFit framework.

CMS Dijet Dataset (1D) [Background Modeling]

CMS performed a search for high-mass dijet resonances 
using proton–proton collision data at a center-of-mass 
energy of 

√

s = 13 TeV and reported no significant devia-
tions from the Standard Model prediction [25]. The data-
set for the dijet spectrum is publicly available on HEP-
DATA at Ref. [42]. In the analysis, CMS used an empirical 
4-parameter function to model the background contribu-
tion in the distribution of the dijet invariant mass, mjj:

where x = mjj∕
√

s is dimensionless and p{0,1,2,3} are free 
parameters. While this function fits the current dijet spec-
trum reasonably well, it may be too rigid to accommodate 
potential future changes in the dijet spectrum due to modifi-
cations in analysis strategies or detector performance.

For our experiments, we use the ���� configuration 
shown in List. 2 to fit the dijet dataset. The main differ-
ence between List. 2 and List. 1 used in Sec. “Toy Dataset 
1 (1D) [signal modeling]” is that it does not explicitly 
include a Gaussian operator, as the mass spectrum assumes 
no peaks in the background. This same SR configuration 

(4)f (x) =
p0(1 − x)p1

xp2+p3 ln(x)
,

is also applied to the other LHC datasets as well as Toy 
Dataset 2, generating a range of well-fitted functions for 
each case despite their very different distribution shapes, 
demonstrating the flexibility of the SR approach.

Listing 2   The ������ code snippet configures ���� to search for candidate functions for the dijet dataset. This same 
configuration is used for the other four LHC datasets and Toy Dataset 2 with variations in the maximum complexity values

Fig. 9   Pseudodata of the dijet spectrum with the injected sig-
nal shown in the blinded signal region. The three SR models (see 
Table  2) are compared against the empirical model used by CMS. 
The lower panel shows the residual error per bin, measured in units 
of the data uncertainty. It can be seen that the three SR models, gen-
erated easily from three separate fits using the same simple fit con-
figuration with different random seeds, yield results that are readily 
comparable to the CMS empirical model that would have required 
extensive manual effort to obtain
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Fig. 10   Comparison of the b-only fits and the s+b fits to the unblinded pseudodata of the dijet spectrum. The lower panel shows the residual 
error per bin, measured in units of the data uncertainty. The shape of the injected signal is also shown

Table 3   Comparison of the �2∕NDF scores from three types of fits to the dijet dataset: the b-only fits to the blinded pseudodata, the b-only fits 
to the unblinded pseudodata, and the s+b fits to the unblinded pseudodata

The background models used for the fits are listed in Table. 2, and the fits are shown in Fig. 9 (blinded) and Fig. 10 (unblinded)

�2∕NDF (b-only, blinded) �2∕NDF (b-only, unblinded) �2∕NDF (s+b, unblinded)

SR model 1 29.21 / 30 = 0.974 54.48 / 37 = 1.47 36.19 / 35 = 1.03
SR model 2 29.91 / 30 = 0.997 51.25 / 37 = 1.39 36.28 / 35 = 1.04
SR model 3 30.93 / 30 = 1.03 65.33 / 37 = 1.77 39.98 / 35 = 1.14
Emp. model (CMS) 29.65 / 31 = 0.956 54.63 / 38 = 1.44 35.07 / 36 = 0.974
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Fig. 11   Fitted values vs. the 
true values of the parameters 
of the injected signal in the 
dijet dataset. The bottom panels 
show the residual error in units 
of the fitted uncertainty
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To validate the SR approach in background modeling 
and signal extraction, we start with the original dijet spec-
trum and generate pseudodata by injecting a small and 
narrow Gaussian signal, s0

1
√

2�s2
exp

�

−
(x−s1)

2

2s2
2

�

 , centered 

at mjj = 3.1 TeV ( s1 ), with a width of 0.2 TeV ( 2s2 ) and a 
signal strength of s0 = 10 . The injected signal intensity per 
bin is perturbed by 10% random noise.

To model the background, we first blind the signal region 
by masking the mjj bins near the injected signal peak, specifi-
cally between 2.7 and 3.5 TeV, and then perform fits to this 
blinded pseudodata. We conduct three separate ��������� 
runs on the blinded pseudodata, using the same fit configu-
ration but with different random seeds. This demonstrates 
that a variety of well-fitted functions can be obtained from 
the same fit configuration, given the vast function space in 
the SR search. From each of the three fits, one candidate 
function is selected, referred to as “SR model 1”, “SR model 
2”, and “SR model 3”, respectively. These three background 
models are then compared with the empirical function in 
Eq. 4 used by CMS, referred to as the “empirical model 
(CMS)”.

Table 2 lists the three SR models, each obtained from a 
fit initialized with a different random seed. The �2∕NDF 
scores improve significantly after the ROF step compared to 
the original functions returned by ���� , with the final scores 
close to 1. The three background models fit the blinded pseu-
dodata well, as shown in Fig. 8 for the total uncertainty cov-
erage and Fig. 9 for a comparison with the empirical model 
used by CMS.

Once the background models are established, we incor-
porate a parameterized Gaussian signal template into each 
model f(x):

In the following analysis, when the model is fitted to the 
unblinded pseudodata with s0 = 0 held fixed, it is referred 
to as a background-only (b-only) fit. When s0 is allowed to 
vary, it is referred to as a signal-plus-background (s+b) fit.

Now, we unblind the pseudodata and perform b-only fits 
and s+b fits on the full dijet spectrum. Since the pseudodata 

(5)f (x) + s0
1

√

2�s2

exp

�

−
(x − s1)

2

2s2
2

�

.

Fig. 12   Toy Dataset 3: three 2D binned sub-datasets manually generated without reference to an underlying function
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Fig. 13   p-value vs. function 
complexity. A total of 22, 41, 
and 46 candidate functions 
(labeled #0–#21, #0–#40, and 
#0–#45) were obtained from a 
single fit to Toy Dataset 3a, 3b, 
and 3c, respectively
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contain an injected signal, we expect to observe an excess of 
events over the background model around the signal location, 
provided the background is properly modeled and not overly 
fitted. When performing the s+b fits, we expect that the excess 
of events observed in the b-only fits will diminish as the sig-
nal is accounted for by the model template. The results of the 
b-only and s+b fits for each model are compared and shown in 
Fig. 10. In all three SR models, as well as the CMS empirical 
model, the excess of events over the background around the 
injected signal location observed in the b-only fits is reduced 
in the s+b fits, demonstrating that the models are sensitive to 
the injected signal. Table 3 lists the �2∕NDF scores for each 
model, indicating the fit performance in response to the pres-
ence of the injected signal. 

Additionally, to assess whether the SR models can extract 
the injected signals, we generate multiple sets of pseudo-
data by injecting Gaussian signals with varying mean values 
between 2980 to 3150 GeV and signal strengths ranging 
from 2 to 38. We then perform the s+b fits to extract the cor-
responding signal parameters. Figure 11 shows the extracted 
signal parameters (mass and strength) plotted against their 
injected values. All three SR models are capable of extract-
ing the correct signal parameter values within reasonable 
uncertainties. They perform comparably to the empirical 
model used by CMS and, in some cases, yield more accurate 
fitted values, demonstrating that functions obtained from SR 
are effective for such tasks.

Fig. 14   Candidate function #12 for Toy Dataset 3a (see Table 4). The 
parameterized form of this function is shown at the top of the figure, 
along with the best-fit values and associated uncertainties. Upper left: 
the binned data being fitted. Lower left: the candidate function plot-

ted with the same binning as the fitting data. Upper right: the candi-
date function plotted with a finer binning. Lower right: the residual 
error, Data−Fit

Uncertainty
 , in units of the data uncertainty
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We demonstrated that our framework can easily generate 
multiple suitable candidate functions using a very simple fit 
configuration. By simply changing the random seed, addi-
tional candidate functions can be obtained as needed, and 
these functions are readily comparable to the empirical func-
tion obtained by CMS, which required extensive manual and 
iterative effort. This shows that our method is preferable to 
traditional methods, as the labor-intensive step of finding 
adequate functional forms is now automated using machine 
learning.

Toy Dataset 3 (2D) [Arbitrary Shapes]

In Toy Dataset 3, we consider three 2D binned sub-datasets, 
labeled 3a, 3b, and 3c, as shown in Fig. 12. These datasets 
are manually generated without reference to an underlying 
function and are used to demonstrate applications such as 
deriving smooth scale factors from binned data with more 
than one independent variable. The framework can be easily 
extended to datasets with multiple independent variables.

We use the same ���� configuration applied to Toy Data-
set 1, as shown in List. 1, to fit these 2D binned datasets. For 
each sub-dataset, a single run of ��������� is performed 
to generate a batch of candidate functions. Figure 13 shows 
the p-value plotted against function complexity. Several 

Fig. 15   Candidate function #38 for Toy Dataset 3b (see Table 4). The 
parameterized form of this function is shown at the top of the figure, 
along with the best-fit values and associated uncertainties. Upper left: 
the binned data being fitted. Lower left: the candidate function plot-

ted with the same binning as the fitting data. Upper right: the candi-
date function plotted with a finer binning. Lower right: the residual 
error, Data−Fit

Uncertainty
 , in units of the data uncertainty
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candidate functions for each sub-dataset are selected and 
listed in Table 4.

A candidate function is shown for each of the three sub-
datasets: #26 for sub-dataset 3a in Fig. 14, #39 for sub-data-
set 3b in Fig. 15, and #37 for sub-dataset 3c in Fig. 16.

Summary

We have developed a framework called ��������� that 
automates parametric modeling without the need for a priori 
specification of a functional form to fit data. The framework 
utilizes symbolic regression to machine-search for suitable 

functional forms and incorporates a re-optimization step to 
improve the candidate functions and provide uncertainty 
estimates. Due to the nature of genetic programming, each 
symbolic regression fit generates a batch of candidate func-
tions with a variety of forms that can potentially model the 
data well. This offers flexibility and allows users to select the 
most suitable candidates for their downstream tasks.

Our primary focus is on applications in high-energy 
physics data analysis, specifically in signal and background 
modeling, as well as the derivation of smooth scale factors 
from binned data. There is no reason it cannot be applied to 
other fields where parametric modeling is needed. We have 
demonstrated our framework using five real proton–proton 

Fig. 16   Candidate function #34 for Toy Dataset 3c (see Table 4). The 
parameterized form of this function is shown at the top of the figure, 
along with the best-fit values and associated uncertainties. Upper left: 
the binned data being fitted. Lower left: the candidate function plot-

ted with the same binning as the fitting data. Upper right: the candi-
date function plotted with a finer binning. Lower right: the residual 
error, Data−Fit

Uncertainty
 , in units of the data uncertainty
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collision datasets from new physics searches at the CERN 
LHC, as well as several toy datasets, including two-dimen-
sional binned data. Our framework has been shown to easily 
generate a variety of suitable candidate functions for non-
trivial distributions using a very simple fit configuration, 
even without prior knowledge of the final functional forms. 
The candidate functions obtained from our framework are 
readily comparable to the empirical functions derived from 
traditional methods, which would have required extensive 
manual and iterative effort. This suggests that our method 
is preferable to traditional methods since the labor-intensive 
process of finding adequate functional forms is now auto-
mated using machine learning.

Since the fit outputs in this approach are parametric 
closed-form functions, the resulting model representation 
is identical to that from traditional parametric modeling 
methods. This allows seamless integration with established 
downstream statistical tools used in LHC experiments such 
as ������� and ���� for hypothesis testing. Furthermore, 
the ease of generating a wide range of well-fitted functions 
within this framework facilitates flexible modeling, as the 
choice of functions can be treated as a source of systematic 
uncertainty using well-established techniques, such as the 
discrete profiling method.

We have developed an API for the framework, designed 
for easy use by the high-energy physics community. This 
API automates and streamlines the process of finding suit-
able functions with uncertainty estimates for modeling 
binned data, significantly reducing manual effort. Our goal 
is to transform the approach to parametric modeling in high-
energy physics experiments, moving away from traditional 
fitting methods that rely on manually determining empiri-
cal functions on a case-by-case basis, which is both time-
consuming and prone to bias.

Appendix A: More Examples

Toy Dataset 2 (1D) [Arbitrary Shapes]

In Toy Dataset 2, we consider three 1D binned sub-datasets, 
labeled 2a, 2b, and 2c, as shown in Fig. 17. These datasets 
are manually generated without reference to an underlying 
function and are used to demonstrate applications such as 
deriving smooth scale factors from binned data.

We use the same ���� configuration applied to the five 
LHC datasets, as shown in List. 2, to fit these 1D binned 
datasets. For each sub-dataset, a single run of ��������� is 

performed to generate a batch of candidate functions. Fig-
ure 18 shows the p-value plotted against function complex-
ity. Several candidate functions for each sub-datasets are 
selected and listed in Table 5.

Figure 19 shows candidate functions #13, #21, and #21 
with uncertainty coverage, for sub-datasets 2a, 2b, and 2c, 
respectively.

CMS High‑Mass Diphoton Dataset (1D) [Background 
Modeling]

CMS performed a search for high-mass diphoton reso-
nances using proton–proton collision data at a center-of-
mass energy of 

√

s = 13 TeV and reported no significant 
deviations from the Standard Model prediction [27]. The 
dataset for the diphoton spectrum is publicly available on 
HEPDATA at Ref. [43]. In the analysis, CMS considered 
four empirical functions to model the background contribu-
tion in the distribution of the diphoton invariant mass, m�� , 
and one of them is:

where x = m��∕
√

s is dimensionless and p{0,1,2} are free 
parameters.

We perform the same experiments conducted on the dijet 
dataset, as detailed in Sec. “CMS dijet dataset (1D) [back-
ground modeling]”. Starting from the original diphoton 
spectrum, we generate pseudodata by injecting a perturbed 
Gaussian signal centered at m�� = 1320 GeV ( s1 ), with a 
width of 74 GeV ( 2s2) and a signal strength of s0 = 15 . To 
model the background, we blind the signal region by mask-
ing the m�� bins between 980 and 1400 GeV in the pseudo-
data and perform the fits.

Three ��������� runs using different random seeds are 
carried out, applying the same ���� configuration as used 
for the dijet dataset (see List. 2), except that the maximum 
complexity is set at 20 instead of 80, since the diphoton 
distribution shape is less complex. Table 6 lists the three 
SR models, each obtained from a fit initialized with a dif-
ferent random seed. The �2∕NDF scores improve signifi-
cantly after the ROF step compared to the original func-
tions returned by ���� . The three background models fit the 
blinded pseudodata well, as shown in Fig. 20 for the total 
uncertainty coverage and Fig. 21 for a comparison with the 
empirical model used by CMS. 

Next, we unblind the pseudodata and perform b-only fits 
and s+b fits on the full pseudodata spectrum. These results 
are shown in Fig. 22. In all three SR models, as well as the 

(A.1)f (x) = p0x
p1+p2 log(x),
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CMS empirical model, the excess of events over the back-
ground around the injected signal location observed in the 
b-only fits is reduced in the s+b fits, demonstrating that the 
models are sensitive to the injected signal. Table 7 lists the 
�2∕NDF scores for each model, showing the fit performance 
in response to the presence of the injected signal.

To assess whether the SR models can accurately extract 
the injected signals, we generate multiple sets of pseudodata 
by injecting Gaussian signals with different mean values 
ranging from 1080 to 1120 GeV and varying signal strengths 
between 5 and 50. We then perform the s+b fits to extract 
the corresponding signal parameters. Figure 23 shows the 
extracted signal parameters plotted against their injected val-
ues. All three SR models are capable of extracting the cor-
rect signal parameter values within reasonable uncertainties 
and are comparable to the empirical model used by CMS.

CMS Trijet Dataset (1D) [Background Modeling]

CMS performed a search for high-mass trijet resonances 
using proton–proton collision data at a center-of-mass energy 
of 
√

s = 13 TeV and reported no significant deviations from 

the Standard Model prediction [20]. The dataset for the trijet 
spectrum is publicly available on HEPDATA at Ref. [44]. 
In the analysis, CMS considered four empirical functions to 
model the background contribution in the distribution of the 
trijet invariant mass, mjjj , and one of them is:

where x = mjjj∕
√

s is dimensionless and p{0,1,2,3} are free 
parameters. Equation A.2 corresponds to Eq. 1 with N = 3 
determined by an F-test.

We perform the same experiments conducted on the 
dijet dataset, as detailed in Sec. “CMS dijet dataset (1D) 
[background modeling]”. Starting from the original tri-
jet spectrum, we generate pseudodata by injecting a per-
turbed Gaussian signal centered at mjjj = 4000 GeV ( s1 ) 
with a width of 400 GeV ( 2s2 ) and a signal strength of 
s0 = 50000 . To model the background, we blind the signal 
region by masking the mjjj bins between 3000 and 5000 
GeV in the pseudodata and perform the fits.

Three ��������� runs using different random seeds are 
carried out, applying the same ���� configuration as used 

(A.2)f (x) =
p0(1 − x)p1

xp2+p3 log(x)
,

Fig. 17   Toy Dataset 2: three 1D binned sub-datasets manually generated without reference to an underlying function



Computing and Software for Big Science            (2025) 9:12 	 Page 25 of 45     12 

Fig. 18   p-value vs. function 
complexity. A total of 26, 28, 
and 28 candidate functions 
(labeled #0–#25, #0–#27, and 
#0–#27) were obtained from a 
single fit to Toy Dataset 2a, 2b, 
and 2c, respectively
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for the dijet dataset (see List. 2). Table 8 lists the three SR 
models, each obtained from a fit initialized with a different 
random seed. The �2∕NDF scores improve significantly after 
the ROF step compared to the original functions returned by 
���� . The three background models fit the blinded pseu-
dodata well, as shown in Fig. 24 for the total uncertainty 
coverage and Fig. 25 for a comparison with the empirical 
model used by CMS. 

Next, we unblind the pseudodata and perform b-only fits 
and s+b fits on the full pseudodata spectrum. These results 
are shown in Fig. 26. In all three SR models, as well as the 
CMS empirical model, the excess of events over the back-
ground around the injected signal location observed in the 
b-only fits is reduced in the s+b fits, demonstrating that the 
models are sensitive to the injected signal. Table 9 lists the 
�2∕NDF scores for each model, showing the fit performance 
in response to the presence of the injected signal.

To assess whether the SR models can accurately extract 
the injected signals, we generate multiple sets of pseudodata 

by injecting Gaussian signals with different mean values 
ranging from 3600 to 4500 GeV and varying signal strength 
between 25000 and 100000. We then perform the s+b fits 
to extract the corresponding signal parameters. Figure 27 
shows the extracted signal parameters plotted against their 
injected values. All three SR models are capable of extract-
ing the correct signal parameter values within reasonable 
uncertainties and are comparable to the empirical model 
used by CMS.

CMS Paired‑Dijet Dataset (1D) [Background 
Modeling]

CMS performed a search for high-mass four-jet resonances 
using proton–proton collision data at a center-of-mass 
energy of 

√

s = 13 TeV and reported no significant devia-
tions from the Standard Model prediction [26]. The dataset 
for the four-jet spectrum is publicly available on HEPDATA 
at Ref. [45]. In the analysis, CMS considered four empirical 

Table 5   Example candidate functions for Toy Dataset 2 are listed

The example candidate functions—#13 for Toy Dataset 2a, #21 for 2b, and #21 for 2c—are plotted in Fig. 19. Numerical values are rounded to 
three significant figures for display purposes

Toy Dataset 2a

Complexity Candidate function # param. �2∕NDF �2∕NDF p-value

(after ROF) (before ROF) (after ROF) (after ROF)

12 (#8) 0.667 × 0.991exp(x)x + 1.44∕x 3 5.273 / 6 = 0.8789 4.382 / 6 = 0.7303 0.6251
19 (#13) 0.697 × 0.991exp(x)x + 0.697exp(x)x + 1.16∕x 3 2.863 / 6 = 0.4772 2.619 / 6 = 0.4365 0.8549
38 (#25) 0.9070.0993 exp(x)x(0.0609 + tanh(0.5960.632∕x))+

0.948∕x + 0.948exp(1.63x) − 0.115

3 1.776 / 6 = 0.2961 1.771 / 6 = 0.2951 0.9395

Toy Dataset 2b

Complexity Candidate function # param. �2∕NDF �2∕NDF p-value

(after ROF) (before ROF) (after ROF) (after ROF)

14 (#13) −0.0219 exp(x) + 1.96 + tanh(x)−0.586+x 2 5.613 / 7 = 0.8018 5.501 / 7 = 0.7858 0.5991
19 (#18) −0.0161 exp(x) + 0.177 + 3.02 × 0.825x+

tanh(0.177xx)

4 2.092 / 5 = 0.4184 1.084 / 5 = 0.2169 0.9555

22 (#21) −0.0149 exp(x) − 0.00659 + 4.11 tanh(0.787x)+

tanh(0.16xx)

4 0.857 / 5 = 0.1714 0.8561 / 5 = 0.1712 0.9733

Toy Dataset 2c

Complexity Candidate function # param. �2∕NDF �2∕NDF p-value

(after ROF) (before ROF) (after ROF) (after ROF)

13 (#10) 0.626x exp(−1.38x) + tanh(x0.502) 3 16.75 / 16 =1.047 12.45 / 16 = 0.7784 0.7122

15 (#11) x∕(2x + exp(1.41x)) + tanh(x0.505) 2 10.67 / 17 = 0.6276 10.48 / 17 = 0.6165 0.8823

29 (#21) (1.02x + 1.02 tanh(x2)) tanh(x)∕(2.58x1.39 + x+

exp(1.39x)) + 1.02 tanh(x0.389)

4 7.767 / 15 = 0.5178 4.079 / 15 = 0.2719 0.9975
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Fig. 19   Example candidate functions for Toy Dataset 2 (see Table 5). 
To visualize the total uncertainty coverage of each candidate func-
tion, the green band in each subfigure represents the 68% quantile 
range of functions obtained by sampling parameters, taking into 
account the best-fit values and the covariance matrix within a multi-

dimensional normal distribution. The red line denotes the mean of the 
function ensemble. At the top of each subfigure, the candidate func-
tion and the fitted parameters are shown. The middle panel shows the 
weighted residual error: Data−Mean

Data unc.
 . The bottom panel shows the ratio 

of the 68% quantile range to the mean
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Fig. 20   The three SR models fitted to the pseudodata of the diphoton 
spectrum with the signal region blinded (see Table  6). To visualize 
the total uncertainty coverage of each candidate function, the green 
band in each subfigure represents the 68% quantile range of functions 
obtained by sampling parameters, taking into account the best-fit val-
ues and the covariance matrix within a multidimensional normal dis-

tribution. The red line denotes the mean of the function ensemble. At 
the top of each subfigure, the candidate function and the fitted param-
eters are shown. The middle panel shows the weighted residual error: 
Data−Mean

Data unc.
 . The bottom panel shows the ratio of the 68% quantile range 

to the mean
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functions to model the background contribution in the distri-
bution of the four-jet invariant mass, mjjjj , and one of them is:

where x = mjjjj∕
√

s is dimensionless and p{0,1,2,3,4} are free 
parameters.

We perform the same experiments conducted on the 
dijet dataset, as detailed in Sec. “CMS dijet dataset (1D) 

(A.3)f (x) =
p0(1 − x1∕3)p1

xp2+p3 log x+p4 log
2 x
,

[background modeling]”. Starting from the original four-jet 
spectrum, we generate pseudodata by injecting a perturbed 
Gaussian signal centered at mjjjj = 3500 GeV ( s1 ) with a 
width of 400 GeV ( 2s2 ) and a signal strength of s0 = 2 . To 
model the background, we blind the signal region by mask-
ing the mjjjj bins between 3000 and 4000 GeV in the pseu-
dodata and perform the fits.

Three ��������� runs using different random seeds 
are carried out, applying the same ���� configuration as 
used for the dijet dataset (see List. 2). Table 10 lists the 
three SR models, each obtained from a fit initialized with 
a different random seed. The �2∕NDF scores improve sig-
nificantly after the ROF step compared to the original func-
tions returned by ���� . The three background models fit the 
blinded pseudodata well, as shown in Fig 28 for the total 
uncertainty coverage and Fig. 29 for a comparison with the 
empirical model used by CMS. 

Next, we unblind the pseudodata and perform b-only fits 
and s+b fits on the full pseudodata spectrum. These results 
are shown in Fig. 30. In all three SR models, as well as the 
CMS empirical model, the excess of events over the back-
ground around the injected signal location observed in the 
b-only fits is reduced in the s+b fits, demonstrating that the 
models are sensitive to the injected signal Table 11 lists the 
�2∕NDF scores for each model, showing the fit performance 
in response to the presence of the injected signal.

To assess whether the SR models can accurately 
extract the injected signals, we generate multiple sets of 
pseudodata by injecting Gaussian signals with different 
mean values ranging from 3350 to 3750 GeV and varying 
signal strength between 0.5 and 10. We then perform the 
s+b fits to extract the corresponding signal parameters. 
Figure 31 shows the extracted signal parameters plotted 
against their injected values. All three SR models are 
capable of extracting the correct signal parameter values 

Table 6   The candidate functions are obtained from three fits using different random seeds, fitted to the pseudodata of the diphoton spectrum 
with the (injected) signal region blinded

The fits were performed on a scaled dataset (to enhance fit stability and prevent numerical overflow), and the functions can be transformed back 
to describe the original spectrum using the transformation: x → 0.000287(x − 503). These functions are plotted and compared with the blinded 
pseudodata in Fig. 21. Numerical values are rounded to three significant figures for display purposes

Candidate function # param. �2∕NDF �2∕NDF p-value
(after ROF) (before ROF) (after ROF) (after ROF)

SR model 1 33.3(0.017 + 0.177x)6.93x 3 47.12 / 136 = 0.3465 46.83 / 136 = 0.3443 1.0
SR model 2 35.0 exp(−16.0x0.834) 3 63.44 / 136 = 0.4665 53.37 / 136 = 0.3925 1.0
SR model 3 0.0226 exp(0.975x)(0.158 + x)−3.96 3 48.94 / 136 = 0.3598 47.22 / 136 = 0.3472 1.0

Fig. 21   Pseudodata of the diphoton spectrum with the injected sig-
nal shown in the blinded signal region. The three SR models (see 
Table  6) are compared against the empirical model used by CMS. 
The lower panel shows the residual error per bin, measured in units 
of the data uncertainty. It can be seen that the three SR models, gen-
erated easily from three separate fits using the same simple fit con-
figuration with different random seeds, yield results that are readily 
comparable to the CMS empirical model that would have required 
extensive manual effort to obtain
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Fig. 22   Comparison of the b-only fits and the s+b fits to the unblinded pseudodata of the diphoton spectrum. The lower panel shows the residual 
error per bin, measured in units of the data uncertainty. The shape of the injected signal is also shown

Table 7   Comparison of the �2∕NDF scores from three types of fits to the diphoton dataset: the b-only fits to the blinded pseudodata, b-only fits 
to the unblinded pseudodata, and s+b fits to the unblinded pseudodata

The background models used for the fits are listed in Table 6, and the fits are shown in Fig. 21 (blinded) and Fig. 22 (unblinded)

�2∕NDF (b-only, blinded) �2∕NDF (b-only, unblinded) �2∕NDF (s+b, unblinded)

SR model 1 46.83 / 136 = 0.3443 70.27 / 166 = 0.4233 62.34 / 164 = 0.3801
SR model 2 53.37 / 136 = 0.3924 79.94 / 166 = 0.4816 69.62 / 164 = 0.4245
SR model 3 47.22 / 136 = 0.3472 70.59 / 166 = 0.4252 63.26 / 164 = 0.3857
Emp. model (CMS) 46.78 / 136 = 0.344 70.02 / 166 = 0.4218 62.2 / 164 = 0.3793
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Fig. 23   Fitted values vs. the 
true values of parameters of the 
injected signal in the diphoton 
dataset. The bottom panels 
show the residual error in units 
of the fitted uncertainty
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Fig. 24   The three SR models fitted to the pseudodata of the trijet 
spectrum with the signal region blinded (see Table  8). To visualize 
the total uncertainty coverage of each candidate function, the green 
band in each subfigure represents the 68% quantile range of functions 
obtained by sampling parameters, taking into account the best-fit val-
ues and the covariance matrix within a multidimensional normal dis-

tribution. The red line denotes the mean of the function ensemble. At 
the top of each subfigure, the candidate function and the fitted param-
eters are shown. The middle panel shows the weighted residual error: 
Data−Mean

Data unc.
 . The bottom panel shows the ratio of the 68% quantile range 

to the mean
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within reasonable uncertainties and are comparable to the 
empirical model used by CMS.

CMS High‑Mass Dimuon Dataset (1D) [Background 
Modeling]

CMS performed a search for high-mass dimuon resonances 
using proton–proton collision data at a center-of-mass 

energy of 
√

s = 13 TeV and reported no significant devia-
tions from the Standard Model prediction [28]. The dataset 
for the dimuon spectrum is publicly available on HEPDATA 
at Ref. [46]. In the analysis, CMS considered three different 
functions to model the background contribution in the dis-
tribution of the dimuon invariant mass, m�� . These functions 
include a simple exponential, a power-law, and a first-order 
Bernstein polynomial. Since the dimuon distribution in the 

Table 8   The candidate functions are obtained from three fits using different random seeds, fitted to the pseudodata of the trijet spectrum with the 
(injected) signal region blinded

The fits were performed on a scaled dataset (to enhance fit stability and prevent numerical overflow), and the functions can be transformed back 
to describe the original spectrum using the transformation: f (x) → 38458 × f (0.000184(x − 1790)) . These functions are plotted and compared 
with the blinded pseudodata in Fig. 25. Numerical values are rounded to three significant figures for display purposes

Candidate function # param. �2∕NDF �2∕NDF p-value
(After ROF) (Before ROF) (After ROF) (After ROF)

SR model 1 (1.08 × 10−5)tanh(x)∕((0.165 + x)×

exp(x2(−1.96 + 4x))tanh(1.17x
2))

3 50.46 / 26 = 1.941 49.04 / 26 = 1.886 0.00408

SR model 2 exp(x(−10.8 + x))∕(−0.261x tanh(x×

(−10.9 + x)) + 0.165 + tanh(x))

4 39.49 / 25 = 1.58 33.15 / 25 = 1.326 0.1273

SR model 3 0.0554−0.622+4.03x(0.568 tanh(2x)+

(0.00302 exp(x)∕(1.92 + x))x)

4 38.4 / 25 = 1.536 37.31 / 25 = 1.492 0.05395

Fig. 25   Pseudodata of the trijet 
spectrum with the injected sig-
nal shown in the blinded signal 
region. The three SR models 
(see Table 8) are compared 
against the empirical model 
used by CMS. The lower panel 
shows the residual error per bin, 
measured in units of the data 
uncertainty. It can be seen that 
the three SR models, generated 
easily from three separate fits 
using the same simple fit con-
figuration with different random 
seeds, yield results that are 
readily comparable to the CMS 
empirical model that would 
have required extensive manual 
effort to obtain
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Fig. 26   Comparison of the b-only fits and the s+b fits to the unblinded pseudodata of the trijet spectrum. The lower panel shows the residual 
error per bin, measured in units of the data uncertainty. The shape of the injected signal is also shown

Table 9   Comparison of the 
�2∕NDF scores from three 
types of fits to the trijet dataset: 
the b-only fits to the blinded 
pseudodata, b-only fits to the 
unblinded pseudodata, and s+b 
fits to the unblinded pseudodata

The background models used for the fits are listed in Table 8, and the fits are shown in Fig. 25 (blinded) 
and Fig. 26 (unblinded)

�2∕NDF (b-only, blinded) �2∕NDF (b-only, unblinded) �2∕NDF (s+b, unblinded)

SR model 1 49.04 / 26 = 1.886 181.3 / 42 = 4.317 93.04 / 40 = 2.326
SR model 2 33.15 / 25 = 1.326 92.92 / 41 = 2.266 48.07 / 39 = 1.233
SR model 3 37.31 / 25 = 1.492 74.5 / 41 = 1.817 54.23 / 39 = 1.391
Emp. model (CMS) 41.75 / 25 = 1.67 117.6 / 41 = 2.868 65.69 / 39 = 1.684
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Fig. 27   Fitted values vs. the 
true values of parameters of the 
injected signal in the trijet data-
set. The bottom panels show 
the residual error in units of the 
fitted uncertainty
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signal region is statistically limited, simpler functions are 
preferred to avoid over-fitting the background. For our com-
parison, we take the first-order Bernstein polynomial as the 
empirical model used by CMS.

We perform the same experiments conducted on the 
dijet dataset, as detailed in Sec. “CMS dijet dataset (1D) 
[background modeling]”. Starting from the original dimuon 
spectrum, we generate pseudodata by injecting a Gaussian 

Fig. 28   The three SR models fitted to the pseudodata of the paired-
dijet spectrum with the signal region blinded (see Table 10). To vis-
ualize the total uncertainty coverage of each candidate function, the 
green band in each subfigure represents the 68% quantile range of 
functions obtained by sampling parameters, taking into account the 
best-fit values and the covariance matrix within a multidimensional 

normal distribution. The red line denotes the mean of the function 
ensemble. At the top of each subfigure, the candidate function and the 
fitted parameters are shown. The middle panel shows the weighted 
residual error: Data−Mean

Data unc.
 . The bottom panel shows the ratio of the 68% 

quantile range to the mean
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signal centered at m�� = 500 GeV ( s1 ), with a width of 20 
GeV ( 2s2 ) and a signal strength of s0 = 350 . To model the 
background, we blind the signal region by masking the m�� 
bins between 450 and 550 GeV in the pseudodata and per-
form the fits.

Three ��������� runs using different random seeds are 
carried out, applying the same ���� configuration as used 
for the dijet dataset (see List. 2), except that the maximum 

complexity is set at 20 instead of 80, since the dimuon 
distribution shape is less complex. Table 12 lists the three 
SR models, each obtained from a fit initialized with a dif-
ferent random seed. The �2∕NDF scores improve signifi-
cantly after the ROF step compared to the original func-
tions returned by ���� . The three background models fit the 
blinded pseudodata well, as shown in Fig. 32 for the total 

Table 10   The candidate functions are obtained from three fits using different random seeds, fitted to the pseudodata of the four-jet spectrum with 
the (injected) signal region blinded

The fits were performed on a scaled dataset (to enhance fit stability and prevent numerical overflow), and the functions can be transformed 
back to describe the original spectrum using the transformation: x → 0.000136(x − 1568.5) . These functions are plotted and compared with the 
blinded pseudodata in Fig. 29. Numerical values are rounded to three significant figures for display purposes

Candidate function # param. �2∕NDF �2∕NDF p-value
(after ROF) (before ROF) (after ROF) (after ROF)

SR model 1 (1.13 × 10−5x)1.28x∕(0.143xx + 1.63x) 3 47.95 / 34 = 1.41 39.07 / 34 = 1.149 0.2524
SR model 2 6.98x0.857x(x + exp(x))−11.8 3 47.36 / 34 = 1.393 39.83 / 34 = 1.171 0.2267
SR model 3 ((6.52 × 10−5 + 0.000378x) tanh(0.641+

3x))x+tanh(x)∕ tanh(0.145 + x)

3 71.24 / 34 = 2.095 35.57 / 34 = 1.046 0.3942

Fig. 29   Pseudodata of the 
four-jet spectrum with the 
injected signal shown in the 
blinded signal region. The three 
SR models (see Table 10) are 
compared against the empirical 
model used by CMS. The lower 
panel shows the residual error 
per bin, measured in units of the 
data uncertainty. It can be seen 
that the three SR models, gener-
ated easily from three separate 
fits using the same simple fit 
configuration with different ran-
dom seeds, yield results that are 
readily comparable to the CMS 
empirical model that would 
have required extensive manual 
effort to obtain
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Fig. 30   Comparison of the b-only fits and the s+b fits to the unblinded pseudodata of the four-jet spectrum. The lower panel shows the residual 
error per bin, measured in units of the data uncertainty. The shape of the injected signal is also shown

Table 11   Comparison of the �2∕NDF scores from three types of fits to the paired-dijet dataset: the b-only fits to the blinded pseudodata, b-only 
fits to the unblinded pseudodata, and s+b fits to the unblinded pseudodata

The background models used for the fits are listed in Table 10, and the fits are shown in Fig. 29 (blinded) and Fig. 30 (unblinded)

�2∕NDF (b-only, blinded) �2∕NDF (b-only, unblinded) �2∕NDF (s+b, unblinded)

SR model 1 39.07 / 34 = 1.149 93.41 / 41 = 2.278 54.38 / 39 = 1.394
SR model 2 39.83 / 34 = 1.171 107.1 / 41 = 2.612 59.14 / 39 = 1.516
SR model 3 35.57 / 34 = 1.046 90.1 / 41 = 2.198 51.88 / 39 = 1.33
Emp. model (CMS) 32.5 / 33 = 0.985 71.84 / 40 = 1.796 44.86 / 38 = 1.181
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Fig. 31   Fitted values vs. the 
true values of parameters of the 
injected signal in the paired-
dijet dataset. The bottom panels 
show the residual error in units 
of the fitted uncertainty
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Fig. 32   The three SR models fitted to the pseudodata of the dimuon 
spectrum with the signal region blinded (see Table 12). To visualize 
the total uncertainty coverage of each candidate function, the green 
band in each subfigure represents the 68% quantile range of functions 
obtained by sampling parameters, taking into account the best-fit val-
ues and the covariance matrix within a multidimensional normal dis-

tribution. The red line denotes the mean of the function ensemble. At 
the top of each subfigure, the candidate function and the fitted param-
eters are shown. The middle panel shows the weighted residual error: 
Data−Mean

Data unc.
 . The bottom panel shows the ratio of the 68% quantile range 

to the mean
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uncertainty coverage and Fig. 33 for a comparison with the 
empirical model used by CMS. 

Next, we unblind the pseudodata and perform b-only fits 
and s+b fits on the full pseudodata spectrum. These results 
are shown in Fig. 34. In all three SR models, as well as the 
CMS empirical model, the excess of events over the back-
ground around the injected signal location observed in the 
b-only fits is reduced in the s+b fits, demonstrating that the 
models are sensitive to the injected signal. Table 13 lists the 
�2∕NDF scores for each model, showing the fit performance 
in response to the presence of the injected signal.

To assess whether the SR models can accurately extract 
the injected signals, we generate multiple sets of pseu-
dodata by injecting Gaussian signals with different mean 
values ranging from 490 to 510 GeV and varying signal 
strength between 350 and 600. We then perform the s+b fits 
to extract the corresponding signal parameters. Figure 35 
shows the extracted signal parameters plotted against their 
injected values. All three SR models are capable of extract-
ing the correct signal parameter values within reasonable 
uncertainties and are comparable to the empirical model 
used by CMS.

Table 12   The candidate 
functions are obtained from 
three fits using different random 
seeds, fitted to the pseudodata 
of the dimuon spectrum with 
the (injected) signal region 
blinded

The fits were performed on a scaled dataset (to enhance fit stability and prevent numerical overflow), 
and the functions can be transformed back to describe the original spectrum using the transformation: 
x → 0.00487(x − 397.4) . These functions are plotted and compared with the blinded pseudodata in Fig. 33. 
Numerical values are rounded to three significant figures for display purposes

Candidate function # param. �2∕NDF �2∕NDF p-value
(after ROF) (before ROF) (after ROF) (after ROF)

SR model 1 (4.25 exp(−x))1.52+x 2 3.469 / 10 = 0.3469 3.007 / 10 = 0.3007 0.9813
SR model 2 9.68 + x(−7.39 + x) 2 3.484 / 10 = 0.3484 3.075 / 10 = 0.3075 0.9796
SR model 3 0.0213x

3

5.44 + 3.46 2 3.456 / 10 = 0.3456 3.066 / 10 = 0.3066 0.9798

Fig. 33   Pseudodata of the 
dimuon spectrum with the 
injected signal shown in the 
blinded signal region. The three 
SR models (see Table 12) are 
compared against the empirical 
model used by CMS. The lower 
panel shows the residual error 
per bin, measured in units of the 
data uncertainty
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Fig. 34   Comparison of the b-only fits and the s+b fits to the unblinded pseudodata of the dimuon spectrum. The lower panel shows the residual 
error per bin, measured in units of the data uncertainty. The shape of the injected signal is also shown

Table 13   Comparison of the 
�2∕NDF scores from three 
types of fits to the dimuon 
dataset: the b-only fits to the 
blinded pseudodata, b-only fits 
to the unblinded pseudodata, 
and s+b fits to the unblinded 
pseudodata

The background models used for the fits are listed in Table 12, and the fits are shown in Fig. 33 (blinded) 
and Fig. 34 (unblinded)

�2∕NDF (b-only, blinded) �2∕NDF (b-only, unblinded) �2∕NDF (s+b, unblinded)

SR model 1 3.007 / 10 = 0.3007 62.98 / 18 = 3.499 15.44 / 16 = 0.965
SR model 2 3.075 / 10 = 0.3075 64.89 / 18 = 3.605 14.32 / 16 = 0.895
SR model 3 3.066 / 10 = 0.3066 62.97 / 18 = 3.498 15.87 / 16 = 0.9919
Emp. model (CMS) 3.046 / 10 = 0.3046 64.43 / 18 = 3.579 14.79 / 16 = 0.9244



Computing and Software for Big Science            (2025) 9:12 	 Page 43 of 45     12 

Fig. 35   Fitted values vs. the 
true values of parameters of the 
injected signal in the dimuon 
dataset. The bottom panels 
show the residual error in units 
of the fitted uncertainty
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