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Resumo

Esta tese explora compactificagdes da supercorda em espagos de quatro e seis
dimensdes. A teoria é quantizada utilizando o formalismo hibrido supersimétrico
para a supercorda, ao mesmo tempo em que se utilizam métodos de teoria con-
forme em duas dimensdes. Apds o desenvolvimento da descrigdo hibrida em
quatro dimensdes acoplada a um campo eletromagnético, constréi-se uma agdo de
teoria de campos da supercorda para os primeiros estados massivos — tanto no
superspago quanto em termos dos campos componentes. A a¢do inclui um campo
massivo de spin-3/2 e um campo massivo de spin-2 propagando na presenga de
um campo de gauge U(1) ndo nulo.

A quantizagdo da supercorda compactificada em um Calabi-Yau de duas dimen-
sOes complexas pode ser alcangada usando a descrigdo hibrida de seis dimensdes.
No entanto, o formalismo hibrido permite que apenas metade das oito SUSYs
do superespago d = 6 N' = 1 estejam manifestas. Superamos essa limitagdo e
estendemos o formalismo de forma que todas as SUSY's do espago-tempo possam
ser manifestas. O operador BRST, estados fisicos e uma prescri¢do de amplitude
sdo explicitamente construidos.

Em seguida, estudamos a supercorda Tipo IIB em um espago AdS; x S°. Uti-
lizando o formalismo hibrido de Berkovits-Vafa-Witten para o caso de fluxo NS-NS
puro, calculamos uma amplitude supersimétrica de trés pontos de operadores de
vértice half-BPS inseridos na fronteira de AdSs. O célculo é realizado em termos
das variaveis covariantes de PSU(1, 1|2). Encontramos que integrar os campos fer-
midnicos da supercorda na integral de caminho gera o vielbein do espago-tempo,
que codifica explicitamente que o grupo conforme na fronteira é identificado com
o grupo de simetria do interior de AdS.

A supercorda em AdS;3 x S® pode ser descrita por uma mistura de fluxos de trés-
forma auto-duais NS-NS e R-R. Construimos uma agao de folha de mundo para a
supercorda em AdS; x S® x T* com fluxos mistos que é manifestamente invariante
sob transformagdes de PSU(1,1|2) x PSU(1,1|2). Quantizamos covariantemente
o modelo, demonstrando sua invariancia conforme em um loop. Terminamos
mostrando como é possivel relacionar a descrigdo supersimétrica com a agdo de
folha de mundo de Berkovits-Vafa-Witten em AdS; x S® com fluxos mistos.



Palavras-chave: Supercordas; Teoria de campos de cordas; Supersimetria; AdS/CFT.

Areas do conhecimento: Fisica; Fisica de altas energias; Fisica matematica.
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Abstract

This thesis explores the superstring compactified to four- and six-dimensional
backgrounds. The theory is quantized using the spacetime supersymmetric hy-
brid formalism for the superstring while leveraging two-dimensional worldsheet
methods. After the four-dimensional hybrid description is developed in an elec-
tromagnetic background, a superstring field theory action for the first massive
states is constructed — both in superspace and in terms of the components fields.
The action includes a massive spin-3/2 and a massive spin-2 field propagating in
the presence of a constant non-zero U(1) gauge field.

Quantization of the superstring compactified to a Calabi-Yau twofold can be
achieved using the six-dimensional hybrid description. However, the hybrid
formalism allows only half of the eight d = 6 N' = 1 SUSYs manifest. We
overcome this issue and extend the formalism such that all spacetime SUSYs can
be made manifest. The BRST operator, physical states and a scattering amplitude
prescription are explicitly constructed.

We then study the Type IIB superstring in an AdS; x S® background. By
making use of the Berkovits-Vafa-Witten hybrid formalism for the pure NS-NS
flux case, we compute a supersymmetric three-point amplitude of half-BPS vertex
operators inserted on the AdS3 boundary. The computation is performed using
the PSU(1, 1|2)-covariant variables. It is found that integrating out the fermionic
worldsheet fields in the path integral gives rise to the target-space vielbein, which
explicitly encodes that the conformal group on the boundary is identified with the
symmetry group of the AdS bulk.

The superstring in AdS; x S® can be supported by a mixture of NS-NS and
R-R self-dual three-form flux. We construct a manifestly PSU(1, 1|2) x PSU(1, 1|2)-
invariant sigma-model action for the superstring in AdS; x S® x T* with mixed
flux. The model is then covariantly quantized and proven to be conformal in-
variant at the one-loop level. We conclude by showing how one can relate the
supersymmetric description with the Berkovits-Vafa-Witten AdS; x S® worldsheet

action with mixed flux.

Keywords: Superstrings; String field theory; Supersymmetry; AdS/CFT.
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Chapter 1

Introduction

1.1 What is string theory?

The purpose of this section — or even this thesis — is not to give a definitive
and complete answer to this question. Nonetheless, it will be possible to introduce
the less technical reader to the fundamental motivations behind the efforts devoted
to the understanding of the theory. This will be the objective of the following
discussion. In order to develop our rationale, it will be beneficial to start by
defining what a theory is in physics.

A physical theory can be defined as a mathematical framework rooted in
physical principles. These principles set the stage and boundaries for what can
be revealed through mathematical reasoning, allowing both paradigms to coexist
in harmony and mutual balance. To some extent, physical principles are closer
to mathematical axioms, which serve as the basis for the derivation of logical
consequences. Once a mathematical axiom is assumed, it cannot be violated
within a specific framework, for its violation would indicate an inconsistency of
the logical reasoning. On the other hand, the violation of a physical principle
does not completely invalidate a theory, but can simply suggest a limitation of the
theoretical framework.

The latter fact can be illustrated with some basic examples. For instance, using
Newton’s laws to model the two-dimensional motion and collisions of snooker
balls on a pool table is perfectly adequate under ordinary conditions.! However,
if the balls start moving really fast, close to the speed of light, one might need to
consider the laws of special relativity over Newton’s laws to accurately model
the system. Of course, an ideal pool table is being assumed here. In addition,
if the diameter of the snooker balls is very small, of the order of the electron
radius, one might want to apply the rules of quantum mechanics and describe the
position of the ball as a function of time using a continuous probability distribution.

1See Amateur Physics for the Amateur Pool Player by Ron Shepard.
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Consequently, the appropriate formulation will depend on the scale and velocity
— or energy — that is being considered.

Despite the computational convenience of using different mathematical frame-
works to describe distinct regimes, it would be desirable to have a unified formu-
lation of the laws of physics which encompasses all the known cases as special
limits. This is similar to how Newtonian mechanics is a limiting case of special rel-
ativity for velocities much smaller than the speed of light. Additionally, a unified
formulation often provides predictions for new physics that were obscured by the
limitations of the previous theories. For example, in Newtonian mechanics time
is absolute, while in special relativity one finds that different observers can have
different notions of space and time based on their relative speed.

Therefore, in the pool game example discussed above, one might want to
consider regimes which are relevant in the intersecting region of two well-known
physical theories. Consider fast-moving snooker balls which have a small diameter,
more precisely, of the order of the electron radius. In this case, one enters the
realm of both quantum mechanics and special relativity. With that in mind, one
is led to think that a new type of physics is required since the theories we have
at our disposal might be inconsistent in their overlapping regime. As a result, a
natural question that arises is as follows. Is it possible to accommodate both of
these theories in a unified framework?

Surprisingly, the answer to this question is unique and the framework encom-
passing both special relativity and quantum mechanics is known as quantum field
theory (QFT). QFT started to emerge back in the 1920s with relativistic quantum
mechanics when Paul Dirac attempted to quantize the electromagnetic field. In
those early years, theoretical physicists first thought that the theory was ill due
to the appearance of ultraviolet divergences. Yet, these divergences were later
understood by using regularization and renormalization techniques, and resulted
in the establishment of the standard model of particle physics in the 1970s.

The standard model is a quantum field theory describing the known forces
of nature with the exception of gravity, hence, it accommodates the electromag-
netic, strong and weak forces. In the standard model, these forces are described
by force fields which interact with the matter fields influencing the dynamics
of the particles, or the field quanta. In fact, every field has its corresponding
excitation, or particle, which can be measured in an experiment. One of the most
notable achievements of the standard model is the prediction of the Higgs boson,
found in 2012 at the Large Hadron Collider (LHC). Another is the calculation of
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the anomalous magnetic dipole moment of the electron, which agrees with the
experimentally measured value in more than 10 significant figures.

Back to our pool game example, one then concludes that quantum field theory
would be the perfect framework to model collisions of tiny and very fast moving
snooker balls. Just replace the word “snooker balls” with “high-energy protons,”
and that’s precisely what the LHC in Geneva is accomplishing. Let us try to
expand our discussion even further. What if the snooker balls were both tiny and
very heavy? Are they stable enough to be part of a snooker game? In this case,
the pool game would not be that fun since the balls would probably look all black.
Indeed, the game would then be composed of black holes, which are very dense
and massive objects described by the theory of general relativity, also known as
Einstein’s gravity.

General relativity (GR) was formulated more than a hundred years ago in the
1910s and it models the dynamics of the force of gravity, including the physics of
black holes. GR is an incredibly successful theory. Among its most well-known
accomplishments are the prediction of the existence of black holes, precession
of the orbit of planets and, more recently, the detection of gravitational waves
by the LIGO and Virgo collaborations in 2015. However, general relativity is a
classical theory of gravity, and hence does not provide a consistent framework to
precisely model the dynamics of a “pool game” composed of tiny black holes that
was pictured above. The reason for this is that classical gravity breaks down at
small scales. In this scenario, what is required is a quantum theory of gravity.

Even though black holes in GR are stable objects, Stephen Hawking showed,
through a semi-classical calculation, that they in fact emit radiation. As a conse-
quence, black holes evaporate, meaning that the smaller they are, the shorter their
lifetime. Although black hole thermodynamics is well understood, progress in
the understanding of black holes at small scales is tied to a complete quantum
gravity theory. However, trying to incorporate GR in the quantum field theory
framework of the standard model leads to ultraviolet divergences, which cannot
be addressed via the conventional renormalization methods used to construct the
standard model of particle physics. The latter observation raises the following
important question. Can we have a microscopic description of black holes? In
other words, is it possible to accommodate both quantum mechanics and general
relativity in a unified framework?

So as to provide an answer to this question, the reasonable hypothesis stating
that the fundamental objects governing physics are point-like, such as particles,
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needs to be dramatically replaced. Instead, one should consider one-dimensional
extended objects — or strings — to be the fundamental building blocks of nature.
After the vibrations of the string are quantized, one finds what is recognized today
as string theory. When a particle moves through spacetime, one says that it traces
a worldline. Alternatively, when a string moves through spacetime, one says that
it traces a worldsheet. In particular, string theory is the only known consistent
theory of quantum gravity that has ever appeared in theoretical physics up to the
present day.

Moreover, string theory not only admits both quantum mechanics and general
relativity in a unified framework. Equally remarkable, it is only quantum con-
sistent in spacetimes satisfying Einstein’s equations. Therefore, classical general
relativity at low energies is a requirement for a reliable quantization of the string.
Although string theory is the only known candidate for a quantum gravity theory,
it has not been experimentally verified. In order to test its predictions, one would

need to access length scales of the order of 10733

cm, known as the Planck length.
Yet, the LHC only has access to scales of the order of 10~ ®cm at the present date.

In fact, string theory can refer to the bosonic string or to the superstring. The
bosonic string is not that interesting, since it only contains bosons and includes a
particle with negative mass in its spectrum, which renders the theory unstable. For
the purpose of describing the matter present in the universe, fermionic excitations
are also needed. This is the content of superstring theory, which admits both
bosons and fermions, as well as having a stable vacuum. In addition, superstring
theory has its name because it is invariant under spacetime supersymmetry, which
is a symmetry relating its bosonic and fermionic excitations, and also implying that
bosons and fermions appear in equal numbers in the theory. As a consequence,
when one is referring to string theory as a theory of everything, possibly replacing
the standard model of particle physics, one invariably has the superstring in mind.
Not surprisingly, the superstring is far more conceptually challenging than the
pure bosonic string.

Among the requirements for the quantum consistency of superstring theory is
the existence of a ten-dimensional spacetime. However, for energies observed in
everyday life, including in the LHC, it is only possible to experience four out of the
ten directions. One is then led to ask the following question. Where are the other
six spacetime directions predicted by superstring theory? In order to overcome
this issue, it is required that six, out of the ten, spacetime dimensions must be

curled up in a tiny region of space so as not to influence everyday physics. Thus,
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the curled up dimensions form what is called a six-dimensional compactification
manifold, which might only be accessible near the Planck scale of 10~3cm. Of
course, the total spacetime dimension still is d = 4 + 6 = 10. One of the most
important open problems in string theory is to determine which six-dimensional
manifold gives rise to the standard model in the four-dimensional world. It is
believed that the number of possible solutions, with a similar particle content as
the standard model of particle physics, is of the order of 10°% or larger.

Even though the four-dimensional standard model of particle physics has not
been derived from superstring theory, unexpected connections between the su-
perstring and quantum field theories in 4 # 10 dimensions have been discovered.
The primary and most studied example is the duality between Type IIB super-
string theory in the AdSs x S° background and the quantum field theory of d = 4
N = 4 super-Yang-Mills (SYM). This duality is not only interesting because the
quantum field theory of d = 4 N = 4 SYM lives in four dimensions, as the name
suggests. In addition, this QFT includes a similar particle content as the standard
model of particle physics. To be more precise, the particle content of N' = 4 SYM
can mimic, in some very specific regime, the quarks and gluons of the quantum
chromodynamics sector, which is the sector responsible for the strong interactions
in the standard model.

In physics, a duality is the manifestation that two mathematically distinct
theoretical formulations of physical theories are quantum equivalent, although
they can appear completely different at a microscopic level. By equivalent, it is
meant that for every observable, or physical process, in one description there is
a corresponding counterpart in the dual theory. Moreover, the duality between
Type IIB superstring theory in the AdSs x S° background and d = 4 N = 4 SYM
is usually referred to as the AdS/CFT correspondence. Here, AdS refers to the
Anti de-Sitter target-space that the superstring propagates, which is a spacetime
of negative curvature. The CFT part refers to a particular type of quantum field
theory known as conformal field theory. This is a crucial property of the dual
d = 4 N = 4 SYM, implying that it is invariant under transformations of the
conformal group SO(2,4).

On the string theory side of the duality, the AdSs x S° background is defined
as the Cartesian product of the five-dimensional Anti de-Sitter space with the
five-dimensional sphere, resulting in a target space with d = 10 spacetime dimen-
sions, as required by superstring theory. Furthermore, the Type IIB superstring
is characterized by a self-dual five-form field strength in its massless spectrum,
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known as the Ramond-Ramond (R-R) five-form flux. In the AdSs x S° background,
the R-R flux is non-zero and constant. Moreover, the R-R flux is also proportional
to the radius of curvature of the AdSs space. It is worth mentioning that spacetime
supersymmetry demands that the S° radius of curvature is the same as the AdSs
one.

It is important to emphasize that the superstring in AdSs x S° is a quantum
theory of gravity. However, the dual d = 4 N/ = 4 SYM is an ordinary quantum
field theory, so that it does not contain gravity at all. As a result, the AdS/CFT
correspondence provides a map for determining observables in a quantum theory
of gravity by calculating physical processes in a four-dimensional quantum field
theory. Furthermore, the AdS/CFT correspondence is of the strong/weak type, so
that it relates the weakly coupled regime of the d = 4 N' = 4 SYM theory to the
strongly coupled regime of the dual string theory and vice versa. Notice that the
four-dimensional gauge theory can be understood to live on the four-dimensional
boundary of the AdSs space. To a certain extent, the gravitational theory in the
interior of AdSs is completely characterized by a QFT living on the AdSs boundary.

The AdS/CFT correspondence is even more general than the specific example
discussed above. Indeed, there are dualities connecting the superstring propa-
gating in an AdSq,q x My_q4 background with d-dimensional conformal field
theories living on the boundary of the AdSq.,; space, where My _;isa (9 —d)-
dimensional compactification manifold for some positive value of d. Of course,
the conformal field theory is not a theory of gravity. Therefore, one has a broad
spectrum of examples that can be studied to understand a quantum gravity theory
from an ordinary quantum field theory.

Despite thousands of checks, the AdS/CFT correspondence remains a conjec-
ture in most relevant cases due to the strong/weak nature of the duality and the
lack of tractability on the superstring side. This is mainly because of the presence
of R-R flux in the worldsheet descriptions of the superstring. While the duality be-
tween Type IIB superstring theory in the AdSs x S° background and d = 4 N/ = 4
SYM is the most significant, since it connects a ten-dimensional quantum theory
of gravity to a four-dimensional QFT, there are examples in lower-dimensional
AdS spaces where the worldsheet theory is much more accessible. An especially
noteworthy example is the AdS; x S® x M target-space, which has allowed much
progress towards a derivation of the duality.

In particular, instead of pure Ramond-Ramond flux, the AdS; x S3 x My
background can also be supported by the Neveu-Schwarz-Neveu-Schwarz (NS-
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NS) three-form flux. In purely technical terms, the NS-NS flux can be much more
easily dealt with from the available worldsheet descriptions of the superstring.
Additionally, one can also turn on a non-zero amount of R-R flux. In this context,
the AdS; x S® background shares many similarities with the more interesting case
of the AdSs x S° target-space. On that account, it might be reasonable to think that
exploring the superstring in AdS; x S can be a foundational and important step
for a deep understanding of the inner workings of the AdS/CFT correspondence,
primarily aiming towards the understanding of the AdSs x S° background for the

superstring.

1.2 Overview of this thesis

In this thesis, chapters 2, 3, and 4 present original work along with concise
introductions to each discussed topic. Chapter 2 deals with the open superstring
field theory of the four-dimensional hybrid formalism in a constant U(1) back-
ground, which exhibits manifest d = 4 N/ = 1 spacetime supersymmetry. Chapter
3 covers the six-dimensional hybrid formalism in a flat background, along with
its extension that manifests all spacetime supersymmetries of d = 6 N = 1 su-
perspace. Chapter 4 explores the superstring in an AdS; x S® background and
scattering amplitudes thereof, both using the six-dimensional hybrid formalism,
described by the supergroup PSU(1,1|2), and from its supersymmetric extension,
which exhibits manifest PSU(1,1|2) x PSU(1,1|2) invariance. We conclude in
Chapter 5 by reviewing the main findings contained in the thesis and end up with
a discussion on the possible future research directions. At last, several appendices
provide additional technical details.

Let us elaborate further on the structure of this thesis. In Chapter 2, we start
by motivating the problem and providing comments on the relation between
the hybrid and RNS variables. After this, we give a concise review of the four-
dimensional hybrid formalism for the superstring, stating its key properties and
presenting the relevant variables in terms of the oscillator modes of free fields. We
also show how to compute the equations of motion and the open superstring field
theory action in this formalism.

Once the free theory is explained, we move on to charged superstrings in a
constant electromagnetic background, and start by solving the equations of motion
and boundary conditions for the bosonic worldsheet fields, and then expressing
the solution in terms of modes. The mode expansions for the fermionic worldsheet
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fields are then found by imposing that the left and right-moving superconfor-
mal generators coincide at the boundary. We also write down the worldsheet
action for the charged superstring in the hybrid formalism, and describe how the
superconformal generators of the previous section are modified in this case.

Having established the hybrid formalism for the interacting case, we compute
the string field action for the massless sector of the open superstring compactified
to four dimensions, and show that the results are consistent with earlier computa-
tions done for the massless sector from bosonic string field theory. We then provide
one of the main results of this chapter, namely, the computation of thed =4 N =1
superspace action for the first massive compactification-independent states of the
charged open superstring in a constant electromagnetic background. When on-
shell, the first massive states describe 12 bosonic and 12 fermionic complex degrees
of freedom, including a charged massive spin-3/2 and spin-2 fields.

After expanding the superspace action in terms of the component fields, and
removing the unphysical degrees of freedom by gauge-fixing, we write the compo-
nent Lagrangian describing the first massive states of the superstring in a constant
U(1) background. Moreover, we also write the equations of motion and constraints
derived from the component Lagrangian, characterizing the physical degrees of
freedom. Chapter 2 is based on the publications [1] [2] [3] [4].

Chapter 3 covers the study of the superstring compactified to six flat directions.
The chapter starts explaining to the reader why, in the six-dimensional hybrid
formalism, only half of the eight d = 6 A/ = 1 SUSYs can be made manifest.
Furthermore, before delving into more technical details, the potential solution to
address this limitation is outlined. Building on the previous discussion, the six-
dimensional hybrid formalism in a flat background is reviewed, while specifying
the worldsheet action and massless vertex operators according to our conventions.
Next, it is shown how one can describe the hybrid formalism with the addition
of the remaining fermionic coordinates 6% of d = 6 N' = 1 superspace. The latter
comes alongside fermionic first-class constraints D,, such that the gauge symmetry
generated by these constraints can be used to gauge away the new variables.

Besides the fermionic fields 8%, unconstrained bosonic ghost-fields A%, and its
conjugate momenta, are added to the worldsheet action in such a way that the total
central charge of the stress-tensor vanishes. With the addition of the non-minimal
variables, a new manifestly spacetime supersymmetric BRST operator G™ is then
defined and a supersymmetric unintegrated vertex operator U is constructed,
as well as its integrated version W. It is then shown that BRST invariance of U



Chapter 1. Introduction 9

implies the d = 6 SYM equations of motion in superspace. With both integrated
and unintegrated vertex operators at our disposal, a tree-level scattering amplitude
prescription is given which shares many similarities to the d = 10 non-minimal
pure spinor formalism one. Chapter 3 is based on the publication [5].

Chapter 4 discusses the superstring propagating in an AdS; x S° target-space.
We start off by introducing the main motivation for exploring the superstring in
AdS, namely, the AdS/CFT correspondence. Particularly, we also spell out the
reasoning behind studying the AdS; x S® background. In order to fix our notation
and conventions for the worldsheet theory, we then provide a thorough exposition
of the hybrid formalism in AdS;z X S3 with pure NS-NS three-form flux, which is
given by a WZW model of PSU(1, 1|2), where k labels the amount of flux in the
background. The physical state conditions of the formalism are then solved, while
defining half-BPS vertex operators in terms of a fermionic zero-mode coordinate
0~

In addition, after performing a similarity transformation along the AdS3 bound-
ary direction, we define the worldsheet fields and vertex operators depending
on x € dAdS;, and introduce the vielbein field E4®(x). Finally, a PSU(1,1|2)-
covariant three-point amplitude for vertex operators inserted on the AdS3 bound-
ary is computed, and it is shown that integrating out the fermionic fields 6 in the
path integral implies the appearance of E 42 (x) in the kinematic factor. We further
validate our results through comparison with the RNS formalism.

Since the hybrid formalism only preserves half of the spacetime supersym-
metries manifest, we now turn to the study of the extended hybrid formalism in
an AdS; x S° target-space. This formalism was discussed in a flat background in
Chapter 3 and manifestly preserves all spacetime supersymmetries. The super-
string in AdS; x S® can be supported by a mixture of NS-NS and R-R flux. We first
write an ansatz for the Type IIB sigma-model action in a general six-dimensional
background. After identifying the background superfields and spelling out in
detail our conventions for the PSU(1,1|2) x PSU(1,1|2) Lie superalgebra, we
construct the worldsheet action for the superstring in AdS; x S* x T* with mixed
NS-NS and R-R self-dual three-form flux, and then argue how this sigma-model
action can be derived: either by substituting the values for the background super-
tields, or via a perturbative analysis from the integrated vertex operator around
flat d = 6 spacetime.

Subsequently, one-loop conformal invariance of the model is proven by using

the covariant background field method. It is then shown how one can relate
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the manifestly PSU(1,1|2) x PSU(1,1|2) worldsheet action with the AdS; x S
hybrid formalism with mixed flux, which has the supergroup PSU(1,1|2) as the
target-superspace. Chapter 4 is based on the publications [6] [7].

To wrap up, we conclude in Chapter 5, where we highlight the main results
contained in each chapter and examine possible directions for future study. The
appendices include supporting material which serves to assist the readers seeking

technical details not covered in the main text.



Chapter 2

Higher-spin states of the superstring in

an electromagnetic background

In this chapter, using the manifestly spacetime supersymmetric hybrid for-
malism for open superstring field theory, we construct a superspace action for
the charged first massive states of the superstring in a constant electromagnetic
background. The physical degrees of freedom of the action include a massive
spin-3/2 and a massive spin-2 field. The hybrid formalism has the advantage
over the RNS formalism of manifest d = 4 A/ = 1 SUSY so that the spin-2 and
spin-3/2 fields are combined into a single superfield and there is no need for
picture-changing or spin fields.

Subsequently, the interacting superspace action for the charged massive states
is developed in components, providing a Lagrangian for the physical component
fields after the large gauge symmetry of the string field theory description is fixed.
The resulting equations of motion describe the propagation of charged spin-3/2
and spin-1/2 fields on the one hand, and spin-2, spin-1, and spin-0 on the other.
In the absence of an electromagnetic background, the Rarita-Schwinger and Fierz-
Pauli Lagrangians are retrieved for spin-3/2 and 2, respectively. Furthermore, the
Lagrangian derived does not suffer from the loss of causality problem occurring

in the minimal coupling approach.

2.1 Introduction

Constructing consistent effective field theory actions for higher-spin fields
is a challenging task, as recognized in the pioneering work of Dirac [8] and
soon after by Fierz and Pauli [9]. A significant obstacle arises when one tries
to couple massive higher-spin fields to a constant electromagnetic background.
Johnson and Sudarshan found that relativistic covariance of the theory is lost upon

quantization when massive spin-3/2 fields are minimally coupled to a constant

11
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electromagnetic background [10]. In subsequent works, Velo and Zwanziger
showed that minimally coupled actions for spin-3/2 and spin-2 fields already
exhibit inconsistencies at the classical level, including faster-than-light behavior
and the propagation of a wrong number of degrees of freedom [11] [12].

Superstring theory is known to be a consistent theory of quantum gravity,
containing an infinite number of both bosons and fermions in its spectrum as a
result of the string’s different oscillation modes. These oscillations include massive
states of arbitrary spin, where the mass squared is proportional to the inverse of
the fundamental string coupling «’. In particular, the open superstring spectrum
contains a massless U(1) gauge field, and its first excited level includes a massive
spin-3/2 and a massive spin-2 field. For that reason, string field theory presents
itself as a natural candidate for deriving effective actions for massive higher-spin
particles in a constant electromagnetic background.

Using bosonic open string field theory, Argyres and Nappi constructed a
consistent Lagrangian for a charged massive spin-2 field in d = 26 dimensions
[13] [14]. Under dimensional reduction, it was shown in [15] that there is no
propagating spin-1 state and one gets in four dimensions a theory of a coupled
system of charged massive spin-2 and spin-0 fields.

In this chapter, we will generalize the Argyres and Nappi result to the su-
persymmetric case using open superstring field theory, which includes both the
massive fermionic spin-3/2 and the bosonic spin-2 states. Although one can
in principle use the Ramond-Neveu-Schwarz (RNS) formalism of open super-
string field theory to perform these computations, we will instead use the four-
dimensional hybrid formalism of open superstring field theory for two reasons.
Firstly, the hybrid formalism has manifest d = 4 N’ = 1 spacetime supersymmetry,
which will allow us to combine the spin-3/2 and spin-2 fields into a single d = 4
superfield and compute the Lagrangian and equations of motion in superspace.
Secondly, the hybrid formalism avoids the complicated picture-changing operators
and spin fields, which are necessary in the Ramond-Neveu-Schwarz formalism to
describe the spin-2 and spin-3/2 states.

The hybrid description of the superstring consists of a field redefinition from
the gauge-fixed RNS superstring into a set of Green-Schwarz-like variables, al-
lowing spacetime supersymmetry to be made manifest. This can be achieved in

either two dimensions [16], four dimensions [17], six dimensions [18],! or in a

ISee chapters 3 and 4 for a description of the six-dimensional hybrid formalism in a flat and in
an AdS; x S® background, respectively.
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U(5) subgroup of the ten-dimensional super-Poincaré group [19]. In this chapter,
our focus will be the construction down to four-dimensional spacetime.

The field redefinition maps the free gauge-fixed RNS fields to the free hybrid
tields, which split into a compactification-independent part, describing the four-
dimensional Minkowski spacetime, and a compactification-dependent part. The
compactification-dependent fields describe a c = 9 N = 2 superconformal field
theory (SCFT) and, hence, can correspond to any Calabi-Yau manifold with three
complex dimensions. In addition, the SCFT describing the compactification-
dependent variables decouples from the four-dimensional fields, i.e., it has no
poles with the c = —3 N/ = 2 generators of the four-dimensional part. In this
setting, the critical ¢ = 15 V' = 1 RNS superstring is described as a critical N = 2
string with central ¢ = 6.

To better clarify the presentation for readers familiar with the RNS description,
let us first recall some basic features of the RNS superstring — and its field
content — before transitioning to the hybrid worldsheet variables. When certain
aspects seem obscure, it can be helpful to know how to translate between the
RNS and hybrid expressions. The following discussion might also be useful to the
development of a general intuition about the hybrid description of the superstring.

In the gauge-fixed RNS formalism with ten uncompactified directions, the
matter fields {0x™,pM}, M = {0 to 9}, satisfy a c = 15 N' = 1 SCA where the
generators are given by

Tm = —%axMaxM - %guMalpM, (2.1a)
Gm = ipMoxy, (2.1b)

and the ghost fields {b, c, B, v} satisfy a c = —15 N = 1 SCA with?

3 1
Tonh = —2bdc — dbc — Eﬁa'y — Eaﬁ'y, (2.2a)
Ggp = by —20Bc — 3pBac. (2.2b)

However, as we mentioned above, one might also describe the superstring as
a twisted ¢ = 6 N' = 2 string. This can be done by bosonizing 8 = ¢ ?9¢ and

v = ne?, and working in the large Hilbert space — allowing for the inclusion of

20ne can check that the algebra relations follow from the free-field OPEs in Appendix E, together
with our normal-ordering prescription detailed in Appendix F. Additionally, our conventions for
the =1, N =2and N = 4 SCAs are spelled out in Appendix H.
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the ¢ zero-mode in our formulas. In terms of the RNS variables, the twisted c = 6
N = 2 generators take the form

T = _%axMaxM — %l[JMal[)M — 2bdc — dbc — %8@47 — g —nd, (2.3a)

1 1
Gt = Ty gy, + bcoc — 5’7€¢Gm — ananeZ‘P +9%c — d(yéc), (2.3b)
G =0, (2.3c)
] =—bc+1ne, (2.3d)

where the supercurrent GV is the usual N/ = 1 BRST current with the addition of
a suitable total derivative in the large Hilbert space.

Furthermore, any twisted ¢ = 6 N = 2 SCA can be extended to a twisted small
¢ =6N =4SCA, see Appendix H. The remaining N = 4 generators are given by

Gt — 7, (2.4a)
G = tTepg + %wcm _ }Lbabqeﬂf’ _ #bac — 3(bef) + 9%, (2.4b)
Tt =, (2.4c)
P (2.4d)

Note that the U(1) current | is equal the ghost current minus the picture current,
e, | = jghost - jpicture where jghost = —bc— 84) and jpicture = _776 - 84)

In four-dimensional compactifications of the superstring, it is convenient to
split the RNS fields into a four-dimensional contribution and a decoupled six-

dimensional part

(" 9" b,e,0,8 0 © (X, T Phns P} (2.5)

where m = {0 to 3} labels the four-dimensional spacetime directions, and i = {1
to 3} denotes the complex three-dimensional Calabi-Yau directions M. After a
field redefinition to the four-dimensional hybrid formalism, the RNS field content
can be mapped to the following free worldsheet variables [17]

:{xml P/ sz/ ga/?aléd} @ {xilxl'l LPZI @ll/ (26)
RL3 M6
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where o, & = {1,2} are the four-dimensional spinor indices.

Note that in the four-dimensional part, one has five bosons {x", ¢} and eight
fermions {¢™,b,c,7,{} in the RNS formalism. This is the same number of degrees
of freedom as in the hybrid description after including the chiral boson p, namely,
five bosons {x™, p} and the eight fermions {p,, 0, 7*,0;}. Equivalently, for the
Calabi-Yau directions, one has three xs and three s for both descriptions. In
particular, the fermionic fields for the Calabi-Yau directions {¢/, 9} are a twisted
version of the RNS ones {gbf{NS,EFNS}.

As opposed to the RNS formalism, states and operators constructed with
integer powers of the free worldsheet fields (2.6) and ¢"?, where 1 is an integer,
are automatically GSO-projected [20]. Therefore, these operators have no branch
cuts with the spacetime SUSY generators, which is an advantage of the hybrid
description since these branch cuts imply that one has to sum over spin structures
in RNS.

2.2 Hybrid formalism in a flat four-dimensional space-
time

In what follows, we will further elaborate on the worldsheet variables (2.6) and
superconformal generators of the four-dimensional hybrid formalism in detail.
The worldsheet action, relevant fields and their main properties are presented,
as well as a formulation in terms of oscillator modes for the case without a back-
ground U(1) gauge field. For further details, we refer to the original works [17]
[18] [21] and [22].

Our conventions for the worldsheet theory follow [23] and we are using &’ = %
when the string constant is omitted. For manipulations with sigma matrices and
“dotted” /“undotted” spinor indices, we utilize the conventions of ref. [24], for
example, Xoi = 034 Xm, ‘7%1“‘7215 = _252521 (X)) = VX, (PX) = X", (077" +

(T”E’”),f' = —217’””55, etc.

2.2.1 Worldsheet action and superconformal generators

The Euclidean worldsheet action of the four-dimensional spacetime part con-

sists of four bosons x™, m = 0 to 3, with two pairs of left-moving canonically

conjugate Weyl fermions {p*, 05} and {?wgﬁ } (a, & = {1,2}) having conformal
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weight (1,0) each, and a chiral boson p. We also have the right-moving variables
which will be denoted by a “hat”.

In conformal gauge, the action is given by

S0=5- / A28 "Dt + P00 + P00 + P00+ P00 + 59pdp + 5P
+ Se, (2.7)

where ™" = diag(—,+,+,+), 9 = 0; and 0 = 9. Middle alphabet letters such
as m, n, p will be used to denote four-dimensional spacetime indices throughout
this work.

In the strip, the Euclidean coordinates take the standard values: 0 < o < 7
and —o0 < T < oo, where z = e~ with w = ¢ + iT. In the action, to go from the
plane to the strip, one just substitutes d?z = 2dodt, d = 9, and 9 = 9, where
Oy = %(80 —id7) and dg = %(80 +1id¢). As is commonly done, we will use a bar
to denote complex conjugation of z and w, but this should not be confused with
P, and 0" which are left-moving variables.

The worldsheet fields in the hybrid formalism are related to those in the gauge-
fixed RNS description by a field redefinition [17]. The internal six dimensional
matter part of the action, S, is the same as in RNS. Without loss of generality, we
will suppress the right-moving fields in the rest of this paper. In the free case, they
are related to the left-moving ones in the usual way by the boundary conditions,
for example, p*(z) = p*(2), 0%(z) = 6*(z) at Im{z} = 0 and x™ satisfies Neumann
boundary conditions.

We group the RNS matter variables for the internal directions {x*, ¢#}, y = 4 to
9,into a 3 and 3 of SU(3) and denote these variables by {x*, %, ¥, ¥, } with indices
j, k,1 running from 1 to 3. The description that we shall use corresponds to an
uncompactified superstring if x/ takes values on IR®, or to a toroidally-compactified
superstring if x/ takes values on T®. The free field OPEs in the complex plane for

the four-dimensional part are

5 y 5
o ~ ﬁ - IB ~ 1

p*(y)0p(2) —y Pa(y)0"(2) —y
/

p(y)p(z) ~log(y —2), ¥"(y)x"(z) ~ 5" (log|y —zI* + log |y — 2*),
(2.8b)

(2.8a)
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And for the internal part, we have

. 5 , ’
YWP(e) ~ =2 F)e) ~ 5o ogly — 2 +logly —2P),
(2.9a)
He(y)He(z) ~ —3log(y —2), (2.9b)

where we defined iy, = 9Hc through bosonization.

The action is invariant under four-dimensional spacetime supersymmetry

generated by
)2 12
Qu = fpu—iy) 5800+ 58°06,), (2.100)
Q' = ]{ (P — 1y %fuax‘j“" + %9285"“), (2.10b)

where § = 5= § dz, which satisfy the usual supersymmetry algebra

{Qu Qi} = —Zi\/g 74 0Xni (2.11a)

{Qa Qp} = {Qs Qs} = 0. (2.11b)

Note that the four-dimensional supersymmetry generators commute with all
worldsheet fields related to the compactified directions. Relevant supersymmetric
combinations of the worldsheet variables are

dy = —pu —iy/ gé‘j‘axm L5790, — %axaéz, (2.12a)

3 - /2 o 290 1+ 2
dy = —p; 1 zg 0Xpy + 07004 — 59&89 , (2.12b)
[y = 4/ %axm +2i00,04 + 210046, , (2.12¢)

with the following OPEs
4ie“ﬁ8§[~3 _ _4i€15<[589ﬁ

do(y)gg(z) ~ -z da(y)ga(z) ~ Ty—z (2.13a)
da(2)da(y) ~ 2 Lu (2.13b)

y—z
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The hermiticity conditions are defined as (p*)" = —p*, (6*)" = 9, (0xa)t =
—0xai, (da)t = —di, ()t = —(20p — 0Hc) and (0Hc)" = —(39p — 20H()®.
Note that (90%)" = —38" using the standard CFT rule for a primary field ¢ of
conformal weight /1 on the plane, namely, [¢(z)]" = ¢t (z7 1)z 2"

From the worldsheet fields, one can form the generators of a twisted small
N = 4 algebra

T=Ty+ T, J=Ts+T6, (2.14a)
Gt =G +GF, G* =G +GF, (2.14b)
]++ — e*l'erl'HC , ]77 — el'pfiHC’ (214C)
where T is the stress tensor and
1 in N — - 1 i .
T4 = ZH Il + 00 da + aﬂ,kd + Eapap — Ea 0, ]4 = —1ap,
2 — —
Te = —Zaxkaxk — 8¢k¢k, Jo = _¢k¢k = i0Hc,
1 1 -
G = ——¢Pd?, Gy = ———¢ 4",
o2V 1T 2B
_ e _ 1 L
+ __e—zszrzHch, G = — e2zpszcd2,
12 _ 12 .
G6+ = zaleljjl G6 = Eax]l/]]’
~ 1 /2 . D ~_ 1 /2 ) i ——
6 = S\ ¢ Pejoxd Py’ G, = —Ew Zelpe” OXi Py -

As one can see, the small N = 4 algebra includes four supercurrents { G*, G*}

and three spin-1 currents {J, J* ", J~~}, which generate an SU(2) algebra. A few

OPEs these generators satisfy are

Gy ()Gy (2) ~
Ge ()G (2) ~
G{ ()G (2) ~

Gg (y)Gg (2) ~

_(y_lz)3 + G 142)2 + (;}Z) , (2.15a)
T e e (215
e fz)ze—ipHHc + ﬁe_lpé)eﬂc, (2.15d)

3We do not discuss here the unusual complex conjugation properties defined for dp and dH¢
and recommend [17] and [22] for an explanation, where it is referred as the ~ conjugation.
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+

¥ (y)GF(z) ~ ;LyG_ = (2.15e)

{7{ G+(z),f G*(z)} =o0. (2.15)

Some comments are in order. First, note that the generators {Gi, T,]} form
a twisted ¢ = 6 N' = 2 superconformal field theory (SCFT). This SCFT splits in
two parts: one describing the four-dimensional spacetime {Gf, Ty, J4} as a twisted
¢ = =3 N = 2 SCFT and the other describing the six dimensional internal part
{GZ,Te, Jo} as a twisted ¢ = 9 N = 2 SCFT. The small A’ = 4 algebra above is
then constructed by adding the currents J™" and ]~ to form the SU(2) triplet
(I}

One should observe that {GF, Ty, J4} and {GZ, T¢, Js} decouple from each
other, i.e., they have non-singular OPEs between them. Consequently, the six
dimensional background can be replaced by any Calabi-Yau background described
by an /' = 2 SCFT. Another important fact is that, in the twisted case (considered
in this work), the TT OPE has no conformal anomaly so one can use topological
methods to compute the spectrum of correlation functions [18] without the need
of introducing superconformal ghosts.

We also define the p-charge of an operator O as the single pole in the OPE of |4
with O, and the “Calabi-Yau”-charge (CY-charge) as the single pole in the OPE of
Je with O. Properties of the generators and the hybrid variables for the twisted
case are summarized in the following tables

Weight | CY-charge | p-charge
i 0 1 0 Generator Weight
7 1 1 0 G*,Gt,] 1
] =
' —n(n+1 G,G ], T 2
e‘l " n(g : 0 n ++ 0
efe |0 3 0 J
e~ tHe 3 -3 0 Table 2.2: Conformal weight

of the twisted small N' = 4
Table 2.1: Conformal weight, CY-charge and generators.
p-charge in the twisted case.

2.2.2 Free field oscillator expansions

In this work, we will need the description in terms of oscillator modes of the
worldsheet fields. Considering first the free case, the oscillator expansions in the
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complex plane for the four-dimensional variables are

pa(z) = L 10N Pul2) = L (2.162)
N N
bulz) = L N, g, = Y O (2.16b)
N Z N Z
o 1/2 am
X" = xit —ia'p™ log |z|* + i (—) Y NN z7N), (2.16¢)
2 Nez-{oy N

where al' = (2a')1/2p™, x™ satisfies Neumann boundary conditions and capital

middle alphabet letters, such as M and N, are used to denote the oscillator num-
bers. We also used that ¢(z) = Yy Zf]% for a primary field ¢(z) of conformal
weight h.

The hermiticity properties for the modes are (0%,)" = 0" N (Pt = -7 y and
(af)T = a™;, with the commutation relations

[ an] = Monynon™, {pﬁ/{r Ban} = 606MiN0, {Pam oN} = 5g5M+N,o,
(2.17)

giving the OPEs (2.8).
The supersymmetric variables (2.12) in terms of the free field oscillators have

the mode expansions

du,N = —PaN — Z(O’ng),xlme,R — Z(N —2R — S)(gRES)QaN—R—S , (2.18a)

R R,S
diN = —Pan + (0RO )attun—r — Y (N —2R — S)(0r05)0in—r—s, (2.18b)
R R,S
N = _io'p%“mN + 2i Z(N — ZR)Q“RgaN_R , (2.18¢)
R

where

du(2) = Zzz\o;ﬁ’ di(z) = Zzl\ﬁ-l , Tha(z) =) Zz\ufcil :
N N
And these modes satisfy a set of commutation relations

[dsz/ H,BﬁM] = 4i€“ﬁa§§N+M , [E(XN/ H,B,BM] = —4ied/3895N+M, (2.19a)
{dam, 008} = —Nélonino,  {du, 904y} = —NOWomino, (2.19b)
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{dun, dim} = 2T gimiN (2.19¢)

with 0%, = ¢ dz zN90%(z) and 90,n = ¢ dz zV90,(z).
The Virasoro generators of the four-dimensional part are defined as

L 1 i
Ty(z) = ), ZNZiz + 5909p(2) — 59%0(2), (2.20a)
N
1 . .
Ly =), (Zﬂ”ﬁ‘ﬂmmm + 008 da—N+M + Iand ¢ M> . (2.20b)
N

Notice that the mode Ly has no normal ordering constant. And we will write

d% )

dz(z) :Zmr d (z) sz,
N N

. 2 = i
with d%\] = ZMEZ d%\f—i—Mle_M and dN = ZMEZ dljd\H_MdDiM.
We remark that when commuting or anti-commuting with functions of 6y and
fo,
dow = —Pa0 — (O'mgo),xaom +..., an = —Ppo T+ (900’”1),56060”1 +..., (2.21)

act as the usual derivatives D, and D; of [24]. To make contact with that notation,

one can use the replacements p,o — —%, Pio — %, 05 — 6%, 58 — gd and
afl = —id™. Note that (D*)" = D" in [24], while (@)t = —Hg. This is not

contradictory because dj and Eg act through commutators/anticommutators.

2.2.3 The string field ® and superspace action

It was shown in [21] that the string field ® of the manifestly SO(1,3) super-
Poincaré invariant open superstring field theory can be written as ® = ®_; + ®y +
@®; modulo exact terms in G /G, with the field ®, carrying 1 units of p-charge
and —n units of CY-charge. The linearized equations of motion for ® are

GyG/® 1 +G/ Gl Py + G GlP1 =0, (2.22a)

(GHGf + GG )@+ GGl + G Gfo 1 =0, (2.22b)
GyGi® 1+ GG P+ GG P =0, (2.22¢)
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When we write G, O instead of G} (z) O we mean taking the contour integral of
Gé,t+ around O, i.e., f dz G4£+ (z)O, and similarly for the other generators.
These equations of motion are invariant under the linearized gauge transfor-

mations
6D 1 =G A2+ GiA 1+ Gl Ao+ G Ay, (2.23a)
6Py = Gy A1+ G Ao+ G A+ Gf Ay, (2.23b)
01 = G Ag+ Gf A1 + G Ar + G As. (2.23¢)

where the gauge parameter A, carries n units of p-charge and —n — 1 units of CY-
charge. In the situation that we will encounter, ®_; and @, will be algebraically
gauged away. Due to this, only (2.22b) will contribute to the quadratic superspace
action

S = (@o(GJ G + G G )@o), (2.24)

which is evaluated as a two-point CFT correlation function on the plane with the
normalization (e~ #*+Hc(040)(0000)) = 1.

As an example, consider the four-dimensional massless sector of the open
superstring which is independent of the compactification. Since there is nothing we
can write with conformal weight zero at zero momentum for ®; and ®_, one finds
that &y = V(x™, 06‘,53) and ®; = ®_; = 0 where V is the standard real vector
superfield for the four-dimensional super-Maxwell multiplet. Then, schematically,

the quadratic superspace action and linearized gauge transformations are

S=(VG/GV), 6V=GjA_1+GJAs.

2.3 Superstrings in a constant electromagnetic back-

ground field

This section describes the quantization of charged open superstrings in a
constant electromagnetic background. Besides the usual coupling to the Lorentz
current, a new boundary term S;, is added to the worldsheet action, coupling the
spacetime fermionic worldsheet variables to the background U(1) gauge field in a
non-minimal fashion. Expressions for the oscillator modes and also for the small
N = 4 generators which generalize the free case are obtained. Charged open
bosonic strings were studied in [25], [13], [14] and, more recently, in [26].
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2.3.1 Worldsheet action and boundary conditions

To couple the superstring to a constant background gauge field, we employ the
hybrid formalism in terms of oscillator modes for the four-dimensional variables.
However, the chiral boson p will continue to be described using the free field OPEs
in our treatment. This will preserve the four-dimensional spacetime supersym-
metry and the gauge symmetry of our superstring field theory description. More
importantly, our treatment will also preserve the form of the small N = 4 algebra,
so that the reasoning used in constructing the formalism in the free case will also
hold for the interacting case.

We will consider an open string with total charge Q = go + g, and, as usual,
the constant electromagnetic field strength F;, couples to the charges g¢p and
g at the ends of the string by the conserved current associated with Lorentz

transformations*

7 =~ Loadml - Z[(po™e) + (po™8) ~ (F0™8) - (G07B)|, (225)

obtained by varying the worldsheet action with

1 1 -

Sx™ = Wy, 80, = _Ewmna’””aﬁe,;, 60, = Ewmnam”@eﬂ, (2.26a)
1 S

(Spa = _Ewmngmnaﬁpﬁ/ 517,5( = Ewmno—mnipﬁf (2'26b)

as well as for the right-moving fields. The variables w;,, represent the parameters
responsible for Lorentz transformations and the matrices c™", 0" generate the

spinor representations of the Lorentz group and are defined as in the Appendix of
[24].

The interaction term in the Euclidean action is then
Sou = [ dtEan{ = Locemst = 2[(po0) + (5o™8) — (5r)
— (po m”9)] } , (2.27)
and the total worldsheet action is given by

S = So+q0Sint|,_o + 4 Sint| ;. - (2.28)

4For a generic rank-2 tensor T, we use the conventions Tin) = %(Tmn — Tym) and Tuny =
1
j(Tmn + Tnm)~
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Bosonic worldsheet fields

We start by analyzing the known case of the bosonic variables. The equation of

motion and boundary conditions for the bosonic worldsheet fields are

02x™ + 92x™ =0, (2.29a)
dox" + 27ia’ qodx, F™ =0, o=0, (2.29b)
dox" — 27ia' g 07 xy F™ =0, o =r. (2.29¢)

This set of equations has a general solution [13]

X 1 o’ , .
_r [\ (—e—iN)(—it+0)+y
) =3 (QP) Z( e—zN) {e

+ e(—’;’—iNﬂ—iT—”)—’r} an, (2.30)

where we are using a matrix notation for the spacetime indices, for example,
(F1Hp = (F~1)"™p,, and the real antisymmetric spacetime matrices ¢, y and

are defined as

1
= %(7 +'), (2.31a)
v = arctanh(27ta’qoF), (2.31Db)
7" = arctanh(27ta’qF) . (2.31c)

Canonical quantization implies for the coefficients X, p ™ and af; the follow-

ing commutators
[ahy, o] = (M —ie)opmino, [X7, P =in™. (2.32)

As the notation suggests, ¥ " and p ™ have the interpretation of physical posi-
tion and momentum, as is easily verified analyzing the point particle limit. This
interpretation also justifies the factor of 1 in ¥, which is explained in [13]. In
particular, one could expect that aj’ would be the covariant derivative for the
charged string, but note that [a, aj] = —ie™", which is not the commutation

relation of a covariant derivative, namely, [D,,, D] = iQF,,. However, suppose
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we construct a real spacetime matrix M satisfying

T 3
= —. 2.33
MM OF (2.33)
One can then define
1
ag = M(p— EQFx) = —iMD = —i®, (2.34)
where D), = (9 — %QPx)n is the covariant derivative with A,, = —%anx”. We

then obtain

[“Omr D‘Or] - _anMrs[Dn/ DS] = _iQ(MFMT)mr - _ZQ(LF) - _iemrr

QF
(2.35)
as desired.
In the neutral string limit, Q — 0, (2.33) implies that
MMT — (1 — (qoF)?) L. (2.36)
Consequently;, it is consistent for small F;;, to define
M — (14 mqoF) 7. (2.37)

Moreover, we will assume that ¢, M and 9y commute as matrices, which is
justified given that each can be expressed in a power series in F and, as such, can

be put in block skew-diagonal form by a suitable Lorentz transformation.

Fermionic worldsheet fields

Now we turn to the fermionic worldsheet fields. As in the bosonic case, the
equations of motion are unaffected by boundary contributions. The subtle part
is to find solutions that satisfy the non-trivial boundary conditions. We will now
argue that the boundary conditions implied by the interaction term of (2.28) are
inconsistent, and that preservation of the worldsheet superconformal invariance
will require additional interaction terms for the fermionic worldsheet fields.

In the strip, at ¢ = 7, the boundary condition from (2.28) that the fermionic
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tields would need to satisfy is

o I
p o0y +p,00 + p 60, + p, o0

!/ ~
M Ar ) §(pF - 08) + 6(FF - 8) — (PF-0B) — 6(BE-70)| =0,  (2.39)

where F -0 = F;;,,0™", and the boundary condition at ¢ = 0 would have a similar
form but with the replacement g, — —go. One would then need to find an
expression for the worldsheet fields that satisties (2.38), but it turns out that a
solution of the form (suppressing anti-chiral fields)

5% = ap® + bEu(po™)®, 6% = c0% + dFy, (0™, (2.39)

cannot be found for any non-trivial value of the coefficients (a, b, c,d). This sug-
gests that we need to modify the boundary term in the action for the fermionic
fields.

To solve this problem, we will ignore the worldsheet action for a moment
and start with a requirement that fixes the boundary conditions of the fermionic
fields. It will then be realized that a new boundary contribution S, in addition to
the terms in equation (2.27), needs to be added to the action for these boundary
conditions to be satisfied.

Note that in [27] the equations of motion for the supersymmetric Born-Infeld
theory were obtained by demanding that Q = Qat the boundary, where Q and
Q are the left and right-moving BRST operators. Following the same logic, we
want to impose boundary conditions for the fermionic worldsheet fields such that
the left and right-moving small N' = 4 superconformal generators coincide at
o0 = 0 and o = 7. This will be accomplished by first looking at the terms in the
superconformal generators that have dx™, which is already fixed by (2.30). To be
more concrete, from (2.30), we have (recall that z = ¢~'%, with w = ¢ + iT)

dux™ (w o Z[ —e—iN)( a—ir)—v}m &y, (2.40a)

n

9™ () = _Z[ —e—iN)(c— ir)+v]ma}1\]. (2.40b)

n
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Therefore, at the boundary, we obtain the following relations

00" (@) = —[e]"00x" (w)

=0

, (2.41a)

=0

= _[8_27/]mnawxn (w)
o=Tt

dpx™ (D) (2.41b)

O=Tt

Notice that the boundary conditions relating dx™ to 9x™ resemble a Lorentz
transformation given by choosing w = 2y atc = 0 and w = —29' ato = min
view of the exponentiated form of equations (2.26). Besides that, we know that the
small A/ = 4 superconformal generators are composed of Lorentz invariant terms,
with the left-moving ones containing the worldsheet fields {0x™, pa, 0, P, 5@} and
the right-moving ones containing {53(’”, Das 91,%&,5&}. So to obtain the intended
boundary conditions relating the left and right-moving superconformal generators

in the interacting case, namely,

~+

Gt(z) = G*(2), G (2) =G (z), T(z)=T(z), (2.42)

at Im{z} = 0, one can relate the left and right-moving fermionic worldsheet
tields by a condition resembling a Lorentz transformation given with the same

parameter wy,;, as in (2.41),i.e.,atc =0

pu@) = [ Vppw),  Fu@) = [ ppw),  (243a)

0u(@) = [e™7 ) LO4(w), 0:4(w) = 7 7R 85(w). (2.43b)
Andato=nm

@) =~ Upp(w), @) = -l ThFpw),  (44a)

0o (@) = [ 71L05(w), 0:() = e 710 8,(w), (2.44b)

where (77 -0) éx = fymnam”ﬁ’", (v -?)""B = 'ymn(_rm”‘j‘ﬁ and similarly for /. We stress
that whenever the letter ¢ (0) is accompanied by a “dot,” we mean the Lorentz
generator 0" (¢""""") and not the worldsheet variable c. We hope the different
index structure helps to avoid any confusion.

By the same reasoning, the mode expansions of the fermionic fields should
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take the following form

= i (=iN+1le o) (—o—it)+1y-o] P
palw) = ~i) e 77| “ppw, (2.45a)
Z[ 1N+ e-0)(—0o— zr)+1 } IBQ[;N, (2.45b)
N
7 — (—iN—Le-&)(—o—it)—Ly-7]P —
Palw) = _12[" ’ ? } P (2.45¢)
N &
7. — ( iN— £ 0’)( U’—i‘f)_l/},.ﬁ ‘B 7. 24
0i(w) ; [e 2 2 } deﬁN’ (2.45d)

so that the exponential factors of the background are not present in the Lorentz

invariant terms of the small N' = 4 superconformal generators. Note that
—mni

B

In short, one can say that Lorentz invariance fixed the form of the fermionic

(e-0)f = emno™s" and (S-E)&B = emn0

worldsheet fields in the interacting case. The appearance of a Lorentz transfor-
mation in the boundary conditions linking the left and right-moving fields is not
surprising from the point of view of an open string with endpoints of charge gg
and g, attached to a D-brane. In this setting, T-duality can be used to show that
the tilt of the D-brane in spacetime is related to the field strength F, consequently,
the boundary conditions express the fact that the coordinates become rotated by
the gauge field in the dual description.

Using equations (2.43a) to (2.44b) in (2.38), one can show that the following
term should be added to the action for it to imply our desired boundary conditions

~

o= 'y [ deFun [~ (BT 0,0™0) + (p(e7 7, }6)

~ (e 7,78 + (pler 7,76

=0

/
+an [ dtFun| = (B0, 0™10) + (ple %, e"™}9)

— (e 7,™8) + (ple "7, ™ §B)| (2.46)

O=TT

Up to the addition of trivial terms whose interaction term vanishes, the contribu-
tion Sy is the unique symmetric combination in (p,, Qa,m,%) and (Pa, @,ﬁk,a)
that we can add to the action to obtain the boundary conditions of (2.43a) to
(2.44Db).
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So gathering expressions (2.7), (2.27) and (2.46), we can write the total world-
sheet action for the charged open superstring in the hybrid formalism coupled to
a constant electromagnetic background as

S = S0+ q0Sint| y_g + G Sint| y—,, + Sp- (2.47)

2.3.2 Superconformal generators and commutation relations

We will present here the description of the superconformal generators in terms
of oscillator modes, which is central for the computations contained in future
sections.

Canonical quantization of the fermionic worldsheet variables implies the same

commutation relations as in the free case for the fermionic modes

{phe Oan} = hom N0, {Ppn On} = FOM+N0- (2.48)

The boundary conditions and mode expansions determined that the Lorentz
invariant terms present in the superconformal generators, such as d?(z), are holo-
morphic and independent of exponential factors of the background gauge field.
This makes it straightforward to obtain the modes of {G*, G*, T} through the
usual method of contour integration, applying the doubling trick to consider only
the left-moving variables defined in the whole plane.

One starts with the mode expansions in the plane

_ —Z\FZ —ie—N—1,— (2.49a)

Pa(z) = —3e'0p37°0] PN, (2.49b)
N

0u(z) = Z[z*Nf%e-Ue%v-ff]feﬁN, (2.49¢)
N

Palz) = Dl N3 e g (2.49d)
N

Bu(z) = Yz Nt Te b 7)g (2.49%)
N

Then, as an example, substituting equations (2.49) in d?(z) and Ez(z), where d,
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and d; were given in (2.12), we obtain

4

dZ(Z) = ;m, E (Z) = - m, (250)

which have the same form as in the free case, with d3; = Y ez d% +ma—m and

312\] =Y mez dant ME‘f M- And the modes of the supersymmetric variables can be
read off by substituting the expressions (2.49) in (2.12)

dyN = —PaN — Z(Ung)a“mN—R - Z(N —2R— S)(éRas)G“N—R—S

. R RS
- - (0x8s) e ) 0N s, (251a)
din = —Pan + ;(GRO'm)éc“mN—R — RZS:(N — 2R — S)(0Rr05)0aN—R—s
+ % g(eRQS) (e "_T)ﬁ;icéﬂN—R—S 4 (2.51b)
TN = —i0" ayy + 2i ;(N — 2R)0urOaN_R + ;(s o) OprOan R
+ ;(5 'E)iGNREBN—R/ (2.51c)

i _ v
30N = —NOun — E(s~a),feﬁN, Min = —NOiy + E(a»:-(f)’;()ﬁ-N. (2.51d)

Note that 90,0 = 96,0 = 0 when ¢ = 0. The supersymmetric modes of the
interacting fields satisfy

[dsz/ H,BﬁM] = 4i€“ﬁa§§N+M , [E(XN/ H,B,BM] = —4ied589ﬁN+M ’ (2.52a)

i

{dun, 908} = —N&rn0 + 5 (e- ) E0nnio., (2.52b)
i . i

{d?w, 895N} = —N525M+N,0 + E(S . U)%(SM+N,0 , (2.52¢)
{dun, dim} = 2iTTgapmn - (2.52d)

These commutation relations follow from equation (2.51) by using

[, 0] = (M — ie)™ SN0, {pﬁ/yemN} = 55(5M+N,0 ’ {?BM’ 5?\]} = 5g(5M+N,0,
(2.53)

and preserve the same structure as the commutation relations in the free case
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(2.19). Observe that, from (2.51), the introduction of the background modified the

“super derivatives” zero modes by a term proportional to €

duof(00,00) = [ — pao — (07"00) attom — (9090)(5'U)aﬁf);so}f(f’olao) , (2.54a)

E,wf(@o,go) = [ — ?ao + (GQO'm),yDé()m + %(9090)(8-E)iélgo}f(go,éo) , (2.54b)

5 . i _ _
Hng(Qo, 90) = [ — 10(81 + zemnrsgrs (900’n90)]f(90,90) , (2.54C)

where €""P1 is the four-dimensional Levi-Civita symbol with €y123 = —1. Equa-
tion (2.54) can be seen as a generalization of (2.34) from bosonic strings to the
supersymmetric counterpart in four dimensions.

Of course, the superconformal generators have the same form as in the non-

interacting case

1 d> B 1 . 7
G (2) = 5 () ;ZN% Gy (2) = 5 e () §—2N§2, (2.55a)
~ I 2iptiHc dy =~ L oipinc a3
A N =) ;ZNH' Gy (2) = =57 (2) ;W
(2.55b)
L 1 i
Ty(z) = ) —xis T 59000(2) = 59%(2), (2.550)
N
1 .
Lv=)_ (ZHDIC\?CHMN+M + 008 dy—Nm + 0and N+M> , (2.55d)
N

using (2.51) for the supersymmetric modes. Also, using the fact that L1L_1]0) —
L_1L1]|0) = 2Ly|0), one finds that Ly does not acquire a normal ordering constant
when the background field is nonzero. In the bosonic string case [13], a nonvanish-
ing normal ordering constant was found to be proportional to ¢2. The vanishing of
the normal ordering constant in our analysis is a consequence that our description
preserves spacetime supersymmetry.

For later use, we also define the constant matrices
i . o ) i .
AP ={d,,00° ) =60 + E(s-a),f, Ny ={dy,0; 1} = 6§+ 5(e0)
(2.56)

Identities which will be useful for future computations of commutation relations

between the modes can be found in Appendix A together with our conventions
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for sigma matrices and spinorial indices.

2.4 Massless spin-1 multiplet in a constant electromag-

netic background

Using the description of the hybrid formalism coupled to a constant U(1)
background gauge field developed in the last section, we calculate in this section
the action for the four-dimensional super-Maxwell multiplet of the charged open

superstring.

241 Equations of motion and superspace action

As we saw in Section 2.2.3, the vertex operator for the compactification-
independent massless states of the open superstring has vanishing | charge and
weight zero at zero momentum and is described by a superfield V. In the case of
charged strings, we need to allow the vector superfield V describing the super-
Maxell multiplet to be complex. As usual, V can be expanded in terms of 6§ and
%

V(xm, 98,53) =¢+ 1(90)(1) — l(§OX2) + 1(9090)M1 — l(éogo)ME — (Qogmgo)Am
— i(6060) (B091) + i(6060) (Bo¥p,) + %(9090)(5050)13 , (2.57)

where (¢, A, D) are complex. The equation of motion and gauge transformations

for V are
GfG/v=o, 8V =Gy A_1+Gj Ay, (2.58)

where A_; and Aj can be writtenas A_1 = V/8e P i¢and Ay = \/gezip_iHCiC, with
¢ and { carrying no | charge and having conformal weight zero, i.e., they are
complex vector superfields and functions of x™, 6§ and 63‘.

From (2.55), the equation of motion and gauge transformations in terms of the

supersymmetric modes read
. ) . .
Ed%dz_ V- BV =0, 5V = %dég - %dég. (2.59)

We can express it in terms of zero modes using that d%az_l V= (Zd%Eé — ZdS‘E(Z)d,XO —
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32d§06,0) V. The equation of motion then simplifies to
A2 dodaoV + 16968d,0V = 0. (2.60)

The only non-trivial gauge transformation comes from (, and one sees that (2.60)
is gauge invariant by noting that d‘é‘ﬁgd“o& V= 8id”0‘86aoaéc .

In the free case, ¢ = 0, djj reduces to the usual super derivatives (2.21) and
05 = 0. So we recover the super-Maxell equation of motion dgﬁﬁdaov =0, or
D“D*D,V = 0 in the notation of [24].

Equation (2.60) comes from the action given by evaluating (VGI G, V), which
we write in N/ = 1 superspace as

= = / dx PR | V! (d§dodao + 16003da0)V | (2.61)

To get the expression in terms of components, one can use the gauge transforma-
tions to go to the WZ gauge in which the only nonzero components of V and V'
are

V = —(600"B0) A — i(Bofo) (601) + i (B060) (B0, + 5 (60f) (Buflo)D, (2:62a)

V' = —(600"B0) AL, + i(600) (Bo¥,) — i(Bofo) (Bow2) + ~ (8ofo) (BoBo) D™,

5(
(2.62b)

where we also wrote V' to emphasize that V is a complex superfield for the
charged superstring.
Expanding the oscillator modes in (2.60) using (2.51), we obtain the equations

of motion for the components

D=0, (2.63a)
Dm(@"P1)* =0, (2.63b)
D2A" —DMD"A, + 2ie™ A, =0, (2.63d)
with gauge transformations

6D = 6ip1, = 095 =0, (2.64b)
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where 4 is an arbitrary gauge parameter and recall that [D,,, ©,,] = —[aom, kon] =

ie;n. These equations of motion are obtained by varying the action

5 — %/d‘lx [A; <®2Am — DDA, +2is’“”An> — (17" D)
— (20" D ipy) + D*D} . (2.65)

Note that when the background is zero (¢ = 0), the above action becomes two

decoupled actions for the super-Maxwell multiplet
4 Lo f— _y L o
S:/d x[ = 7FE = (") + 503 + (14 2)], (2.66)

where A = A1 +iAp, D = Dy 4+ iDj and Frpyyy = 9Ap — 00 A (I =1, 2).
If we perform the substitution A,;, — (MA),, (2.63d) and the gauge transfor-
mation for A, can be put in the form given by [13]

(D.& DA™ — Dm(D-éA) +2i(eA)" =0, Ay =Dua. (2.67)
Observe that the vector field A, remains massless in the presence of the
background. This is due to the normal ordering constant being absent in the
Virasoro algebra of the four-dimensional part of the superstring (2.55), an effect of
our supersymmetric description. This can be contrasted with the results found in
[13], where A, acquires a mass term proportional to 2, a consequence of the shift
in the normal ordering constant by the same amount. Nevertheless, one can check
that the difference between equation (2.67) and equation (3.5) of [13] has vanishing
gauge variation, so both results are consistent. Notice when comparing (2.67) with
(3.5) of [13] that there is a sign difference in the term with no derivatives because
we define the commutator [Dy,, D,,| = iQF,, whereas [Dy,, Dy] = —iQFyu;, in
[13].
When g, — —qo, or the neutral string limit, one has

9-(1— m23F?)1 -a] Al g [a- (1— m22F2)1 -Al] =0, (2.68)
and
(14 7tqoF) Hmno™" gy =0, (2.69)

where we used (2.36) and (2.37). Similar expressions hold for Aj,, and . Equa-



Chapter 2. Higher-spin states of the superstring in an electromagnetic background 35

tions (2.68) and (2.69) can be obtained by varying the supersymmetric Born-Infeld
action [28] [29]

4 _ 1/2
SsuperBI = /d x[ — det (Umn + qortFimn — 2(1P10manlpl)>] . (2.70)

More precisely, as shown in [13], equation (2.68) can be obtained by expanding the
tield strength around a constant background in the equations of motion coming
from (2.70).

2.5 Superspace action of the first massive state of the
superstring in a constant electromagnetic back-

ground

Repeating the steps of the last section, we compute here the superspace action
for the first massive states of the charged open superstring compactified to four
dimensions and coupled to a constant electromagnetic background. This action is
non-polynomial in Fy,;, and describes a massive complex spin-2 multiplet and two
massive complex scalar multiplets, which are the compactification-independent
states in four dimensions preserving N = 1 supersymmetry. The case without an
electromagnetic background was studied in [30].

2.5.1 String field/vertex operator

Since we are ignoring compactification-dependent contributions, fields that
depend on the internal directions j of the Calabi-Yau are not allowed and the most
general complex string field having conformal weight +1 at zero momentum and
(mass)? = 1 =2is

Py = ¢ — (dp —dHc)B +i(dHc — 30p)C, (2.71a)
D = \/ée%jaxfﬁ , (2.71b)
P_y = V8e Pylox;A, (2.71¢)
¢ = d* Wiy — dy_1 Wy + iT1", V, + 00%, Vi — 9041V, (2.71d)

where ¢ is a superfield annihilated by modes > 1 and is a general linear combina-

tion of the four-dimensional supersymmetric worldsheet variables of conformal



Chapter 2. Higher-spin states of the superstring in an electromagnetic background 36

weight +1. Although ®; and ®_; do depend on the Calabi-Yau metric, we will
show that they can be gauged away algebraically, so this doesn’t contradict the fact
that @ is independent of the specific form of the compactification. The quantities
A A B,C, W, WQ‘, VE, V§ and V,, are usual N = 1 superfields which depend
only on the zero modes of (x, 6, 5), i.e., they are superfields annihilated by modes
> 1. The minus sign in front of 98;_ 1 and d;;_1 is a consequence of the hermiticity
conditions (96,)t = —960; and (d,)t = —d;.

2.5.2 Gauge transformations

We first look at (2.23a), (2.23b) and (2.23¢). In our case, Ag = A1 = 0 and we

consider

6P_1 =G A, (2.72a)
6Py = Gy A1+ G Ay, (2.72b)
0P = G As. (2.72¢)

The Calabi-Yau-independent gauge parameters are

A_1 = V8e (A + 9pF + 0HcK), (2.73a)
Ay = V/Be2ip—iHc [a) +(20p — dHC)E + (39p — 2aHC)IZ} , (2.73b)

with

A = 2i(d%,Ciy — dg_1E5 + 90% Bra — 305_1Hy + i[T", By,
w = 2i(d* {E1y — dg_1Cy + 00 Hy — 305_1By + il1", BL),

where w and A are annihilated by modes > 1and F, K, CM,EQ, Bia, Eg, Eia, Eﬁ‘, HM,Hg
and By, are superfields depending only on zero modes.

Calculating the gauge transformations, we find

1 1-2 1 12 ~
5p = Ed%/\ — Sdow + Ed% (F+2d 4 F, (2.74a)
o1 1 P2~ i 3i-2- 3i
0iB = gdiw — ZdiA + 5doF + SdiF + TdoK + Td3K, (2.74b)
1-2 1 =2~ 1 12~ 1
6C = —dyw Zd%/\ — 5doF + Ed%F — 490K+ Zal%K, (2.74¢)

SA = —iK, (2.74d)
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oA =iK. (2.74¢)

From (2.74), we see that the superfields appearing in ®; and ®_; can be
gauged away algebraically using the K and K gauge parameters, as we anticipated
in Section 2.2.3. Some useful relations to check gauge invariance that are obvious
from (2.74) are

5,iB = 4,C, 5B = —6,C,
opiB = 55C, 5#iB = —5:C,
oxiB = 36kC, 54iB = —35;C.

Following [30], we focus on a subset of the gauge parameters. The reason for
this is that Cq,, Cz, By, F, Hy, and H2 can be ignored, being parameters of A_
and A, that can be obtained from a state exact in Gt /G™. After using the explicit
form of ¢, A and w with the commutation relations for the supersymmetric modes,

we obtain

SWiy = 2iAByg + 411,405 — idgEx,, (2.75a)

SWs = —2iA ﬁBf ATIE*E,, + id3ES, (2.75b)

SV = —dig™ dGEY — dic™ dSEy (2.75¢)

5Vs = —id.Bs — 16iEs, (2.75d)

OViy = id3By, + 16iEq,, (2.75€)

8(iB — C) = duo(6W5 — id2E}), (2.75f)

S(iB + C) = —d%(0Wiy + idaE1s), (2.758)

where A = {dy1,00" |} = 6f + (e-0),” and Ky = {4,090, ;} = 0%+ (e-0)

Equations (2.75a) and (2.75b) imply that the superfields Wy (Wz) can be alge-

braically gauge fixed to zero by choosing an appropriate By (B3), therefore, we

can consistently take W' = W3 = 0 in the action. Imposing Wi = Wy = OWF =
6W, = 0, the gauge transformations become

SV = —4igMdoEY — dig™ dSEy (2.76a)

A'0Vh = 2118 Ey, — %Eédﬁ?ﬁ — 16iA;ES, (2.76b)

ALoVig = —2d3TT,40F5 + %d%ﬁgEM +16i0fEqg, (2.76¢)
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i0B = —é (iod3Es +didoEns ) (2.76d)
5C = %(andgﬁg — dng,E@ . (2.76€)

2.5.3 Equations of motion and superspace action

Equations (2.22a) and (2.22c¢) give

dod2A +2d5(iB—C) =0, (2.77a)
2doA — 243(iB +C) = 0. (2.77b)

Equation (2.22b) is more complicated to evaluate, it implies that

=2 =2 =2
(d?,dy — 2d3dy +d3d_ 1) e
+(dod? = 2" B3+ 2d” | — 24 d3)iB (2.78a)
—(=3dod? , + 6d" 1 d3 + 324" | — 642 ,d0)C =0,

=2 =2 —2
(—dgdy — didy +d3d_1)g
+({d2, 35} — 64)iB (2.78b)
+(—=3[d3,do]C) — 48(dBA — d3A) =0,

(32ds — 3d%d, + 24" )
(3, d7)iB (2.78¢)
— (64id*T Lody — 19d3d; — 3dad? — 64)C
H16(doA +d2A) =0,

where, after acting with the generators on the string field ®(, one obtains terms
proportional to J*, [T (dp — dH¢) and J* T (0Hc — 39p) which correspond re-
spectively to the three equations above. This form of the equations is particularly
useful to check gauge invariance using (2.74). Some helpful relations between the
modes can be found in Appendix A.

The task now is to eliminate operators with mode numbers > 1 by using (2.52).
Equations (2.78b) and (2.78c) can be expressed entirely in terms of zero modes

(the overall oscillator number is zero), so that they only give one independent
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relation. On the other hand, each term in equation (2.78a) has overall oscillator
mode —1, consequently, (2.78a) will give us one independent equation for each of
the supersymmetric modes 96 |, I1"";, d* ;, etc. Note that in the gauge W} = 0,
the terms proportional to d6* ; do not contribute to the superspace action. The
same holds for terms proportional to 90;_1. Of course, to evaluate the CFT
correlator corresponding to the superspace action, one needs to consider the
equations of motion together with the appropriate factors of J**, J**(dp — dHc)
and J*1(dHc — 30p).

From now on, to proceed in the computation of the action, we take A = A =
Wi = Wg = 0. In this gauge,

du1g = —2(0"300)aVin + A Vig, (2.79a)
dyp = —2(7""960)" Vi — 3&5_2’3 (2.79b)
aa19 = —iogs (Mnm — ienm) V"™, (2.79¢)
3019 = 309 =0. (2.79d)

For simplicity, we also perform the redefinitions

—2(0"300)a Vin + Ao’ Vig — Usy, (2.80a)
2(7"300) Vi + B3V — . (2.80b)

The gauge transformations for Uy, and U, are then

R — —i 1 =2 .
SU, = —16i00 (dyoErg + duoEzs) — 2d311,40Ey + zd%dOEm + 161Af1-31ﬁ,
(2.81a)

STy = 1610050 (dyES + dSEy) + 2dTTEEy, — %Eédﬁ?ﬁ‘ —16iA"4Ey,  (2.81b)

if we require that SW}' = 5W§ = 0 so that W and WQ_‘ remain zero.

Computing the CFT two-point function (®}(GS G, + G, G} )®p), one finds
that the string field theory action in AN/ = 1 superspace for the first massive
compactification-independent fields of the charged open superstring coupled to a

constant electromagnetic background is
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/ dx popo{ g { — {2, 30} Vi + 16T L0V — 321y
ey, VP — 32 ((aeodo)vm + (80do) Vin ) + 875 (daoUlni — dioUse ) B
4 321T,,0 + 240%% [d0, ao]c} + U4 [ 80" (Hm — i€nm)do V™ + ddsoduo Us
40Uy + duoda(—2iB + 18C) + 90,0(—32iB — 96C) — 481'HMOESC}
~ T, [ — 8T (Y — ) Aao V™ + 443U — 4d%dy U, — dod?(2iB + 18C)
+ 00 (—32iB + 96C) + 48ng‘“d,xoC} + Bt [ — 32115 (1um — ignm) V"™
+ ({d3,d2} — 64)B + 3i[d2, d5)C — i(zdga,m + 3285,5(0>U§ + z'(zaédg + 32393) X
x um} +3ct { — 87" [dy0, dio] (Hum — i€nm) V™ — (6dgH§ + 8iH6‘“HM)> Uta
- <6Ed0d3 + 8iHmod€§>U§ (43, d0]iB
— (- 11{d2,E§} + 12811511, — 25685,5(033 — 256005d 0 — 64)(:] } , (2.82)

with the equations of motion

— {3, Ao} Vi + 16T L0 Vi — 32(Hun — i) V" — 32 [(aéoﬁo)vm 4 (aeodo)vm]

+ 87 (dyo Uy — daoUne) + 32TL0B + 240mea |y, d5]C = 0, (2.83a)

- 80’,;?,5( (Unm - iSnm)Eng + 4Ea0daOUg - 43311104 + daOaé(_ziB + 18C)
+ 90,0(—32iB — 96C) — 48iTL30dgC = 0, (2.83b)

— 8 (1 — iy )dao V™ + 443U — 4d%dy Uy, — dyd?(2iB + 18C)

+ 005 (—32iB + 96C) + 48iT14%d,0C = 0, (2.83¢)

— B24TTE (1 — denm) V™ + ({d3, 3o} — 64)iB — 3[d3,d2]C
+ (2350 + 320040)Us — (2dad + 32008) Uy, = 0, (2.83d)
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— 8o [dOLOI azicO] (77nm - Z‘Enm)vm
— (6d8dy + BiTT§da0 ) Une — (6daod3 + 8ilTuiod§ ) U
— [, @)iB — (~11{d3, 5} + 12810 — 256900y — 25636dag — 64) C = 0.

(2.83e)
Using (2.83b), (2.83c), (2.83d), (2.83e) and (2.77), one can show that
B = —31;2 [[dz,ﬁﬁ]c + dad2U — dSdal, | + é(aeodo) (3C +iB)
— %(a@oao) (3C —iB), (2.84)
and
64(IT! L0 + 1)C = 6{d2, do}C — 2d;0d3Ts — 2d%d5 U,
+32(960dg) (—iB + C) + 32(96odo) (iB + C) . (2.85)

Equations (2.84) and (2.85) generalize (3.8) and (3.9) from [30] for the uncharged
and non-interacting case. At the level of the equations of motion, one can also
gauge-fix Uy, = U; = 0 by the gauge transformations (2.81a) and (2.81b). Note
that using our conventions for the supersymmetric variables, the quadratic action

of [30] for the non-interacting case is
S free = —% / dx pgpg{vm { (@2, @) Vi + 16T T Lo Vi — 32V
+ 1654 (dao Vi — dao Vi) + 64110 B + 487 [0, duo] C}
Ty [SH&Od,XOV& — AoV, + 2daoda(—2iB + 18C) — 96inmoﬁﬁ,‘c}
+ Vs [ — 4BV + 2dyd3(2iB +18C) — 96iH("§”‘da0C}
+B [{dz, dYB — 64B + 6id2, Eﬁ]c} +3C [11{d2,3§}c — 128T1211,,0C

+ 64C] } . (2.86)
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2.6 Spin-3/2 and spin-2 charged massive states in a

constant electromagnetic background

With the superspace action for the massive states of the superstring in an elec-
tromagnetic background at our disposal (2.82), we can now expand the superfields
in components, eliminte the pure gauge degrees of freedom and write an effective
action for the massive spin-3/2 and massive spin-2 fields. Due to the complexity
of the terms in the action and the huge number of auxiliary fields, this is a tedious
and long task which was explained thoroughly in ref. [2].

In this section, we will summarize the main results and skip most of the
technical the deatils. Hence, we will write the action and equations of motion
for the spin-3/2 and spin-2 fields after numerous simplifications, discussed in [2],
have been implemented.

As noted in [14] for the case of the open bosonic string, and as it appears
through our manipulations in this work, the consitency of the Lagrangian (2.82)
and the derivation of the equations of motion make use of the anti-symmetric
property of €,,,, but nowhere does the explicit dependence of ¢, on F;;; intervene.
Therefore, our analysis continues to be valid if we take everywhere the limit of
quantum field theory €, — QFy; and ©,;, — Dyy.

Following this, to ease the presentation, our working configuration can be
reformulated, independently of a stringy framework or not, as follows: the su-
perfields are charged under the U(1) of the elctromagnetic background, to which
we associate a covariant derivative ©,,, whose commutator gives a constant anti-
symmetric tensor ¢,,,, hereafter referred to as the “electromagnetic field strength,”
an obvious abuse of language. For convenience, we will assume that {V},;, B, C,
Uiy, Ui‘} carry a positive unit charge, so their conjugates are negatively charged.
It is then easy to verify that the action (2.82) is U(1)-invariant. For the covari-
ant derivative we have [9,,, D] = igeu,, with g = £1. For example, given a

positively charged superfield component ¢, we have

(D, Dl = g, (D, Dul¢* = —iepmd* . (2.87)
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2.6.1 The complex superfields

The expansion into components of the superfields reads:

HMWM%NX%M(MM%, (2.88a)
B = g+i(fn) — i(0%,) +i(60)Ny — i(00) Ny + (0" 8)cy,
+1(00)(0p,) — i(66) (6p2) + (60)(66)G, (2.88b)
C=¢+i(6F) —i(08,) +i(00)M; —i(00) My + (00"8)ay,

+1(00)(09,) — i(60) (042) + (60)(80)D, (2.88¢)
Uiy = 014 + 0451 — (0™0)aS1mn + (0"0) a1 + (80) 1710 + (00)Z1a + (80™0) 71104
+(00) (") a1 + (80)6ut1 — (88) (08 b1y + (66) (06 Wm/ (2.88d)
Uy =35 + 851 — (0""0) 510 — (7"0) D1, + (00)T7% + (00)3 + (000)7S,

— (00)(@"0)"F,, + (00)8"F1 — (80)(F""8) F1,u + (00) (BO)7EL , (2.88e)
Uy = 0pg + 0a52 — (07"0) uSomn + (00) wwam + (00) 1120 + (00) 20 + (05™0)roma
+WW@mnWWWWWW%%ﬁWXWm (2.88f)
Uy = 7 + 05 — (7""0) “Samn — (7"0) Do + (00)77% + (00)5 + (00™B)74,,

— (00)(T"0) Ty, + (00)8"Fx — (60) (7""8) Fayu + (60) (FO)TES (2.88)

where the gauge parameter superfields E;,, Ey, are given by

E1p = Aty + 0u0 — (0™0) u Ay + (00) u Az + (00) Ay + (00) Asy + (06™0) Aga
+(00)(0"8) A7 + (00)0u\s — (60) (0""0)a Ngmn + (00)(60) Aow,  (2.89a)
Ey = A7 + 00 — (@"0) Aoy — (7"0) Aam + (00) A + (00) A5 + (008 Ay
— (60)("0)" Az + (00)8" A — (60) (@""8)*Aguu + (00) (80) Ny, (2.89b)
Eza = Yia + 0Y2 — (07"6)aYomn + (070)aYam + (00) Yaq + (60) Y5 + (6070) Yoma
+ (60)(0"8)aY7m + (00)6,Ys — (66) (™ ) Ysmn + (66) (60 )Y9oc/ (2.89¢)
Es = Y| +0Ys — (@"0) Yoy — (@"0) Y + (90)Y; + (60)Ys + (00™9)Ye,,
— (80)(70) Y7 + (00)8"Ys — (60)(7""8)* Yspn + (00)(00)Ys . (2.89d)

We also denote the dual field by ™" with

1 1 ~
’é’mi’l — Eemnpqqu’ gmn e —Eemnpq&'pq . (290)



Chapter 2. Higher-spin states of the superstring in an electromagnetic background — 44

Obviously, the sum (&, + i€y ) is self-dual. Some useful identities related to the
field strengths are

1 " 1
Emne"* = Z(Snkegbﬁub, emne™ — ek = Eénkeabeab. (2.91)

2.6.2 Charged massive bosons

After using the gauge transformations described in Section 2.5.2, and perform-
ing suitable field redefinitions, most of the component fields can be eliminated
from the superfields (2.88). In what follows, we list all component fields which will
remain and, therefore, describe the physical degrees of freedom in the Lagrangian
for the bosonic fields L£p derived from the superspace action (2.82).

For the components in B, the physical degrees of freedom are contained in
the fieds {cm, N1, N2 }. For the components in C, the physical degrees of freedom
are contained {a,,, M1, M }. For the components in V,, the physical degrees of
freedom are contained in h,,,, where only the symmetric part survives after using
the gauge transformations and field redefinitions. For the components in i/;, and
Ug, all of them can be removed, either by using the gauge transformations or by
field redefinitions. In what follows, we label the trace of h;;, by h, and assume
that the antisymmetric part of /1, has been gauged to zero. The details regarding
the gauge transformations and field redefinitions are presented in ref. [2].

The Lagrangian Lp can be separated in two separately gauge invariant parts £;
and £,. This means that one can write L = £ 4+ £;. In terms of the components,
the first part reads

El:ﬂ1<—2+@2>M1+N1<—2—|—@2>N1, (2.92)
where we defined the complex scalars

M1:M1+Mz, MZZi(Ml—MZ),
N1 =N;+ Ny, Ny =i(N; — Np),

and performed a field redefinition to eliminate M5 and N.
The gauge invariant part £, is more complicated, and also more interesting,
since it contains the massive spin-2 field ;. After performing field redefinitions
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and using the gauge transformations, and introducing the definitions
(ee) = ey, (e€) = ey, (2.93)

it is possible to write the Lagrangian £, as a deformed Fierz-Pauli Lagrangian [2]

[3]

Ly =C"D%Cop +D"Cu®"Cpy — 2C" t (1 — i€mn)C"

3 T o o

+ {A@m . %smbBQb + 5 (e)BD, — EemabchCQ“ - éemaﬂban + %smbHQb
[ 1 1 j

x A™ {@nA + %enliDlB + g(sE)@nB — EenlquI”HW + %SHICDPH”Z

3 - : B

- %en@l’}-{} _2AA+B (@2 - 2) B~ Semne""BO"D;B

41 (@ﬁ mkg) B) - 1( JHB +h.c.| + LTI LI
E 1 nmé€ k E EE .C. E (mn)

1 _ 4 1 1/
i E33”7'11,,1,133,(}1’“" i E@”?—anQka’” +5 (”H"m@m@nh 4 h.c.)

— 21" H gy + H " P — %ﬁ (02 -2)n
+ (#’”’” n %ismﬂﬁ) (P - %ismnB) , (2.94)
where
Hon = (N — i€ ) 150, H=h, (2.95)
and
Con = (Wmn — i&mn)C". (2.96)

It is important to note that the Lagrangian (2.94) contais two complex mas-
sive bosons A and B, which were not present in the superfield epansion (2.88).
However, these complex bosons correspond to the massive vectors a,, and ¢y,
respectively. More precisely, it can be shown from the equations of motion that
ay and ¢, describe one complex degree of freedom each. As a consequence, the
Lagrangian for a,, can be converted to a dual Lagrangian for the complex scalar A
— after the addition of an auxiliary field A to the a,, Lagrangian and performing a
suitable field redefinition. The same holds true for the c;, Lagrangian. The details
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are further explained in ref. [2].

The equations of motion coming from £; are straightforward to obtain
(@2—2)/\41 ~0, (@2—2>N1 = 0. (2.97)

Deriving the equations of motion from £, in a transparent form is a tedious
exercise. Here, we will only quote the result. To decouple the massive spin-2
on-shell, one first defines the traceless and symmetric tensor b, as
4 Ll k k 1 k k
Omn = ghmn ) <€m hin + enkh m) 5 (C‘Dm@kh n + DnDkh m)
i i
- Zﬂmn <8kl@p©lhkp> + 4 <8mk©l©khnl + snkglgkhml - Smkglgnhkl
1

1 i
- snk©l©mhkl> + [g(ss) <©m®nB n @ngmB) +5 (smkngnB

1 1 1
+ snk®k©mB> — (6 + ges) (€€)mnB + 5(1 — ee)emkeknB}

1 i/ - 5
+ P [ ~5 (emk© DA+ €D @mA> + g(sanmnA

1 ~ _
- (&) (@mgnA n ©n©mA> + (smkeln©k©lA + snkelm@kglA>] . (2.98)

which leads to decoupled equations of motion and constraints,

<©2 - 2) O + 2i <emkhnk n snkhmk) —0, (2.99a)
D"y = 0, (2.99b)

h=0, (2.99¢)

D2Cp — 2(Hn — iemn)C" — Dp®,C" =0, (2.99d)
D"C,y =0, (2.99€)

(:02 - 2) A=0, (2.99f)

(@2 — 2) B=0. (2.99g)

As in the Argyres-Nappi Lagrangian, a simple analysis of the equations of
motion and constraints confirms causal propagation of the spin-2. Note that, at the
first massive level, the bosonic sector of the superstring has 12 complex degrees of
freedom: 5 from the symmetric traceless spin-2 b, 3 from the massive vector Cy,

and the remaining 4 from the massive complex scalars { M1, N1, A, B}.
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2.6.3 Charged massive fermions

As usual, the discussion for the fermions is a mirror of the bosonic one. Simi-
larly as in Section 2.6.2, we begin by stating which components of the superfield
(2.88) carry the physical fermionic degrees o freedom, i.e., the ones that remain
after performing field redefinitions and using the gauge transformations of the
superstring field theory description. Once this is completed, we will write the
Lagrangian Lr for the physical fermionic component fields from the interacting
superspace action (2.82).

For the components in B, the physical degrees of freedom are contained in
the fieds {1, 7, }. For the components in C, the physical degrees of freedom are
contained {¢,, ¢, }. For the components in V,,, the physical degrees of freedom are
contained in { X1, Xoyr Mm, A2m }, Which describe the massive spin-3/2 degrees of
freedom. For the components in U3, and Hi‘, all of them can be removed, either by
using the gauge transformations or by field redefinitions, see ref. [2].

As with hy,;, and Cy, in the bosonic sector, the fermions in the V), superfield
will also appear contracted with one or two (1 — ie) factors in the Lagrangian. In
order to make the formulas more concise, we define spinors with bold symbols

Mo = (Toun — i€mn) A1, Ao = (Hyn — i€mn )AL, (2.100a)
Xim = (Umn — ismn)XT ’ Xom = (Umn - igmn)??g . (2.100b)

The resulting Lagrangian Lr for the fermionic components of the superspace
action (2.82) then reads

Lr = —é [z( Tgn@nxlm) + (xlmﬁngka'”@kxln)} - fz[(w;ﬁm) +h.c.}
+ {— i(¢10m©m¢1> +2i (ylam@m%ﬂ + [% (xTUmn©”¢1>

- L (XT@mlh) - é(ATUm$1> —2i (XTEm’)’l) - \/§<AT@m7l> + h.C.}

X5 (€-0)0m7Y, + h.c} . (2.101)

Analogously to the bosonic case, we can find decoupled equations of motion
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for the spin-3/2 and spin-1/2 fields. For that, we define
_ _ 1 ) — —
!/
= + €-0)0, , 2.102b
Xim = Xim + \/E( )T, ( )

which leads to the following equations of motion and constraints for the spin-3/2
fields

T"DpA iy = —V2(mn — iemn) XY (2.103a)
T"Duxim = —V2A1m, (2.103b)
D" xim =0, (2.103¢)
DAY, = —\/TE(_T’”(S-U) Xin, (2.103d)
Ty, =0, (2.103e)
oAy, =0, (2.103f)

as well as the Dirac equations for the spin-1/2 fields

iT" D1 = —V20,, (2.104a)
10D i, = —V271. (2.104b)

Note that we also have a similar set of equations of motion for the fermionic
fields with index 2. In addition, {x},,, Xllm} describe 4 complex on-shell degrees of
freedom, and {1, ¢, } describe 2 complex on-shell degrees of freedom. Together
with the fermionic fields with index 2, we indeed have the 12 complex degrees
of freedom as in the bosonic counterpart. Of course, this ir already expected by
spacetime SUSY.

Even though the spin-3/2 and spin-1/2 fields appear coupled at the level of the
Lagrangian (2.101), we have shown that it is possible to find a decoupled system
of equations of motion and constraints derived which are from (2.101).

For the bosonic sector, we were able to write the Lagrangian for the charged
fields as a deformed Fier-Pauli Lagragian (2.94). The analogue for the fermionic
case Lr is to find a field redefinition such that the Lagrangian (2.101) reduces
to a “Rarita-Schwinger plus Dirac” Lagrangian when the electromagnetic fields
vanishes. Indeed, it is possible to find such a field redefinition [2]. Here, we will
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only quote the result.
The resulting expressions are very long. Therefore, to make them easier to read,
we will separate the Lagrangian into three parts:

EF - 'CRSD + Ekm + Ecoupl 7 (2-105)

where Lrgp consists in a sum of Rarita-Schwinger and Dirac Lagrangians. Ly,
are the corrections of the kinetic and mass terms due to the electromagnetic
background, and they vanish when ¢ = 0. L1 contains only new couplings
between the spin-3/2 and spin-1/2 fields that are induced by the electromagnetic
tield. It also vanishes when e = 0.

The first part takes the expected simple form

1 — 1 S
Lgrsp = — Eemnkl (AlmUn”DkAu) + S€mnkl (XTUﬂ@kXD - \/E[( 1%mnX1) + h-C-}

- 51(110" ) = 3i(17"0um) = | I () +he| + (1 0 2),

(2.106)

and it is the Lagrangian that was historically first considered and lead to the issues
discussed in the introduction.
The new contribution to the kinetic and mass terms reads

18

2
i _ _ 1 — — _
— Elpl(s o) (e-0)Dmtpy + Eem”kl(emp — zemp)(elq + zelq)tplani)p@ki)qtpl

. — 1 ~ —
— ie"ke,, <¢1Um©”1p1) — Ee”mek(skl - z“ékl)(qu — i€pg) P10, 01D D1

Lim = —%fémn (%L’lffm@n%) e (1P1Ul53m@l@n$1>

. — i — i —
+ lsmkalslnlplap@m@pgnlpl - E(ss)gmnlplo'ngmlh + E(Sg)smnlplgn@mlh

+ ismkG"" (71ﬁmal«7n©zvl) - 411 {ismkc"”vlﬁm(s -0)0' T D + h.c.}
— iemka”%Trm(s -0)0! (e-0) T, D1y1 — B YT D1 —
1
V2
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1 e ke 1
+ h.c.} = 4 Emn {(XTU’”O’kO'l@kX11> - h.c.} ~ 1

1 ~k 1 1. . _
+ 5 Emk (/\TU”@nA1> + m [z(ATZmnx’f> — 2iemn (/\’fakal@k@mxll>
+ h.c.} + (1264 —¢), (2.107)

while the new couplings between spin-1/2 and spin-3/2 fields are

. 1 _
‘Ccoupl = \/EZATO—WW (8 : 0-)@”,),1 - E(Emn - lgmn) (Ailﬂgn,)q)
1 . 1 e . B
+2\/§l€mn< 10' o Z)k')’l) + 2\/§€mn)\10' (8 0')0' @k’)q—i—zﬁ (Almo-nll)1>

i . — i — _
- 1(88 + i€g) (/\T(Tm%) + —em”kl(slq + 1€15) MmO DD 1P,

2
1 K gkl gy (ymon " | B
4 Lew — i ) (W'D, ) + S0 (e 2)owm
3_ 1
27(1 O'm(g 0)71 + 48 Gkn <X10'l(7p‘7 @m’Dp'ﬂ) - F<¢1Zm”©m)(1n>

i
\/EXl 10m(e0)on®" Py — 18 Ganl(TlUp( 0)7" DD

i _ i S
+ A (e 0)Tule- o)1 + 5 (e) (RH'Tum)
1 _ 1 _
4+ ——(ee +ied) ("7, 0, 0" — ———x"M(e- 0oy o), D"
8\/5( A)(Xl mn 1P1> 4\/—7(1( )Tm( )T Py

——X1"0m(e-0)ou(e-0)D P, + —smkan (xlalapi)m@p@”tpl)

4f 2v2
2ﬁ
(2.108)
In these expressions, we introduced the notation
Yon = omon(e-0) —om(e-0)oy — (6 0)0m0y, (2.109)

and



Chapter 3

The superstring in a flat six-dimensional

background

We begin by introducing the six-dimensional hybrid formalism for the super-
string, establishing our conventions for the worldsheet and target space variables.
In order to preserve more supersymmetries manifestly in the six-dimensional
spacetime, the formalism is extended by adding d = 6 A/ = 1 superspace vari-
ables and unconstrained bosonic ghosts to the worldsheet theory. A manifestly
spacetime supersymmetric vertex operator U is then constructed. BRST invariance
of U is shown to imply the SYM equations of motion in d = 6 N' = 1 superspace.
Finally, it is shown that spacetime supersymmetric scattering amplitudes can be

computed in a similar manner as in the non-minimal pure spinor formalism.

3.1 Introduction

As of today, superstring theory is the only known mathematically consistent
quantum theory of gravity that can, in principle, accommodate the much studied
and successful standard model of particle physics. Despite the fact that quantum
consistency requires the superstring to have ten spacetime directions, from a
practical and experimental point of view, it is self-evident that the most interesting
case for its study comes from backgrounds where one has four uncompactified
and six compactified directions of the ten-dimensional spacetime. As was the case
in the discussion carried out in Chapter 2.

At the same time, the lack of tractability of the theory in a general target space,
and the dualities connecting the different mathematical formulations of string
theory and quantum field theory [31], have made the understanding of solvable
compactifications of the superstring an active area of ongoing research since its
discovery more than half a century ago [32] [33].

The study of superstring compactifications can have applications both to the

51
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existing theories of physics and to areas of pure mathematics [34] [35] [36] [37]
[38]. The most notable cases of study are compactifications on the so-called
Calabi-Yau backgrounds, which are complex and compact Kdhler manifolds with
a Hermitian metric and vanishing first Chern class [38]. As an additional bonus,
these conditions turn out to imply a supersymmetric spacetime for the superstring
to propagate.

Although spacetime supersymmetry has not been observed experimentally,
it is a powerful tool for simplifying difficult calculations and holds significant
phenomenological value [24] [39]. Moreover, another important motivation for
exploring d # 4 superstring compactifications — to be discussed extensively
in Chapter 4 — comes from the intriguing AdS/CFT duality which relates the
superstring propagating in a d + 1-dimensional Anti de-Sitter background to a
conformal field theory living on the d-dimensional AdS boundary [40].

In this chapter, our focus will be on compactifications of the superstring on
Calabi-Yau spaces of complex dimension two. More specifically, we will be study-
ing the superstring on R® x My, where M, can be either K3 or T, by using the
spacetime supersymmetric six-dimensional hybrid formalism [18]. As in compact-
ifications to four-dimensional spacetime, the six-dimensional hybrid formalism
consists in a field redefinition of the gauge-fixed Ramond-Neveu-Schwarz (RNS)
superstring into a set of Green-Schwarz-like (GS) variables, allowing spacetime
supersymmetry to be made manifest.

The hybrid formalism stands in contrast to the more conventional GS [41]
and RNS formalisms of the superstring [20]. Even though the GS superstring
has manifest spacetime SUSY, quantization becomes difficult due to the lack
of manifest Lorentz covariance in the light-cone gauge, and computations of
scattering amplitudes from the GS superstring remain a challenging task. Despite
the fact that the RNS superstring is quantizable in a Lorentz-covariant manner,
spacetime supersymmetry is not manifest, and the theory has an infinite number
of SUSY charges related by picture-changing [20]. In addition, as opposed to the
GS-action, quantization is straightforward since the hybrid action is quadratic
in a flat background. Additionally, the hybrid description enjoys an ' = 4
superconformal symmetry, which can be used to compute n-point multiloop
superstring amplitudes from a topological prescription [18].

Unlike the four-dimensional hybrid formalism discussed in Chapter 2, which
is described in terms of standard d = 4 N' = 1 superspace variables [24], the
six-dimensional hybrid formalism does not include the standard d = 6 N =1
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superspace variables {x%, 6%} as fundamental worldsheet fields [42] [43], where
a={0to5},a ={1to4}andj = {1,2}. As we will presently elaborate, the
reason for this is that there are not enough fundamental degrees of freedom in
the gauge-fixed RNS description, which implies that the fermionic coordinates §%
cannot be constructed as free worldsheet fields. Consequently, one can only make
half of the d = 6 A/ = 1 SUSYs manifest in the six-dimensional hybrid formalism.
Let us develop further the discussion above. For simplicity, we only consider
the open string or holomorphic sector. As we have alluded to, in order to exhibit
d = 6 N' = 1 SUSY manifest for the superstring compactified in R® x My,! one
would like to have the superspace coordinates {x%, §%} as fundamental worldsheet
variables. In d = 6 N = 1 superspace descriptions, these coordinates transform in
a geometric manner under the spacetime SUSY charge Q,;
aj

i
oxt = SEjie ofﬁeﬁk, (3.1a)

00Y = ¢4, (3.1b)

where &%/ is the constant fermionic parameter of the transformation. Moreover, the

SUSY generators satisfy the usual six-dimensional algebra

{Quj, Qpr} = —€jxPap (3.2)

where the antisymmetric symbol takes the values €1, = el = 1and Pyp is the
momentum operator, antisymmetric in the spinor indices.?

With the aim of quantizing the superstring with manifest six-dimensional
spacetime SUSY, and having the usual superspace coordinates as fundamental
free worldsheet fields, a reasonable starting point is to first try to constructd = 6
N = 1SUSY generators from the gauge-fixed RNS worldsheet variables. Out of
the sixteen SUSY generators of the RNS formalism, we must choose eight of them
to be matched with Q,; given in egs. (3.2).

Since the SUSY generators in RNS carry picture-charge [20], for the purpose of

having a closed SUSY algebra one has to choose four generators in the — %-picture
1

_1 1
gy > and four in the —i—%-plcture Ja,i.e., we can write

hyb
Qa =47, (3.3a)

IStrictly speaking, we take My = T#, since K3 only preserves half of the d = 6 /' = 1 SUSYs.
20ur conventions for the six-dimensional Pauli matrices are spelled out in Appendix B.
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1
QP =42, (3.3b)

such that they close to the momentum operator in the zero-picture

hyb h b
{Qa]y ’ y } = Z€]k % axncﬁ ’ (34)

as desired.

Furthermore, the six superspace bosons x% in (3.1) can be chosen out of the ten
xs from the RNS variables. Consequently, one is left to find eight fermionic free
worldsheet fields 8% such that (3.1) is satisfied, i.e., 89 transform by a constant

translation under the SUSY charges, namely, thbO/Sk = 5[3 (Sk

However, despite
the fact that it is possible to identify 6*! and 9”‘2 meeting thls criteria, one finds

that
0*2 Oale—z‘HgNS—z(pCC, (3.5)

as a result, one cannot choose the eight 6% to be free fields. In the equation above,
iaHgNs is the U(1)-current for the twisted N/ = 2 superconformal algebra (SCA)
describing the compactified directions, ¢ is the fermionic ghost coming from the
bosonization of the {8, ¥ }-ghosts, and c is the c-ghost of the RNS description [20].

From the aforementioned discussion, we conclude that only four fermionic
superspace coordinates, say 8*!, can be defined from the free gauge-fixed RNS
worldsheet variables. This implies that only half of the eight spacetime super-
symmetries of d = 6 ' = 1 superspace will be manifest in the six-dimensional
hybrid formalism. With that in mind, and for simplicity of the notation, we will
write 0*! = 6* for the hybrid superspace fermionic fields. In particular, since

Q™P0F — 6%, choosing

Qb = f Da, (3.6)

where p, is the conjugate momentum of 6%, accounts for the remaining fermionic
degrees of freedom in the gauge-fixed RNS description.

On top of the eight fermionic worldsheet fields {p,, 0*}, the field redefinition
from RNS to the six-dimensional hybrid formalism yields two additional chiral
bosons, p and o, to the compactification-independent worldsheet variables. In
the RNS formalism, the four dimensional compactification part is described by

four bosons {x!,%;} and four fermions {hy, tplfNS} which satisfyac =6 N =2
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SCA and where I = 1,2. Under the field redefinition, the fermions {thI{NS,@II{NS}

get mapped to the twisted fermions {¢, ¢, } with conformal weight zero and one,
respectively. As a consequence, the c = 6 N' = 2 SCA becomes twisted, and the
bosonic fields {x!,%;} stay untouched.

Schematically, the field redefinition takes the gauge-fixed free RNS variables

ytbent el © (T ds i} 7)
and maps to the hybrid formalism free worldsheet fields
ixﬂ, plX/ 00(/ O—IPE @ \{xllyll HDI/EIE/ (38)

RL5 My

where the ghosts {¢, ¢, 7} come from the bosonization of the {3, v }-ghosts, namely,
B = e ?9¢ and v = 5e?. In addition, the chiral boson ¢ in (3.8) comes from the
bosonization b = ¢~ and ¢ = €.

When counting the degrees of freedom, note that we have six xs and two
chiral bosons in RNS, same number as the bosonic fields in the hybrid formal-
ism {x%,0,p}, and the eight RNS fermions {1, ¢, 7, {} match exactly with the
eight fermionic variables {pa, 6%} since « = {1 to 4}. For the compactification-
dependent part, note also that we have four fermions and four bosons in both
descriptions. It is important to be aware that the field redefinition is engineered in
a way that the free set of RNS fields (3.7) is mapped to the free worldsheet fields
(3.8).

To be more specific, the field redefinition takes the following form for the
six-dimensional part

i HIC{NS

Pa = e_%e_z Sa, 0% = S“e%HIC{NSe% , 0= —24) +ix — ngNS, (3.9)

and for the compactification-dependent fermions it reads
i — _ —=RNS _4qi
9h = s, gr=9p e, (3.10)

where iaHgNs = lpII{NS@I;NS, {Sa, S*} are the spin-fields for the six-dimensional
spacetime and yx is a chiral boson coming from the bosonization of {r,{} as
7 = e~X and ¢ = ¢'X. Note further that this intricate field redefinition implies that

the SUSY charge (3.3b) comes in a “non-standard” form, i.e., it depends on the
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chiral bosons p and ¢, namely,

Qb = ]{ (7017 py + 0, 50F) . (3.11)

Therefore, since the six-dimensional hybrid formalism has four of the 6 coor-
dinates of superspace as fundamental worldsheet variables [43], it is clear that
only half of the eight d = 6 N/ = 1 SUSYs can be made manifest, i.e., the ones
generated by the charge (3.6). To overcome this issue and maked = 6 V' =1
manifest, ref. [44] introduced four more 6 coordinates, along with their conjugate
momenta, as fundamental worldsheet fields together with four fermionic first-
class constraints D,. In such a way that the gauge symmetry generated by these
constraints can be used to gauge away the new variables. Therefore, when D, = 0,
one recovers the hybrid description.

Under these circumstances, the constraint D, = 0 has to be imposed “by hand,”
which means that identifying the usual d = 6 N’ = 1 superfields in the vertex
operator is not feasible in practice. Consequently, it is unclear where each of the
component fields sits in the vertex before using D, = 0 and making contact with
the usual six-dimensional hybrid description. In addition, this also implies a major
obstacle for defining scattering amplitudes with vertex operators depending on
eight 0s.

In Section 3.3 of this chapter, we will show that, after relaxing the harmonic
constraint D,, ghost number one supersymmetric unintegrated vertex operators U
can be written in terms of d = 6 N = 1 superfields. In addition, BRST invariance of
U will be shown to imply the d = 6 super-Yang-Mills (SYM) equations of motion
in superspace [43] [42]. Besides the fermionic fields 6, unconstrained bosonic
ghost-fields A%, and its conjugate momenta, will be added to the worldsheet action
in such a way that the total central charge of the stress-tensor vanishes.

The BRST current of the theory will take the form G}‘Jlryb — A*D,, where G} b
is the positively charged N' = 2 supercurrent of the hybrid formalism in super-
symmetric notation, and the term —A*D,, is responsible for the relaxation of the
constraint D, = 0. The ghost-number current will be defined in terms of the U(1)
current of the hybrid N = 2 algebra. Furthermore, as in the non-minimal pure
spinor formalism [45], non-minimal/topological variables will be introduced to
the BRST current in order to define supersymmetric scattering amplitude com-
putations with a suitable regulator R. We will end up by using the amplitude
prescription to compute a three-point amplitude of 4 = 6 SYM states.
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3.2 Hybrid formalism in a flat six-dimensional back-

ground

In this section, we review the worldsheet variables and the physical state
conditions of the hybrid formalism for the superstring in a flat six-dimensional
background. Novel results include identity (3.17) and the computation of eq. (3.38)
taking care of the normal-ordering contributions. This description will serve as

the starting point for Section 3.3.

3.2.1 Worldsheet action and superconformal generators

After performing a field redefinition of the gauge-fixed RNS variables [18]
[46], the worldsheet fields of the six-dimensional part consist of six conformal
weight zero bosons x4, 4 = {0 to 5}, and a canonically conjugate left-moving pair
of fermions {p,, 0} of conformal weight one and zero, respectively, together with
its right-moving part {3, 6%}, where &, & = {1 to 4}.

In a flat six-dimensional background the worldsheet action in conformal gauge

takes the form?
1 = — —

where % =0, a% =9, Sp,o is the part of the action characterizing the chiral bosons
p and o, as well as their anti-chiral counterparts, to be defined by their OPEs and
stress-tensor below, and S¢ corresponds to the four-dimensional compactification
variables. These variables can be taken to be any ¢ = 6 N' = 2 superconformal
field theory describing the compactification manifold, which can be either K3 or
T4 [46].

For the Type-IIB (Type-IIA) superstring, an up « index and an up (down) @
index transform as a Weyl spinor of SU(4), a down « index and a down (up) @
index transform as an anti-Weyl spinor of SU(4). In this case, note that Weyl and
anti-Weyl spinors are not related by complex conjugation. Also, we will only
discuss the open string part of the worldsheet theory in what follows.

To define physical states, one needs to supplement the action (3.12) with the

3The OPEs between our fundamental worldsheet fields {pa, 0%, p, 0} are given by egs. (3.31),
with the replacement of aj — «.
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twisted ¢ = 6 N/ = 2 constraints [18]

Thyb = —%E)x”axu — Pa00" — éapap - %Bcracr + %82(p +io)+Tc, (3.13a)

G}Tyb = —(p)te 77 4 %papﬁaxaﬁep _ %ax’laxaei"" — po00%e'?
— %a(p +i0)d(p + io)e” + %az(p +i0)e” + G, (3.13b)
Gty = e " +Gg, (3.13¢)
Jayp = 9(p +i0) + Jc, (3.13d)
where (p)* = 3€*F7° pupppyps, Xup = 0,5%e and 0 are the six-dimensional Pauli

matrices, which are 4 x 4 antisymmetric in the spinor indices. Our conventions
for the six-dimensional Pauli matrices are detailed in Appendix B.

Note that {Tc, GZF, Jc} represent a twisted ¢ = 6 A/ = 2 superconformal
field theory describing the compactification manifold, so that { Ty, — Tc, G}jfyb —
Gg, Jnyb — Jc} describe a ¢ = 0 N = 2 superconformal algebra (SCA). The gener-
ators {Tc, Gg, Jc} have no poles with the six-dimensional worldsheet variables
and no poles with the chiral bosons {p, ¢ }. For the closed string, we also have the
right-moving piece of the above algebra.

The operators "+ are conformal tensors and have conformal weight %(—m2
+3m + n? — 3n). The definition of normal-ordering used in egs. (3.13), and in the
rest of this work, is presented in Appendix D. In particular, notice that we can

write the first two terms in the second line of (3.13b) in a more compact form as
1 ; P\ 0 1 2 ; io —p—ic ,p+2ic
—Ea(p +i0)d(p +i0)e" + 58 (p+io)e"” = (e P17, efT57) (3.14)

using our normal-ordering prescription.

Correspondingly, any twisted ¢ = 6 A/ = 2 SCA (3.13) can be extended to a
twisted small ¢ = 6 N/ = 4 SCA [18] by adding two bosonic currents and two
supercurrents, as detailed in Appendix H. The additional A" = 4 superconformal
generators in the six-dimensional hybrid formalism are

Giyp = P JET —ePT7GE, (3.15a)

g 1
hyb = ( — (p)te 30720 4 %papﬁax”‘ﬁe’zf’*w - Eaxgaxge*p — pa00e

— (9e=P71, ef‘f)> Jo~ +ePGg, (3.15b)
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Jagh = —e? )Lt (3.15¢)
I (3.15d)

where {ég, ]Cii}, that together with {T¢, G%, Jc}, form a twisted small ¢ = 6
N = 4 SCA which has no poles with the six-dimensional worldsheet variables
and also no poles with the chiral bosons {p, c}.
The spacetime supersymmetry charges in the six-dimensional hybrid formal-
ism are given by [46]
hyb hyb

‘}gb, hyb} = —i § dx,p. Note that the

charge ng has the presence of the {p, o }-ghosts and, for that reason, it is called

and satisfy the spacetime SUSY algebra {Q

the “non-standard” supersymmetry generator [46].

The superconformal generators (3.13) are manifestly invariant under the SUSY
charge QZ{b. Invariance under ng is difficult to check for the supercurrent
G}Tyb However, the latter can be made manifest by noting that one can write the

supercur rent as

GITyb — _ﬂ ocﬁ'yéththYthYth}’b 20+3ic + Gt , (3.17)
which is a property that also holds in an AdS; x S background including the
normal-ordering contributions, see [6] and Section 4.2.

Note that we are denoting operators defined throughout this section with the
subscript/superscript “hyb,” so as to not cause confusion with the generators to
be introduced in Section 3.3.

3.2.2 Physical states

Following refs. [46] [6], physical states Vhyb of the theory are defined to satisfy

the equation of motion*

(Giiy)0(Gitp)oVigy = 0, (3.18)

4For a holomorphic operator O with conformal dimension &, (O), is defined by the usual mode
expansion in the plane, namely, O(z) = ¥,(0),z "
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so that the vertex operator Vhyb is defined up to the gauge transformation
Vg = (Gptyp)oAA + (Gryp)o€2, (3.19)

for some A and some (). Moreover, it is consistent to impose the additional
gauge-fixing conditions

(Gryp)oVhyb = (Gryp)oVhyb = (Thyb)oViyb = (Jnyb)oVhyp = 0. (3.20)

As an example, let us consider the massless compactification-independent
states in six dimensions for the open superstring. The most general vertex operator

with conformal weight zero and no poles with the U(1)-current J;,,1, has the form

Vigb = Y Ve (0). (3.21)
n=0

The conditions of no double poles or higher with Gl:yb and with éﬁyb imply
that V;, = 0 for n > 2 and n < —2, respectively. From the remaining equations

coming from (G}Tyb)ovhyb = 0, together with the gauge transformations (3.19), one
can gauge-fix Vyyp to the form

Vigo = Vief 7 + 1, (3.22)

where
Vi = 0%)a2 + 5 (00°0)a; — (6%)u92, (3.23a)
Vo = 0"Xa1, (3.23b)

with g9 = efkig*P Xpk the gluino and 4, the gluon. The two-dimensional Levi-
Civita symbol takes the values €;; = €?! = 1. Even though Xaj 18 NOt gauge-
invariant, we have that 6% = 0 under a gauge transformation. In our conventions,

we are using
3 1 Barad 4 1 By pd
(07)a = ¢ Capys0076°, 6% = S Cupret"0°070°, (3.24)

where €445 is the Levi-Civita symbol with €1234 = 1.
The superfield V; satisfies the equation of motion 8“5VaVﬁV1 = 0 which,
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together with the gauge transformations, imply that the component fields obey

for some A. The gauge transformation of a, comes from choosing A = (9)*A in
(3.19).

Egs. (3.25) are the field content of d = 6 super-Yang-Mills (SYM). It is also
important to note that all degrees of freedom are contained in the superfield V;
of eq. (3.23a). In Section 3.3, we will see how one can describe superstring vertex
operators for the SYM states in terms of the usual superfields of d = 6 N’ =1
superspace [43].

Furthermore, by considering (3.21) in the gauge where (G}Tyb)o(é;(yb)ovhyb =0,
we find that the integrated vertex operator for the open superstring compactifi-

cation-independent massless states is

Whyb = / (Ghy)0(Gryp) 1 Vi

_/( e PTI0p (V3)R ——ax"‘ﬁv &V + ipad"” ﬁV,B)VlJrP (V%) Vs
(3.26)

3.2.3 Six-dimensional hybrid formalism with harmonic-like con-

straints

Even though the six-dimensional hybrid formalism presented above preserves
manifest SO(1,5) Lorentz invariance, only half of the eight supersymmetries
of d = 6 N' = 1 superspace are manifest, i.e., act geometrically in the target
superspace. This can be observed by the fact that only four left-moving 6s are
present in the worldsheet action (3.12) as fundamental fields.

However, one can proceed as in ref. [44] and add four more left-moving 6s
and four right-moving fs, as well as their conjugate momenta as fundamental
worldsheet variables to the action. This doubling of fermionic degrees of freedom
can be accomplished by appending the index j = {1,2} to {pa, 0}, so that we end
up with

S = / i’z (%axﬂéxa + paj00Y + ﬁ&jaéaf) + Spe + Sc, (3.27)
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where p,; = ]-kp];, €p = —€2=1, ejkekl = (5]1. and repeated indices are summed
over.
Consequently, eq. (3.27) is invariant under the d = 6 ' = 1 spacetime super-

symmetry transformations generated by the charge

i 1
roj = 7{ (paj — Eejkaxaﬁeﬁk — ﬂeam(gejkelmeﬁk(?ﬂa@&m) ’ (328)
and which satisfy the d = 6 ' = 1 SUSY algebra

{Quj Qi = —ieje f g (329)

For the closed string, we also have a left- and a right-moving supersymmetry
generator Q,; and Q&j, respectively. These charges then generate thed = 6 N' =2
supersymmetry and, hence, for Type II strings the amount of SUSY is doubled.
Beyond that, it is convenient to construct extensions of the worldsheet fields
{Ppaj, 0x*} that are invariant under the transformations generated by (3.28). One
can easily check that this is achieved by the following on-shell spacetime super-

symmetric — or just supersymmetric — worldsheet variables

i 1
Auj = Paj + 5€10%ap0™ + Cnprocicemt™ 0790, (3.30a)

T — 9x° — % 100 00PF (3.30b)
The six-dimensional worldsheet fields in (3.27) have the following singularities

in their OPEs

Paj(y)0P (z) ~ 850k (y —2) 71, (3.31a)
ax(y)ox2(z) ~ —p®(y —z) 2, (3.31b)
p(y)p(z) ~ —log(y —z), (3.31¢)
o(y)o(z) ~ —log(y —z), (3.31d)

where 17@ = diag(—, +,+, +, +,+) and, in turn, egs. (3.31) can be used to show
that the supersymmetric variables (3.30) satisfy

doj(y)dpr(z) ~ (v — z)_lieij,xﬁ(z) , (3.32a)
daj(y)11(z) ~ —(y — z)_lie]-kafﬁ%ﬁk(z) , (3.32b)
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(I (z) ~ = (y —2) 25", (3.320)
doj(y)90P% (2) ~ (y — 2)20%0f . (3.32d)

Also, notice the following ordering effect using the OPEs of the fundamental fields

d 3i
¢ ; Y Tap(y)dj(2) = = eeeupnod®™(2), (3.33)
i

d
jq{ y—yz iy (1) TTap (2) = — rejpeupysd®0™(2) (3.33b)

As we have argued, the worldsheet action (3.27) is invariant under the d = 6
N = 1 spacetime supersymmetry transformations, however, in order to preserve
the description of the original six-dimensional hybrid superstring, one must in-
clude a set of constraints which reduce the action (3.27) to (3.12). This can be
accomplished by the fermionic first-class constraints [44]

Dy =duy—e P, (3.34)
and since
Dy, 6P%) = oF, (3.35)

one can use (4.180) to gauge-fix (3.27) to (3.12). Therefore, working with the action
(3.27) and the harmonic constraint Dy, it is possible to manifestly preserve all of
the d = 6 N’ = 1 supersymmetries.”

In this case, the N’ = 2 constraints (3.13) are modified and can be written in a
manifestly spacetime supersymmetric form as [44]

1 .
Thyb = —EHQI—IQ — d[xlae"‘l — e*P*ZU'dlxlaelxz — %apap — %aO'aO'

3 .
59 +io) + Te, (3.36a)
Gryp = —(d1)'e™ 7 + %dudmﬂ“ﬁe‘p + d,100°%9(p + i0)e P + dy1 076" %e P
- %Hanaeia — 96" — %3((3 +i0)0(p + io)e”

+ %az(p +i0)e” + G, (3.36b)

5We note in passing that there exists a similarity transformation with the property e%dye™° =

D, where S = 0°2d,1e=P =17 — L0°20P2TT, ge~P~17 + (62)306*1e =P~ + 1(62)%9(p + ic)e 2~ 27
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Gryp = ¢ " +Gc (3.36¢)
Jayp = 9(p +i0) + Jc, (3.36d)

which, as in the previous section, still obey a twisted ¢ = 6 N/ = 2 SCA, and
we defined (d1)* = ﬁe"‘ﬁw da1dg1d1ds1- Let us mention that when one gauge fix
0*2 = 0, the constraints (3.36) reduce to the ones compatible with the action (3.12),
i.e., egs. (3.13). Note that the stress-tensor Tyyy, is the expected stress tensor when
D, = 0, because

—d190*! — e 717,400 = —d,;00" + D00 (3.37)

It is also important to be aware that the N/ = 2 algebra is preserved inde-
pendently of how one chooses to gauge-fix the local symmetry generated by D,.
This is because the form of the N = 2 generators (3.36) was chosen so that they
have no poles with the harmonic-like constraint (4.180). The non-trivial part in
showing this is for the generator Gh ,» honetheless, it becomes manifest by noting
the property that one can write Gh b s

= _iew[pm {(Dg, [D,, {Ds, 2 +39} Y] + G, (3.38)
where the graded bracket [D,, O}(z) = § dy D, (y)O(z) denotes the simple pole
in the OPE between D, and O.

The details of the calculation establishing eq. (3.38) are given in Appendix
F. To the knowledge of the author, this is the first time that eq. (3.38) is proven
considering the normal-ordering contributions. Note also the similarity between
identities (3.38) and (3.17).

For the massless compactification-independent sector of the open superstring,

the vertex operator now reads

Vigb = Z Vo (x,0)e"etio) (3.39)

n=—co

which takes the same form as in eq. (3.21), but now Vj,(x, 6) depends on the zero
modes of {x% 6%}. Therefore, it contains the eight fermionic 6 coordinates of
= 6 N = 1 superspace. Of course, contrasting with the hybrid formalism of

the previous section, in the present case the physical states V,yp also have to be
annihilated by Dj.
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It is interesting to note what is the effect of imposing the constraint D, for Vyyy,
of eq. (3.39). To do that, let us first define the new superspace variables

9* — 1(9942 _ ep+i(790c1) , gt —

5 (6% + eri0942) . (3.40)

I\J|>—‘

The condition that Vy}, has no poles with D, implies that
(V,xz — e_P_i"Val)Vhyb =0, (3.41)

% — %ejkBﬁkE),x p is the zero mode of d,; acting on Vjyp,. By defining
x'* = x2 and then doing the shift

where V,; =

X' 4 i9“*65+a§ﬁ — X2, (3.42)

we learn that V},yp, is independent of 6% and, for that reason, it is a function of
only the zero modes of {x2,6“"}. As a consequence, after identifying 0" = 6"
the component fields of Vy, in (3.39) can be related to the component fields of
Vhyp in (3.21), therefore, we recover the usual six-dimensional description of the
vertex operator in Section 3.2.1. Nonetheless, the identification of the component
fields is only possible after imposing D, = 0.

From egs. (3.36), one can construct the remaining twisted small ¢ = 6 N =
4 generators, and in the gauge where (G}Tyb) (G}Tyb)ovhyb = 0 the integrated
vertex operator for the massless compactification-independent states of the open
superstring now reads [44]

Whyb = / (G}Tyb)O(G}Tyb)—lvhyb

—/ [( —e PPV V1 Vi — —H PV Vi
+idy 9PV g — ae*zvm) Vi + ge“ﬁwdmvﬁlvﬂ Y VZ}
—/ { wﬁv a2vﬁ1v’ylv§2 _duclv/ﬂvavél)

1 1
+ Y0, Vo] — 2909V + 589”%4 Vo, (3.43)

where the supersymmetric derivative V,; satisfy the algebra {V,;, Vg } = —i€jx0yp.
To arrive at the last equality in (3.43), we subtracted a total derivative and used
the relations implied by the constraint (4.180), namely, V,1V; = —V V) and
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VauVo = Vo .

3.3 Extended hybrid formalism

In spite of the fact that we have described the worldsheet action, N' = 2
constraints and compactification-independent vertex operators while preserving
manifest d = 6 N = 1 supersymmetry in Section 3.2.3, it remains unclear what are
the rules to compute correlation functions using the superconformal generators
and vertex operators depending on all eight 6 coordinates of d = 6 N/ = 1
superspace.

In addition, it is not evident if there is a relation between the vertex operator
(3.39) and the superfields appearing in superspace descriptions of d = 6 SYM [43]
[42]. As a consequence, one cannot identify what each component of the superfield
(3.39) corresponds to before using the constraint D, = 0 to make contact with
(3.21), which depends on only half of the s. One of the purposes of this section is
to clarify and understand how one can overcome these drawbacks by relaxing the
constraint D, = 0 in the definition of physical states.

3.3.1 Worldsheet variables

To the worldsheet theory (3.27), we introduce a bosonic spinor A* of conformal
weight zero and its conjugate momenta w, of conformal weight one. As we will
momentarily see, the ghost A* will be responsible for relaxing the constraint D,.
We also include the non-minimal variables {Xa, ro } [45] of conformal weight zero,
as well as their conjugate momenta {w", s*} of conformal weight one. The fields
{s%,r,} are worldsheet fermions and {@", A, } bosons.

The worldsheet action now takes the form

S = / dz (%axﬂéxa + Paj00Y + wedAY + 5" 0ry + WAy
+ P00 + W0A" + 807 + %aai@) +So0+ Sc, (3.44)

where the “hatted” fields are right-moving and, for simplicity, will be ignored in

what follows. The singularities in the OPEs of the new variables are

Fy—2)71, (3.45a)
W (y)Ag(z) ~ —0p(y — z)7 1, (3.45b)
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s"(y)rp(z) ~ Oy —2) 7", (3.45¢)

and, unlike in [45], {A%, A4, 7, } are not constrained. Note further that, as opposed
to the worldsheet action (3.27), the stress-tensor of (3.44) has vanishing central
charge.

3.3.2 Extended twisted c = 6 A/ = 2 generators

With these additional variables, it is still possible to construct superconformal
generators satisfying a twisted ¢ = 6 V' = 2 SCA as in Section 3.2.

In this case, we have

T = Thyb — Da00"* — w,dA* — WA, — 01y, (3.46a)
G' = G;fyb — A*Dy — Wry, (3.46b)
G™ =Gy + w902 + 5“9y, (3.46¢)

] = Juyb — WaA" —5%ra, (3.46d)

where { Ty, G}Tyb' Gﬁyb' Jnyb } are the ¢ = 6 V' = 2 generators of egs. (3.36). Note
that T is now the usual stress-tensor, because the terms added in (3.46a) to Thyy,

precisely cancel the atypical contribution in (3.37). Explicitly, we now have

1 ; —
T = —51—121_[& — d,jO0" — wdA" — W A, — 5701y

— %apap — %808(7 + gaz(p +io) + Tc. (3.47)

Of course, the superconformal generator Gt continues to be nilpotent. This is
easy to see from that fact that G;(yb has no poles with itself, no poles with D, and
the constraint D, is first-class.

It is important to comment on the significance of each of the contributions
appearing in the fermionic generator G*. The zero mode of G}Tyb is related to
the BRST operator Qrns of the RNS formalism in the gauge where 6%2 = 0, this
follows from the fact that the hybrid variables are related to the gauge-fixed RNS
variables through a field redefinition [46].

The term —A*D, in G™ is necessary for the reason that we are relaxing the
constraint D,. As a consequence, the condition D, = 0 from (4.180) does not need
to be imposed “by hand” in our definition of physical states from now on (see

Section 3.3.3). The last contribution, —w"r,, is the non-minimal/topological term
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[45], and it implies that the cohomology of (GT)y is independent of {@w", A, s*, 7 }
through the usual quartet argument. This term is required in order to getac = 6
N = 2 SCA and it will play a key role in defining a spacetime supersymmetric
prescription for scattering amplitude computations in Section 3.3.4.

We should emphasize that even though we have an N’ = 2 SCA with critical
central charge (c = 6) in egs. (3.46), the physical states of the superstring cannot
be defined as N/ = 2 primaries like in the hybrid formalism [17]. The reason for
this is because, by the quartet machanism, the cohomology of (G1)y is guaranteed
to be independent of the non-minimal/topological variables [45]. However, this
mechanism has nothing to say about the primaries of the N’ = 2 algebra, i.e., if
the they are preserved or not after the worldsheet theory is modified. Therefore,
when studying vertex operators of the superstring, one must look for states in the
cohomology of (G™)o.

As an additional observation, let us sketch a direct way to arrive at the supercur-
rent (3.46b) from the six-dimensional hybrid formalism: by adding non-minimal
variables and performing a suitable similarity transformation. Start with G}Tyb
in eq. (3.17) and add the non-minimal variables {p,2, %2, Wy, A%, W%, Ay, 8%, 74}, 5O
that the supercurrent becomes

G =Gy = Apar = W1 (3.48)
Then, after performing the similarity transformation ef2eR1G+'e~Rig=Re — G+
where Ry = _nggaz and R, = —%axaﬁ(?“l(?“z, one learns that Gt/ = G in
(3.46b) up to terms proportional to #*2.° This procedure is similar to the con-
struction adopted in refs. [47] [48] in relating the RNS formalism with the pure
spinor formalism. Moreover, we also learn that eR2eRip e Rie™Re = eR2(pyo —
ng)e_Rz = D, up to terms proportional to the non-minimal variable §*2. The
charge ng was defined in eq. (3.16), therefore, we conclude that the constraint
D, is related to the “non-standard” SUSYs of the hybrid formalism.

Starting from the d = 10 pure spinor formalism, there have been other ap-
proaches to describe the superstring in a six-dimensional background with man-
ifest d = 6 N/ = 1 supersymmetry [49] [50] [51] [52]. In these works, the non-
minimal variables are absent but the ghosts {w,, A*} usually appear from the
decomposition of the d = 10 pure spinor A%, & = {1 to 16}, in terms of SO(1,5)

bSince the BRST operator G* is supersymmetric, one can consider an additional similarity
transformation to restore the missing 0% terms, analogously as in ref. [47].



Chapter 3. The superstring in a flat six-dimensional background 69

spinors. Particularly, in ref. [51] a BRST operator of the form Qps = § A*D, was
proposed as the dimensional reduction of the BRST operator in the d = 10 pure
spinor formalism. In ref. [52], it was also considered adding the ghosts {w,, A*}
to the superconformal generators (3.36). The advantage of the approach detailed
below is that we will be able to explicit write a BRST invariant superstring ver-
tex operator in terms of d = 6 N' = 1 superfields and the manifest spacetime
supersymmetric worldsheet variables.

3.3.3 Massless compactification-independent vertex operators

We consider the compactification-independent physical states with conformal
weight zero at zero momentum for the open superstring or holomorphic sector,
so that we are seeking for a vertex operator U which describes the d = 6 SYM
multiplet. We will start by specifying what are the physical state conditions the
vertex operator has to fulfill. Then write the vertex in terms of d = 6 N/ = 1
superfields depending on the eight 6 coordinates. After that, it will be shown that
BRST invariance of U reproduces the on-shell d = 6 SYM equations in superspace.

Since we have a nilpotent BRST charge (G™)(, we can require physical unin-
tegrated vertex operators U to be ghost-number-one states in the cohomology of
(G™)o. Without loss of generality, the ghost-number current is defined to be the
U(1) generator of the N = 2 algebra, eq. (3.46d). Moreover, the stress-tensor T has
vanishing conformal anomaly, it is then consistent to require U to be a conformal
weight zero primary field as well. When these conditions are satisfied, and given
the fact that {(G™)o, (G™)o} = (T)o, the superconformal generator (G~ )¢ has to
annihilate the state U, which means that U is in the covariant Lorenz gauge [53].
The latter condition is analogous to the by = 0 constraint in bosonic string theory.

For the compactification-independent massless sector of the open superstring,
the manifestly spacetime supersymmetric ghost-number-one unintegrated vertex
operator U in the cohomology of (G™)y takes the form

U= —A*(Ag — Agre P7) + (00" Ayy + TT%Aq + dg W) €' — dyy W*?3(icr)eF
— 90 A d(p +io)e P + idy T1*F Agre ™ — %d,ﬂdﬁlA”‘ﬁe—p — 920"2 A, 10"
~+ dd,1 (T/\/O(2 — ia"‘ﬁAﬁl)e’P + %BH"‘/SVMAme’P + dal( — 2W*2

+i0"P Agy)dpe P — %H“ﬁvamape—P — ia“ﬁv,ﬂA/ﬂaze_P + (d3)* Agpe™ 21
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1 : 1 :
—+ 60(57(5( — L—Ld‘xldﬁlVﬂA(glae*zP*w — L—La(dmdﬁl)VﬂA(gle’zp’“’

1 . 1 .
—~ Eazdl,dv,ﬂvﬂA(ne*PW — gadalvﬁlvﬂAﬂae*P*W

— %dmvmvﬂAmaze—zp—f‘f) + }L(vﬁ)“AM%a3e—ZP—W, (3.49)
where A, is the superspace gauge field, W% is the superspace spinor field-strength
and F, is the superspace field-strength.” The first components of the superfields
{Az, W, F,} are the gluon, the gluino and the gluon field-strength, respectively.
These superfields are defined in terms of the superspace gauge field A,;. In
linearized form, we have

i
Ay = _Zefkggﬁ(vaj Api + VA, (3.50a)
WY — éefkaﬂ“ﬁ(ag Ag — VAa), (3.50b)
Fyp = 934y — 94, (3.500)

It is easy to see that U is annihilated by (G~ )¢ and so we have 0%A, = 0, which
is the usual Lorenz gauge condition. The non-trivial part is showing that BRST
invariance of U implies the linearized d = 6 SYM equations of motion [43] [42]

((TLbC)“ﬁ(Va]’Aﬁk + v,BkAOLj) =0, (351a)

Vo WA + %55?(%)%@ —0, (3.51b)

where (c22)%f = I (olagboel)*f is the symmetric anti-self-dual three-form and
(Oap )ﬁ = L(oligt! )/3 « is the generator of Lorentz transformations.

The calculation leading to (3.51) is straightforward but tedious. It involves
taking care of various normal-ordering contributions. Let us briefly outline at
which steps some of the above equations can be obtained. For example, eq. (3.51a)
comes from the terms with A*AP in (G*)oU, and eq. (3.51b) can be obtained by
the terms proportional to A"‘dﬁlew, A*ddgie™f, A*dgd(ioc)eF and A“szﬁle’ZP’iU.

Note further that U in (3.49) is defined up to a gauge transformation éU =
(GT)oA for some conformal weight zero and U(1)-charge zero gauge parameter A,
and U is also annihilated by (é;yb)o of (3.15a), a condition that will become more

’See Appendix K for a review of d = 6 N = 1 super-Yang-Mills.



Chapter 3. The superstring in a flat six-dimensional background 71

clear when we write the amplitude prescription (3.60) in the following section.®

Taking A to be a function of the zero modes of {x%, 6%}, we have that
oU = —A* (VoA — Via Ae P77) + (901 VA + TT1%9,A)e” +...,  (3.52)

which precisely reproduces the gauge transformations (K.3) of thed = 6 N =1
superspace description, i.e., 6A,; = V,;A and §A; = d,A.

For scattering amplitude computations, vertex operators in integrated form
are necessary. As we have an N' = 2 SCA (3.46), it is straightforward to define
integrated vertex operators. They are given by

W= /(G—)_lu, (3.53)

which, for the compactification-independent massless sector of the open super-
string, takes the simple form

W = / (06% Ayj + TT2A, + dyg W™ + dyre P OW™2) (3.54)

Note that only the first four terms in (3.49) contribute to the integrated vertex W.
Not surprisingly, the integrated vertex (3.54) has a similar structure as in the first
equality of eq. (3.43).

The gauge transformations of W are given by 6W = (G1)yQ~ for some con-
formal weight one and U(1)-charge minus one gauge parameter Q™. Taking
O~ = —w,W*?, which is annihilated by (éﬂLyb)O' we can write W as

W = / (aQ“fA,X]- +TT2A, + doj WY — éN@F@
— %wadﬁldﬂaﬁvwazﬂ + wanﬂauwﬂeia) , (3.55)

where Ny, = wa(U@)“ﬁA“.

From an argument concerning the level of the Lorentz currents in the RNS and
pure spinor formalisms, the first line of (3.55) takes the form conjectured in ref. [54,
footnote 3] to be the correct integrated vertex operator for the massless sector of
the open superstring compactified to six dimensions.

8When translated to the RNS variables, the condition (é;yb)ou = 0 is equivalent as saying that
U lives in the small Hilbert space, i.e., it is annihilated by the #y-ghost [20]. See also Appendix E.
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3.3.4 Tree-level scattering amplitudes

In Section 3.2, we introduced an unintegrated vertex operator Vyy, with zero
U(1)-charge, eq. (3.21). When on-shell, this vertex operator was shown to describe
d = 6 SYM. Moreover, one can show that there exists a gauge choice where (3.21)
can be taken to be an ' = 2 superconformal primary field with respect to the SCA
(3.13) [55].

In terms of Vyyp,, the tree-level three-point amplitude prescription for the mass-

less states in the hybrid formalism of Section 3.2.1 is [17]
(Vhyo (21) (G )oVigs) (22) Ungs(23) ) (3.56)

where (e3¢ T30]EH(0)4) = 1 with (0)* = 51€,p,00°0P076° and we defined Uy, =
(G}Tyb)ovhyb. It is interesting to note that, in some gauge choice, Upyy, in (3.56) looks
very similar to U in (3.49), at least in the ghost structure when we take A* = 0.
However, since vertex operators only depend on four 6 coordinates, they do not
have a simple transformation rule under all spacetime SUSYs.

We can try to use the elements of the hybrid formalism outlined in the para-
graph above to formulate a prescription for calculating scattering amplitudes in
terms of the superconformal generators (3.46) and the vertex operators in (3.49)
and (3.54), which are constructed from the manifestly spacetime supersymmetric
variables. In this setting, recall that the eight supersymmetry generators are given
by (3.28), as opposed to the ghost-dependent SUSYs (3.16) in the six-dimensional
hybrid description.

In view of that, it is tempting to conjecture that U can be writtenas U = (G™)oV
for some V which is also an A/ = 2 primary field with respect to the SCA (3.46).
Unfortunately, we could not accomplish this much and find a V with both of
these properties. Nonetheless, it is possible to find a conformal weight zero and
U(1)-charge zero field V such that U = (G™)oV and, as we will see, this is enough
to define a consistent tree-level scattering amplitude prescription.

Consider

Vi) = § (= @) uG), 357

and note that (G7)oV = U by using the fact that (G")( annihilates U and the



Chapter 3. The superstring in a flat six-dimensional background 73

property
(G7)o((— (0")*ei7) = 1. (3.58)
Explicitly, the field V is given by
V = — A (1) A et 1 (913 Wle20 20 (%90416[3114“!3
B é(gl)4azxﬁv{x1ArB1>6p+ia LoMAL, + %9a19ﬁ1va1Aﬁ1
- S0PV T Ay + 4 (6)*(VD)" A, .59

where (61)* = %eaﬁwealeﬁlmleél and (8')3 = %6,15750/516719‘51. Note that V has
a different ghost structure than (3.22).

In close analogy with (3.56), the spacetime supersymmetric tree-level three-
point amplitude is defined as

Az = /[b‘l)\] [dX]d4rd89 R<V(Zl) ((é;ryb)()v> (Zz)U(Zg,)> , (3.60)

where V is given by (3.59), GlTyb is given by (3.15a) and U = (G™)(V is the ghost
number one vertex operator in eq. (3.49). We also define (¥ 3] %) =1, due to
the anomaly in the U(1) current.

Since the bosonic variables A% and A, are non-compact, a regularization factor
R = exp((GT)ox) needs to be introduced. We will take x = 1,0%? [45], so that

one finds
R =exp (— A%Aq +1,0"2). (3.61)

For simplicity, the integration over the x? zero modes is being ignored, since it is
done in the standard manner [23]. Given that the expression inside brackets is
BRST invariantand R = 1+ (G")g(...), the amplitude (3.60) is independent of x
as long as x is annihilated by (G}Tyb)o.

Despite the asymmetric appearance, the amplitude (3.60) is symmetric in the
three ir?ertions. This is easy to see by noting that (é;yb)ou = ((}gyb)ox =0
and {(Gf(yb)o, (GT)o} = 0. As long as one chooses x such that (Gf(yb)ox =0,
the amplitude (3.60) will be independent of the choice of x. Since the (G}Tyb)o
cohomology is trivial one can even choose x to be exact.
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From the c = 6 N' = 2 SCA (3.46), it is straightforward to use the procedure
outlined in Appendix H and construct the remaining generators of the small c = 6
N =4 SCA. In such a case, one could have thought that it would be possible to
define the amplitude (3.60) with the superconformal generator G* of the N = 4
algebra associated with (3.46) instead of é}Tyb in (3.15a). However, it turns out that
an amplitude defined in this way would give a vanishing result. The reason for
this is that G* involves an overall factor containing 6*(r),” but we already have
the four zero modes of r, and 6*> coming from the regulator R. The issue arising
when trying to use G* in our prescription might be related to the fact that physical
states of the superstring cannot be defined as N/ = 2 primaries with respect to the
algebra (3.46).

The amplitude (3.60) is gauge-invariant under §V = (G*)A + (G;yb)OQ.
Since U satisfies (Glfyb)oll = 0and U = (G")oV, we have that V obeys the
equation (G;:yb)o(GJF)OV = 0, which is invariant under the gauge transformation
SV = (GT)oA + (G}J{yb)oﬂ for any {Q), A}.

The amplitude (3.60) is supersymmetric. Although the regulator is not mani-
festly spacetime supersymmetric, its spacetime supersymmetry transformation
under the generators (3.28) is BRST trivial, and hence vanishes inside the ampli-
tude expression (3.60). Moreover, the vertex operator U is written in terms of the
supersymmetric worldsheet variables, and we have shown that the amplitude is
symmetric in the three insertions.

In order to check the consistency of our proposal, let us compute the three-point
amplitude involving three massless states (3.59). To simplify the analysis, we will
consider the three gluon amplitude Appp, so that we can effectively put the gluino
to zero in the d = 6 SYM superfields (see eqgs. (K.21)). In this particular case, we
have that (§1)3W*! = 0in (3.59). Furthermore, the non-zero contributions to (3.60)
can be determined by looking at which terms have the right amount of ghost
insertions to saturate the background charge of the {p, o} ghosts, we are then left

with the following worldsheet correlator
Appp = / [dA[dA]d4rd®o R< (%ealeﬁlAggePW) (z1) %

% (%971951A,(y2(5)62P+iU]é-+) (ZZ) <H2Aé3) + dg1W(3)‘71>ei‘7(z3)> + (2 o 3) ,

(3.62)

9This is easier to see in the bosonized form of {w,, A*,s%, 74 }.
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and, after using SL(2, R) invariance to choose z; = o0, z; = 1 and z3 = 0, it easy
to see that

Appp = —i((a1-a2)(ka-a3) + (a1-a3)(k1-a2) + (az-a3)(k3-a1)) + (2 <> 3),
(3.63)

which gives the sought after result, as expected. Since U describes the d = 6 SYM
multiplet, and by invariance under d = 6 ' = 1 supersymmetry transformations,
we can conclude that our prescription also reproduces the expected answer for the
three-point amplitude involving one gluon and two gluinos Agfr.

It is then elementary to generalize (3.60) to the case where we have n super-
Yang-Mills multiplets

Ay = / [dA][dx]d4rd897z<x/(zl)((é;yb)ov)(ZZ)U(Z3) 11 / dzm(c)_1U(zm)>,

m=4

where {z1, 2,23} can be chosen arbitrarily by SL(2,R) invariance. As we have
only described vertex operators for the massless compactification-independent
states, just scattering of d = 6 SYM multiplets was considered, however, the
tree-level prescription should also apply to massive compactification-independent

states.



Chapter 4

The superstring in an AdS; x S back-

ground

This chapter deals with the superstring in an AdS; x S®> x M, background,
where M, can be either K3 or T#. We first introduce the hybrid formalism in
AdS; x S® with pure NS-NS three-form flux. Subsequently, the computation of a
PSU(1, 1|2)-covariant three-point amplitude for half-BPS vertex operators inserted
on the AdS; boundary is presented, as well as its relation with the analogous
computation from the RNS formalism. It is found that integrating out the fermionic
worldsheet fields in the path integral gives rise to the target-space vielbein, which
explicitly encodes that the conformal group on the boundary is identified with the
symmetry group of the AdS bulk.

From the extended six-dimensional hybrid formalism, which was developed
in Section 3.3 in a flat background, a quantizable and manifestly PSU(1,1|2) x
PSU(1,1|2)-invariant action for the superstring in AdS; x S® x T* with mixed
NS-NS and R-R self-dual three-form flux is constructed. This action is the ana-
logue of the AdSs x S° pure spinor action for the AdS; x S case. The model is
then quantized and proven to be conformal invariant at the one-loop level. We
conclude by showing how one can relate the supersymmetric description with the
worldsheet action of the AdS; x S® hybrid formalism with mixed flux.

4.1 Introduction

Superstring theory is not only an attractive physical description for being a
mathematically consistent framework where quantum mechanics and general
relativity can coexist, but it also exhibits many fascinating properties. Among
these is the occurrence of intriguing and formidable dualities, some of which
relate its different formulations, while others challenge conventional intuition

and imply that a quantum theory of gravity in some spacetime can be equivalent

76
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to a quantum field theory without gravity, residing in a spacetime of different
dimensionality.

The manifestation of a duality in physics lies in the realization that two distinct
mathematical formulations describe the same physical observables or processes,
in other words, both descriptions are said to be quantum equivalent even though
they can appear dramatically different at a microscopic level. For example, the
five known superstring theories Type I, Type IIA and IIB, and the two heterotic
superstrings, are connected by a web of dualities such as T-duality, S-duality and
U-duality [56]. In addition, it is believed that the five ten-dimensional superstrings
are different perturbative limits of one underlying 11-dimensional theory, so-called
M-theory [57] [58].

The domain of superstring dualities is not only restricted to connect two
distinct types of string theories, what’s even more impressive, there are dualities
where a superstring theory propagating in an Anti de-Sitter background can be
quantum equivalent to a four-dimensional gauge theory. At first sight, this seems
like a surprising claim since string theory contains Einstein’s gravity and is only
quantum consistent in d = 10 spacetime dimensions, while the gauge theory
lives in a four-dimensional flat spacetime and does not contain a graviton in its
spectrum.

The most well known example of a duality of this type is between the Type
IIB superstring in an AdSs x S° background and the maximally supersymmetric
four-dimensional N' = 4 SYM theory with gauge group U(N) [40]. In this case,
the string theory is characterized by the string coupling ¢s; and the dimensionless
AdSs radius in string units Rags,, while the gauge theory depends on the Yang-
Mills coupling gym and the rank of the gauge group N. It is also a common
practice to express the Yang-Mills coupling as the 't Hooft coupling A = ¢%,,N

[59]. According to the duality, the parameters of the two theories are related as

A
s ~ N/ RZAdS5 ~ \/X, (41)

up to constant factors.

This duality is known as the AdSs/CFT correspondence, given that N' = 4
SYM is a conformal field theory (CFT). Besides the parameters aforementioned,
the identification between the two sides can be further extended by matching
the global symmetries and scaling dimensions of the dual CFT to the AdSs x S°
isometries and energies of the string side, respectively.
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Although many checks have been performed over the last 25 years, the cor-
respondence is still a conjecture. This is mainly because the duality is of the
strong/weak type, when the 't Hooft coupling is large A > 1, the string tension is
large Rags; > 1. To put it differently, the classical or supergravity regime of the
string theory Rags, > 1is mapped to the strongly coupled regime of the N = 4
SYM A > 1. Conversely, the perturbative regime of the gauge theory A < 1is
mapped to the non-perturbative — or tensionless — regime of the string theory,
i.e.,, small R AdS5'l Therefore, the perturbative domains of both sides correspond
to the non-perturbative ones in the dual theory, making it difficult to perform
explicit calculations and verify the equivalence of the conjecture in all necessary
cases. Nonetheless, note that one can use the perturbative domain of one theory
to obtain predictions for inaccessible regimes of the dual theory, a key property
that has driven extensive research in the field.

Based on the discussion so far, a crucial advancement for having a fine grained
understanding of the duality relating the superstring in an AdSs x S° background
to the four-dimensional N = 4 SYM theory is achieving enough control over the
worldsheet description — or string side — such that first principles calculations
can be performed. An elementary effort in this direction is the construction of
quantizable worldsheet actions with AdSs x S° as the target-space. However, the
AdSs x S° background is supported by a non-zero amount of Ramond-Ramond
(R-R) flux, which turns out to be one of the main barriers obstructing a worldsheet
description via the conventional formalisms of the superstring.

For example, in the Ramond-Neveu-Schwarz (RNS) formalism, constructing
a worldsheet action in the presence of R-R fields remains a complicated task,
because vertex operators for the R-R sector break worldsheet supersymmetry [60].
Conversely, despite being feasible to construct actions in R-R backgrounds from
the Green-Schwarz (GS) superstring [61], the quantization procedure is limited
due to obstacles when imposing the light-cone gauge condition [62] [63].

Despite the fact that there is a quantizable sigma-model action for the super-
string in AdSs x S° from the pure spinor formalism [64], the R-R fields break the
holomorphic/anti-holomorphic factorization of the worldsheet theory. As a result,
the powerful complex methods of two-dimensional CFT [65] cannot be applied in
a straightforward manner, and progress towards vertex operators and superstring
amplitude computations in AdSs turned out to be rather slow since the advent of

!Note that the radius is dimensionless in our conventions, it is expressed in string units or in
terms of the string length va'.
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the AdS/CFT correspondence [40].

In view of that, and with the hope of further exploring the inner workings
of the AdSs/CFT4 duality purely from a string theory perspective, a promising
route for investigation is to attempt superstring computations in simpler AdS
target-spaces, where the worldsheet theory is under better control. This can serve
as a powerful guide for calculations in the more challenging, and also interesting,
instance of the AdS/CFT correspondence, namely, the one relating the superstring
in AdSs x S° with the N = 4 SYM quantum field theory.

In particular, there exists an AdS target-space where holomorphic and anti-
holomorphic factorization of the worldsheet description is still preserved. This is
the case for the Type IIB superstring in an AdS; x S background in the absence
of R-R fields, i.e., with pure Neveu-Schwarz-Neveu-Schwarz (NS-NS) self-dual
three-form flux turned on. The holomorphic structure helps in the tractability of
the theory. As a consequence, this particular example fits well to be a primary
candidate for the understanding of quantitative features of covariant descriptions
of the superstring in AdS. The latter remark will be further explored in this thesis.

Starting in Section 4.2, we shall cover a spacetime supersymmetric formulation
of the Type IIB superstring in AdS; x S°, namely, the hybrid formalism for the su-
perstring [18] [46]. The sigma-model action of the hybrid string has the supergroup
PSU(1,1|2) as the target-superspace and it can accommodate a mixture of both
NS-NS and R-R constant three-form flux. In the pure NS-NS case, the worldsheet
theory is given by a PSU(1, 1|2),, WZW model where k labels the amount of NS-NS
flux and is quantized [46]. Along with the worldsheet action, the hybrid formalism
enjoys a small /' = 4 superconformal symmetry, and scattering amplitudes are
computed according to the N = 4 topological prescription [18].

Next, we will make use of the pure NS-NS hybrid formalism in AdS3 x S® with
k units of three-form flux and compute a three-point amplitude for half-BPS vertex
operators inserted at a position x on the AdS3 boundary. This will be done in a
manifestly PSU(1, 1|2)-covariant fashion, i.e., using the spacetime supersymmetric
worldsheet variables of the hybrid description. The computation will be carried
out after defining curved worldsheet fields by making use of the vielbein field

EAP(x) = 64 +xfy a” — 2%na10,

where A € PSU(1,1|2) Lie-superalgebra.

The vertex operators depend on a fermionic coordinate 8*. As an outcome, we
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will show that integrating out the fermions 6*(x) in the path integral gives rise to
E4®(x), which encodes that the conformal group on the boundary corresponds to
the symmetry group of the AdS3 bulk [66]. Specifically, the fermionic zero-mode
integration takes the following form

/ 40 0 (x4)68 (x3)87 (x2)6° (x7)

= " Ep ™ (—x4) Ent P (—x3) Ejn " (—x2) B (—x1) .

Since spacetime supersymmetric superstring scattering amplitudes in curved
backgrounds have been hardly ever investigated, this construction can have some
important applications. In the first place, it provides intuition for what happens
after the worldsheet fermions are integrated out in a general AdS background
amplitude computation. Secondly, it gives insights about what the correct am-
plitude prescription in the more interesting case of AdSs x S° target-space might
be. There have been significant works over the last years on trying to understand
superstring vertex operators [67] [68], and the correct amplitude measure for the
fermionic fields 6% in the AdSs x S° pure spinor formalism [69] [70].

Additionally, we should emphasize that the AdS; x S® background can be
supported by a mixture of NS-NS and R-R self-dual three-form flux. Since progress
in understanding the AdSs x S° superstring worldsheet at the quantum level is
hindered by the presence of R-R fields, studying the analogue of the quantizable
pure spinor formalism for the AdS; x S° case might be a useful toy model. For
example, it can be a valuable alternative for developing computational techniques
that might also work for the higher-dimensional background. The target-space for
the AdSs x S° pure spinor superstring is given by %, and the equivalent

PSU(1,1|2) xPSU(1,1/2)
S0(1,2)xS0(3)
space, so that all sixteen supersymmetries are manifest in the worldsheet action.

The dual CFT for the AdS; x S® background for arbitrary values of the NS-NS
flux fys and the R-R flux frg is not known. However, at k =

description for AdS; x S® has the supergroup as the target-

j% = 1 units of
NS

NS-NS flux and absence of R-R flux,? the dual CFT has been recently identified
[71] [72] using the six-dimensional hybrid formalism in AdS; [46] [6], and many

other detailed checks from both sides of the duality have been performed [73] [74]

2We apologize for sometimes calling the NS-NS flux both by k and fys. As one can see from
eq. (4.2), these quantities are indeed related in our conventions. In fact, k is the level of the WZ-term
in the action and fys the value of the constant three-form in our superstring vertex operator (see
Section 4.7.4).
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[75] [76]. Note that in the AdS;3 x S3 target-space with mixed flux, the inverse of
the AdS3 radius is given by f which is defined as

£ = faw+ fls. k= 42

and where k determines the level of the Wess-Zumino coupling.
In Section 4.7, employing the manifestly spacetime supersymmetric formal-
ism, developed in Section 3.3 for the flat case, we will construct a quantizable

worldsheet action for the mixed NS-NS and R-R flux AdS; x S® x T* background

PSU(1,1]2) xPSU(1,1]2)
SO(1,2)xS0(3)

it remains conformal invariant at the one-loop level in Section 4.8. Thus, prov-

with the super-coset as the target-superspace, and show that
ing that the background supergravity superfields satisfy the on-shell conditions
[77]. In addition to the hybrid variables [46] [18], the sigma-model contains eight
superspace fermionic coordinates plus their conjugate momenta and eight uncon-
strained bosonic spinors {A%, A%} plus their conjugate momenta {w,, @; }. These
bosonic ghosts play a similar role of the pure spinor variables in the d = 6 case
[54] [51]. The relation between the PSU(1, 1|2) x PSU(1, 1|2)-covariant description
and the hybrid formalism of Section 4.2 will be explained in detail in Section 4.9.

The construction presented in Section 4.7 may serve several purposes. The
PSU(1,1|2) xPSU(1,1|2)
SO(1,2)x50(3)

S> pure spinor action [64] in a lower-dimensional setting. This suggests that

super-coset formulation provides an analogue of the AdSs x

reformulating the vertex operators of [78] and the amplitudes computed in [6]
[79] — originally obtained using the hybrid formalism in AdS; — in terms of
PSU(1,1|2) x PSU(1,1|2)-covariant variables could offer new insights into the
appropriate amplitude measure for the AdSs x S° case [70].

One can also take the vanishing R-R flux limit in our worldsheet action,
as a consequence, what remains is a pure NS-NS model with the super-coset
PSUS%%EZ);( Xpsg((;)’m) as the target-superspace. Therefore, it also provides a new
superstring description which, at k = 1 units of NS-NS flux, has the AdS/CFT du-

ality under good control. In particular, it is known from a string theory correlator

how a twistorial incidence relation emerges from the worldsheet variables [74].

4.2 Hybrid formalism in an AdS; x S° background

In this section, we review the hybrid formalism in AdS; x S with pure NS-NS
self-dual three-form flux while defining our notation for the worldsheet theory.
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4.2.1 Worldsheet action
The hybrid description [18] [46] of the superstring in AdS; x S3 x My, where

My is either K3 or T#, can be divided into a “compactification-independent” and
a “compactification-dependent” part. The compactification-independent sector
describes AdS; x S%. It consists in a PSU(1,1|2), WZW model together with a
c = 28 chiral boson p and the ¢ = —26 chiral boson ¢. The compactification-
dependent sector is composed of a twisted ¢ = 6 N/ = 2 superconformal field
theory (SCFT) describing the four-dimensional manifold Mj. One also has the
right-moving counterpart of each of these sectors. Since the worldsheet theory en-
joys a holomorphic/anti-holomorphic factorization, the right-movers will mostly
be ignored for simplicity and clarity of the presentation.
The worldsheet action for the hybrid superstring in AdS; x S° is given by

S = %k/dzz sTr (¢ 'ogg '9g) — %k/ sTr (g~ 'dgg 'dgg'dg)
B
where Sc is the action for the compactification directions containing four bosons
and four fermions. The latter is defined by the twisted ¢ = 6 N = 2 SCFT it

describes. S, is the action for the chiral bosons {p, ¢}, which is defined by the
following OPE’s for these fields

p(y)e(z) ~ —log(y —z), (4.4a)
o(y)o(z) ~ —log(y —z). (4.4b)

The first line of eq. (4.3) describes a PSU(1,1|2),, WZW model. As a PSU(1,1|2)

representative, one can take the group element
A .
g=e?Ta, 74 = {04, %%}, (4.5)

where A = {«j,a} is a tangent space index and labels the supercoordinates, and
T4 are the generators of PSU(1,1|2) Lie superalgebra. The algebra generators

satisfy the commutation relations

[Ta, Ts} = fas“Tc, [Ta, T} = TaTp — (=) ABITRT,,  (4.6)
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whose structure constants are given by
fapp = iV2e0ty,  faui = iV20ur8"PS5,  f1" = V2(00")apd™,  (47)

and where
i ~
(ULbC)a,B = ?7(0'[@0&%])06,8 ’ P = 2\/5(0'012)0‘/3- (4.8)

Note that in the equation above we anti-symmetrize with square brackets and
without dividing by the number of terms. In our notation, 2 = {0 to 5} is an
SO(1,5) vector index, &« = {1 to 4} is a fundamental SU(4) index and j = {1,2} is
an SU(2) index.

The four by four anti-symmetric matrices Oanp are the SO(1, 5) Pauli matrices
which obey the Dirac algebra

1
0'@‘50}%7 + ooy, = 17@55 , oP = Ee“ﬁwaf;é, (4.9)

where 7, is the usual mostly plus metric of the six-dimensional flat Minkowski
background. In addition, the symbol 3, p and its inverse 6°P satisfy some interesting
properties, namely,

~ -~ / A~ 1N

aaﬁ = (60"0)4p., gﬂﬁ = —(00"0)up, gaﬁgﬁv =55, (4.10)

o

where we write a = {0, 1,2} for the AdS; directions and we write a’ = {3,4,5} for
the S® directions. Supplementary identities for the six-dimensional Pauli matrices
are given in Appendix B.

The action (4.3) is invariant under global left and right PSU(1, 1|2) transforma-
tions of g, i.e.,

PSU(1,1[2) x PSU(1,1]2)g. (4.11)

In particular, for the pure NS-NS case we are considering, this symmetry is actually
enhanced to a local ¢(z) x ¢(z) symmetry acting on g as

g — 81(2)88xr ' (@), (4.12)

where ¢7(z)(¢r(Z)) can be any holomorphic (anti-holomorphic) map from the
worldsheet to PSU(1, 1/2).
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The supertrace over the PSU(1,1|2) generators defines the metric
STr(TaTs) = a5, n*Pipc = 6¢, (4.13)

whose non-zero components are

STr(TaTy) = ap, STr(Toj Tpr) = €kdup (4.14)

where €1, = €?! = 1 is the anti-symmetric tensor and (/5\“/3 = 21/2(c%12)

ap 1s the
symmetric matrix which enables one to contract spinor indices in an SO(1, 2) x
SO(3) invariant manner.

For an object X4 transforming in the representation A, we raise and lower
tangent-space indices according to XA = 17AB Xpand X4 =7 apXB. Of course,
the same rules apply for the structure constants fspc, which are graded anti-
symmetric in the 1-2 and 1-3 indices.

From the fundamental field ¢ appearing in the worldsheet action, we define

the left-currents by

dgg™ ' =J{'Ta, (4.15)
and the right-currents by

g g =JRTa, (4.16)

where we write J#! = {Sij ,Ki}and J& = {S'g, K%} Note that the left-currents are
right-invariant and the right-currents are left-invariant under global PSU(1, 1|2)
transformations. Although somewhat confusing, the latter statement is in fact
correct.

The enhanced symmetry (4.12) of the WZW model imply that the (1,0) left-
currents are purely holomorphic and the (0, 1) right-currents anti-holomorphic, i.

e.,
d(dgg™!) =0, d(g'ag) = 0. (4.17)

Therefore, for simplicity of the notation, we will just write | f‘z =JAand | ﬁ‘f = TA,
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so that the components read*

Ja = {Saj, Ka}, Ja = {Saj, Ka} - (4.18)

In addition, from the worldsheet action (4.3) and after rescaling the currents by
k—! and k — 2k, one can show that the current algebra between the left-currents is

k
IAWIn(E) ~ ~ = tan+ s fanCe (4.19)

(y—z

The current algebra between the anti-holomorphic right-currents can be derived
from (4.19) by using the symmetry of the worldsheet action (4.3) under z <+ z and

g gt

4.2.2 Superconformal generators

The hybrid superstring description in AdS; x S® enjoys a twisted c = 6 N/ = 2
superconformal symmetry generated by [46]

T = Tpsy — 1E),oap - laaaa + §6)2(p +io)+ Tc, (4.20a)
1 g ya,2 1
Gt = — (S io ~ 5 (2\/_ «1Sp K™ + 5"455“13551)
+ Tpsye” + (de 717, efT20) 1 G, (4.20b)
G =e "4+G3, (4.20¢)
J=0d(p+io)+Jc, (4.20d)

where (51)4 = ﬁe“ﬁV‘SSMSmSﬂSM, K‘X'B = 0—206[‘3[(2.
The PSU(1, 1|2), stress-tensor is given by

1
Tpsy = ——]A]B’?AB
1
= — 17 (KaKp™ + S48y /F¥) (4.21)
and the generators {GZ, T¢} obey a twisted ¢ = 6 N = 2 superconformal algebra
(SCA) for the compactification directions and have no poles with the {p, o }-ghosts

and no poles with the matter currents.

SWriting the fermionic currents as Suj and the bosonic ones as K; turns out to give a more
transparent notation for the N’ = 4 generators that we define in Section 4.2.2.
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Egs. (4.20) need to be supplemented with a normal-ordering prescription for
the PSU(1, 1|2), currents. The normal-ordering is not commutative. We normal-
order the currents according to

Ual)@) = §ay (v =2 Ta)a(2), (4.222)
Jalp = (=) 4B A + fap©ac. (4.22b)

The normal-ordering is also not associative. In our conventions, we normal-order
from right to left so that J4JgJc = (Ja(JJc))-

Consequently, the ordering is not important in Tpgyy because of the contraction
with the metric, but it is important in the second term of the supercurrent G*. In

terms of modes, the normal-ordering is in agreement with the property
(Jals)oV = () APV v4V, (4.23)

for a PSU(1,1/|2) primary field V and with V 4 the zero-mode of ] 4.

The c = 6 N' = 2 SCA (4.20) can be readily verified from the OPEs (4.4) and
(4.19). The more complicated properties to check come from the supercurrent G.
As shown in ref. [46], one way to fix the form of the superconformal generator
GT is by demanding the naive generalization from flat to curved space to be
invariant under the “non-standard” spacetime supersymmetries generated by Q,».
Another involved consistency condition to prove of the algebra generators (4.20)
is checking that the OPE of G with itself is regular.

Instead of demonstrating term by term that G™ commutes with Q,» and that
GT(y)G"(z) ~ 0, we take a simpler route. Note that it is possible to write the
supercurrent as

.11

= 218 QuQpQy2Que® 7 + GE (4.24)

which makes manifest its invariance under the non-standard SUSYs generated by
the charge

Quz = 74 (Sa1e P77 + S4a) (4.25)

and also makes manifest the nilpotence property. Identity (4.24) is proved in
Appendix G.
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In the hybrid formalism, the standard spacetime supersymmetry generator is

Qu = f Sut, (4.26)

and so we have the desired spacetime SUSY algebra

{Quj, Qpr} = fajﬁkaj{Ka- (4.27)

When mapped to the RNS description, Q,1 and Q,» correspond to the spacetime
SUSY generators in the —3 and 1 picture, respectively.

Let us emphasize that the reason for calling Q,; as the standard SUSY comes
from the fact that it is ghost-independent, and so acts in a similar form as the
supersymmetry generator of conventional superspace descriptions [43].

In what follows, we will write the zero-modes of the PSU(1,1|2), currents as
Va = ¢ Ja. More specifically, we define

Vo= K, Vi = S (4.28)

This notation is convenient, since half the spacetime supersymmetries in the
hybrid superstring Q,; act different than the zero modes of the PSU(1, 1|2), SUSY
currents S,;. The latter is a consequence of the presence of the {p, o' }-ghosts in the
four SUSYs Q7 of eq. (4.25).

Any twisted ¢ = 6 /' = 2 SCA can be extended to a twisted small ¢ = 6 N/ = 4
SCA [18]. In addition to the generators (4.20), the remaining N = 4 generators of
the hybrid formalism take the form

Gh=eJiT —ef™ G, (4.29a)
é_ = |- ﬁ(sl)éle—fip—zw + % (ﬁsalslglK“ﬁ + gaﬁsalaSﬁl)e_zp_ia

+ Tpsye # — (de P71, ei”)] Jo = +e PGz, (4.29b)
Jrt = —eftioydt, (4.29¢)
J o=t (4.29d)

The generators {GZ, Tc} together with {GZ, J*} form a twisted small ¢ = 6
N = 4 SCA for the compactification directions which has no poles with the {p, c'}-

ghosts and no poles with the matter currents. Their explicit form is not needed in
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this work.

Remember that we are only discussing the holomorphic part, and hence one
also has a right-moving twisted small ¢ = 6 N' = 4 SCA. We display our con-
ventions for the twisted /' = 2 SCA and twisted small N' = 4 SCA in Appendix
H.

4.2.3 Physical state conditions

Physical states V of the hybrid superstring are defined to satisfy the following
constraints [46]

GyGfV =0, Go V=G, V=TV=J]V=0, (4.30)
and the state V is determined up to the gauge transformation
8V =G A+GiQ+G,GjZ, (4.31)

where {A,Q} are annihilated by {G,, G, , To} and £ is annihilated by {G;, To}.
For a holomorphic operator O of conformal weight £, the notation O,, means the
pole of order n + h.

Let us pause and comment about our gauge-fixing conditions. The first equa-
tion in (4.30) can be translated to the standard physical state condition of the
RNS formalism QrnsVrns = 0, where Vs lives in the small hilbert space and
is related to V as V = ¢ Vrns (see Section 4.6 and Appendix E). The constraint
ToV = 0 is the usual mass-shell condition in string theory. When translated to
RNS, the constraint [V = 0 is equivalent as saying that the ghost- minus the
picture-number of Vgns is equal to one, as always happens for a physical RNS
state [20].

The additional constraints G, V = éo_ V = 0in eqs. (4.30) are convenient to
further eliminate auxiliary degrees of freedom and imply a covariant gauge choice,
e.g., they are equivalent to the Lorenz gauge condition for the open string sector
[46] [24] [55] [1]. As we will see in Section 4.3.2, it is also possible to define a
Lorenz-type gauge in the AdS; x S® hybrid formalism which turns out to be suited
for performing amplitude computations.

Note that in this formalism one of the candidates for the integrated vertex
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operator takes the form
/ GIG=,V, (4.32)

which corresponds to a vertex operator in the same picture as  when translating
to the RNS language [46]. However, the important difference, when compared
to the RINS formalism, is that V carries states both from the Ramond and Neveu-
Schwarz sectors. In the RNS description, the Ramond states carry half-integer
picture and the NS states carry integer picture. In fact, this is a crucial feature of
the hybrid formalism. It treats Ramond and Neveu-Schwarz sectors in the same
footing, since it only uses worldsheet variables of integer conformal weight.

4.2.4 Amplitude prescription

The prescription to compute n-point tree-level scattering amplitudes is given
by

A, = <v3(z3)égv<2>(zz)( ]’[ /dzm G—lcgv“")(zm)) GO+V<1>(Z1)>, (4.33)
m=4

where V(") is the vertex operator satisfying the physical state conditions (4.30)
and gauge transformations (4.31), and we are choosing z; = 0,z = 1 z3 = co by
SL(2, C) invariance. Note that the contribution from the right-movers is also being
suppressed in A,.

In eq. (4.33), the zero-mode integration over the fermions is done by generaliz-

ing the flat space prescription, i.e.,

1
/ 40 = 10V Vi Vi
= (V1)*, (4.34)

where V ,; is the standard spacetime SUSY charge in AdS;3 x S3 see eq. (4.26). After
integrating out the non-zero modes, the amplitude (4.33) can always be expressed
in terms of V,, the standard SUSY charge V,; and the fermonic coordinate 6* (see
eq. (4.37) below). In particular, note that the measure (4.34) is invariant under both
V, and V1, so that the usual “integration by parts” is well defined.

The chiral bosons {p, o} carry a non-zero amount of background charge, as
can be seen from eq. (4.20a). Therefore, the tree-level amplitude is non-zero only
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when the path integral insertions contribute with the factor CREC T eq. (4.33).
In addition, since the compactification generators {Tc, G%, Jc} obey a twisted
c =6 N = 2SCA, one also needs the insertion of | ér T. So that, in total, one gets
¢330 £+ for the chiral bosons. In the amplitude (4.33), the factor of /' * comes
from the term éar V.

In this work, we will sometimes use definitions such as

(93)06 = %eaﬁy(sgﬁg’)’eél (9)4 = ieamﬁ“@ﬁm@‘s, (435a)

1 1
(V)" = eV VoV, (Vi)' = e ¥VaVaVaVa.  (435h)

4.3 Vertex operators in the hybrid formalism

This section deals with half-BPS vertex operators for the superstring in an
AdS; x S? background with pure NS-NS three-form flux. After introducing the
zero-mode variable 6%, we will define the concept of a superfield in our superstring
description for this background. Subsequently, the form of the half-BPS vertex
operators will be determined by solving the constraints presented in Section 4.2.3.

For simplicity, we will consider vertex operators with no spectral flow [80].
Let us also emphasize that we will be working from the PSU(1, 1|2) supergroup
perspective in all stages of our development. For the readers not interested in the

technical details, the gauge-fixed vertex operator is given in eq. (4.49).

4.3.1 Superfields in AdS; x S®

For the compactification-independent massless sector, the condition Tp) = 0
(see egs. (4.30)) imply that the vertex operator V in AdS; x S® transforms as a
primary under the PSU(1,1|2), currents, i.e.,

Jaw)V(z) ~ (y—2)"'VaV(z). (4.36)

In particular, this implies that )V has a pole with the fermionic current S,;.

Since the standard SUSYs have the simple form (4.26), similar as in flat space,
it is convenient to define V to be a superfield expanded in terms of a fermionic
coordinate 0% which transforms as a Weyl spinor and is conjugate to Q,1. More
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precisely, we define the superspace fermionic variable 0% by the property*
Va0f =of . (4.37)

Therefore, when we speak of a superfield in AdS; x S°, we will be referring to
a state which transforms as a primary under the PSU(1,1|2), currents and which
has a finite expansion in terms of the fermionic coordinate 68*. Note further that 6*
is not trivially related to the group manifold coordinates 6% in (4.5), i.e., 6 # 0*!
and 6% # %2,

From the definition (4.37), we deduce that the remaining zero-modes of the
PSU(1,1|2), currents satisfy

Vab* = fp1,"60°, (4.38a)

1
VaobP = 5 faz 1 ®f51,51076° . (4.38b)

Since V = V(6), eq. (4.37) also implies that the component fields of V are annihi-
lated by Q,1 = V,1. In addition, we also have the expected property Tp6* = 0, as
can be easily checked.

In the flat background hybrid formalism, the vertex operator V for the massless
compactification-independent sector is a superfield depending on a fermionic
coordinate 6% and V has a simple pole with the standard spacetime supersymmetry

current p,, since

pu(y)0P(2) ~ 0B (y —2)71, (4.39)

where {p,,0f} are holomorphic fermionic fundamental worldsheet fields of con-
formal weight one and zero, respectively. Therefore, one can view the definition
(4.37) as a consequence of (4.36) and the generalization of the definition of V from
the flat to the curved AdS; x S® spacetime. With the difference that 6% is not
(a priori) a fundamental worldsheet coordinate in our description in terms of
¢ € PSU(1,1/2) in (4.3). Nevertheless, it is consistent to think of 6* as a fermionic
zero-mode in the supergroup description and satisfying properties (4.37) and
(4.38).

Regardless of that, it turns out that in a pure NS-NS AdS;3 x S background the

coordinate 6% can be viewed as a fundamental holomorphic worldsheet field. This

4Recall that in our notation Q, = V1, see eqgs. (4.26) and (4.28).
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hinges on the fact that the PSU(1, 1|2), current algebra (4.19) can be expressed
in terms of a SU(1,1),,, x SU(2),_, current algebra plus the eight free fermions
(4.39) [46].

Indeed, leta = {a,a’} where a = {0,1,2} and a’ = {3, 4,5} label the AdS; and
S® directions, respectively. We denote the SU(1, 1), x SU(2),_, currents by 7,.
The SU(1, 1), current algebra reads

2(k+2) 1 c
ja(y)jb(z) Uﬂb(y_z)z + (y_z)fab t.7C/ (440)
and the SU(2),_, reads
2(k —2) 1 g
Te)To(@) ~ o'y~ + v T @41)
where fo12 = fass = —2. Then, by defining
Sa1 = Pu, (4.42a)
Se2 = _2]«?“5895 + focZ,Bla(ja + %fmlélpém) 0° ’ (4.42b)
Ky = T+ faar ppo®, (4.42¢)

we recover the PSU(1,1|2), current algebra (4.19), as we wanted to show. The
bosonic curents 7, are the usual decoupled currents which appear in the RNS
description [81] [82].

We should mention that in the hybrid description the eight free fermions
{ps, 0P} come from a field redefinition involving the six ¥*’s and the bosonized
form of the {B, v }-ghosts of the RNS formalism [46]. As a corollary of this obser-
vation, one knows from the beginning that 6%(z) is holomorphic in a pure NS-NS
AdS; x S® background.

Using eqs. (4.42), one can readily check that the relations (4.37) and (4.38) are
reproduced. Except when comparing with RNS in Section 4.6, we will not use the
explicit form of the currents (4.42) in terms of the free fields {p,, 0f}. This means
that we will be working from the supergroup perspective and hence with the
currents constructed from ¢ € PSU(1,1|2). However, it will be assumed eq. (4.37),
which naturally follows from the generalization of a “superspace coordinate” from
the flat to the curved AdS; x S® background in the hybrid formalism.

In this case, let us emphasize that 6* is a fermionic zero-mode (Schrodinger
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operator) which is responsible for building up our physical states in a covariant
fashion. Therefore, it will not be necessary to know how it depends on g(z,z) in
this work, and so this reasoning should also generalize to AdS; x S® when turning
on a constant R-R three-form flux [83].

4.3.2 Vertex operators for the massless states

Now, we will determine the gauge-fixed half-BPS vertex operators by analyzing
the physical state conditions of Section 4.2.3. As usual, we concentrate on the
holomorphic part of the theory.

For the massless compactification-independent states (i.e., states of conformal
weight zero at zero momentum) of the Type IIB superstring in AdS3 x S°, the
condition that the vertex operator V should have no single poles with | imply that
it takes the form

Y=Y erletioy,. (4.43)
n
Demanding V to have no double poles or higher with G~ and no double
poles or higher with G- imply that V, = 0forn > 2and V, = 0 forn < -2,
respectively. Moreover, the condition éo_ V = 0 also gives the following constraints
for the remaining superfields {V_1, V, V1 }

VDClV,l =0, (444&)
i
Z\—EUE‘ﬁVMVmVo — V.V =0, (4.44b)

(V)*v =0, (4.44¢)
(VDVi+ (= V2V + 289V ) Vo - 25V Vo1 =0, (44dd)
VPV Ve Vi =0. (4.44e)

Let us now determine what are the physical states by analyzing eqs. (4.44)
together with the gauge transformations (4.31) for the remaining superfields. From
eq. (4.44a) we learn that V_; has no components proportional to 6*. By taking ¥ =
4keP+7(9)4V_1 in (4.31), we see that V_1 can be gauged away. Therefore, eq. (4.44b)
implies that Vi = vg + 6% x,1 for some {vo, X41 }- Actually, the component v can be
removed by taking () = —e”] ! "0y in the gauge transformations (4.31). Therefore,
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we conclude that one can gauge-fix V to the form
Vo = 0" Xu1 - (4.45)

We now turn to analyze the components of the superfield V;, the most impor-
tant part of the vertex operator V. Firstly, eq. (4.44c) implies that V; has no ()%

component. Now, consider the gauge transformation given by

A = 2/2ke?tiog (4.46a)

= _%(eage)wu i(6%)T + (0)*A, (4.46b)
for some {w?, ™, A}. From (4.31), one finds

i
Vi = —3V*VuVpe

— V%, + 6°V 57 + %(eaﬂe)vﬂ;\. (4.47)

Using the gauge parameter w?, one can gauge away the first component of V;. As
a result, we can gauge-fix the superfield V; to the following form

Vi = 0% + %(e%e)aﬂ — (%) a2 (4.48)

In addition, eq. (4.44d) implies that *2 = (i/2V*F — 25%F) Xp1- As a conse-

quence, all the degrees of freedom are contained in the superfield V;. In view

of that and for later convenience, we define V; = V. Therefore, the gauge-fixed
vertex operator (4.43) takes the form

V=TV 4V, (4.49)

where
V = 60 + %(eage)aﬂ —(%)ay™2, (4.50a)
Vo = 0“Xa1 - (4.50b)

Note further that the superfield V satisfies the equation of motion V*/V ;v p1V =
0 (see eq. (4.44e)).
All component fields obey the mass-shell condition V2V, = 0. It is also
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convenient to define the gauge invariant “fermions”
p = & (ivV2VHF —25"P) x g . (4.51)
Note that these fermions satisfy the “Dirac-like” equation
DyspP =0, (4.52)

in curved space, where Dyg = 0,5 D;.
For an object X 4 transforming in the representation A of PSU(1,1|2), we define

the covariant derivative as
1. ¢
D,Xp =V, Xp — Eng Xc. (4.53)

In fact, one can show that Daﬁtpﬁf = leﬁlpﬁj by using the explicit form of the
structure constants (4.7).

In terms of the RNS formalism language, the components of V proportional to
(6,f) are states from the NS-sector and the components proportional to 6% and
(63), are states from the R-sector.

Although we are only discussing the holomorphic part of the theory for simplic-
ity, the identification of the equations of motion derived from the string constraints
(4.30) with the supergravity field equations in AdS; x S® was elaborated in ref. [84].

Since the fermionic variables 6" are charged under the SL(2,R) x SU(2) bosonic
subgroup of PSU(1,1|2), we can also relate the components of the superfield in
(4.50) with the Maldacena-Ooguri vertex operators described in terms of the
SL(2,R) and SU(2) quantum numbers [80] [85]. We refer to Appendix 1.2 for this

description.

4.4 Curved worldsheet fields in the hybrid desecrip-
tion

For the purpose of computing PSU(1, 1|2)-covariant superstring scattering
amplitudes with vertex operators being functions of the spacetime boundary
positions, we will introduce worldsheet fields depending on the boundary AdSs

coordinates x. This will be done by performing a similarity transformation in the
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V¢ direction with parameter the complex coordinate x and where

i

V+:—§

(Kq +iKy), (4.54)

is the translation generator along the AdS; boundary or, equivalently, in the dual
CFT [81]. Naturally, the vielbein field E 4% (x) will emerge in our description.

When writing a field O without any labels, it means that it only depends on
the worldsheet coordinates z. Therefore, it is inserted in the position x = 0 in the
boundary.” For an operator function of any x € dAdS3, we will write O(x,z) — or
simply O(x) — which is equivalent to eXV+Oe *V+. As we will presently see, there
are only a finite number of terms that contribute in this similarity transformation
for our fundamental worldsheet variables.

Vertex operators translated by the generator (4.54) were used in refs. [73] [74]
to match worldsheet correlators at k = 1 units of NS-NS flux with the dual two-
dimensional CFT correlators [86] [87].

4.4.1 Similarity transformation and the vielbein

Consider the holomorphic PSU(1,1|2), currents (4.18), the effect of introducing
dependence on the boundary AdS;3 coordinates x is given by

Ja(xz) = €V Ja(z)e >V
= Ja(2) +xf1 4" n(z) + §2f+ A"fr8c(2), (4.55)
since
fralfip® =—465na; . (4.56)
This means that we can write
Ja(x,z) = EA®(x)]5(2), (4.57)

where

EAB(x) = 68 4+ xfy a® — 2x%54, 08, (4.58)

5T would like to thank Lucas Martins and Dennis Zavaleta for discussions regarding this point.
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and so the matrix E45(x) converts a flat worldsheet field to a curved one (in
spacetime).

Therefore, we will take our freedom and call the quadratic matrix E 4% (x) the
vielbein field [24]. In particular, note from (4.58) that E4®(x) has a finite number
of terms and at most quadratic in x. Since J4 = {S,j, K;}, in our usual notation,

we simply write
Saj(x) = EoP*(x)Spk, Ka(x) = E.2(X)K, . (4.59)

In supergravity descriptions, the vielbein field E4?(x) carries a lower Einstein
index and an upper Lorentz (or structure group) index [24], and E i (x) is not
written with an explicit spacetime dependence of x. In this work, we will not
differentiate between Einstein and Lorentz indices. However, this should yield no
confusion, since for any object O depending on x we will explicit write O(x).

The vertex operator (4.49) in the x-basis V(x, z) is

V(x,z) = VY (z)e X+, (4.60)

therefore, from (4.36), the action of the spacetime dependent PSU(1,1|2), currents
Ja is given by

Ja(x,y)V(x0,2) ~ (y —2) 7} (VAV +x12f+ AP VpV — 2X%277A+V+V> (x2,2),

4.61)
where x15 = x; — X». In our formulas, we shall also write
Ja(xi, )V (x2,2) ~ (y —2) " (Va(x12)V) (x2, 2)
= (y—2) "EA%(x12)(VBV) (x2,2), (4.62)

to simplify the notation.

4.4.2 Curved fermionic coordinates

As we discussed in the beginning of Section 4.3, the vertex V in eq. (4.49) is
a superfield in our superstring description, i.e., it is a function of the fermionic
zero-mode variable 6*. In order to compute amplitudes involving the vertex V
inserted in the AdSz boundary, we need to specify what are the analogues of



Chapter 4. The superstring in an AdSz x S background 98

the superspace coordinates * when we introduce dependence on the spacetime
coordinate x.

As before, in the x-basis, we have that
0%(x) = XV+e%e XV, (4.63)
and eq. (4.38a) implies

6%(x) = Ep "' (—x)6P
= (3 + xfp ) 0P
= 0% — xiv/2(00.0)" . (4.64)

Therefore, from (4.37), one finds that the action of the standard SUSYs on 6*(x) is

VMQﬁ(X) = Encl'Bl(_x)
= oF —xiv2(c.0)F, (4.65)

where E,1#!(x) is the vielbein field of eq. (4.58).
From the last property, together with eq. (4.34), we then have determined a
way to integrate the curved worldhsheet fermions 6*(x) in a tree-level amplitude

computation. The answer is given in terms of the vielbein, namely,®
/ 440 0 (x4)68 (x3)07 (x2)6° (x1)
= "M En " (—x4)En1 P (—x3) Ejn " (—x2) Ent ' (—x1) - (4.67)

If desired, the expression above can be explicitly evaluated using the definition
(4.58), one finds

/ 440 0 (x4)0° (x3)87 (x2)6° (x7)

— P70 é( — xﬁ“maf] + X355[“015] — ngﬂ”‘affs] + x10° [“aﬁﬂ>

To perform calculations, it is actually easier to use the less condensed but more practical
notation of a curved delta-function for the spinorial vielbein, i.e.,

ExtPH(—x) = 0 (x) . (4.66)
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— ZO'iﬁ (71‘5 (x1%2 + X3X4) + 2017055 (x1X3 + X2X4) — 20’$50'57 (x1X4 + X2X3) ,

(4.68)

hence, only terms up to quadratic-order in x appear when integrating out the
fermionic zero-modes 6% (x)’s.

4.4.3 Some properties of the vielbein

We have explicitly shown how flat worldsheet fields can be made dependent
on the boundary AdS; coordinates x. One of the key ideas is the presence of the
spacetime dependent matrix (4.58), which naturally appears in our superstring
description after performing a similarity transformation in the direction V_ with
parameter x.

For the purpose of carrying out computations, it is useful to state some of the
identities satisfied by E 4% (x). One can show that

EAB(x)Ep(—x) = 45. (4.69)

and, note also

Ea1” (_x)agydEﬁl (—x) = Egb(x)o'@xﬁ, (4.70a)
En® (=)0 En P (—x) = E(—x)0;”, (4.70b)

and that
eV (00,0)e XV = E2(x)(0030), (4.71)

hence, E4®(x) transforms a “flat Pauli matrix” to a “curved one” in spacetime, as
is expected for a vielbein [24].
In particular, the vielbein field with bosonic indices E,%(x) satisfy

Eg&(x) = Ehg(—x) , (4.72a)
Ea€(%i) Es (%)) e = Eap(xij) , (4.72b)

where we are denoting E,(x) = #7p.Es“(x).
We also have that

[Ea“(x)9e, Ep%(x)94] = can®(x) Ec(x)4 , (4.73)
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where

cab(x) = 0 frin® +xXfr i frpp® — 2oy )" (4.74)

and we used 9,x = J, .

As a consequence, one identifies
E++8+ = 8+ ’ E3+8+ = —x8+ ’ E_+8+ = x28+ ’ (475)

as the generators of infinitesimal two-dimensional conformal transformations.
In effect, egs. (4.75) highlight that the conformal group acting on the boundary
corresponds to the symmetry group of the bulk AdS; spacetime [66]. Hence, we
found a standard property of the AdS/CFT correspondence folklore via a first-
principles superstring theory calculation.” This observation might give important
hints towards the correct description of superstring vertex operators in AdSs x S°
[69] [70].

For the purpose of computing scattering amplitudes, we also define the curved

structure constants

fabe (x1,%2,%3) = Eq" (1) Ep* (x2) EcL (x3) faey » (4.76)

which only depend on the distance x;; = x; — x;, as can be easily seen from the
explicit expression

fabe(X1,%X2,X3) = fapc +4 (Xlzﬂg+77@ — X13Mp+ Nac + Xz3774+77@)

-2 <X12X13’7@+f b — X12X231p+ f+ea + X13%0231c+ f +@)

+ 8x12X13X237a+ o+ M+ - (4.77)

Furthermore, this means that the curved structure constants (4.76) are invariant

under a constant shift of {x1,xp, x3}, i.e., they satisfy

fabe (X1,%X2,%3) = fapc(X14,X%24,X34) , (4.78)

for any xy.

7Recall that the conformal group in AdS; is SO(2,2) = SU(1,1)L x SU(1,1)g and we are only
displaying the holomorphic part of the worldsheet theory.
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4.5 Amplitude computation from the hybrid formal-

1sm

In Section 4.2, we introduced the worldsheet action for the AdS; x g3 hybrid
formalism together with the OPEs satisfied by the fundamental fields: the {p, o}-
ghosts and the PSU(1, 1|2), currents. We also defined constraints that determine
the physical states in a suitable gauge choice and wrote a tree-level scattering
amplitude prescription. In particular, the fermionic measure of integration was
described in terms of the standard spacetime SUSYs V.

In Sections 4.3 and 4.4, after introducing the zero-mode fermionic coordinate
0%, we determined the gauge-fixed vertex operators for the half-BPS states. Ad-
ditionally, we showed how vertex operators inserted at x = 0 can be translated
to an arbitrary position x in the AdS3 boundary by the means of a similarity
transformation and using the vielbein E 4 (x).

That being said, we have collected enough information to calculate tree-level
PSU(1,1|2)-covariant scattering amplitudes for half-BPS vertex operators in AdSs.
For this reason, the content of this section is to exemplify how these tools can be
used in practice by computing a three-point amplitude and highlighting some

new features present in this covariant approach.

4.5.1 Three-point amplitude in AdS;

Following the prescription (4.33), the three-point amplitude for the half-BPS
vertex operator V in (4.49) and (4.60) is given by

Az = <v<3> (x3,zs)(égv@))(xz,zz)(cgv(l))(xl,zl)>, (4.79)
where
V(x,z) =PV (x,2), (4.80a)
(GIV)(x,2) = T HV(x,2), (4.80b)
(GgV)(xz) = —zl—kefff {2\1—/5 (K""BVM VgV + 254 V“ﬁvﬁlv)

— Saﬁsalvmv] (x,2). (4.80¢)
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In writing eqs. (4.80), we are ignoring terms in V and (G V) in (4.80c) that do
not contribute to the correlator: either due to the {p, o }-ghosts background charge
saturation or because it is a total derivative (and hence a null state in the CFT). For
completeness, gauge-invariance of (4.80) is shown in Appendix J.

To simplify the notation, let us denote (x;,z;) = (i) in (4.79). The upper index
in V() is there to label the state, similarly for {V(?),V)}. After integrating out
the {p, o}-ghosts, “integrating by parts” to eliminate the explicit z dependence
and using the equation of motion \AGAVR v/ g1V = 0, the amplitude (4.79) reads®

1 1 |
- — |- (3) apy/(2) (1)
As 2k\/§{2<<v B)VFVII(2)Viu VeV (1)>

+ <v“ﬁv<3>(3)va1vmv<2>(z)v<l>(1)>
+ <v,ﬂv,ﬂv<3>(3)v<2>(z)v“ﬁv<1>(l)>)
+ 2\/53“ﬁ<v<3> (3)Vu VP (2)Ve v (1)>} ) (4.81)

where we wrote it in the more symmetric form. For the latter, we used the identity

i(V3)Var 1)V 2) (T vV ) (1))
- ;’<vaﬁv<3> <3>vmvﬁ1v<2><2)v<l><l)>

+ %<va1vﬁlv<3> (3)V @ (2)veby (D) (1)> . (4.82)
The last term of eq. (4.81) is not present in the flat space calculation and, therefore,
it corresponds to a curvature correction.

We should underscore the fact that only the holomorphic part of the scatter-
ing amplitude A3 is being written. As in any closed string calculation where
holomorphic/anti-holomorphic factorization takes place [88], one needs to mul-
tiply eq. (4.81) with the corresponding right-moving contribution to get the
complete answer. Strictly speaking, this means that the amplitude (4.81) is
PSU(1,1|2)p x PSU(1,1|2)g-covariant. In particular, we remarked in our dis-
cussion of the hybrid formalism in Section 4.2 that the PSU(1,1|2), currents are

8We have checked that this partial integration produces the same answer before and after
integrating over the worldsheet fermions. The reason for this is that the fermionic measure is
invariant under V, and V1, which are the zero-modes appearing in the vertices.
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purely holomorphic and the PSU(1, 1|2)g currents purely anti-holomorphic.

4.5.2 Integrating out the fermions

Eq. (4.81) gives a PSU(1, 1|2)-covariant expression for the three-point ampli-
tude of half-BPS states in AdS3 x S°. Let us now illustrate how the integration
over the curved fermionic worldsheet variables (4.67) can be implemented with
an example.

For simplicity, we will take V{)) = 1(8040)a,;, so that only states from the
NS-sector are being considered. After integrating out the 8’s using the prescription
(4.67), the amplitude (4.81) for the NS states becomes

11

- SO, (4.8

which one can write in the more compact form as

5 [Equ)ag(s)aS(z) (Delxan)af) (1)

+ B (x03)a5(3) (Do (x12)a2 ) (2)af (1)
+ Eae(x13) ( Dy(xa3)a5 ) (3)a5(2)af (1)

- Sl xR (489

NS _
A° =

where D, (x12) = E.%(x12) Dy and fypc(x1,%2,%3) are the covariant derivative (4.53)
and the structure constants with curved indices (4.77). We are also using that

Ea(x;) Es(x;)1ca = Eap(xij) - (4.85)

The design of the amplitude (4.84) begs for an interpretation. As we have
alluded to below eq. (4.75), the spacetime vielbein field E,?(x) encodes that a
conformal transformation in the AdS3 boundary corresponds to a rotation in the
AdSs3 bulk. In particular, this can be seen by the observation that the object E, "o,
generates infinitesimal Mobius transformations along 0AdSs.



Chapter 4. The superstring in an AdSz x S background 104

Moreover, from eq. (4.84), one can explicitly deduce that the consequence of
integrating out the fermionic worldsheet fields in the correlator was the appearance
of the vielbein field E,%(x). In other worlds, the tangent space vector indices
were “rotated” by the matrix E,%(x). This rotation also affected the indices of the
structure constants f,;, which became fyp.(x1, %2, x3) of (4.76).

Let us point out that what is left in (4.84) is the kinematic factor of the three-
point amplitude written in terms of the component fields from the NS-sector.
Using the vertex operator (4.50a), one can similarly write the kinematic factor
involving the states from the R-sector.

In addition, by conformal invariance in the worldsheet and target-space, the
z and x dependence of the amplitude is completely fixed [85, eq. (2.13)]. More
precisely, the amplitude is independent of z, and the x dependence is determined
by the SL(2, R) spin j; of the insertions in (4.79). So that it takes the general form
[85]

J3=i1—jaj2—j1—Jj3 Jj1—j2—J3
Az ~ x5 X X553 . (4.86)

In Appendix 1.2, we give a brief explanation on how the SL(2, R) spin j; for the
fermionic coordinates and component fields can be derived from our worldsheet
variables. In particular, note that the variables 6* in the vertex carry a non-zero

charge, see eqgs. (1.8).

4.6 Comparison between hybrid and RNS

Up to now, in the calculations displayed throughout this work, we have used
the hybrid description written in terms of the supergroup variable g (or the
PSU(1,1/|2) currents) as in the worldsheet action (4.3). Even the definition of
the fermionic zero-mode variable 6* in Section 4.3.1 could be motivated in this
formulation, which is the best suited for the study of the superstring in AdS; x S*
since it generalizes to the case where a non-zero amount of R-R self-dual three-form
flux is turned on [46].

That being the case, the hybrid formalism in AdS; x S with pure NS-NS three-
form flux can also be written in terms of bosonic currents 7; and free fermions
{pa,0*}. As was mentioned above egs. (4.42), this hinges on the fact that the
matter part of the RNS formalism in the pure NS-NS AdS; x S® target-space is

given in terms of the bosonic currents 7, and the six free fermions 1, [81] [82]
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[89]. Therefore, the free RNS fermions ¢, plus { B, v }-ghosts are related to the free
fermions {p,, 0"} in (4.39).

In this section, we will further explore this correspondence between hybrid
and RNS variables to compare the vertex operators and amplitude computation
for the NS-sector states in Section 4.5 with the analogous calculation in the RNS
formalism. Achieving the same result with a different method should give further

support to our construction.

4.6.1 From hybrid to RNS variables

Let us identify, in RNS language, the contributions to the three-point amplitude
(4.79) for the NS-sector states. In terms of the RNS variables, the hybrid formalism
worldsheet fields can be expressed as [18] [46]

_¢ _ipRNS i RNS ¢
Sy =e 2e2HCTS, 0% = S%e2Hc 77 | (4.87a)
of — o 20+ix—iHE® ) ]ér+ — o 2ix+2¢+iHENS ) (4.87b)

where S, is the spin-field for the six-dimensional part and the boson HXN® defines

the spin-field for the compactified directions.’

The field ¢ in the six-dimensional hybrid formalism is the c-ghost of the RNS
description in bosonized form and e~ the b-ghost. Similarly, the chiral bosons
{¢, x} come from the superconformal ghosts

B=e P3¢ = e P0e'X, v =ne? = e Xe?, (4.88)
Note that the RNS variables obey the usual OPEs

HENS(y)HENS(z) ~ —2log(y —z),  o(y)o(z) ~ —log(y —z),  (4.89a)
o(y)p(z) ~ —log(y — z), x(y)x(z) ~ —log(y —z).  (4.89b)

Consequently, in terms of the RNS description, we have that

Y = g,vh*yl , (4.90a)
GiV = Vh—y%), (4.90b)
Gy V = Vigp (4.90¢)

9We apologyze for using the letter S both for the RNS spin-field S, and for the PSU(1,1|2)
fermionic currents S,;. Since the currents also carry an SU(2) index, this notation is unambiguous.
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where

Vigb = Cae %a?, (4.91a)

0

11
Yiye =~ 35 3¢ (Kgﬂﬂ + tpﬁlﬁhvgag) : (4.91b)

. -1 0
with Vhyb and Vhyb

NS-sector massless states, respectively. The SU(1,1),,, x SU(2),_, current 7,

being vertex operators in the —1 and zero picture for the

decouples from the fermions and is defined in egs. (4.40) and (4.41). We emphasize
that no excitations in the compactified directions are being considered.
To get to egs. (4.91), we used the following identifications between the RNS

and hybrid fermionic fields in the vertex operators

1

faarP'Sp10" = ifmtlﬂgllih, (4.92a)

(0t)h 510" = —iplyc, (4.92b)
1

Ko =Ja+ 5 fapc 4" (4.92¢)

4.6.2 RNS formalism in AdS; x S3

Of course, one can arrive at the vertex operators (4.91) directly from the RNS
description of AdS; x S®, which is given by a bosonic SU(1,1),,, X SU(2),_,
current algebra plus six free fermions 1,. Needless to say, one should consider
the GSO projected theory in order to eliminate the tachyons in RNS [20] [81]. This
comes in contrast with the hybrid description, in which the physical states are
automatically GSO projected [17].

In terms of the RNS variables, the bosonic currents of PSU(1, 1|2), are the same
as in (4.92c) and read

1
Ko=Tat 5 Fanc<?, (4.93)

where the currents 7, are defined in egs. (4.40) and (4.41) and ¢, are the six free
worldsheet fermions of the RNS formalism satisfying the usual OPE relation

Pa(y)Pp(2) ~ (¥ —2) ap - (4.94)

Under the PSU(1,1|2) bosonic currents, the fermions transform in the adjoint
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representation

Ko(y)p(z) ~ (y —2) " fap“¢c - (4.95)

Recall that the structure constants are defined in egs. (4.7).
The currents 7, have no poles with the fermions ¢, and the " = 1 supercurrent
of the RNS formalism for the AdS; x S° part is

_i a 1 cnbopa
C%—7§C7%+6mwww), (4.96)

that, together with the stress-tensor,

__1 a1 ab
Te = 4kjan7b’7 2%31/@7 , (4.97)

generate a c = 9 N' = 1 SCA. The four bosons and four fermions for the com-
pactification directions generate a c = 6 N' = 1 SCA whose supercurrent and
stress-tensor we denote by GEN° and TS, respectively. In total, one has the usual
matter c = 15 A = 1 SCA of the RNS description

2Tm(z) n 0Tm(z)

, 4 .98
V-2 -2 (4.582)

T (¥)Gm(z) ~ v—22" -2 (4.98b)
2C
Gm(y)Gm(z) ~ (yi 2 ?;r“_‘(g (4.98¢)

with generators {Gm = Gg + G, Ty = T + TSNS}
The NS-sector massless unintegrated vertex operators in the —1 and zero
picture are

Vinks = ctpae?a", (4.99a)
1 1 a,,b
Vs = — %5 (Jaa + fabclP pla +1P*¢*(jg)0ﬂg)
_ _EEC@“”Q + b jﬁ)o@l (4.99b)

where (J,)o is the zero-mode of the current J; and K, is defined in eq. (4.93). Up
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0 _ -1
to a constant VRNS = ZVRNS, where

Z = 2Qgrnse'
. 1 . .
= Gme? + bde Xe?? + Ea(be*”‘ez"’) + 2coe'X, (4.100)

is the picture-changing operator [20]. The BRST operator in the RNS formalism

iSlO

QRNS = j{ JBRST

= ?{ (C(Tm + Tp,x) + bcdc — %e_i’f’L"’Gm + %be‘zbﬁz"’ + %+ a(a(i)()c)) :
(4.101)

Since the zero-mode o J, acts on 4, as the zero-mode of K,. We can write VNS

in the form

RNS _

11
= ¢ (KQag + wﬁwbvga@ , (4.102)

which precisely matches the vertex operator (4.91b) found by the field redefinition

from the hybrid formalism.

4.6.3 Three-point amplitude in RNS variables

We can now use the tools developed in this section to compute the three-point
amplitude (4.84) for the NS-sector states inserted in the AdS3 boundary directly in
terms of the RNS formalism prescription.

As before, for fields depending on the boundary coordinates, we have

Pa(x) = exv+1/)g37xv+

= EL2(X) ¢y, (4.103)
where E,%(x) is given by (4.58). Hence, the fundamental OPEs read

Ya(xi, y) P (xj,2) ~ (y —2) 7 Eap (%), (4.104a)

10The option for the total derivative added in the BRST current jggrst is chosen such that the
double pole between jgrst and b is given by the ghost- minus the picture-current. For that reason,
jBrST gets mapped to the A = 2 superconformal generator G* (4.20b).




Chapter 4. The superstring in an AdSz x S background 109

KQ(XI', y)lPQ(X]‘, Z) ~ (y - Z) _1EQ£(Xi)Ebd(Xj)f@leg . (4104b)

Considering the vertex operators (4.99), the three-point amplitude for the
NS-sector states becomes

AN — (VRS @RS s )

+
gp!
S
~~ ~~
*
N
(O8]

x13) ( Dp(x23)a5 ) (3)a5(2)af (1)

- Ebec(xl,Xz, X3)a§(3)a3(2)a1(1)} , (4.105)

which precisely matches (4.84), as we wanted to show. This calculation gives
further support for our construction using the supergroup variables and the
fermionic zero-mode coordinates 6%(x) in the hybrid formalism.

Lastly, let us mention that, under the field redefinition (4.87), the RNS tree-level
zero-mode integration gets mapped to the hybrid measure of Section 4.2.4 only if
one works in the large Hilbert space, namely,

Ecocd?ce P ~ P TITTET (g)4 (4.106)

4.7 The superstring in the mixed flux AdS; x S° back-
ground with manifest PSU(1,1|2) x PSU(1,1|2)

The superstring compactified on T* and propagating in AdS; x S can be
described by a mixture of NS-NS and R-R self-dual three-form flux [46]. In this
section, after writing a general ansatz for the sigma-model action, we will begin
by identifying the background superfields appearing in the theory in Section
4.7.1, and then write the worldsheet action for the mixed flux AdS; x S® x T*
background in Section 4.7.2. Subsequently, it will be shown how to derive the
sigma-model action in Section 4.7.3 by substituting the values of the background
superfields. We will further confirm the latter result via a perturbative analysis in
Section 4.7 4.
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4.7.1 Type IIB worldsheet action in a six-dimensional curved

background

In order to identify the background superfields and before delving into the
AdS; x S® x T* target-space, let us start by discussing the worldsheet action in an
arbitrary curved six-dimensional background. A reasonable guess for the general
form of the action can be inferred from the structure of the integrated vertex
operator (3.55) (see also (4.144)) [90]

1 .- A —i o~
S = / iz (Eﬂ’]"qaﬁ JET" Bap + dof]" + daj ¥ + oy, FI P

N ~ . _ 1 N
+ Ny CPF 2 4 N,yd ,CH2 4 w0, VAR + @5 VAR — ZRﬂ"“lzxiabz\fa,l)

Bk
+ Sp,g’ + SC 7 (4'107)

where S, ; is the action for the chiral bosons of the six-dimensional hybrid formal-
ism and Sc is the action for the four-dimensional compactification manifold of T*
[46]. In writing eq. (4.107), we are considering only constant deformations in the
R-R superfield-strength F%/ Pk and in the superfields {Cﬁk ab Cwjab Rabedy 5o that
the {p, o }-ghosts decouple in the integrated vertex operator. This assumption will
be enough for writing a consistent worldsheet action in AdS; x S% x T*.

Similarly as in the six-dimensional hybrid formalism, it is possible that higher-
order terms in F% Bk appear in (4.107) (see [46] eq. (8.39)) which couple the {p, c}-
ghosts to the matter and the {A%, w,} ghost variables in this case. We will not
be concerned in determining them since, as we will see, this gives a consistent
worldsheet action for the superstring in AdS; x S°. Additionally, our result will
be related to the hybrid description in Section 4.9.

In eq. (4.107), the worldsheet fields {JZ, J4} are the pullback of the target
space super-vielbein [4 = dZMEy*, where ZM = {x™,01,0%} are the curved
supercoordinates. The indice M = {m, uj, jij} labels the curved superspace indices
and A = {a, «j,@j} labels the tangent superspace indices. As usual, we will write
JA=TJ4,]4 = 74V, =Vand Vi = V to simplify the notation, we hope the
context of the equation is enough for not causing confusion with the corresponding
one-forms. The inverse of the super-vielbein matrix E m? is denoted as E4M and it
is responsible for connecting curved and flat indices [24].

Since in a curved background the separation between left- and right-movers

is lost, we use a “hat” on top of the worldsheet variables which are purely anti-
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holomorphic in flat target-space. Also, we are interested in writing (4.107) in an
AdS; x S® background and so we can ignore the Fradkin-Tseytlin term which
couples the dilaton to the worldsheet curvature. The reason for this is that the
dilaton is constant in AdS; x S? and, therefore, it will contribute the usual coupling
constant dependence in scattering amplitudes. Moreover, given that there is no p,;
and pz; in (4.107), we can treat dyj = p,j + ... and dg; = pa; + ... as independent
variables.

The covariant derivatives V and VAare defined using the pullback of the spin-
connections Qf = dzMQ) M“ﬁ and ﬁaﬁ = dZMQO) Maﬁ . Their action on the ghosts
{A%, A%} is

A~

VAY =A% + APy VAT = 9A% + APQY (4.108)

2
i

We covariantize superspace derivatives acting on “un-hatted” and “hatted” spinor

p
4
derivative one-form V on a g-form Y# is defined by

indices using Qf and O respectively. In general, the action of the covariant

VYA =dYyA +YBQp4, (4.109)

where Q2 = dZMQO MBA is the connection one-form.

The background superfields { Bag, F af Bk, C%ab, Cui @} are functions of the zero-
modes of {x2,69,6%}. More specifically, the superfield Bap is the superspace
two-form potential and the lowest component of the superfield B, is the NS-NS
two-form b,y. The lowest component of F*/ Pk is the R-R field-strength % Bk, the

Rabed g related to the Riemann curvature and the lowest

lowest component of
components of C¥ b and C¥2b are related to the gravitini and dilatini [90]. The

worldsheet fields N,, = w,,L(U@)”‘ﬁ/\/3 and KI@ = @&(U@)aﬁ\X‘B are the Lorentz

currents for the bosonic ghosts {w,, AP, @y, AP }.

One way to accomplish writing the action (4.107) in an AdS; x S® x T* back-
ground with mixed NS-NS and R-R three-form flux is to explicitly substitute the
values for the background superfields appearing in (4.107) in the presence of a
constant R-R field-strength f% Pk and a suitable NS-NS two-form b,y such that the
supergravity constraints are satisfied [90].

Equivalently, one can start with the superstring propagating in AdSz x S> x T4
with pure R-R flux. In the presence of a constant R-R three-form flux parametrized
by frr, the lowest component of the background superfield F*/ Pk is non-zero and
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invertible, consequently, the worldsheet variables da]' and d}j can be integrated
out from eq. (4.107). The result is a sigma-model with a supermanifold as a target-
space, where the six-dimensional part is described by the superspace coordinates
{x2,6%,6Y} plus ghosts. In the latter case, turning on a constant NS-NS three-form
flux parametrized by fxs corresponds to adding a Wess-Zumino (WZ) term to the
pure R-R three-form flux worldsheet action in AdS3 x S3,

In particular, this strategy was used in [46] from the six-dimensional hybrid
formalism to describe the mixed flux action from the supergroup PSU(1,1(2). In
Section 4.7.3, we will show that starting with a constant R-R three-form flux sigma-
model with suitable rescalings of the currents, integrating out the worldsheet
fields d,; and c?aj in (4.107), modifying the two-form potential Ba]. Bk to accomodate
the mixed flux background, and adding a WZ term corresponding to turning on
the NS-NS three-form, one obtains a description of the superstring in an AdS; x

S? x T* background with mixed NS-NS and R-R three-form flux constructed
PSU(1,1|2) xPSU(1,1]2)
SO(1,2)xS0(3)
frr — 0, it is found a description of the pure NS-NS model with the super-coset
PSUS%HZZ))X XPSS&%’ 12) a5 the target superspace. The latter is the analogue of the WZW

model of PSU(1,1|2) found in [46] for the superstring in AdS;.

from the group element g € . Moreover, after taking the limit

4.7.2 The sigma-model on the supergroup

As was pointed out in refs. [91] [44], the Type IIB superstring compactified
on T* and propagating in an AdS; x S® background with pure R-R flux can be
described by the super-coset

PSU(1,1[2) x PSU(1,12)
50(1,2) x SO(3) '

(4.110)

50(2,2)xSO(4) __ SO(22) ., SO(4)
SO(1,2)xS0(3) ~ SO(1,2) ~ S0(3)

this background, the super-vielbein 4 = dZMEy* and the connection one-form

whose bosonic part is = AdS; x S°. Furthermore, in

][@] can be identified with the left-invariant one-forms [91]

JA = (g tdg)4, (4.111)

where A = {[ab], A} and g(x, 0, 8) takes values in the supercoset PSUS%H%Z))XXPS&(;)’HZ)

Note that the index A = {[ab], aj, a,@j}, so that it ranges over the 12 bosonic

and the 16 fermionic generators Ta = {T|a), Tuj, Ta, Taj} of the Lie superalgebra of



Chapter 4. The superstring in an AdSz x S background 113

PSU(1,1]2) x PSU(1, 1|2). More precisely, indices [ab] correspond to the SO(1,2) x
SO(3) generators, a = {0 to 5} to the translation generators and a, @ = {1 to 4}
together with j = {1,2} to the supersymmetry generators. In particular, a = {a,a’}
with a = {0,1,2} corresponding to the AdS; directions and a' = {3,4,5} to
the S® directions. Consequently, the isotropy group generators split as Ty =
{Tiav), Tiarn }-

The generators T4 of the Lie superalgebra of PSU(1,1|2) x PSU(1,1|2) satisfy
the graded Lie-bracket

[Ta, Tp} = ifas“Tc, (Ta, Tg} = TaTp — (—)4IE TpTy, (4.112)

where we define | A| = 0 if it corresponds to a bosonic and |A| = 1 if it corresponds
to a fermionic indice. The non-vanishing structure constants f4& of PSU(1,1[2) x
PSU(1,1|2) are

fuj k" = — gk, faip = _aggejk, (4.113a)
Forat = —8T 0,60, forg = =8"10,-0], (4.113b)
fa]'/B\k[ab] = Z(O’ﬂb)[xlyg,yl/g ]k/ fmjgk[a/b/] = —i(O’ﬂ’b/)D?/S\,Y‘Eejk, (4113C)
f[@] txkﬁj = i(U@)“ﬁ5£, f[Lb] akﬁj = i(U@)aﬁéi, (4.113d)
fed™ = 5085, Fo 7] = UL (4.113e)

p 1 [a cb] [a sb] a
fied) lef] ol = 2 (775[254]5]( + ’7[[4‘52} O ) ’ fiogd™ = 774[@(5; , (4.113f)

where §*F = 21/2(0912)9B, (gabe)eb — I (glagbgel)sb, (o2) f = L (ol2gh)) F and we
anti-symmetrize with square brackets without dividing by the number of terms,
e.g., 5?6(53] = (5?52 — 5355 . Similarly, symmetrization is denoted with round brackets.
Note that the matrix 5*f enables one to contract an « index with a B index in an
SO(1,2) x SO(3) invariant manner. Detailed information about the Pauli matrices

(Tfﬁ and its properties can be found in Appendix B.

PSU(1,1]2) xPSU(1,1[2)
SO(1,2)xSO(3)

We choose the representative of the super-coset

a ajT . BBk
g = T Tt @11
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and one can check, from the definition of the left-invariant one-forms
g ldg =JATy, (4.115)

that in the flat space limit of (4.113) one obtains | 4 = g%, J2 = 1% and ]Bk = dé\gk,
which are the super-vielbeins in a flat six-dimensional background (3.30), as
desired [92].

Global PSU(1,1|2) x PSU(1,1|2) transformations are defined to act on the coset
representative g from the left and gauge transformations from the isotropy group
SO(1,2) x SO(3) are defined to act on the coset representative from the right.

Therefore, under a combined global and a local transformation, we write
g — eFgef?, (4.116)

where e* corresponds to a global PSU(1,1[2) x PSU(1,1|2) and ¢ to a local
SO(1,2) x SO(3) transformation of g. It is then manifest that the left-invariant
currents (4.115) are invariant under global transformations. On the other hand,

under a local transformation of the isotropy group, we have that

sylabl — ¢ led] flefl; fefl e lab] 4 geolab] (4.117a)
o] = wlatl pBify 2, (4.117b)

and the ghosts transform according to

OA* = —wl® (g,)%AP, SAE = —w[ﬂl(a@)@/{g , (4.118a)
Swa = Wl (0,)f, 5%, = w[@]@g(a@)ﬁa, (4.118b)

where O = wl® T, in (4.116).
Another important property is that the left-invariant one-forms satisfy the
Maurer-Cartan equations

dJs = —%fABQ]BIA, (4.119)
Here, d = dzd + dzo, JA = dzJA + dZTA and we use the same conventions when

working with differential forms as in [24], in particular, we omit the wedge prod-
uct symbol in (4.119) and in the subsequent discussions. Further properties of
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PSU(1,1|2) x PSU(1,1|2) are discussed in Appendix L.

Having identified the super-vielbeins with the left-invariant currents of the

super-coset PSUS%HZZ))XXPSS&(;)’”Z) and introduced the supergroup PSU(1,1|2) x

PSU(1,1|2), we are now in a position to write the worldsheet action (4.107) in an
AdS; x S? background for the Type IIB superstring compactified on T* with mixed
constant NS-NS and R-R three-form flux. The worldsheet action takes the form

Lo (1 S B,
5= f—z/d 2 (51] Hab + €105 TPTY + w0, VA

+ W3 VAR — lablled] Nabﬁcd) + fi25wz + S0+ Sc, (4.120)

where ylatlled] = 1 falepdlb, — 71?1V} is the inverse of the PSU(1,1|2) x PSU(1,1]2)

metric (see egs. (L.10)), the covariant derivatives are

v)\a A + 7[@} (0’@)“{3)\5 ) VXE — a/)zﬁ + ][@] (O-Lb)ﬁg//i//g, (4.121)

and the Wess-Zumino term is given by

Swz = — [ 211" Hase, @122)

with!!
Hajpra = %(2 — BV ejomp,  Hyig, = —%(2 — BYeyo s, (4123)
Hape = %(Uabc)aﬁgaﬁ, Hyi5g = é%ejkamg. (4.123b)

The details about the derivation of the sigma-model (4.120) can be found in Sec-
tions 4.7.3 and 4.7.4 below.

In eq. (4.122), the integration is carried over a three-manifold B whose bound-
ary is the worldsheet. Asin (4.107), S, is the action for the chiral bosons of the
six-dimensional hybrid formalism, which remain free fields, and S is the action
representing the compactification directions. The constant f is the inverse of the
AdS; radius and is given by f = |/ f2r + f&s, where fys and frg parametrize the
NS-NS and R-R self-dual three-form flux, respectively. We shall also parametrize

HNote that Hyjp = Hzss and hence it is self-dual. Moreover, the constants H 4pcs are graded
anti-symmetric in the 1-2 and 2-3 indices, while the f, ABCS are graded anti-symmetric in the 1-2
and 1-3 indices. See egs. (L.9) for our conventions.
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the NS-NS flux by the constant k = fysf °. Note that H = dB, where B is the
two-form potential. The three-form H iBka in (4.122) is necessary for Sy to be
closed (see Section 4.7.3), its origin will be further clarified via a perturbative
derivation in Section 4.7 4.

As is elaborated in Appendix L, the Lie superalgebra g of PSU(1,1|2) x
PSU(1,1|2) admits a Zs-automorphism, so that it can be decomposed as

9=00Dg1Dg2Dg3, (4.124)

and, as a consequence, one can split the left-invariant currents (4.115) according to
their Z4-grade

J=1+ '+ 2+ 3, (4.125)

where |0 = Jl¥IT,,, [T = J¥T,;, > = J°T, and ] = J¥T;;. Using the Maurer-
Cartan equations (4.119) and the supertrace over the generators (L.7), the world-
sheet action (4.120) can be written in a more symmetric form

_ 1 2 Lo 1rmis 13 <
S—f—z/dstr{E]] +§(]] +]])+ww

+DVA — NN] - fiz /B <HN5 + HRR) +S,0+Sc, (4.126)

where we defined

. ~7 | 1

k
A= )LIX]T,X]', w = w,xjé“ﬁe] Tgk, A = E{)\[x, )\[X} ’ wzx]' = E{wﬂél wﬂi} ’
~ o~ N s o~ 1 o~ N |
A= A“]T&jz w = &jejk‘saﬁTﬁkr A = E{A“,A"‘}, Waj = E{wa/ g},

VA=oA+[,Al, N=—{wA}, Vi=ai+["A, N=—{®A},

and
1 ~ .
Hns = < (JI2) Hase + 6]J% " H, 3, ) (4.127a)
Ha =~ 5T (P = PP, (@.127b)

so that Hys is proportional to the amount of NS-NS flux fys and Hggr to the
amount of R-R flux fgg.
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It is important to note that the three-form Hyg has Z4-grade equal to two,
therefore it cannot be written as a supertrace over PSU(1,1|2) x PSU(1,1|2) in
terms of the currents in (4.125), given that the supertrace must be Z4-invariant.
On the other hand, the three-form HRg is exact (see eq. (4.140)) and hence can be
written under a two-dimensional integral over the worldsheet, it is the WZ term
that also appears in the AdS, x S?> and AdSs x S° worldsheet actions with pure
R-R flux [91].

In addition, the sigma-model (4.126) has a Z,-symmetry under the exchange of
holomorphic and anti-holomorphic worldsheet coordinates, flipping the grading
of the left-invariant fermionic currents (i.e., J' < J3), and further redefining
fns — —fns- When fys = 0, this is the Z,-symmetry ejoyed by the AdSs x S°
pure spinor sigma-model, which corresponds to eq. (4.126) with S, , = Sc = 0,
Hns = 0and so f = frr. Of course, in the AdSs x S° case, the Z4-coset of interest
PSU2214) _ the left-invariant currents | € PSU(2,2/4), A and A are replaced by

SO(1,4) x50(5)
d = 10 pure spinor variables, and the supertrace is taken over the PSU(2,2/4) Lie

is

superalgebra generators, see [64, eq. (2.1)].
As an important observation, note that in the limit frg — 0 we have f 2 = fy; g

and f~!fys = 1, consequently, one obtains the pure NS-NS model with the super-
PSU(1,1]2) xPSU(1,1]2)

coset S0(1,2) xSO(3)

as the target-superspace, whose worldsheet action is
given by
_ 1 [ 1o Tras 133
S—fl%ls/dZSTr[zlj +2(]] +]])
I
fis

In comparison to the six-dimensional hybrid formalism in an AdS; x S back-

+wVA+DVA — NN] - /B Hys + Spo + Sc- (4.128)

ground [46], the model (4.120) has all 16 supersymmetries of N' = 2 six-dimensional
superspace manifest, whereas in [46] only half of the 16 supersymmetries were
manifest. Notice that the price one pays for this is the presence of additional ghosts
among the worldsheet variables. We should emphasize that even the matter sector
of the action (4.120) is different from the one in the Green-Schwarz formulation
[93] [94] [95] [96], for the reason that (4.120) contains a kinetic term for the fermions
which breaks the Kappa-symmetry. The same distinction already appears when
comparing the matter sector of the Green-Schwarz superstring in AdSs x S [61]
with the AdSs x S° pure spinor description [64], or when comparing the AdS; X S?
Green-Schwarz with the AdS, x S? hybrid action [91].
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4.7.3 Derivation from the supergravity constraints

In the presence of a constant R-R three-form flux parametrized by frg, the
R-R field-strength /P is proportional to frg, the two-form potential B wj Bk is
proportional to fR_I% = f~! and the superfield R% is proportional to f2, = f2,

where f is the inverse of the AdS; radius. It is convenient to rescale the background
fields in (4.107) as

Buisk — SRR Bk FYPk s frgFiPk, Rabed _, g2Rabed (4 1209)

and the worldsheet fields as [46] [54]

— — _1
JE = R, T = £, doj = frif 'doj,  (4.130a)
7 ~3 17 6 fd lqa T3 17 4130b
B~ SRR g = frrfTY J" = frrf T, (4130Db)
B 3 1B Pk 317k _
| ) G e S A L (4.1300)
AT — fIAR, Wo = we, Wy — f g, (4.130d)

so that the action gets an overall factor of f52 = f~2. Therefore, working with the
worldsheet action (4.107) with a factor of f~2 in front is equivalent as treating the
superfields {Ba]. g F aj B, Reb<d} in (4.107) to be independent of frg, this observa-
tion will make the formulas below more transparent. In egs. (4.130), it is important
to note that even though frr = f in a pure R-R background, we explicitly wrote
the factors of the inverse of the AdS; radius f, in this way, the rescalings have a
natural generalization when turning on an NS-NS three-form flux parametrized
by fns, where the inverse of the AdS; radius becomes f =/ fZ + f& [46].

In the pure R-R flux AdS; x S® background, the non-vanishing background
superfields in the action (4.107) take the values [44] [54]

PPk = _eik5eb, (4.131a)
1.

Byipk = Boraj = —16%0up (4.131b)

Retet = aetled], (4.131¢)

From the torsion constraints

Taja® = ~ifajy1aF ", Tajo™ = ifaj51aFP 7, (4132)
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and the definition of the three-form with flat indices Hypc = %V (ABpc) + %T[ AB| DB D|c)/
we obtain the desired supergravity constraints

1 i
Hajﬁkg = §€jk0'g¢x‘B ’ Hﬁjgkg = _Eejkagﬁg' (4133)

Besides that, using the definition of the curvature two-form R (see Appendix
C.2), one can check that choosing the connection one-form as Q4% = i flab) p/ylat]
agrees with R% in eq. (4.131c).

The superfield FiBK in (4.131a) is invertible, therefore, we can integrate d,; and

d-

Bk in the action via the equations of motion

~ 7 ~ ~ Bk
doj = €id, 517, daj = epdagl” - (4.134)

Consequently, the AdS; x S® worldsheet action (4.107) in a pure R-R background
takes the form [54]

1 2 1 b4 3 i~ Bk 1 -~ —Bk i
S = F /d z |:§]] 77@‘1‘ Ze‘]kéa/?]ﬁ ] + Zejkéa‘gj ]a]
+ W VAY + @ VAR — latlledl N Ny |+ Sp 0 + Sc, (4.135)

where f = frg in (4.135) and is the inverse of the AdS; radius.
For the Type IIB superstring in AdS; x S?, one can also turn on a constant NS-

NS three-form flux H,;.. We can include in (4.135) the interaction corresponding to
o PSU(1,1|2) xPSU(1,1]2)
SO(1,2) xSO(3)
and closed three-form Hys. Locally, this closed three-form must describe a first-

-invariant

this field by constructing a Wess-Zumino term from a

order deformation of flat six-dimensional spacetime by the NS-NS field b,;,. Up to
a constant, the closed three-form Hng satisfying these properties is unique and

given by (4.127a), which we repeat below for completeness
ST JETE A H, . + 6J2PK N H (4.136)
N6 abe wjpka) '

where H,. = %(UM)RE@‘B and H,; 5, = %%ejk‘fgaﬁ with fyg parametrizing
the amount of NS-NS flux. One can check that (4.136) is closed by using the
Maurer-Cartan equations (4.119).

In view of that, it is natural to think that the worldsheet action describing the

superstring in AdS; x S% x T* with mixed flux consists in taking the inverse of the
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AdS; radius as f = 1/ f3r + f4¢ and adding to the action (4.135) the term

_fiz /B Hns, (4.137)

where the integration is carried over a three-manifold B whose boundary is the
worldsheet. Nevertheless, this doesn’t work as expected. Performing this modi-
fication will spoil one-loop conformal invariance of eq. (4.135) and, hence, what
is obtained does not correspond to a consistent sigma-model for the superstring
propagating in AdS; x S® x T*. As we will presently see, for conformal invariance
to be preserved in the mixed flux AdSz background, one also needs to modify the
superspace two-form Ba]. Bk in (4.131b) besides adding (4.137) to eq. (4.135).

The situation is then a bit different from what happens in the six-dimensional
hybrid formalism in AdS3 x S3 with mixed NS-NS and R-R three-form flux [46].
In that case, the target-space is the supergroup PSU(1,1|2) and turning on a
constant NS-NS flux, by starting from the pure R-R AdS; x S® worldsheet action,
corresponds to just adding the integral of a PSU(1,1|2) closed three-form to the
sigma-model. So that no further modification of the terms already present in the

action is necessary. On the other hand, in the description of the Green-Schwarz

PSU(1,1|2) xPSU(1,1|2)
S0(1,2) xSO(3)

observed that the naive Wess-Zumino term in the fermionic left-invariant currents

superstring with target-space the super-coset

, it was already

should be modified for the preservation of one-loop conformal invariance and
integrability of the model [96].

Accordingly, to obtain a consistent worldsheet action in AdS; x S® in the
presence of mixed NS-NS and R-R three-form flux, we start with the general form
(4.107), perform the rescalings (4.129) and (4.130), and modify the two-form Ba]. A

Bk
so that the background superfields of egs. (4.131) now take the form

FuiBk — _ikgup (4.138a)
1 f ~

BIX]'Ek = B‘B\kaj = _Z<2 — %)ejkéwg, (4138b)

Rabed _ 4,7[@] [cd] (4.138¢)

Integrating out d,; and dABk as before and adding the NS-NS deformation (4.137),
the resulting sigma-model for the superstring propagating in AdS; x S* x T is
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then given by
1 1 pza S 1Bk wj =Bk
-7 [ = [Efb] o+ €3BT — (2~ 180) 2 (1P~ TP

+ an)\”‘ + Z/U\,thxa — 17[@] led] Nabﬁcd:| - # /B HNS + Sp,a + SC ’ (4.139)

where f = \/f2. + f% is the inverse of the AdS; radius. To recover eq. (4.120),

one just needs to note that we can write

1 (2 fRR /dZZ €]k5 (]‘Bk]"‘] ]ﬁk]oc])

e
1 k
f2 (2 fl}R)4/B < ]kéaﬁ]ﬁ ](X]>
i
—a / (P19 Hog pa + TP iy ) (4.140)
where H,; g, and Ha]. Brq AT given by (4.123).!12 Eq. (4.140) is the Wess-Zumino

term of ref. [91] which appears in quantizable super-coset descriptions of the
AdS; x S? and AdSs x S° backgrounds as well.

The reason for choosing Ba]. Bk @s in eq. (4.138b) hinges on the fact that in the
fns — 0 limit, i.e., f = frr we recover the pure R-R worldsheet action (4.135).
Alongside that, the choice (4.138b) for the two-form potential is required for one-
loop conformal invariance of the action (4.120) (see Section 4.8), which is known to
be compatible with background superfields satisfying the supergravity equations
of motion [77].

Note that the constraints (4.133) in the mixed flux case are

i
Hyoj g = (2 D) epoump,  Hygige = —5(2- [8)epo s, (4141)

and so they have the desired form in both limits: fys — 0 and frr — 0 which are
consistent AdS; x S backgrounds for the superstring. Note further that, without
loss of generality, one can take frr > 0.

12In eq. (4.140), to get from the first to the second line we used that JY A ]Ek =do" Ndotell ];‘j J ? k,

d?z = 2do’do! and € = —2i. To get from the second to the last line we used the Maurer-Cartan
equations. In our conventions, the Euclidean wordsheet coordinates ¢! = {0, ¢!} are related to
the complex coordinates as z = ¢® — ic! and z = 0¥ + ic! (see Appendix C.1).
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4,74 Perturbative derivation

In the previous section, the AdS; x S® action (4.120) was justified by substitut-
ing the values for the background superfields in (4.107). The latter can be inferred
from the worldsheet action in a general ten-dimensional background [90], or by
covariantizing the massless closed superstring integrated vertex operator (4.144)
with respect to target-space super-reparametrization invariance. Below, we will
further confirm our result and show how one can derive (4.120) via a perturbative
analysis starting from the integrated vertex operator.

Firstly, note that up to cubic-order in the worldsheet fields, the supertrace term
in eq. (4.126) is

l 2 1 272 1 T1.3 153 = SO N
fz/dstr {211 +5 (7P +71'T") +wVA+@VA - NN
= flz / dz (%axbéx”nab + ejkﬁagaéﬁkﬁe)“f + W OAY + @@7@) , (4142

and the three-form in eq. (4.126) is given by

TR / (HNS + HRR)

_ 2 [ fns [ o= p “up 1 33Bkaai _ F. _ABBkgaj

-5 / d Z{T {gxfaxaxa(aabc)ag(saﬁ + seji(9x,59076" — B, 50" 9“1)}
f RR k naj 0Bk naj I SABkAR]
+ 767 (3xup0P 0% — 0,050 ) + ey (959070

_ éxagaéﬁkéﬁf)} } ) (4.143)

where x of = xto, a B Let us see if we can reproduce the above results by doing a
perturbative analy51s starting from flat space.

The linearized deformation around the flat background is given by the inte-
grated vertex operator | Wsg. For the case of the closed superstring, the integrated
vertex operator can be obtained as the left-right product of the open superstring
vertex operator in eq. (3.55). In the analysis of this section, we want to confirm
that the worldsheet action in eq. (4.120) corresponds to turning on the NS-NS and
the R-R three-form flux up to cubic-order in the worldsheet fields.

Consider the integrated vertex operator for the compactification-independent
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massless sector of the Type IIB superstring which reads
Wsg = 90P00%T A, 5, + D0YTT" Agoj + IOPTIZA 5y + TIPTT Ay + d,j0OP E5, "

+ dg TT'E," + dﬁ 90V E, P* + d/3 T12E, Pk + da,dﬁkP“f Pk _ 5N JI02

-5 CNBIEOL 4 (.., (4.144)
where the d = 6 N = 2 superfields

{ Ay g Aaajr Ay i Aabs Egi %, Eg", EgiP*, EP*, FYPE, Qupe, Qe } (4.145)

are functions of the zero-modes of {x%6%,6%} and the terms in (...) do not
contribute to the analysis below since, for example, they involve
Lo =Bk~ ab b i~ ab
—5 @aeﬁm@% — 5 Nwd6v 0, ", (4.146)
which is zero up to cubic-order in the worldsheet variables for constant NS-NS
and R-R three-form flux. Moreover, the other terms in (.. .) identically vanish for
these constant fluxes. Some of the remaining contributions to Wgg are written in
eq. (M.2).
The d = 6 Type IIB supergravity spectrum is described by the bi-spinor su-
perfield Aa]. Bk [97], which satisfy the following linearized equations of motion

(oe)*f (DajAﬁk“?k + DﬁkAtxJ'?l> =0, (4.1472)

(0°2)%F (Dgj A, 5 + DgAqizs) =0, (4.147b)

and gauge invariances

5A“]ﬁ D“]Qﬁk + Dﬁthx] 7 (4148)

where
(e 2B (DMQ o + Dﬁkga]) —0, (4.149a)
(c2he)R b’(D Qﬁk_|_ DﬁkQa].) —0, (4.149b)

for the superfields {Q,, f\)a]} functions of the zero-modes of {x2,6%,6Y}, D,j =
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_d k
39 €]k9ﬁ 8 ap and D ; 89"‘1

ing in (4.144) are the d = 6 N = 2 linearized supergravity connections and

— 1e-k§3k8m. The remaining superfields appear-
2%) ap g sup PP

field-strengths. They are defined in terms of A | ik according to the equations in
Appendix M, where it is also written the remaining equations obtained from BRST
invariance of the integrated vertex operator.

Considering a linear perturbation of the flat six-dimensional model to the
AdS; x S® background with mixed three-form flux amounts to turning on the
NS-NS two-form by, and the R-R field-strength f*/ Pk In this case, there exists a
gauge such that the non-zero components of the superfield Aa]. Bk are

1 ~ 1 ~ 1 .
Apisr = 32(‘7b9k)[5(‘7291)777@_ ;L(Ubf)k)/s(ff%z)?b@ 32(0d9k)ﬁ(9]0”bd9 ) (0°61)59 by
1, -~ 1
— 3—2(0491)7(910“”9 )(@0k) pOjabyc + 5€p100€ 550508 pmel 590 T fompn 4 (),

(4.150)

where 9}" = ejk()"‘k and 9\]& = ejkéak. Note that the first term in (4.150) corresponds
to a total derivative in the integrated vertex, it was added so that we can reproduce
exactly the coefficients appearing in eq. (4.143). The contributions in eq. (4.150)
denoted by (...) involve at least second-order derivatives of b, or first-order
derivatives of f%/ Pk and hence vanish for a constant NS-NS and R-R three-form
flux.

Explicitly, in the AdS; x S° background, we have that

1 PP L~ .
bab = ngSyXﬁ (O'LbC)uchgz fa] Pk = _fRRélxﬁe]k/ (4'151)

and using eqgs. (M.1) we can express all the superfields in the integrated vertex
(4.144) in terms of A“]. B and, therefore, in terms of the fields (4.151). Up to first-

order in the worldsheet variables {x%, 0y, 0% }, thed = 6 N = 2 superfields are
given by

i P

Agaj = E(UQG,-),X, Agpr = E(agek)g, (4.152a)
1 1. - |

Agy = = gMap + ngs(S"‘%bec)ang, Egl =0, (4.152b)
2. s - _

Ef* = glst(/ﬂs 0,750 + i frrOP 70@39‘”‘, E,ff =0, (4.152¢)

s 2. s a1 i B ks
BT = —3ifnsd 0yt + ifrrd T 0uso8”, FUP = —freelF,  (4152d)
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~

2 ~ ~ 2 ~7
QL;,C = —ngs (O'Lbc)agéa‘g, QLbC = ngS(U@)“gyﬁ- (41526)

Consequently, up to Cub1C order in the worldsheet fields and after rescaling

04 — fRRG"‘] and 6Y — fRRG“] the linearly perturbed worldsheet action is

Stlat + / Wsg = / d*z Baxbéxa’?ab (1 - %) + ijgwgaégkﬁ()“j + WY + WO
1 = ~7 2. — PO PO

+3/f Nsx“9x"0x (0 ) 0P — 3i€jkfNs <axal§a(95k9‘” + axa395k89“1>

+ %fRRejk <§x&[§§/§ka§aj + axangﬁkéeaj) + ést (O’Lb':)agéwg (53@]\]@

_ axCNab>] +Sp0 + Sc, (4.153)

and by further rescaling x* — \[x , fns — 2 = fNS and frr — % fRR, we finally
get

Sflat + / Wsg = / A’z Baxbéx”nab + €jk3“ga§g K90Y 4+ wedA* + DAY

1 — ~ 7 Z —~5 . _ P .
+ ngngaxbaxﬂ(gM)ag(S“ﬁ + EfNSejk (axagaf?ﬁk(?“] —ox Ea(?ﬁk(?“])

+ %fRRejk <§x33§3k8§§j + Bxa,gOﬁkﬁe”‘j) + ifNS(‘TLbC)aB‘Saﬁ <8x£N@
- axcﬁabﬂ + Sp,0 + Sc, (4.154)

where we integrated by parts and ignored terms proportional to ddx, 996 and 908,
which can be removed by redefining x, f and 6. After rescaling all the worldsheet
fields by f~!, the action (4.154) reproduces all terms appearing in eqgs. (4.142) and
(4.143), except for the contributions involving the ghost currents {N@, I/\\T@ }, which
appear in (4.154) but are absent in (4.142) and (4.143). Nevertheless, this fact can
be easily remedied by shifting the ghosts in (4.154) as

LIy L 2 s (0™) p30P T (00)*, (4.155a)

A AR 4 fNS( o) 550P T xc (oA )™, (4.155b)

and then removing additional terms of cubic-order proportional to dA* and OAR
by also redefining w, and w;.
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Therefore, our perturbative analysis in eq. (4.154) replicates the worldsheet
action (4.120) up to cubic-order in the worldsheet variables. In addition, note that
to put the contributions proportional to frg in (4.154) in the same form as the ones
appearing in eq. (4.143), one can again integrate by parts and eliminate all terms
proportional to d9x, 996 and 996 by suitable field redefinitions.

Thus, we have confirmed that the deformed action (4.120) corresponds to
turning on the NS-NS two-form b,;, and a constant R-R field-strength f%/ Pk as pre-
sented in eqs. (4.151). For this purpose, it was enough to consider the deformation
(4.144), given that the remaining terms in (...) that can appear in the integrated

vertex do not contribute to our perturbative analysis.

4.8 One-loop conformal invariance of the super-coset

sigma-model

In this section, we will check that conformal invariance of the classical action
(4.120) is preserved at the one-loop level in the sigma-model perturbation theory.
To accomplish that, the divergent part of the quantum effective action will be
computed using the covariant background field method [91] [98] [99] [100] and
shown that it vanishes. Therefore, the beta function is zero at one-loop.

Let us first point out that for the Green-Schwarz superstring in the mixed
flux AdS; x S® x T* background it was shown that there is no divergence in the
one-loop effectve action for the terms proportional to the classical bosonic currents
{718l 121 in ref. [96]. There, it was found that after gauge-fixing Kappa-symmetry
transformations the UV divergent contribution involving the classical currents
J% is proportional to the Killing form of PSU(1,1|2) x PSU(1,1|2) [96, eq. (7.15)]
(or, equivalently, to the second Casimir (4.159)) and hence vanishes. Since we are
employing a covariant framework in this paper, we don’t have to deal with the
subtleties arising from gauge-fixing Kappa-symmetry.

For the purpose of covariantly quantizing our theory, we will make use of the
covariant background field method, which consists in expanding the coset element

g as
g = gac’*, (4.156)

where g is the classical field and X parametrizes the quantum fluctuations. By
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using the gauge transformations (4.116), we can take X € g\ go so that

X = XAT,
= X'+ X2+ X5, (4.157)

as a consequence, the left-invariant one-form | expanded around the classical
configuration g is given by

] — e_fX]dEfX —+ e_fxdefx

= Ja+ f(dX + [Ja, X]) + %fz([dX + [Ja, X], X]) + O(f%). (4.158)

For simplicity, the subscript in | coming from eq. (4.158) will be dropped in
the rest of this section, so that it is understood that all left-invariant one-forms J4
correspond to classical fields in the formulas below.

Let us make a few important observations before expanding the sigma-model
(4.120) in powers of the quantum fluctuations. When substituting (4.158) into
(4.120) there will be terms independent of X# which are quadratic in the back-
ground currents J4, these make up the classical action S.. There will also be
terms which are linear in the fluctuations X“ and these do not contribute to the
effective action. Therefore, we will be concerned with the terms quadratic in the
fluctuations X# which are the necessary ones for calculating the one-loop beta
function. Note that we will only examine UV divergences in this section, given
that infrared effects are expected to vanish when summing up the perturbation
series [101]. By power counting, the UV divergent contributions must involve one
classical current of conformal weight (1,0) and one of conformal weight (0, 1).

As was mentioned below eq. (4.126), when fyngs = 0, the sigma-model (4.120)
takes the same form as the AdSs x S° pure spinor worldsheet action. Concerning
the latter, the divergent contributions to the one-loop effective action from the
matter and ghost part were shown to be proportional to the second Casimir
C2(PSU(2,2]4)) [91] [99] and given that C,(PSU(2,2|4)) = 0, the pure spinor
action in AdSs x S° was proved to be one-loop conformal invariant. Therefore,
from the fact that the computation performed in refs. [91] and [99] only uses
properties of the target-space supergroup, and from

Co(PSU(1,1/2) x PSU(1,1[2)) =0, (4.159)
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one already knows that the worldsheet action (4.120) is conformal invariant at
the one-loop level when fys = 0. Eq. (4.159) can be readily checked from the

definition of the second Casimir
facPfzpS(—)R 77ABC2(PSU(1 1]2) x PSU(1,1]2)) . (4.160)

With the above observations, we can anticipate some aspects of the one-loop
calculation to be done below. Taking into account the relation between the inverse
AdS3 radius (f) and the fluxes % =1- I }\’5 one then concludes that the divergent
contributions in the computation of the one-loop effective action for the model
(4.120) can be of order O(1) or proportional to ! 75 and that the terms of O(1)
shall cancel by the mechanism (4.159). The reason for this is that when fys = 0
the action has the same form as in refs. [91] [99]. In the following, we will perform

the computation with the factors of f ?R and £ ;’S coming from (4.120) explicitly

written and, only in the end, substitute CIER =1~ ffNZS to show that the divergent
part vanishes.
In particular, since the divergent contributions proportional to the classical

currents

[cd] [ab)

(latl e bl TN, N Nea (4.161)

do not involve £ I}R neither / ?’5 at any stage of the computation, but only factors

of order O(1), we already know that they vanish [99]. Furthermore, because
contractions between the quantum fluctuations of the ghosts {w,, A%, @y, AT} only
contribute to these O(1) factors, we can focus on the divergences coming from
integrating over the fluctuations appearing in the background expansion of the
left-invariant currents J4.

More precisely, the divergences of the one-loop effective action from integrat-
ing over the quantum fluctuations of the ghosts are of O(1) and proportional to
the classical fields { Ny, N}, consequently, they will cancel against O(1) contri-
butions coming from integrating over the fluctuations in the expansion of ¢! and
7 in (4.120) [99].

The contributions quadratic in the fluctuations will be separated into a kinetic
term Sy;,, a term involving the fermionic currents S¢e,p, and a term involving the
bosonic currents Sp,,s. Additionally, we will not bother writing terms that appear

when expanding the ghosts currents {N,, N@ } in quantum fluctuations, in view
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(a) (b)

Figure 4.1: One-loop diagrams contributing to the effective action. The external lines consist of the
classical currents.

of our argument in the paragraph above. Therefore, S¢e, and Sy, Will comprise all
terms quadratic in the quantum fluctuations containing XV X4, which contribute
to diagrams of the type shown in fig. 4.1a, and terms proportional to X® X4 where
XA(y)XB(z) # 0 (see eq. (4.163)), which contribute to diagrams of the type shown
in fig. 4.1b.

Expanding (4.120) to quadratic order in the quantum fluctuations is a long
exercise, especially because the three-dimensional integral over the three-form
Hns needs to be written as a two-dimensional integral over the worldsheet. This
can be accomplished by using the Maurer-Cartan eqs. (4.119) and the identity
V2XA = XBRpA (see egs. (C.11)), the final result is written in Appendix N. On
the other hand, the expansion of the remaining terms is straightforward, since one
can use the supertrace representation of the worldsheet action (4.126) to ease the
task, the result is represented in eq. (N.2). After plugging (4.158) into (4.120), one
finds that the kinetic term for the X*’s is

S = / 2z sTr (%axzéxz + éxlax?’) , (4.162)
which gives the following propagator for the fluctuations
XA(y)XP(z) ~ =y logly — I (4.163)

The terms involving the fermionic left-invariant currents that can give a non-

zero contribution to the one-loop beta function are
. o . .
St = g | 2+ B TR (24 35 TXPR v
<] b | 7Bk .
5| @+ B VRT3 VXX i g

_|_

Q| = | =

{(2 — By gxax - (2 - 3y v X X“] T
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1 5 A B
g[ 2 — IR)Txexom — (2 - 318\ VX mx‘l} LT
1

b vl b _Ek R 1 Yy om
(X20 X0+ 3VXEX) T H, g, + 5 (XU X

I\J

_ 1 . .
+3VXXT) I H, g+ o (XIVXY 43V XX ) P H, g

l\JlP—‘

(Xﬂvxﬁ" + 3vxaxﬁk) T'H,, /m} (4.164)

and

1 frR Bk 1 Bk RR
ferm /dz { ! XbXa]ﬁ ]a]fﬁkaﬂfvlbw_leémx7l]ﬁ JY {f fﬁkém fayiaj

f
L FRR b ya ppiqei ¢ o
+ (2 fRR)fﬁkvl fcd] Sma]] 2 f e xbxe ]ﬁk fﬁku7 f’rlbzx]

1w —aj i

+ {(Vl 7 ]]a]>1fwlbﬁ ‘ (ﬁlfg TR k>if¢1baj}XbXaHajBka

_|_

B = N =

(2 - fRTR) <]3m7'yl B 7(5111]’)’1> XEkX‘XjR,ﬂ b Bk} , (4.165)

where the last term in (4.165) comes from using using V2XA = XBRg? after
integrating by parts in the kinetic term (4.162) dressed up with the connections. In
total, we will write S¢ory, = Sﬁer)m +S f(er)m

The terms involving the bosonic currents that can give a non-zero contribution

to the one-loop beta function are

1 —
Sbos = /dz { —f—fRR)VXﬁkX“]] ifojpra + ( _%)VXﬁan]]QZfajEkﬂ

1 ) 1 ]

+A—L(1—%)vxﬁ X i foi pra + (1+f1}R)vxﬁ XTif i 50
1 = 1 o

— S XX Hope + 5 L Xty XaH y + S(VXPEX — XPTXT ) H,

aj Bka
1-a (o Bk ' Bl raj 1 fRR Bk yajib I
+ 51" (XPU XY — VXFXY) H, g, - if XTI (fy 3" Fraga

~ 1 1 .
+fh“]"yl ’?lEkg) 2XdXC ]afbc *fgf da EXQVXQZ]"QQ[@]N@
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+ XdVXszC Ll +2(XﬁkVX“J+X“JVXﬁk)z N,

wj Bk

+ z(xﬁkVX“f +X“fvxﬂk>zf Ny + 10Xy X1 + 19X, X g
. b .

— 20Xy X J T gy + JOEXPOXYif e — TOXPEXif

- 1
] ] X,YIX(smfab ’yla]fcd 5m + 4<2 fRR)X/SkXD‘]]b] R

; (4.166)

abaj Ek} ’
where the last seven terms in eq. (4.166) come from the connections that dress the
kinetic term (4.162).

We now have everything in place to calculate the divergent part of the one-
loop effective action. We denote functional integration over the fluctuations by
angled brackets (...), and start by considering the contributions proportional to
the classical fermionic left-invariant currents (4.164) and (4.165), so that we have

<efskinfsferm> ‘
1PI/one—loop

iv. o 3 a 1 RR a
E /dzz}ﬁ 2)]"(z )10g|0|2{ f?Rfﬁk " fotaej + 7 (2 58) 57 bf[abwlx]}
+ [z [T @My 21255 0+ B0 2+ 358) Fuanif e,

1
~ 0y —2)logly ~ z |64{( +58)° + (2438 }fvlua]f “Be

3 —2pr 4l 5. 207 ol
+ §|y — z| T H;" ZH’YZBkQ + 55( Ny —2)log |y —z| H,;" QHlekg

(
=0. (4.167)

In eq. (4.167), we wrote all possible divergent terms proportional to Tﬁk J¥ and in
(...) are the remaining contributions with two fermionic background currents.
It is not difficult to understand why eq. (4.167) vanishes. First, note that each

. e . =Bk rpi . - . ..
individual term there proportional to ]’3 J* is identically zero, this is because

A1 [ab
friaaif "5 =0, f3 Bl i ara; =0, Hy "H 5, =0, (4168)

Similarly, by observing the structure of egs. (4.164) and (4.165) and using PSU(1, 1|2) x
PSU(1,1|2) symmetry, one can easily convince oneself that the other possible di-

vergent terms in (... ) involving the background currents {] Ekf“j , fﬁ k]"‘j ,Tﬁk J4}
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can only be proportional to (4.168) or to the following other combinations of the

structure constants and H .5

aj Bka
foi* " Hprg1a = 0, FuiptH 51, = 0, (4.169a)
I . apl .
fai* " Hoppra = 0, i H 510 =0, (4.169b)

and, hence, there is no divergence in the one-loop effective action coming from
diagrams with two classical fermionic left-invariant currents as external lines.
We have seen that the cancelation of divergences proportional to the back-
ground fermionic currents in the one-loop effective action (4.167) does not impose
any constraints in the relative coefficients of the sigma-model (4.120), for the rea-
son that all possible divergent terms individually vanish. The situation is quite
different for terms involving two classical bosonic currents, in particular for the
ones with JZJ*. As we will presently see, this contribution will imply a non-trivial
relation between the relative coefficients in the worldsheet action (4.120).
Consider the general form of the functional integral after integrating over the

quantum fluctuations

<e_skin_5bos >

1PI/one—loop

B [z rog o | 17 )l + (17 - T ey

+ 72098 (R, — TNg, ) (Z)C[SZ} + (), (4.170)
where the terms in (. . .) above are of O(1) and correspond to contributions propor-
tional to the classical fields (4.161), hence, after adding to (4.170) the piece coming
from integrating over the quantum fluctuations of the ghost-currents { N, N@},
these terms sum up to zero by the property (4.159), as we argued above. In order
to prove one-loop conformal invariance, it remains to show that the coefficients

e, c?, ¢

abc’ “abc’

(4.171)

vanish. Note that in (4.170) we are also anticipating the antisymmetry in the

éiz and Cg, since these

exchange of z and z in the classical fields multiplying C
coefficients are proportional to fys.
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The divergent terms involving | ﬂfh are

[ = 1og 0P z)Cl)

a7ty [L/RR '
= /dzz 10g|0| 5] (Z) {4 f (f ﬁk’ylf,ﬂgka_fga]’ﬂf'ylaja> fb fef ca]
+ [dz [ @y r)T'E) (ly -2 - 0@ — ) logly — 2 %
1
X {1_6frxjﬁkaf ka]g[(1+%)2+ (1_%)2} +ZLHadeHdeb(_1+%)}
b 1 cle 1 . 2
:/dzz 10g|0|2]a](z)[—§fb[ﬂf[ef]ca_Zfajﬁkufﬁk“]bu_*—%)

1
+ ZHWH%]

T 1 ; 1 1 1
= | 2 10g 0PIT2) ™, (1 -  — 3R - 1)

=0, (4.172)

where we used 2 = f2; + f&¢ and therefore C;E;) = 0. To arrive at eq. (4.172), we

also needed

£ fropica = —FujprafP™y,  HageH™ = fjﬁsfwiﬁkafﬁk“jbf (4.173)
and
/dzy y—z| 2% _1og0[2. (4.174)

The second contribution to the divergent terms involving the bosonic currents
is

[ = 10g 0 (77" = 77} () )
. —[ba] ¢ 1 1
=— /dzz log |0|21HM(]£]* - ]*][b—”]) (2) (1 —5- E)
+ [d=z [ a2y (ly =212 = 6@y - 2)og ly - 2P) ()] ™ (2)
=TI @) it (- 5+ 5)

=0, (4.175)



Chapter 4. The superstring in an AdSz x S background 134

where the first numerical factor inside the round brackets comes from integrating
over the bosonic fluctuations, and the remaining factors from integrating over the
fermionic ones, and we also used that

fan™ ' H,

wipke = —Habe (4.176)

consequently, C @) _ o,

abe

Finally, the third contribution is given by

= [ @y [ @2 (ly =22 =@y —2)log|y —=I) x

o8 (J50) R (2) — T Na(2) )bl 5+ 5 )

/dzz log |O]217[Lb] [de] <]£N@ - TQN@> (Z)Cﬁg

=0, (4.177)

where the first 1 inside the round brackets comes from integrating over the bosonic
fluctuations and the second from integrating over the fermionic ones, and so we

have CSE = 0. Therefore,

(€7 Skin™Sbos =0, (4.178)

1PI/one—loop

as we wanted to prove.

Taking together the absence of divergences proportional to the classical currents
(4.161) and the results (4.167) and (4.178), we have shown that the worldsheet
action (4.120) is conformally invariant at the one-loop level for any value of fys
and frr or, equivalently, k and f. Since this fact is known to correspond as on-
shell background supergravity fields, we have further confirmed that the NS-NS
deformation (4.137), alongside with the choice (4.138), is a consistent solution for
the superstring in AdS3 x S x T* with mixed NS-NS and R-R three-form flux.

4.9 Relation of the super-coset description with the

hybrid formalism

In ref. [44], it was shown how to relate a worldsheet action in the pure R-R flux
case from the PSU(1,1|2) x PSU(1, 1|2) supergroup to the Berkovits-Vafa-Witten
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AdS; x S® sigma-model, which is written in terms of the PSU(1, 1|2) variables [46].
In this section, we will generalize this result and show that the mixed NS-NS and
R-R flux description (4.120) can be gauge-fixed to the hybrid formalism [46] in a
similar fashion. This will provide additional validation of the results presented in
this paper.

Firstly, note that the term —A*D, in the supercurrent (3.46b) is responsible for
relaxing the contraint Dy, this is the primary reason for the introduction of the
bosonic ghosts {w,, A*} [5].1* In order to make contact with the worldsheet action
in the mixed-flux AdS; x S® hybrid formalism [46], we will proceed as in ref. [44]
and consider imposing the constraint D, = 0 “by hand,” which means that we
can effectively drop the ghosts from our expressions.

Therefore, let us ignore the {w,, A* }-ghosts and rewrite the worldsheet action

(4.120) with a first-order kinetic term for the fermions
g — 12 /dzz (ljbjﬂ%b _ 1ejk§aA(2 _ Jﬁ) (IBkTX]' B Tﬁk]aj) + docjjlxj
f 2 4 p f
+dg Y — dajaTng"‘Befk> -~ %2 /B Hns + S + Sc (4.179)
and which is now subject to the constraints [44]
Dy =dy—e P9, =0, Dy =dy +e P %4 =0. (4.180)

To recover (4.120) one just needs to plug the auxiliary equations of motion for d,;
and dg; in (4.179).

The sigma-model action (4.179) is written in terms of the left-invariant currents
¢ ldg with g defined in eq. (4.114). In order to gauge-fix to the hybrid string, we
define the new fermionic coordinates

1
V2

so that the group element g can be parametrized as

lej — %{90{1 . é\ﬁl’ _90(2 + é\&Z} , 9/0éj — {90&1 + é\ﬁll _90{2 . é\ﬁZ} , (4:181)
¢=GHG'H', (4.182)

where = 69“]'7—“]" H = €XEITE, G/ = eelajT/af and H = 6xQT/ﬂ.
The generators {75, T’ g}’ A= {aj,a}, generate two decoupled PSU(1,1|2)

130f course, we are ignoring the additional topological variables in our discussion.
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Lie superalgebras and they can be constructed in terms of the T4’s in (4.112)
according to

1 i 5 1
To= V2 (T“_ E(‘Tam)ﬁm(sT[bc}) o Tes V2 (Ta+ 2( o) AméT[bC]) ,

(4.183a)

1 1
T E(Tlxl - Tm) ’ To1 = _2(Ta1 + Tﬁl) ’ (4.183b)

1 1
Ta2 = —E(Taz — Txo) T = VA (Toz + Ta2) (4.183¢)
consequently, the commutation relations take the form!*

{Tajs Tox} = V2iej OopTa, {73, Tgek = \/Eiejkafﬁﬂf (4.184a)
[Ta, Taj] = V2102016 T, (72, T = —V/2i00, 6P T, (4.184b)

[,Tﬂ/ ,TQ] = \/_(U'Lb*),xﬁtsaﬁﬁ, [72, ,TQ/] = —\/5(0@9),,(53"‘/57;’. (4:.184:C)
Furthermore, the supertrace reads

sTr(7aTp) = ab STe(7,Ty) = Navs (4.185a)
STr(Ej,ﬁ%k) = Mujpk = jkgaﬁ; STI‘(T 7'ﬁk) Najpk = _ejkgocﬁ . (4.185b)

Thus, the left-invariant one forms can be written in the following form
¢ ldg=H '"dH+H 'G '"dGH+H' 'dH + H''G' 'dG'H',  (4.186)

which implies that one can write the currents J4 as

= —ﬁ(5“1+s’“1) ]“2:—7_(50‘2 5%, (4.187a)

al_ L a1 ol @ _ 1 c2 g2

J _ﬁ( S +57), J \/E(s s, (4.187b)
1

a _ a 14 [ab] _ _ bey oc[% _ !

J —\/E(K + K", J Wi \/_(04’ )0 (Ke—Kp),  (4.187¢)

14 A fter redefining 7;’]. — i7;’j and 7] — —7,,both PSU(1, 1|2) algebras in (4.184) will take the
same form.
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where we defined the left-invariant currents

$% = (H'G'dGH)Y, K'= (H '4H)*+ (H 'G 'dGH)%, (4.188a)
s = (H''G'\aG'HYY, K= (H' 'dH")*+ (H'G''dG'H')*. (4.188b)

Using the SO(1,2) x SO(3) gauge-symmetry 6g = gw'*7T, of the worldsheet
action (4.179) for some w'*(x), we can gauge H' = 1. And using the eight fermionic
constraints (4.180), we can gauge 6’/ to zero, so that G’ = 1.

Consequently, in this gauge the “primed” currents vanish and, from egs. (4.187),

the sigma-model action (4.179) takes the form

1 171 ,—, _ _
5= f_z / dz > [EKbKa’?ub +dy (S"‘1 + e*P*“’S"‘Z)

+dg (5“2 — e‘ﬁ_ﬁS“1> + S“Bdmd%z (1 + e_p_i‘fe_p_ﬁﬂ

+ S0+ Sc — ﬁk /B (KKK (o) 50 + KPS Bie g ), (4:189)

where we used the constraints (4.180) to solve for d,; and &\az, and also rescaled

da — \L@d,ﬂ and d}z — \/Lidaz to arrive at eq. (4.189). Note that the terms
proportional to B, vanish in the gauge H =G =1

-~

We now integrate out d,; and d}z to obtain
S = L [ iz [ LKtk + Leydpsts 1 (14 MRkt g, (LR gzt
= f_z z 5 Hab + Eefk wp +(1+ Z?e e ap ETe

_1@ $ calghl algh2 ol op2 : / 1 cbra Sup
3 g eSS 4 5 -5 ) | ik Bzﬁ(KKK((rabc)“ﬁ(S

+ Kﬂsﬁks“f3iejkagaﬁ) +Sp0 + Sc, (4.190)
with e? = ¢ #~7 and ¢ = ¢ P~©, We also rescaled f~2 — 2f 2,k — —6k and
{e?,e9} — %%{64’, e?} to arrive at (4.190).

Given that ¢ = GH and"®

g ldg = J4T;, (4.191)

15The subscript R in the currents | I’? indicates that these are the Noether currents from the right
PSU(1,1|2) transformations, see ref. [6] for further details.



Chapter 4. The superstring in an AdSz x S background 138

for | 1‘? = {S"‘j , K2}, we can write the worldsheet action in the following form

S = f2 So + ikSwz + — f2 Sl + Sp o+ Sc, (4.192)
where
L[ “1500-13
= E/d z sTr(g~9gg™93), (4.193a)
1 _ _ _
Swz = _E/ sTr (¢~ 'dgg 'dgg'dg), (4.193b)
-1
_ [ 2 1 fRr > (1fRR pcnoeB2  1fRR goarahl
s1= [ (1 ta e4’e4’> %( ) eSS - s s
4 gu1gP? §MS/52) . (4.193¢)

Eq. (4.192) is precisely the worldsheet action for the hybrid superstring in AdS; x
33 with mixed NS-NS and R-R three-form flux, as we wanted to show. Similarly
as eq. (4.120), this action was also proved to be conformal invariant at one-loop
for any k and f [46].
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Conclusion

We emphasize the main findings contained in each chapter and also comment

on potential directions for future research.

51 Summary

Throughout this thesis, we have studied compactifications of the superstring
down to four- and six-dimensional target-spaces while preserving manifest space-
time supersymmetry. The discussion and development of the theory was con-
ducted from the worldsheet perspective, which focuses on the two-dimensional
CFT nature of the sigma-model action. Particularly, our findings include results for
the superstring propagating in a four-dimensional spacetime with a background
U(1) gauge field, and for the superstring compactified to a flat and to an AdS; x S°
six-dimensional background.

In Chapter 2, we computed consistent Lagrangians and equations of motion
for massive spin-3/2 and spin-2 fields in an electromagnetic background using
superstring field theory. First, we showed how to couple the hybrid formalism
for the open superstring to a constant electromagnetic background, and derived
expressions for the worldsheet variables in terms of the oscillator modes. We
then computed the open superstring field theory action for the compactification-
independent massless sector in a constant U(1) background. Perfect agreement
was found with previous calculations from bosonic string theory. After that, we
constructed the open superstring field theory actionin d = 4 A = 1 superspace
for the first massive compactification-independent states in a constant U(1) back-
ground.

Following that, the superstring field theory action in superspace for the massive
states was expanded in components. The pure gauge degrees of freedom were
eliminated and, consequently, what was left is a Lagrangian containing only the

physical fields. It was shown that the Lagrangian describes 12 complex bosonic

139
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and 12 complex fermionic degrees of freedom on-shell, including a massive spin-
3/2 and a massive spin-2 field. Even though the action has couplings of the
higher-spin excitations with the lower-spin ones, at the level of the equations of
motion the spin-3/2 and spin-2 fields decouple.

In Chapter 3, we described how to extend the six-dimensional hybrid formal-
ism in a flat background such that all SUSYs of d = 6 N' = 1 superspace can be
made manifest, including vertex operators and a tree-level amplitude prescription.
First, we reviewed the six-dimensional hybrid formalism in a flat background.
Then, we explained how four more 6 coordinates can be added as worldsheet
variables, followed by the inclusion of the harmonic constraint D,.

After relaxing the harmonic first-class constraint D, — by defining a new BRST
operator G — vertex operators and a tree-level scattering amplitude prescription
were constructed while preserving manifest spacetime supersymmetry. Specifi-
cally, it was shown that BRST invariance of the vertex operator implies the d = 6
SYM equations of motion in N = 1 superspace. Furthermore, we confirmed that
the three-point amplitude of SYM states is reproduced.

In Chapter 4, we studied the superstring in AdSz x S°. A supersymmetric three-
point amplitude of half-BPS vertex operators inserted on the AdS; boundary was
computed. After that, we constructed a sigma-model action for the superstring
in AdS; x S® x T* with mixed flux and all SUSYs manifest, and proved that the
model is quantum consistent at the one-loop level.

We started the chapter introducing the six-dimensional hybrid formalism in
AdS; x S? and, after explaining the technical details involved, wrote our main
result — a PSU(1, 1|2)-covariant three-point amplitude for half-BPS states inserted
on the AdS; boundary — whose coordinates were labelled by x. As a corollary, we
found that the kinematic factor gets dressed with the vielbein field E % (x) after
the worldsheet fermions are integrated out in the path integral. In addition, we
saw the compelling fact of the conformal group on the boundary being identified
with the symmetry group of the AdS; bulk by explicitly analyzing the form of
E 48 (x), which naturally appears in our covariant superstring description. It was
also found that the results agree with the RNS formalism answer.

The hybrid formalism for the superstring in AdS; x S® x T* has only half of the
eight spacetime supersymmetries manifest. Using the extended hybrid formalism,
we constructed a quantizable and PSU(1,1|2) x PSU(1, 1|2)-invariant worldsheet
action for the superstring in AdS; x S® x T* with mixed NS-NS and R-R three-

form flux. We proved that this description is conformal invariant at the one-loop
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level using the covariant background field method. For that to be the case, it
was necessary that the NS-NS flux fygs and the R-R flux frr were connected to
the inverse AdS; radius f, similarly as in the GS superstring. Additionally, we
have shown how this model can be related to the Berkovits-Vafa-Witten hybrid

formalism with mixed flux, which further validated our results.

5.2 Outlook

The results discussed in this thesis contribute to the understanding of super-
string compactifications to flat and curved backgrounds, in addition to enhancing
the understanding of manifest spacetime supersymmetry in the superstring. Since
our findings are grounded in a detailed construction of superstring descriptions
in regimes that are very little explored from the worldsheet side, this work can
serve as a starting point for future investigation of a wide range of topics, as well
as a reference for original computational methods.

The construction of the open superstring field theory in an electromagnetic
background presented in Chapter 2 is completely general and should be valid
for any massive state of the superstring. Superstring worldsheet calculations
often encounter obstacles coming from states in the Ramond sector. Since the
hybrid formalism of the superstring preserves manifest d = 4 ' = 1 SUSY, an
interesting direction of study would be to determine the equations of motion and
constraints satisfied by the fermions of arbitrary mass and spin propagating in an
electromagnetic background. In addition, the framework developed in Chapter
2 can be applied to beyond the quadratic order of the string field theory action,
allowing one to compute higher-order corrections to the open superstring field
theory in a U(1) background.

For compactifications down to a six-dimensional background, the formulation
developed in Chapter 3 with manifest d = 6 N' = 1 SUSY might be a fruitful
avenue for a further exploration of manifest spacetime supersymmetry in the su-
perstring. An important open problem is to understand the precise relation of the
spacetime supersymmetric formalism with the d = 6 pure spinor description of the
superstring [49] [50] [51].1 Progress in this direction might also have applications
to the origin of the d = 10 pure spinor formalism [54]. In addition,d =6 N =1
supersymmetry can be formulated in harmonic superspace. Since the relation

between harmonic superspace and ordinary superspace is well understood, the

LA six-dimensional pure spinor A%/ is defined to satisfy the constraint ejk/\“(ffﬁ/\ﬁk = 0.



Chapter 5. Conclusion 142

formalism developed in Chapter 3 can offer important hints towards a description
of the superstring using harmonic superspace coordinates as fundamental world-
sheet fields. In particular, the {p, o }-ghosts of the hybrid formalism should play
the role of the harmonic variables in the superstring description.

Finally, the AdS; x S® framework discussed in Chapter 4 can have applications
ranging from superstring amplitudes in AdS to insights in worldsheet descriptions
in the presence of R-R flux. The construction of the vertex operators inserted on
the AdS; boundary provides all the necessary elements for the exploration of
higher-point tree-level scattering amplitudes in AdS; x S® with manifest spacetime
supersymmetry. We gave a zero-mode prescription for the fermionic worldsheet
fields with vertex operators depending on the AdS; boundary coordinates x. The
remaining ingredient is the integrated vertex operator for the half-BPS states. The

holomorphic part of the integrated vertex reads

[eiczy - /Zk{ ( KV ,q Vg1 + 1841 V* ﬁv,ﬂ) .y 5sa1v,ﬂ} , (5.1)

where we only wrote the terms that contribute to the tree-level amplitudes of
half-BPS states.

The sigma-model in AdS; x S® x T* with mixed flux from the super-coset

PSUS%%B)X XPSS&%’ 12) s the analogue of the AdSs x S° pure spinor worldsheet action

for the lower dimensional Anti-de Sitter spacetime, as it contains bosonic ghosts
A% and A%, It can also be viewed as the “supersymmetrization” of the Berkovits-
Vafa-Witten description of AdSs from the hybrid formalism [46], where only eight
of the sixteen spacetime supersymmetries were manifest in the action. Therefore,
it is natural to think that it is feasible to derive new understandings for the world-
sheet description of the AdSs x S pure spinor superstring, and consequently the
AdSs/CFTy4 correspondence, by studying the lower dimensional counterpart in
an equivalent framework.

Particularly, it would be interesting to determine in what manner the vielbein
field E4B(x) in AdS; emerges from the super-coset variables. Additionally, one
could also look at how the AdSz x S® twistors [72] [74] fit into the super-coset
formulation, an advancement which could have important applications for the
AdSs x S° pure spinor formalism and its tensionless limit [69] [70] [92]. A twistor
formulation of string theory in the AdSs x S° background has been proposed [102],
which shares the same features as the AdS; x S3 twistors.

As a final remark, the findings presented in this thesis may serve as a valu-
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able tool for an enhanced understanding of spacetime supersymmetry in the
superstring. They might also provide a groundwork for future first-principles
worldsheet calculations in AdS backgrounds, where spacetime supersymmetry

plays a pivotal role.



Appendix A

Results in spinor and oscillator algebra
ind =4

Some relations and definitions about the supersymmetric modes that were
used in the calculations of Chapter 2 are given below. For a more complete list of

identities and conventions for the sigma matrices and spinorial indices, see the

appendices of [24].

(X*9a) = (x¥), (X:¥") = (XP), (x9)" = (x9). (A1)

o 1 o n _.B 1 5 nn
909[;0 = 55;;(9090), 04000 = 5(5&(9090). (A.2)
[Pa0, (6060)] = —2640, [Pao- (B060)] = —2640, (A.3a)
[(Popo), (6060)] = —4 —4(6opo),  [(PoPo), (Bobo)] = —4 — 4(60P,) - (A.3b)
aOntxop(E”Up)’j‘B = —sznzxg(Sg - isnp(ﬁnp)‘j‘ﬁ, (A4a)
‘XOn‘XOp(‘TnEp)txﬁ = _“On“géolf - isnp (U-np)txﬁ . (A.4b)
[d%, Tlaim] = 8i00am-n, (@ Tlagm] = —8id0umin - (A.5)
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[dam/ Eémai] = 4inaécm+n3i + 1689am+2n

— 4id, Maamn — 1600um-2n , (A.6a)
[Hzicmr dl;‘ldom] - _4iHaé¢m+nd5‘1 + 16a§am+2n
= —4id®TLyimsn — 16004121 - (A.6b)
AT Taa0d = —dyTlazod® — 4iTT0T L0 + 8i008d0 + 8i00s0d, - (A7)

[d%d 0, diody] = —8idyITasod® + 16110 L0 — 3208,0dy — 32008d,g
— 8idTT,a0dg — 161101 L0 + 3200500 + 3200%d,
= 4iTT0[d%, dy] + 32d%90,0 — 3200404, - (A.8)

(800) (e 0)0p0] £ (60,00) . (A.92)
%(9060) (e- E)igﬁo]f(eo,ao), (A.9b)

_ , i _ _
H(r)nf(go,@o) = [ — 10681 + Eem“”srs(()oaneo)}f(()o, 90) . (A.9¢)

N =

duof(00,00) = [ — pao — (0760)attom —

H:icof(eozgo) = [_ Pao + (Bo0™)arom +

didaof (60,80) = [P} — 2(807™)* tompao + (BoB0)afiron — i(BoBo) (e ) £08 pao) f (0, B0)

(A.10a)
Hdoagf(()o,éo) = [ﬁ% — 2(5’"190)&0(0”1?&0 + (9090)0(80(011 — i(9090)(€ -E)igﬁoﬁg]f(go,go) ,
(A.10b)
_ _ 1 _ _
HBHHmOf(GO/ 90) = [ - 04810‘0111 + “Omemrsnsrs (900'1190) — EErSErS (9090) (9090)]f(90, 90) .
(A.10c)

i i i
{d0, 360} = 5(e-0), {do, 0050} = 5(e-0).  (A1D)
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143,008) = i(e- o) Pat, (do, 8 0] = i(e- Nidio. (A1)
i —a T
AP =of+ E(s-a)f, A‘XB = (5% + E(e-cr)“ﬁ. (A.13)
—=2 =2 =2 —2 =2 =2
(—didy — didy + d3d~,) g = (—dydg + dyd> — dyd}) g, (A.14a)
(33d: — 3d%dy + d3d" )¢ = (—3dad? + 3d.d3 — dad? ), (A.14b)
(@2, ds — 2200 + B3 )@ = (@ 1d% + dod> | — 2d5d2) g, (A.14c)
d:d? B = %3 \B —2[d3, 4] B, (A.14d)
(64id8TT0dy — 19d2d; — 3dod?)C = [ — 11{d?, dy} + 12812110 — 256(300do)
— 256(60dp)] C. (A.14e)
_2 —_ —
dadyp = 2(dodo) (dod1) g , (A.152)

d%%? — (8id3TTaaody + 24 (dodo)das + 8ididgTaer — 32d596,1)¢,  (A.15b)
Bd 1 = (—16T Lol T2 — 8ilTyodyd® + 8idSTTuuods + 8idSdgTTan
— 320040 — 32d4090; — 64d590,1) @, (A.15¢)
@2 1d1 g = 4(d_1do) (dod ), (A.15d)
Pd ¢ = (8id8TTusody + 8ilTas_1d%d) — 16T L1 TT5% — 8ilTy;_qdyd®
— 8id" (A3 Ts1 — 4 1d3dodyy + 8id® \TTasody + 8id® 1 doTT,
— 64d® 10,1 — 6490, _1d; ), (A.15¢)
Bdog = (ddaodaody + 2ds_1d%duods + 2d% dsodade + 8id™  TTuzod;
+ 8id® Ao T + 8iTlq_1d%dy — 3200, _1d; — 32d% 100,1)¢.  (A.156)

d3d;B = (dodo)(dodo)B, (A.16a)
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P2d" B = 8idST140dy B, (A.16b)
B2 308 = 2d* | daodsody B, (A.16¢)
d3d° 1B = (2d;_1didaody + 8id®  Tlaaody + 8illu_1didy — 3200, _1dy)B, (A.16d)
41 d2B = 2d,_1dydSdeB, (A.16e)

dod® B = (24 ;dsodydao + 8ids_ 1115 dao + 8illys_1dyd% — 3206% 1de0)B. (A.16f)
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Six-dimensional Pauli matrices

B.1 Definitions

The Lorentz group SO(1,5) is locally isomorphic to SU(4) and, under this
identification, spinors of SO(1,5) transform as 4’s or 4”’s of SU(4). By definition,
Weyl spinors transform as a 4 and are denoted by an upper lower case greek index
ranging from 1 to 4. Anti-Weyl spinors transform as a 4’ and are denoted by a
down lower case greek index ranging from 1 to 4. All other representations of
SO(1,5) can be built from tensor products of 4’s and 4'’s. The following tensor

products are of particular importance

44~63510_, (B.1a)
424 ~6010,, (B.1b)
44 ~1915, (B.1c)

where 1 denotes the singlet representation, 6 is antisymmetric in the spinor indices
and denotes the vector representation, 10_ and 10, are symmetric and corre-
spond to anti-self-dual and self-dual three-forms, respectively,! and the traceless
representation 15 is a two-form.

The SO(1,5) Pauli matrices are defined as

1 (o2 0 1 0 ot
0'0 = — , leﬁ_— 7
¥ n\o o2 V2 \—=cl 0
1 0 —c? 1 0 o3
2 3
050 = — , 0= —— , B.2
=2\ —o? 0) =2\ 0 (52)
1 (0 —il 1 [c? 0
4 _ oo, = ——
o, — T = 7 - 7
b 2 \il 0) ¥ 2\lo —¢2

Note that (0g12)%? = —(¢*)* and (0012)ap = ((7345)a;3 (see egs. (B.9)).
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where the o-matrices are the usual SU(2) Pauli matrices

01:(0 1), 02:<Q _i>, 03:(1 0). (B.3)
10 i 0 0 -1

The o-matrices are antisymmetric and satisty the algebra
O'M'BO',%, + O'Q“'BO'O%Y = q“—bég , (B.4)
where 7% = diag(—, +, +,+, +,+),a = {0to5}, is the six-dimensional Minkowski

metric and we define .
gAp — ~ upyd S

which are given by
pup - L (070 ap_ 1[0
V2\0 2]’ 2\=¢! 0/’
2 3
O'ZD‘:B e L 02 v , 0.30(,8 - L 0 3 7 ’ (B6)
V2 \o?2 0 V2 \=c® 0
Ap_ L (0 psap_ L (= 0
V2 \-il 0)’ vV2\ 0 o?
It is convenient to introduce the unitary matrix B, also known as an intertwiner,
Bf— )b - (7 ° B)BY = 67 B.7
DC__( )Dé_ 0 o2 ’ ( )Oé g —  Car ()
so that
(‘75[3)* = (B)aW(B)ﬁé %5- (B.8)

We also define

(o) = S (o), (B.9a)
(o2)F = é(a[ﬂabad)“ﬁ, (B.9b)

where we anti-symmetrize/symmetrize without dividing by the number of terms.
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B.2 Identities

The Lorentz generators satisfy the commutators

[0, Opc] = —ii]a[b(?'] (B.10a)

Oap, 0ca] = (ﬂc[a £]5f] +77d[b5[} ﬂ)‘Tef
= i1]c[a0%]d — ia[aTb)d - (B.10b)

Some useful identities are

00%503517@ = €apys (B.11a)
oo tap = 365, (B.11b)
ﬂ”‘ﬁahﬁ — 25, (B.11¢)
ol g = 0505 — 0%, (B.11d)
€¥PP7¢, 50 = 2(6%65 — 8558, (B.11e)
g, = —E(s[“ s (B.11f)
(02)% (0=)f, = nelepdlt, (B.11g)
Tactpa (0°)  (0°1) ) = 1555‘5 +25565, (B.11h)
(02040c0a) " = Nabled + Mad'Toc — Nacbd » (B.11i)
(Tate)y00p = - 5 lala(+|16ll0) - (B.11j)
(0%) 5 (0abe)ap = —agwg), (B.11K)

where €134 = 1.
Note further that the antisymmetric tensors €,4,5 and €j satisfy the Schouten

identities

5ft;c€ﬁ’)/5p] = 0, (Bl2a)
€j[k€1m] = 0, (Ble)

and, in addition, we have

ef*ey, = — (8165, — 5Fol,) . (B.13)
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Some additional trace identities are

( olotoloto! )~
_1 abedef ad elb clf _ 2 bd ela, clf cd ela, blf
= 75€ *"‘2’7’7’7 2’7’7’7+2’77777
1 C a ae e
1 e [

=Pty o (=g eyt ), (BAY)

and
«f 1 1
(Tabe) ™ (def ) pa = S€abedes = 5MlaldM|ble"|c]f - (B.15)

where €012345 — —6012345 =1.

Some supplementary identities are

(02"), 3" (040,58 Nipeef) = ~H1aa (B.16a)

—faj " (0a") gg = Zlf,x,-gk[m, (B.16b)

(%@)wggaﬁ(%i) wf od] | = 4,8 (B.16¢)
(00°) 50" (022) gﬁ— —zf@[@,

(03c) 0P Y070 = (UM)agg“g , (B.16d)

where the symbols in egs. (B.16) are defined in Section 4.7.2.
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Some useful conventions

C.1 Worldsheet

Except for Chapter 2, where our conventions are detailed in the main text,
the remaining chapters use the conventions displayed below for the worldsheet
theory.

The Euclidean worldsheet coordinates are labeled by ¢! = {¢?, !} with metric
given by ¢;; = diag(1,1) and we define the components of the antisymmetric
tensor €!/ according to €y; = €'’ = 1. As usual, the measure is written as d>c =
do¥do?.

In terms of the of the Euclidean coordinates, we can form the complex variables

on the cylinder {z,z}, which are defined by
z=0"—io!, z=0"+iot, (C.1)
such that

1 = .
0= 5(80 + 181) , 0= —(80 — 181) . (C.2)

The metric components are

1 _ _ _
§z=8==5, 8z=8z=0, g =g"=2, g¥=g¢*=0, (CJ)

and the antisymmetric tensor components take the following form
€% = -2i, €= —=. (C4)

In this case, we write d2z = 2d%0 = —idzdz = 2do%do.

It is also useful to think of the worldsheet as a plane. The map from the cylinder

152



Appendix C. Some useful conventions 153

to the plane is given by
_ = _ 0 +io!
z=e , Z=e , (C.5)

and, without loss of generality, we will call the plane coordinates by z and z as well.
The reason for this is that the form of conformal invariant expressions written
in terms of the complex cylinder coordinates is equivalent as the ones written
in terms of the plane coordinates. In the plane coordinates, lines of constant o
are mapped to circles around the origin, the infinite past becomes z = 0 and the
infinite future becomes z = co. Current conservation reads djz + 9j, = 0 and the

associated Noether charge Q takes the nice form

Q- ]{ dzj, + j{ dzjs . (C.6)

When evaluating contour integrals, we use the convention

faz.z1 — fdzi _1, (C.7)
Z Z

so that annoying factors of 27t are absent in most expressions as, e.g., in the
worldsheet action and in the identities

(y—2)"=-6®(y-2), Ay—2)"=-0(y-2), (C.8a)
(y—2) 2 =9, (y—2), Ay —2) =36 (y—2). (C.8b)

Yl QI

When working with differential forms we use the same conventions as [24]. In

particular, the two-dimensional integral over the one-forms A and X is given by
/ AY = /dzanA]ZI
—i / iz (AT — AY), (C9)
and the exterior derivative acts as

dy. = do'do! ;%
= —daodale”afil. (C.10)
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C.2 Supergeometry

Following ref. [24], we define the super-vielbein as JA = dZME\4, where
ZM = {x™ 61,01} are the curved supercoordinates. The quantities A = {a, &j, %]}
and M = {m, uj, jij} label the tangent and the curved superspace indices, respec-
tively. The connection one form is defined as (2 5 = dzMQE2.

The action of the covariant derivative one-form V on a g-form Y4 is
VYA =dYyA +YBQRA, V2YA = YBRpA, (C.11)
and we define the torsion two-form T4 and the connection two-form Rp? as

TA =VJ4, (C.12a)
R4 = dOp? + Qs 04, (C.12b)

where T4 = 1J€1BTp4 and Rp? = 1JPJCRcpp?.

For the Type IIB superstring in the AdS; x S® background considered in Section
4.7, the torsions and curvatures can be nicely written in terms of the structure
constants (4.113) as

Tag" = —ifas®, Rapltt! = —ifAB[@] , Repp? = fCD[Lb]f[Lb]BA/ (C.13)

where we are using that () g =i fab) g7l and Rlab) — gylab] 4 %][Qﬂ]@] Fied e [ab]
to relate R 43/%! with Repg. If desired, one can properly normalize egs. (C.13) by
rescalings of the super-vielbeins and of the connections.

Furthermore, from the three-form H = dB one obtains the flat-index equation

1 1
Hapc = 5V(aBpc) + ET[AB|DBD\C] ' (C.14)

which follows from (C.11) and the definitions H = % JCTBJAHApc and B =
% JBTABAp. Note that Byp is graded anti-symmetric and Hypc is graded anti-
symmetric in the 1-2 and 2-3 indices.
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Normal-ordering prescription

The normal-ordered product of the operators O; and O; is denoted by (01 0,),

which is defined as

©10)) = § Z0ix)0s(2). ®1)

This prescription consists in subtracting the poles evaluated at the point of the
second entry. By convention, when nothing is specified, our expressions are
normal-ordered from the right, e.g., 010,03...0, = (O1(O02(03(...0y)...))). Also,
whenever we are dealing with derivatives of exponentials, such as 9%¢?, the order-
ing is always done with the exponential on the right, so that 9%¢? = (dp((dp)ef)) +
((9%p)ef). Putting the exponential on the rightmost position agrees with the usual
conformal-normal-ordering [23] when dealing with free fields.
Schematically, note that in terms of the definition in eq. (D.1), we have [65]

§ 72 0100x1)0s(2).
(D.2)

(01(0:05))(2) = § 2 01(x)(0205)(2) = f =

X —2z
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Some comments on the RNS superstring

We comment on the physical state conditions of the RNS superstring in bosonized
form, i.e., working with the {¢, 7, {}-CFT.

E.1 Large Hilbert space and picture-changing

Let us recall that the matter part of the RNS superstring action in conformal
gauge corresponding to an uncompactified ten-dimensional manifold is given by
[103]

1 _ - e~
Sm = / Pz 5 (0xM3xu + ¢Mogrg + PM0G) (E.1)

where M = {0,...,9} and 17MN = diag(—1,1,...,1) if we are in Lorentz signature.
Note that the anti-holomorphic (left-moving) fields are denoted with a “hat” and,
for simplicity, we will only discuss the holomorphic — or open string — part of the
theory below. The fields x™ have conformal weight zero and ¥ conformal weight
%. From the RNS worldsheet fields, one can form ¢ = 15 N = 1 superconformal

generators
Ly M L M
Tm = —Eax a.XM — El[] all)M, (EZa)
Gm = ipMoxy. (E.2b)

The ghost part of the RNS action, which comes from gauge-fixing the N’ =1

worldsheet superconformal invariance, reads
Sen = / a2 (bdc + poy + bOc + o7 ) (E.3)

where the fermionic ghosts {b,c} have conformal weights 2 and —1, and the
bosonic ghosts {B, 7 } have conformal weights % and —%, respectively. Thec = —15
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N = 1 superconformal generators corresponding to the ghost part are given by

3 1
Tonh = —2bdc — dbc — Eﬁafy — Eam, (E.4a)
Ggh = by —2dBc — 3pBac. (E.4b)

In total, the gauge-fixed RNS worldsheet action is
SrNS = Sm + Sgh - (E.5)
In addition, it follows that the fundamental fields satisfy the following OPEs

WM (y)axN(z) ~ —MV(y —2)7%,  b(y)e(z) ~ (y—2)7", (E.6a)
PMy)pN (2) ~ M (y —2) 7T, By)y(z) ~—(y—2".  (Eéb)

Associated to the gauge-fixed action (E.5) there is a BRST charge

QRNS = 7{ JBRST

1 1., 3,
= ]{ (CTX,WM + bcdc — zfme - Zb’y + 58 c) , (E.7)

where jpgrsr is called the BRST current and T, y g, is the combined stress-tensor
of all the fields mentioned. Note that T, ; 5 , has central charge 26 and the total
derivative term %azc is added to make the BRST current a primary.

Let us now bosonize B = ¢~?9¢ and y = 57e?, so that the BRST charge takes the

form
Q = j{ cT + bcoc — E e?Gm — 1b one’? + 9%c — a(néc) (E.8)
RNS x,P,0.1,8 2’7 m Ty nom Ui ’ .

where we wrote eq. (E.7) in terms of the bosonized {8, y}-ghosts and added
the total derivative —30%c — 9(17¢c) to it compared to eq. (E.4). Note that this
total derivative added to (E.7) lives in the large Hilbert space — it includes the
¢ zero-mode — and that the BRST current in (E.8) still transforms as a tensor.
This total derivative was added so that the BRST current (E.8) corresponds to the
supercurrent G* of egs. (2.3). The latter observation has no particular consequence
on the discussion below.

From the rules of the BRST procedure [20] [23] [104], we define the physical

states of the superstring to be GSO projected and ghost-number minus picture-
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number one vertex operators U which are independent of the ¢ zero-mode — this
is the small Hlber space condition — and which belong to the cohomology of
Qrns. The condition of being GSO-projected can be realized by considering states
which have n? square-root cuts in the OPE with the spacetime supersymmetry

current of Q, 2.

By defining the ghost-number current as
Jghost = —bc — By = —bc —d¢, (E.9)
and the picture-number current as
Jpicture = —1& — dp = idx — ¢, (E.10)

we have that the ghost-number and the picture-number operators are given by

Nghost = % jghost ’ Npicture = j{jpicture ’ (E-ll)

where we used 7 = e~'X and & = ¢X.

Consequently, the second condition on the physical states reads
Nghost - Npicute =1, (E.12)

where the charges {Nghost/ Npicture} were defined in egs. (E.11). Moreover, the last
two conditions can be implemented by demanding

ol = QrnsU =0, (E.13)

where 7 is the zero-mode of #. Therefore, U is subject to an equivalence relation,
or gauge transformation,

U = QrnsA, (E.14)

for any A in the small Hilbert space.

It is interesting to elaborate on why the small Hilbert space constraint is impor-
tant when working with the {¢, #, ¢ }-CFT. If the requirement yoU = oA = 0 is
relaxed, one could then take

A= —4cf3fe U = U= QrnsA, (E.15)
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for any U in the cohomology of Qrns. As a consequence, allowing A to live in the
large Hilbert space implies a trivial cohomology. Note that eq. (E.15) follows from

Qrns (— 4cgoge ) =1, (E.16)

and one then says that the operator cZd¢e~2? trivializes the cohomology.!

Now, consider a physical state U in the cohomology of Qrns, note that the
state V = ¢U has the same energy as U, but it is not in the BRST cohomology of
the RNS formalism

QrnsV = Qrns(cU)

= (Qrns¢)U # 0, (E.18)
but note further that
0= Q%NSV
1
= EQRNS(ZU) , (E.19)

where we defined Z = 2QgrnsC.

In addition, if ZU = QgrnsA for some A in the small Hilbert space, we have
that U = Qrns(YA), where Y is the inverse of Z, i.e., ZY = 1. Therefore, the state
ZU is in the cohomology of Qrns. Moreover,

n(ZU) =0, (E.20)

so that ZU belongs to the small Hilbert space and ZU has Nghost — Npicture = 1,
since Z has Nghost — Npicture = 0. Taking into account that Qrns commutes with
the spacetime SUSY generator, we see that ZU satisfies all the conditions to be a
physical state of the superstring.

The operator Z is called the picture-changing operator and Y is known as the

!t is possible to allow A to live in the large Hilbert space by considering an additional equiva-
lence relation for U, namely,

sU = n0Q, (E.17)

for some (). This is put to practice in the hybrid formalism, e.g., see eq (3.19).
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inverse picture-changing operator. Explicitly, they are given by

z:<;¢¢+mm¥¢+%awm%q+zwg, (E.21a)
Y = 2c08e2?, (E.21b)

and they satisfy
ZY =1, QrnsZ = QgrnsY = 0. (E.22)

Of course, Z has Npjcture = 1 and Y has Npjcture = —1.

The existence of the operators {Z, Y} implies that each physical vertex operator
is represented by an infinite number of physical states. Indeed, if U is in the BRST
cohomology, we have that

Qrus(Z"Y"U) =0, (E.23)
and
5(ZmYnU) =QrnsA = U= QRNs(YmZnA) ’ (E.24)

thus Z"Y"U is also in the cohomology for any m,n > 0.

One should note that the cohomology is only non-trivial when U has conformal
weight zero. In agreement with the old covariant quantization approach [103]. To
see that, suppose U is in the cohomology of Qrns and has conformal weight £,
then one can write U = %QRNS(bO U). And so we have arrived at a contradiction.
Therefore, the non-trivial states in the cohomology of Qrns must have conformal
weight zero.

In addition, we also learn that if U is in the BRST cohomology,

0 = bo(QrnsU)
= (Trns)oU — Qrns(bol)
= —Qgrns(bol), (E.25)

as a consequence, there is a consistent gauge choice for the physical states U by
demanding U to have no double poles with the b-ghost, i.e.,

boU =0. (E.26)
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This condition is known as the Siegel gauge [105].
Eq. (E.26) imply that one can ignore states which have double poles with the
b-ghost when solving the cohomology. If U is the vertex operator representing the

gluon a),, the condition bpU = 0 gives the well known covariant Lorenz gauge
constraint 9Ma,; = 0.



Appendix F

The supercurrent G in a flat background

From eq. (3.38), we have that

1 .
G}Tyb = _ﬂewﬁ’)’é[l)a’ {Dﬁ/ [D’Y’ {D(SI 62p+310}]}] 4 G+ , (Fl)

where D, = d,» — e #7"9d,; and the graded bracket [D,, O} denotes the single
pole in the OPE between D, and O. In the following, we evaluate each of the four

contributions separately.

First contribution.

j{dy D(S(y)ezp—i-&'tf(z) — ?{d}/ (dc52 _ d(sle—p—irf) (y)62p+3io(z)
= —(dse"*7)(2). (F2)

The term appearing in (F.2) comes from the single pole in the OPE between
(ds1e=P~7) (y) and 2 *37 (z).

Second contribution.

— fdy Dy () (dne ) (2) = = § dy (dp = dne ™) (1) (A 2) (2)
= i(IL,5e° %) (2) = (dpdse”)(2) (E3)

The first term in (F.3) comes from the single pole in the OPE of d.»(y) and
(ds1e°T217)(z). The second term comes from the single pole in the OPE between
(dy1eP=)(y) and (ds1eP27) ().

Third contribution. Now we need to compute ¢ dy Dg(y) (i(ngePHi") (z)

—(dy1ds1€) (z)) , which is most easily obtained by calculating the relevant terms
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independently. We have that

74 dy dga (y) (—1) (dyrds1€) (2)

= — faydp(y f = do (%) (de”) (2)
| iy = )M, (1) (dre) (2)
—dﬂ(x)(—z(y—z) ([1se) (2)) ]

= i(Ilgy (ds1e'")) (2) — i(dy (Tgse™) ) (2)
= i(ds1 (T1pye"”)) (2) — i(dg1 (Tgse™”)) (2) + €cpys(0°0%€7) (), (E4)

where we used that ([I1g,,ds]) = § dy (Hm(y)dﬁ (z) — ds1(y)T1g, (z)) =
—i€ep,60°0°(z) according to eqs. (3.33). We also need

fdy dpa (y)i(T1,56°727)(2) = €epys(6eP27) (2) . (E5)
And
fdy (dp1e ") (y) (dy1ds1e'”) (z) = (dprdpdsie *)(2). (F.6)
And lastly, we have

dy (1) (e ) () (502 (2)

= —i%dy (dﬁle—P—iU)(y) j{ xd_xz Hv(;(x)eerzw(Z)

- x)_leeﬁvd(aggze_p_m) (x)ep—l-ZiU’ (Z)
~ T (x)(y = 2) ' (dpe) (2))

= €cpys((00%e™P17)el27) (2) +i(IL,5(dpre”) ) (2)
= €epys (96 (3(p +i0)e'”)) (z) +i(dp1 (TLy5e™)) (2), (F7)

= i

where it was used that €.gs((002e ™ ~17)ePT27) = e 5. 5(96°?(3(p + ic)e'”))
—€€ﬁ75(829626i0) and i(H%;(dﬁlei”)) = i(dﬁl (H%;ei”)) + eem(g(azeezei”) to go from
the third to the last line in the computation of (E.7).
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Gathering egs. (F.4)-(F7), we have

§ dy Dy(y) (i(Myse27) (2) — (drdine) (2))
= (dp1dndsie ") (2) + €cprs (06 P27 (2) + €cpys (076°%¢7) (2)
T eepa (007 (Do + 0)6%)) (2) + i(dp1 (TL5e) ) (2) + i(dsy (TT5 ) ) (2)
— i (pse)) (2) (E8)

Fourth contribution. According to eq. (F.1), to obtain G’

ybr We still need to act
with — ;€7 § dy D, (y) in eq. (F.8). We get that

1 _
— ﬂe“mé]édy Dy (y)(dg1dy1dsie*)(z)

- _21_4€aﬁ757{dy (daz(}/)j{ o dp1 (x)(ddse™*)(z)

X —Z

— (dalé’*p*w)(]/)(dﬁldvldéleip)(z))

=gy f [ty ) Mg ) e )2

— 1 (x) (= iy = 2) 7 (Tar(dore ™)) (2) + iy — 2) " (da (Tuse ™)) (2) )

+ (v —2) N (dmdpdpdse ) (Z)}

1

= — 76" (= i(TTap(dr (dpre ™)) (2) + i(dpr (TTao (dre ™)) (2)

—i(dp1(dy1(Tage™))) (Z)) — e ¥ (d)*(2)

= e 2 () (2) 4 (e (daa (I TF)) (2) + (e P (2), (R9)

where (d;)* = 21—46“'375 dy1dp1d,1ds1 and, to get the last line, we used that
—i(e™P (dy (TT1%dgy))) = —i(e™P (dar (dp1TT*F))) — 3(e7Pd119%6*%) and
—i(e P (I1*F (dpdp1))) = —i(e™* (da1 (dpi11°F))) — 6(e P d219762).

The next terms are

: i
_ ﬂetxﬁ75 ]{ dy D, (y)eeﬁ75(89€169+2 U)(Z)
Lty (et ) ) 0012 )
B i%dyf xd_xz (4(y - x)_lae_P—fU(x)epHio(z)

+ 004 (x) (y — 2) 1 (dp1€) (Z)>
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= — (@ (867) (2) — 5 (3 +i0) (3o + i0)e)) (2) + 5 (@ (p +i0)e) (2).
(E.10)
_ l xp0 f dy Dy ( >e€ﬁ75(a29€2 7)(2)
%dy a1e P (y) (0%6°%¢7) (2)
= Z(d,ﬂazeﬂe ) (z). (F11)
L g €2 i0)el”
246 %dy Da(y)eeﬁyé(ag (a(P + 10')6 ))(Z)
- 411 %d}/ (da1e™71)(y)(96°%(3(p + ic)e'”)) (2)
- }Iwal(aeﬂ(a(p+ia)e—P>>><z>. F12)
When contracted with — "‘57‘5 the last three terms of (F.8) amount to
—i((d Bl I1%8)e?). Therefore we are left with the expression
fdyD,x ((dp11%P)e') (2)
=3 fdy w2 — du1e P 7) () ((dp111°P)e) (2)
- fs dme—p—wxw f ) (e
?{ ?{ ax — %) Ty (%) = By — %) 7 (dud6™) (x) ) x
x €7 (z)
=31y — x)7 (@820 ) (1) (2) — (dI 1) (x) (y — 2) (e ) (2)]
= _—%(H“mef%( ) — 2 (067 (2) — o (43190 #~%)e) (2)
+i((d51H"‘ )(e7Pdu))(z)

3
4
(e (da1 (A 11%))) (2) - (E13)

— —%(H”Haew)( ) — 2(d106*1e) (2) + Z(dal(ae“z(a(pﬂa)e”)))(Z)

| -

_|_
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To obtain the last line we used that ((d,;00%%e°~7)e'") = (3(d,1060*%)eF)
—(da1(36°2(0(p + ic)e~*))) and ((dpi 1) (e Pda1)) = (e7F (du1 (dp111*P)))
—3i(0(d,100%?)eP).

Gathering egs. (F.9)-(F.13), we obtain our final expression

Gryp = —(d1)'e ™7 + %daldﬁlﬂ“ﬁe‘p +dp190°%0(p + i0)e P + dy 9707 F
— %H“I—Iaei” — 100" — %a(p +i0)d(p + ic)e’”
* %az(p +i0)e” +G¢, (F.14)

where we have dropped the normal-ordering brackets.



Appendix G

The supercurrent G in AdS; x S3

Let us prove eq. (4.24), namely,

11 .
= —E{ﬂeaméQazQﬁzQyzQ(szezPHw +G¢, (G.1)

where Q2 = § (Su1e 7?77 + Sy2). Using the current algebra (4.19), we start by
noting that

Q§2€2p+3i0 — S(slep-‘rZiO'/ (Gza)
Q,2Qse* 7 = —8.1851€" — iv2K, el 27, (G.2b)
Qp2Q2Qs6™ 7 = —S51S,1S510 F + iv2(KgySs1 — Sy1Kgs + K16Sp1)e”
— Zé’lg,ygpgpa [(Sgleipiial €p+2i‘7) + ngep“ia} . (G.20)
Therefore,
L1 gy 20-+3ic
~ 10a€ Qu2Qp2Q2Qs2¢
1 4 ,—2p—ic 1 i af | sup -
S S K p
4k(51) e ok 2\/55“1551 +0 SalaSﬁl e
+ TPSUeiU + (aefpfial ep+2i¢7) , (G.3)

implying we can write eq. (4.20b) as (4.24), as we wanted to show.
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Appendix H

N =1, N =2and small N = 4 super-

conformal algebras

We present the general structure of N' =1, N’ = 2 and small N = 4 supercon-
formal algebras, as well as their twisted counterparts. We do not try to address

questions such as when and how these algebras can be realized.

H.1 N =1and N = 2 superconformal algebras

An N = 1 superconformal algebra with central charge c is given by a conformal
weight two stress-tensor T and a conformal weight 3 supercurrent G satisfying

5 2T(z) dT(z)
B R R AN (e
N 3G(z) N 0G(z)

v—2?2 (y—2z2)’

2. z
SWoE ~ 5+

, (H.1a)

(H.1b)

(H.1¢)

The N' = 2 superconformal algebra with central charge c satisfied by the
generators {J,G",G~, T} is given by

_% n 2T(z) N T (z) ’ (H.2a)

y—z2* (y—2?* (y—2z)
ey S ) TE)+ 1)
R KM = L O R
3t +
TGt ~ 2o+ 0 (120
TOIE) ~ ol + (H.2d)
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](y)](z) ~ (y—%Z)ZI (H2e)
J(y)G*(2) ~ + (Cy;i_(zz)) : (H.2f)

Here, T has conformal weight 2, G™ has conformal weight % and | has conformal
weight 1.
Equivalently, in tems of the modes, the N' = 2 SCA reads

(L, Ly] = (m —n)Lygn + ﬁ(m3 — )0 —n, (H.3a)
{Gj_/ Gs_} = LH—S + %(7’ - 5)]r+s + %(72 - 411)5r,—s/ (H‘?’b)
(L, G] = (%m - T)Gnir ’ (H.3¢)
[Lm/]n] = —1Jmtn, (H.3d)
Um/ ]n] — %mfsm,fn ’ (H3e)
Um, Gl = £Gyp (H.30)

H.2 Twisted N' = 2 superconformal algebra

To construct an N = 2 twisted theory, we modify the stress-tensor T by adding
+%a | to it, so that
1
T+ 53] =T, (H.4)

and one can see that the dimension of every field in the theory is modified by —3
its U(1)-charge, which is generated by J. In particular, looking at the structure
of the algebra (H.2), we see that the conformal weight of G gets shifted to 1,
that of G~ gets shifted to 2 and the conformal weight of the rest of the generators
stay untouched. More importantly, the shift in the stress-tensor (H.4) results
in the vanishing of the conformal anomaly in the TT OPE, so that the twisted
stress-tensor is a primary. In contrast, there appears a triple pole in the T] OPE
proportional to the central charge c.

With the above considerations, we can now write the twisted N = 2 su-
perconformal algebra with central charge c satistied by the twisted generators
{1,G*,G-, T}

TO)TE) ~ o+

(H.5a)

1Here, T is the shifted stress-tensor of (H.4).
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S G s (H50)

T(y)G"(z) ~ 51(32 ?;i(j)) , (HL50)
T(y)G™(z) ~ (zyc . (ZZ))Z ?S:(;) , (H.5d)
O~y
J(y)](z) ~ v _gz)z, (H.5f)
J0)GH @) ~ £ D H58)

H.3 Small and twisted small N = 4 superconformal

algebras

A small N = 4 superconformal algebra consists of a conformal weight 2 gener-
ator T, four conformal weight % fermionic currents {G*, G*} and three conformal
weight 1 bosonic currents {J,JT*, ]~} forming an 5u(2)% current algebra. In
the description that we are using, it is convenient to build the small N' = 4 SCA
by starting with the A/ = 2 SCA in Appendix H.1 and lifting the u(1)¢ to an
5u(2)% current algebra. To do that, one adds to the generators {J,G, G, T} the
conformal weight 1 bosonic currents T+ and ]~ of U(1) charge +2, respectively,
satisfying the OPES

J(y)J = (2) i25i+2, (H.6a)
@~ e L (HL.6b)

Note that the level of the su(2) current algebra is fixed by the Jacobi identities
and the level of the u(1) current algebra. On top of that, for the algebra to close, we
also need to add two fermionic generators G* and, in addition to the non-regular
OPEs in eq. (H.2), we also have

G*(z)
(y—z)

J*E(y)GF(2) ~ F , (H.7a)
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PG ~ 2 (H
Gt(y)Gt(z) ~ g jﬁjﬁ + a(]y +j (ZZ)) , (H.7¢)
G (y)G(2) g ‘_‘Sﬁ n a(; - (ZZ)) , (H.7d)
G ()G (2) ~ ¥ _52)3 N (y]£z2)2 . T(z()y+_%za)f (=) (H.70)
e ~ 8 7
T(y)E*(z) ~ 20 ) 4 0GH@) (H1.7g)

y—2)% (y—2)

Therefore, we say that the generators {J, J**, G, G*, T} form a small N = 4 SCA
with central charge ¢ when they satisfy eqgs. (H.2), (H.6) and (H.7).

The twisted small N' = 4 SCA with central charge c can be constructed from
the untwisted one in the same way as we constructed the twisted N/ = 2 SCA
from eq. (H.2), i.e., by shifting the stress-tensor as in eq. (H.4). With respect to
the twisted stress-tensor, the conformal weight of [T+ becomes zero, that of ]~ ~
becomes 2, the conformal weight of G and G* gets shifted to 1 and that of
G~ and G~ gets shifted to 2. Consequently, we say that the twisted generators
{J,] =+ G*, GT, T} form a twisted small /' = 4 SCA with central charge ¢ when
they obey egs. (H.5), (H.6) and

++ N G*(2) a
75 (y)G7(2) Fu—2) (H.8a)
NS Gi(z)
75 (y)GT(z) ~ £ v—2) (H.8b)
boEe o 2R () )
G (y)G(2) v=22 " =2 (H.8¢)
S (NG (2) 0 2 (2) 9] (2)
G (¥)G (2) RS s (H.8d)
SNy 8 J(z) T(z) o
G (y)G (2) EBE + T + TEek (H.8e)
++
T(y)] ™" (2) a(; _(ZZ)) , (HL.8f)
T(y)] ~ (2) 27" (z) , 9 "(2) (H.8g)
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T(y)G'(z) ~ (Si(;)z zz}(/;i(zz)) (HL.8h)
TO)E G~ ot o (18

With respect to the su(2) symmetry, T transforms as a singlet and G* (G™)
transforms as an upper (lower) component of an su(2) doublet whose lower
(upper) component is G~ (G*). This su(2) rotates the different choices of the U(1)
current | into one another and computations are equivalent no matter what choice
of this U(1) one picks [18].

In addition, there is another SU(2) symmetry (that we refer to as SU(2),uter) of
the N/ = 4 SCA which acts by outer automorphisms. To see that, consider the
following linear combinations of the fermionic generators?

Gt =ulGt —u3GT, (H.9a)
G =G —uG™, (H.9b)
G =Gt +u,GT, (H.9¢)
G =uiG +uiG, (H.9d)

by demanding that G and G* satisfy the same algebra as G* and G* we get the
relation |uq | + |up|?> = 1, i.e., u1 and u; are elements of SU(2)pyter- This symmetry
that rotates the supercurrents parametrizes the different embeddings of the N' = 2
SCA into the N’ = 4 SCA and, in general, is not a symmetry of the theory [18] [46].

Lastly, we should mention the important fact that a small N' = 4 SCA can
be constructed from any ¢ = 6 ' = 2 SCA by defining the SU(2) currents to be
J,JtT = —e/Jand J== = e~ /J. The condition ¢ = 6 is necessary in order for
J™* and J~~ to have conformal weight 1 when the algebra is not twisted. As
an example, the RNS superstring has a description as a ¢ = 6 N = 2 string and,
therefore, can also be described as an N = 4 topological string [18].

2Note that here they obey the hermiticity properties (G*)* = G¥ and (G*)* = GT.



Appendix I

Another basis for the bosonic currents

I.1 Choosing a U(1) direction

In order to label the physical states, it is convenient to single out an U(1) €
SL(2,R) and an U(1) € SU(2) direction [80].

We build the SL(2,R), generators in a standard basis from the currents K, by
defining

Jo = —5 (K £iK2), Js = =Ko, (B)

which satisfy the current algebra

B)E) ~ 5y —2)2, (1.22)
L)« (z) ~ £y —2) s, (1.2b)
J+W)]-(2) ~k(y —2) % =2(y —2) "' J5. (L.2¢)

If desired, one can do the same for the SU(2), part. We define the linear

combinations'
i i .
Ky = —§K5, Kyr = _§(K3 +iKy), (L3a)
which satisfy
k —2

Ky (y)Ky(2) ~ 5 (5 —2)7, (L3b)
Ky (y)Kyi(z) ~ +(y —2) 1Ky, (L3c)
Ko (y)K_i(z) ~k(y —2) 2 +2(y —z) 'Ky . (L.3d)

IThe choice to single out the “five” direction in Ky = K5 comes because 05 is block diagonal in
our conventions, see egs. (B.2)
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1.2 SL(2,R) and SU(2) quantum numbers

One can label the vertex operator V in (4.43) by the SL(2, R) quantum numbers
{j,m} and SU(2) quantum numbers {j’,m'}. As before, we will consider zero
amount of spectral flow in this section. Since all the physical degrees of freedom
are contained in the superfield V from eq. (4.50a), we focus on describing its
components in what follows. Moreover, the superfield Vy C V decouples from
amplitude computations presented in this work.

Accordingly, if V D V has quantum numbers {j, m, j/, m'}, we write

v=v(]"), (1.4)
where

7 =17}, i = {m,m'}, (L5)

with j = j' + 1, the half-BPS condition. The vector 71- labels the SL(2,R) x SU(2)
spin of the representation and 71 characterize the state in the given representation.
As a consequence, under the zero-modes of the diagonal currents defined in
Section 1.1, we then have

ViV =V, Vs ={V3 Vy}. (L6)

Consequently, the wavefunctions {x,2, 2% ¥**} in (4.50a) can be written as

SU(2)

_ SL(2R)xSU(2) _ 1,SL(2,R)
= VERE S VO, a7a)
g8 — SL@R)*SUR) _ 1/SL(2R),5U(2) (L7b)
]',ﬂ‘{ﬂ ],mﬂ ]'/,mlg 7 .
a2 _ 1/SL(2R)xSU(2) _ 1,SL(2,R),SU(2)
pr =Vl = VoV, (17
where V]?,T;fiz’m and Vﬁ%z) are SL(2,R) and SU(2) current algebra primaries, re-

spectively. From the properties

[V, 0] = —fap" 0, (L.8a)
[Va, (0040)] = fap(00c), (1.8b)
[Vﬂl (93)41] - fgal'gl(es)ﬁ ’ (I.8C)
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one finds that
> = {m,m'}, mt = {m¥1,m'}, (L9)
= {m,m'}, m* = {m,m 1}, (1.9b)
and m, = {m,, m’} with
o {ma b =3, = (m-La'+l), (10w
iy = {m— 4, 1}, iy = {m+3,m' +1}, (110b)
and, finally, m* = {m®, m'"} with
by, A= (meba'-1), (L)
me = {m+3,m +1}, mt={m—Lm —1}. (1.11b)



Appendix ]

Gauge invariance in the hybrid descrip-
tion

Let us analyze the consistency of the hybrid vertices (4.80) appearing in the
three-point amplitude for the states in the NS-sector. We take V = %(Gaﬂe)aﬂ, SO
that egs. (4.80) become

Y = ep+i0%(90.£0)a2, (J.1a)

GV = e2oti ]3*%(9%9)%, (J.1b)
11 ~

GiV = _ﬁﬁem (K,la“ +iS,1 (0%20)* Dyay + V284 ((5%9)%“) : (J.1¢c)

Up to a constant, the integrated vertex operator is then given by
/ GGV = / (Kaa® + 8,1 (0°20)* Dyty + iv/25,01 (50,0)%a%) . (.2)

We now check that the integrand of (J.2) is gauge invariant up to a total deriva-
tive. From eq. (4.47), one finds that the gauge transformation for a, is

ba; = VA, (J.3)

for some A = A(g) where ¢ € PSU(1,1|2) and V1A = 0. Therefore, under (J.3),
the integrated vertex operator (J.2) transforms as

K2V 4A — S0P f 51" VEA
= KAV A + SYV A
=9A, (J.4)
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as we wanted to show. In arriving to the second line above we used that
VA =0 = SV A = —Su0P fop1 ™' V2A. J.5)

As a result, we conclude that the integrated vertex operator (J.2) is gauge
invariant up to a total derivative in the group manifold of PSU(1, 1|2).



Appendix K

d = 6 N' = 1 super-Yang-Mills

In this section, we closely follow the d = 10 A/ = 1 super-Yang-Mills descrip-
tion presented in ref. [106, Appendix B].
To describe d = 6 super-Yang-Mills in A/ = 1 superspace, we define the

super-covariant derivatives

Dy =0+ Ag, (K.1a)
@,X]' = V,x]‘ + A,X]‘ , (K.1b)

where V,; = % — gejkeﬁkaf;ﬁag with {Vj, Vi } = —iejkafﬁag. Then, the field-

strengths are

Fujpk = {Dajs Dprc} + i€jx 00500, (K.2a)
Fajg - [szj/ Qg] ’ (K.Zb)
Fap = [Da,Dp], (K.2¢)

which are invariant under the gauge transformations
0Ayj = VA, 0A; = 04\, (K.3)

for any A.
Explicitly, the superspace field-strength constraint Fy;gr = 0 reads [43]

v“]'Aﬁk + VﬁkA,X]- + {A“]', Aﬁk} + iejkafﬁAQ =0. (K.4)

Multiplying the above equation by (0%€)*# and using that ((Ta—bc)"‘ﬁafﬁ =0, we

obtain

(O’Lbc)aﬁ(va]'Algk =+ VﬁkAzxj + {Azxj/ A,Bk}) =0. (K.5)
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The converse also follows.
From the Bianchi identity

[{ D Dpr}, D] + {01, D}, Dpr] + [{Dpr, D1}, Daj] =0, (K.6)
we have
ie]-kaf;ﬁ (D0, D] + i€1j05x [Da, Dpie] + iek,af;7 (D4, D4j] =0, (K.7)

which is satisfied if Fyj, = —iejkag,xﬁwﬁk by using the Schouten identity [6, Ap-
pendix A]. Therefore, Fyjy = [D4j, Do) = —i€jx0aapWF* gives

0aAaj — DujAg — i€jk0apWP* = 0. (K.8)
The Bianchi identity
{Dujs Dpit, Dal + {[Da, Dujl, Dpr} — {[Dpr, Da), Duj} =0, (K.9)
gives
ejkafﬁF@ + €100y D kW + €0ap, DW= 0. (K.10)
Multiplying eq. (K.10) by c®#, we obtain
€D W™ — eyD W™ =0, (K.11)
which imply © ,XjW"‘j = 0. Contracting (K.10) with ¢%? and ¢%*?, we get

—l'€jk(0'@)aal:@ - 4elk©,x]-W‘7[ + €lk5g@ﬁjwﬁl + eijMW"l =0, (K.12a)
iejk(0™) % Fap — 4euD W + €850, ;W + 3D W = 0. (K.12b)

From (K.12b) — 3 x (K.12a), it follows that
2iej ()5 Fyy — 4D WP + 600, ;W) =0, (K.13)
where W].“ = jkW“k. Consequently,

ieje(0) o Fop — %UW,@ =0, (K.14a)
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40, (WP

B _
b — %D W) = 0. (K.14b)

)

Furthermore, using the equation of motion of d = 6 super-Yang-Mills [43], i.e.,

Du(j W;(") = 0, we then have

D, WP — iejk(a@)iF@ =0, (K.15)
Now, consider the Bianchi identity
[Da, Dpl, Duj] + [[Dajy Dal, D] + [[Dp, Daj, D] = 0, (K.16)
that implies

DjFap = i€jk0aapDpWP* — i€ 010 Da WP . (K.17)

Finally, acting with ©.,; in (K.15), symmetrizing in the indices {aj, !}, then using
(K.17) and multiplying by &7, we end up with

afﬁsagwﬁf =0. (K.18)

In summary, the equations describing d = 6 super-Yang-Mills obtained in this

section are

VtxjA/%k + VﬁkA,xj + {Aajr A/%k} + ieijD%ﬁAg =0, (K.19a)
daAnj — DujAq — i€jkapWF =0, (K.19b)
i
D,iWP — 5 w(0)PFy =0, (K.19¢)
0D WP =0, (K.19d)

which were shown to follow from the equation of motion © m(jW]?‘) = 0 and the
superspace constraint Fyjgr = 0.
Note also that the superfields { A, WY, F,,} can be written as

i
Ay = —ZejkO'gﬁ(vajAgk + v,BkAzxj + {AajrAﬁk}) ’ (K.20a)
WY — éejkaﬂ“ﬁ(agz‘lﬁk — DprAa), (K.20b)

Fap =00 Ap —DpAg - (K.20c¢)
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The 6 expansion of the d = 6 SYM superfields is given by

Ayj = —éejka,xlﬂﬁk - %eamfgejkelmGﬁkl/ﬂlO‘sm +..., (K.21a)
Ag = g+ i€j0app 0P + .., (K.21b)
Wei — i é(gab)“ﬁgﬁj it oee (K.21c)
Fio=fun+ - (K21d)

where 4, is the gluon, ¢/ the gluino and f,;, = daa), — dpa, the gluon field-strength.
Note further that the first component of A,; can be gauged away.



Appendix L

PSU(1,1|2) x PSU(1,1|2)

The Lie superalgebra g of PSU(1,1|2) x PSU(1,1|2) contains 12 bosonic and
16 fermionic generators T4 where A = {[ab],«j,a,aj}. The index a4 ranges from
{0 to 5}, the SU(4) indices & and @ range from {1 to 4}, j = {1,2} and [ab] =
{[ab], [a'V']} witha = {0,1,2} and @’ = {3,4,5}.

Beyond that, the Lie superalgebra g has a Zs-automorphism [91],! which

means that it can be decomposed as

9=00D01Do2Dgs, (L.1)
where
Tiap) € 90, Tyj € 01, Ta € g2, Tge €03, (L2
and, in turn, we have that
(95,05} = gres  (mod 4). (L.3)

Note that this property is manifest in the structure constants (4.113). The super-

trace over the generators must also be Z4-invariant, so that
sTr(g;gs) =0 wunless r+s=0 (mod4), (L.4)

where we are denoting the supertrace over the Lie superalgebra by sTr(...).
The structure constants (4.113) of the PSU(1,1|2) x PSU(1,1|2) Lie superalge-

IThe supergroup properties presented in this section also hold for the super-coset descriptions
of AdS, x S? and AdSs x S° backgrounds as well [91].
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bra satisfy the super-Jacobi identities

(=) Ty, [To, Te}} + (=) ATy, [Te, Ta}} + (=) /BT, [Ty, Tp}}

= — ()14 P fapE + ()4 s P o + (=) VBl £ B ) T = 0,
(L.5)

where |A| = 0 if it corresponds to a bosonic and |A| = 1 if it corresponds to a
fermionic indice.

The supertrace can be used to further relate the structure constants of the
supergroup with the help of the following identity

sTr ([T, Tp}Tc) = sTr (TalTe, Tc}) = fag™ipc = fanfpc®, (L)
where we defined the PSU(1,1|2) x PSU(1,1|2) metric
STI'(TATE) = 1AB- (L7)

In our conventions, some important properties of the metric are

UMUK = ‘531 (L.8a)
nas = (=) 2Bypa, (L.8b)
x4 = yABxy, (L.8¢)
X4 =1aX", (L8d)

faPe =nBPfApE, (L.8e)

for X an element of the Lie superalgebra. With the help of 7 4p, one can define the

structure constants with all indices down f4pc. Under permutation of the indices,

they satisfy
fasc = ncpfas”, (L.9a)
fapc = _(_)\AIIQ\f%, (L.9¢)
fapc = _(_)‘A| |B|+|Al|C|+|B] |Qfﬁ (L.9d)

Explicitly, the non-vanishing components of the PSU(1,1|2) x PSU(1,1|2) met-
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ric are
Nap = v M} = {diag(—1,1,1),diag(1,1,1)}, (L.10a)
1 1
Mab]led) = {57711[07761}17’ —§’7af[c/77dqb/} , (L.10b)
Najpr = Xagejk- (L.10c)

Note that SD‘E =22 (0012)
are defined according to

opr 6 f = S\Ea and the inverse components of the metric

S\mgﬁv — 7, 52507 = 57, (L.11a)
’7@’7@ =0, [ab] Lﬂ’?[ effed] = (53(5? . (L.11b)

Furthermore, the sigma-matrices obey the relations

oy = %(Sﬁﬁ B o P = §¥ Wﬁa‘xg, (L.12a)
0t = —Ouad350" ", o = 5 5PPg (L.12b)
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d = 6 N = 2 superfields

In terms of the bi-spinor superfield Aa]. % the linearized d = 6 N' = 2 su-

pergravity connections and field-strengths appearing in the massless integrated

vertex operator of the Type IIB superstring (4.144) are

i .
Agi = =50 DojAgis,

P
Aapr = 500" Daj A1,

1 g
Eﬁk7 = 55]‘727“ (DajA - aﬂAajEk> ,

S
Eg' = gel] Call (DajAgﬁk + aaAﬁkEj> ,

apk

1 .
Aj = _EejkagﬁD“jAQﬁk
= —%ejkagﬁDajA

i ..
Ea'Bk = §€k]0.b,3a (aQAgocj — D“]'A@)

bBk’

= —%eleg'?D@jE,?lﬁk,
E,Pk = éekfaﬂﬁﬁ (agAMj . DajA@>
i 5
= _E ]lggleylE(xjﬁk/

PR — —éelfam (Dangﬁk - aﬂEajﬁk)

— éekjggﬁa ( DyjEd" — agEMﬁl> ,
i .

QLbC = E(UE)KﬁD“]’EQﬁ] ’

i

abc = E(U@)&gDﬁjE@ﬁj-

®)

(M.1a)
(M.1b)
(M.1¢)

(M.1d)

(M.1e)

(M.1f)

(M.1g)

(M.1h)

(M.1i)

(M.1j)

Let us add to the integrated vertex operator (4.144) the remaining terms not
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containing the chiral bosons

Wee = 90PK909 A ik 00T Ag + BPTIZA, o+ T Ay, + daﬁ@g"Egk“f

ir Bk, 7 Bk 7 paj Bk
15,90 Eq + dg TIEP* + dyyed g FYIP
; i

i Bry @ | Tt _ E
: ab(ae Q. +HQ£) :

+ da]H Ea”‘f +ds

Ny (96410, £ + 150

1

i 1~ o ~
— INyds CPrab EN@dW—C‘J‘]@ — ZRMN@N@ +(...), (M.2)

2 A" Bk

where in (...) we gathered all terms proportional to the {p, 0 }-ghosts and

{02,028, CPrat, Gujat, patet (M3)

are superfields functions of the zero-modes of {x%, 6%, 6%}. From BRST invariance
of the integrated vertex, one then obtains that the additional superfields in (M.2)
are related to those in (4.144) by the following equations

DyjE51P* — z(sf( )0t =0, (M.4a)
D EqP* — —5k( )0 % =0, (M.4b)
Dy FPF7! — 5" (o) CT12 =0, (M.4c)
Dy FPET + 551(% )T CPRab — g, (M.4d)
D, CPrab 25"( o) REE =0, (M.4e)
Dy;CPrab 4 Ea’f(acd)’iRm =0, (M.4f)
(0ape) " Do iCP0 = 0, (M.4g)
(021)"7D5,C7% = 0, (M.4h)
where CP¥? v = (oa ) CPBrab and Cﬁk(s = (U@)‘%éﬁk@.
We also have that
D, lejb + Dﬁkﬂfb + i€k 0 b _, (M.5a)
Do + DO, 1 +iejos, O =0, (M.5b)
Dy Q™ — 0, Qﬂb + 1ejka£&3c/3k@ =0, (M.5¢)
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DO = 3.0, + iy CPFL = 0, (M.5d)
and
be\ad —

(orbe)« D”‘jgﬁkd 0, (M.6a)

(Uﬂ)&éD&]ﬁﬁk; =0, (M.6b)

(O-M)MDMQQ; =0, (M.6c)

(0™)® Dy T =0, (M.6d)

(0%8)% (0,) ;DyjREL = 0, (M.6e)

(Ugfg)&g(UL)A%D“]Rm -0, (M.6f)

where QAk(; -0 Zb(%b); O k; _ ﬁAZ*b(U@)j, Qgg = Qgﬁ(aab)g and ﬁcg =

b Bk p p p =

QCL(O-ab) v
¢ \Vab)y

Furthermore, from eqgs. (M.4), we can write

1 4

Dy Délpvlﬁk 25](017)75( )ﬁRabcd 0, (M.7a)
DuDgFFAT + 5"( ) (o) ReE = 0, (M.7b)

and
(abe) Y Doy Dy FPE = 0, (M.8a)

(0abe) " DajD5 P = 0. (M.8b)
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Background field expansion

After plugging (4.158) into ‘Hys defined by (4.127a) and only keeping terms
quadratic in the fluctuations, using the Maurer-Cartan egs. (4.119) and V2X4 =
XBRg?, the three-dimensional integral over H ys can be written as a two-dimensional

integral over the one-forms J4, which is given by

- fiz /BHNS
_ _i/ {_ L e Xbw XaH,y, + 1]a< _ xPey x4 VXE"X“J') Hiyideo
— - ( JPexay X ]“JX“VXﬁk) ke — §(]Ekvxax"f
A G )fojﬁku (}7 o™ fs ™ — ]71]5mzf5m 5 ) XPk xai H,:5ra
o (P ifP o+ PP ) XEXEH 5 + (T XXy
+ XX g, Hajﬁka} _ (N.1)

Substituting (4.158) into (4.126), the terms independent of Hng and quadratic

in the fluctuations X4 are given by

fz/dzz sTr[ 12T +]]3—1(2 fRR)(] - ]173>+wVA+@V7\—NKI

_ / %z sTr {vazvxz +VX'VX3 4 L—LfRTR (VXT3 - VX'V X)

+ %(3 — B PIX VK + }1( — 1+ 18) 2[x3, Vx°]

- 411( 1+ ) PIx1, vxt] + 31(3 - BT x3, v x°) + %]2[[72, X?), X?]
1 1 ,

3@ B P X1, + g (=24 8 P77, X7, X
1 _

+ 5 (4= B X VX + g(8 — 380) X2, VX]
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+%(4— f) PIx3, VX + ;(8—31‘1}—R)73[X2 VX

+ (=24 B P, 33, 30 + 2 7, X1, 0

43 (=2 B PP, X0, 0 + 807 0, v

+%(3% 4)7' X2, VX' + g fRR 53X, VX2 + 5 (3ff;f<—4) PIX% VX3
5@ B2, XY, %) + 1(4 fr) 71, X1, X

+411(2 fT)T (173, X3, X1 + N([vxl X3+ VX3, XY + WXZ,XZD
+ %N([vxl X3+ [VX3, X1 + [VX?, XZ])

+ (terms involving {X*X?, X*X?, X' X!, X*X*} and no cov. derivatives)] :

(N.2)
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