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Resumo

Esta tese explora compactificações da supercorda em espaços de quatro e seis
dimensões. A teoria é quantizada utilizando o formalismo híbrido supersimétrico
para a supercorda, ao mesmo tempo em que se utilizam métodos de teoria con-
forme em duas dimensões. Após o desenvolvimento da descrição híbrida em
quatro dimensões acoplada a um campo eletromagnético, constrói-se uma ação de
teoria de campos da supercorda para os primeiros estados massivos — tanto no
superspaço quanto em termos dos campos componentes. A ação inclui um campo
massivo de spin-3/2 e um campo massivo de spin-2 propagando na presença de
um campo de gauge U(1) não nulo.

A quantização da supercorda compactificada em um Calabi-Yau de duas dimen-
sões complexas pode ser alcançada usando a descrição híbrida de seis dimensões.
No entanto, o formalismo híbrido permite que apenas metade das oito SUSYs
do superespaço d = 6 N = 1 estejam manifestas. Superamos essa limitação e
estendemos o formalismo de forma que todas as SUSYs do espaço-tempo possam
ser manifestas. O operador BRST, estados físicos e uma prescrição de amplitude
são explicitamente construídos.

Em seguida, estudamos a supercorda Tipo IIB em um espaço AdS3 × S3. Uti-
lizando o formalismo híbrido de Berkovits-Vafa-Witten para o caso de fluxo NS-NS
puro, calculamos uma amplitude supersimétrica de três pontos de operadores de
vértice half-BPS inseridos na fronteira de AdS3. O cálculo é realizado em termos
das variáveis covariantes de PSU(1, 1|2). Encontramos que integrar os campos fer-
miônicos da supercorda na integral de caminho gera o vielbein do espaço-tempo,
que codifica explicitamente que o grupo conforme na fronteira é identificado com
o grupo de simetria do interior de AdS.

A supercorda em AdS3 × S3 pode ser descrita por uma mistura de fluxos de três-
forma auto-duais NS-NS e R-R. Construímos uma ação de folha de mundo para a
supercorda em AdS3 × S3 × T4 com fluxos mistos que é manifestamente invariante
sob transformações de PSU(1, 1|2)× PSU(1, 1|2). Quantizamos covariantemente
o modelo, demonstrando sua invariância conforme em um loop. Terminamos
mostrando como é possível relacionar a descrição supersimétrica com a ação de
folha de mundo de Berkovits-Vafa-Witten em AdS3 × S3 com fluxos mistos.

v



Palavras-chave: Supercordas; Teoria de campos de cordas; Supersimetria; AdS/CFT.

Áreas do conhecimento: Física; Física de altas energias; Física matemática.

vi



Abstract

This thesis explores the superstring compactified to four- and six-dimensional
backgrounds. The theory is quantized using the spacetime supersymmetric hy-
brid formalism for the superstring while leveraging two-dimensional worldsheet
methods. After the four-dimensional hybrid description is developed in an elec-
tromagnetic background, a superstring field theory action for the first massive
states is constructed — both in superspace and in terms of the components fields.
The action includes a massive spin-3/2 and a massive spin-2 field propagating in
the presence of a constant non-zero U(1) gauge field.

Quantization of the superstring compactified to a Calabi-Yau twofold can be
achieved using the six-dimensional hybrid description. However, the hybrid
formalism allows only half of the eight d = 6 N = 1 SUSYs manifest. We
overcome this issue and extend the formalism such that all spacetime SUSYs can
be made manifest. The BRST operator, physical states and a scattering amplitude
prescription are explicitly constructed.

We then study the Type IIB superstring in an AdS3 × S3 background. By
making use of the Berkovits-Vafa-Witten hybrid formalism for the pure NS-NS
flux case, we compute a supersymmetric three-point amplitude of half-BPS vertex
operators inserted on the AdS3 boundary. The computation is performed using
the PSU(1, 1|2)-covariant variables. It is found that integrating out the fermionic
worldsheet fields in the path integral gives rise to the target-space vielbein, which
explicitly encodes that the conformal group on the boundary is identified with the
symmetry group of the AdS bulk.

The superstring in AdS3 × S3 can be supported by a mixture of NS-NS and
R-R self-dual three-form flux. We construct a manifestly PSU(1, 1|2)× PSU(1, 1|2)-
invariant sigma-model action for the superstring in AdS3 × S3 × T4 with mixed
flux. The model is then covariantly quantized and proven to be conformal in-
variant at the one-loop level. We conclude by showing how one can relate the
supersymmetric description with the Berkovits-Vafa-Witten AdS3 × S3 worldsheet
action with mixed flux.

Keywords: Superstrings; String field theory; Supersymmetry; AdS/CFT.
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Chapter 1

Introduction

1.1 What is string theory?

The purpose of this section — or even this thesis — is not to give a definitive
and complete answer to this question. Nonetheless, it will be possible to introduce
the less technical reader to the fundamental motivations behind the efforts devoted
to the understanding of the theory. This will be the objective of the following
discussion. In order to develop our rationale, it will be beneficial to start by
defining what a theory is in physics.

A physical theory can be defined as a mathematical framework rooted in
physical principles. These principles set the stage and boundaries for what can
be revealed through mathematical reasoning, allowing both paradigms to coexist
in harmony and mutual balance. To some extent, physical principles are closer
to mathematical axioms, which serve as the basis for the derivation of logical
consequences. Once a mathematical axiom is assumed, it cannot be violated
within a specific framework, for its violation would indicate an inconsistency of
the logical reasoning. On the other hand, the violation of a physical principle
does not completely invalidate a theory, but can simply suggest a limitation of the
theoretical framework.

The latter fact can be illustrated with some basic examples. For instance, using
Newton’s laws to model the two-dimensional motion and collisions of snooker
balls on a pool table is perfectly adequate under ordinary conditions.1 However,
if the balls start moving really fast, close to the speed of light, one might need to
consider the laws of special relativity over Newton’s laws to accurately model
the system. Of course, an ideal pool table is being assumed here. In addition,
if the diameter of the snooker balls is very small, of the order of the electron
radius, one might want to apply the rules of quantum mechanics and describe the
position of the ball as a function of time using a continuous probability distribution.

1See Amateur Physics for the Amateur Pool Player by Ron Shepard.
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Chapter 1. Introduction 2

Consequently, the appropriate formulation will depend on the scale and velocity
— or energy — that is being considered.

Despite the computational convenience of using different mathematical frame-
works to describe distinct regimes, it would be desirable to have a unified formu-
lation of the laws of physics which encompasses all the known cases as special
limits. This is similar to how Newtonian mechanics is a limiting case of special rel-
ativity for velocities much smaller than the speed of light. Additionally, a unified
formulation often provides predictions for new physics that were obscured by the
limitations of the previous theories. For example, in Newtonian mechanics time
is absolute, while in special relativity one finds that different observers can have
different notions of space and time based on their relative speed.

Therefore, in the pool game example discussed above, one might want to
consider regimes which are relevant in the intersecting region of two well-known
physical theories. Consider fast-moving snooker balls which have a small diameter,
more precisely, of the order of the electron radius. In this case, one enters the
realm of both quantum mechanics and special relativity. With that in mind, one
is led to think that a new type of physics is required since the theories we have
at our disposal might be inconsistent in their overlapping regime. As a result, a
natural question that arises is as follows. Is it possible to accommodate both of
these theories in a unified framework?

Surprisingly, the answer to this question is unique and the framework encom-
passing both special relativity and quantum mechanics is known as quantum field
theory (QFT). QFT started to emerge back in the 1920s with relativistic quantum
mechanics when Paul Dirac attempted to quantize the electromagnetic field. In
those early years, theoretical physicists first thought that the theory was ill due
to the appearance of ultraviolet divergences. Yet, these divergences were later
understood by using regularization and renormalization techniques, and resulted
in the establishment of the standard model of particle physics in the 1970s.

The standard model is a quantum field theory describing the known forces
of nature with the exception of gravity, hence, it accommodates the electromag-
netic, strong and weak forces. In the standard model, these forces are described
by force fields which interact with the matter fields influencing the dynamics
of the particles, or the field quanta. In fact, every field has its corresponding
excitation, or particle, which can be measured in an experiment. One of the most
notable achievements of the standard model is the prediction of the Higgs boson,
found in 2012 at the Large Hadron Collider (LHC). Another is the calculation of
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the anomalous magnetic dipole moment of the electron, which agrees with the
experimentally measured value in more than 10 significant figures.

Back to our pool game example, one then concludes that quantum field theory
would be the perfect framework to model collisions of tiny and very fast moving
snooker balls. Just replace the word “snooker balls” with “high-energy protons,”
and that’s precisely what the LHC in Geneva is accomplishing. Let us try to
expand our discussion even further. What if the snooker balls were both tiny and
very heavy? Are they stable enough to be part of a snooker game? In this case,
the pool game would not be that fun since the balls would probably look all black.
Indeed, the game would then be composed of black holes, which are very dense
and massive objects described by the theory of general relativity, also known as
Einstein’s gravity.

General relativity (GR) was formulated more than a hundred years ago in the
1910s and it models the dynamics of the force of gravity, including the physics of
black holes. GR is an incredibly successful theory. Among its most well-known
accomplishments are the prediction of the existence of black holes, precession
of the orbit of planets and, more recently, the detection of gravitational waves
by the LIGO and Virgo collaborations in 2015. However, general relativity is a
classical theory of gravity, and hence does not provide a consistent framework to
precisely model the dynamics of a “pool game” composed of tiny black holes that
was pictured above. The reason for this is that classical gravity breaks down at
small scales. In this scenario, what is required is a quantum theory of gravity.

Even though black holes in GR are stable objects, Stephen Hawking showed,
through a semi-classical calculation, that they in fact emit radiation. As a conse-
quence, black holes evaporate, meaning that the smaller they are, the shorter their
lifetime. Although black hole thermodynamics is well understood, progress in
the understanding of black holes at small scales is tied to a complete quantum
gravity theory. However, trying to incorporate GR in the quantum field theory
framework of the standard model leads to ultraviolet divergences, which cannot
be addressed via the conventional renormalization methods used to construct the
standard model of particle physics. The latter observation raises the following
important question. Can we have a microscopic description of black holes? In
other words, is it possible to accommodate both quantum mechanics and general
relativity in a unified framework?

So as to provide an answer to this question, the reasonable hypothesis stating
that the fundamental objects governing physics are point-like, such as particles,
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needs to be dramatically replaced. Instead, one should consider one-dimensional
extended objects — or strings — to be the fundamental building blocks of nature.
After the vibrations of the string are quantized, one finds what is recognized today
as string theory. When a particle moves through spacetime, one says that it traces
a worldline. Alternatively, when a string moves through spacetime, one says that
it traces a worldsheet. In particular, string theory is the only known consistent
theory of quantum gravity that has ever appeared in theoretical physics up to the
present day.

Moreover, string theory not only admits both quantum mechanics and general
relativity in a unified framework. Equally remarkable, it is only quantum con-
sistent in spacetimes satisfying Einstein’s equations. Therefore, classical general
relativity at low energies is a requirement for a reliable quantization of the string.
Although string theory is the only known candidate for a quantum gravity theory,
it has not been experimentally verified. In order to test its predictions, one would
need to access length scales of the order of 10−33cm, known as the Planck length.
Yet, the LHC only has access to scales of the order of 10−16cm at the present date.

In fact, string theory can refer to the bosonic string or to the superstring. The
bosonic string is not that interesting, since it only contains bosons and includes a
particle with negative mass in its spectrum, which renders the theory unstable. For
the purpose of describing the matter present in the universe, fermionic excitations
are also needed. This is the content of superstring theory, which admits both
bosons and fermions, as well as having a stable vacuum. In addition, superstring
theory has its name because it is invariant under spacetime supersymmetry, which
is a symmetry relating its bosonic and fermionic excitations, and also implying that
bosons and fermions appear in equal numbers in the theory. As a consequence,
when one is referring to string theory as a theory of everything, possibly replacing
the standard model of particle physics, one invariably has the superstring in mind.
Not surprisingly, the superstring is far more conceptually challenging than the
pure bosonic string.

Among the requirements for the quantum consistency of superstring theory is
the existence of a ten-dimensional spacetime. However, for energies observed in
everyday life, including in the LHC, it is only possible to experience four out of the
ten directions. One is then led to ask the following question. Where are the other
six spacetime directions predicted by superstring theory? In order to overcome
this issue, it is required that six, out of the ten, spacetime dimensions must be
curled up in a tiny region of space so as not to influence everyday physics. Thus,
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the curled up dimensions form what is called a six-dimensional compactification
manifold, which might only be accessible near the Planck scale of 10−33cm. Of
course, the total spacetime dimension still is d = 4 + 6 = 10. One of the most
important open problems in string theory is to determine which six-dimensional
manifold gives rise to the standard model in the four-dimensional world. It is
believed that the number of possible solutions, with a similar particle content as
the standard model of particle physics, is of the order of 10500 or larger.

Even though the four-dimensional standard model of particle physics has not
been derived from superstring theory, unexpected connections between the su-
perstring and quantum field theories in d ̸= 10 dimensions have been discovered.
The primary and most studied example is the duality between Type IIB super-
string theory in the AdS5 × S5 background and the quantum field theory of d = 4
N = 4 super-Yang-Mills (SYM). This duality is not only interesting because the
quantum field theory of d = 4 N = 4 SYM lives in four dimensions, as the name
suggests. In addition, this QFT includes a similar particle content as the standard
model of particle physics. To be more precise, the particle content of N = 4 SYM
can mimic, in some very specific regime, the quarks and gluons of the quantum
chromodynamics sector, which is the sector responsible for the strong interactions
in the standard model.

In physics, a duality is the manifestation that two mathematically distinct
theoretical formulations of physical theories are quantum equivalent, although
they can appear completely different at a microscopic level. By equivalent, it is
meant that for every observable, or physical process, in one description there is
a corresponding counterpart in the dual theory. Moreover, the duality between
Type IIB superstring theory in the AdS5 × S5 background and d = 4 N = 4 SYM
is usually referred to as the AdS/CFT correspondence. Here, AdS refers to the
Anti de-Sitter target-space that the superstring propagates, which is a spacetime
of negative curvature. The CFT part refers to a particular type of quantum field
theory known as conformal field theory. This is a crucial property of the dual
d = 4 N = 4 SYM, implying that it is invariant under transformations of the
conformal group SO(2, 4).

On the string theory side of the duality, the AdS5 × S5 background is defined
as the Cartesian product of the five-dimensional Anti de-Sitter space with the
five-dimensional sphere, resulting in a target space with d = 10 spacetime dimen-
sions, as required by superstring theory. Furthermore, the Type IIB superstring
is characterized by a self-dual five-form field strength in its massless spectrum,
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known as the Ramond-Ramond (R-R) five-form flux. In the AdS5 × S5 background,
the R-R flux is non-zero and constant. Moreover, the R-R flux is also proportional
to the radius of curvature of the AdS5 space. It is worth mentioning that spacetime
supersymmetry demands that the S5 radius of curvature is the same as the AdS5

one.
It is important to emphasize that the superstring in AdS5 × S5 is a quantum

theory of gravity. However, the dual d = 4 N = 4 SYM is an ordinary quantum
field theory, so that it does not contain gravity at all. As a result, the AdS/CFT
correspondence provides a map for determining observables in a quantum theory
of gravity by calculating physical processes in a four-dimensional quantum field
theory. Furthermore, the AdS/CFT correspondence is of the strong/weak type, so
that it relates the weakly coupled regime of the d = 4 N = 4 SYM theory to the
strongly coupled regime of the dual string theory and vice versa. Notice that the
four-dimensional gauge theory can be understood to live on the four-dimensional
boundary of the AdS5 space. To a certain extent, the gravitational theory in the
interior of AdS5 is completely characterized by a QFT living on the AdS5 boundary.

The AdS/CFT correspondence is even more general than the specific example
discussed above. Indeed, there are dualities connecting the superstring propa-
gating in an AdSd+1 ×M9−d background with d-dimensional conformal field
theories living on the boundary of the AdSd+1 space, where M9−d is a (9 − d)-
dimensional compactification manifold for some positive value of d. Of course,
the conformal field theory is not a theory of gravity. Therefore, one has a broad
spectrum of examples that can be studied to understand a quantum gravity theory
from an ordinary quantum field theory.

Despite thousands of checks, the AdS/CFT correspondence remains a conjec-
ture in most relevant cases due to the strong/weak nature of the duality and the
lack of tractability on the superstring side. This is mainly because of the presence
of R-R flux in the worldsheet descriptions of the superstring. While the duality be-
tween Type IIB superstring theory in the AdS5 × S5 background and d = 4 N = 4
SYM is the most significant, since it connects a ten-dimensional quantum theory
of gravity to a four-dimensional QFT, there are examples in lower-dimensional
AdS spaces where the worldsheet theory is much more accessible. An especially
noteworthy example is the AdS3 × S3 ×M4 target-space, which has allowed much
progress towards a derivation of the duality.

In particular, instead of pure Ramond-Ramond flux, the AdS3 × S3 × M4

background can also be supported by the Neveu-Schwarz-Neveu-Schwarz (NS-
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NS) three-form flux. In purely technical terms, the NS-NS flux can be much more
easily dealt with from the available worldsheet descriptions of the superstring.
Additionally, one can also turn on a non-zero amount of R-R flux. In this context,
the AdS3 × S3 background shares many similarities with the more interesting case
of the AdS5 × S5 target-space. On that account, it might be reasonable to think that
exploring the superstring in AdS3 × S3 can be a foundational and important step
for a deep understanding of the inner workings of the AdS/CFT correspondence,
primarily aiming towards the understanding of the AdS5 × S5 background for the
superstring.

1.2 Overview of this thesis

In this thesis, chapters 2, 3, and 4 present original work along with concise
introductions to each discussed topic. Chapter 2 deals with the open superstring
field theory of the four-dimensional hybrid formalism in a constant U(1) back-
ground, which exhibits manifest d = 4 N = 1 spacetime supersymmetry. Chapter
3 covers the six-dimensional hybrid formalism in a flat background, along with
its extension that manifests all spacetime supersymmetries of d = 6 N = 1 su-
perspace. Chapter 4 explores the superstring in an AdS3 × S3 background and
scattering amplitudes thereof, both using the six-dimensional hybrid formalism,
described by the supergroup PSU(1, 1|2), and from its supersymmetric extension,
which exhibits manifest PSU(1, 1|2) × PSU(1, 1|2) invariance. We conclude in
Chapter 5 by reviewing the main findings contained in the thesis and end up with
a discussion on the possible future research directions. At last, several appendices
provide additional technical details.

Let us elaborate further on the structure of this thesis. In Chapter 2, we start
by motivating the problem and providing comments on the relation between
the hybrid and RNS variables. After this, we give a concise review of the four-
dimensional hybrid formalism for the superstring, stating its key properties and
presenting the relevant variables in terms of the oscillator modes of free fields. We
also show how to compute the equations of motion and the open superstring field
theory action in this formalism.

Once the free theory is explained, we move on to charged superstrings in a
constant electromagnetic background, and start by solving the equations of motion
and boundary conditions for the bosonic worldsheet fields, and then expressing
the solution in terms of modes. The mode expansions for the fermionic worldsheet
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fields are then found by imposing that the left and right-moving superconfor-
mal generators coincide at the boundary. We also write down the worldsheet
action for the charged superstring in the hybrid formalism, and describe how the
superconformal generators of the previous section are modified in this case.

Having established the hybrid formalism for the interacting case, we compute
the string field action for the massless sector of the open superstring compactified
to four dimensions, and show that the results are consistent with earlier computa-
tions done for the massless sector from bosonic string field theory. We then provide
one of the main results of this chapter, namely, the computation of the d = 4 N = 1
superspace action for the first massive compactification-independent states of the
charged open superstring in a constant electromagnetic background. When on-
shell, the first massive states describe 12 bosonic and 12 fermionic complex degrees
of freedom, including a charged massive spin-3/2 and spin-2 fields.

After expanding the superspace action in terms of the component fields, and
removing the unphysical degrees of freedom by gauge-fixing, we write the compo-
nent Lagrangian describing the first massive states of the superstring in a constant
U(1) background. Moreover, we also write the equations of motion and constraints
derived from the component Lagrangian, characterizing the physical degrees of
freedom. Chapter 2 is based on the publications [1] [2] [3] [4].

Chapter 3 covers the study of the superstring compactified to six flat directions.
The chapter starts explaining to the reader why, in the six-dimensional hybrid
formalism, only half of the eight d = 6 N = 1 SUSYs can be made manifest.
Furthermore, before delving into more technical details, the potential solution to
address this limitation is outlined. Building on the previous discussion, the six-
dimensional hybrid formalism in a flat background is reviewed, while specifying
the worldsheet action and massless vertex operators according to our conventions.
Next, it is shown how one can describe the hybrid formalism with the addition
of the remaining fermionic coordinates θα of d = 6 N = 1 superspace. The latter
comes alongside fermionic first-class constraints Dα, such that the gauge symmetry
generated by these constraints can be used to gauge away the new variables.

Besides the fermionic fields θα, unconstrained bosonic ghost-fields λα, and its
conjugate momenta, are added to the worldsheet action in such a way that the total
central charge of the stress-tensor vanishes. With the addition of the non-minimal
variables, a new manifestly spacetime supersymmetric BRST operator G+ is then
defined and a supersymmetric unintegrated vertex operator U is constructed,
as well as its integrated version W. It is then shown that BRST invariance of U
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implies the d = 6 SYM equations of motion in superspace. With both integrated
and unintegrated vertex operators at our disposal, a tree-level scattering amplitude
prescription is given which shares many similarities to the d = 10 non-minimal
pure spinor formalism one. Chapter 3 is based on the publication [5].

Chapter 4 discusses the superstring propagating in an AdS3 × S3 target-space.
We start off by introducing the main motivation for exploring the superstring in
AdS, namely, the AdS/CFT correspondence. Particularly, we also spell out the
reasoning behind studying the AdS3 × S3 background. In order to fix our notation
and conventions for the worldsheet theory, we then provide a thorough exposition
of the hybrid formalism in AdS3 × S3 with pure NS-NS three-form flux, which is
given by a WZW model of PSU(1, 1|2)k, where k labels the amount of flux in the
background. The physical state conditions of the formalism are then solved, while
defining half-BPS vertex operators in terms of a fermionic zero-mode coordinate
θα.

In addition, after performing a similarity transformation along the AdS3 bound-
ary direction, we define the worldsheet fields and vertex operators depending
on x ∈ ∂AdS3, and introduce the vielbein field EA

B(x). Finally, a PSU(1, 1|2)-
covariant three-point amplitude for vertex operators inserted on the AdS3 bound-
ary is computed, and it is shown that integrating out the fermionic fields θα in the
path integral implies the appearance of EA

B(x) in the kinematic factor. We further
validate our results through comparison with the RNS formalism.

Since the hybrid formalism only preserves half of the spacetime supersym-
metries manifest, we now turn to the study of the extended hybrid formalism in
an AdS3 × S3 target-space. This formalism was discussed in a flat background in
Chapter 3 and manifestly preserves all spacetime supersymmetries. The super-
string in AdS3 × S3 can be supported by a mixture of NS-NS and R-R flux. We first
write an ansatz for the Type IIB sigma-model action in a general six-dimensional
background. After identifying the background superfields and spelling out in
detail our conventions for the PSU(1, 1|2) × PSU(1, 1|2) Lie superalgebra, we
construct the worldsheet action for the superstring in AdS3 × S3 × T4 with mixed
NS-NS and R-R self-dual three-form flux, and then argue how this sigma-model
action can be derived: either by substituting the values for the background super-
fields, or via a perturbative analysis from the integrated vertex operator around
flat d = 6 spacetime.

Subsequently, one-loop conformal invariance of the model is proven by using
the covariant background field method. It is then shown how one can relate
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the manifestly PSU(1, 1|2)× PSU(1, 1|2) worldsheet action with the AdS3 × S3

hybrid formalism with mixed flux, which has the supergroup PSU(1, 1|2) as the
target-superspace. Chapter 4 is based on the publications [6] [7].

To wrap up, we conclude in Chapter 5, where we highlight the main results
contained in each chapter and examine possible directions for future study. The
appendices include supporting material which serves to assist the readers seeking
technical details not covered in the main text.



Chapter 2

Higher-spin states of the superstring in
an electromagnetic background

In this chapter, using the manifestly spacetime supersymmetric hybrid for-
malism for open superstring field theory, we construct a superspace action for
the charged first massive states of the superstring in a constant electromagnetic
background. The physical degrees of freedom of the action include a massive
spin-3/2 and a massive spin-2 field. The hybrid formalism has the advantage
over the RNS formalism of manifest d = 4 N = 1 SUSY so that the spin-2 and
spin-3/2 fields are combined into a single superfield and there is no need for
picture-changing or spin fields.

Subsequently, the interacting superspace action for the charged massive states
is developed in components, providing a Lagrangian for the physical component
fields after the large gauge symmetry of the string field theory description is fixed.
The resulting equations of motion describe the propagation of charged spin-3/2
and spin-1/2 fields on the one hand, and spin-2, spin-1, and spin-0 on the other.
In the absence of an electromagnetic background, the Rarita-Schwinger and Fierz-
Pauli Lagrangians are retrieved for spin-3/2 and 2, respectively. Furthermore, the
Lagrangian derived does not suffer from the loss of causality problem occurring
in the minimal coupling approach.

2.1 Introduction

Constructing consistent effective field theory actions for higher-spin fields
is a challenging task, as recognized in the pioneering work of Dirac [8] and
soon after by Fierz and Pauli [9]. A significant obstacle arises when one tries
to couple massive higher-spin fields to a constant electromagnetic background.
Johnson and Sudarshan found that relativistic covariance of the theory is lost upon
quantization when massive spin-3/2 fields are minimally coupled to a constant

11
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electromagnetic background [10]. In subsequent works, Velo and Zwanziger
showed that minimally coupled actions for spin-3/2 and spin-2 fields already
exhibit inconsistencies at the classical level, including faster-than-light behavior
and the propagation of a wrong number of degrees of freedom [11] [12].

Superstring theory is known to be a consistent theory of quantum gravity,
containing an infinite number of both bosons and fermions in its spectrum as a
result of the string’s different oscillation modes. These oscillations include massive
states of arbitrary spin, where the mass squared is proportional to the inverse of
the fundamental string coupling α′. In particular, the open superstring spectrum
contains a massless U(1) gauge field, and its first excited level includes a massive
spin-3/2 and a massive spin-2 field. For that reason, string field theory presents
itself as a natural candidate for deriving effective actions for massive higher-spin
particles in a constant electromagnetic background.

Using bosonic open string field theory, Argyres and Nappi constructed a
consistent Lagrangian for a charged massive spin-2 field in d = 26 dimensions
[13] [14]. Under dimensional reduction, it was shown in [15] that there is no
propagating spin-1 state and one gets in four dimensions a theory of a coupled
system of charged massive spin-2 and spin-0 fields.

In this chapter, we will generalize the Argyres and Nappi result to the su-
persymmetric case using open superstring field theory, which includes both the
massive fermionic spin-3/2 and the bosonic spin-2 states. Although one can
in principle use the Ramond-Neveu-Schwarz (RNS) formalism of open super-
string field theory to perform these computations, we will instead use the four-
dimensional hybrid formalism of open superstring field theory for two reasons.
Firstly, the hybrid formalism has manifest d = 4 N = 1 spacetime supersymmetry,
which will allow us to combine the spin-3/2 and spin-2 fields into a single d = 4
superfield and compute the Lagrangian and equations of motion in superspace.
Secondly, the hybrid formalism avoids the complicated picture-changing operators
and spin fields, which are necessary in the Ramond-Neveu-Schwarz formalism to
describe the spin-2 and spin-3/2 states.

The hybrid description of the superstring consists of a field redefinition from
the gauge-fixed RNS superstring into a set of Green-Schwarz-like variables, al-
lowing spacetime supersymmetry to be made manifest. This can be achieved in
either two dimensions [16], four dimensions [17], six dimensions [18],1 or in a

1See chapters 3 and 4 for a description of the six-dimensional hybrid formalism in a flat and in
an AdS3 × S3 background, respectively.
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U(5) subgroup of the ten-dimensional super-Poincaré group [19]. In this chapter,
our focus will be the construction down to four-dimensional spacetime.

The field redefinition maps the free gauge-fixed RNS fields to the free hybrid
fields, which split into a compactification-independent part, describing the four-
dimensional Minkowski spacetime, and a compactification-dependent part. The
compactification-dependent fields describe a c = 9 N = 2 superconformal field
theory (SCFT) and, hence, can correspond to any Calabi-Yau manifold with three
complex dimensions. In addition, the SCFT describing the compactification-
dependent variables decouples from the four-dimensional fields, i.e., it has no
poles with the c = −3 N = 2 generators of the four-dimensional part. In this
setting, the critical c = 15 N = 1 RNS superstring is described as a critical N = 2
string with central c = 6.

To better clarify the presentation for readers familiar with the RNS description,
let us first recall some basic features of the RNS superstring — and its field
content — before transitioning to the hybrid worldsheet variables. When certain
aspects seem obscure, it can be helpful to know how to translate between the
RNS and hybrid expressions. The following discussion might also be useful to the
development of a general intuition about the hybrid description of the superstring.

In the gauge-fixed RNS formalism with ten uncompactified directions, the
matter fields {∂xM, ψM}, M = {0 to 9}, satisfy a c = 15 N = 1 SCA where the
generators are given by

Tm = −1
2

∂xM∂xM − 1
2

ψM∂ψM , (2.1a)

Gm = iψM∂xM , (2.1b)

and the ghost fields {b, c, β, γ} satisfy a c = −15 N = 1 SCA with2

Tgh = −2b∂c − ∂bc − 3
2

β∂γ − 1
2

∂βγ , (2.2a)

Ggh = bγ − 2∂βc − 3β∂c . (2.2b)

However, as we mentioned above, one might also describe the superstring as
a twisted c = 6 N = 2 string. This can be done by bosonizing β = e−ϕ∂ξ and
γ = ηeϕ, and working in the large Hilbert space — allowing for the inclusion of

2One can check that the algebra relations follow from the free-field OPEs in Appendix E, together
with our normal-ordering prescription detailed in Appendix F. Additionally, our conventions for
the N = 1, N = 2 and N = 4 SCAs are spelled out in Appendix H.
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the ξ zero-mode in our formulas. In terms of the RNS variables, the twisted c = 6
N = 2 generators take the form

T = −1
2

∂xM∂xM − 1
2

ψM∂ψM − 2b∂c − ∂bc − 1
2

∂ϕ∂ϕ − ∂2ϕ − η∂ξ , (2.3a)

G+ = cTx,ψ,ϕ,η,ξ + bc∂c − 1
2

ηeϕGm − 1
4

bη∂ηe2ϕ + ∂2c − ∂(ηξc) , (2.3b)

G− = b , (2.3c)

J = −bc + ηξ , (2.3d)

where the supercurrent G+ is the usual N = 1 BRST current with the addition of
a suitable total derivative in the large Hilbert space.

Furthermore, any twisted c = 6 N = 2 SCA can be extended to a twisted small
c = 6 N = 4 SCA, see Appendix H. The remaining N = 4 generators are given by

G̃+ = η , (2.4a)

G̃− = ξTx,ψ,ϕ +
1
2

beϕGm − 1
4

b∂bηe2ϕ − ξb∂c − ∂(bcξ) + ∂2ξ , (2.4b)

J++ = cη , (2.4c)

J−− = −bξ . (2.4d)

Note that the U(1) current J is equal the ghost current minus the picture current,
i.e., J = jghost − jpicture where jghost = −bc − ∂ϕ and jpicture = −ηξ − ∂ϕ.

In four-dimensional compactifications of the superstring, it is convenient to
split the RNS fields into a four-dimensional contribution and a decoupled six-
dimensional part

{xm, ψm, b, c, η, ξ, ϕ} ⊕ {xi, xi, ψi
RNS, ψ

RNS
i } , (2.5)

where m = {0 to 3} labels the four-dimensional spacetime directions, and i = {1
to 3} denotes the complex three-dimensional Calabi-Yau directions M6. After a
field redefinition to the four-dimensional hybrid formalism, the RNS field content
can be mapped to the following free worldsheet variables [17]

{xm, ρ, pα, θα, pα̇, θα̇}︸ ︷︷ ︸
R1,3

⊕ {xi, xi, ψi, ψi}︸ ︷︷ ︸
M6

, (2.6)
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where α, α̇ = {1, 2} are the four-dimensional spinor indices.
Note that in the four-dimensional part, one has five bosons {xm, ϕ} and eight

fermions {ψm, b, c, η, ξ} in the RNS formalism. This is the same number of degrees
of freedom as in the hybrid description after including the chiral boson ρ, namely,
five bosons {xm, ρ} and the eight fermions {pα, θα, pα̇, θα̇}. Equivalently, for the
Calabi-Yau directions, one has three xs and three ψs for both descriptions. In
particular, the fermionic fields for the Calabi-Yau directions {ψi, ψi} are a twisted
version of the RNS ones {ψi

RNS, ψ
RNS
i }.

As opposed to the RNS formalism, states and operators constructed with
integer powers of the free worldsheet fields (2.6) and enρ, where n is an integer,
are automatically GSO-projected [20]. Therefore, these operators have no branch
cuts with the spacetime SUSY generators, which is an advantage of the hybrid
description since these branch cuts imply that one has to sum over spin structures
in RNS.

2.2 Hybrid formalism in a flat four-dimensional space-

time

In what follows, we will further elaborate on the worldsheet variables (2.6) and
superconformal generators of the four-dimensional hybrid formalism in detail.
The worldsheet action, relevant fields and their main properties are presented,
as well as a formulation in terms of oscillator modes for the case without a back-
ground U(1) gauge field. For further details, we refer to the original works [17]
[18] [21] and [22].

Our conventions for the worldsheet theory follow [23] and we are using α′ = 1
2

when the string constant is omitted. For manipulations with sigma matrices and
“dotted”/“undotted” spinor indices, we utilize the conventions of ref. [24], for
example, xαα̇ = σm

αα̇xm, σα̇α
m σm

ββ̇
= −2δα

βδα̇
β̇
, (ψχ) = ψαχα, (ψχ) = ψα̇χα̇, (σmσn +

σnσm)
β

α = −2ηmnδ
β
α , etc.

2.2.1 Worldsheet action and superconformal generators

The Euclidean worldsheet action of the four-dimensional spacetime part con-
sists of four bosons xm, m = 0 to 3, with two pairs of left-moving canonically

conjugate Weyl fermions {pα, θβ} and {pα̇, θ
β̇} (α, α̇ = {1, 2}) having conformal
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weight (1, 0) each, and a chiral boson ρ. We also have the right-moving variables
which will be denoted by a “hat”.

In conformal gauge, the action is given by

S0 =
1

2π

∫
d2z
{

1
α′

∂xm∂xm + pα∂θα + pα̇∂θ
α̇
+ p̂α∂θ̂α + p̂α̇∂θ̂

α̇
+

1
2

∂ρ∂ρ +
1
2

∂ρ̂∂ρ̂

}
+ S6 , (2.7)

where ηmn = diag(−,+,+,+), ∂ ≡ ∂z and ∂ ≡ ∂z. Middle alphabet letters such
as m, n, p will be used to denote four-dimensional spacetime indices throughout
this work.

In the strip, the Euclidean coordinates take the standard values: 0 ≤ σ ≤ π

and −∞ < τ < ∞, where z = e−iw with w = σ + iτ. In the action, to go from the
plane to the strip, one just substitutes d2z = 2dσdτ, ∂ = ∂w and ∂ = ∂w, where
∂w = 1

2(∂σ − i∂τ) and ∂w = 1
2(∂σ + i∂τ). As is commonly done, we will use a bar

to denote complex conjugation of z and w, but this should not be confused with
pα̇ and θ

α̇
which are left-moving variables.

The worldsheet fields in the hybrid formalism are related to those in the gauge-
fixed RNS description by a field redefinition [17]. The internal six dimensional
matter part of the action, S6, is the same as in RNS. Without loss of generality, we
will suppress the right-moving fields in the rest of this paper. In the free case, they
are related to the left-moving ones in the usual way by the boundary conditions,
for example, pα(z) = p̂α(z), θα(z) = θ̂α(z) at Im{z} = 0 and xm satisfies Neumann
boundary conditions.

We group the RNS matter variables for the internal directions {xµ, ψµ}, µ = 4 to
9, into a 3 and 3 of SU(3) and denote these variables by {xk, xk, ψk, ψk} with indices
j, k, l running from 1 to 3. The description that we shall use corresponds to an
uncompactified superstring if xj takes values on R6, or to a toroidally-compactified
superstring if xj takes values on T6. The free field OPEs in the complex plane for
the four-dimensional part are

pα(y)θβ(z) ∼
δα

β

y − z
, pα̇(y)θ

β̇
(z) ∼ δ

β̇
α̇

y − z
, (2.8a)

ρ(y)ρ(z) ∼ log(y − z) , xm(y)xn(z) ∼ −α′

2
ηmn(log |y − z|2 + log |y − z|2) ,

(2.8b)
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And for the internal part, we have

ψj(y)ψk(z) ∼ −
δ

j
k

y − z
, xj(y)xk(z) ∼ −α′

2
δ

j
k(log |y − z|2 + log |y − z|2) ,

(2.9a)

HC(y)HC(z) ∼ −3 log(y − z) , (2.9b)

where we defined iψkψk = ∂HC through bosonization.
The action is invariant under four-dimensional spacetime supersymmetry

generated by

Qα =
∮
(pα − i

√
2
α′

θ
α̇
∂xαα̇ +

1
2

θ
2
∂θα) , (2.10a)

Qα̇
=
∮
(pα̇ − i

√
2
α′

θα∂xα̇α +
1
2

θ2∂θ
α̇
) , (2.10b)

where
∮
≡ 1

2πi

∮
dz, which satisfy the usual supersymmetry algebra

{Qα, Qα̇} = −2i

√
2
α′

∮
∂xαα̇ , (2.11a)

{Qα, Qβ} = {Qα̇, Qβ̇} = 0 . (2.11b)

Note that the four-dimensional supersymmetry generators commute with all
worldsheet fields related to the compactified directions. Relevant supersymmetric
combinations of the worldsheet variables are

dα = −pα − i

√
2
α′

θ
α̇
∂xαα̇ + θ

2
∂θα −

1
2

θα∂θ
2

, (2.12a)

dα̇ = −pα̇ + i

√
2
α′

θα∂xαα̇ + θ2∂θα̇ −
1
2

θα̇∂θ2 , (2.12b)

Παα̇ =

√
2
α′

∂xαα̇ + 2i∂θαθα̇ + 2i∂θα̇θα , (2.12c)

with the following OPEs

dα(y)Πββ̇(z) ∼
4iϵαβ∂θ β̇

y − z
, dα̇(y)Πββ̇(z) ∼

−4iϵα̇β̇∂θβ

y − z
, (2.13a)

dα(z)dα̇(y) ∼
2iΠαα̇

y − z
. (2.13b)
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The hermiticity conditions are defined as (pα)† = −pα̇, (θα)† = θ
α̇
, (∂xαα̇)† =

−∂xαα̇, (dα)† = −dα̇, (∂ρ)† = −(2∂ρ − ∂HC) and (∂HC)
† = −(3∂ρ − 2∂HC)

3.
Note that (∂θα)† = −∂θ

α̇
using the standard CFT rule for a primary field ϕ of

conformal weight h on the plane, namely, [ϕ(z)]† = ϕ†(z−1)z−2h.
From the worldsheet fields, one can form the generators of a twisted small

N = 4 algebra

T = T4 + T6 , J = J4 + J6 , (2.14a)

G± = G±
4 + G±

6 , G̃± = G̃±
4 + G̃±

6 , (2.14b)

J++ = e−iρ+iHC , J−− = eiρ−iHC , (2.14c)

where T is the stress tensor and

T4 =
1
4

Πα̇αΠαα̇ + ∂θαdα + ∂θα̇d
α̇
+

1
2

∂ρ∂ρ − i
2

∂2ρ , J4 = −i∂ρ ,

T6 = − 2
α′

∂xk∂xk − ∂ψkψk , J6 = −ψkψk = i∂HC ,

G+
4 =

1
2
√

8
eiρd2 , G−

4 = − 1
2
√

8
e−iρd

2
,

G̃+
4 = − 1

2
√

8
e−2iρ+iHC d

2
, G̃−

4 = − 1
2
√

8
e2iρ−iHC d2 ,

G+
6 =

√
2
α′

∂xjψ
j , G−

6 =

√
2
α′

∂xjψj ,

G̃+
6 =

1
2

√
2
α′

e−iρϵjkl∂xjψkψl , G̃−
6 = −1

2

√
2
α′

eiρϵijk∂xiψjψk .

As one can see, the small N = 4 algebra includes four supercurrents {G±, G̃±}
and three spin-1 currents {J, J++, J−−}, which generate an SU(2) algebra. A few
OPEs these generators satisfy are

G+
4 (y)G−

4 (z) ∼ − 1
(y − z)3 +

J4

(y − z)2 +
T4

(y − z)
, (2.15a)

G+
6 (y)G−

6 (z) ∼ 3
(y − z)3 +

J6

(y − z)2 +
T6

(y − z)
, (2.15b)

G+
4 (y)G̃+

4 (z) ∼ − 1
(y − z)2 e−iρ+iHC +

1
(y − z)

∂e−iρeiHC , (2.15c)

G+
6 (y)G̃+

6 (z) ∼ 3
(y − z)2 e−iρ+iHC +

1
(y − z)

e−iρ∂eiHC , (2.15d)

3We do not discuss here the unusual complex conjugation properties defined for ∂ρ and ∂HC
and recommend [17] and [22] for an explanation, where it is referred as the ∼ conjugation.
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J±±(y)G∓(z) ∼ ∓ G̃±

y − z
, (2.15e){ ∮

G+(z),
∮

G̃+(z)
}
= 0 . (2.15f)

Some comments are in order. First, note that the generators {G±, T, J} form
a twisted c = 6 N = 2 superconformal field theory (SCFT). This SCFT splits in
two parts: one describing the four-dimensional spacetime {G±

4 , T4, J4} as a twisted
c = −3 N = 2 SCFT and the other describing the six dimensional internal part
{G±

6 , T6, J6} as a twisted c = 9 N = 2 SCFT. The small N = 4 algebra above is
then constructed by adding the currents J++ and J−− to form the SU(2) triplet
{J, J++, J−−}.

One should observe that {G±
4 , T4, J4} and {G±

6 , T6, J6} decouple from each
other, i.e., they have non-singular OPEs between them. Consequently, the six
dimensional background can be replaced by any Calabi-Yau background described
by an N = 2 SCFT. Another important fact is that, in the twisted case (considered
in this work), the TT OPE has no conformal anomaly so one can use topological
methods to compute the spectrum of correlation functions [18] without the need
of introducing superconformal ghosts.

We also define the ρ-charge of an operator O as the single pole in the OPE of J4

with O, and the “Calabi-Yau”-charge (CY-charge) as the single pole in the OPE of
J6 with O. Properties of the generators and the hybrid variables for the twisted
case are summarized in the following tables

Weight CY-charge ρ-charge

ψj 0 1 0

ψj 1 -1 0

einρ −n(n+1)
2 0 n

eiHC 0 3 0

e−iHC 3 -3 0

Table 2.1: Conformal weight, CY-charge and
ρ-charge in the twisted case.

Generator Weight

G+, G̃+, J 1

G−, G̃−, J−−, T 2

J++ 0

Table 2.2: Conformal weight
of the twisted small N = 4
generators.

2.2.2 Free field oscillator expansions

In this work, we will need the description in terms of oscillator modes of the
worldsheet fields. Considering first the free case, the oscillator expansions in the
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complex plane for the four-dimensional variables are

pα(z) = ∑
N

pαN

zN+1 , pα̇(z) = ∑
N

pα̇N
zN+1 , (2.16a)

θα(z) = ∑
N

θαN

zN , θα̇ = ∑
N

θα̇N

zN , (2.16b)

xm = xm
0 − iα′pm log |z|2 + i

(
α′

2

)1/2

∑
N∈Z−{0}

αm
N

N
(z−N + z−N) , (2.16c)

where αm
0 = (2α′)1/2pm, xm satisfies Neumann boundary conditions and capital

middle alphabet letters, such as M and N, are used to denote the oscillator num-
bers. We also used that ϕ(z) = ∑N

ϕN
zN+h for a primary field ϕ(z) of conformal

weight h.
The hermiticity properties for the modes are (θα

N)
† = θ

α̇
−N , (pα

N)
† = −pα̇

−N and
(αm

N)
† = αm

−N, with the commutation relations

[αm
M, αn

N] = MδM+N,0ηmn, {pβ
M, θαN} = δ

β
α δM+N,0 , {pβ̇M, θ

α̇
N} = δα̇

β̇
δM+N,0 ,

(2.17)

giving the OPEs (2.8).
The supersymmetric variables (2.12) in terms of the free field oscillators have

the mode expansions

dαN = −pαN − ∑
R
(σmθR)ααmN−R − ∑

R,S
(N − 2R − S)(θRθS)θαN−R−S , (2.18a)

dα̇N = −pα̇N + ∑
R
(θRσm)α̇αmN−R − ∑

R,S
(N − 2R − S)(θRθS)θα̇N−R−S , (2.18b)

Παα̇N = −iσm
αα̇αmN + 2i ∑

R
(N − 2R)θαRθα̇N−R , (2.18c)

where

dα(z) = ∑
N

dαN

zN+1 , dα̇(z) = ∑
N

dα̇N

zN+1 , Παα̇(z) = ∑
N

Παα̇N

zN+1 .

And these modes satisfy a set of commutation relations

[dαN, Πββ̇M] = 4iϵαβ∂θ β̇N+M , [dα̇N, Πββ̇M] = −4iϵα̇β̇∂θβN+M , (2.19a)

{dαM, ∂θ
β
N} = −Nδ

β
α δM+N,0 , {d

α̇
M, ∂θ β̇N} = −Nδα̇

β̇
δM+N,0 , (2.19b)
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{dαN, dα̇M} = 2iΠαα̇M+N , (2.19c)

with ∂θα
N ≡

∮
dz zN∂θα(z) and ∂θα̇N ≡

∮
dz zN∂θα̇(z).

The Virasoro generators of the four-dimensional part are defined as

T4(z) = ∑
N

LN

zN+2 +
1
2

∂ρ∂ρ(z)− i
2

∂2ρ(z) , (2.20a)

LM = ∑
N

(
1
4

Πα̇α
N Παα̇−N+M + ∂θα

Ndα−N+M + ∂θα̇Nd
α̇
−N+M

)
. (2.20b)

Notice that the mode L0 has no normal ordering constant. And we will write

d2(z) = ∑
N

d2
N

zN+2 , d
2
(z) = ∑

N

d
2
N

zN+2 ,

with d2
N = ∑M∈Z dα

N+Mdα−M and d
2
N = ∑M∈Z dα̇N+Md

α̇
−M.

We remark that when commuting or anti-commuting with functions of θ0 and
θ0,

d0α = −pα0 − (σmθ0)αα0m + . . . , d0α̇ = −pα̇0 + (θ0σm)α̇α0m + . . . , (2.21)

act as the usual derivatives Dα and Dα̇ of [24]. To make contact with that notation,
one can use the replacements pα0 → − ∂

∂θα , pα̇0 → ∂

∂θ
α̇ , θα

0 → θα, θ
α̇
0 → θ

α̇
and

αm
0 = −i∂m. Note that (Dα)† = Dα̇ in [24], while (dα

0)
† = −d

α̇
0 . This is not

contradictory because dα
0 and d

α̇
0 act through commutators/anticommutators.

2.2.3 The string field Φ and superspace action

It was shown in [21] that the string field Φ of the manifestly SO(1, 3) super-
Poincaré invariant open superstring field theory can be written as Φ = Φ−1 +Φ0 +

Φ1 modulo exact terms in G+/G̃+, with the field Φn carrying n units of ρ-charge
and −n units of CY-charge. The linearized equations of motion for Φ are

G̃+
4 G+

4 Φ−1 + G̃+
4 G+

6 Φ0 + G̃+
4 G̃+

6 Φ1 = 0 , (2.22a)

(G̃+
6 G+

6 + G̃+
4 G+

4 )Φ0 + G̃+
4 G+

6 Φ1 + G̃+
6 G+

4 Φ−1 = 0 , (2.22b)

G+
4 G+

6 Φ−1 + G+
4 G̃+

6 Φ0 + G+
4 G̃+

4 Φ1 = 0 , (2.22c)
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When we write G+
4 O instead of G+

4 (z)O we mean taking the contour integral of
G+

4 around O, i.e.,
∮

dz G+
4 (z)O, and similarly for the other generators.

These equations of motion are invariant under the linearized gauge transfor-
mations

δΦ−1 = G+
4 Λ−2 + G+

6 Λ−1 + G̃+
6 Λ0 + G̃+

4 Λ1, (2.23a)

δΦ0 = G+
4 Λ−1 + G+

6 Λ0 + G̃+
6 Λ1 + G̃+

4 Λ2, (2.23b)

δΦ1 = G+
4 Λ0 + G+

6 Λ1 + G̃+
6 Λ2 + G̃+

4 Λ3. (2.23c)

where the gauge parameter Λn carries n units of ρ-charge and −n − 1 units of CY-
charge. In the situation that we will encounter, Φ−1 and Φ1 will be algebraically
gauged away. Due to this, only (2.22b) will contribute to the quadratic superspace
action

S = ⟨Φ0(G̃+
6 G+

6 + G̃+
4 G+

4 )Φ0⟩ , (2.24)

which is evaluated as a two-point CFT correlation function on the plane with the
normalization ⟨e−iρ+iHC(θ0θ0)(θ0θ0)⟩ = 1.

As an example, consider the four-dimensional massless sector of the open
superstring which is independent of the compactification. Since there is nothing we
can write with conformal weight zero at zero momentum for Φ1 and Φ−1, one finds
that Φ0 = V(xm, θα

0 , θ
α̇
0) and Φ1 = Φ−1 = 0 where V is the standard real vector

superfield for the four-dimensional super-Maxwell multiplet. Then, schematically,
the quadratic superspace action and linearized gauge transformations are

S = ⟨VG̃+
4 G+

4 V⟩ , δV = G+
4 Λ−1 + G̃+

4 Λ2 .

2.3 Superstrings in a constant electromagnetic back-

ground field

This section describes the quantization of charged open superstrings in a
constant electromagnetic background. Besides the usual coupling to the Lorentz
current, a new boundary term Sb is added to the worldsheet action, coupling the
spacetime fermionic worldsheet variables to the background U(1) gauge field in a
non-minimal fashion. Expressions for the oscillator modes and also for the small
N = 4 generators which generalize the free case are obtained. Charged open
bosonic strings were studied in [25], [13], [14] and, more recently, in [26].



Chapter 2. Higher-spin states of the superstring in an electromagnetic background 23

2.3.1 Worldsheet action and boundary conditions

To couple the superstring to a constant background gauge field, we employ the
hybrid formalism in terms of oscillator modes for the four-dimensional variables.
However, the chiral boson ρ will continue to be described using the free field OPEs
in our treatment. This will preserve the four-dimensional spacetime supersym-
metry and the gauge symmetry of our superstring field theory description. More
importantly, our treatment will also preserve the form of the small N = 4 algebra,
so that the reasoning used in constructing the formalism in the free case will also
hold for the interacting case.

We will consider an open string with total charge Q = q0 + qπ and, as usual,
the constant electromagnetic field strength Fmn couples to the charges q0 and
qπ at the ends of the string by the conserved current associated with Lorentz
transformations4

Jmn
τ = − i

α′
∂τx[mxn] − 1

2

[
(pσmnθ) + (pσmnθ)− ( p̂σmnθ̂)− ( p̂σmnθ̂)

]
, (2.25)

obtained by varying the worldsheet action with

δxm = ωmnxn, δθα = −1
2

ωmnσ
mn β

α θβ, δθα̇ =
1
2

ωmnσ
mnβ̇

α̇θ β̇ , (2.26a)

δpα = −1
2

ωmnσ
mn β

α pβ, δpα̇ =
1
2

ωmnσ
mnβ̇

α̇ pβ̇ , (2.26b)

as well as for the right-moving fields. The variables ωmn represent the parameters
responsible for Lorentz transformations and the matrices σmn, σmn generate the
spinor representations of the Lorentz group and are defined as in the Appendix of
[24].

The interaction term in the Euclidean action is then

Sint =
α′

2

∫
dτFmn

{
− i

α′
∂τxmxn − 1

2

[
(pσmnθ) + (pσmnθ)− ( p̂σmnθ̂)

− ( p̂σmnθ̂)
]}

, (2.27)

and the total worldsheet action is given by

S = S0 + q0Sint
∣∣
σ=0 + qπSint

∣∣
σ=π

. (2.28)

4For a generic rank-2 tensor T, we use the conventions T[mn] =
1
2 (Tmn − Tnm) and T(mn) =

1
2 (Tmn + Tnm).
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Bosonic worldsheet fields

We start by analyzing the known case of the bosonic variables. The equation of
motion and boundary conditions for the bosonic worldsheet fields are

∂2
τxm + ∂2

σxm = 0 , (2.29a)

∂σxn + 2πiα′q0∂τxmFmn = 0 , σ = 0 , (2.29b)

∂σxn − 2πiα′qπ∂τxmFmn = 0 , σ = π . (2.29c)

This set of equations has a general solution [13]

x(w) =
x̂
2
−
(

1
QF

)
p̂ +

√
α′

2 ∑
N

(
1

−ε − iN

)[
e(−ε−iN)(−iτ+σ)+γ

+ e(−ε−iN)(−iτ−σ)−γ

]
αN , (2.30)

where we are using a matrix notation for the spacetime indices, for example,
(F−1) p̂ = (F−1)mn p̂n, and the real antisymmetric spacetime matrices ε, γ and γ′

are defined as

ε =
1
π
(γ + γ′) , (2.31a)

γ = arctanh(2πα′q0F) , (2.31b)

γ′ = arctanh(2πα′qπF) . (2.31c)

Canonical quantization implies for the coefficients x̂ m, p̂ m and αm
N the follow-

ing commutators

[αm
M, αn

N] = (M − iε)mnδM+N,0 , [x̂ m, p̂ n] = iηmn . (2.32)

As the notation suggests, x̂ m and p̂ m have the interpretation of physical posi-
tion and momentum, as is easily verified analyzing the point particle limit. This
interpretation also justifies the factor of 1

2 in x̂ m, which is explained in [13]. In
particular, one could expect that αm

0 would be the covariant derivative for the
charged string, but note that [αm

0 , αn
0 ] = −iεmn, which is not the commutation

relation of a covariant derivative, namely, [Dm,Dn] = iQFmn. However, suppose
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we construct a real spacetime matrix M satisfying

MMT =
ε

QF
. (2.33)

One can then define

α0 = M(p − 1
2

QFx) = −iMD ≡ −iD , (2.34)

where Dn = (∂ − i
2 QFx)n is the covariant derivative with Am = −1

2 Fmnxn. We
then obtain

[α0m, α0r] = −MmnMrs[Dn,Ds] = −iQ(MFMT)mr = −iQ
(

ε

QF
F
)

mr
= −iεmr ,

(2.35)

as desired.
In the neutral string limit, Q → 0, (2.33) implies that

MMT → (1 − (πq0F)2)−1 . (2.36)

Consequently, it is consistent for small Fmn to define

M → (1 + πq0F)−1 . (2.37)

Moreover, we will assume that ε, M and γ commute as matrices, which is
justified given that each can be expressed in a power series in F and, as such, can
be put in block skew-diagonal form by a suitable Lorentz transformation.

Fermionic worldsheet fields

Now we turn to the fermionic worldsheet fields. As in the bosonic case, the
equations of motion are unaffected by boundary contributions. The subtle part
is to find solutions that satisfy the non-trivial boundary conditions. We will now
argue that the boundary conditions implied by the interaction term of (2.28) are
inconsistent, and that preservation of the worldsheet superconformal invariance
will require additional interaction terms for the fermionic worldsheet fields.

In the strip, at σ = π, the boundary condition from (2.28) that the fermionic
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fields would need to satisfy is

pαδθα + pα̇δθ
α̇
+ p̂αδθ̂α + p̂α̇δθ̂

α̇

− πα′qπ

2

[
δ(pF · σθ) + δ(pF · σθ)− δ( p̂F · σθ̂)− δ( p̂F · σθ̂)

]
= 0 , (2.38)

where F · σ ≡ Fmnσmn, and the boundary condition at σ = 0 would have a similar
form but with the replacement qπ → −q0. One would then need to find an
expression for the worldsheet fields that satisfies (2.38), but it turns out that a
solution of the form (suppressing anti-chiral fields)

p̂α = apα + bFmn(pσmn)α, θ̂α = cθα + dFmn(θσmn)α , (2.39)

cannot be found for any non-trivial value of the coefficients (a, b, c, d). This sug-
gests that we need to modify the boundary term in the action for the fermionic
fields.

To solve this problem, we will ignore the worldsheet action for a moment
and start with a requirement that fixes the boundary conditions of the fermionic
fields. It will then be realized that a new boundary contribution Sb, in addition to
the terms in equation (2.27), needs to be added to the action for these boundary
conditions to be satisfied.

Note that in [27] the equations of motion for the supersymmetric Born-Infeld
theory were obtained by demanding that Q̂ = Q at the boundary, where Q and
Q̂ are the left and right-moving BRST operators. Following the same logic, we
want to impose boundary conditions for the fermionic worldsheet fields such that
the left and right-moving small N = 4 superconformal generators coincide at
σ = 0 and σ = π. This will be accomplished by first looking at the terms in the
superconformal generators that have ∂xm, which is already fixed by (2.30). To be
more concrete, from (2.30), we have (recall that z = e−iw, with w = σ + iτ)

∂wxm(w) = −
√

α′

2 ∑
N

[
e(−ε−iN)(−σ−iτ)−γ

]m

n
αn

N , (2.40a)

∂wxm(w) =

√
α′

2 ∑
N

[
e(−ε−iN)(σ−iτ)+γ

]m

n
αn

N . (2.40b)
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Therefore, at the boundary, we obtain the following relations

∂wxm(w)

∣∣∣∣
σ=0

= −[e2γ]mn∂wxn(w)

∣∣∣∣
σ=0

, (2.41a)

∂wxm(w)

∣∣∣∣
σ=π

= −[e−2γ′
]mn∂wxn(w)

∣∣∣∣
σ=π

. (2.41b)

Notice that the boundary conditions relating ∂xm to ∂xm resemble a Lorentz
transformation given by choosing ω = 2γ at σ = 0 and ω = −2γ′ at σ = π in
view of the exponentiated form of equations (2.26). Besides that, we know that the
small N = 4 superconformal generators are composed of Lorentz invariant terms,
with the left-moving ones containing the worldsheet fields {∂xm, pα, θα, pα̇, θα̇} and
the right-moving ones containing {∂xm, p̂α, θ̂α, p̂α̇, θ̂α̇}. So to obtain the intended
boundary conditions relating the left and right-moving superconformal generators
in the interacting case, namely,

Ĝ±(z) = G±(z) , ̂̃G±
(z) = G̃±(z) , T̂(z) = T(z) , (2.42)

at Im{z} = 0, one can relate the left and right-moving fermionic worldsheet
fields by a condition resembling a Lorentz transformation given with the same
parameter ωmn as in (2.41), i.e., at σ = 0

p̂α(w) = −[e−γ · σ]
β

α pβ(w) , p̂α̇(w) = −[eγ · σ]
β̇
α̇ pβ̇(w) , (2.43a)

θ̂α(w) = [e−γ · σ]
β

α θβ(w) , θ̂α̇(w) = [eγ · σ]
β̇
α̇θ β̇(w) . (2.43b)

And at σ = π

p̂α(w) = −[eγ′ · σ]
β

α pβ(w) , p̂α̇(w) = −[e−γ′ · σ]
β̇
α̇ pβ̇(w) , (2.44a)

θ̂α(w) = [eγ′ · σ]
β

α θβ(w) , θ̂α̇(w) = [e−γ′ · σ]
β̇
α̇θ β̇(w) , (2.44b)

where (γ · σ) α
β ≡ γmnσmn α

β , (γ · σ)α̇
β̇
≡ γmnσmnα̇

β̇
and similarly for γ′. We stress

that whenever the letter σ (σ) is accompanied by a “dot,” we mean the Lorentz
generator σmn (σmn) and not the worldsheet variable σ. We hope the different
index structure helps to avoid any confusion.

By the same reasoning, the mode expansions of the fermionic fields should
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take the following form

pα(w) = −i ∑
N

[
e(−iN+ 1

2 ε · σ)(−σ−iτ)+ 1
2 γ · σ

] β

α
pβN , (2.45a)

θα(w) = ∑
N

[
e(−iN+ 1

2 ε · σ)(−σ−iτ)+ 1
2 γ · σ

] β

α
θβN , (2.45b)

pα̇(w) = −i ∑
N

[
e(−iN− 1

2 ε · σ)(−σ−iτ)− 1
2 γ · σ

]β̇

α̇
pβ̇N , (2.45c)

θα̇(w) = ∑
N

[
e(−iN− 1

2 ε · σ)(−σ−iτ)− 1
2 γ · σ

]β̇

α̇
θ β̇N , (2.45d)

so that the exponential factors of the background are not present in the Lorentz
invariant terms of the small N = 4 superconformal generators. Note that
(ε · σ) α

β ≡ εmnσmn α
β and (ε · σ)α̇

β̇
≡ εmnσmnα̇

β̇
.

In short, one can say that Lorentz invariance fixed the form of the fermionic
worldsheet fields in the interacting case. The appearance of a Lorentz transfor-
mation in the boundary conditions linking the left and right-moving fields is not
surprising from the point of view of an open string with endpoints of charge q0

and qπ attached to a D-brane. In this setting, T-duality can be used to show that
the tilt of the D-brane in spacetime is related to the field strength F, consequently,
the boundary conditions express the fact that the coordinates become rotated by
the gauge field in the dual description.

Using equations (2.43a) to (2.44b) in (2.38), one can show that the following
term should be added to the action for it to imply our desired boundary conditions

Sb = q0
α′

8

∫
dτFmn

[
− ( p̂{e−γ · σ, σmn}θ) + (p{eγ · σ, σmn}θ̂)

− ( p̂{e−γ · σ, σmn}θ) + (p{eγ · σ, σmn}θ̂)
]∣∣∣∣

σ=0

+ qπ
α′

8

∫
dτFmn

[
− ( p̂{eγ′ · σ, σmn}θ) + (p{e−γ′ · σ, σmn}θ̂)

− ( p̂{eγ′ · σ, σmn}θ) + (p{e−γ′ · σ, σmn}θ̂)
]∣∣∣∣

σ=π

. (2.46)

Up to the addition of trivial terms whose interaction term vanishes, the contribu-
tion Sb is the unique symmetric combination in (pα, θα, pα̇, θα̇) and ( p̂α, θ̂α, p̂α̇, θ̂α̇)

that we can add to the action to obtain the boundary conditions of (2.43a) to
(2.44b).
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So gathering expressions (2.7), (2.27) and (2.46), we can write the total world-
sheet action for the charged open superstring in the hybrid formalism coupled to
a constant electromagnetic background as

S = S0 + q0Sint
∣∣
σ=0 + qπSint

∣∣
σ=π

+ Sb . (2.47)

2.3.2 Superconformal generators and commutation relations

We will present here the description of the superconformal generators in terms
of oscillator modes, which is central for the computations contained in future
sections.

Canonical quantization of the fermionic worldsheet variables implies the same
commutation relations as in the free case for the fermionic modes

{pβ
M, θαN} = δ

β
α δM+N,0 , {pβ̇M, θ

α̇
N} = δα̇

β̇
δM+N,0 . (2.48)

The boundary conditions and mode expansions determined that the Lorentz
invariant terms present in the superconformal generators, such as d2(z), are holo-
morphic and independent of exponential factors of the background gauge field.
This makes it straightforward to obtain the modes of {G±, G̃±, T} through the
usual method of contour integration, applying the doubling trick to consider only
the left-moving variables defined in the whole plane.

One starts with the mode expansions in the plane

∂xm = −i

√
α′

2 ∑
N
[z−iε−N−1e−γ]mnαn

N , (2.49a)

pα(z) = ∑
N
[z−N− i

2 ε · σe
1
2 γ · σ]

β
α pβN , (2.49b)

θα(z) = ∑
N
[z−N− i

2 ε · σe
1
2 γ · σ]

β
α θβN , (2.49c)

pα̇(z) = ∑
N
[z−N+ i

2 ε · σe−
1
2 γ · σ]

β̇
α̇ pβ̇N , (2.49d)

θα̇(z) = ∑
N
[z−N+ i

2 ε · σe−
1
2 γ · σ]

β̇
α̇θ β̇N . (2.49e)

Then, as an example, substituting equations (2.49) in d2(z) and d
2
(z), where dα
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and dα̇ were given in (2.12), we obtain

d2(z) = ∑
N

d2
N

zN+2 , d
2
(z) = ∑

N

d
2
N

zN+2 , (2.50)

which have the same form as in the free case, with d2
N = ∑M∈Z dα

N+Mdα−M and

d
2
N = ∑M∈Z dα̇N+Md

α̇
−M. And the modes of the supersymmetric variables can be

read off by substituting the expressions (2.49) in (2.12)

dαN = −pαN − ∑
R
(σmθR)ααmN−R − ∑

RS
(N − 2R − S)(θRθS)θαN−R−S

− i
2 ∑

RS
(θRθS)(ε · σ)

β
α θβN−R−S , (2.51a)

dα̇N = −pα̇N + ∑
R
(θRσm)α̇αmN−R − ∑

RS
(N − 2R − S)(θRθS)θα̇N−R−S

+
i
2 ∑

RS
(θRθS)(ε · σ)

β̇
α̇θ β̇N−R−S , (2.51b)

Παα̇N = −iσm
αα̇αmN + 2i ∑

R
(N − 2R)θαRθα̇N−R + ∑

R
(ε · σ)

β
α θβRθα̇N−R

+ ∑
R
(ε · σ)

β̇
α̇θαRθ β̇N−R , (2.51c)

∂θαN = −NθαN − i
2
(ε · σ)

β
α θβN , ∂θα̇N = −Nθα̇N +

i
2
(ε · σ)

β̇
α̇θ β̇N . (2.51d)

Note that ∂θα0 = ∂θα̇0 = 0 when ε = 0. The supersymmetric modes of the
interacting fields satisfy

[dαN, Πββ̇M] = 4iϵαβ∂θ β̇N+M , [dα̇N, Πββ̇M] = −4iϵα̇β̇∂θβN+M , (2.52a)

{dαM, ∂θ
β
N} = −Nδ

β
α δM+N,0 +

i
2
(ε · σ)

β
α δM+N,0 , (2.52b)

{d
α̇
M, ∂θ β̇N} = −Nδα̇

β̇
δM+N,0 +

i
2
(ε · σ)α̇

β̇
δM+N,0 , (2.52c)

{dαN, dα̇M} = 2iΠαα̇M+N . (2.52d)

These commutation relations follow from equation (2.51) by using

[αm
M, αn

N] = (M − iε)mnδM+N,0 , {pβ
M, θαN} = δ

β
α δM+N,0 , {pβ̇M, θ

α̇
N} = δα̇

β̇
δM+N,0 ,

(2.53)

and preserve the same structure as the commutation relations in the free case
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(2.19). Observe that, from (2.51), the introduction of the background modified the
“super derivatives” zero modes by a term proportional to ε

dα0 f (θ0, θ0) =
[
− pα0 − (σmθ0)αα0m − i

2
(θ0θ0)(ε · σ)

β
α θβ0

]
f (θ0, θ0) , (2.54a)

dα̇0 f (θ0, θ0) =
[
− pα̇0 + (θ0σm)α̇α0m +

i
2
(θ0θ0)(ε · σ)

β̇
α̇θ β̇0

]
f (θ0, θ0) , (2.54b)

Πm
0 f (θ0, θ0) =

[
− iαm

0 +
i
2

ϵmnrsεrs(θ0σnθ0)
]

f (θ0, θ0) , (2.54c)

where ϵmnpq is the four-dimensional Levi-Civita symbol with ϵ0123 = −1. Equa-
tion (2.54) can be seen as a generalization of (2.34) from bosonic strings to the
supersymmetric counterpart in four dimensions.

Of course, the superconformal generators have the same form as in the non-
interacting case

G+
4 (z) =

1
2
√

8
eiρ(z)∑

N

d2
N

zN+2 , G−
4 (z) = − 1

2
√

8
e−iρ(z)∑

N

d
2
N

zN+2 , (2.55a)

G̃+
4 (z) = − 1

2
√

8
e−2iρ+iHC(z)∑

N

d
2
N

zN+2 , G̃−
4 (z) = − 1

2
√

8
e2iρ−iHC(z)∑

N

d2
N

zN+2 ,

(2.55b)

T4(z) = ∑
N

LN

zN+2 +
1
2

∂ρ∂ρ(z)− i
2

∂2ρ(z) , (2.55c)

LM = ∑
N

(
1
4

Πα̇α
N Παα̇−N+M + ∂θα

Ndα−N+M + ∂θα̇Nd
α̇
−N+M

)
, (2.55d)

using (2.51) for the supersymmetric modes. Also, using the fact that L1L−1|0⟩ −
L−1L1|0⟩ = 2L0|0⟩, one finds that L0 does not acquire a normal ordering constant
when the background field is nonzero. In the bosonic string case [13], a nonvanish-
ing normal ordering constant was found to be proportional to ε2. The vanishing of
the normal ordering constant in our analysis is a consequence that our description
preserves spacetime supersymmetry.

For later use, we also define the constant matrices

∆ β
α ≡ {dα1, ∂θ

β
−1} = δ

β
α +

i
2
(ε · σ)

β
α , ∆

α̇
β̇ ≡ {d

α̇
1 , ∂θ β̇−1} = δα̇

β̇
+

i
2
(ε · σ)α̇

β̇
.

(2.56)

Identities which will be useful for future computations of commutation relations
between the modes can be found in Appendix A together with our conventions
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for sigma matrices and spinorial indices.

2.4 Massless spin-1 multiplet in a constant electromag-

netic background

Using the description of the hybrid formalism coupled to a constant U(1)
background gauge field developed in the last section, we calculate in this section
the action for the four-dimensional super-Maxwell multiplet of the charged open
superstring.

2.4.1 Equations of motion and superspace action

As we saw in Section 2.2.3, the vertex operator for the compactification-
independent massless states of the open superstring has vanishing J charge and
weight zero at zero momentum and is described by a superfield V. In the case of
charged strings, we need to allow the vector superfield V describing the super-
Maxell multiplet to be complex. As usual, V can be expanded in terms of θα

0 and
θ

α̇
0

V(xm, θα
0 , θ

α̇
0) = ϕ + i(θ0χ1)− i(θ0χ2) + i(θ0θ0)M1 − i(θ0θ0)M∗

2 − (θ0σmθ0)Am

− i(θ0θ0)(θ0ψ1) + i(θ0θ0)(θ0ψ2) +
1
2
(θ0θ0)(θ0θ0)D , (2.57)

where (ϕ, Am, D) are complex. The equation of motion and gauge transformations
for V are

G+
4 G̃+

4 V = 0 , δV = G+
4 Λ−1 + G̃+

4 Λ2 , (2.58)

where Λ−1 and Λ2 can be written as Λ−1 =
√

8e−iρiξ and Λ2 =
√

8e2iρ−iHc iζ, with
ξ and ζ carrying no J charge and having conformal weight zero, i.e., they are
complex vector superfields and functions of xm, θα

0 and θ
α̇
0 .

From (2.55), the equation of motion and gauge transformations in terms of the
supersymmetric modes read

1
2

d2
1d

2
−1V − d2

0d
2
0V = 0 , δV =

i
2

d2
0ξ − i

2
d

2
0ζ . (2.59)

We can express it in terms of zero modes using that d2
1d

2
−1V = (2d2

0d
2
0 − 2dα

0d
2
0dα0 −
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32dα
0∂θα0)V. The equation of motion then simplifies to

dα
0d

2
0dα0V + 16∂θα

0 dα0V = 0 . (2.60)

The only non-trivial gauge transformation comes from ζ, and one sees that (2.60)
is gauge invariant by noting that dα

0d
2
0dα0δV = 8idα

0∂θα0d
2
0ζ.

In the free case, ε = 0, dα
0 reduces to the usual super derivatives (2.21) and

∂θα
0 = 0. So we recover the super-Maxell equation of motion dα

0d
2
0dα0V = 0, or

DαD2DαV = 0 in the notation of [24].
Equation (2.60) comes from the action given by evaluating ⟨VG̃+

4 G+
4 V⟩, which

we write in N = 1 superspace as

S =
1

16

∫
d4x p2

0p2
0

[
V†(dα

0d
2
0dα0 + 16∂θα

0 dα0)V
]

. (2.61)

To get the expression in terms of components, one can use the gauge transforma-
tions to go to the WZ gauge in which the only nonzero components of V and V†

are

V = −(θ0σmθ0)Am − i(θ0θ0)(θ0ψ1) + i(θ0θ0)(θ0ψ2) +
1
2
(θ0θ0)(θ0θ0)D , (2.62a)

V† = −(θ0σmθ0)A∗
m + i(θ0θ0)(θ0ψ1)− i(θ0θ0)(θ0ψ2) +

1
2
(θ0θ0)(θ0θ0)D∗ ,

(2.62b)

where we also wrote V† to emphasize that V is a complex superfield for the
charged superstring.

Expanding the oscillator modes in (2.60) using (2.51), we obtain the equations
of motion for the components

D = 0 , (2.63a)

Dm(σ
mψ1)

α̇ = 0 , (2.63b)

Dm(σ
mψ2)α = 0 , (2.63c)

D2Am −DmDn An + 2iεmn An = 0 , (2.63d)

with gauge transformations

δAm = Dma , (2.64a)

δD = δψ1α = δψ
α̇
2 = 0 , (2.64b)
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where a is an arbitrary gauge parameter and recall that [Dm,Dn] = −[α0m, α0n] =

iεmn. These equations of motion are obtained by varying the action

S =
1
2

∫
d4x
[

A∗
m

(
D2Am −DmDn An + 2iεmn An

)
− i(ψ1σmDmψ1)

− i(ψ2σmDmψ2) + D∗D
]

. (2.65)

Note that when the background is zero (ε = 0), the above action becomes two
decoupled actions for the super-Maxwell multiplet

S =
∫

d4x
[
− 1

4
F2

1 − i
2
(ψ1σm∂mψ1) +

1
2

D2
1 + (1 ↔ 2)

]
, (2.66)

where A = A1 + iA2, D = D1 + iD2 and FImn = ∂m AIn − ∂n AIm (I = 1, 2).
If we perform the substitution Am → (MA)m, (2.63d) and the gauge transfor-

mation for Am can be put in the form given by [13]

(D ·
ε

QF
·D)Am −Dm(D ·

ε

QF
· A) + 2i(εA)m = 0 , δAm = Dma . (2.67)

Observe that the vector field Am remains massless in the presence of the
background. This is due to the normal ordering constant being absent in the
Virasoro algebra of the four-dimensional part of the superstring (2.55), an effect of
our supersymmetric description. This can be contrasted with the results found in
[13], where Am acquires a mass term proportional to ε2, a consequence of the shift
in the normal ordering constant by the same amount. Nevertheless, one can check
that the difference between equation (2.67) and equation (3.5) of [13] has vanishing
gauge variation, so both results are consistent. Notice when comparing (2.67) with
(3.5) of [13] that there is a sign difference in the term with no derivatives because
we define the commutator [Dm,Dn] = iQFmn, whereas [Dm,Dn] = −iQFmn in
[13].

When qπ → −q0, or the neutral string limit, one has[
∂ · (1 − π2q2

0F2)−1 · ∂
]

Am
1 − ∂m

[
∂ · (1 − π2q2

0F2)−1 · A1

]
= 0 , (2.68)

and

[(1 + πq0F)−1]mnσm∂nψ1 = 0 , (2.69)

where we used (2.36) and (2.37). Similar expressions hold for A2m and ψ2. Equa-
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tions (2.68) and (2.69) can be obtained by varying the supersymmetric Born-Infeld
action [28] [29]

SsuperBI =
∫

d4x
[
− det

(
ηmn + q0πF1mn − 2(ψ1σm∂nψ1)

)]1/2
. (2.70)

More precisely, as shown in [13], equation (2.68) can be obtained by expanding the
field strength around a constant background in the equations of motion coming
from (2.70).

2.5 Superspace action of the first massive state of the

superstring in a constant electromagnetic back-

ground

Repeating the steps of the last section, we compute here the superspace action
for the first massive states of the charged open superstring compactified to four
dimensions and coupled to a constant electromagnetic background. This action is
non-polynomial in Fmn and describes a massive complex spin-2 multiplet and two
massive complex scalar multiplets, which are the compactification-independent
states in four dimensions preserving N = 1 supersymmetry. The case without an
electromagnetic background was studied in [30].

2.5.1 String field/vertex operator

Since we are ignoring compactification-dependent contributions, fields that
depend on the internal directions j of the Calabi-Yau are not allowed and the most
general complex string field having conformal weight +1 at zero momentum and
(mass)2 = 1

α′ = 2 is

Φ0 = φ − (∂ρ − ∂HC)B + i(∂HC − 3∂ρ)C , (2.71a)

Φ1 =
√

8eiρψj∂xj Ã , (2.71b)

Φ−1 =
√

8e−iρψj∂xj A , (2.71c)

φ ≡ dα
−1W1α − dα̇−1W α̇

2 + iΠm
−1Vm + ∂θα

−1V1α − ∂θα̇−1V α̇
2 , (2.71d)

where φ is a superfield annihilated by modes > 1 and is a general linear combina-
tion of the four-dimensional supersymmetric worldsheet variables of conformal
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weight +1. Although Φ1 and Φ−1 do depend on the Calabi-Yau metric, we will
show that they can be gauged away algebraically, so this doesn’t contradict the fact
that Φ is independent of the specific form of the compactification. The quantities
A, Ã, B, C, Wα

1 , W α̇
2 , Vα

1 , V α̇
2 and Vm are usual N = 1 superfields which depend

only on the zero modes of (x, θ, θ), i.e., they are superfields annihilated by modes
≥ 1. The minus sign in front of ∂θα̇−1 and dα̇−1 is a consequence of the hermiticity
conditions (∂θα)† = −∂θα̇ and (dα)† = −dα̇.

2.5.2 Gauge transformations

We first look at (2.23a), (2.23b) and (2.23c). In our case, Λ0 = Λ1 = 0 and we
consider

δΦ−1 = G+
6 Λ−1 , (2.72a)

δΦ0 = G+
4 Λ−1 + G̃+

4 Λ2 , (2.72b)

δΦ1 = G̃+
6 Λ2 . (2.72c)

The Calabi-Yau-independent gauge parameters are

Λ−1 =
√

8e−iρ(λ + ∂ρF + ∂HCK) , (2.73a)

Λ2 =
√

8e2iρ−iHC
[
ω + (2∂ρ − ∂HC)F̃ + (3∂ρ − 2∂HC)K̃

]
, (2.73b)

with

λ ≡ 2i(dα
−1C1α − dα̇−1Eα̇

2 + ∂θα
−1B1α − ∂θα̇−1Hα̇

2 + iΠm
−1Bm) ,

ω ≡ 2i(dα
−1E1α − dα̇−1Cα̇

2 + ∂θα
−1H1α − ∂θα̇−1Bα̇

2 + iΠm
−1B∗

m) ,

where ω and λ are annihilated by modes > 1 and F, K, C1α, Cα̇
2 , B1α, Bα̇

2 , E1α, Eα̇
2 , H1α, Hα̇

2

and Bm are superfields depending only on zero modes.
Calculating the gauge transformations, we find

δφ =
1
2

d2
0λ − 1

2
d

2
0ω +

1
2

d2
−1F +

1
2

d
2
−1F̃ , (2.74a)

δiB =
1
4

d
2
1ω − 1

4
d2

1λ +
i
2

d
2
0F̃ +

i
2

d2
0F +

3i
4

d
2
0K̃ +

3i
4

d2
0K , (2.74b)

δC = −1
4

d
2
1ω − 1

4
d2

1λ − i
2

d
2
0F̃ +

i
2

d2
0F − i

4
d

2
0K̃ +

i
4

d2
0K , (2.74c)

δA = −iK, (2.74d)
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δÃ = iK̃ . (2.74e)

From (2.74), we see that the superfields appearing in Φ1 and Φ−1 can be
gauged away algebraically using the K and K̃ gauge parameters, as we anticipated
in Section 2.2.3. Some useful relations to check gauge invariance that are obvious
from (2.74) are

δλiB = δλC , δωiB = −δωC ,

δFiB = δFC , δF̃iB = −δF̃C ,

δKiB = 3δKC , δK̃iB = −3δK̃C .

Following [30], we focus on a subset of the gauge parameters. The reason for
this is that C1α, Cα̇

2 , Bm, F, H1α and Hα̇
2 can be ignored, being parameters of Λ−1

and Λ2 that can be obtained from a state exact in G+/G̃+. After using the explicit
form of φ, λ and ω with the commutation relations for the supersymmetric modes,
we obtain

δW1α = 2i∆ β
α B1β + 4Παα̇0Eα̇

2 − id
2
0E1α , (2.75a)

δW α̇
2 = −2i∆α̇

β̇Bβ̇
2 − 4Πα̇α

0 E1α + id2
0Eα̇

2 , (2.75b)

δVm = −4iσm
αα̇d

α̇
0Eα

1 − 4iσm
αα̇dα

0Eα̇
2 , (2.75c)

δV α̇
2 = −id

2
0Bα̇

2 − 16iEα̇
2 , (2.75d)

δV1α = id2
0B1α + 16iE1α , (2.75e)

δ(iB − C) = dα̇0(δW α̇
2 − id2

0Eα̇
2) , (2.75f)

δ(iB + C) = −dα
0(δW1α + id

2
0E1α) , (2.75g)

where ∆ β
α = {dα1, ∂θ

β
−1} = δ

β
α + i

2(ε · σ)
β

α and ∆
α̇
β̇ = {d

α̇
1 , ∂θ β̇−1} = δα̇

β̇
+ i

2(ε · σ)α̇
β̇
.

Equations (2.75a) and (2.75b) imply that the superfields Wα
1 (W α̇

2) can be alge-
braically gauge fixed to zero by choosing an appropriate Bα

1 (Bα̇
2), therefore, we

can consistently take Wα
1 = W α̇

2 = 0 in the action. Imposing Wα
1 = W α̇

2 = δWα
1 =

δW α̇
2 = 0, the gauge transformations become

δVm = −4iσm
αα̇d

α̇
0Eα

1 − 4iσm
αα̇dα

0Eα̇
2 , (2.76a)

∆
α̇
β̇δV β̇

2 = 2d
2
0Πα̇α

0 E1α −
i
2

d
2
0d2

0Eα̇
2 − 16i∆α̇

β̇Eβ̇
2 , (2.76b)

∆ β
α δV1β = −2d2

0Παα̇0Eα̇
2 +

i
2

d2
0d

2
0E1α + 16i∆ β

α E1β , (2.76c)
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iδB = − i
2

(
dα̇0d2

0Eα̇
2 + dα

0d
2
0E1α

)
, (2.76d)

δC =
i
2

(
dα̇0d2

0Eα̇
2 − dα

0d
2
0E1α

)
. (2.76e)

2.5.3 Equations of motion and superspace action

Equations (2.22a) and (2.22c) give

d
2
0d2

0A + 2d
2
0(iB − C) = 0 , (2.77a)

d2
0d

2
0Ã − 2d2

0(iB + C) = 0 . (2.77b)

Equation (2.22b) is more complicated to evaluate, it implies that

(d2
−1d

2
1 − 2d2

0d
2
0 + d2

1d
2
−1)φ

+(d
2
0d2

−1 − 2d
2
−1d2

0 + d2
0d

2
−1 − 2d2

−1d
2
0)iB (2.78a)

−(−3d
2
0d2

−1 + 6d
2
−1d2

0 + 3d2
0d

2
−1 − 6d2

−1d
2
0)C = 0 ,

(−d2
0d

2
1 − d2

1d
2
0 + d2

2d
2
−1)φ

+({d2
0, d

2
0} − 64)iB (2.78b)

+(−3[d2
0, d

2
0]C)− 48(d2

0A − d
2
0Ã) = 0 ,

(3d2
0d

2
1 − 3d2

1d
2
0 + d2

2d
2
−1)φ

−[d2
0, d

2
0]iB (2.78c)

−(64idα
0Παα̇0d

α̇
0 − 19d2

0d
2
0 − 3d

2
0d2

0 − 64)C

+16(d
2
0Ã + d2

0A) = 0 ,

where, after acting with the generators on the string field Φ0, one obtains terms
proportional to J++, J++(∂ρ − ∂HC) and J++(∂HC − 3∂ρ) which correspond re-
spectively to the three equations above. This form of the equations is particularly
useful to check gauge invariance using (2.74). Some helpful relations between the
modes can be found in Appendix A.

The task now is to eliminate operators with mode numbers ≥ 1 by using (2.52).
Equations (2.78b) and (2.78c) can be expressed entirely in terms of zero modes
(the overall oscillator number is zero), so that they only give one independent
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relation. On the other hand, each term in equation (2.78a) has overall oscillator
mode −1, consequently, (2.78a) will give us one independent equation for each of
the supersymmetric modes ∂θα

−1, Πm
−1, dα

−1, etc. Note that in the gauge Wα
1 = 0,

the terms proportional to ∂θα
−1 do not contribute to the superspace action. The

same holds for terms proportional to ∂θα̇−1. Of course, to evaluate the CFT
correlator corresponding to the superspace action, one needs to consider the
equations of motion together with the appropriate factors of J++, J++(∂ρ − ∂HC)

and J++(∂HC − 3∂ρ).
From now on, to proceed in the computation of the action, we take A = Ã =

Wα
1 = W α̇

2 = 0. In this gauge,

dα1φ = −2(σm∂θ0)αVm + ∆ β
α V1β , (2.79a)

d
α̇
1 φ = −2(σm∂θ0)

α̇Vm − ∆
α̇

β̇V β̇
2 , (2.79b)

Παα̇1φ = −iσn
αα̇(ηnm − iεnm)Vm , (2.79c)

∂θα1φ = ∂θ
α̇
1 φ = 0 . (2.79d)

For simplicity, we also perform the redefinitions

− 2(σm∂θ0)αVm + ∆ β
α V1β → U1α , (2.80a)

2(σm∂θ0)
α̇Vm + ∆

α̇
β̇V β̇

2 → Uα̇
2 . (2.80b)

The gauge transformations for U1α and Uα̇
2 are then

δU1α = −16i∂θ
α̇
0(dα̇0E1α + dα0E2α̇)− 2d2

0Παα̇0Eα̇
2 +

i
2

d2
0d

2
0E1α + 16i∆ β

α E1β ,

(2.81a)

δUα̇
2 = 16i∂θα0(d

α̇
0Eα

1 + dα
0Eα̇

2) + 2d
2
0Πα̇α

0 E1α −
i
2

d
2
0d2

0Eα̇
2 − 16i∆α̇

β̇Eβ̇
2 , (2.81b)

if we require that δWα
1 = δW α̇

2 = 0 so that Wα
1 and W α̇

2 remain zero.
Computing the CFT two-point function ⟨Φ†

0(G̃
+
6 G+

6 + G̃+
4 G+

4 )Φ0⟩, one finds
that the string field theory action in N = 1 superspace for the first massive
compactification-independent fields of the charged open superstring coupled to a
constant electromagnetic background is
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S = − 1
16

∫
d4x p2

0p2
0

{
V†

n (η
nm − iεnm)

[
− {d2

0, d
2
0}Vm + 16Πn

0 Πn0Vm − 32(ηmp

− iεmp)Vp − 32
(
(∂θ0d0)Vm + (∂θ0d0)Vm

)
+ 8σα̇α

m

(
dα0U2α̇ − dα̇0U1α

)
B

+ 32Πm0 + 24σα̇α
m [dα̇0, dα0]C

]
+ Uα

2

[
− 8σn

αα̇(ηnm − iεnm)d
α̇
0Vm + 4dα̇0dα0Uα̇

2

− 4d
2
0U1α + dα0d

2
0(−2iB + 18C) + ∂θα0(−32iB − 96C)− 48iΠαα̇0d

α̇
0C
]

− U1α̇

[
− 8σnα̇α(ηnm − iεnm)dα0Vm + 4d2

0Uα̇
2 − 4dα

0d
α̇
0U1α − d

α̇
0d2

0(2iB + 18C)

+ ∂θ
α̇
0(−32iB + 96C) + 48iΠα̇α

0 dα0C
]
+ B†

[
− 32Πn

0(ηnm − iεnm)Vm

+ ({d2
0, d

2
0} − 64)B + 3i[d2

0, d
2
0]C − i

(
2d2

0dα̇0 + 32∂θα̇0

)
Uα̇

2 + i
(

2d
2
0dα

0 + 32∂θα
0

)
×

× U1α

]
+ 3C†

[
− 8σnα̇α[dα0, dα̇0](ηnm − iεnm)Vm −

(
6dα

0d
2
0 + 8iΠα̇α

0 dα̇0

)
U1α

−
(

6dα̇0d2
0 + 8iΠαα̇0dα

0

)
Uα̇

2 − [d2
0, d

2
0]iB

−
(
− 11{d2

0, d
2
0}+ 128Πn

0 Πn0 − 256∂θα̇0d
α̇
0 − 256∂θα

0 dα0 − 64
)
C
]}

, (2.82)

with the equations of motion

− {d2
0, d

2
0}Vm + 16Πn

0 Πn0Vm − 32(ηmn − iεmn)Vn − 32
[
(∂θ0d0)Vm + (∂θ0d0)Vm

]
+ 8σα̇α

m (dα0U2α̇ − dα̇0U1α) + 32Πm0B + 24σmαα̇[d
α̇
0 , dα

0 ]C = 0 , (2.83a)

− 8σn
αα̇(ηnm − iεnm)d

α̇
0Vm + 4dα̇0dα0Uα̇

2 − 4d
2
0U1α + dα0d

2
0(−2iB + 18C)

+ ∂θα0(−32iB − 96C)− 48iΠαα̇0d
α̇
0C = 0 , (2.83b)

− 8σnα̇α(ηnm − iεnm)dα0Vm + 4d2
0Uα̇

2 − 4dα
0d

α̇
0U1α − d

α̇
0d2

0(2iB + 18C)

+ ∂θ
α̇
0(−32iB + 96C) + 48iΠα̇α

0 dα0C = 0 , (2.83c)

− 32iΠn
0(ηnm − iεnm)Vm + ({d2

0, d
2
0} − 64)iB − 3[d2

0, d
2
0]C

+ (2d2
0dα̇0 + 32∂θα̇0)U

α̇
2 − (2d

2
0dα

0 + 32∂θα
0 )U1α = 0 , (2.83d)
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− 8σnα̇α[dα0, dα̇0](ηnm − iεnm)Vm

−
(

6dα
0d

2
0 + 8iΠα̇α

0 dα̇0

)
U1α −

(
6dα̇0d2

0 + 8iΠαα̇0dα
0

)
Uα̇

2

− [d2
0, d

2
0]iB −

(
−11{d2

0, d
2
0}+ 128Πn

0 Πn0 − 256∂θα̇0d
α̇
0 − 256∂θα

0 dα0 − 64
)

C = 0 .

(2.83e)

Using (2.83b), (2.83c), (2.83d), (2.83e) and (2.77), one can show that

B = − i
32

[
[d2

0, d
2
0]C + dα̇d2

0Uα̇
2 − dα

0d
2
0U1α

]
+

i
2
(∂θ0d0)(3C + iB)

− i
2
(∂θ0d0)(3C − iB) , (2.84)

and

64(Πn
0 Πn0 + 1)C = 6{d2

0, d
2
0}C − 2dα̇0d2

0Uα̇
2 − 2dα

0d
2
0U1α

+ 32(∂θ0d0)(−iB + C) + 32(∂θ0d0)(iB + C) . (2.85)

Equations (2.84) and (2.85) generalize (3.8) and (3.9) from [30] for the uncharged
and non-interacting case. At the level of the equations of motion, one can also
gauge-fix U1α = Uα̇

2 = 0 by the gauge transformations (2.81a) and (2.81b). Note
that using our conventions for the supersymmetric variables, the quadratic action
of [30] for the non-interacting case is

S f ree = − 1
16

∫
d4x p2

0p2
0

{
Vm
[
− {d2

0, d
2
0}Vm + 16Πn

0 Πn0Vm − 32Vm

+ 16σα̇α
m (dα0V α̇ − dα̇0Vα) + 64Πm0B + 48σα̇α

m [dα̇0, dα0]C
]

+ Vα

[
8dα̇0dα0V α̇ − 4d

2
0Vα + 2dα0d

2
0(−2iB + 18C)− 96iΠαα̇0d

α̇
0C
]

+ V α̇

[
− 4d2

0V α̇
+ 2d

α̇
0d2

0(2iB + 18C)− 96iΠα̇α
0 dα0C

]
+ B

[
{d2

0, d
2
0}B − 64B + 6i[d2

0, d
2
0]C
]
+ 3C

[
11{d2

0, d
2
0}C − 128Πn

0 Πn0C

+ 64C
]}

. (2.86)
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2.6 Spin-3/2 and spin-2 charged massive states in a

constant electromagnetic background

With the superspace action for the massive states of the superstring in an elec-
tromagnetic background at our disposal (2.82), we can now expand the superfields
in components, eliminte the pure gauge degrees of freedom and write an effective
action for the massive spin-3/2 and massive spin-2 fields. Due to the complexity
of the terms in the action and the huge number of auxiliary fields, this is a tedious
and long task which was explained thoroughly in ref. [2].

In this section, we will summarize the main results and skip most of the
technical the deatils. Hence, we will write the action and equations of motion
for the spin-3/2 and spin-2 fields after numerous simplifications, discussed in [2],
have been implemented.

As noted in [14] for the case of the open bosonic string, and as it appears
through our manipulations in this work, the consitency of the Lagrangian (2.82)
and the derivation of the equations of motion make use of the anti-symmetric
property of εmn, but nowhere does the explicit dependence of εmn on Fmn intervene.
Therefore, our analysis continues to be valid if we take everywhere the limit of
quantum field theory εmn → QFmn and Dm → Dm.

Following this, to ease the presentation, our working configuration can be
reformulated, independently of a stringy framework or not, as follows: the su-
perfields are charged under the U(1) of the elctromagnetic background, to which
we associate a covariant derivative Dm, whose commutator gives a constant anti-
symmetric tensor εmn, hereafter referred to as the “electromagnetic field strength,”
an obvious abuse of language. For convenience, we will assume that {Vm, B, C,
U1α, Uα̇

2} carry a positive unit charge, so their conjugates are negatively charged.
It is then easy to verify that the action (2.82) is U(1)-invariant. For the covari-
ant derivative we have [Dm,Dn] = iqεmn, with q = ±1. For example, given a
positively charged superfield component ϕ, we have

[Dm,Dn]ϕ = iεmnϕ , [Dm,Dn]ϕ
∗ = −iεmnϕ∗ . (2.87)
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2.6.1 The complex superfields

The expansion into components of the superfields reads:

Vm = Cm + i(θχ1m)− i(θχ2m) + i(θθ)M1m − i(θθ)M2m + (θσnθ)hmn

+ i(θθ)(θλ1m)− i(θθ)(θλ2m) + (θθ)(θθ)Dm , (2.88a)

B = φ + i(θγ1)− i(θγ2) + i(θθ)N1 − i(θθ)N2 + (θσmθ)cm

+ i(θθ)(θρ1)− i(θθ)(θρ2) + (θθ)(θθ)G , (2.88b)

C = ϕ + i(θξ1)− i(θξ2) + i(θθ)M1 − i(θθ)M2 + (θσmθ)am

+ i(θθ)(θψ1)− i(θθ)(θψ2) + (θθ)(θθ)D , (2.88c)

U1α = v1α + θαs1 − (σmnθ)αs1mn + (σmθ)αw1m + (θθ)η1α + (θθ)ζ1α + (θσmθ)r1mα

+ (θθ)(σmθ)αq1m + (θθ)θαt1 − (θθ)(σmnθ)αt1mn + (θθ)(θθ)µ1α , (2.88d)

Uα̇
1 = vα̇

1 + θ
α̇s1 − (σmnθ)α̇s1mn − (σmθ)α̇w1m + (θθ)ηα̇

1 + (θθ)ζ
α̇
1 + (θσmθ)rα̇

1m

− (θθ)(σmθ)α̇q1m + (θθ)θ
α̇t1 − (θθ)(σmnθ)α̇t1mn + (θθ)(θθ)µα̇

1 , (2.88e)

U2α = v2α + θαs2 − (σmnθ)αs2mn + (σmθ)αw2m + (θθ)η2α + (θθ)ζ2α + (θσmθ)r2mα

+ (θθ)(σmθ)αq2m + (θθ)θαt2 − (θθ)(σmnθ)αt2mn + (θθ)(θθ)µ2α , (2.88f)

Uα̇
2 = vα̇

2 + θ
α̇s2 − (σmnθ)α̇s2mn − (σmθ)α̇w2m + (θθ)ηα̇

2 + (θθ)ζ
α̇
2 + (θσmθ)rα̇

2m

− (θθ)(σmθ)α̇q2m + (θθ)θ
α̇t2 − (θθ)(σmnθ)α̇t2mn + (θθ)(θθ)µα̇

2 , (2.88g)

where the gauge parameter superfields E1α, E2α are given by

E1α = Λ1α + θαΛ2 − (σmnθ)αΛ2mn + (σmθ)αΛ3m + (θθ)Λ4α + (θθ)Λ5α + (θσmθ)Λ6mα

+ (θθ)(σmθ)αΛ7m + (θθ)θαΛ8 − (θθ)(σmnθ)αΛ8mn + (θθ)(θθ)Λ9α , (2.89a)

Eα̇
1 = Λ

α̇
1 + θ

α̇
Λ2 − (σmnθ)α̇Λ2mn − (σmθ)α̇Λ3m + (θθ)Λ

α̇
4 + (θθ)Λ

α̇
5 + (θσmθ)Λ

α̇
6m

− (θθ)(σmθ)α̇Λ7m + (θθ)θ
α̇
Λ8 − (θθ)(σmnθ)α̇Λ8mn + (θθ)(θθ)Λ

α̇
9 , (2.89b)

E2α = Υ1α + θαΥ2 − (σmnθ)αΥ2mn + (σmθ)αΥ3m + (θθ)Υ4α + (θθ)Υ5α + (θσmθ)Υ6mα

+ (θθ)(σmθ)αΥ7m + (θθ)θαΥ8 − (θθ)(σmnθ)αΥ8mn + (θθ)(θθ)Υ9α , (2.89c)

Eα̇
2 = Υ

α̇
1 + θ

α̇
Υ2 − (σmnθ)α̇Υ2mn − (σmθ)α̇Υ3m + (θθ)Υ

α̇
4 + (θθ)Υ

α̇
5 + (θσmθ)Υ

α̇
6m

− (θθ)(σmθ)α̇Υ7m + (θθ)θ
α̇
Υ8 − (θθ)(σmnθ)α̇Υ8mn + (θθ)(θθ)Υ

α̇
9 . (2.89d)

We also denote the dual field by ε̃mn with

ε̃mn =
1
2

ϵmnpqεpq , εmn = −1
2

ϵmnpq ε̃pq . (2.90)
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Obviously, the sum (εmn + iε̃mn) is self-dual. Some useful identities related to the
field strengths are

εmn ε̃mk =
1
4

δn
kεab ε̃ab , εmnεmk − ε̃mn ε̃mk =

1
2

δn
kεabεab . (2.91)

2.6.2 Charged massive bosons

After using the gauge transformations described in Section 2.5.2, and perform-
ing suitable field redefinitions, most of the component fields can be eliminated
from the superfields (2.88). In what follows, we list all component fields which will
remain and, therefore, describe the physical degrees of freedom in the Lagrangian
for the bosonic fields LB derived from the superspace action (2.82).

For the components in B, the physical degrees of freedom are contained in
the fieds {cm, N1, N2}. For the components in C, the physical degrees of freedom
are contained {am, M1, M2}. For the components in Vm, the physical degrees of
freedom are contained in hmn, where only the symmetric part survives after using
the gauge transformations and field redefinitions. For the components in U1α and
U α̇

2 , all of them can be removed, either by using the gauge transformations or by
field redefinitions. In what follows, we label the trace of hmn by h, and assume
that the antisymmetric part of hmn has been gauged to zero. The details regarding
the gauge transformations and field redefinitions are presented in ref. [2].

The Lagrangian LB can be separated in two separately gauge invariant parts L1

and L2. This means that one can write LB = L1 +L2. In terms of the components,
the first part reads

L1 = M1

(
− 2 +D2

)
M1 +N 1

(
− 2 +D2

)
N1 , (2.92)

where we defined the complex scalars

M1 = M1 + M2 , M2 = i(M1 − M2) ,

N1 = N1 + N2 , N2 = i(N1 − N2) ,

and performed a field redefinition to eliminate M2 and N2.
The gauge invariant part L2 is more complicated, and also more interesting,

since it contains the massive spin-2 field hmn. After performing field redefinitions
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and using the gauge transformations, and introducing the definitions

(εε) = εmnεmn , (εε̃) = εmn ε̃mn , (2.93)

it is possible to write the Lagrangian L2 as a deformed Fierz-Pauli Lagrangian [2]
[3]

L2 = Cm
D2Cm +DmCmD

nCn − 2Cmt(ηmn − iεmn)Cn

+

[
ADm − i

2
ε̃mbBDb +

1
8
(εε̃)BDm − 1

2
ϵmabcH

bc
Da − i

2
ε̃maH

ba
Db +

i
2

ε̃mbHDb
]

×Amn
[
Dn A +

i
2

ε̃nlD
lB +

1
8
(εε̃)DnB − 1

2
ϵnlpqD

lHpq +
i
2

ε̃nlDpHpl

− i
2

ε̃nlD
lH
]
− 2AA + B

(
D2 − 2

)
B − 1

2
εmnεmkBDnDkB

+
1
2

[
i
(
DnHnmεmkDkB

)
− 1

2
(εε)HB + h.c.

]
+

1
2
H(mn)D

2hmn

+
1
2
DnHmnDkhmk +

1
2
DnHnmDkHkm +

1
2

(
Hmn

DmDnh + h.c.
)

− 2H(mn)H(mn) +H(mn)hmn −
1
2
H
(
D2 − 2

)
h

+
(
H[mn]

+
1
2

iεmnB
)(

H[mn] −
1
2

iεmnB
)

, (2.94)

where

Hmn = (ηmk − iεmk)hk
n , H = h , (2.95)

and

Cm = (ηmn − iεmn)Cn . (2.96)

It is important to note that the Lagrangian (2.94) contais two complex mas-
sive bosons A and B, which were not present in the superfield epansion (2.88).
However, these complex bosons correspond to the massive vectors am and cm,
respectively. More precisely, it can be shown from the equations of motion that
am and cm describe one complex degree of freedom each. As a consequence, the
Lagrangian for am can be converted to a dual Lagrangian for the complex scalar A
— after the addition of an auxiliary field A to the am Lagrangian and performing a
suitable field redefinition. The same holds true for the cm Lagrangian. The details
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are further explained in ref. [2].
The equations of motion coming from L1 are straightforward to obtain(

D2 − 2
)
M1 = 0 ,

(
D2 − 2

)
N1 = 0 . (2.97)

Deriving the equations of motion from L2 in a transparent form is a tedious
exercise. Here, we will only quote the result. To decouple the massive spin-2
on-shell, one first defines the traceless and symmetric tensor hmn as

hmn =
4
3

hmn −
i
2

(
εm

khkn + εnkhk
m

)
− 1

6

(
DmDkhk

n +DnDkhk
m

)
− i

4
ηmn

(
εklDpDlhkp

)
+

i
4

(
εmkD

lDkhnl + εnkD
lDkhml − εmkDlDnhkl

− εnkDlDmhkl
)
+

1
2 − εε

[
1
6
(εε)

(
DmDnB +DnDmB

)
+

i
2

(
εmkD

kDnB

+ εnkD
kDmB

)
−
(

1
6
+

1
8

εε

)
(εε)ηmnB +

1
2
(1 − εε)εm

kεknB
]

+
1

2 + εε

[
− i

2

(
ε̃mkD

kDn A + ε̃nkD
kDm A

)
+

5
8
(εε̃)ηmn A

− 1
4
(εε̃)

(
DmDn A +DnDm A

)
+
(

ε̃mkε lnD
kDl A + ε̃nkε lmD

kDl A
)]

, (2.98)

which leads to decoupled equations of motion and constraints,(
D2 − 2

)
hmn + 2i

(
εm

khnk + εn
khmk

)
= 0 , (2.99a)

Dnhmn = 0 , (2.99b)

h = 0 , (2.99c)

D2Cm − 2(ηmn − iεmn)Cn −DmDnCn = 0 , (2.99d)

DmCm = 0 , (2.99e)(
D2 − 2

)
A = 0 , (2.99f)(

D2 − 2
)

B = 0 . (2.99g)

As in the Argyres-Nappi Lagrangian, a simple analysis of the equations of
motion and constraints confirms causal propagation of the spin-2. Note that, at the
first massive level, the bosonic sector of the superstring has 12 complex degrees of
freedom: 5 from the symmetric traceless spin-2 hmn, 3 from the massive vector Cm,
and the remaining 4 from the massive complex scalars {M1,N1, A, B}.
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2.6.3 Charged massive fermions

As usual, the discussion for the fermions is a mirror of the bosonic one. Simi-
larly as in Section 2.6.2, we begin by stating which components of the superfield
(2.88) carry the physical fermionic degrees o freedom, i.e., the ones that remain
after performing field redefinitions and using the gauge transformations of the
superstring field theory description. Once this is completed, we will write the
Lagrangian LF for the physical fermionic component fields from the interacting
superspace action (2.82).

For the components in B, the physical degrees of freedom are contained in
the fieds {γ1, γ2}. For the components in C, the physical degrees of freedom are
contained {ψ1, ψ2}. For the components in Vm, the physical degrees of freedom are
contained in {χ1m, χ2m, λ1m, λ2m}, which describe the massive spin-3/2 degrees of
freedom. For the components in U1α and U α̇

2 , all of them can be removed, either by
using the gauge transformations or by field redefinitions, see ref. [2].

As with hmn and Cm in the bosonic sector, the fermions in the Vm superfield
will also appear contracted with one or two (1 − iε) factors in the Lagrangian. In
order to make the formulas more concise, we define spinors with bold symbols

λ1m = (ηmn − iεmn)λ
n
1 , λ2m = (ηmn − iεmn)λ

n
2 , (2.100a)

χ1m = (ηmn − iεmn)χ
n
1 , χ2m = (ηmn − iεmn)χ

n
2 . (2.100b)

The resulting Lagrangian LF for the fermionic components of the superspace
action (2.82) then reads

LF = − i
2

[
2
(

λm
1 σnDnλ1m

)
+
(

χ1mσnσkσmDkχ1n

)]
−
√

2
[
(λm

1 χ1m) + h.c.
]

+

[
− i

4

(
ψ1σmDmψ1

)
+ 2i

(
γ1σmDmγ1

)]
+

[
3√
2

(
χm

1 σmnD
nψ1

)
− 1

2
√

2

(
χm

1 Dmψ1

)
− i

2

(
λm

1 σmψ1

)
− 2i

(
χm

1 σmγ1

)
−
√

2
(

λm
1 Dmγ1

)
+ h.c.

]
+

[
1√
2

(
ψ1γ1

)
+ h.c.

]
+
(

1 ↔ 2
)
−
[

1
2

χm
1 (ε · σ)σmγ1

+
1
2

χm
2 (ε · σ)σmγ2 + h.c.

]
. (2.101)

Analogously to the bosonic case, we can find decoupled equations of motion
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for the spin-3/2 and spin-1/2 fields. For that, we define

λ
′
1m = λ1m +

i
2
√

2
[1 − i(ε · σ)]σmγ1 −

1
2
[ηmn − i(εmn + iε̃mn)]D

nψ1 , (2.102a)

χ′
1m = χ1m +

1
2
√

2
(ε · σ)σmψ1 , (2.102b)

which leads to the following equations of motion and constraints for the spin-3/2
fields

σnDnλ
′
1m = −

√
2(ηmn − iεmn)χ

′n
1 , (2.103a)

σnDnχ′
1m = −

√
2λ1m , (2.103b)

Dmχ′
1m = 0 , (2.103c)

Dmλ
′
1m = −

√
2

4
σm(ε · σ)χ′

1m , (2.103d)

σmχ′
1m = 0 , (2.103e)

σmλ
′
1m = 0 , (2.103f)

as well as the Dirac equations for the spin-1/2 fields

iσmDmγ1 = −
√

2ψ1 , (2.104a)

iσmDmψ1 = −
√

2γ1 . (2.104b)

Note that we also have a similar set of equations of motion for the fermionic
fields with index 2. In addition, {χ′

1m, λ
′
1m} describe 4 complex on-shell degrees of

freedom, and {γ1, ψ1} describe 2 complex on-shell degrees of freedom. Together
with the fermionic fields with index 2, we indeed have the 12 complex degrees
of freedom as in the bosonic counterpart. Of course, this ir already expected by
spacetime SUSY.

Even though the spin-3/2 and spin-1/2 fields appear coupled at the level of the
Lagrangian (2.101), we have shown that it is possible to find a decoupled system
of equations of motion and constraints derived which are from (2.101).

For the bosonic sector, we were able to write the Lagrangian for the charged
fields as a deformed Fier-Pauli Lagragian (2.94). The analogue for the fermionic
case LF is to find a field redefinition such that the Lagrangian (2.101) reduces
to a “Rarita-Schwinger plus Dirac” Lagrangian when the electromagnetic fields
vanishes. Indeed, it is possible to find such a field redefinition [2]. Here, we will
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only quote the result.
The resulting expressions are very long. Therefore, to make them easier to read,

we will separate the Lagrangian into three parts:

LF = LRSD + Lkm + Lcoupl , (2.105)

where LRSD consists in a sum of Rarita-Schwinger and Dirac Lagrangians. Lkm

are the corrections of the kinetic and mass terms due to the electromagnetic
background, and they vanish when ε = 0. Lcoupl contains only new couplings
between the spin-3/2 and spin-1/2 fields that are induced by the electromagnetic
field. It also vanishes when ε = 0.

The first part takes the expected simple form

LRSD =− 1
2

ϵmnkl
(

λ1mσnDkλ1l

)
+

1
2

ϵmnkl

(
χm

1 σnDkχl
1

)
−
√

2
[
(λm

1 σmnχn
1) + h.c.

]
− 1

2
i
(

ψ1σmDmψ1

)
− 1

2
i
(

γ1σmDmγ1

)
−
[

1√
2
(ψ1γ1) + h.c.

]
+ (1 ↔ 2) ,

(2.106)

and it is the Lagrangian that was historically first considered and lead to the issues
discussed in the introduction.

The new contribution to the kinetic and mass terms reads

Lkm = −1
2

iε̃mn
(

ψ1σmDnψ1

)
− 1

2
εmkGkn

(
ψ1σlDmD

lDnψ1

)
− i

2
ψ1(ε · σ)σm(ε · σ)Dmψ1 +

1
2

ϵmnkl(εmp − iε̃mp)(ε lq + iε̃ lq)ψ1σnD
pDkD

qψ1

− iεmkεkn

(
ψ1σmD

nψ1

)
− 1

2
εpmGmk(ε

kl + iε̃kl)(εpq − iε̃pq)ψ1σnD
qDnDlψ1

+ iεmkGklε lnψ1σpDmDpD
nψ1 −

i
2
(εε)ε̃mnψ1σnDmψ1 +

i
2
(εε̃)εmnψ1σnDmψ1

+
1
4

εmkGkn
(

γ1σmσlσnDlγ1

)
− 1

4

[
iεmkGknγ1σm(ε · σ)σlσnDlγ1 + h.c.

]
− 1

4
εmkGknγ1σm(ε · σ)σl(ε · σ)σnDlγ1 − iε̃mnγ1σnDmγ1 −

i
2
(εε)γ1σmDmγ1

− i
2

γ1(ε · σ)σm(ε · σ)Dmγ1 +

[
− i

2
ψ1(ε · σ)γ1 +

1√
2

ψ1σm(ε · σ)σn(ε · σ)DmDnγ1

+
i

2
√

2
εmkGknγ1σmσlDlDnψ1 −

1
2
√

2
(εε + iεε̃)(ψ1γ1)−

1
2
√

2
(εε − iεε̃)

(
ψ1D

2γ1

)
+

1√
2

εmkGknγ1σm(ε · σ)σlDlDnψ1 +
i

4
√

2
εmkGkn(εε − iεε̃)ψ1σlσnD

mDlγ1
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+ h.c.
]
− 1

4
εmn

[(
χm

1 σnσkσlDkχ1l

)
+ h.c.

]
− 1

4
εmkGkn

(
χl

1σlσpσqDmD
pDnχ

q
1

)
+

1
2

εmk

(
λm

1 σnDnλ
k
1

)
+

1
4
√

2

[
i
(

λm
1 Σmnχn

1

)
− 2iεmn

(
λn

1 σkσlDkD
mχ1l

)
+ h.c.

]
+ (1 ↔ 2, ε ↔ −ε) , (2.107)

while the new couplings between spin-1/2 and spin-3/2 fields are

Lcoupl =
√

2iλm
1 σmn(ε · σ)Dnγ1 −

i√
2
(εmn − iε̃mn)

(
λm

1 D
nγ1

)
+

1
2
√

2
iεmn

(
λn

1 σkσmDkγ1

)
+

1
2
√

2
εmnλn

1 σk(ε · σ)σmDkγ1 +
1
2

εmn
(

λ1mσnψ1

)
− i

4
(εε + iεε̃)

(
λm

1 σmψ1

)
+

i
2

ϵmnkl(ε lq + iε̃ lq)λ1mσnDkD
qψ1

+
1
2

εmk(η
kl − iεkl + ε̃kl)

(
λm

1 σnDnDlψ1

)
+

1
4

χm
1 (ε · σ)σmγ1

− 3
2

χm
1 σm(ε · σ)γ1 +

1
4

εmkGkn

(
χl

1σlσpσnDmD
pγ1

)
− i

4
√

2

(
ψ1ΣmnDmχ1n

)
− i√

2
χm

1 σm(ε · σ)σnD
nψ1 −

i
4

εmkGknχl
1σlσp(ε · σ)σnDmD

pγ1

+
i
4

χm
1 (ε · σ)σm(ε · σ)γ1 +

i
2
(εε)

(
χm

1 σmγ1

)
+

1
8
√

2
(εε + iεε̃)

(
χm

1 σmσnD
nψ1

)
− 1

4
√

2
χm

1 (ε · σ)σm(ε · σ)σnD
nψ1

+
1

4
√

2
χm

1 σm(ε · σ)σn(ε · σ)Dnψ1 +
i

2
√

2
εmkGkn

(
χl

1σlσpDmD
pDnψ1

)
− 1

2
√

2
(εmn − iε̃mn)Gnkεklψ1σpσqDmDpD

lχ1q + h.c. + (1 ↔ 2, ε ↔ −ε) ,

(2.108)

In these expressions, we introduced the notation

Σmn ≡ σmσn(ε · σ)− σm(ε · σ)σn − (ε · σ)σmσn , (2.109)

and

Gmn ≡ (ηmn − iεmn)
−1 . (2.110)



Chapter 3

The superstring in a flat six-dimensional
background

We begin by introducing the six-dimensional hybrid formalism for the super-
string, establishing our conventions for the worldsheet and target space variables.
In order to preserve more supersymmetries manifestly in the six-dimensional
spacetime, the formalism is extended by adding d = 6 N = 1 superspace vari-
ables and unconstrained bosonic ghosts to the worldsheet theory. A manifestly
spacetime supersymmetric vertex operator U is then constructed. BRST invariance
of U is shown to imply the SYM equations of motion in d = 6 N = 1 superspace.
Finally, it is shown that spacetime supersymmetric scattering amplitudes can be
computed in a similar manner as in the non-minimal pure spinor formalism.

3.1 Introduction

As of today, superstring theory is the only known mathematically consistent
quantum theory of gravity that can, in principle, accommodate the much studied
and successful standard model of particle physics. Despite the fact that quantum
consistency requires the superstring to have ten spacetime directions, from a
practical and experimental point of view, it is self-evident that the most interesting
case for its study comes from backgrounds where one has four uncompactified
and six compactified directions of the ten-dimensional spacetime. As was the case
in the discussion carried out in Chapter 2.

At the same time, the lack of tractability of the theory in a general target space,
and the dualities connecting the different mathematical formulations of string
theory and quantum field theory [31], have made the understanding of solvable
compactifications of the superstring an active area of ongoing research since its
discovery more than half a century ago [32] [33].

The study of superstring compactifications can have applications both to the
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existing theories of physics and to areas of pure mathematics [34] [35] [36] [37]
[38]. The most notable cases of study are compactifications on the so-called
Calabi-Yau backgrounds, which are complex and compact Kähler manifolds with
a Hermitian metric and vanishing first Chern class [38]. As an additional bonus,
these conditions turn out to imply a supersymmetric spacetime for the superstring
to propagate.

Although spacetime supersymmetry has not been observed experimentally,
it is a powerful tool for simplifying difficult calculations and holds significant
phenomenological value [24] [39]. Moreover, another important motivation for
exploring d ̸= 4 superstring compactifications — to be discussed extensively
in Chapter 4 — comes from the intriguing AdS/CFT duality which relates the
superstring propagating in a d + 1-dimensional Anti de-Sitter background to a
conformal field theory living on the d-dimensional AdS boundary [40].

In this chapter, our focus will be on compactifications of the superstring on
Calabi-Yau spaces of complex dimension two. More specifically, we will be study-
ing the superstring on R6 ×M4, where M4 can be either K3 or T4, by using the
spacetime supersymmetric six-dimensional hybrid formalism [18]. As in compact-
ifications to four-dimensional spacetime, the six-dimensional hybrid formalism
consists in a field redefinition of the gauge-fixed Ramond-Neveu-Schwarz (RNS)
superstring into a set of Green-Schwarz-like (GS) variables, allowing spacetime
supersymmetry to be made manifest.

The hybrid formalism stands in contrast to the more conventional GS [41]
and RNS formalisms of the superstring [20]. Even though the GS superstring
has manifest spacetime SUSY, quantization becomes difficult due to the lack
of manifest Lorentz covariance in the light-cone gauge, and computations of
scattering amplitudes from the GS superstring remain a challenging task. Despite
the fact that the RNS superstring is quantizable in a Lorentz-covariant manner,
spacetime supersymmetry is not manifest, and the theory has an infinite number
of SUSY charges related by picture-changing [20]. In addition, as opposed to the
GS-action, quantization is straightforward since the hybrid action is quadratic
in a flat background. Additionally, the hybrid description enjoys an N = 4
superconformal symmetry, which can be used to compute n-point multiloop
superstring amplitudes from a topological prescription [18].

Unlike the four-dimensional hybrid formalism discussed in Chapter 2, which
is described in terms of standard d = 4 N = 1 superspace variables [24], the
six-dimensional hybrid formalism does not include the standard d = 6 N = 1
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superspace variables {xa, θαj} as fundamental worldsheet fields [42] [43], where
a = {0 to 5}, α = {1 to 4} and j = {1, 2}. As we will presently elaborate, the
reason for this is that there are not enough fundamental degrees of freedom in
the gauge-fixed RNS description, which implies that the fermionic coordinates θαj

cannot be constructed as free worldsheet fields. Consequently, one can only make
half of the d = 6 N = 1 SUSYs manifest in the six-dimensional hybrid formalism.

Let us develop further the discussion above. For simplicity, we only consider
the open string or holomorphic sector. As we have alluded to, in order to exhibit
d = 6 N = 1 SUSY manifest for the superstring compactified in R6 ×M4,1 one
would like to have the superspace coordinates {xa, θαj} as fundamental worldsheet
variables. In d = 6 N = 1 superspace descriptions, these coordinates transform in
a geometric manner under the spacetime SUSY charge Qαj

δxa =
i
2

ϵjkεαjσa
αβθβk , (3.1a)

δθαj = εαj , (3.1b)

where εαj is the constant fermionic parameter of the transformation. Moreover, the
SUSY generators satisfy the usual six-dimensional algebra

{Qαj, Qβk} = −ϵjkPαβ , (3.2)

where the antisymmetric symbol takes the values ϵ12 = ϵ21 = 1 and Pαβ is the
momentum operator, antisymmetric in the spinor indices.2

With the aim of quantizing the superstring with manifest six-dimensional
spacetime SUSY, and having the usual superspace coordinates as fundamental
free worldsheet fields, a reasonable starting point is to first try to construct d = 6
N = 1 SUSY generators from the gauge-fixed RNS worldsheet variables. Out of
the sixteen SUSY generators of the RNS formalism, we must choose eight of them
to be matched with Qαj given in eqs. (3.2).

Since the SUSY generators in RNS carry picture-charge [20], for the purpose of
having a closed SUSY algebra one has to choose four generators in the −1

2 -picture

q−
1
2

α and four in the +1
2 -picture q

1
2
α , i.e., we can write

Qhyb
α1 = q−

1
2

α , (3.3a)

1Strictly speaking, we take M4 = T4, since K3 only preserves half of the d = 6 N = 1 SUSYs.
2Our conventions for the six-dimensional Pauli matrices are spelled out in Appendix B.
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Qhyb
α2 = q

1
2
α , (3.3b)

such that they close to the momentum operator in the zero-picture

{Qhyb
αj , Qhyb

βk } = −iϵjk

∮
∂xαβ , (3.4)

as desired.
Furthermore, the six superspace bosons xa in (3.1) can be chosen out of the ten

xs from the RNS variables. Consequently, one is left to find eight fermionic free
worldsheet fields θαj such that (3.1) is satisfied, i.e., θαj transform by a constant
translation under the SUSY charges, namely, Qhyb

αj θβk = δ
β
α δk

j . However, despite
the fact that it is possible to identify θα1 and θα2 meeting this criteria, one finds
that

θα2 ∼ θα1e−iHRNS
C −2ϕξc , (3.5)

as a result, one cannot choose the eight θαj to be free fields. In the equation above,
i∂HRNS

C is the U(1)-current for the twisted N = 2 superconformal algebra (SCA)
describing the compactified directions, ξ is the fermionic ghost coming from the
bosonization of the {β, γ}-ghosts, and c is the c-ghost of the RNS description [20].

From the aforementioned discussion, we conclude that only four fermionic
superspace coordinates, say θα1, can be defined from the free gauge-fixed RNS
worldsheet variables. This implies that only half of the eight spacetime super-
symmetries of d = 6 N = 1 superspace will be manifest in the six-dimensional
hybrid formalism. With that in mind, and for simplicity of the notation, we will
write θα1 = θα for the hybrid superspace fermionic fields. In particular, since
Qhyb

α1 θβ = δ
β
α , choosing

Qhyb
α1 =

∮
pα , (3.6)

where pα is the conjugate momentum of θα, accounts for the remaining fermionic
degrees of freedom in the gauge-fixed RNS description.

On top of the eight fermionic worldsheet fields {pα, θα}, the field redefinition
from RNS to the six-dimensional hybrid formalism yields two additional chiral
bosons, ρ and σ, to the compactification-independent worldsheet variables. In
the RNS formalism, the four dimensional compactification part is described by
four bosons {xI , xI} and four fermions {ψI

RNS, ψ
RNS
I }, which satisfy a c = 6 N = 2
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SCA and where I = 1, 2. Under the field redefinition, the fermions {ψI
RNS, ψ

RNS
I }

get mapped to the twisted fermions {ψI , ψI} with conformal weight zero and one,
respectively. As a consequence, the c = 6 N = 2 SCA becomes twisted, and the
bosonic fields {xI , xI} stay untouched.

Schematically, the field redefinition takes the gauge-fixed free RNS variables

{xa, ψa, b, c, η, ξ, ϕ} ⊕ {xI , xI , ψI
RNS, ψ

RNS
I } , (3.7)

and maps to the hybrid formalism free worldsheet fields

{xa, pα, θα, σ, ρ}︸ ︷︷ ︸
R1,5

⊕ {xI , xI , ψI , ψI}︸ ︷︷ ︸
M4

, (3.8)

where the ghosts {ϕ, ξ, η} come from the bosonization of the {β, γ}-ghosts, namely,
β = e−ϕ∂ξ and γ = ηeϕ. In addition, the chiral boson σ in (3.8) comes from the
bosonization b = e−iσ and c = eiσ.

When counting the degrees of freedom, note that we have six xs and two
chiral bosons in RNS, same number as the bosonic fields in the hybrid formal-
ism {xa, σ, ρ}, and the eight RNS fermions {ψa, b, c, η, ξ} match exactly with the
eight fermionic variables {pα, θα} since α = {1 to 4}. For the compactification-
dependent part, note also that we have four fermions and four bosons in both
descriptions. It is important to be aware that the field redefinition is engineered in
a way that the free set of RNS fields (3.7) is mapped to the free worldsheet fields
(3.8).

To be more specific, the field redefinition takes the following form for the
six-dimensional part

pα = e−
ϕ
2 e−

i
2 HRNS

C Sα , θα = Sαe
i
2 HRNS

C e
ϕ
2 , ρ = −2ϕ + iχ − iHRNS

C , (3.9)

and for the compactification-dependent fermions it reads

ψI = e−iχ+ϕψI
RNS , ψI = ψ

RNS
I e−ϕ+iχ , (3.10)

where i∂HRNS
C = ψI

RNSψ
RNS
I , {Sα, Sα} are the spin-fields for the six-dimensional

spacetime and χ is a chiral boson coming from the bosonization of {η, ξ} as
η = e−iχ and ξ = eiχ. Note further that this intricate field redefinition implies that
the SUSY charge (3.3b) comes in a “non-standard” form, i.e., it depends on the
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chiral bosons ρ and σ, namely,

Qhyb
α2 =

∮ (
e−ρ−iσ pα + i∂xαβθβ

)
. (3.11)

Therefore, since the six-dimensional hybrid formalism has four of the θ coor-
dinates of superspace as fundamental worldsheet variables [43], it is clear that
only half of the eight d = 6 N = 1 SUSYs can be made manifest, i.e., the ones
generated by the charge (3.6). To overcome this issue and make d = 6 N = 1
manifest, ref. [44] introduced four more θ coordinates, along with their conjugate
momenta, as fundamental worldsheet fields together with four fermionic first-
class constraints Dα. In such a way that the gauge symmetry generated by these
constraints can be used to gauge away the new variables. Therefore, when Dα = 0,
one recovers the hybrid description.

Under these circumstances, the constraint Dα = 0 has to be imposed “by hand,”
which means that identifying the usual d = 6 N = 1 superfields in the vertex
operator is not feasible in practice. Consequently, it is unclear where each of the
component fields sits in the vertex before using Dα = 0 and making contact with
the usual six-dimensional hybrid description. In addition, this also implies a major
obstacle for defining scattering amplitudes with vertex operators depending on
eight θs.

In Section 3.3 of this chapter, we will show that, after relaxing the harmonic
constraint Dα, ghost number one supersymmetric unintegrated vertex operators U
can be written in terms of d = 6 N = 1 superfields. In addition, BRST invariance of
U will be shown to imply the d = 6 super-Yang-Mills (SYM) equations of motion
in superspace [43] [42]. Besides the fermionic fields θ, unconstrained bosonic
ghost-fields λα, and its conjugate momenta, will be added to the worldsheet action
in such a way that the total central charge of the stress-tensor vanishes.

The BRST current of the theory will take the form G+
hyb − λαDα, where G+

hyb
is the positively charged N = 2 supercurrent of the hybrid formalism in super-
symmetric notation, and the term −λαDα is responsible for the relaxation of the
constraint Dα = 0. The ghost-number current will be defined in terms of the U(1)
current of the hybrid N = 2 algebra. Furthermore, as in the non-minimal pure
spinor formalism [45], non-minimal/topological variables will be introduced to
the BRST current in order to define supersymmetric scattering amplitude com-
putations with a suitable regulator R. We will end up by using the amplitude
prescription to compute a three-point amplitude of d = 6 SYM states.
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3.2 Hybrid formalism in a flat six-dimensional back-

ground

In this section, we review the worldsheet variables and the physical state
conditions of the hybrid formalism for the superstring in a flat six-dimensional
background. Novel results include identity (3.17) and the computation of eq. (3.38)
taking care of the normal-ordering contributions. This description will serve as
the starting point for Section 3.3.

3.2.1 Worldsheet action and superconformal generators

After performing a field redefinition of the gauge-fixed RNS variables [18]
[46], the worldsheet fields of the six-dimensional part consist of six conformal
weight zero bosons xa, a = {0 to 5}, and a canonically conjugate left-moving pair
of fermions {pα, θα} of conformal weight one and zero, respectively, together with
its right-moving part { p̂α̂, θ̂α̂}, where α, α̂ = {1 to 4}.

In a flat six-dimensional background the worldsheet action in conformal gauge
takes the form3

S =
∫

d2z
(

1
2

∂xa∂xa + pα∂θα + p̂α̂∂θ̂α̂

)
+ Sρ,σ + SC , (3.12)

where ∂
∂z = ∂, ∂

∂z = ∂, Sρ,σ is the part of the action characterizing the chiral bosons
ρ and σ, as well as their anti-chiral counterparts, to be defined by their OPEs and
stress-tensor below, and SC corresponds to the four-dimensional compactification
variables. These variables can be taken to be any c = 6 N = 2 superconformal
field theory describing the compactification manifold, which can be either K3 or
T4 [46].

For the Type-IIB (Type-IIA) superstring, an up α index and an up (down) α̂

index transform as a Weyl spinor of SU(4), a down α index and a down (up) α̂

index transform as an anti-Weyl spinor of SU(4). In this case, note that Weyl and
anti-Weyl spinors are not related by complex conjugation. Also, we will only
discuss the open string part of the worldsheet theory in what follows.

To define physical states, one needs to supplement the action (3.12) with the

3The OPEs between our fundamental worldsheet fields {pα, θα, ρ, σ} are given by eqs. (3.31),
with the replacement of αj → α.
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twisted c = 6 N = 2 constraints [18]

Thyb = −1
2

∂xa∂xa − pα∂θα − 1
2

∂ρ∂ρ − 1
2

∂σ∂σ +
3
2

∂2(ρ + iσ) + TC , (3.13a)

G+
hyb = −(p)4e−2ρ−iσ +

i
2

pα pβ∂xαβe−ρ − 1
2

∂xa∂xaeiσ − pα∂θαeiσ

− 1
2

∂(ρ + iσ)∂(ρ + iσ)eiσ +
1
2

∂2(ρ + iσ)eiσ + G+
C , (3.13b)

G−
hyb = e−iσ + G−

C , (3.13c)

Jhyb = ∂(ρ + iσ) + JC , (3.13d)

where (p)4 = 1
24 ϵαβγδ pα pβ pγ pδ, xαβ = σa

αβxa and σa
αβ are the six-dimensional Pauli

matrices, which are 4 × 4 antisymmetric in the spinor indices. Our conventions
for the six-dimensional Pauli matrices are detailed in Appendix B.

Note that {TC, G±
C , JC} represent a twisted c = 6 N = 2 superconformal

field theory describing the compactification manifold, so that {Thyb − TC, G±
hyb −

G±
C , Jhyb − JC} describe a c = 0 N = 2 superconformal algebra (SCA). The gener-

ators {TC, G±
C , JC} have no poles with the six-dimensional worldsheet variables

and no poles with the chiral bosons {ρ, σ}. For the closed string, we also have the
right-moving piece of the above algebra.

The operators emρ+niσ are conformal tensors and have conformal weight 1
2(−m2

+3m + n2 − 3n). The definition of normal-ordering used in eqs. (3.13), and in the
rest of this work, is presented in Appendix D. In particular, notice that we can
write the first two terms in the second line of (3.13b) in a more compact form as

−1
2

∂(ρ + iσ)∂(ρ + iσ)eiσ +
1
2

∂2(ρ + iσ)eiσ =
(
∂e−ρ−iσ, eρ+2iσ) , (3.14)

using our normal-ordering prescription.
Correspondingly, any twisted c = 6 N = 2 SCA (3.13) can be extended to a

twisted small c = 6 N = 4 SCA [18] by adding two bosonic currents and two
supercurrents, as detailed in Appendix H. The additional N = 4 superconformal
generators in the six-dimensional hybrid formalism are

G̃+
hyb = eρ J++

C − eρ+iσG̃+
C , (3.15a)

G̃−
hyb =

(
− (p)4e−3ρ−2iσ +

i
2

pα pβ∂xαβe−2ρ−iσ − 1
2

∂xa∂xae−ρ − pα∂θαe−ρ

−
(
∂e−ρ−iσ, eiσ))J−−

C + e−ρ−iσG̃−
C , (3.15b)
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J++
hyb = −eρ+iσ J++

C , (3.15c)

J−−
hyb = e−ρ−iσ J−−

C , (3.15d)

where {G̃±
C , J±±

C }, that together with {TC, G±
C , JC}, form a twisted small c = 6

N = 4 SCA which has no poles with the six-dimensional worldsheet variables
and also no poles with the chiral bosons {ρ, σ}.

The spacetime supersymmetry charges in the six-dimensional hybrid formal-
ism are given by [46]

Qhyb
α1 =

∮
pα , Qhyb

α2 =
∮ (

e−ρ−iσ pα + i∂xαβθβ
)

, (3.16)

and satisfy the spacetime SUSY algebra {Qhyb
α1 , Qhyb

α2 } = −i
∮

∂xαβ. Note that the
charge Qhyb

α2 has the presence of the {ρ, σ}-ghosts and, for that reason, it is called
the “non-standard” supersymmetry generator [46].

The superconformal generators (3.13) are manifestly invariant under the SUSY
charge Qhyb

α1 . Invariance under Qhyb
α2 is difficult to check for the supercurrent

G+
hyb. However, the latter can be made manifest by noting that one can write the

supercurrent as

G+
hyb = − 1

24
ϵαβγδQhyb

α2 Qhyb
β2 Qhyb

γ2 Qhyb
δ2 e2ρ+3iσ + G+

C , (3.17)

which is a property that also holds in an AdS3 × S3 background including the
normal-ordering contributions, see [6] and Section 4.2.

Note that we are denoting operators defined throughout this section with the
subscript/superscript “hyb,” so as to not cause confusion with the generators to
be introduced in Section 3.3.

3.2.2 Physical states

Following refs. [46] [6], physical states Vhyb of the theory are defined to satisfy
the equation of motion4

(G+
hyb)0(G̃+

hyb)0Vhyb = 0 , (3.18)

4For a holomorphic operator O with conformal dimension h, (O)r is defined by the usual mode
expansion in the plane, namely, O(z) = ∑r(O)rz−r−h.
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so that the vertex operator Vhyb is defined up to the gauge transformation

δVhyb = (G+
hyb)0Λ + (G̃hyb)0Ω , (3.19)

for some Λ and some Ω. Moreover, it is consistent to impose the additional
gauge-fixing conditions

(G−
hyb)0Vhyb = (G̃−

hyb)0Vhyb = (Thyb)0Vhyb = (Jhyb)0Vhyb = 0 . (3.20)

As an example, let us consider the massless compactification-independent
states in six dimensions for the open superstring. The most general vertex operator
with conformal weight zero and no poles with the U(1)-current Jhyb has the form

Vhyb =
∞

∑
n=0

Vnen(ρ+iσ) . (3.21)

The conditions of no double poles or higher with G−
hyb and with G̃−

hyb imply
that Vn = 0 for n ≥ 2 and n ≤ −2, respectively. From the remaining equations
coming from (G̃−

hyb)0Vhyb = 0, together with the gauge transformations (3.19), one
can gauge-fix Vhyb to the form

Vhyb = V1eρ+iσ + V0 , (3.22)

where

V1 = θαχα2 +
i
2
(θσaθ)aa − (θ3)αψα2 , (3.23a)

V0 = θαχα1 , (3.23b)

with ψαj = ϵjki∂αβχβk the gluino and aa the gluon. The two-dimensional Levi-
Civita symbol takes the values ϵ12 = ϵ21 = 1. Even though χαj is not gauge-
invariant, we have that δψαj = 0 under a gauge transformation. In our conventions,
we are using

(θ3)α =
1
6

ϵαβγδθβθγθδ , (θ4) =
1

24
ϵαβγδθαθβθγθδ , (3.24)

where ϵαβγδ is the Levi-Civita symbol with ϵ1234 = 1.
The superfield V1 satisfies the equation of motion ∂αβ∇α∇βV1 = 0 which,
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together with the gauge transformations, imply that the component fields obey

∂a∂aab = ∂aaa = 0 , δaa = ∂aλ , (3.25a)

∂αβψβj = 0 , δψαj = 0 , (3.25b)

for some λ. The gauge transformation of aa comes from choosing Λ = (θ)4λ in
(3.19).

Eqs. (3.25) are the field content of d = 6 super-Yang-Mills (SYM). It is also
important to note that all degrees of freedom are contained in the superfield V1

of eq. (3.23a). In Section 3.3, we will see how one can describe superstring vertex
operators for the SYM states in terms of the usual superfields of d = 6 N = 1
superspace [43].

Furthermore, by considering (3.21) in the gauge where (G+
hyb)0(G̃+

hyb)0Vhyb = 0,
we find that the integrated vertex operator for the open superstring compactifi-
cation-independent massless states is

Whyb =
∫
(G+

hyb)0(G−
hyb)−1Vhyb

=
∫ (

− e−ρ−iσ pα(∇3)α − i
2

∂xαβ∇α∇β + ipα∂αβ∇β

)
V1 + pα(∇3)αV2 .

(3.26)

3.2.3 Six-dimensional hybrid formalism with harmonic-like con-

straints

Even though the six-dimensional hybrid formalism presented above preserves
manifest SO(1, 5) Lorentz invariance, only half of the eight supersymmetries
of d = 6 N = 1 superspace are manifest, i.e., act geometrically in the target
superspace. This can be observed by the fact that only four left-moving θs are
present in the worldsheet action (3.12) as fundamental fields.

However, one can proceed as in ref. [44] and add four more left-moving θs
and four right-moving θ̂s, as well as their conjugate momenta as fundamental
worldsheet variables to the action. This doubling of fermionic degrees of freedom
can be accomplished by appending the index j = {1, 2} to {pα, θα}, so that we end
up with

S =
∫

d2z
(

1
2

∂xa∂xa + pαj∂θαj + p̂α̂j∂θ̂α̂j
)
+ Sρ,σ + SC , (3.27)
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where pαj = ϵjk pk
α, ϵ12 = −ϵ12 = 1, ϵjkϵkl = δl

j and repeated indices are summed
over.

Consequently, eq. (3.27) is invariant under the d = 6 N = 1 spacetime super-
symmetry transformations generated by the charge

Qαj =
∮ (

pαj −
i
2

ϵjk∂xαβθβk − 1
24

ϵαβγδϵjkϵlmθβkθγl∂θδm
)

, (3.28)

and which satisfy the d = 6 N = 1 SUSY algebra

{Qαj, Qβk} = −iϵjk

∮
∂xαβ . (3.29)

For the closed string, we also have a left- and a right-moving supersymmetry
generator Qαj and Q̂α̂j, respectively. These charges then generate the d = 6 N = 2
supersymmetry and, hence, for Type II strings the amount of SUSY is doubled.

Beyond that, it is convenient to construct extensions of the worldsheet fields
{pαj, ∂xa} that are invariant under the transformations generated by (3.28). One
can easily check that this is achieved by the following on-shell spacetime super-
symmetric — or just supersymmetric — worldsheet variables

dαj = pαj +
i
2

ϵjk∂xαβθβk +
1
8

ϵαβγδϵjkϵlmθβkθγl∂θδm , (3.30a)

Πa = ∂xa − i
2

ϵjkσa
αβθαj∂θβk . (3.30b)

The six-dimensional worldsheet fields in (3.27) have the following singularities
in their OPEs

pαj(y)θβk(z) ∼ δk
j δ

β
α (y − z)−1 , (3.31a)

∂xa(y)∂xb(z) ∼ −ηab(y − z)−2 , (3.31b)

ρ(y)ρ(z) ∼ − log(y − z) , (3.31c)

σ(y)σ(z) ∼ − log(y − z) , (3.31d)

where ηab = diag(−,+,+,+,+,+) and, in turn, eqs. (3.31) can be used to show
that the supersymmetric variables (3.30) satisfy

dαj(y)dβk(z) ∼ (y − z)−1iϵjkΠαβ(z) , (3.32a)

dαj(y)Πa(z) ∼ −(y − z)−1iϵjkσa
αβ∂θβk(z) , (3.32b)
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Πa(y)Πb(z) ∼ −(y − z)−2ηab , (3.32c)

dαj(y)∂θβk(z) ∼ (y − z)−2δk
j δ

β
α . (3.32d)

Also, notice the following ordering effect using the OPEs of the fundamental fields

∮ dy
y − z

Παβ(y)dγj(z) =
3i
4

ϵjkϵαβγδ∂2θδk(z) , (3.33a)∮ dy
y − z

dγj(y)Παβ(z) = − i
4

ϵjkϵαβγδ∂2θδk(z) . (3.33b)

As we have argued, the worldsheet action (3.27) is invariant under the d = 6
N = 1 spacetime supersymmetry transformations, however, in order to preserve
the description of the original six-dimensional hybrid superstring, one must in-
clude a set of constraints which reduce the action (3.27) to (3.12). This can be
accomplished by the fermionic first-class constraints [44]

Dα = dα2 − e−ρ−iσdα1 , (3.34)

and since

[Dα, θβ2] = δ
β
α , (3.35)

one can use (4.180) to gauge-fix (3.27) to (3.12). Therefore, working with the action
(3.27) and the harmonic constraint Dα, it is possible to manifestly preserve all of
the d = 6 N = 1 supersymmetries.5

In this case, the N = 2 constraints (3.13) are modified and can be written in a
manifestly spacetime supersymmetric form as [44]

Thyb = −1
2

ΠaΠa − dα1∂θα1 − e−ρ−iσdα1∂θα2 − 1
2

∂ρ∂ρ − 1
2

∂σ∂σ

+
3
2

∂2(ρ + iσ) + TC , (3.36a)

G+
hyb = −(d1)

4e−2ρ−iσ +
i
2

dα1dβ1Παβe−ρ + dα1∂θα2∂(ρ + iσ)e−ρ + dα1∂2θα2e−ρ

− 1
2

ΠaΠaeiσ − dα1∂θα1eiσ − 1
2

∂(ρ + iσ)∂(ρ + iσ)eiσ

+
1
2

∂2(ρ + iσ)eiσ + G+
C , (3.36b)

5We note in passing that there exists a similarity transformation with the property eSdα2e−S =

Dα where S = θα2dα1e−ρ−iσ − i
2 θα2θβ2Παβe−ρ−iσ + (θ2)3

α∂θα1e−ρ−iσ + 1
2 (θ

2)4∂(ρ + iσ)e−2ρ−2iσ.
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G−
hyb = e−iσ + G−

C , (3.36c)

Jhyb = ∂(ρ + iσ) + JC , (3.36d)

which, as in the previous section, still obey a twisted c = 6 N = 2 SCA, and
we defined (d1)

4 = 1
24 ϵαβγδdα1dβ1dγ1dδ1. Let us mention that when one gauge fix

θα2 = 0, the constraints (3.36) reduce to the ones compatible with the action (3.12),
i.e., eqs. (3.13). Note that the stress-tensor Thyb is the expected stress tensor when
Dα = 0, because

−dα1∂θα1 − e−ρ−iσdα1∂θα2 = −dαj∂θαj + Dα∂θα2 . (3.37)

It is also important to be aware that the N = 2 algebra is preserved inde-
pendently of how one chooses to gauge-fix the local symmetry generated by Dα.
This is because the form of the N = 2 generators (3.36) was chosen so that they
have no poles with the harmonic-like constraint (4.180). The non-trivial part in
showing this is for the generator G+

hyb, nonetheless, it becomes manifest by noting
the property that one can write G+

hyb as

G+
hyb = − 1

24
ϵαβγδ[Dα, {Dβ, [Dγ, {Dδ, e2ρ+3iσ}]}] + G+

C , (3.38)

where the graded bracket [Dα,O}(z) =
∮

dy Dα(y)O(z) denotes the simple pole
in the OPE between Dα and O.

The details of the calculation establishing eq. (3.38) are given in Appendix
F. To the knowledge of the author, this is the first time that eq. (3.38) is proven
considering the normal-ordering contributions. Note also the similarity between
identities (3.38) and (3.17).

For the massless compactification-independent sector of the open superstring,
the vertex operator now reads

Vhyb =
∞

∑
n=−∞

Vn(x, θ)en(ρ+iσ) , (3.39)

which takes the same form as in eq. (3.21), but now Vn(x, θ) depends on the zero
modes of {xa, θαj}. Therefore, it contains the eight fermionic θ coordinates of
d = 6 N = 1 superspace. Of course, contrasting with the hybrid formalism of
the previous section, in the present case the physical states Vhyb also have to be
annihilated by Dα.
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It is interesting to note what is the effect of imposing the constraint Dα for Vhyb

of eq. (3.39). To do that, let us first define the new superspace variables

θα− =
1
2
(
θα2 − eρ+iσθα1) , θα+ =

1
2
(
θα1 + e−ρ−iσθα2) . (3.40)

The condition that Vhyb has no poles with Dα implies that

(
∇α2 − e−ρ−iσ∇α1

)
Vhyb = 0 , (3.41)

where ∇αj =
∂

∂θαj − i
2 ϵjkθβk∂αβ is the zero mode of dαj acting on Vhyb. By defining

x′a = xa and then doing the shift

x′a + iθα−θβ+σa
αβ 7→ xa , (3.42)

we learn that Vhyb is independent of θα− and, for that reason, it is a function of
only the zero modes of {xa, θα+}. As a consequence, after identifying θα+ = θα

the component fields of Vhyb in (3.39) can be related to the component fields of
Vhyb in (3.21), therefore, we recover the usual six-dimensional description of the
vertex operator in Section 3.2.1. Nonetheless, the identification of the component
fields is only possible after imposing Dα = 0.

From eqs. (3.36), one can construct the remaining twisted small c = 6 N =

4 generators, and in the gauge where (G+
hyb)0(G̃+

hyb)0Vhyb = 0 the integrated
vertex operator for the massless compactification-independent states of the open
superstring now reads [44]

Whyb =
∫
(G+

hyb)0(G−
hyb)−1Vhyb

=
∫ [(

− 1
6

e−ρ−iσϵαβγδdα1∇β1∇γ1∇δ1 −
i
2

Παβ∇α1∇β1

+ idα1∂αβ∇β1 − ∂θα2∇α1

)
V1 +

1
6

ϵαβγδdα1∇β1∇γ1∇δ1V2

]
=
∫ [

1
6

ϵαβγδ
(

dα2∇β1∇γ1∇δ2 − dα1∇β2∇γ2∇δ1

)
+

i
4

Παβ[∇α1,∇β2]−
1
2

∂θα1∇α1 +
1
2

∂θα2∇α2

]
V0 , (3.43)

where the supersymmetric derivative ∇αj satisfy the algebra {∇αj,∇βk} = −iϵjk∂αβ.
To arrive at the last equality in (3.43), we subtracted a total derivative and used
the relations implied by the constraint (4.180), namely, ∇α1V1 = −∇α2V0 and
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∇α1V2 = ∇α2V1.

3.3 Extended hybrid formalism

In spite of the fact that we have described the worldsheet action, N = 2
constraints and compactification-independent vertex operators while preserving
manifest d = 6 N = 1 supersymmetry in Section 3.2.3, it remains unclear what are
the rules to compute correlation functions using the superconformal generators
and vertex operators depending on all eight θ coordinates of d = 6 N = 1
superspace.

In addition, it is not evident if there is a relation between the vertex operator
(3.39) and the superfields appearing in superspace descriptions of d = 6 SYM [43]
[42]. As a consequence, one cannot identify what each component of the superfield
(3.39) corresponds to before using the constraint Dα = 0 to make contact with
(3.21), which depends on only half of the θs. One of the purposes of this section is
to clarify and understand how one can overcome these drawbacks by relaxing the
constraint Dα = 0 in the definition of physical states.

3.3.1 Worldsheet variables

To the worldsheet theory (3.27), we introduce a bosonic spinor λα of conformal
weight zero and its conjugate momenta wα of conformal weight one. As we will
momentarily see, the ghost λα will be responsible for relaxing the constraint Dα.
We also include the non-minimal variables {λα, rα} [45] of conformal weight zero,
as well as their conjugate momenta {wα, sα} of conformal weight one. The fields
{sα, rα} are worldsheet fermions and {wα, λα} bosons.

The worldsheet action now takes the form

S =
∫

d2z
(

1
2

∂xa∂xa + pαj∂θαj + wα∂λα + sα∂rα + wα∂λα

+ p̂α̂j∂θ̂α̂j + ŵα̂∂λ̂α̂ + ŝα̂∂r̂α̂ + ŵ
α̂
∂λ̂α̂

)
+ Sρ,σ + SC , (3.44)

where the “hatted” fields are right-moving and, for simplicity, will be ignored in
what follows. The singularities in the OPEs of the new variables are

wα(y)λβ(z) ∼ −δ
β
α (y − z)−1 , (3.45a)

wα(y)λβ(z) ∼ −δα
β(y − z)−1 , (3.45b)



Chapter 3. The superstring in a flat six-dimensional background 67

sα(y)rβ(z) ∼ δα
β(y − z)−1 , (3.45c)

and, unlike in [45], {λα, λα, rα} are not constrained. Note further that, as opposed
to the worldsheet action (3.27), the stress-tensor of (3.44) has vanishing central
charge.

3.3.2 Extended twisted c = 6 N = 2 generators

With these additional variables, it is still possible to construct superconformal
generators satisfying a twisted c = 6 N = 2 SCA as in Section 3.2.

In this case, we have

T = Thyb − Dα∂θα2 − wα∂λα − wα∂λα − sα∂rα , (3.46a)

G+ = G+
hyb − λαDα − wαrα , (3.46b)

G− = G−
hyb + wα∂θα2 + sα∂λα , (3.46c)

J = Jhyb − wαλα − sαrα , (3.46d)

where {Thyb, G+
hyb, G−

hyb, Jhyb} are the c = 6 N = 2 generators of eqs. (3.36). Note
that T is now the usual stress-tensor, because the terms added in (3.46a) to Thyb

precisely cancel the atypical contribution in (3.37). Explicitly, we now have

T = −1
2

ΠaΠa − dαj∂θαj − wα∂λα − wα∂λα − sα∂rα

− 1
2

∂ρ∂ρ − 1
2

∂σ∂σ +
3
2

∂2(ρ + iσ) + TC . (3.47)

Of course, the superconformal generator G+ continues to be nilpotent. This is
easy to see from that fact that G+

hyb has no poles with itself, no poles with Dα and
the constraint Dα is first-class.

It is important to comment on the significance of each of the contributions
appearing in the fermionic generator G+. The zero mode of G+

hyb is related to
the BRST operator QRNS of the RNS formalism in the gauge where θα2 = 0, this
follows from the fact that the hybrid variables are related to the gauge-fixed RNS
variables through a field redefinition [46].

The term −λαDα in G+ is necessary for the reason that we are relaxing the
constraint Dα. As a consequence, the condition Dα = 0 from (4.180) does not need
to be imposed “by hand” in our definition of physical states from now on (see
Section 3.3.3). The last contribution, −wαrα, is the non-minimal/topological term
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[45], and it implies that the cohomology of (G+)0 is independent of {wα, λα, sα, rα}
through the usual quartet argument. This term is required in order to get a c = 6
N = 2 SCA and it will play a key role in defining a spacetime supersymmetric
prescription for scattering amplitude computations in Section 3.3.4.

We should emphasize that even though we have an N = 2 SCA with critical
central charge (c = 6) in eqs. (3.46), the physical states of the superstring cannot
be defined as N = 2 primaries like in the hybrid formalism [17]. The reason for
this is because, by the quartet machanism, the cohomology of (G+)0 is guaranteed
to be independent of the non-minimal/topological variables [45]. However, this
mechanism has nothing to say about the primaries of the N = 2 algebra, i.e., if
the they are preserved or not after the worldsheet theory is modified. Therefore,
when studying vertex operators of the superstring, one must look for states in the
cohomology of (G+)0.

As an additional observation, let us sketch a direct way to arrive at the supercur-
rent (3.46b) from the six-dimensional hybrid formalism: by adding non-minimal
variables and performing a suitable similarity transformation. Start with G+

hyb
in eq. (3.17) and add the non-minimal variables {pα2, θα2, wα, λα, wα, λα, sα, rα}, so
that the supercurrent becomes

G+′
= G+

hyb − λα pα2 − wαrα . (3.48)

Then, after performing the similarity transformation eR2eR1 G+′e−R1e−R2 → G+′

where R1 = −Qhyb
α2 θα2 and R2 = − i

2 ∂xαβθα1θα2, one learns that G+′
= G+ in

(3.46b) up to terms proportional to θα2.6 This procedure is similar to the con-
struction adopted in refs. [47] [48] in relating the RNS formalism with the pure
spinor formalism. Moreover, we also learn that eR2eR1 pα2e−R1e−R2 = eR2(pα2 −
Qhyb

α2 )e−R2 = Dα up to terms proportional to the non-minimal variable θα2. The
charge Qhyb

α2 was defined in eq. (3.16), therefore, we conclude that the constraint
Dα is related to the “non-standard” SUSYs of the hybrid formalism.

Starting from the d = 10 pure spinor formalism, there have been other ap-
proaches to describe the superstring in a six-dimensional background with man-
ifest d = 6 N = 1 supersymmetry [49] [50] [51] [52]. In these works, the non-
minimal variables are absent but the ghosts {wα, λα} usually appear from the
decomposition of the d = 10 pure spinor λα, α = {1 to 16}, in terms of SO(1, 5)

6Since the BRST operator G+ is supersymmetric, one can consider an additional similarity
transformation to restore the missing θα2 terms, analogously as in ref. [47].
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spinors. Particularly, in ref. [51] a BRST operator of the form QPS =
∮

λαDα was
proposed as the dimensional reduction of the BRST operator in the d = 10 pure
spinor formalism. In ref. [52], it was also considered adding the ghosts {wα, λα}
to the superconformal generators (3.36). The advantage of the approach detailed
below is that we will be able to explicit write a BRST invariant superstring ver-
tex operator in terms of d = 6 N = 1 superfields and the manifest spacetime
supersymmetric worldsheet variables.

3.3.3 Massless compactification-independent vertex operators

We consider the compactification-independent physical states with conformal
weight zero at zero momentum for the open superstring or holomorphic sector,
so that we are seeking for a vertex operator U which describes the d = 6 SYM
multiplet. We will start by specifying what are the physical state conditions the
vertex operator has to fulfill. Then write the vertex in terms of d = 6 N = 1
superfields depending on the eight θ coordinates. After that, it will be shown that
BRST invariance of U reproduces the on-shell d = 6 SYM equations in superspace.

Since we have a nilpotent BRST charge (G+)0, we can require physical unin-
tegrated vertex operators U to be ghost-number-one states in the cohomology of
(G+)0. Without loss of generality, the ghost-number current is defined to be the
U(1) generator of the N = 2 algebra, eq. (3.46d). Moreover, the stress-tensor T has
vanishing conformal anomaly, it is then consistent to require U to be a conformal
weight zero primary field as well. When these conditions are satisfied, and given
the fact that {(G+)0, (G−)0} = (T)0, the superconformal generator (G−)0 has to
annihilate the state U, which means that U is in the covariant Lorenz gauge [53].
The latter condition is analogous to the b0 = 0 constraint in bosonic string theory.

For the compactification-independent massless sector of the open superstring,
the manifestly spacetime supersymmetric ghost-number-one unintegrated vertex
operator U in the cohomology of (G+)0 takes the form

U = −λα
(

Aα2 − Aα1e−ρ−iσ)+ (∂θα1Aα1 + Πa Aa + dα1Wα1)eiσ − dα1Wα2∂(iσ)e−ρ

− ∂θα2Aα1∂(ρ + iσ)e−ρ + idα1Παβ Aβ1e−ρ − i
2

dα1dβ1Aαβe−ρ − ∂2θα2Aα1e−ρ

+ ∂dα1
(
Wα2 − i∂αβ Aβ1

)
e−ρ +

i
2

∂Παβ∇α1Aβ1e−ρ + dα1
(
− 2Wα2

+ i∂αβ Aβ1
)
∂ρe−ρ − i

2
Παβ∇α1Aβ1∂ρe−ρ − i

4
∂αβ∇α1Aβ1∂2e−ρ + (d3

1)
α Aα1e−2ρ−iσ



Chapter 3. The superstring in a flat six-dimensional background 70

+ ϵαβγδ

(
− 1

4
dα1dβ1∇γ1Aδ1∂e−2ρ−iσ − 1

4
∂(dα1dβ1)∇γ1Aδ1e−2ρ−iσ

− 1
12

∂2dα1∇β1∇γ1Aδ1e−2ρ−iσ − 1
6

∂dα1∇β1∇γ1Aδ1∂e−2ρ−iσ

− 1
12

dα1∇β1∇γ1Aδ1∂2e−2ρ−iσ
)
+

1
4
(∇3

1)
α Aα1

1
6

∂3e−2ρ−iσ , (3.49)

where Aa is the superspace gauge field, Wαj is the superspace spinor field-strength
and Fab is the superspace field-strength.7 The first components of the superfields
{Aa, Wαj, Fab} are the gluon, the gluino and the gluon field-strength, respectively.
These superfields are defined in terms of the superspace gauge field Aαj. In
linearized form, we have

Aa = − i
4

ϵjkσ
αβ
a (∇αj Aβk +∇βk Aαj) , (3.50a)

Wαj =
i
3

ϵjkσaαβ(∂a Aβk −∇βk Aa) , (3.50b)

Fab = ∂a Ab − ∂b Aa . (3.50c)

It is easy to see that U is annihilated by (G−)0 and so we have ∂a Aa = 0, which
is the usual Lorenz gauge condition. The non-trivial part is showing that BRST
invariance of U implies the linearized d = 6 SYM equations of motion [43] [42]

(σabc)αβ(∇αj Aβk +∇βk Aαj) = 0 , (3.51a)

∇αjWβk +
i
2

δk
j (σab)

β
αFab = 0 , (3.51b)

where (σabc)αβ = i
3! (σ

[aσbσc])αβ is the symmetric anti-self-dual three-form and
(σab)

β
α = i

2(σ
[aσb])

β
α is the generator of Lorentz transformations.

The calculation leading to (3.51) is straightforward but tedious. It involves
taking care of various normal-ordering contributions. Let us briefly outline at
which steps some of the above equations can be obtained. For example, eq. (3.51a)
comes from the terms with λαλβ in (G+)0U, and eq. (3.51b) can be obtained by
the terms proportional to λαdβ1eiσ, λα∂dβ1e−ρ, λαdβ1∂(iσ)e−ρ and λα∂2dβ1e−2ρ−iσ.

Note further that U in (3.49) is defined up to a gauge transformation δU =

(G+)0Λ for some conformal weight zero and U(1)-charge zero gauge parameter Λ,
and U is also annihilated by (G̃+

hyb)0 of (3.15a), a condition that will become more

7See Appendix K for a review of d = 6 N = 1 super-Yang-Mills.



Chapter 3. The superstring in a flat six-dimensional background 71

clear when we write the amplitude prescription (3.60) in the following section.8

Taking Λ to be a function of the zero modes of {xa, θαj}, we have that

δU = −λα
(
∇α2Λ −∇α1Λe−ρ−iσ)+ (∂θα1∇α1Λ + Πa∂aΛ

)
eiσ + . . . , (3.52)

which precisely reproduces the gauge transformations (K.3) of the d = 6 N = 1
superspace description, i.e., δAαj = ∇αjΛ and δAa = ∂aΛ.

For scattering amplitude computations, vertex operators in integrated form
are necessary. As we have an N = 2 SCA (3.46), it is straightforward to define
integrated vertex operators. They are given by

W =
∫
(G−)−1U , (3.53)

which, for the compactification-independent massless sector of the open super-
string, takes the simple form

W =
∫ (

∂θαj Aαj + Πa Aa + dα1Wα1 + dα1e−ρ−iσWα2) . (3.54)

Note that only the first four terms in (3.49) contribute to the integrated vertex W.
Not surprisingly, the integrated vertex (3.54) has a similar structure as in the first
equality of eq. (3.43).

The gauge transformations of W are given by δW = (G+)0Ω− for some con-
formal weight one and U(1)-charge minus one gauge parameter Ω−. Taking
Ω− = −wαWα2, which is annihilated by (G̃+

hyb)0, we can write W as

W =
∫ (

∂θαj Aαj + Πa Aa + dαjWαj − i
2

NabFab

− i
2

wαdβ1dγ1∂βγWα2e−ρ + wαΠa∂aWα2eiσ
)

, (3.55)

where Nab = wα(σab)
α
βλα.

From an argument concerning the level of the Lorentz currents in the RNS and
pure spinor formalisms, the first line of (3.55) takes the form conjectured in ref. [54,
footnote 3] to be the correct integrated vertex operator for the massless sector of
the open superstring compactified to six dimensions.

8When translated to the RNS variables, the condition (G̃+
hyb)0U = 0 is equivalent as saying that

U lives in the small Hilbert space, i.e., it is annihilated by the η0-ghost [20]. See also Appendix E.
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3.3.4 Tree-level scattering amplitudes

In Section 3.2, we introduced an unintegrated vertex operator Vhyb with zero
U(1)-charge, eq. (3.21). When on-shell, this vertex operator was shown to describe
d = 6 SYM. Moreover, one can show that there exists a gauge choice where (3.21)
can be taken to be an N = 2 superconformal primary field with respect to the SCA
(3.13) [55].

In terms of Vhyb, the tree-level three-point amplitude prescription for the mass-
less states in the hybrid formalism of Section 3.2.1 is [17]〈

Vhyb(z1)
(
(G̃+

hyb)0Vhyb
)
(z2)Uhyb(z3)

〉
, (3.56)

where
〈
e3ρ+3iσ J++

C (θ)4〉 = 1 with (θ)4 = 1
24 ϵαβγδθαθβθγθδ and we defined Uhyb =

(G+
hyb)0Vhyb. It is interesting to note that, in some gauge choice, Uhyb in (3.56) looks

very similar to U in (3.49), at least in the ghost structure when we take λα = 0.
However, since vertex operators only depend on four θ coordinates, they do not
have a simple transformation rule under all spacetime SUSYs.

We can try to use the elements of the hybrid formalism outlined in the para-
graph above to formulate a prescription for calculating scattering amplitudes in
terms of the superconformal generators (3.46) and the vertex operators in (3.49)
and (3.54), which are constructed from the manifestly spacetime supersymmetric
variables. In this setting, recall that the eight supersymmetry generators are given
by (3.28), as opposed to the ghost-dependent SUSYs (3.16) in the six-dimensional
hybrid description.

In view of that, it is tempting to conjecture that U can be written as U = (G+)0V
for some V which is also an N = 2 primary field with respect to the SCA (3.46).
Unfortunately, we could not accomplish this much and find a V with both of
these properties. Nonetheless, it is possible to find a conformal weight zero and
U(1)-charge zero field V such that U = (G+)0V and, as we will see, this is enough
to define a consistent tree-level scattering amplitude prescription.

Consider

V(z) =
∮ dy

y − z
(
− (θ1)4e2ρ+iσ)(y)U(z) , (3.57)

and note that (G+)0V = U by using the fact that (G+)0 annihilates U and the
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property

(G+)0

(
− (θ1)4e2ρ+iσ

)
= 1 . (3.58)

Explicitly, the field V is given by

V = −λα(θ1)4Aα2e2ρ+iσ + (θ1)3
αWα1e2ρ+2iσ +

(
i
2

θα1θβ1Aαβ

− i
2
(θ1)4∂αβ∇α1Aβ1

)
eρ+iσ + θα1Aα1 +

1
2

θα1θβ1∇α1Aβ1

− 1
6

θα1θβ1θγ1∇α1∇β1Aγ1 +
1
4
(θ1)4(∇3

1)
α Aα1 , (3.59)

where (θ1)4 = 1
24 ϵαβγδθα1θβ1θγ1θδ1 and (θ1)3

α = 1
6 ϵαβγδθβ1θγ1θδ1. Note that V has

a different ghost structure than (3.22).
In close analogy with (3.56), the spacetime supersymmetric tree-level three-

point amplitude is defined as

A3 =
∫
[dλ][dλ]d4rd8θ R

〈
V(z1)

(
(G̃+

hyb)0V
)
(z2)U(z3)

〉
, (3.60)

where V is given by (3.59), G+
hyb is given by (3.15a) and U = (G+)0V is the ghost

number one vertex operator in eq. (3.49). We also define
〈
e3ρ+3iσ J++

C
〉
= 1, due to

the anomaly in the U(1) current.
Since the bosonic variables λα and λα are non-compact, a regularization factor

R = exp((G+)0χ) needs to be introduced. We will take χ = λαθα2 [45], so that
one finds

R = exp
(
− λαλα + rαθα2) . (3.61)

For simplicity, the integration over the xa zero modes is being ignored, since it is
done in the standard manner [23]. Given that the expression inside brackets is
BRST invariant and R = 1 + (G+)0(. . .), the amplitude (3.60) is independent of χ

as long as χ is annihilated by (G+
hyb)0.

Despite the asymmetric appearance, the amplitude (3.60) is symmetric in the
three insertions. This is easy to see by noting that (G̃+

hyb)0U = (G̃+
hyb)0χ = 0

and {(G̃+
hyb)0, (G+)0} = 0. As long as one chooses χ such that (G̃+

hyb)0χ = 0,

the amplitude (3.60) will be independent of the choice of χ. Since the (G̃+
hyb)0

cohomology is trivial one can even choose χ to be exact.
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From the c = 6 N = 2 SCA (3.46), it is straightforward to use the procedure
outlined in Appendix H and construct the remaining generators of the small c = 6
N = 4 SCA. In such a case, one could have thought that it would be possible to
define the amplitude (3.60) with the superconformal generator G̃+ of the N = 4
algebra associated with (3.46) instead of G̃+

hyb in (3.15a). However, it turns out that
an amplitude defined in this way would give a vanishing result. The reason for
this is that G̃+ involves an overall factor containing δ4(r),9 but we already have
the four zero modes of rα and θα2 coming from the regulator R. The issue arising
when trying to use G̃+ in our prescription might be related to the fact that physical
states of the superstring cannot be defined as N = 2 primaries with respect to the
algebra (3.46).

The amplitude (3.60) is gauge-invariant under δV = (G+)0Λ + (G+
hyb)0Ω.

Since U satisfies (G+
hyb)0U = 0 and U = (G+)0V, we have that V obeys the

equation (G+
hyb)0(G+)0V = 0, which is invariant under the gauge transformation

δV = (G+)0Λ + (G+
hyb)0Ω for any {Ω, Λ}.

The amplitude (3.60) is supersymmetric. Although the regulator is not mani-
festly spacetime supersymmetric, its spacetime supersymmetry transformation
under the generators (3.28) is BRST trivial, and hence vanishes inside the ampli-
tude expression (3.60). Moreover, the vertex operator U is written in terms of the
supersymmetric worldsheet variables, and we have shown that the amplitude is
symmetric in the three insertions.

In order to check the consistency of our proposal, let us compute the three-point
amplitude involving three massless states (3.59). To simplify the analysis, we will
consider the three gluon amplitude ABBB, so that we can effectively put the gluino
to zero in the d = 6 SYM superfields (see eqs. (K.21)). In this particular case, we
have that (θ1)3

αWα1 = 0 in (3.59). Furthermore, the non-zero contributions to (3.60)
can be determined by looking at which terms have the right amount of ghost
insertions to saturate the background charge of the {ρ, σ} ghosts, we are then left
with the following worldsheet correlator

ABBB =
∫
[dλ][dλ]d4rd8θ R

〈(
i
2

θα1θβ1A(1)
αβ eρ+iσ

)
(z1)×

×
(

i
2

θγ1θδ1A(2)
γδ e2ρ+iσ J++

C

)
(z2)

(
Πa A(3)

a + dσ1W(3)σ1
)

eiσ(z3)

〉
+ (2 ↔ 3) ,

(3.62)

9This is easier to see in the bosonized form of {wα, λα, sα, rα}.
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and, after using SL(2, R) invariance to choose z1 = ∞, z2 = 1 and z3 = 0, it easy
to see that

ABBB = −i
(
(a1 · a2)(k2 · a3) + (a1 · a3)(k1 · a2) + (a2 · a3)(k3 · a1)

)
+ (2 ↔ 3) ,

(3.63)

which gives the sought after result, as expected. Since U describes the d = 6 SYM
multiplet, and by invariance under d = 6 N = 1 supersymmetry transformations,
we can conclude that our prescription also reproduces the expected answer for the
three-point amplitude involving one gluon and two gluinos ABFF.

It is then elementary to generalize (3.60) to the case where we have n super-
Yang-Mills multiplets

An =
∫
[dλ][dλ]d4rd8θ R

〈
V(z1)

(
(G̃+

hyb)0V
)
(z2)U(z3)

n

∏
m=4

∫
dzm(G−)−1U(zm)

〉
,

(3.64)

where {z1, z2, z3} can be chosen arbitrarily by SL(2, R) invariance. As we have
only described vertex operators for the massless compactification-independent
states, just scattering of d = 6 SYM multiplets was considered, however, the
tree-level prescription should also apply to massive compactification-independent
states.



Chapter 4

The superstring in an AdS3 × S3 back-
ground

This chapter deals with the superstring in an AdS3 × S3 ×M4 background,
where M4 can be either K3 or T4. We first introduce the hybrid formalism in
AdS3 × S3 with pure NS-NS three-form flux. Subsequently, the computation of a
PSU(1, 1|2)-covariant three-point amplitude for half-BPS vertex operators inserted
on the AdS3 boundary is presented, as well as its relation with the analogous
computation from the RNS formalism. It is found that integrating out the fermionic
worldsheet fields in the path integral gives rise to the target-space vielbein, which
explicitly encodes that the conformal group on the boundary is identified with the
symmetry group of the AdS bulk.

From the extended six-dimensional hybrid formalism, which was developed
in Section 3.3 in a flat background, a quantizable and manifestly PSU(1, 1|2)×
PSU(1, 1|2)-invariant action for the superstring in AdS3 × S3 × T4 with mixed
NS-NS and R-R self-dual three-form flux is constructed. This action is the ana-
logue of the AdS5 × S5 pure spinor action for the AdS3 × S3 case. The model is
then quantized and proven to be conformal invariant at the one-loop level. We
conclude by showing how one can relate the supersymmetric description with the
worldsheet action of the AdS3 × S3 hybrid formalism with mixed flux.

4.1 Introduction

Superstring theory is not only an attractive physical description for being a
mathematically consistent framework where quantum mechanics and general
relativity can coexist, but it also exhibits many fascinating properties. Among
these is the occurrence of intriguing and formidable dualities, some of which
relate its different formulations, while others challenge conventional intuition
and imply that a quantum theory of gravity in some spacetime can be equivalent
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to a quantum field theory without gravity, residing in a spacetime of different
dimensionality.

The manifestation of a duality in physics lies in the realization that two distinct
mathematical formulations describe the same physical observables or processes,
in other words, both descriptions are said to be quantum equivalent even though
they can appear dramatically different at a microscopic level. For example, the
five known superstring theories Type I, Type IIA and IIB, and the two heterotic
superstrings, are connected by a web of dualities such as T-duality, S-duality and
U-duality [56]. In addition, it is believed that the five ten-dimensional superstrings
are different perturbative limits of one underlying 11-dimensional theory, so-called
M-theory [57] [58].

The domain of superstring dualities is not only restricted to connect two
distinct types of string theories, what’s even more impressive, there are dualities
where a superstring theory propagating in an Anti de-Sitter background can be
quantum equivalent to a four-dimensional gauge theory. At first sight, this seems
like a surprising claim since string theory contains Einstein’s gravity and is only
quantum consistent in d = 10 spacetime dimensions, while the gauge theory
lives in a four-dimensional flat spacetime and does not contain a graviton in its
spectrum.

The most well known example of a duality of this type is between the Type
IIB superstring in an AdS5 × S5 background and the maximally supersymmetric
four-dimensional N = 4 SYM theory with gauge group U(N) [40]. In this case,
the string theory is characterized by the string coupling gs and the dimensionless
AdS5 radius in string units RAdS5 , while the gauge theory depends on the Yang-
Mills coupling gYM and the rank of the gauge group N. It is also a common
practice to express the Yang-Mills coupling as the ’t Hooft coupling λ = g2

YMN
[59]. According to the duality, the parameters of the two theories are related as

gs ∼
λ

N
, R2

AdS5
∼

√
λ , (4.1)

up to constant factors.
This duality is known as the AdS5/CFT4 correspondence, given that N = 4

SYM is a conformal field theory (CFT). Besides the parameters aforementioned,
the identification between the two sides can be further extended by matching
the global symmetries and scaling dimensions of the dual CFT to the AdS5 × S5

isometries and energies of the string side, respectively.
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Although many checks have been performed over the last 25 years, the cor-
respondence is still a conjecture. This is mainly because the duality is of the
strong/weak type, when the ’t Hooft coupling is large λ ≫ 1, the string tension is
large RAdS5 ≫ 1. To put it differently, the classical or supergravity regime of the
string theory RAdS5 ≫ 1 is mapped to the strongly coupled regime of the N = 4
SYM λ ≫ 1. Conversely, the perturbative regime of the gauge theory λ ≪ 1 is
mapped to the non-perturbative — or tensionless – regime of the string theory,
i.e., small RAdS5 .1 Therefore, the perturbative domains of both sides correspond
to the non-perturbative ones in the dual theory, making it difficult to perform
explicit calculations and verify the equivalence of the conjecture in all necessary
cases. Nonetheless, note that one can use the perturbative domain of one theory
to obtain predictions for inaccessible regimes of the dual theory, a key property
that has driven extensive research in the field.

Based on the discussion so far, a crucial advancement for having a fine grained
understanding of the duality relating the superstring in an AdS5 × S5 background
to the four-dimensional N = 4 SYM theory is achieving enough control over the
worldsheet description — or string side — such that first principles calculations
can be performed. An elementary effort in this direction is the construction of
quantizable worldsheet actions with AdS5 × S5 as the target-space. However, the
AdS5 × S5 background is supported by a non-zero amount of Ramond-Ramond
(R-R) flux, which turns out to be one of the main barriers obstructing a worldsheet
description via the conventional formalisms of the superstring.

For example, in the Ramond-Neveu-Schwarz (RNS) formalism, constructing
a worldsheet action in the presence of R-R fields remains a complicated task,
because vertex operators for the R-R sector break worldsheet supersymmetry [60].
Conversely, despite being feasible to construct actions in R-R backgrounds from
the Green-Schwarz (GS) superstring [61], the quantization procedure is limited
due to obstacles when imposing the light-cone gauge condition [62] [63].

Despite the fact that there is a quantizable sigma-model action for the super-
string in AdS5 × S5 from the pure spinor formalism [64], the R-R fields break the
holomorphic/anti-holomorphic factorization of the worldsheet theory. As a result,
the powerful complex methods of two-dimensional CFT [65] cannot be applied in
a straightforward manner, and progress towards vertex operators and superstring
amplitude computations in AdS5 turned out to be rather slow since the advent of

1Note that the radius is dimensionless in our conventions, it is expressed in string units or in
terms of the string length

√
α′.
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the AdS/CFT correspondence [40].
In view of that, and with the hope of further exploring the inner workings

of the AdS5/CFT4 duality purely from a string theory perspective, a promising
route for investigation is to attempt superstring computations in simpler AdS
target-spaces, where the worldsheet theory is under better control. This can serve
as a powerful guide for calculations in the more challenging, and also interesting,
instance of the AdS/CFT correspondence, namely, the one relating the superstring
in AdS5 × S5 with the N = 4 SYM quantum field theory.

In particular, there exists an AdS target-space where holomorphic and anti-
holomorphic factorization of the worldsheet description is still preserved. This is
the case for the Type IIB superstring in an AdS3 × S3 background in the absence
of R-R fields, i.e., with pure Neveu-Schwarz-Neveu-Schwarz (NS-NS) self-dual
three-form flux turned on. The holomorphic structure helps in the tractability of
the theory. As a consequence, this particular example fits well to be a primary
candidate for the understanding of quantitative features of covariant descriptions
of the superstring in AdS. The latter remark will be further explored in this thesis.

Starting in Section 4.2, we shall cover a spacetime supersymmetric formulation
of the Type IIB superstring in AdS3 × S3, namely, the hybrid formalism for the su-
perstring [18] [46]. The sigma-model action of the hybrid string has the supergroup
PSU(1, 1|2) as the target-superspace and it can accommodate a mixture of both
NS-NS and R-R constant three-form flux. In the pure NS-NS case, the worldsheet
theory is given by a PSU(1, 1|2)k WZW model where k labels the amount of NS-NS
flux and is quantized [46]. Along with the worldsheet action, the hybrid formalism
enjoys a small N = 4 superconformal symmetry, and scattering amplitudes are
computed according to the N = 4 topological prescription [18].

Next, we will make use of the pure NS-NS hybrid formalism in AdS3 × S3 with
k units of three-form flux and compute a three-point amplitude for half-BPS vertex
operators inserted at a position x on the AdS3 boundary. This will be done in a
manifestly PSU(1, 1|2)-covariant fashion, i.e., using the spacetime supersymmetric
worldsheet variables of the hybrid description. The computation will be carried
out after defining curved worldsheet fields by making use of the vielbein field

EA
B(x) = δB

A + x f+ A
B − 2x2ηA+δB

+ ,

where A ∈ PSU(1, 1|2) Lie-superalgebra.
The vertex operators depend on a fermionic coordinate θα. As an outcome, we



Chapter 4. The superstring in an AdS3 × S3 background 80

will show that integrating out the fermions θα(x) in the path integral gives rise to
EA

B(x), which encodes that the conformal group on the boundary corresponds to
the symmetry group of the AdS3 bulk [66]. Specifically, the fermionic zero-mode
integration takes the following form∫

d4θ θα(x4)θ
β(x3)θ

γ(x2)θ
δ(x1)

= ϵρσµνEρ1
α1(−x4)Eσ1

β1(−x3)Eµ1
γ1(−x2)Eν1

δ1(−x1) .

Since spacetime supersymmetric superstring scattering amplitudes in curved
backgrounds have been hardly ever investigated, this construction can have some
important applications. In the first place, it provides intuition for what happens
after the worldsheet fermions are integrated out in a general AdS background
amplitude computation. Secondly, it gives insights about what the correct am-
plitude prescription in the more interesting case of AdS5 × S5 target-space might
be. There have been significant works over the last years on trying to understand
superstring vertex operators [67] [68], and the correct amplitude measure for the
fermionic fields θα in the AdS5 × S5 pure spinor formalism [69] [70].

Additionally, we should emphasize that the AdS3 × S3 background can be
supported by a mixture of NS-NS and R-R self-dual three-form flux. Since progress
in understanding the AdS5 × S5 superstring worldsheet at the quantum level is
hindered by the presence of R-R fields, studying the analogue of the quantizable
pure spinor formalism for the AdS3 × S3 case might be a useful toy model. For
example, it can be a valuable alternative for developing computational techniques
that might also work for the higher-dimensional background. The target-space for
the AdS5 × S5 pure spinor superstring is given by PSU(2,2|4)

SO(1,4)×SO(5) , and the equivalent

description for AdS3 × S3 has the supergroup PSU(1,1|2)×PSU(1,1|2)
SO(1,2)×SO(3) as the target-

space, so that all sixteen supersymmetries are manifest in the worldsheet action.
The dual CFT for the AdS3 × S3 background for arbitrary values of the NS-NS

flux fNS and the R-R flux fRR is not known. However, at k = 1
f 2
NS

= 1 units of

NS-NS flux and absence of R-R flux,2 the dual CFT has been recently identified
[71] [72] using the six-dimensional hybrid formalism in AdS3 [46] [6], and many
other detailed checks from both sides of the duality have been performed [73] [74]

2We apologize for sometimes calling the NS-NS flux both by k and fNS. As one can see from
eq. (4.2), these quantities are indeed related in our conventions. In fact, k is the level of the WZ-term
in the action and fNS the value of the constant three-form in our superstring vertex operator (see
Section 4.7.4).
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[75] [76]. Note that in the AdS3 × S3 target-space with mixed flux, the inverse of
the AdS3 radius is given by f which is defined as

f 2 = f 2
RR + f 2

NS , k =
fNS

f 3 , (4.2)

and where k determines the level of the Wess-Zumino coupling.
In Section 4.7, employing the manifestly spacetime supersymmetric formal-

ism, developed in Section 3.3 for the flat case, we will construct a quantizable
worldsheet action for the mixed NS-NS and R-R flux AdS3 × S3 × T4 background
with the super-coset PSU(1,1|2)×PSU(1,1|2)

SO(1,2)×SO(3) as the target-superspace, and show that
it remains conformal invariant at the one-loop level in Section 4.8. Thus, prov-
ing that the background supergravity superfields satisfy the on-shell conditions
[77]. In addition to the hybrid variables [46] [18], the sigma-model contains eight
superspace fermionic coordinates plus their conjugate momenta and eight uncon-
strained bosonic spinors {λα, λ̂α̂} plus their conjugate momenta {wα, ŵα̂}. These
bosonic ghosts play a similar role of the pure spinor variables in the d = 6 case
[54] [51]. The relation between the PSU(1, 1|2)× PSU(1, 1|2)-covariant description
and the hybrid formalism of Section 4.2 will be explained in detail in Section 4.9.

The construction presented in Section 4.7 may serve several purposes. The
PSU(1,1|2)×PSU(1,1|2)

SO(1,2)×SO(3) super-coset formulation provides an analogue of the AdS5 ×
S5 pure spinor action [64] in a lower-dimensional setting. This suggests that
reformulating the vertex operators of [78] and the amplitudes computed in [6]
[79] — originally obtained using the hybrid formalism in AdS3 — in terms of
PSU(1, 1|2)× PSU(1, 1|2)-covariant variables could offer new insights into the
appropriate amplitude measure for the AdS5 × S5 case [70].

One can also take the vanishing R-R flux limit in our worldsheet action,
as a consequence, what remains is a pure NS-NS model with the super-coset
PSU(1,1|2)×PSU(1,1|2)

SO(1,2)×SO(3) as the target-superspace. Therefore, it also provides a new
superstring description which, at k = 1 units of NS-NS flux, has the AdS/CFT du-
ality under good control. In particular, it is known from a string theory correlator
how a twistorial incidence relation emerges from the worldsheet variables [74].

4.2 Hybrid formalism in an AdS3 × S3 background

In this section, we review the hybrid formalism in AdS3 × S3 with pure NS-NS
self-dual three-form flux while defining our notation for the worldsheet theory.
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4.2.1 Worldsheet action

The hybrid description [18] [46] of the superstring in AdS3 × S3 ×M4, where
M4 is either K3 or T4, can be divided into a “compactification-independent” and
a “compactification-dependent” part. The compactification-independent sector
describes AdS3 × S3. It consists in a PSU(1, 1|2)k WZW model together with a
c = 28 chiral boson ρ and the c = −26 chiral boson σ. The compactification-
dependent sector is composed of a twisted c = 6 N = 2 superconformal field
theory (SCFT) describing the four-dimensional manifold M4. One also has the
right-moving counterpart of each of these sectors. Since the worldsheet theory en-
joys a holomorphic/anti-holomorphic factorization, the right-movers will mostly
be ignored for simplicity and clarity of the presentation.

The worldsheet action for the hybrid superstring in AdS3 × S3 is given by

S =
1
2

k
∫

d2z sTr
(

g−1∂gg−1∂g
)
− i

2
k
∫
B

sTr
(

g−1dgg−1dgg−1dg
)

+ Sρ,σ + SC , (4.3)

where SC is the action for the compactification directions containing four bosons
and four fermions. The latter is defined by the twisted c = 6 N = 2 SCFT it
describes. Sρ,σ is the action for the chiral bosons {ρ, σ}, which is defined by the
following OPE’s for these fields

ρ(y)ρ(z) ∼ − log(y − z) , (4.4a)

σ(y)σ(z) ∼ − log(y − z) . (4.4b)

The first line of eq. (4.3) describes a PSU(1, 1|2)k WZW model. As a PSU(1, 1|2)
representative, one can take the group element

g = eZATA , ZA = {θαj, xa} , (4.5)

where A = {αj, a} is a tangent space index and labels the supercoordinates, and
TA are the generators of PSU(1, 1|2) Lie superalgebra. The algebra generators
satisfy the commutation relations

[TA, TB} = fAB
CTC , [TA, TB} = TATB − (−)|A||B|TBTA , (4.6)



Chapter 4. The superstring in an AdS3 × S3 background 83

whose structure constants are given by

fαj βk
a = i

√
2ϵjkσa

αβ , fa αj
βk = i

√
2σaαγδ̂γβδk

j , fa b
c =

√
2(σab

c)αβδ̂αβ , (4.7)

and where

(σabc)αβ =
i

3!
(σ[aσbσc])αβ , δ̂αβ = 2

√
2(σ012)αβ . (4.8)

Note that in the equation above we anti-symmetrize with square brackets and
without dividing by the number of terms. In our notation, a = {0 to 5} is an
SO(1, 5) vector index, α = {1 to 4} is a fundamental SU(4) index and j = {1, 2} is
an SU(2) index.

The four by four anti-symmetric matrices σaαβ are the SO(1, 5) Pauli matrices
which obey the Dirac algebra

σaαβσb
αγ + σbαβσa

αγ = ηabδ
β
γ , σaαβ =

1
2

ϵαβγδσa
γδ , (4.9)

where ηab is the usual mostly plus metric of the six-dimensional flat Minkowski
background. In addition, the symbol δ̂αβ and its inverse δ̂αβ satisfy some interesting
properties, namely,

σa
αβ = (δ̂σaδ̂)αβ , σa′

αβ = −(δ̂σa′ δ̂)αβ , δ̂αβδ̂βγ = δα
γ , (4.10)

where we write a = {0, 1, 2} for the AdS3 directions and we write a′ = {3, 4, 5} for
the S3 directions. Supplementary identities for the six-dimensional Pauli matrices
are given in Appendix B.

The action (4.3) is invariant under global left and right PSU(1, 1|2) transforma-
tions of g, i.e.,

PSU(1, 1|2)L × PSU(1, 1|2)R . (4.11)

In particular, for the pure NS-NS case we are considering, this symmetry is actually
enhanced to a local g(z)× g(z) symmetry acting on g as

g → gL(z)gg−1
R (z) , (4.12)

where gL(z)(gR(z)) can be any holomorphic (anti-holomorphic) map from the
worldsheet to PSU(1, 1|2).
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The supertrace over the PSU(1, 1|2) generators defines the metric

sTr(TATB) = ηAB , ηABηBC = δA
C , (4.13)

whose non-zero components are

sTr(TaTb) = ηab , sTr(TαjTβk) = ϵjkδ̂αβ , (4.14)

where ϵ12 = ϵ21 = 1 is the anti-symmetric tensor and δ̂αβ = 2
√

2(σ012)αβ is the
symmetric matrix which enables one to contract spinor indices in an SO(1, 2)×
SO(3) invariant manner.

For an object XA transforming in the representation A, we raise and lower
tangent-space indices according to XA = ηABXB and XA = ηABXB. Of course,
the same rules apply for the structure constants fABC, which are graded anti-
symmetric in the 1-2 and 1-3 indices.

From the fundamental field g appearing in the worldsheet action, we define
the left-currents by

dgg−1 = JA
L TA , (4.15)

and the right-currents by

g−1dg = JA
R TA , (4.16)

where we write JA
L = {Sαj

L , Ka
L} and JA

R = {Sαj
R , Ka

R}. Note that the left-currents are
right-invariant and the right-currents are left-invariant under global PSU(1, 1|2)
transformations. Although somewhat confusing, the latter statement is in fact
correct.

The enhanced symmetry (4.12) of the WZW model imply that the (1, 0) left-
currents are purely holomorphic and the (0, 1) right-currents anti-holomorphic, i.
e.,

∂(∂gg−1) = 0 , ∂(g−1∂g) = 0 . (4.17)

Therefore, for simplicity of the notation, we will just write JA
L z = JA and JA

R z = JA,
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so that the components read3

JA = {Sαj, Ka} , JA = {Sαj, Ka} . (4.18)

In addition, from the worldsheet action (4.3) and after rescaling the currents by
k−1 and k → 2k, one can show that the current algebra between the left-currents is

JA(y)JB(z) ∼ − 2k
(y − z)2 ηAB +

1
(y − z)

fAB
C JC . (4.19)

The current algebra between the anti-holomorphic right-currents can be derived
from (4.19) by using the symmetry of the worldsheet action (4.3) under z ↔ z and
g ↔ g−1.

4.2.2 Superconformal generators

The hybrid superstring description in AdS3 × S3 enjoys a twisted c = 6 N = 2
superconformal symmetry generated by [46]

T = TPSU − 1
2

∂ρ∂ρ − 1
2

∂σ∂σ +
3
2

∂2(ρ + iσ) + TC , (4.20a)

G+ = − 1
4k

(S1)
4e−2ρ−iσ − 1

2k

(
i

2
√

2
Sα1Sβ1Kαβ + δ̂αβSα1∂Sβ1

)
e−ρ

+ TPSUeiσ +
(
∂e−ρ−iσ, eρ+2iσ)+ G+

C , (4.20b)

G− = e−iσ + G−
C , (4.20c)

J = ∂(ρ + iσ) + JC , (4.20d)

where (S1)
4 = 1

24 ϵαβγδSα1Sβ1Sγ1Sδ1, Kαβ = σaαβKa.
The PSU(1, 1|2)k stress-tensor is given by

TPSU = − 1
4k

JA JBηAB

= − 1
4k
(
KaKbηab + SαjSβkηαjβk) , (4.21)

and the generators {G±
C , TC} obey a twisted c = 6 N = 2 superconformal algebra

(SCA) for the compactification directions and have no poles with the {ρ, σ}-ghosts
and no poles with the matter currents.

3Writing the fermionic currents as Sαj and the bosonic ones as Ka turns out to give a more
transparent notation for the N = 4 generators that we define in Section 4.2.2.
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Eqs. (4.20) need to be supplemented with a normal-ordering prescription for
the PSU(1, 1|2)k currents. The normal-ordering is not commutative. We normal-
order the currents according to

(JA JB)(z) =
∮

dy (y − z)−1 JA(y)JB(z) , (4.22a)

JA JB = (−)|A||B| JB JA + fAB
C∂JC . (4.22b)

The normal-ordering is also not associative. In our conventions, we normal-order
from right to left so that JA JB JC = (JA(JB JC)).

Consequently, the ordering is not important in TPSU because of the contraction
with the metric, but it is important in the second term of the supercurrent G+. In
terms of modes, the normal-ordering is in agreement with the property

(JA JB)0V = (−)|A||B|∇B∇AV , (4.23)

for a PSU(1, 1|2) primary field V and with ∇A the zero-mode of JA.
The c = 6 N = 2 SCA (4.20) can be readily verified from the OPEs (4.4) and

(4.19). The more complicated properties to check come from the supercurrent G+.
As shown in ref. [46], one way to fix the form of the superconformal generator
G+ is by demanding the naive generalization from flat to curved space to be
invariant under the “non-standard” spacetime supersymmetries generated by Qα2.
Another involved consistency condition to prove of the algebra generators (4.20)
is checking that the OPE of G+ with itself is regular.

Instead of demonstrating term by term that G+ commutes with Qα2 and that
G+(y)G+(z) ∼ 0, we take a simpler route. Note that it is possible to write the
supercurrent as

G+ = − 1
4k

1
24

ϵαβγδQα2Qβ2Qγ2Qδ2e2ρ+3iσ + G+
C , (4.24)

which makes manifest its invariance under the non-standard SUSYs generated by
the charge

Qα2 =
∮ (

Sα1e−ρ−iσ + Sα2
)

, (4.25)

and also makes manifest the nilpotence property. Identity (4.24) is proved in
Appendix G.
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In the hybrid formalism, the standard spacetime supersymmetry generator is

Qα1 =
∮

Sα1 , (4.26)

and so we have the desired spacetime SUSY algebra

{Qαj, Qβk} = fαj βk
a
∮

Ka . (4.27)

When mapped to the RNS description, Qα1 and Qα2 correspond to the spacetime
SUSY generators in the −1

2 and 1
2 picture, respectively.

Let us emphasize that the reason for calling Qα1 as the standard SUSY comes
from the fact that it is ghost-independent, and so acts in a similar form as the
supersymmetry generator of conventional superspace descriptions [43].

In what follows, we will write the zero-modes of the PSU(1, 1|2)k currents as
∇A =

∮
JA. More specifically, we define

∇a =
∮

Ka , ∇αj =
∮

Sαj . (4.28)

This notation is convenient, since half the spacetime supersymmetries in the
hybrid superstring Qαj act different than the zero modes of the PSU(1, 1|2)k SUSY
currents Sαj. The latter is a consequence of the presence of the {ρ, σ}-ghosts in the
four SUSYs Qα2 of eq. (4.25).

Any twisted c = 6 N = 2 SCA can be extended to a twisted small c = 6 N = 4
SCA [18]. In addition to the generators (4.20), the remaining N = 4 generators of
the hybrid formalism take the form

G̃+ = eρ J++
C − eρ+iσG̃+

C , (4.29a)

G̃− =

[
− 1

4k
(S1)

4e−3ρ−2iσ +
1
2k

(
i

2
√

2
Sα1Sβ1Kαβ + δ̂αβSα1∂Sβ1

)
e−2ρ−iσ

+ TPSUe−ρ −
(
∂e−ρ−iσ, eiσ)]J−−

C + e−ρ−iσG̃−
C , (4.29b)

J++ = −eρ+iσ J++
C , (4.29c)

J−− = e−ρ−iσ J−−
C . (4.29d)

The generators {G±
C , TC} together with {G̃±

C , J±±
C } form a twisted small c = 6

N = 4 SCA for the compactification directions which has no poles with the {ρ, σ}-
ghosts and no poles with the matter currents. Their explicit form is not needed in
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this work.
Remember that we are only discussing the holomorphic part, and hence one

also has a right-moving twisted small c = 6 N = 4 SCA. We display our con-
ventions for the twisted N = 2 SCA and twisted small N = 4 SCA in Appendix
H.

4.2.3 Physical state conditions

Physical states V of the hybrid superstring are defined to satisfy the following
constraints [46]

G+
0 G̃+

0 V = 0 , G−
0 V = G̃−

0 V = T0V = J0V = 0 , (4.30)

and the state V is determined up to the gauge transformation

δV = G+
0 Λ + G̃+

0 Ω + G̃−
0 G̃+

0 Σ , (4.31)

where {Λ, Ω} are annihilated by {G−
0 , G̃−

0 , T0} and Σ is annihilated by {G−
0 , T0}.

For a holomorphic operator O of conformal weight h, the notation On means the
pole of order n + h.

Let us pause and comment about our gauge-fixing conditions. The first equa-
tion in (4.30) can be translated to the standard physical state condition of the
RNS formalism QRNSVRNS = 0, where VRNS lives in the small hilbert space and
is related to V as V = ξVRNS (see Section 4.6 and Appendix E). The constraint
T0V = 0 is the usual mass-shell condition in string theory. When translated to
RNS, the constraint J0V = 0 is equivalent as saying that the ghost- minus the
picture-number of VRNS is equal to one, as always happens for a physical RNS
state [20].

The additional constraints G−
0 V = G̃−

0 V = 0 in eqs. (4.30) are convenient to
further eliminate auxiliary degrees of freedom and imply a covariant gauge choice,
e.g., they are equivalent to the Lorenz gauge condition for the open string sector
[46] [24] [55] [1]. As we will see in Section 4.3.2, it is also possible to define a
Lorenz-type gauge in the AdS3 × S3 hybrid formalism which turns out to be suited
for performing amplitude computations.

Note that in this formalism one of the candidates for the integrated vertex
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operator takes the form ∫
G+

0 G−
−1V , (4.32)

which corresponds to a vertex operator in the same picture as V when translating
to the RNS language [46]. However, the important difference, when compared
to the RNS formalism, is that V carries states both from the Ramond and Neveu-
Schwarz sectors. In the RNS description, the Ramond states carry half-integer
picture and the NS states carry integer picture. In fact, this is a crucial feature of
the hybrid formalism. It treats Ramond and Neveu-Schwarz sectors in the same
footing, since it only uses worldsheet variables of integer conformal weight.

4.2.4 Amplitude prescription

The prescription to compute n-point tree-level scattering amplitudes is given
by

An =

〈
V3(z3)G̃+

0 V (2)(z2)

( n

∏
m=4

∫
dzm G−

−1G+
0 V (m)(zm)

)
G+

0 V (1)(z1)

〉
, (4.33)

where V (n) is the vertex operator satisfying the physical state conditions (4.30)
and gauge transformations (4.31), and we are choosing z1 = 0, z2 = 1 z3 = ∞ by
SL(2, C) invariance. Note that the contribution from the right-movers is also being
suppressed in An.

In eq. (4.33), the zero-mode integration over the fermions is done by generaliz-
ing the flat space prescription, i.e.,

∫
d4θ =

1
24

ϵαβγδ∇δ1∇γ1∇β1∇α1

= (∇1)
4 , (4.34)

where ∇α1 is the standard spacetime SUSY charge in AdS3 × S3, see eq. (4.26). After
integrating out the non-zero modes, the amplitude (4.33) can always be expressed
in terms of ∇a, the standard SUSY charge ∇α1 and the fermonic coordinate θα (see
eq. (4.37) below). In particular, note that the measure (4.34) is invariant under both
∇a and ∇α1, so that the usual “integration by parts” is well defined.

The chiral bosons {ρ, σ} carry a non-zero amount of background charge, as
can be seen from eq. (4.20a). Therefore, the tree-level amplitude is non-zero only
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when the path integral insertions contribute with the factor e3ρ+3iσ in eq. (4.33).
In addition, since the compactification generators {TC, G±

C , JC} obey a twisted
c = 6 N = 2 SCA, one also needs the insertion of J++

C . So that, in total, one gets
e3ρ+3iσ J++

C for the chiral bosons. In the amplitude (4.33), the factor of J++
C comes

from the term G̃+
0 V .

In this work, we will sometimes use definitions such as

(θ3)α =
1
6

ϵαβγδθβθγθδ , (θ)4 =
1

24
ϵαβγδθαθβθγθδ , (4.35a)

(∇3
1)

α =
1
6

ϵαβγδ∇β1∇γ1∇δ1 , (∇1)
4 =

1
24

ϵαβγδ∇α1∇β1∇γ1∇δ1 . (4.35b)

4.3 Vertex operators in the hybrid formalism

This section deals with half-BPS vertex operators for the superstring in an
AdS3 × S3 background with pure NS-NS three-form flux. After introducing the
zero-mode variable θα, we will define the concept of a superfield in our superstring
description for this background. Subsequently, the form of the half-BPS vertex
operators will be determined by solving the constraints presented in Section 4.2.3.

For simplicity, we will consider vertex operators with no spectral flow [80].
Let us also emphasize that we will be working from the PSU(1, 1|2) supergroup
perspective in all stages of our development. For the readers not interested in the
technical details, the gauge-fixed vertex operator is given in eq. (4.49).

4.3.1 Superfields in AdS3 × S3

For the compactification-independent massless sector, the condition T0V = 0
(see eqs. (4.30)) imply that the vertex operator V in AdS3 × S3 transforms as a
primary under the PSU(1, 1|2)k currents, i.e.,

JA(y)V(z) ∼ (y − z)−1∇AV(z) . (4.36)

In particular, this implies that V has a pole with the fermionic current Sαj.
Since the standard SUSYs have the simple form (4.26), similar as in flat space,

it is convenient to define V to be a superfield expanded in terms of a fermionic
coordinate θα which transforms as a Weyl spinor and is conjugate to Qα1. More
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precisely, we define the superspace fermionic variable θα by the property4

∇α1θβ = δ
β
α . (4.37)

Therefore, when we speak of a superfield in AdS3 × S3, we will be referring to
a state which transforms as a primary under the PSU(1, 1|2)k currents and which
has a finite expansion in terms of the fermionic coordinate θα. Note further that θα

is not trivially related to the group manifold coordinates θαj in (4.5), i.e., θα ̸= θα1

and θα ̸= θα2.
From the definition (4.37), we deduce that the remaining zero-modes of the

PSU(1, 1|2)k currents satisfy

∇aθα = fβ1 a
α1θβ , (4.38a)

∇α2θβ =
1
2

fα2 γ1
a fδ1 a

β1θγθδ . (4.38b)

Since V = V(θ), eq. (4.37) also implies that the component fields of V are annihi-
lated by Qα1 = ∇α1. In addition, we also have the expected property T0θα = 0, as
can be easily checked.

In the flat background hybrid formalism, the vertex operator V for the massless
compactification-independent sector is a superfield depending on a fermionic
coordinate θα and V has a simple pole with the standard spacetime supersymmetry
current pα, since

pα(y)θβ(z) ∼ δ
β
α (y − z)−1 , (4.39)

where {pα, θβ} are holomorphic fermionic fundamental worldsheet fields of con-
formal weight one and zero, respectively. Therefore, one can view the definition
(4.37) as a consequence of (4.36) and the generalization of the definition of V from
the flat to the curved AdS3 × S3 spacetime. With the difference that θα is not
(a priori) a fundamental worldsheet coordinate in our description in terms of
g ∈ PSU(1, 1|2) in (4.3). Nevertheless, it is consistent to think of θα as a fermionic
zero-mode in the supergroup description and satisfying properties (4.37) and
(4.38).

Regardless of that, it turns out that in a pure NS-NS AdS3 × S3 background the
coordinate θα can be viewed as a fundamental holomorphic worldsheet field. This

4Recall that in our notation Qα1 = ∇α1, see eqs. (4.26) and (4.28).
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hinges on the fact that the PSU(1, 1|2)k current algebra (4.19) can be expressed
in terms of a SU(1, 1)k+2 × SU(2)k−2 current algebra plus the eight free fermions
(4.39) [46].

Indeed, let a = {a, a′} where a = {0, 1, 2} and a′ = {3, 4, 5} label the AdS3 and
S3 directions, respectively. We denote the SU(1, 1)k+2 × SU(2)k−2 currents by Ja.
The SU(1, 1)k+2 current algebra reads

Ja(y)Jb(z) ∼ −ηab
2(k + 2)
(y − z)2 +

1
(y − z)

fa b
cJc , (4.40)

and the SU(2)k−2 reads

Ja′(y)Jb′(z) ∼ −ηa′b′
2(k − 2)
(y − z)2 +

1
(y − z)

fa′ b′
c′Jc′ , (4.41)

where f012 = f345 = −2. Then, by defining

Sα1 = pα , (4.42a)

Sα2 = −2kδ̂αβ∂θβ + fα2 β1
a
(
Ja +

1
2

fa γ1
δ1pδθγ

)
θβ , (4.42b)

Ka = Ja + fa α1
β1pβθα , (4.42c)

we recover the PSU(1, 1|2)k current algebra (4.19), as we wanted to show. The
bosonic curents Ja are the usual decoupled currents which appear in the RNS
description [81] [82].

We should mention that in the hybrid description the eight free fermions
{pα, θβ} come from a field redefinition involving the six ψa’s and the bosonized
form of the {β, γ}-ghosts of the RNS formalism [46]. As a corollary of this obser-
vation, one knows from the beginning that θα(z) is holomorphic in a pure NS-NS
AdS3 × S3 background.

Using eqs. (4.42), one can readily check that the relations (4.37) and (4.38) are
reproduced. Except when comparing with RNS in Section 4.6, we will not use the
explicit form of the currents (4.42) in terms of the free fields {pα, θβ}. This means
that we will be working from the supergroup perspective and hence with the
currents constructed from g ∈ PSU(1, 1|2). However, it will be assumed eq. (4.37),
which naturally follows from the generalization of a “superspace coordinate” from
the flat to the curved AdS3 × S3 background in the hybrid formalism.

In this case, let us emphasize that θα is a fermionic zero-mode (Schrödinger
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operator) which is responsible for building up our physical states in a covariant
fashion. Therefore, it will not be necessary to know how it depends on g(z, z) in
this work, and so this reasoning should also generalize to AdS3 × S3 when turning
on a constant R-R three-form flux [83].

4.3.2 Vertex operators for the massless states

Now, we will determine the gauge-fixed half-BPS vertex operators by analyzing
the physical state conditions of Section 4.2.3. As usual, we concentrate on the
holomorphic part of the theory.

For the massless compactification-independent states (i.e., states of conformal
weight zero at zero momentum) of the Type IIB superstring in AdS3 × S3, the
condition that the vertex operator V should have no single poles with J imply that
it takes the form

V = ∑
n

en(ρ+iσ)Vn . (4.43)

Demanding V to have no double poles or higher with G− and no double
poles or higher with G̃− imply that Vn = 0 for n ≥ 2 and Vn = 0 for n ≤ −2,
respectively. Moreover, the condition G̃−

0 V = 0 also gives the following constraints
for the remaining superfields {V−1, V0, V1}

∇α1V−1 = 0 , (4.44a)
i

2
√

2
σ

αβ
a ∇α1∇β1V0 −∇aV−1 = 0 , (4.44b)

(∇1)
4V1 = 0 , (4.44c)

(∇3
1)

αV1 +
(
− i

√
2∇αβ∇β1 + 2δ̂αβ∇β1

)
V0 − 2δ̂αβ∇β2V−1 = 0 , (4.44d)

∇αβ∇α1∇β1V1 = 0 . (4.44e)

Let us now determine what are the physical states by analyzing eqs. (4.44)
together with the gauge transformations (4.31) for the remaining superfields. From
eq. (4.44a) we learn that V−1 has no components proportional to θα. By taking Σ =

4keρ+iσ(θ)4V−1 in (4.31), we see that V−1 can be gauged away. Therefore, eq. (4.44b)
implies that V0 = v0 + θαχα1 for some {v0, χα1}. Actually, the component v0 can be
removed by taking Ω = −eρ J++

C v0 in the gauge transformations (4.31). Therefore,
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we conclude that one can gauge-fix V0 to the form

V0 = θαχα1 . (4.45)

We now turn to analyze the components of the superfield V1, the most impor-
tant part of the vertex operator V . Firstly, eq. (4.44c) implies that V1 has no (θ)4

component. Now, consider the gauge transformation given by

Λ = 2
√

2ke2ρ+iσξ , (4.46a)

ξ = − i
2
(θσaθ)ωa + i(θ3)ατα + (θ)4λ , (4.46b)

for some {ωa, τα, λ}. From (4.31), one finds

δV1 = − i
2
∇αβ∇α1∇β1ξ

= ∇aωa + θα∇αβτβ +
i
2
(θσaθ)∇aλ . (4.47)

Using the gauge parameter ωa, one can gauge away the first component of V1. As
a result, we can gauge-fix the superfield V1 to the following form

V1 = θαχα2 +
i
2
(θσaθ)aa − (θ3)αψα2 . (4.48)

In addition, eq. (4.44d) implies that ψα2 = (i
√

2∇αβ − 2δ̂αβ)χβ1. As a conse-
quence, all the degrees of freedom are contained in the superfield V1. In view
of that and for later convenience, we define V1 = V. Therefore, the gauge-fixed
vertex operator (4.43) takes the form

V = eρ+iσV + V0 , (4.49)

where

V = θαχα2 +
i
2
(θσaθ)aa − (θ3)αψα2 , (4.50a)

V0 = θαχα1 . (4.50b)

Note further that the superfield V satisfies the equation of motion ∇αβ∇α1∇β1V =

0 (see eq. (4.44e)).
All component fields obey the mass-shell condition ∇a∇a = 0. It is also
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convenient to define the gauge invariant “fermions”

ψαj = ϵjk(i
√

2∇αβ − 2δ̂αβ)χβk . (4.51)

Note that these fermions satisfy the “Dirac-like” equation

Dαβψβj = 0 , (4.52)

in curved space, where Dαβ = σa
αβDa.

For an object XA transforming in the representation A of PSU(1, 1|2), we define
the covariant derivative as

DaXB = ∇aXB − 1
2

fa B
CXC . (4.53)

In fact, one can show that Dαβψβj = ∇αβψβj by using the explicit form of the
structure constants (4.7).

In terms of the RNS formalism language, the components of V proportional to
(θσaθ) are states from the NS-sector and the components proportional to θα and
(θ3)α are states from the R-sector.

Although we are only discussing the holomorphic part of the theory for simplic-
ity, the identification of the equations of motion derived from the string constraints
(4.30) with the supergravity field equations in AdS3 × S3 was elaborated in ref. [84].

Since the fermionic variables θα are charged under the SL(2, R)×SU(2) bosonic
subgroup of PSU(1, 1|2), we can also relate the components of the superfield in
(4.50) with the Maldacena-Ooguri vertex operators described in terms of the
SL(2, R) and SU(2) quantum numbers [80] [85]. We refer to Appendix I.2 for this
description.

4.4 Curved worldsheet fields in the hybrid desecrip-

tion

For the purpose of computing PSU(1, 1|2)-covariant superstring scattering
amplitudes with vertex operators being functions of the spacetime boundary
positions, we will introduce worldsheet fields depending on the boundary AdS3

coordinates x. This will be done by performing a similarity transformation in the
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∇+ direction with parameter the complex coordinate x and where

∇+ = − i
2

∮
(K1 + iK2) , (4.54)

is the translation generator along the AdS3 boundary or, equivalently, in the dual
CFT [81]. Naturally, the vielbein field EA

B(x) will emerge in our description.
When writing a field O without any labels, it means that it only depends on

the worldsheet coordinates z. Therefore, it is inserted in the position x = 0 in the
boundary.5 For an operator function of any x ∈ ∂AdS3, we will write O(x, z) — or
simply O(x) — which is equivalent to ex∇+Oe−x∇+ . As we will presently see, there
are only a finite number of terms that contribute in this similarity transformation
for our fundamental worldsheet variables.

Vertex operators translated by the generator (4.54) were used in refs. [73] [74]
to match worldsheet correlators at k = 1 units of NS-NS flux with the dual two-
dimensional CFT correlators [86] [87].

4.4.1 Similarity transformation and the vielbein

Consider the holomorphic PSU(1, 1|2)k currents (4.18), the effect of introducing
dependence on the boundary AdS3 coordinates x is given by

JA(x, z) = ex∇+ JA(z)e−x∇+

= JA(z) + x f+ A
B JB(z) +

x2

2
f+ A

B f+ B
C JC(z) , (4.55)

since

f+ A
B f+ B

C = −4δC
+ηA+ . (4.56)

This means that we can write

JA(x, z) = EA
B(x)JB(z) , (4.57)

where

EA
B(x) = δB

A + x f+ A
B − 2x2ηA+δB

+ , (4.58)

5I would like to thank Lucas Martins and Dennis Zavaleta for discussions regarding this point.
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and so the matrix EA
B(x) converts a flat worldsheet field to a curved one (in

spacetime).
Therefore, we will take our freedom and call the quadratic matrix EA

B(x) the
vielbein field [24]. In particular, note from (4.58) that EA

B(x) has a finite number
of terms and at most quadratic in x. Since JA = {Sαj, Ka}, in our usual notation,
we simply write

Sαj(x) = Eαj
βk(x)Sβk , Ka(x) = Ea

b(x)Kb . (4.59)

In supergravity descriptions, the vielbein field EA
B(x) carries a lower Einstein

index and an upper Lorentz (or structure group) index [24], and EA
B(x) is not

written with an explicit spacetime dependence of x. In this work, we will not
differentiate between Einstein and Lorentz indices. However, this should yield no
confusion, since for any object O depending on x we will explicit write O(x).

The vertex operator (4.49) in the x-basis V(x, z) is

V(x, z) = ex∇+V(z)e−x∇+ . (4.60)

therefore, from (4.36), the action of the spacetime dependent PSU(1, 1|2)k currents
JA is given by

JA(x1, y)V(x2, z) ∼ (y − z)−1
(
∇AV + x12 f+ A

B∇BV − 2x2
12ηA+∇+V

)
(x2, z) ,

(4.61)

where x12 = x1 − x2. In our formulas, we shall also write

JA(x1, y)V(x2, z) ∼ (y − z)−1(∇A(x12)V
)
(x2, z)

= (y − z)−1EA
B(x12)(∇BV)(x2, z) , (4.62)

to simplify the notation.

4.4.2 Curved fermionic coordinates

As we discussed in the beginning of Section 4.3, the vertex V in eq. (4.49) is
a superfield in our superstring description, i.e., it is a function of the fermionic
zero-mode variable θα. In order to compute amplitudes involving the vertex V
inserted in the AdS3 boundary, we need to specify what are the analogues of
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the superspace coordinates θα when we introduce dependence on the spacetime
coordinate x.

As before, in the x-basis, we have that

θα(x) = ex∇+θαe−x∇+ , (4.63)

and eq. (4.38a) implies

θα(x) = Eβ1
α1(−x)θβ

=
(
δα

β + x fβ1+
α1)θβ

= θα − xi
√

2(θσ+δ̂)α . (4.64)

Therefore, from (4.37), one finds that the action of the standard SUSYs on θα(x) is

∇α1θβ(x) = Eα1
β1(−x)

= δ
β
α − xi

√
2(σ+δ̂)

β
α , (4.65)

where Eα1
β1(x) is the vielbein field of eq. (4.58).

From the last property, together with eq. (4.34), we then have determined a
way to integrate the curved worldhsheet fermions θα(x) in a tree-level amplitude
computation. The answer is given in terms of the vielbein, namely,6∫

d4θ θα(x4)θ
β(x3)θ

γ(x2)θ
δ(x1)

= ϵρσµνEρ1
α1(−x4)Eσ1

β1(−x3)Eµ1
γ1(−x2)Eν1

δ1(−x1) . (4.67)

If desired, the expression above can be explicitly evaluated using the definition
(4.58), one finds∫

d4θ θα(x4)θ
β(x3)θ

γ(x2)θ
δ(x1)

= ϵαβγδ +
i√
2

(
− x4δ̂α[βσ

γδ]
+ + x3δ̂β[ασ

γδ]
+ − x2δ̂γ[ασ

βδ]
+ + x1δ̂δ[ασ

βγ]
+

)
6To perform calculations, it is actually easier to use the less condensed but more practical

notation of a curved delta-function for the spinorial vielbein, i.e.,

Eα1
β1(−x) = δ

β
α (x) . (4.66)
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− 2σ
αβ
+ σ

γδ
+

(
x1x2 + x3x4

)
+ 2σ

αγ
+ σ

βδ
+

(
x1x3 + x2x4

)
− 2σαδ

+ σ
βγ
+

(
x1x4 + x2x3

)
,

(4.68)

hence, only terms up to quadratic-order in x appear when integrating out the
fermionic zero-modes θα(x)’s.

4.4.3 Some properties of the vielbein

We have explicitly shown how flat worldsheet fields can be made dependent
on the boundary AdS3 coordinates x. One of the key ideas is the presence of the
spacetime dependent matrix (4.58), which naturally appears in our superstring
description after performing a similarity transformation in the direction ∇+ with
parameter x.

For the purpose of carrying out computations, it is useful to state some of the
identities satisfied by EA

B(x). One can show that

EA
B(x)EB

C(−x) = δC
A . (4.69)

and, note also

Eα1
γ1(−x)σaγδEβ1

δ1(−x) = Ea
b(x)σbαβ , (4.70a)

Eγ1
α1(−x)σγδ

a Eδ1
β1(−x) = Ea

b(−x)σαβ
b , (4.70b)

and that

ex∇+(θσaθ)e−x∇+ = Ea
b(x)(θσbθ) , (4.71)

hence, EA
B(x) transforms a “flat Pauli matrix” to a “curved one” in spacetime, as

is expected for a vielbein [24].
In particular, the vielbein field with bosonic indices Ea

b(x) satisfy

Ea
b(x) = Eb

a(−x) , (4.72a)

Ea
c(xi)Eb

d(xj)ηcd = Eab(xij) , (4.72b)

where we are denoting Eab(x) = ηbcEa
c(x).

We also have that

[Ea
c(x)∂c, Eb

d(x)∂d] = cab
c(x)Ec

d(x)∂d , (4.73)
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where

cab
c(x) = δ+

[a| f+ |b]
c + x f+ [a|

+ f+ |b]
c − 2x2η+[a| f+ |b]

c , (4.74)

and we used ∂ax = δ+a .
As a consequence, one identifies

E+
+∂+ = ∂+ , E3

+∂+ = −x∂+ , E−
+∂+ = x2∂+ , (4.75)

as the generators of infinitesimal two-dimensional conformal transformations.
In effect, eqs. (4.75) highlight that the conformal group acting on the boundary
corresponds to the symmetry group of the bulk AdS3 spacetime [66]. Hence, we
found a standard property of the AdS/CFT correspondence folklore via a first-
principles superstring theory calculation.7 This observation might give important
hints towards the correct description of superstring vertex operators in AdS5 × S5

[69] [70].
For the purpose of computing scattering amplitudes, we also define the curved

structure constants

fabc(x1, x2, x3) = Ea
d(x1)Eb

e(x2)Ec
f (x3) fde f , (4.76)

which only depend on the distance xij = xi − xj, as can be easily seen from the
explicit expression

fabc(x1, x2, x3) = fabc + 4
(

x12ηc+ηab − x13ηb+ηac + x23ηa+ηbc

)
− 2
(

x12x13ηa+ f+bc − x12x23ηb+ f+ca + x13x23ηc+ f+ab

)
+ 8x12x13x23ηa+ηb+ηc+ . (4.77)

Furthermore, this means that the curved structure constants (4.76) are invariant
under a constant shift of {x1, x2, x3}, i.e., they satisfy

fabc(x1, x2, x3) = fabc(x14, x24, x34) , (4.78)

for any x4.

7Recall that the conformal group in AdS3 is SO(2, 2) ∼= SU(1, 1)L × SU(1, 1)R and we are only
displaying the holomorphic part of the worldsheet theory.
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4.5 Amplitude computation from the hybrid formal-

ism

In Section 4.2, we introduced the worldsheet action for the AdS3 × S3 hybrid
formalism together with the OPEs satisfied by the fundamental fields: the {ρ, σ}-
ghosts and the PSU(1, 1|2)k currents. We also defined constraints that determine
the physical states in a suitable gauge choice and wrote a tree-level scattering
amplitude prescription. In particular, the fermionic measure of integration was
described in terms of the standard spacetime SUSYs ∇α1.

In Sections 4.3 and 4.4, after introducing the zero-mode fermionic coordinate
θα, we determined the gauge-fixed vertex operators for the half-BPS states. Ad-
ditionally, we showed how vertex operators inserted at x = 0 can be translated
to an arbitrary position x in the AdS3 boundary by the means of a similarity
transformation and using the vielbein EA

B(x).
That being said, we have collected enough information to calculate tree-level

PSU(1, 1|2)-covariant scattering amplitudes for half-BPS vertex operators in AdS3.
For this reason, the content of this section is to exemplify how these tools can be
used in practice by computing a three-point amplitude and highlighting some
new features present in this covariant approach.

4.5.1 Three-point amplitude in AdS3

Following the prescription (4.33), the three-point amplitude for the half-BPS
vertex operator V in (4.49) and (4.60) is given by

A3 =

〈
V (3)(x3, z3)

(
G̃+

0 V (2))(x2, z2)
(
G+

0 V (1))(x1, z1)

〉
, (4.79)

where

V(x, z) = eρ+iσV(x, z) , (4.80a)(
G̃+

0 V
)
(x, z) = e2ρ+iσ J++

C V(x, z) , (4.80b)(
G+

0 V
)
(x, z) = − 1

2k
eiσ
[

i
2
√

2

(
Kαβ∇α1∇β1V + 2Sα1∇αβ∇β1V

)
− δ̂αβSα1∇β1V

]
(x, z) . (4.80c)
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In writing eqs. (4.80), we are ignoring terms in V and
(
G+

0 V
)

in (4.80c) that do
not contribute to the correlator: either due to the {ρ, σ}-ghosts background charge
saturation or because it is a total derivative (and hence a null state in the CFT). For
completeness, gauge-invariance of (4.80) is shown in Appendix J.

To simplify the notation, let us denote (xi, zi) = (i) in (4.79). The upper index
in V (1) is there to label the state, similarly for {V (2),V (3)}. After integrating out
the {ρ, σ}-ghosts, “integrating by parts” to eliminate the explicit z dependence
and using the equation of motion ∇αβ∇α1∇β1V = 0, the amplitude (4.79) reads8

A3 =
1
2k

1√
2

[
i
2

(〈
V(3)(3)∇αβV(2)(2)∇α1∇β1V(1)(1)

〉
+

〈
∇αβV(3)(3)∇α1∇β1V(2)(2)V(1)(1)

〉
+

〈
∇α1∇β1V(3)(3)V(2)(2)∇αβV(1)(1)

〉)
+ 2

√
2δ̂αβ

〈
V(3)(3)∇α1V(2)(2)∇β1V(1)(1)

〉]
, (4.81)

where we wrote it in the more symmetric form. For the latter, we used the identity

i
〈

V(3)(3)∇α1(x1)V(2)(2)
(
∇β1∇αβV(1)

)
(1)
〉

=
i
2

〈
∇αβV(3)(3)∇α1∇β1V(2)(2)V(1)(1)

〉
+

i
2

〈
∇α1∇β1V(3)(3)V(2)(2)∇αβV(1)(1)

〉
. (4.82)

The last term of eq. (4.81) is not present in the flat space calculation and, therefore,
it corresponds to a curvature correction.

We should underscore the fact that only the holomorphic part of the scatter-
ing amplitude A3 is being written. As in any closed string calculation where
holomorphic/anti-holomorphic factorization takes place [88], one needs to mul-
tiply eq. (4.81) with the corresponding right-moving contribution to get the
complete answer. Strictly speaking, this means that the amplitude (4.81) is
PSU(1, 1|2)L × PSU(1, 1|2)R-covariant. In particular, we remarked in our dis-
cussion of the hybrid formalism in Section 4.2 that the PSU(1, 1|2)L currents are

8We have checked that this partial integration produces the same answer before and after
integrating over the worldsheet fermions. The reason for this is that the fermionic measure is
invariant under ∇a and ∇α1, which are the zero-modes appearing in the vertices.
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purely holomorphic and the PSU(1, 1|2)R currents purely anti-holomorphic.

4.5.2 Integrating out the fermions

Eq. (4.81) gives a PSU(1, 1|2)-covariant expression for the three-point ampli-
tude of half-BPS states in AdS3 × S3. Let us now illustrate how the integration
over the curved fermionic worldsheet variables (4.67) can be implemented with
an example.

For simplicity, we will take V(i) = i
2(θσaθ)aa i, so that only states from the

NS-sector are being considered. After integrating out the θ’s using the prescription
(4.67), the amplitude (4.81) for the NS states becomes

ANS
3 = − 1

2k
1√
2

Ea
d(x1)Eb

e(x2)Ec
f (x3)

[
ηdeac

3(3)ab
2(2)

(
D f (−x1)aa

1

)
(1)

+ ηe f ac
3(3)

(
Dd(−x2)ab

2

)
(2)aa

1(1) + ηd f

(
De(−x3)ac

3

)
(3)ab

2(2)aa
1(1)

− 1
2

fde f ac
3(3)ab

2(2)aa
1(1)

]
, (4.83)

which one can write in the more compact form as

ANS
3 = − 1

2k
1√
2

[
Eab(x12)ac

3(3)ab
2(2)

(
Dc(x31)aa

1

)
(1)

+ Ebc(x23)ac
3(3)

(
Da(x12)ab

2

)
(2)aa

1(1)

+ Eac(x13)
(

Db(x23)ac
3

)
(3)ab

2(2)aa
1(1)

− 1
2

fabc(x1, x2, x3)ac
3(3)ab

2(2)aa
1(1)

]
, (4.84)

where Da(x12) = Ea
b(x12)Db and fabc(x1, x2, x3) are the covariant derivative (4.53)

and the structure constants with curved indices (4.77). We are also using that

Ea
c(xi)Eb

d(xj)ηcd = Eab(xij) . (4.85)

The design of the amplitude (4.84) begs for an interpretation. As we have
alluded to below eq. (4.75), the spacetime vielbein field Ea

b(x) encodes that a
conformal transformation in the AdS3 boundary corresponds to a rotation in the
AdS3 bulk. In particular, this can be seen by the observation that the object Ea

+∂+

generates infinitesimal Möbius transformations along ∂AdS3.
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Moreover, from eq. (4.84), one can explicitly deduce that the consequence of
integrating out the fermionic worldsheet fields in the correlator was the appearance
of the vielbein field Ea

b(x). In other worlds, the tangent space vector indices
were “rotated” by the matrix Ea

b(x). This rotation also affected the indices of the
structure constants fabc which became fabc(x1, x2, x3) of (4.76).

Let us point out that what is left in (4.84) is the kinematic factor of the three-
point amplitude written in terms of the component fields from the NS-sector.
Using the vertex operator (4.50a), one can similarly write the kinematic factor
involving the states from the R-sector.

In addition, by conformal invariance in the worldsheet and target-space, the
z and x dependence of the amplitude is completely fixed [85, eq. (2.13)]. More
precisely, the amplitude is independent of z, and the x dependence is determined
by the SL(2, R) spin ji of the insertions in (4.79). So that it takes the general form
[85]

A3 ∼ xj3−j1−j2
12 xj2−j1−j3

13 xj1−j2−j3
23 . (4.86)

In Appendix I.2, we give a brief explanation on how the SL(2, R) spin ji for the
fermionic coordinates and component fields can be derived from our worldsheet
variables. In particular, note that the variables θα in the vertex carry a non-zero
charge, see eqs. (I.8).

4.6 Comparison between hybrid and RNS

Up to now, in the calculations displayed throughout this work, we have used
the hybrid description written in terms of the supergroup variable g (or the
PSU(1, 1|2) currents) as in the worldsheet action (4.3). Even the definition of
the fermionic zero-mode variable θα in Section 4.3.1 could be motivated in this
formulation, which is the best suited for the study of the superstring in AdS3 × S3

since it generalizes to the case where a non-zero amount of R-R self-dual three-form
flux is turned on [46].

That being the case, the hybrid formalism in AdS3 × S3 with pure NS-NS three-
form flux can also be written in terms of bosonic currents Ja and free fermions
{pα, θα}. As was mentioned above eqs. (4.42), this hinges on the fact that the
matter part of the RNS formalism in the pure NS-NS AdS3 × S3 target-space is
given in terms of the bosonic currents Ja and the six free fermions ψa [81] [82]



Chapter 4. The superstring in an AdS3 × S3 background 105

[89]. Therefore, the free RNS fermions ψa plus {β, γ}-ghosts are related to the free
fermions {pα, θα} in (4.39).

In this section, we will further explore this correspondence between hybrid
and RNS variables to compare the vertex operators and amplitude computation
for the NS-sector states in Section 4.5 with the analogous calculation in the RNS
formalism. Achieving the same result with a different method should give further
support to our construction.

4.6.1 From hybrid to RNS variables

Let us identify, in RNS language, the contributions to the three-point amplitude
(4.79) for the NS-sector states. In terms of the RNS variables, the hybrid formalism
worldsheet fields can be expressed as [18] [46]

Sα1 = e−
ϕ
2 e−

i
2 HRNS

C Sα , θα = Sαe
i
2 HRNS

C e
ϕ
2 , (4.87a)

eρ = e−2ϕ+iχ−iHRNS
C , J++

C = e−2iχ+2ϕ+iHRNS
C , (4.87b)

where Sα is the spin-field for the six-dimensional part and the boson HRNS
C defines

the spin-field for the compactified directions.9

The field eiσ in the six-dimensional hybrid formalism is the c-ghost of the RNS
description in bosonized form and e−iσ the b-ghost. Similarly, the chiral bosons
{ϕ, χ} come from the superconformal ghosts

β = e−ϕ∂ξ = e−ϕ∂eiχ , γ = ηeϕ = e−iχeϕ. (4.88)

Note that the RNS variables obey the usual OPEs

HRNS
C (y)HRNS

C (z) ∼ −2 log(y − z) , σ(y)σ(z) ∼ − log(y − z) , (4.89a)

ϕ(y)ϕ(z) ∼ − log(y − z) , χ(y)χ(z) ∼ − log(y − z) . (4.89b)

Consequently, in terms of the RNS description, we have that

V = ξV−1
hyb , (4.90a)

G̃+
0 V = V−1

hyb , (4.90b)

G+
0 V = V0

hyb , (4.90c)

9We apologyze for using the letter S both for the RNS spin-field Sα and for the PSU(1, 1|2)
fermionic currents Sαj. Since the currents also carry an SU(2) index, this notation is unambiguous.
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where

V−1
hyb = cψae−ϕaa , (4.91a)

V0
hyb = − 1

2k
1√
2

c
(

Kaaa + ψaψb∇aab

)
, (4.91b)

with V−1
hyb and V0

hyb being vertex operators in the −1 and zero picture for the
NS-sector massless states, respectively. The SU(1, 1)k+2 × SU(2)k−2 current Ja

decouples from the fermions and is defined in eqs. (4.40) and (4.41). We emphasize
that no excitations in the compactified directions are being considered.

To get to eqs. (4.91), we used the following identifications between the RNS
and hybrid fermionic fields in the vertex operators

fa α1
β1Sβ1θα =

1
2

fabcψcψb , (4.92a)

(σbc)
β
αSβ1θα = −iψbψc , (4.92b)

Ka = Ja +
1
2

fabcψcψb . (4.92c)

4.6.2 RNS formalism in AdS3 × S3

Of course, one can arrive at the vertex operators (4.91) directly from the RNS
description of AdS3 × S3, which is given by a bosonic SU(1, 1)k+2 × SU(2)k−2

current algebra plus six free fermions ψa. Needless to say, one should consider
the GSO projected theory in order to eliminate the tachyons in RNS [20] [81]. This
comes in contrast with the hybrid description, in which the physical states are
automatically GSO projected [17].

In terms of the RNS variables, the bosonic currents of PSU(1, 1|2)k are the same
as in (4.92c) and read

Ka = Ja +
1
2

fabcψcψb , (4.93)

where the currents Ja are defined in eqs. (4.40) and (4.41) and ψa are the six free
worldsheet fermions of the RNS formalism satisfying the usual OPE relation

ψa(y)ψb(z) ∼ (y − z)−1ηab . (4.94)

Under the PSU(1, 1|2) bosonic currents, the fermions transform in the adjoint
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representation

Ka(y)ψb(z) ∼ (y − z)−1 fab
cψc . (4.95)

Recall that the structure constants are defined in eqs. (4.7).
The currents Ja have no poles with the fermions ψa and the N = 1 supercurrent

of the RNS formalism for the AdS3 × S3 part is

G6 =
i√
2k

(
J aψa +

1
6

fabcψcψbψa
)

, (4.96)

that, together with the stress-tensor,

T6 = − 1
4k

JaJbηab − 1
2

ψa∂ψbηab , (4.97)

generate a c = 9 N = 1 SCA. The four bosons and four fermions for the com-
pactification directions generate a c = 6 N = 1 SCA whose supercurrent and
stress-tensor we denote by GRNS

C and TRNS
C , respectively. In total, one has the usual

matter c = 15 N = 1 SCA of the RNS description

Tm(y)Tm(z) ∼
c
2

(y − z)4 +
2Tm(z)
(y − z)2 +

∂Tm(z)
(y − z)

, (4.98a)

Tm(y)Gm(z) ∼
3
2 Gm(z)
(y − z)2 +

∂Gm(z)
(y − z)

, (4.98b)

Gm(y)Gm(z) ∼
2
3 c

(y − z)3 +
2Tm(z)
(y − z)

, (4.98c)

with generators {Gm = G6 + GRNS
C , Tm = T6 + TRNS

C }.
The NS-sector massless unintegrated vertex operators in the −1 and zero

picture are

V−1
RNS = cψae−ϕaa , (4.99a)

V0
RNS = − 1

2k
1√
2

c
(
Jaaa +

1
2

fabcψcψbaa + ψaψb(Ja)0ab

)
= − 1

2k
1√
2

c
(

Kaaa + ψaψb(Ja)0ab

)
, (4.99b)

where (Ja)0 is the zero-mode of the current Ja and Ka is defined in eq. (4.93). Up
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to a constant V0
RNS = ZV−1

RNS, where

Z = 2QRNSeiχ

= Gmeϕ + b∂e−iχe2ϕ +
1
2

∂
(
be−iχe2ϕ

)
+ 2c∂eiχ , (4.100)

is the picture-changing operator [20]. The BRST operator in the RNS formalism
is10

QRNS =
∮

jBRST

=
∮ (

c
(
Tm + Tϕ,χ

)
+ bc∂c − 1

2
e−iχ+ϕGm +

1
4

be−2iχ+2ϕ + ∂2c + ∂
(
∂(iχ)c

))
.

(4.101)

Since the zero-mode o Ja acts on aa as the zero-mode of Ka. We can write VRNS
0

in the form

VRNS
0 = − 1

2k
1√
2

c
(

Kaaa + ψaψb∇aab

)
, (4.102)

which precisely matches the vertex operator (4.91b) found by the field redefinition
from the hybrid formalism.

4.6.3 Three-point amplitude in RNS variables

We can now use the tools developed in this section to compute the three-point
amplitude (4.84) for the NS-sector states inserted in the AdS3 boundary directly in
terms of the RNS formalism prescription.

As before, for fields depending on the boundary coordinates, we have

ψa(x) = ex∇+ψae−x∇+

= Ea
b(x)ψb , (4.103)

where Ea
b(x) is given by (4.58). Hence, the fundamental OPEs read

ψa(xi, y)ψb(xj, z) ∼ (y − z)−1Eab(xij) , (4.104a)

10The option for the total derivative added in the BRST current jBRST is chosen such that the
double pole between jBRST and b is given by the ghost- minus the picture-current. For that reason,
jBRST gets mapped to the N = 2 superconformal generator G+ (4.20b).
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Ka(xi, y)ψb(xj, z) ∼ (y − z)−1Ea
c(xi)Eb

d(xj) fcd
eψe . (4.104b)

Considering the vertex operators (4.99), the three-point amplitude for the
NS-sector states becomes

ANS,RNS
3 =

〈
VRNS
−1 (3)VRNS

−1 (2)VRNS
0 (1)

〉
= − 1

2k
1√
2

[
Eab(x12)ac

3(3)ab
2(2)

(
Dc(x31)aa

1

)
(1)

+ Ebc(x23)ac
3(3)

(
Da(x12)ab

2

)
(2)aa

1(1)

+ Eac(x13)
(

Db(x23)ac
3

)
(3)ab

2(2)aa
1(1)

− 1
2

fabc(x1, x2, x3)ac
3(3)ab

2(2)aa
1(1)

]
, (4.105)

which precisely matches (4.84), as we wanted to show. This calculation gives
further support for our construction using the supergroup variables and the
fermionic zero-mode coordinates θα(x) in the hybrid formalism.

Lastly, let us mention that, under the field redefinition (4.87), the RNS tree-level
zero-mode integration gets mapped to the hybrid measure of Section 4.2.4 only if
one works in the large Hilbert space, namely,

ξc∂c∂2ce−2ϕ ∼ e3ρ+3iσ J++
C (θ)4 . (4.106)

4.7 The superstring in the mixed flux AdS3 × S3 back-

ground with manifest PSU(1, 1|2)× PSU(1, 1|2)

The superstring compactified on T4 and propagating in AdS3 × S3 can be
described by a mixture of NS-NS and R-R self-dual three-form flux [46]. In this
section, after writing a general ansatz for the sigma-model action, we will begin
by identifying the background superfields appearing in the theory in Section
4.7.1, and then write the worldsheet action for the mixed flux AdS3 × S3 × T4

background in Section 4.7.2. Subsequently, it will be shown how to derive the
sigma-model action in Section 4.7.3 by substituting the values of the background
superfields. We will further confirm the latter result via a perturbative analysis in
Section 4.7.4.
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4.7.1 Type IIB worldsheet action in a six-dimensional curved

background

In order to identify the background superfields and before delving into the
AdS3 × S3 × T4 target-space, let us start by discussing the worldsheet action in an
arbitrary curved six-dimensional background. A reasonable guess for the general
form of the action can be inferred from the structure of the integrated vertex
operator (3.55) (see also (4.144)) [90]

S =
∫

d2z
(

1
2

Jb Ja
ηab + JB JABAB + dαj J

αj
+ d̂α̂j Jα̂j + dαjd̂β̂kFαj β̂k

+ Nabd̂
β̂kCβ̂k ab + N̂abdαjĈαj ab + wα∇λα + ŵα̂∇λ̂α̂ − 1

4
RabcdNabN̂cd

)
+ Sρ,σ + SC , (4.107)

where Sρ,σ is the action for the chiral bosons of the six-dimensional hybrid formal-
ism and SC is the action for the four-dimensional compactification manifold of T4

[46]. In writing eq. (4.107), we are considering only constant deformations in the
R-R superfield-strength Fαj β̂k and in the superfields {Cβ̂k ab, Ĉαj ab, Rabcd}, so that
the {ρ, σ}-ghosts decouple in the integrated vertex operator. This assumption will
be enough for writing a consistent worldsheet action in AdS3 × S3 × T4.

Similarly as in the six-dimensional hybrid formalism, it is possible that higher-
order terms in Fαj β̂k appear in (4.107) (see [46] eq. (8.39)) which couple the {ρ, σ}-
ghosts to the matter and the {λα, wα} ghost variables in this case. We will not
be concerned in determining them since, as we will see, this gives a consistent
worldsheet action for the superstring in AdS3 × S3. Additionally, our result will
be related to the hybrid description in Section 4.9.

In eq. (4.107), the worldsheet fields {JA
z , JA

z } are the pullback of the target
space super-vielbein JA = dZMEM

A, where ZM = {xm, θµj, θ̂µ̂j} are the curved
supercoordinates. The indice M = {m, µj, µ̂j} labels the curved superspace indices
and A = {a, αj, α̂j} labels the tangent superspace indices. As usual, we will write
JA
z = JA, JA

z = JA, ∇z = ∇ and ∇z = ∇ to simplify the notation, we hope the
context of the equation is enough for not causing confusion with the corresponding
one-forms. The inverse of the super-vielbein matrix EM

A is denoted as EA
M and it

is responsible for connecting curved and flat indices [24].
Since in a curved background the separation between left- and right-movers

is lost, we use a “hat” on top of the worldsheet variables which are purely anti-
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holomorphic in flat target-space. Also, we are interested in writing (4.107) in an
AdS3 × S3 background and so we can ignore the Fradkin-Tseytlin term which
couples the dilaton to the worldsheet curvature. The reason for this is that the
dilaton is constant in AdS3 × S3 and, therefore, it will contribute the usual coupling
constant dependence in scattering amplitudes. Moreover, given that there is no pαj

and p̂α̂j in (4.107), we can treat dαj = pαj + . . . and d̂α̂j = p̂α̂j + . . . as independent
variables.

The covariant derivatives ∇ and ∇ are defined using the pullback of the spin-

connections Ω β
α = dZMΩM

β
α and Ω̂ β̂

α̂ = dZMΩ̂ β̂
M α̂ . Their action on the ghosts

{λα, λ̂α̂} is

∇λα = ∂λα + λβΩ
α

β , ∇λ̂α̂ = ∂λ̂α̂ + λ̂β̂Ω̂ α̂
β̂

. (4.108)

We covariantize superspace derivatives acting on “un-hatted” and “hatted” spinor

indices using Ω β
α and Ω̂ β̂

α̂ , respectively. In general, the action of the covariant
derivative one-form ∇ on a q-form YA is defined by

∇YA = dYA + YBΩB
A , (4.109)

where ΩB
A = dZMΩMB

A is the connection one-form.
The background superfields {BAB, Fαj β̂k, Cα̂j ab, Ĉαj ab} are functions of the zero-

modes of {xa, θαj, θ̂α̂j}. More specifically, the superfield BAB is the superspace
two-form potential and the lowest component of the superfield Bab is the NS-NS
two-form bab. The lowest component of Fαj β̂k is the R-R field-strength f αj β̂k, the
lowest component of Rabcd is related to the Riemann curvature and the lowest
components of Cα̂j ab and Ĉαj ab are related to the gravitini and dilatini [90]. The
worldsheet fields Nab = wα(σab)

α
βλβ and N̂ab = ŵα̂(σab)

α̂
β̂
λ̂β̂ are the Lorentz

currents for the bosonic ghosts {wα, λβ, ŵα̂, λ̂β̂}.
One way to accomplish writing the action (4.107) in an AdS3 × S3 × T4 back-

ground with mixed NS-NS and R-R three-form flux is to explicitly substitute the
values for the background superfields appearing in (4.107) in the presence of a
constant R-R field-strength f αj β̂k and a suitable NS-NS two-form bab such that the
supergravity constraints are satisfied [90].

Equivalently, one can start with the superstring propagating in AdS3 × S3 × T4

with pure R-R flux. In the presence of a constant R-R three-form flux parametrized
by fRR, the lowest component of the background superfield Fαj β̂k is non-zero and
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invertible, consequently, the worldsheet variables dαj and d̂α̂j can be integrated
out from eq. (4.107). The result is a sigma-model with a supermanifold as a target-
space, where the six-dimensional part is described by the superspace coordinates
{xa, θαj, θ̂α̂j} plus ghosts. In the latter case, turning on a constant NS-NS three-form
flux parametrized by fNS corresponds to adding a Wess-Zumino (WZ) term to the
pure R-R three-form flux worldsheet action in AdS3 × S3.

In particular, this strategy was used in [46] from the six-dimensional hybrid
formalism to describe the mixed flux action from the supergroup PSU(1, 1|2). In
Section 4.7.3, we will show that starting with a constant R-R three-form flux sigma-
model with suitable rescalings of the currents, integrating out the worldsheet
fields dαj and d̂α̂j in (4.107), modifying the two-form potential B

αj β̂k to accomodate
the mixed flux background, and adding a WZ term corresponding to turning on
the NS-NS three-form, one obtains a description of the superstring in an AdS3 ×
S3 × T4 background with mixed NS-NS and R-R three-form flux constructed
from the group element g ∈ PSU(1,1|2)×PSU(1,1|2)

SO(1,2)×SO(3) . Moreover, after taking the limit
fRR → 0, it is found a description of the pure NS-NS model with the super-coset
PSU(1,1|2)×PSU(1,1|2)

SO(1,2)×SO(3) as the target superspace. The latter is the analogue of the WZW
model of PSU(1, 1|2) found in [46] for the superstring in AdS3.

4.7.2 The sigma-model on the supergroup

As was pointed out in refs. [91] [44], the Type IIB superstring compactified
on T4 and propagating in an AdS3 × S3 background with pure R-R flux can be
described by the super-coset

PSU(1, 1|2)× PSU(1, 1|2)
SO(1, 2)× SO(3)

, (4.110)

whose bosonic part is SO(2,2)×SO(4)
SO(1,2)×SO(3) =

SO(2,2)
SO(1,2) ×

SO(4)
SO(3) = AdS3 × S3. Furthermore, in

this background, the super-vielbein JA = dZMEM
A and the connection one-form

J[ab] can be identified with the left-invariant one-forms [91]

JA = (g−1dg)A , (4.111)

where A = {[ab], A} and g(x, θ, θ̂) takes values in the supercoset PSU(1,1|2)×PSU(1,1|2)
SO(1,2)×SO(3) .

Note that the index A = {[ab], αj, a, α̂j}, so that it ranges over the 12 bosonic
and the 16 fermionic generators TA = {T[ab], Tαj, Ta, Tα̂j} of the Lie superalgebra of
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PSU(1, 1|2)×PSU(1, 1|2). More precisely, indices [ab] correspond to the SO(1, 2)×
SO(3) generators, a = {0 to 5} to the translation generators and α, α̂ = {1 to 4}
together with j = {1, 2} to the supersymmetry generators. In particular, a = {a, a′}
with a = {0, 1, 2} corresponding to the AdS3 directions and a′ = {3, 4, 5} to
the S3 directions. Consequently, the isotropy group generators split as T[ab] =

{T[ab], T[a′b′]}.
The generators TA of the Lie superalgebra of PSU(1, 1|2)× PSU(1, 1|2) satisfy

the graded Lie-bracket

[TA, TB} = i fAB
CTC , [TA, TB} = TATB − (−)|A||B|TBTA , (4.112)

where we define |A| = 0 if it corresponds to a bosonic and |A| = 1 if it corresponds
to a fermionic indice. The non-vanishing structure constants fAB

C of PSU(1, 1|2)×
PSU(1, 1|2) are

fαj βk
a = −σa

αβϵjk , f
α̂j β̂k

a = −σa
α̂β̂

ϵjk , (4.113a)

fβk a
α̂j = −δ̂α̂γσaγβδ

j
k , f

β̂k a
αj = −δ̂αγ̂σaγ̂β̂

δ
j
k , (4.113b)

f
αj β̂k

[ab] = i(σab) γ
α δ̂

γβ̂
ϵjk , f

αj β̂k
[a′b′] = −i(σa′b′) γ

α δ̂
γβ̂

ϵjk , (4.113c)

f[ab] αk
βj = i(σab)

β
α δ

j
k , f[ab] α̂k

β̂j = i(σab)
β̂

α̂ δ
j
k , (4.113d)

fc d
[ab] = δa

[cδb
d] , fc′ d′

[a′b′] = −δa′
[c′δ

b′
d′] , (4.113e)

f[cd] [e f ]
[ab] =

1
2

(
ηe[cδ

[a
d]δ

b]
f + η f [dδ

[a
c]δ

b]
e

)
, f[bc] d

a = ηd[bδa
c] , (4.113f)

where δ̂αβ̂ = 2
√

2(σ012)αβ̂, (σabc)αβ = i
3!(σ

[aσbσc])αβ, (σab)
β

α = i
2(σ

[aσb])
β

α and we
anti-symmetrize with square brackets without dividing by the number of terms,
e.g., δa

[cδb
d] = δa

c δb
d − δa

dδb
c . Similarly, symmetrization is denoted with round brackets.

Note that the matrix δ̂αβ̂ enables one to contract an α index with a β̂ index in an
SO(1, 2)× SO(3) invariant manner. Detailed information about the Pauli matrices
σa

αβ and its properties can be found in Appendix B.

We choose the representative of the super-coset PSU(1,1|2)×PSU(1,1|2)
SO(1,2)×SO(3) as

g = exaTa+θαjTαj+θ̂ β̂kT
β̂k , (4.114)
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and one can check, from the definition of the left-invariant one-forms

g−1dg = JATA , (4.115)

that in the flat space limit of (4.113) one obtains Jαj = dθαj, Ja = Πa and J β̂k = dθ̂ β̂k,
which are the super-vielbeins in a flat six-dimensional background (3.30), as
desired [92].

Global PSU(1, 1|2)×PSU(1, 1|2) transformations are defined to act on the coset
representative g from the left and gauge transformations from the isotropy group
SO(1, 2) × SO(3) are defined to act on the coset representative from the right.
Therefore, under a combined global and a local transformation, we write

g → eΣgeΩ , (4.116)

where eΣ corresponds to a global PSU(1, 1|2) × PSU(1, 1|2) and eΩ to a local
SO(1, 2)× SO(3) transformation of g. It is then manifest that the left-invariant
currents (4.115) are invariant under global transformations. On the other hand,
under a local transformation of the isotropy group, we have that

δJ[ab] = ω[cd] J[e f ]i f[e f ] [cd]
[ab] + dω[ab] , (4.117a)

δJA = ω[ab] JBi fB [ab]
A , (4.117b)

and the ghosts transform according to

δλα = −ω[ab](σab)
α
βλβ , δλ̂α̂ = −ω[ab](σab)

α̂
β̂
λ̂β̂ , (4.118a)

δwα = ω[ab]wβ(σab)
β
α , δŵα̂ = ω[ab]ŵ

β̂
(σab)

β̂
α̂ , (4.118b)

where Ω = ω[ab]T[ab] in (4.116).
Another important property is that the left-invariant one-forms satisfy the

Maurer-Cartan equations

dJC = − i
2

fAB
C JB JA , (4.119)

Here, d = dz∂ + dz∂, JA = dzJA + dzJA and we use the same conventions when
working with differential forms as in [24], in particular, we omit the wedge prod-
uct symbol in (4.119) and in the subsequent discussions. Further properties of
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PSU(1, 1|2)× PSU(1, 1|2) are discussed in Appendix L.
Having identified the super-vielbeins with the left-invariant currents of the

super-coset PSU(1,1|2)×PSU(1,1|2)
SO(1,2)×SO(3) and introduced the supergroup PSU(1, 1|2)×

PSU(1, 1|2), we are now in a position to write the worldsheet action (4.107) in an
AdS3 × S3 background for the Type IIB superstring compactified on T4 with mixed
constant NS-NS and R-R three-form flux. The worldsheet action takes the form

S =
1
f 2

∫
d2z
(

1
2

Jb Ja
ηab + ϵjkδ̂

αβ̂
J β̂k Jαj

+ wα∇λα

+ ŵα̂∇λ̂α̂ − η[ab][cd]NabN̂cd

)
+

i
f 2 SWZ + Sρ,σ + SC , (4.120)

where η[ab][cd] = 1
2{ηa[cηd]b,−ηa′[c′ηd′]b′} is the inverse of the PSU(1, 1|2)×PSU(1, 1|2)

metric (see eqs. (L.10)), the covariant derivatives are

∇λα = ∂λα + J[ab]
(σab)

α
βλβ , ∇λ̂α̂ = ∂λ̂α̂ + J[ab](σab)

α̂
β̂
λ̂β̂ , (4.121)

and the Wess-Zumino term is given by

SWZ = −
∫
B

1
6

JC JB JAHABC , (4.122)

with11

Hαj βk a =
i
2
(
2 − fRR

f
)
ϵjkσaαβ , H

α̂j β̂k a = − i
2
(
2 − fRR

f
)
ϵjkσaα̂β̂

, (4.123a)

Habc =
fNS

f
(σabc)αβ̂

δ̂αβ̂ , H
αj β̂k a =

i
2

fNS

f
ϵjkσaαβ̂

. (4.123b)

The details about the derivation of the sigma-model (4.120) can be found in Sec-
tions 4.7.3 and 4.7.4 below.

In eq. (4.122), the integration is carried over a three-manifold B whose bound-
ary is the worldsheet. As in (4.107), Sρ,σ is the action for the chiral bosons of the
six-dimensional hybrid formalism, which remain free fields, and SC is the action
representing the compactification directions. The constant f is the inverse of the

AdS3 radius and is given by f =
√

f 2
RR + f 2

NS, where fNS and fRR parametrize the
NS-NS and R-R self-dual three-form flux, respectively. We shall also parametrize

11Note that H012 = H345 and hence it is self-dual. Moreover, the constants HABCs are graded
anti-symmetric in the 1-2 and 2-3 indices, while the fABCs are graded anti-symmetric in the 1-2
and 1-3 indices. See eqs. (L.9) for our conventions.
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the NS-NS flux by the constant k = fNS f−3. Note that H = dB, where B is the
two-form potential. The three-form H

αj β̂k a in (4.122) is necessary for SWZ to be
closed (see Section 4.7.3), its origin will be further clarified via a perturbative
derivation in Section 4.7.4.

As is elaborated in Appendix L, the Lie superalgebra g of PSU(1, 1|2) ×
PSU(1, 1|2) admits a Z4-automorphism, so that it can be decomposed as

g = g0 ⊕ g1 ⊕ g2 ⊕ g3 , (4.124)

and, as a consequence, one can split the left-invariant currents (4.115) according to
their Z4-grade

J = J0 + J1 + J2 + J3 , (4.125)

where J0 = J[ab]T[ab], J1 = JαjTαj, J2 = JaTa and J3 = Jα̂jTα̂j. Using the Maurer-
Cartan equations (4.119) and the supertrace over the generators (L.7), the world-
sheet action (4.120) can be written in a more symmetric form

S =
1
f 2

∫
d2z sTr

[
1
2

J2 J2
+

1
2

(
J1 J3 + J1 J3

)
+ w∇λ

+ ŵ∇λ̂ − NN̂
]
− i

f 2

∫
B

(
HNS +HRR

)
+ Sρ,σ + SC , (4.126)

where we defined

λ = λαjTαj , w = wαjδ̂
αβ̂ϵjkT

β̂k , λαj =
1√
2
{λα, λα} , wαj =

1√
2
{wα, wα} ,

λ̂ = λ̂α̂jTα̂j , ŵ = ŵα̂jϵ
jkδ̂α̂βTβk , λ̂α̂j =

1√
2
{λ̂α̂, λ̂α̂} , ŵα̂j =

1√
2
{ŵα̂, ŵα̂} ,

∇λ = ∂λ + [J0, λ] , N = −{w, λ} , ∇λ̂ = ∂λ̂ + [J0, λ̂] , N̂ = −{ŵ, λ̂} ,

and

HNS =
1
6

(
Jc Jb JaHabc + 6Ja J β̂k JαjH

αj β̂k a

)
, (4.127a)

HRR = −1
2

fRR

f
sTr
(

J2 J1 J1 − J2 J3 J3
)

, (4.127b)

so that HNS is proportional to the amount of NS-NS flux fNS and HRR to the
amount of R-R flux fRR.
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It is important to note that the three-form HNS has Z4-grade equal to two,
therefore it cannot be written as a supertrace over PSU(1, 1|2)× PSU(1, 1|2) in
terms of the currents in (4.125), given that the supertrace must be Z4-invariant.
On the other hand, the three-form HRR is exact (see eq. (4.140)) and hence can be
written under a two-dimensional integral over the worldsheet, it is the WZ term
that also appears in the AdS2 × S2 and AdS5 × S5 worldsheet actions with pure
R-R flux [91].

In addition, the sigma-model (4.126) has a Z2-symmetry under the exchange of
holomorphic and anti-holomorphic worldsheet coordinates, flipping the grading
of the left-invariant fermionic currents (i.e., J1 ↔ J3), and further redefining
fNS → − fNS. When fNS = 0, this is the Z2-symmetry ejoyed by the AdS5 × S5

pure spinor sigma-model, which corresponds to eq. (4.126) with Sρ,σ = SC = 0,
HNS = 0 and so f = fRR. Of course, in the AdS5 × S5 case, the Z4-coset of interest
is PSU(2,2|4)

SO(1,4)×SO(5) , the left-invariant currents J ∈ PSU(2, 2|4), λ and λ̂ are replaced by
d = 10 pure spinor variables, and the supertrace is taken over the PSU(2, 2|4) Lie
superalgebra generators, see [64, eq. (2.1)].

As an important observation, note that in the limit fRR → 0 we have f−2 = f−2
NS

and f−1 fNS = 1, consequently, one obtains the pure NS-NS model with the super-
coset PSU(1,1|2)×PSU(1,1|2)

SO(1,2)×SO(3) as the target-superspace, whose worldsheet action is
given by

S =
1

f 2
NS

∫
d2z sTr

[
1
2

J2 J2
+

1
2

(
J1 J3 + J1 J3

)
+ w∇λ + ŵ∇λ̂ − NN̂

]
− i

f 2
NS

∫
B
HNS + Sρ,σ + SC . (4.128)

In comparison to the six-dimensional hybrid formalism in an AdS3 × S3 back-
ground [46], the model (4.120) has all 16 supersymmetries of N = 2 six-dimensional
superspace manifest, whereas in [46] only half of the 16 supersymmetries were
manifest. Notice that the price one pays for this is the presence of additional ghosts
among the worldsheet variables. We should emphasize that even the matter sector
of the action (4.120) is different from the one in the Green-Schwarz formulation
[93] [94] [95] [96], for the reason that (4.120) contains a kinetic term for the fermions
which breaks the Kappa-symmetry. The same distinction already appears when
comparing the matter sector of the Green-Schwarz superstring in AdS5 × S5 [61]
with the AdS5 × S5 pure spinor description [64], or when comparing the AdS2 × S2

Green-Schwarz with the AdS2 × S2 hybrid action [91].
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4.7.3 Derivation from the supergravity constraints

In the presence of a constant R-R three-form flux parametrized by fRR, the
R-R field-strength f αj β̂k is proportional to fRR, the two-form potential B

αj β̂k is

proportional to f−1
RR = f−1 and the superfield Rabcd is proportional to f 2

RR = f 2,
where f is the inverse of the AdS3 radius. It is convenient to rescale the background
fields in (4.107) as

B
αj β̂k → f−1

RR B
αj β̂k , Fαj β̂k → fRRFαj β̂k , Rabcd → f 2Rabcd , (4.129)

and the worldsheet fields as [46] [54]

Ja → f−1 Ja , Ja → f−1 Ja , dαj → f−
1
2

RR f−1dαj , (4.130a)

d̂
β̂k → f−

1
2

RR f−1d̂
β̂k , Jαj → f

1
2
RR f−1 Jαj , Jαj → f

1
2
RR f−1 Jαj , (4.130b)

J β̂k → f
1
2
RR f−1 J β̂k , J β̂k → f

1
2
RR f−1 J β̂k , λα → f−1λα , (4.130c)

λ̂α̂ → f−1λ̂α̂ , wα → f−1wα , ŵα̂ → f−1ŵα̂ , (4.130d)

so that the action gets an overall factor of f−2
RR = f−2. Therefore, working with the

worldsheet action (4.107) with a factor of f−2 in front is equivalent as treating the
superfields {B

αj β̂k, Fαj β̂k, Rabcd} in (4.107) to be independent of fRR, this observa-
tion will make the formulas below more transparent. In eqs. (4.130), it is important
to note that even though fRR = f in a pure R-R background, we explicitly wrote
the factors of the inverse of the AdS3 radius f , in this way, the rescalings have a
natural generalization when turning on an NS-NS three-form flux parametrized

by fNS, where the inverse of the AdS3 radius becomes f =
√

f 2
RR + f 2

NS [46].
In the pure R-R flux AdS3 × S3 background, the non-vanishing background

superfields in the action (4.107) take the values [44] [54]

Fαj β̂k = −ϵjkδ̂αβ̂ , (4.131a)

B
αj β̂k = B

β̂k αj = −1
4

ϵjkδ̂
αβ̂

, (4.131b)

Rabcd = 4η[ab][cd] , (4.131c)

From the torsion constraints

Tαj a
β̂k = −i fαj γl aFγl β̂k , Tα̂j a

βk = i fα̂j γ̂l aFβk γ̂l , (4.132)
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and the definition of the three-form with flat indices HABC = 1
2∇[ABBC]+

1
2 T[AB|

DBD|C],
we obtain the desired supergravity constraints

Hαj βk a =
i
2

ϵjkσaαβ , H
α̂j β̂k a = − i

2
ϵjkσaα̂β̂

. (4.133)

Besides that, using the definition of the curvature two-form RB
A (see Appendix

C.2), one can check that choosing the connection one-form as ΩA
B = i f[ab] B

A J[ab]

agrees with Rabcd in eq. (4.131c).
The superfield Fαj β̂k in (4.131a) is invertible, therefore, we can integrate dαj and

d̂
β̂k in the action via the equations of motion

dαj = ϵjkδ̂
αβ̂

J β̂k , d̂α̂j = ϵjkδ̂α̂β Jβk . (4.134)

Consequently, the AdS3 × S3 worldsheet action (4.107) in a pure R-R background
takes the form [54]

S =
1
f 2

∫
d2z
[

1
2

Jb Ja
ηab +

3
4

ϵjkδ̂
αβ̂

J β̂k Jαj
+

1
4

ϵjkδ̂
αβ̂

J β̂k Jαj

+ wα∇λα + ŵα̂∇λ̂α̂ − η[ab][cd]NabN̂cd

]
+ Sρ,σ + SC , (4.135)

where f = fRR in (4.135) and is the inverse of the AdS3 radius.
For the Type IIB superstring in AdS3 × S3, one can also turn on a constant NS-

NS three-form flux Habc. We can include in (4.135) the interaction corresponding to
this field by constructing a Wess-Zumino term from a PSU(1,1|2)×PSU(1,1|2)

SO(1,2)×SO(3) -invariant
and closed three-form HNS. Locally, this closed three-form must describe a first-
order deformation of flat six-dimensional spacetime by the NS-NS field bab. Up to
a constant, the closed three-form HNS satisfying these properties is unique and
given by (4.127a), which we repeat below for completeness

HNS =
1
6

(
Jc Jb JaHabc + 6Ja J β̂k JαjH

αj β̂k a

)
, (4.136)

where Habc = fNS
f (σabc)αβ̂

δ̂αβ̂ and H
αj β̂k a = i

2
fNS

f ϵjkσaαβ̂
with fNS parametrizing

the amount of NS-NS flux. One can check that (4.136) is closed by using the
Maurer-Cartan equations (4.119).

In view of that, it is natural to think that the worldsheet action describing the
superstring in AdS3 × S3 × T4 with mixed flux consists in taking the inverse of the
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AdS3 radius as f =
√

f 2
RR + f 2

NS and adding to the action (4.135) the term

− i
f 2

∫
B
HNS , (4.137)

where the integration is carried over a three-manifold B whose boundary is the
worldsheet. Nevertheless, this doesn’t work as expected. Performing this modi-
fication will spoil one-loop conformal invariance of eq. (4.135) and, hence, what
is obtained does not correspond to a consistent sigma-model for the superstring
propagating in AdS3 × S3 × T4. As we will presently see, for conformal invariance
to be preserved in the mixed flux AdS3 background, one also needs to modify the
superspace two-form B

αj β̂k in (4.131b) besides adding (4.137) to eq. (4.135).
The situation is then a bit different from what happens in the six-dimensional

hybrid formalism in AdS3 × S3 with mixed NS-NS and R-R three-form flux [46].
In that case, the target-space is the supergroup PSU(1, 1|2) and turning on a
constant NS-NS flux, by starting from the pure R-R AdS3 × S3 worldsheet action,
corresponds to just adding the integral of a PSU(1, 1|2) closed three-form to the
sigma-model. So that no further modification of the terms already present in the
action is necessary. On the other hand, in the description of the Green-Schwarz
superstring with target-space the super-coset PSU(1,1|2)×PSU(1,1|2)

SO(1,2)×SO(3) , it was already
observed that the naive Wess-Zumino term in the fermionic left-invariant currents
should be modified for the preservation of one-loop conformal invariance and
integrability of the model [96].

Accordingly, to obtain a consistent worldsheet action in AdS3 × S3 in the
presence of mixed NS-NS and R-R three-form flux, we start with the general form
(4.107), perform the rescalings (4.129) and (4.130), and modify the two-form B

αj β̂k
so that the background superfields of eqs. (4.131) now take the form

Fαj β̂k = −ϵjkδ̂αβ̂ , (4.138a)

B
αj β̂k = B

β̂k αj = −1
4
(
2 − fRR

f
)
ϵjkδ̂

αβ̂
, (4.138b)

Rabcd = 4η[ab][cd] . (4.138c)

Integrating out dαj and d̂
β̂k as before and adding the NS-NS deformation (4.137),

the resulting sigma-model for the superstring propagating in AdS3 × S3 × T4 is



Chapter 4. The superstring in an AdS3 × S3 background 121

then given by

S =
1
f 2

∫
d2z
[

1
2

Jb Ja
ηab + ϵjkδ̂

αβ̂
J β̂k Jαj −

(
2 − fRR

f
)1

4
ϵjkδ̂

αβ̂

(
J β̂k Jαj − J β̂k Jαj

)
+ wα∇λα + ŵαh∇λ̂α̂ − η[ab][cd]NabN̂cd

]
− i

f 2

∫
B
HNS + Sρ,σ + SC , (4.139)

where f =
√

f 2
RR + f 2

NS is the inverse of the AdS3 radius. To recover eq. (4.120),
one just needs to note that we can write

− 1
f 2

(
2 − fRR

f
) ∫

d2z
1
4

ϵjkδ̂
αβ̂

(
J β̂k Jαj − J β̂k Jαj

)
=

1
f 2

(
2 − fRR

f
) i

4

∫
B

d
(

ϵjkδ̂
αβ̂

J β̂k Jαj
)

= − i
f 2

∫
B

1
2

(
Ja Jβk JαjHαj βk a + Ja J β̂k Jα̂jH

α̂j β̂k a

)
, (4.140)

where Hαj βk a and H
α̂j β̂k a are given by (4.123).12 Eq. (4.140) is the Wess-Zumino

term of ref. [91] which appears in quantizable super-coset descriptions of the
AdS2 × S2 and AdS5 × S5 backgrounds as well.

The reason for choosing B
αj β̂k as in eq. (4.138b) hinges on the fact that in the

fNS → 0 limit, i.e., f = fRR we recover the pure R-R worldsheet action (4.135).
Alongside that, the choice (4.138b) for the two-form potential is required for one-
loop conformal invariance of the action (4.120) (see Section 4.8), which is known to
be compatible with background superfields satisfying the supergravity equations
of motion [77].

Note that the constraints (4.133) in the mixed flux case are

Ha αj βk =
i
2
(
2 − fRR

f
)
ϵjkσaαβ , Ha α̂j β̂k = − i

2
(
2 − fRR

f
)
ϵjkσaα̂β̂

, (4.141)

and so they have the desired form in both limits: fNS → 0 and fRR → 0 which are
consistent AdS3 × S3 backgrounds for the superstring. Note further that, without
loss of generality, one can take fRR ≥ 0.

12In eq. (4.140), to get from the first to the second line we used that Jαj ∧ J β̂k = dσ0 ∧ dσ1ϵI J Jαj
J J β̂k

I ,
d2z = 2dσ0dσ1 and ϵzz = −2i. To get from the second to the last line we used the Maurer-Cartan
equations. In our conventions, the Euclidean wordsheet coordinates σI = {σ0, σ1} are related to
the complex coordinates as z = σ0 − iσ1 and z = σ0 + iσ1 (see Appendix C.1).
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4.7.4 Perturbative derivation

In the previous section, the AdS3 × S3 action (4.120) was justified by substitut-
ing the values for the background superfields in (4.107). The latter can be inferred
from the worldsheet action in a general ten-dimensional background [90], or by
covariantizing the massless closed superstring integrated vertex operator (4.144)
with respect to target-space super-reparametrization invariance. Below, we will
further confirm our result and show how one can derive (4.120) via a perturbative
analysis starting from the integrated vertex operator.

Firstly, note that up to cubic-order in the worldsheet fields, the supertrace term
in eq. (4.126) is

1
f 2

∫
d2z sTr

[
1
2

J2 J2
+

1
2

(
J1 J3 + J1 J3

)
+ w∇λ + ŵ∇λ̂ − NN̂

]
=

1
f 2

∫
d2z
(

1
2

∂xb∂xaηab + ϵjkδ̂
αβ̂

∂θ̂ β̂k∂θαj + wα∂λα + ŵα̂∂λ̂α̂

)
, (4.142)

and the three-form in eq. (4.126) is given by

− i
f 2

∫
B

(
HNS +HRR

)
=

1
f 2

∫
d2z
{

fNS

f

[
1
3

xc∂xb∂xa(σabc)αβ̂
δ̂αβ̂ +

i
2

ϵjk

(
∂x

αβ̂
∂θ̂ β̂kθαj − ∂x

αβ̂
∂θ̂ β̂kθαj

)]
+

fRR

f

[
i
4

ϵjk

(
∂xαβ∂θβkθαj − ∂xαβ∂θβkθαj

)
+

i
4

ϵjk

(
∂x

α̂β̂
∂θ̂ β̂k θ̂α̂j

− ∂x
α̂β̂

∂θ̂ β̂k θ̂α̂j
)]}

, (4.143)

where x
αβ̂

= xaσaαβ̂
. Let us see if we can reproduce the above results by doing a

perturbative analysis starting from flat space.
The linearized deformation around the flat background is given by the inte-

grated vertex operator
∫

WSG. For the case of the closed superstring, the integrated
vertex operator can be obtained as the left-right product of the open superstring
vertex operator in eq. (3.55). In the analysis of this section, we want to confirm
that the worldsheet action in eq. (4.120) corresponds to turning on the NS-NS and
the R-R three-form flux up to cubic-order in the worldsheet fields.

Consider the integrated vertex operator for the compactification-independent
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massless sector of the Type IIB superstring which reads

WSG = ∂θ̂ β̂k∂θαj A
αj β̂k + ∂θαjΠa Aa αj + ∂θ̂ β̂kΠa Aa β̂k + ΠbΠa Aab + dαj∂θ̂ β̂kE

β̂k
αj

+ dαjΠ
aEa

αj + d̂
β̂k∂θαjEαj

β̂k + d̂
β̂kΠaEa

β̂k + dαjd̂β̂kFαj β̂k − i
2

NabΠcΩ ab
c

− i
2

N̂abΠcΩ̂ ab
c + (. . .) , (4.144)

where the d = 6 N = 2 superfields

{A
αj β̂k, Aa αj, Aa β̂k, Aab, E

β̂k
αj, Ea

αj, Eαj
β̂k, Ea

β̂k, Fαj β̂k, Ωabc, Ω̂abc} , (4.145)

are functions of the zero-modes of {xa, θαj, θ̂α̂j} and the terms in (. . .) do not
contribute to the analysis below since, for example, they involve

− i
2

Nab∂θ̂ β̂kΩ ab
β̂k

− i
2

N̂ab∂θαjΩ̂ ab
αj , (4.146)

which is zero up to cubic-order in the worldsheet variables for constant NS-NS
and R-R three-form flux. Moreover, the other terms in (. . .) identically vanish for
these constant fluxes. Some of the remaining contributions to WSG are written in
eq. (M.2).

The d = 6 Type IIB supergravity spectrum is described by the bi-spinor su-
perfield A

αj β̂k [97], which satisfy the following linearized equations of motion

(σabc)αβ
(

Dαj Aβk γ̂k + Dβk Aαj γ̂l

)
= 0 , (4.147a)

(σabc)α̂β̂
(

Dα̂j Aγl β̂k + D
β̂k Aγl α̂j

)
= 0 , (4.147b)

and gauge invariances

δA
αj β̂k = DαjΩ̂β̂k + D

β̂kΩαj , (4.148)

where

(σabc)αβ
(

DαjΩβk + DβkΩαj

)
= 0 , (4.149a)

(σabc)α̂β̂
(

Dα̂jΩ̂β̂k + D
β̂kΩ̂α̂j

)
= 0 , (4.149b)

for the superfields {Ωαj, Ω̂α̂j} functions of the zero-modes of {xa, θαj, θ̂α̂j}, Dαj =
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∂
∂θαj − i

2 ϵjkθβk∂αβ and Dα̂j =
∂

∂θ̂α̂j − i
2 ϵjk θ̂ β̂k∂

α̂β̂
. The remaining superfields appear-

ing in (4.144) are the d = 6 N = 2 linearized supergravity connections and
field-strengths. They are defined in terms of A

αj β̂k according to the equations in
Appendix M, where it is also written the remaining equations obtained from BRST
invariance of the integrated vertex operator.

Considering a linear perturbation of the flat six-dimensional model to the
AdS3 × S3 background with mixed three-form flux amounts to turning on the
NS-NS two-form bab and the R-R field-strength f αj β̂k. In this case, there exists a
gauge such that the non-zero components of the superfield A

αj β̂k are

Aβk γ̂l =
1

32
(σbθk)β(σ

aθ̂l)γ̂ηab −
1
4
(σbθk)β(σ

aθ̂l)γ̂bab −
1

32
(σdθk)β(θ

jσabdθj)(σ
cθ̂l)γ̂∂[abb]c

− 1
32

(σdθ̂l)γ̂(θ̂
jσabdθ̂j)(σ

cθk)β∂[abb]c +
1
9

ϵβγδσϵ
γ̂δ̂σ̂ρ̂

θ
γ
k θ̂ δ̂

l θδ
mθ̂σ̂

n f σm ρ̂n + (. . .) ,

(4.150)

where θα
j = ϵjkθαk and θ̂α̂

j = ϵjk θ̂α̂k. Note that the first term in (4.150) corresponds
to a total derivative in the integrated vertex, it was added so that we can reproduce
exactly the coefficients appearing in eq. (4.143). The contributions in eq. (4.150)
denoted by (. . .) involve at least second-order derivatives of bab or first-order
derivatives of f αj β̂k and hence vanish for a constant NS-NS and R-R three-form
flux.

Explicitly, in the AdS3 × S3 background, we have that

bab =
1
3

fNSδ̂αβ̂(σabc)αβ̂
xc , f αj β̂k = − fRRδ̂αβ̂ϵjk , (4.151)

and using eqs. (M.1) we can express all the superfields in the integrated vertex
(4.144) in terms of A

αj β̂k and, therefore, in terms of the fields (4.151). Up to first-

order in the worldsheet variables {xa, θαj, θ̂α̂j}, the d = 6 N = 2 superfields are
given by

Aa αj =
i

16
(σaθj)α , Aa β̂k =

i
16

(σaθ̂k)β̂
, (4.152a)

Aab = −1
8

ηab +
1
3

fNSδ̂αβ̂(σabc)αβ̂
xc , E

β̂k
αj = 0 , (4.152b)

Ea
βk =

2
3

i fNSδ̂βγ̂σaγ̂δθδk + i fRRδ̂βγ̂σaγ̂δ̂
θ̂ δ̂k , Eαj

β̂k = 0 , (4.152c)

Ea
γ̂l = −2

3
i fNSδ̂γ̂δσaδσ̂ θ̂σ̂l + i fRRδ̂γ̂δσaδσθσl , Fαj β̂k = − fRRϵjkδ̂αβ̂ , (4.152d)
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Ωabc = −2
3

fNS(σabc)αβ̂
δ̂αβ̂ , Ω̂abc =

2
3

fNS(σabc)αβ̂
δ̂αβ̂ . (4.152e)

Consequently, up to cubic-order in the worldsheet fields and after rescaling

θαj → f
1
2
RRθαj and θ̂α̂j → f

1
2
RRθ̂α̂j, the linearly perturbed worldsheet action is

Sflat +
∫

WSG =
∫

d2z
[

1
2

∂xb∂xaηab

(
1 − 1

4

)
+ ϵjkδ̂

αβ̂
∂θ̂ β̂k∂θαj + wα∂λα + ŵα̂∂λ̂α̂

+
1
3

fNSxc∂xb∂xa(σabc)αβ̂
δ̂αβ̂ − 2

3
iϵjk fNS

(
∂x

αβ̂
∂θ̂ β̂kθαj + ∂x

αβ̂
θ̂ β̂k∂θαj

)
+

i
2

fRRϵjk

(
∂x

α̂β̂
θ̂ β̂k∂θ̂α̂j + ∂xαβθβk∂θαj

)
+

i
3

fNS(σ
abc)

αβ̂
δαβ̂
(

∂xcNab

− ∂xcN̂ab

)]
+ Sρ,σ + SC , (4.153)

and by further rescaling xa → 2√
3

xa, fNS → 3
√

3
8 fNS and fRR →

√
3

2 fRR, we finally
get

Sflat +
∫

WSG =
∫

d2z
[

1
2

∂xb∂xaηab + ϵjkδ̂
αβ̂

∂θ̂ β̂k∂θαj + wα∂λα + ŵα̂∂λ̂α̂

+
1
3

fNSxc∂xb∂xa(σabc)αβ̂
δ̂αβ̂ +

i
2

fNSϵjk

(
∂x

αβ̂
∂θ̂ β̂kθαj − ∂x

αβ̂
∂θ̂ β̂kθαj

)
+

i
2

fRRϵjk

(
∂x

α̂β̂
θ̂ β̂k∂θ̂α̂j + ∂xαβθβk∂θαj

)
+

i
4

fNS(σ
abc)

αβ̂
δαβ̂
(

∂xcNab

− ∂xcN̂ab

)]
+ Sρ,σ + SC , (4.154)

where we integrated by parts and ignored terms proportional to ∂∂x, ∂∂θ and ∂∂θ̂,
which can be removed by redefining x, θ̂ and θ. After rescaling all the worldsheet
fields by f−1, the action (4.154) reproduces all terms appearing in eqs. (4.142) and
(4.143), except for the contributions involving the ghost currents {Nab, N̂ab}, which
appear in (4.154) but are absent in (4.142) and (4.143). Nevertheless, this fact can
be easily remedied by shifting the ghosts in (4.154) as

λα → λα − i
4

fNS(σ
abc)βγ̂δβγ̂xc(σabλ)α , (4.155a)

λ̂α̂ → λ̂α̂ +
i
4

fNS(σ
abc)βγ̂δβγ̂xc(σabλ̂)α̂ , (4.155b)

and then removing additional terms of cubic-order proportional to ∂λα and ∂λ̂α̂

by also redefining wα and ŵα̂.
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Therefore, our perturbative analysis in eq. (4.154) replicates the worldsheet
action (4.120) up to cubic-order in the worldsheet variables. In addition, note that
to put the contributions proportional to fRR in (4.154) in the same form as the ones
appearing in eq. (4.143), one can again integrate by parts and eliminate all terms
proportional to ∂∂x, ∂∂θ and ∂∂θ̂ by suitable field redefinitions.

Thus, we have confirmed that the deformed action (4.120) corresponds to
turning on the NS-NS two-form bab and a constant R-R field-strength f αj β̂k, as pre-
sented in eqs. (4.151). For this purpose, it was enough to consider the deformation
(4.144), given that the remaining terms in (. . .) that can appear in the integrated
vertex do not contribute to our perturbative analysis.

4.8 One-loop conformal invariance of the super-coset

sigma-model

In this section, we will check that conformal invariance of the classical action
(4.120) is preserved at the one-loop level in the sigma-model perturbation theory.
To accomplish that, the divergent part of the quantum effective action will be
computed using the covariant background field method [91] [98] [99] [100] and
shown that it vanishes. Therefore, the beta function is zero at one-loop.

Let us first point out that for the Green-Schwarz superstring in the mixed
flux AdS3 × S3 × T4 background it was shown that there is no divergence in the
one-loop effectve action for the terms proportional to the classical bosonic currents
{J[ab], Ja} in ref. [96]. There, it was found that after gauge-fixing Kappa-symmetry
transformations the UV divergent contribution involving the classical currents
Ja is proportional to the Killing form of PSU(1, 1|2)× PSU(1, 1|2) [96, eq. (7.15)]
(or, equivalently, to the second Casimir (4.159)) and hence vanishes. Since we are
employing a covariant framework in this paper, we don’t have to deal with the
subtleties arising from gauge-fixing Kappa-symmetry.

For the purpose of covariantly quantizing our theory, we will make use of the
covariant background field method, which consists in expanding the coset element
g as

g = gcle f X , (4.156)

where gcl is the classical field and X parametrizes the quantum fluctuations. By
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using the gauge transformations (4.116), we can take X ∈ g\g0 so that

X = XATA

= X1 + X2 + X3 , (4.157)

as a consequence, the left-invariant one-form J expanded around the classical
configuration gcl is given by

J = e− f X Jcle f X + e− f Xde f X

= Jcl + f
(
dX + [Jcl, X]

)
+

1
2

f 2([dX + [Jcl, X], X]
)
+O( f 3) . (4.158)

For simplicity, the subscript in Jcl coming from eq. (4.158) will be dropped in
the rest of this section, so that it is understood that all left-invariant one-forms JA

correspond to classical fields in the formulas below.
Let us make a few important observations before expanding the sigma-model

(4.120) in powers of the quantum fluctuations. When substituting (4.158) into
(4.120) there will be terms independent of XA which are quadratic in the back-
ground currents JA, these make up the classical action Scl. There will also be
terms which are linear in the fluctuations XA and these do not contribute to the
effective action. Therefore, we will be concerned with the terms quadratic in the
fluctuations XA which are the necessary ones for calculating the one-loop beta
function. Note that we will only examine UV divergences in this section, given
that infrared effects are expected to vanish when summing up the perturbation
series [101]. By power counting, the UV divergent contributions must involve one
classical current of conformal weight (1, 0) and one of conformal weight (0, 1).

As was mentioned below eq. (4.126), when fNS = 0, the sigma-model (4.120)
takes the same form as the AdS5 × S5 pure spinor worldsheet action. Concerning
the latter, the divergent contributions to the one-loop effective action from the
matter and ghost part were shown to be proportional to the second Casimir
C2(PSU(2, 2|4)) [91] [99] and given that C2(PSU(2, 2|4)) = 0, the pure spinor
action in AdS5 × S5 was proved to be one-loop conformal invariant. Therefore,
from the fact that the computation performed in refs. [91] and [99] only uses
properties of the target-space supergroup, and from

C2(PSU(1, 1|2)× PSU(1, 1|2)) = 0 , (4.159)
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one already knows that the worldsheet action (4.120) is conformal invariant at
the one-loop level when fNS = 0. Eq. (4.159) can be readily checked from the
definition of the second Casimir

fA C
D fB D

C(−)|D| =
1
4

ηABC2(PSU(1, 1|2)× PSU(1, 1|2)) . (4.160)

With the above observations, we can anticipate some aspects of the one-loop
calculation to be done below. Taking into account the relation between the inverse

AdS3 radius ( f ) and the fluxes f 2
RR
f 2 = 1− f 2

NS
f 2 , one then concludes that the divergent

contributions in the computation of the one-loop effective action for the model
(4.120) can be of order O(1) or proportional to fNS

f , and that the terms of O(1)
shall cancel by the mechanism (4.159). The reason for this is that when fNS = 0
the action has the same form as in refs. [91] [99]. In the following, we will perform
the computation with the factors of fRR

f and fNS
f coming from (4.120) explicitly

written and, only in the end, substitute f 2
RR
f 2 = 1 − f 2

NS
f 2 to show that the divergent

part vanishes.
In particular, since the divergent contributions proportional to the classical

currents

{J[ab] J[cd], J[ab]N̂cd, J[ab]Ncd, NabN̂cd} , (4.161)

do not involve fRR
f neither fNS

f at any stage of the computation, but only factors
of order O(1), we already know that they vanish [99]. Furthermore, because
contractions between the quantum fluctuations of the ghosts {wα, λα, ŵα̂, λ̂α̂} only
contribute to these O(1) factors, we can focus on the divergences coming from
integrating over the fluctuations appearing in the background expansion of the
left-invariant currents JA.

More precisely, the divergences of the one-loop effective action from integrat-
ing over the quantum fluctuations of the ghosts are of O(1) and proportional to
the classical fields {Nab, N̂cd}, consequently, they will cancel against O(1) contri-
butions coming from integrating over the fluctuations in the expansion of J[ab] and
J[ab] in (4.120) [99].

The contributions quadratic in the fluctuations will be separated into a kinetic
term Skin, a term involving the fermionic currents Sferm and a term involving the
bosonic currents Sbos. Additionally, we will not bother writing terms that appear
when expanding the ghosts currents {Nab, N̂ab} in quantum fluctuations, in view
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(a) (b)

Figure 4.1: One-loop diagrams contributing to the effective action. The external lines consist of the
classical currents.

of our argument in the paragraph above. Therefore, Sferm and Sbos will comprise all
terms quadratic in the quantum fluctuations containing XB∇XA, which contribute
to diagrams of the type shown in fig. 4.1a, and terms proportional to XBXA where
XA(y)XB(z) ̸= 0 (see eq. (4.163)), which contribute to diagrams of the type shown
in fig. 4.1b.

Expanding (4.120) to quadratic order in the quantum fluctuations is a long
exercise, especially because the three-dimensional integral over the three-form
HNS needs to be written as a two-dimensional integral over the worldsheet. This
can be accomplished by using the Maurer-Cartan eqs. (4.119) and the identity
∇2XA = XBRB

A (see eqs. (C.11)), the final result is written in Appendix N. On
the other hand, the expansion of the remaining terms is straightforward, since one
can use the supertrace representation of the worldsheet action (4.126) to ease the
task, the result is represented in eq. (N.2). After plugging (4.158) into (4.120), one
finds that the kinetic term for the XA’s is

Skin =
∫

d2z sTr
(

1
2

∂X2∂X2 + ∂X1∂X3
)

, (4.162)

which gives the following propagator for the fluctuations

XA(y)XB(z) ∼ −ηBA log |y − z|2 . (4.163)

The terms involving the fermionic left-invariant currents that can give a non-
zero contribution to the one-loop beta function are

S(1)
ferm =

∫
d2z
{

1
8

[(
2 + fRR

f
)
∇XaXβk −

(
2 + 3 fRR

f
)
∇XβkXa

]
Jαj fβk a αj

+
1
8

[(
2 + fRR

f
)
∇XbXγ̂l −

(
2 + 3 fRR

f
)
∇Xγ̂lXb

]
J β̂ki f

γ̂l b β̂k

+
1
8

[(
2 − fRR

f
)
∇XaXγl −

(
2 − 3 fRR

f
)
∇XγlXa

]
Jαji fγl a αj
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+
1
8

[(
2 − fRR

f
)
∇XaXδ̂m −

(
2 − 3 fRR

f
)
∇Xδ̂mXa

]
J β̂ki f

δ̂m a β̂k

− 1
2

(
Xb∇Xγl + 3∇XbXγl

)
J β̂kH

γl β̂k b +
1
2

(
Xa∇Xδ̂m

+ 3∇XaXδ̂m
)

JαjH
αj δ̂m a +

1
2

(
Xa∇Xαj + 3∇XaXαj

)
J β̂kH

αj β̂k a

− 1
2

(
Xa∇X β̂k + 3∇XaX β̂k

)
JαjH

αj β̂k a

}
, (4.164)

and

S(2)
ferm =

∫
d2z
{

1
2

fRR

f
XbXa J β̂k Jαj f

β̂k a
γl fγl b αj −

1
4

Xδ̂mXγl J β̂k Jαj
[

fRR

f
f
β̂k δ̂m

a fa γl αj

+
(
2 − fRR

f
)

f
β̂k γl

[cd] f[cd] δ̂m αj

]
− 1

2
fRR

f
XbXa J β̂k Jαj f

β̂k a
γl fγl b αj

− 1
4

Xδ̂mXγl J β̂k Jαj
[(

2 + fRR
f
)

f
β̂k γl

[ab] f[ab] δ̂m αj −
fRR

f
f
β̂k δ̂m

a fa γl αj

]
+

1
4

[(
Jγl Jδm − Jγl Jδm

)
i fδm γl

a −
(

Jγ̂l J δ̂m − Jγ̂l J δ̂m
)

i f
δ̂m γ̂l

a
]

X β̂kXαjH
αj β̂k a

+
1
2

[(
Jγl Jαj − Jγl Jαj

)
i fγl b

β̂k +
(

Jγ̂l J β̂k − Jγ̂l J β̂k
)

i fγ̂l b
αj
]

XbXaH
αj β̂k a

+
1
4
(
2 − fRR

f
)(

J δ̂m Jγl − J δ̂m Jγl
)

X β̂kXαjR
γl δ̂m αj β̂k

}
, (4.165)

where the last term in (4.165) comes from using using ∇2XA = XBRB
A after

integrating by parts in the kinetic term (4.162) dressed up with the connections. In
total, we will write Sferm = S(1)

ferm + S(2)
ferm.

The terms involving the bosonic currents that can give a non-zero contribution
to the one-loop beta function are

Sbos =
∫

d2z
[

1
4
(
1 + fRR

f
)
∇XβkXαj Jai fαj βk a +

1
4
(
1 − fRR

f
)
∇X β̂kXα̂j Jai f

α̂j β̂k a

+
1
4
(
1 − fRR

f
)
∇XβkXαj Jai fαj βk a +

1
4
(
1 + fRR

f
)
∇X β̂kXα̂j Jai f

α̂j β̂k a

− 1
2

JcXb∇XaHabc +
1
2

JcXb∇XaHabc +
1
2

Ja
(
∇X β̂kXαj − X β̂k∇Xαj

)
H

αj β̂k a

+
1
2

Ja
(

X β̂k∇Xαj −∇X β̂kXαj
)

H
αj β̂k a −

1
4

fRR

f
X β̂kXαj Jb Ja

(
fb β̂k

γl fγl αj a

+ fb αj
γ̂l f

γ̂l β̂k a

)
− 1

2
XdXc Jb Ja fb c

[e f ] f[e f ] d a +
1
2

Xd∇Xci fc d
[ab]Nab
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+
1
2

Xd∇Xci fc d
[ab]N̂ab +

1
2

(
X β̂k∇Xαj + Xαj∇X β̂k

)
i f

αj β̂k
[ab]Nab

+
1
2

(
X β̂k∇Xαj + Xαj∇X β̂k

)
i f

αj β̂k
[ab]N̂ab + i∂XbXa J[ab] + i∂XbXa J[ab]

− 2XdXc J[db] J[ca]
ηab + J[ab]X β̂k∂Xαji f[ab] β̂k αj − J[ab]

∂X β̂kXαji f[ab] αj β̂k

− J[ab] J[cd]Xγ̂lXδm f[ab] γ̂l αj f[cd] δm
αj +

1
4
(
2 − fRR

f
)
X β̂kXαj Jb JaRa b αj β̂k

]
, (4.166)

where the last seven terms in eq. (4.166) come from the connections that dress the
kinetic term (4.162).

We now have everything in place to calculate the divergent part of the one-
loop effective action. We denote functional integration over the fluctuations by
angled brackets ⟨. . .⟩, and start by considering the contributions proportional to
the classical fermionic left-invariant currents (4.164) and (4.165), so that we have

〈
e−Skin−Sferm

〉∣∣∣
1PI/one−loop

div.
=
∫

d2z J β̂k
(z)Jαj(z) log |0|2

[
3
4

fRR

f
f
β̂k

a γl fγl a αj +
1
4
(
2 − fRR

f
)

f
β̂k

γ̂l [ab] f[ab] γ̂l αj

]
+
∫

d2z
∫

d2y J β̂k
(z)Jαj(y)

{
|y − z|−2 1

32
(
2 + fRR

f
)(

2 + 3 fRR
f
)

fγl a αj f γl a
β̂k

− δ(2)(y − z) log |y − z|2 1
64

[(
2 + fRR

f
)2

+
(
2 + 3 fRR

f
)2
]

fγl a αj f γl a
β̂k

+
3
2
|y − z|−2Hαj

γl aH
γl β̂k a +

5
2

δ(2)(y − z) log |y − z|2Hαj
γl aH

γl β̂k a

}
+ (. . .)

= 0 . (4.167)

In eq. (4.167), we wrote all possible divergent terms proportional to J β̂k Jαj and in
(. . . ) are the remaining contributions with two fermionic background currents.

It is not difficult to understand why eq. (4.167) vanishes. First, note that each

individual term there proportional to J β̂k Jαj is identically zero, this is because

fγl a αj f γl a
β̂k = 0 , f

β̂k
γ̂l [ab] f[ab] γ̂l αj = 0 , Hαj

γl aH
γl β̂k a = 0 . (4.168)

Similarly, by observing the structure of eqs. (4.164) and (4.165) and using PSU(1, 1|2)×
PSU(1, 1|2) symmetry, one can easily convince oneself that the other possible di-

vergent terms in (. . . ) involving the background currents {J β̂k Jαj, Jβk Jαj, J β̂k Jα̂j}
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can only be proportional to (4.168) or to the following other combinations of the
structure constants and H

αj β̂k a

fαj
a γ̂l Hβk γ̂l a = 0 , fαj βk

aHγ̂l
γ̂l a = 0 , (4.169a)

fα̂j
a γl H

γl β̂k a = 0 , f
α̂j β̂k

aHγ̂l
γ̂l a = 0 , (4.169b)

and, hence, there is no divergence in the one-loop effective action coming from
diagrams with two classical fermionic left-invariant currents as external lines.

We have seen that the cancelation of divergences proportional to the back-
ground fermionic currents in the one-loop effective action (4.167) does not impose
any constraints in the relative coefficients of the sigma-model (4.120), for the rea-
son that all possible divergent terms individually vanish. The situation is quite
different for terms involving two classical bosonic currents, in particular for the
ones with Jb Ja. As we will presently see, this contribution will imply a non-trivial
relation between the relative coefficients in the worldsheet action (4.120).

Consider the general form of the functional integral after integrating over the
quantum fluctuations

〈
e−Skin−Sbos

〉∣∣∣
1PI/one−loop

div.
=
∫

d2z log |0|2
[

Ja Jb
(z)C(1)

ab +
(

Jc J[ba] − Jc J[ba]
)
(z)C(2)

abc

+ η[ab][de]
(

JcN̂de − JcNde

)
(z)C(3)

abc

]
+ (. . .) , (4.170)

where the terms in (. . .) above are of O(1) and correspond to contributions propor-
tional to the classical fields (4.161), hence, after adding to (4.170) the piece coming
from integrating over the quantum fluctuations of the ghost-currents {Nab, N̂ab},
these terms sum up to zero by the property (4.159), as we argued above. In order
to prove one-loop conformal invariance, it remains to show that the coefficients

C(1)
ab , C(2)

abc , C(3)
abc , (4.171)

vanish. Note that in (4.170) we are also anticipating the antisymmetry in the
exchange of z and z in the classical fields multiplying C(2)

abc and C(3)
abc , since these

coefficients are proportional to fNS.
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The divergent terms involving Ja Jb are∫
d2z log |0|2 Ja Jb

(z)C(1)
ab

=
∫

d2z log |0|2 Ja Jb
(z)
[

1
4

fRR

f

(
fb

β̂k γ̂l f
γ̂l β̂k a − fb

αj γl fγl αj a

)
− 1

2
fb

c [e f ] f[e f ] c a

]
+
∫

d2z
∫

d2y Ja(y)Jb
(z)
(
|y − z|−2 − δ(2)(y − z) log |y − z|2

)
×

×
{

1
16

fαj βk a f βk αj
b

[(
1 + fRR

f
)2

+
(
1 − fRR

f
)2
]
+

1
4

HadeHde
b
(
− 1 + 1

2

)}
=
∫

d2z log |0|2 Ja Jb
(z)
[
− 1

2
fb

c [e f ] f[e f ] c a −
1
4

fαj βk a f βk αj
b
(
1 + f 2

RR
f 2

)
+

1
4

HadeHde
b

]
=
∫

d2z log |0|2 Ja Jb
(z)

1
2

fαj βk a f βk αj
b

(
1 − 1

2
− 1

2
f 2
RR
f 2 − 1

2
f 2
NS
f 2

)
= 0 , (4.172)

where we used f 2 = f 2
RR + f 2

NS and therefore C(1)
ab = 0. To arrive at eq. (4.172), we

also needed

fb
c [e f ] f[e f ] c a = − fαj βk a f βk αj

b , HadeHde
b = −

f 2
NS
f 2 fαj βk a f βk αj

b , (4.173)

and ∫
d2y |y − z|−2 div.

= − log |0|2 . (4.174)

The second contribution to the divergent terms involving the bosonic currents
is ∫

d2z log |0|2
(

Jc J[ba] − Jc J[ba]
)
(z)C(2)

abc

= −
∫

d2z log |0|2iHabc

(
Jc J[ba] − Jc J[ba]

)
(z)
(

1 − 1
2
− 1

2

)
+
∫

d2z
∫

d2y
(
|y − z|−2 − δ(2)(y − z) log |y − z|2

)(
Jc(y)J[ba]

(z)

− Jc
(y)J[ba](z)

)
iHabc

(
− 1

2
+

1
2

)
= 0 , (4.175)
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where the first numerical factor inside the round brackets comes from integrating
over the bosonic fluctuations, and the remaining factors from integrating over the
fermionic ones, and we also used that

f[ab]
β̂k αjH

αj β̂k c = −Habc , (4.176)

consequently, C(2)
abc = 0.

Finally, the third contribution is given by∫
d2z log |0|2η[ab][de]

(
JcN̂de − JcNde

)
(z)C(3)

abc

=
∫

d2y
∫

d2z
(
|y − z|−2 − δ(2)(y − z) log |y − z|2

)
×

× η[ab][de]
(

Jc(y)N̂de(z)− Jc
(y)Nde(z)

)
iHabc

(
− 1

2
+

1
2

)
= 0 , (4.177)

where the first 1
2 inside the round brackets comes from integrating over the bosonic

fluctuations and the second from integrating over the fermionic ones, and so we
have C(3)

abc = 0. Therefore,

〈
e−Skin−Sbos

〉∣∣∣
1PI/one−loop

div.
= 0 , (4.178)

as we wanted to prove.
Taking together the absence of divergences proportional to the classical currents

(4.161) and the results (4.167) and (4.178), we have shown that the worldsheet
action (4.120) is conformally invariant at the one-loop level for any value of fNS

and fRR or, equivalently, k and f . Since this fact is known to correspond as on-
shell background supergravity fields, we have further confirmed that the NS-NS
deformation (4.137), alongside with the choice (4.138), is a consistent solution for
the superstring in AdS3 × S3 × T4 with mixed NS-NS and R-R three-form flux.

4.9 Relation of the super-coset description with the

hybrid formalism

In ref. [44], it was shown how to relate a worldsheet action in the pure R-R flux
case from the PSU(1, 1|2)× PSU(1, 1|2) supergroup to the Berkovits-Vafa-Witten
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AdS3 × S3 sigma-model, which is written in terms of the PSU(1, 1|2) variables [46].
In this section, we will generalize this result and show that the mixed NS-NS and
R-R flux description (4.120) can be gauge-fixed to the hybrid formalism [46] in a
similar fashion. This will provide additional validation of the results presented in
this paper.

Firstly, note that the term −λαDα in the supercurrent (3.46b) is responsible for
relaxing the contraint Dα, this is the primary reason for the introduction of the
bosonic ghosts {wα, λα} [5].13 In order to make contact with the worldsheet action
in the mixed-flux AdS3 × S3 hybrid formalism [46], we will proceed as in ref. [44]
and consider imposing the constraint Dα = 0 “by hand,” which means that we
can effectively drop the ghosts from our expressions.

Therefore, let us ignore the {wα, λα}-ghosts and rewrite the worldsheet action
(4.120) with a first-order kinetic term for the fermions

S =
1
f 2

∫
d2z
(

1
2

Jb Ja
ηab −

1
4

ϵjkδ̂
αβ̂

(
2 − fRR

f
)(

J β̂k Jαj − J β̂k Jαj
)
+ dαj J

αj

+ d̂α̂j Jα̂j − dαjd̂β̂kδ̂αβ̂ϵjk
)
− i

f 2

∫
B
HNS + Sρ,σ + SC , (4.179)

and which is now subject to the constraints [44]

Dα = dα2 − e−ρ−iσdα1 = 0 , Dα̂ = d̂α̂1 + e−ρ−iσd̂α̂2 = 0 . (4.180)

To recover (4.120) one just needs to plug the auxiliary equations of motion for dαj

and d̂α̂j in (4.179).
The sigma-model action (4.179) is written in terms of the left-invariant currents

g−1dg with g defined in eq. (4.114). In order to gauge-fix to the hybrid string, we
define the new fermionic coordinates

θαj =
1√
2
{θα1 − θ̂α̂1,−θα2 + θ̂α̂2} , θ′

αj
=

1√
2
{θα1 + θ̂α̂1,−θα2 − θ̂α̂2} , (4.181)

so that the group element g can be parametrized as

g = GHG′H′ , (4.182)

where = eθαjTαj , H = exaTa , G′ = eθ′αjT ′
αj and H′ = exaT ′

a .
The generators {TÃ, T ′

Ã}, Ã = {αj, a}, generate two decoupled PSU(1, 1|2)
13Of course, we are ignoring the additional topological variables in our discussion.
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Lie superalgebras and they can be constructed in terms of the TA’s in (4.112)
according to

Ta =
1√
2

(
Ta −

i
2
(σa

bc)
γδ̂

δ̂γδ̂T[bc]

)
, T ′

a =
1√
2

(
Ta +

i
2
(σa

bc)
γδ̂

δ̂γδ̂T[bc]

)
,

(4.183a)

Tα1 =
1√
2

(
Tα1 − Tα̂1

)
, T ′

α1 =
1√
2

(
Tα1 + Tα̂1

)
, (4.183b)

Tα2 = − 1√
2

(
Tα2 − Tα̂2

)
, T ′

α2 = − 1√
2

(
Tα2 + Tα̂2

)
, (4.183c)

consequently, the commutation relations take the form14

{Tαj, Tβk} =
√

2iϵjkσa
αβTa , {T ′

αj, T ′
βk} =

√
2iϵjkσa

αβT
′

a , (4.184a)

[Ta, Tαj] =
√

2iσaαγδ̂γβTβj , [T ′
a , T ′

αj] = −
√

2iσaαγδ̂γβT ′
βj , (4.184b)

[Ta, Tb] =
√

2(σab
c)αβδ̂αβTc , [T ′

a , T ′
b ] = −

√
2(σab

c)αβδ̂αβT ′
c . (4.184c)

Furthermore, the supertrace reads

sTr(TaTb) = ηab , sTr(T ′
a T ′

b ) = ηab , (4.185a)

sTr(TαjTβk) = ηαj βk = ϵjkδ̂αβ , sTr(T ′
αjT ′

βk) = ηαj βk = −ϵjkδ̂αβ . (4.185b)

Thus, the left-invariant one forms can be written in the following form

g−1dg = H−1dH + H−1G−1dGH + H′−1dH′ + H′−1G′−1dG′H′ , (4.186)

which implies that one can write the currents JA as

Jα1 =
1√
2

(
Sα1 + S′α1) , Jα2 = − 1√

2

(
Sα2 − S′α2) , (4.187a)

Jα̂1 =
1√
2

(
− Sα1 + S′α1) , Jα̂2 =

1√
2

(
Sα2 − S′α2) , (4.187b)

Ja =
1√
2

(
Ka + K′a) , J[ab] = − i

2
√

2
(σabc)

αβ̂
δ̂αβ̂
(
Kc − K′

c
)

, (4.187c)

14After redefining T ′
αj → iT ′

αj and T ′
a → −T ′

a , both PSU(1, 1|2) algebras in (4.184) will take the
same form.
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where we defined the left-invariant currents

Sαj = (H−1G−1dGH)αj , Ka = (H−1dH)a + (H−1G−1dGH)a , (4.188a)

S′αj
= (H′−1G′−1dG′H′)αj , K′a = (H′−1dH′)a + (H′−1G′−1dG′H′)a . (4.188b)

Using the SO(1, 2)× SO(3) gauge-symmetry δg = gω′aT ′
a of the worldsheet

action (4.179) for some ω′a(x), we can gauge H′ = 1. And using the eight fermionic
constraints (4.180), we can gauge θ′αj to zero, so that G′ = 1.

Consequently, in this gauge the “primed” currents vanish and, from eqs. (4.187),
the sigma-model action (4.179) takes the form

S =
1
f 2

∫
d2z

1
2

[
1
2

KbKa
ηab + dα1

(
Sα1

+ e−ρ−iσSα2
)

+ d̂α̂2

(
Sα2 − e−ρ−iσSα1

)
+ δ̂αβ̂dα1d̂

β̂2

(
1 + e−ρ−iσe−ρ−iσ

)]
+ Sρ,σ + SC − i

12
√

2
k
∫
B

(
KcKbKa(σabc)αβ̂

δ̂αβ̂ + KaSβkSαj3iϵjkσaαβ

)
, (4.189)

where we used the constraints (4.180) to solve for dα1 and d̂α̂2, and also rescaled
dα1 → 1√

2
dα1 and d̂α̂2 → 1√

2
d̂α̂2 to arrive at eq. (4.189). Note that the terms

proportional to B
αj β̂k vanish in the gauge H′ = G′ = 1.

We now integrate out dα1 and d̂α̂2 to obtain

S =
1
f 2

∫
d2z
[

1
2

KbKa
ηab +

1
2

ϵjkδ̂αβSβkSαj
+

(
1 +

1
4

f 2
RR
f 2 eϕeϕ

)−1

δ̂αβ

(
1
2

fRR

f
eϕSα2Sβ2

− 1
2

fRR

f
eϕSα1Sβ1

+ Sα1Sβ2 − Sα1Sβ2
)]

+ ik
∫
B

1
2
√

2

(
KcKbKa(σabc)αβ̂

δ̂αβ̂

+ KaSβkSαj3iϵjkσaαβ

)
+ Sρ,σ + SC , (4.190)

with eϕ = e−ρ−iσ and eϕ = e−ρ−iσ. We also rescaled f−2 → 2 f−2, k → −6k and
{eϕ, eϕ} → 1

2
fRR

f {eϕ, eϕ} to arrive at (4.190).
Given that g = GH and15

g−1dg = J Ã
R TÃ , (4.191)

15The subscript R in the currents J Ã
R indicates that these are the Noether currents from the right

PSU(1, 1|2) transformations, see ref. [6] for further details.
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for J Ã
R = {Sαj, Ka}, we can write the worldsheet action in the following form

S =
1
f 2 S0 + ikSWZ +

1
f 2 S1 + Sρ,σ + SC , (4.192)

where

S0 =
1
2

∫
d2z sTr

(
g−1∂gg−1∂g

)
, (4.193a)

SWZ = −1
2

∫
B

sTr
(

g−1dgg−1dgg−1dg
)

, (4.193b)

S1 =
∫

d2z
(

1 +
1
4

f 2
RR
f 2 eϕeϕ

)−1

δ̂αβ

(
1
2

fRR

f
eϕSα2Sβ2 − 1

2
fRR

f
eϕSα1Sβ1

+ Sα1Sβ2 − Sα1Sβ2
)

. (4.193c)

Eq. (4.192) is precisely the worldsheet action for the hybrid superstring in AdS3 ×
S3 with mixed NS-NS and R-R three-form flux, as we wanted to show. Similarly
as eq. (4.120), this action was also proved to be conformal invariant at one-loop
for any k and f [46].



Chapter 5

Conclusion

We emphasize the main findings contained in each chapter and also comment
on potential directions for future research.

5.1 Summary

Throughout this thesis, we have studied compactifications of the superstring
down to four- and six-dimensional target-spaces while preserving manifest space-
time supersymmetry. The discussion and development of the theory was con-
ducted from the worldsheet perspective, which focuses on the two-dimensional
CFT nature of the sigma-model action. Particularly, our findings include results for
the superstring propagating in a four-dimensional spacetime with a background
U(1) gauge field, and for the superstring compactified to a flat and to an AdS3 × S3

six-dimensional background.
In Chapter 2, we computed consistent Lagrangians and equations of motion

for massive spin-3/2 and spin-2 fields in an electromagnetic background using
superstring field theory. First, we showed how to couple the hybrid formalism
for the open superstring to a constant electromagnetic background, and derived
expressions for the worldsheet variables in terms of the oscillator modes. We
then computed the open superstring field theory action for the compactification-
independent massless sector in a constant U(1) background. Perfect agreement
was found with previous calculations from bosonic string theory. After that, we
constructed the open superstring field theory action in d = 4 N = 1 superspace
for the first massive compactification-independent states in a constant U(1) back-
ground.

Following that, the superstring field theory action in superspace for the massive
states was expanded in components. The pure gauge degrees of freedom were
eliminated and, consequently, what was left is a Lagrangian containing only the
physical fields. It was shown that the Lagrangian describes 12 complex bosonic

139
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and 12 complex fermionic degrees of freedom on-shell, including a massive spin-
3/2 and a massive spin-2 field. Even though the action has couplings of the
higher-spin excitations with the lower-spin ones, at the level of the equations of
motion the spin-3/2 and spin-2 fields decouple.

In Chapter 3, we described how to extend the six-dimensional hybrid formal-
ism in a flat background such that all SUSYs of d = 6 N = 1 superspace can be
made manifest, including vertex operators and a tree-level amplitude prescription.
First, we reviewed the six-dimensional hybrid formalism in a flat background.
Then, we explained how four more θ coordinates can be added as worldsheet
variables, followed by the inclusion of the harmonic constraint Dα.

After relaxing the harmonic first-class constraint Dα — by defining a new BRST
operator G+ — vertex operators and a tree-level scattering amplitude prescription
were constructed while preserving manifest spacetime supersymmetry. Specifi-
cally, it was shown that BRST invariance of the vertex operator implies the d = 6
SYM equations of motion in N = 1 superspace. Furthermore, we confirmed that
the three-point amplitude of SYM states is reproduced.

In Chapter 4, we studied the superstring in AdS3 × S3. A supersymmetric three-
point amplitude of half-BPS vertex operators inserted on the AdS3 boundary was
computed. After that, we constructed a sigma-model action for the superstring
in AdS3 × S3 × T4 with mixed flux and all SUSYs manifest, and proved that the
model is quantum consistent at the one-loop level.

We started the chapter introducing the six-dimensional hybrid formalism in
AdS3 × S3 and, after explaining the technical details involved, wrote our main
result — a PSU(1, 1|2)-covariant three-point amplitude for half-BPS states inserted
on the AdS3 boundary — whose coordinates were labelled by x. As a corollary, we
found that the kinematic factor gets dressed with the vielbein field EA

B(x) after
the worldsheet fermions are integrated out in the path integral. In addition, we
saw the compelling fact of the conformal group on the boundary being identified
with the symmetry group of the AdS3 bulk by explicitly analyzing the form of
EA

B(x), which naturally appears in our covariant superstring description. It was
also found that the results agree with the RNS formalism answer.

The hybrid formalism for the superstring in AdS3 × S3 × T4 has only half of the
eight spacetime supersymmetries manifest. Using the extended hybrid formalism,
we constructed a quantizable and PSU(1, 1|2)× PSU(1, 1|2)-invariant worldsheet
action for the superstring in AdS3 × S3 × T4 with mixed NS-NS and R-R three-
form flux. We proved that this description is conformal invariant at the one-loop
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level using the covariant background field method. For that to be the case, it
was necessary that the NS-NS flux fNS and the R-R flux fRR were connected to
the inverse AdS3 radius f , similarly as in the GS superstring. Additionally, we
have shown how this model can be related to the Berkovits-Vafa-Witten hybrid
formalism with mixed flux, which further validated our results.

5.2 Outlook

The results discussed in this thesis contribute to the understanding of super-
string compactifications to flat and curved backgrounds, in addition to enhancing
the understanding of manifest spacetime supersymmetry in the superstring. Since
our findings are grounded in a detailed construction of superstring descriptions
in regimes that are very little explored from the worldsheet side, this work can
serve as a starting point for future investigation of a wide range of topics, as well
as a reference for original computational methods.

The construction of the open superstring field theory in an electromagnetic
background presented in Chapter 2 is completely general and should be valid
for any massive state of the superstring. Superstring worldsheet calculations
often encounter obstacles coming from states in the Ramond sector. Since the
hybrid formalism of the superstring preserves manifest d = 4 N = 1 SUSY, an
interesting direction of study would be to determine the equations of motion and
constraints satisfied by the fermions of arbitrary mass and spin propagating in an
electromagnetic background. In addition, the framework developed in Chapter
2 can be applied to beyond the quadratic order of the string field theory action,
allowing one to compute higher-order corrections to the open superstring field
theory in a U(1) background.

For compactifications down to a six-dimensional background, the formulation
developed in Chapter 3 with manifest d = 6 N = 1 SUSY might be a fruitful
avenue for a further exploration of manifest spacetime supersymmetry in the su-
perstring. An important open problem is to understand the precise relation of the
spacetime supersymmetric formalism with the d = 6 pure spinor description of the
superstring [49] [50] [51].1 Progress in this direction might also have applications
to the origin of the d = 10 pure spinor formalism [54]. In addition, d = 6 N = 1
supersymmetry can be formulated in harmonic superspace. Since the relation
between harmonic superspace and ordinary superspace is well understood, the

1A six-dimensional pure spinor λαj is defined to satisfy the constraint ϵjkλασa
αβλβk = 0.



Chapter 5. Conclusion 142

formalism developed in Chapter 3 can offer important hints towards a description
of the superstring using harmonic superspace coordinates as fundamental world-
sheet fields. In particular, the {ρ, σ}-ghosts of the hybrid formalism should play
the role of the harmonic variables in the superstring description.

Finally, the AdS3 × S3 framework discussed in Chapter 4 can have applications
ranging from superstring amplitudes in AdS to insights in worldsheet descriptions
in the presence of R-R flux. The construction of the vertex operators inserted on
the AdS3 boundary provides all the necessary elements for the exploration of
higher-point tree-level scattering amplitudes in AdS3 × S3 with manifest spacetime
supersymmetry. We gave a zero-mode prescription for the fermionic worldsheet
fields with vertex operators depending on the AdS3 boundary coordinates x. The
remaining ingredient is the integrated vertex operator for the half-BPS states. The
holomorphic part of the integrated vertex reads

∫
G+

0 G−
−1V =

∫ 1
2k

[
1√
2

(
i
2

Kαβ∇α1∇β1 + iSα1∇αβ∇β1

)
− δ̂αβSα1∇β1

]
V , (5.1)

where we only wrote the terms that contribute to the tree-level amplitudes of
half-BPS states.

The sigma-model in AdS3 × S3 × T4 with mixed flux from the super-coset
PSU(1,1|2)×PSU(1,1|2)

SO(1,2)×SO(3) is the analogue of the AdS5 × S5 pure spinor worldsheet action
for the lower dimensional Anti-de Sitter spacetime, as it contains bosonic ghosts
λα and λ̂α̂. It can also be viewed as the “supersymmetrization” of the Berkovits-
Vafa-Witten description of AdS3 from the hybrid formalism [46], where only eight
of the sixteen spacetime supersymmetries were manifest in the action. Therefore,
it is natural to think that it is feasible to derive new understandings for the world-
sheet description of the AdS5 × S5 pure spinor superstring, and consequently the
AdS5/CFT4 correspondence, by studying the lower dimensional counterpart in
an equivalent framework.

Particularly, it would be interesting to determine in what manner the vielbein
field EA

B(x) in AdS3 emerges from the super-coset variables. Additionally, one
could also look at how the AdS3 × S3 twistors [72] [74] fit into the super-coset
formulation, an advancement which could have important applications for the
AdS5 × S5 pure spinor formalism and its tensionless limit [69] [70] [92]. A twistor
formulation of string theory in the AdS5 × S5 background has been proposed [102],
which shares the same features as the AdS3 × S3 twistors.

As a final remark, the findings presented in this thesis may serve as a valu-
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able tool for an enhanced understanding of spacetime supersymmetry in the
superstring. They might also provide a groundwork for future first-principles
worldsheet calculations in AdS backgrounds, where spacetime supersymmetry
plays a pivotal role.



Appendix A

Results in spinor and oscillator algebra
in d = 4

Some relations and definitions about the supersymmetric modes that were
used in the calculations of Chapter 2 are given below. For a more complete list of
identities and conventions for the sigma matrices and spinorial indices, see the
appendices of [24].

(χαψα) = (χψ) , (χα̇ψ
α̇
) = (χψ) , (χψ)† = (χψ) . (A.1)

θα
0 θβ0 =

1
2

δα
β(θ0θ0) , θα̇0θ

β̇
0 =

1
2

δ
β̇
α̇ (θ0θ0) . (A.2)

[pα0, (θ0θ0)] = −2θα0 , [pα̇0 , (θ0θ0)] = −2θα̇0 , (A.3a)

[(p0p0), (θ0θ0)] = −4 − 4(θ0p0) , [(p0p0), (θ0θ0)] = −4 − 4(θ0p0) . (A.3b)

α0nα0p(σ
nσp)α̇

β̇
= −α0nαn

0 δα̇
β̇
− iεnp(σ

np)α̇
β̇

, (A.4a)

α0nα0p(σ
nσp)

β
α = −α0nαn

0 δ
β
α − iεnp(σ

np)
β

α . (A.4b)

[dα
n, Παα̇m] = 8i∂θα̇m+n , [d

α̇
n, Παα̇m] = −8i∂θαm+n . (A.5)
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[dαm, dα̇nd
α̇
n] = 4iΠαα̇m+nd

α̇
n + 16∂θαm+2n

= 4id
α̇
nΠαα̇m+n − 16∂θαm+2n , (A.6a)

[dα̇m, dα
ndαn] = −4iΠαα̇m+ndα

n + 16∂θα̇m+2n

= −4idα
nΠαα̇m+n − 16∂θα̇m+2n . (A.6b)

dα
0Παα̇0d

α̇
0 = −d

α̇
0Παα̇0dα

0 − 4iΠn
0 Πn0 + 8i∂θα

0 dα0 + 8i∂θα̇0d
α̇
0 . (A.7)

[dα
0dα0, dα̇0d

α̇
0 ] = −8id

α̇
0Παα̇0dα

0 + 16Πn
0 Πn0 − 32∂θα̇0d

α̇
0 − 32∂θα

0 dα0

= 8idα
0Παα̇0d

α̇
0 − 16Πn

0 Πn0 + 32∂θα̇0d
α̇
0 + 32∂θα

0 dα0

= 4iΠαα̇0[dα
0 , d

α̇
0 ] + 32dα

0∂θα0 − 32∂θα̇0d
α̇
0 . (A.8)

dα0 f (θ0, θ0) =
[
− pα0 − (σmθ0)αα0m − i

2
(θ0θ0)(ε · σ)

β
α θβ0

]
f (θ0, θ0) , (A.9a)

dα̇0 f (θ0, θ0) =
[
− pα̇0 + (θ0σm)α̇α0m +

i
2
(θ0θ0)(ε · σ)

β̇
α̇θ β̇0

]
f (θ0, θ0), (A.9b)

Πm
0 f (θ0, θ0) =

[
− iαm

0 +
i
2

ϵmrsnεrs(θ0σnθ0)
]

f (θ0, θ0) . (A.9c)

dα
0dα0 f (θ0, θ0) =

[
p2

0 − 2(θ0σm)αα0m pα0 + (θ0θ0)α
n
0 α0n − i(θ0θ0)(ε · σ) α

β θ
β
0 pα0

]
f (θ0, θ0) ,

(A.10a)

dα̇0d
α̇
0 f (θ0, θ0) =

[
p2

0 − 2(σmθ0)
α̇α0m pα̇0 + (θ0θ0)α

n
0 α0n − i(θ0θ0)(ε · σ)

β̇
α̇θ β̇0pα̇

0
]

f (θ0, θ0) ,

(A.10b)

Πm
0 Πm0 f (θ0, θ0) =

[
− αm

0 α0m + α0mϵmrsnεrs(θ0σnθ0)−
1
2

εrsε
rs(θ0θ0)(θ0θ0)

]
f (θ0, θ0) .

(A.10c)

{dα0, ∂θ
β
0} =

i
2
(ε · σ)

β
α , {d

α̇
0 , ∂θ β̇0} =

i
2
(ε · σ)α̇

β̇
. (A.11)
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[d2
0, ∂θ

β
0 ] = i(ε · σ)

β
α dα

0 , [d
2
0, ∂θ β̇0] = i(ε · σ)α̇

β̇
dα̇0 . (A.12)

∆ β
α = δ

β
α +

i
2
(ε · σ)

β
α , ∆

α̇
β̇ = δα̇

β̇
+

i
2
(ε · σ)α̇

β̇
. (A.13)

(−d2
0d

2
1 − d2

1d
2
0 + d2

2d
2
−1)φ = (−d

2
1d2

0 + d
2
2d2

−1 − d
2
0d2

1)φ , (A.14a)

(3d2
0d

2
1 − 3d2

1d
2
0 + d2

2d
2
−1)φ = (−3d

2
0d2

1 + 3d
2
1d2

0 − d
2
2d2

−1)φ , (A.14b)

(d2
−1d

2
1 − 2d2

0d
2
0 + d2

1d
2
−1)φ = (d

2
−1d2

1 + d
2
1d2

−1 − 2d
2
0d2

0)φ , (A.14c)

d
2
1d2

−1B = d2
1d

2
−1B − 2[d2

0, d
2
0]B , (A.14d)

(64idα
0Παα̇0d

α̇
0 − 19d2

0d
2
0 − 3d

2
0d2

0)C =
[
− 11{d2

0, d
2
0}+ 128Πn

0 Πn0 − 256(∂θ0d0)

− 256(∂θ0d0)
]
C . (A.14e)

d2
0d

2
1φ = 2(d0d0)(d0d1)φ , (A.15a)

d2
1d

2
0φ = (8idα

0Παα̇0d
α̇
1 + 2dα

0(d0d0)dα1 + 8idα
0d

α̇
0Παα̇1 − 32dα

0∂θα1)φ , (A.15b)

d2
2d

2
−1φ = (−16Παα̇0Πα̇α

1 − 8iΠαα̇0d
α̇
0dα

1 + 8idα
0Παα̇0d

α̇
1 + 8idα

0d
α̇
0Παα̇1

− 32∂θα̇0d
α̇
1 − 32dα̇0∂θ

α̇
1 − 64dα

0∂θα1)φ , (A.15c)

d2
−1d

2
1φ = 4(d−1d0)(d0d1)φ , (A.15d)

d2
1d

2
−1φ = (8idα

0Παα̇0d
α̇
0 + 8iΠαα̇−1dα

0d
α̇
1 − 16Παα̇−1Πα̇α

1 − 8iΠαα̇−1d
α̇
0dα

1

− 8id
α̇
−1dα

0Παα̇1 − 4dα̇−1dα
0d

α̇
0dα1 + 8idα

−1Παα̇0d
α̇
1 + 8idα

−1d
α̇
0Παα̇1

− 64dα
−1∂θα1 − 64∂θα̇−1d

α̇
1)φ , (A.15e)

d2
0d

2
0φ = (dα

0dα0dα̇0d
α̇
0 + 2dα̇−1dα

0dα0d
α̇
1 + 2dα

−1dα̇0d
α̇
0dα1 + 8idα

−1Παα̇0d
α̇
1

+ 8idα
−1d

α̇
0Παα̇1 + 8iΠαα̇−1dα

0d
α̇
1 − 32∂θα̇−1d

α̇
1 − 32dα

−1∂θα1)φ . (A.15f)

d2
0d

2
0B = (d0d0)(d0d0)B , (A.16a)
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d2
1d

2
−1B = 8idα

0Παα̇0d
α̇
0 B , (A.16b)

d2
−1d

2
0B = 2dα

−1dα0dα̇0d
α̇
0 B , (A.16c)

d2
0d

2
−1B = (2dα̇−1dα

0dα0d
α̇
0 + 8idα

−1Παα̇0d
α̇
0 + 8iΠαα̇−1dα

0d
α̇
0 − 32∂θα̇−1d

α̇
0)B , (A.16d)

d
2
−1d2

0B = 2dα̇−1d
α̇
0dα

0dα0B , (A.16e)

d
2
0d2

−1B = (2dα
−1dα̇0d

α̇
0dα0 + 8idα̇−1Πα̇α

0 dα0 + 8iΠαα̇−1d
α̇
0dα

0 − 32∂θα
−1dα0)B . (A.16f)



Appendix B

Six-dimensional Pauli matrices

B.1 Definitions

The Lorentz group SO(1, 5) is locally isomorphic to SU(4) and, under this
identification, spinors of SO(1, 5) transform as 4’s or 4′’s of SU(4). By definition,
Weyl spinors transform as a 4 and are denoted by an upper lower case greek index
ranging from 1 to 4. Anti-Weyl spinors transform as a 4′ and are denoted by a
down lower case greek index ranging from 1 to 4. All other representations of
SO(1, 5) can be built from tensor products of 4’s and 4′’s. The following tensor
products are of particular importance

4 ⊗ 4 ≃ 6 ⊕ 10− , (B.1a)

4′ ⊗ 4′ ≃ 6 ⊕ 10+ , (B.1b)

4 ⊗ 4′ ≃ 1 ⊕ 15 , (B.1c)

where 1 denotes the singlet representation, 6 is antisymmetric in the spinor indices
and denotes the vector representation, 10− and 10+ are symmetric and corre-
spond to anti-self-dual and self-dual three-forms, respectively,1 and the traceless
representation 15 is a two-form.

The SO(1,5) Pauli matrices are defined as

σ0
αβ =

1√
2

(
σ2 0
0 σ2

)
, σ1

αβ =
1√
2

(
0 σ1

−σ1 0

)
,

σ2
αβ =

1√
2

(
0 −σ2

−σ2 0

)
, σ3

αβ =
1√
2

(
0 σ3

−σ3 0

)
, (B.2)

σ4
αβ =

1√
2

(
0 −i1
i1 0

)
, σ5

αβ =
1√
2

(
σ2 0
0 −σ2

)
,

1Note that (σ012)
αβ = −(σ345)αβ and (σ012)αβ = (σ345)αβ (see eqs. (B.9)).

148



Appendix B. Six-dimensional Pauli matrices 149

where the σ-matrices are the usual SU(2) Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (B.3)

The σ-matrices are antisymmetric and satisfy the algebra

σaαβσb
αγ + σbαβσa

αγ = ηabδ
β
γ , (B.4)

where ηab = diag(−,+,+,+,+,+), a = {0 to 5}, is the six-dimensional Minkowski
metric and we define

σaαβ =
1
2

ϵαβγδσa
γδ , (B.5)

which are given by

σ0αβ =
1√
2

(
σ2 0
0 σ2

)
, σ1αβ =

1√
2

(
0 σ1

−σ1 0

)
,

σ2αβ =
1√
2

(
0 σ2

σ2 0

)
, σ3αβ =

1√
2

(
0 σ3

−σ3 0

)
, (B.6)

σ4αβ =
1√
2

(
0 i1

−i1 0

)
, σ5αβ =

1√
2

(
−σ2 0

0 σ2

)
.

It is convenient to introduce the unitary matrix B, also known as an intertwiner,

B β
α = −(B∗)

β
α =

(
σ2 0
0 σ2

)
, (B∗)

β
α B γ

β = −δ
γ
α , (B.7)

so that
(σa

αβ)
∗ = (B) γ

α (B) δ
β σa

γδ . (B.8)

We also define

(σab)
β

α =
i
2
(σ[aσb])

β
α , (B.9a)

(σabc)αβ =
i

3!
(σ[aσbσc])αβ , (B.9b)

where we anti-symmetrize/symmetrize without dividing by the number of terms.
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B.2 Identities

The Lorentz generators satisfy the commutators

[σa, σbc] = −iηa[bσc] , (B.10a)

[σab, σcd] =
i
2

(
ηc[aδ

[e
b]δ

f ]
d + ηd[bδ

[e
a]δ

f ]
c

)
σe f

= iηc[aσb]d − iηd[aσb]d . (B.10b)

Some useful identities are

σa
αβσb

γδηab = ϵαβγδ , (B.11a)

σaαβσb
αγηab = 3δ

β
γ , (B.11b)

σaαβσb
αβ = 2ηab , (B.11c)

σaαβσb
γδηab = δα

γδ
β
δ − δ

β
γδα

δ , (B.11d)

ϵαβρσϵγδρσ = 2(δα
γδ

β
δ − δ

β
γδα

δ ) , (B.11e)

ϵαβγδσaδσ = −1
2

δ
[α
σ σ

βγ]
a , (B.11f)

(σab)α
β(σ

cd)
β
α = ηa[cηd]b , (B.11g)

ηacηbd(σ
ab) α

β (σ
cd) δ

γ = −1
2

δα
βδδ

γ + 2δα
γδδ

β , (B.11h)

(σaσbσcσd)
α

α = ηabηcd + ηadηbc − ηacηbd , (B.11i)

(σabc)γδσc
αβ = − i

2
σ[a|α(γ|σ|b]|δ)β , (B.11j)

(σab)γ
δ(σabc)αβ = −σcδ(αδ

γ
β)

, (B.11k)

where ϵ1234 = 1.
Note further that the antisymmetric tensors ϵαβγδ and ϵjk satisfy the Schouten

identities

δσ
[αϵβγδρ] = 0 , (B.12a)

ϵj[kϵlm] = 0 , (B.12b)

and, in addition, we have

ϵjkϵlm = −(δ
j
l δ

k
m − δk

l δ
j
m) . (B.13)
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Some additional trace identities are

(σaσbσcσdσeσ f )α
α

= −1
2

ϵabcde f +
1
2

ηadηe[bηc] f − 1
2

ηbdηe[aηc] f +
1
2

ηcdηe[aηb] f

+
1
2

ηbc(− ηadηe f + ηaeηd f − ηa f ηde)+ 1
2

ηac(ηbdηe f

− ηbeηd f + ηb f ηde)+ 1
2

ηab(− ηcdηe f + ηceηd f − ηc f ηde) , (B.14)

and

(σabc)
αβ(σde f )βα =

1
2

ϵabcde f −
1
2

η[a|dη|b|eη|c] f , (B.15)

where ϵ012345 = −ϵ012345 = 1.
Some supplementary identities are

(σa
bc)

αβ̂
δ̂αβ̂(σd

e f )
γδ̂

δ̂γδ̂η[bc][e f ] = −4ηad , (B.16a)

− fαj βk
a(σa

bc)
γδ̂

δ̂γδ̂ = 2i f
αj β̂k

[bc] , (B.16b)

(σa
cd)

αβ̂
δ̂αβ̂(σb

e f )
γδ̂

δ̂γδ̂ f[cd] [e f ]
[gh] = −4 fa b

[gh] , (B.16c)

(σab
c)

αβ̂
δ̂αβ̂(σc

de)
γδ̂

δ̂γδ̂ = −2 fa b
[de] ,

(σbc)
α
βδ̂βγ̂σaγ̂α = (σabc)αβ̂

δ̂αβ̂ , (B.16d)

where the symbols in eqs. (B.16) are defined in Section 4.7.2.



Appendix C

Some useful conventions

C.1 Worldsheet

Except for Chapter 2, where our conventions are detailed in the main text,
the remaining chapters use the conventions displayed below for the worldsheet
theory.

The Euclidean worldsheet coordinates are labeled by σI = {σ0, σ1} with metric
given by gI J = diag(1, 1) and we define the components of the antisymmetric
tensor ϵI J according to ϵ01 = ϵ10 = 1. As usual, the measure is written as d2σ =

dσ0dσ1.
In terms of the of the Euclidean coordinates, we can form the complex variables

on the cylinder {z, z}, which are defined by

z = σ0 − iσ1 , z = σ0 + iσ1 , (C.1)

such that

∂ =
1
2
(∂0 + i∂1) , ∂ =

1
2
(∂0 − i∂1) . (C.2)

The metric components are

gzz = gzz =
1
2

, gzz = gzz = 0 , gzz = gzz = 2 , gzz = gzz = 0 , (C.3)

and the antisymmetric tensor components take the following form

ϵzz = −2i , ϵzz = − i
2

. (C.4)

In this case, we write d2z = 2d2σ = −idzdz = 2dσ0dσ1.
It is also useful to think of the worldsheet as a plane. The map from the cylinder
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to the plane is given by

z = eσ0−iσ1
, z = eσ0+iσ1

, (C.5)

and, without loss of generality, we will call the plane coordinates by z and z as well.
The reason for this is that the form of conformal invariant expressions written
in terms of the complex cylinder coordinates is equivalent as the ones written
in terms of the plane coordinates. In the plane coordinates, lines of constant σ0

are mapped to circles around the origin, the infinite past becomes z = 0 and the
infinite future becomes z = ∞. Current conservation reads ∂jz + ∂jz = 0 and the
associated Noether charge Q takes the nice form

Q =
∮

dzjz +
∮

dzjz . (C.6)

When evaluating contour integrals, we use the convention

∮
dz

1
z
=
∮

dz
1
z
= 1 , (C.7)

so that annoying factors of 2π are absent in most expressions as, e.g., in the
worldsheet action and in the identities

∂(y − z)−1 = −δ(2)(y − z) , ∂(y − z)−1 = −δ(2)(y − z) , (C.8a)

∂(y − z)−2 = ∂yδ(2)(y − z) , ∂(y − z)−2 = ∂yδ(2)(y − z) . (C.8b)

When working with differential forms we use the same conventions as [24]. In
particular, the two-dimensional integral over the one-forms ∆ and Σ is given by∫

∆Σ =
∫

d2σ ϵI J∆JΣI

= i
∫

d2z
(
∆Σ − ∆Σ

)
, (C.9)

and the exterior derivative acts as

dΣ = dσIdσJ∂JΣI

= −dσ0dσ1ϵI J∂JΣI . (C.10)
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C.2 Supergeometry

Following ref. [24], we define the super-vielbein as JA = dZMEM
A, where

ZM = {xm, θµj, θ̂µ̂j} are the curved supercoordinates. The quantities A = {a, αj, α̂j}
and M = {m, µj, µ̂j} label the tangent and the curved superspace indices, respec-
tively. The connection one form is defined as ΩB

A = dZMΩMB
A.

The action of the covariant derivative one-form ∇ on a q-form YA is

∇YA = dYA + YBΩB
A , ∇2YA = YBRB

A , (C.11)

and we define the torsion two-form TA and the connection two-form RB
A as

TA = ∇JA , (C.12a)

RB
A = dΩB

A + ΩB
CΩC

A , (C.12b)

where TA = 1
2 JC JBTBC

A and RB
A = 1

2 JD JCRCDB
A.

For the Type IIB superstring in the AdS3 × S3 background considered in Section
4.7, the torsions and curvatures can be nicely written in terms of the structure
constants (4.113) as

TAB
C = −i fAB

C , RAB
[ab] = −i fAB

[ab] , RCDB
A = fCD

[ab] f[ab]B
A , (C.13)

where we are using that ΩB
A = i f[ab] B

A J[ab] and R[ab] = dJ[ab]+ i
2 J[e f ] J[cd] f[cd] [e f ]

[ab]

to relate RAB
[ab] with RCDB

A. If desired, one can properly normalize eqs. (C.13) by
rescalings of the super-vielbeins and of the connections.

Furthermore, from the three-form H = dB one obtains the flat-index equation

HABC =
1
2
∇[ABBC] +

1
2

T[AB|
DBD|C] , (C.14)

which follows from (C.11) and the definitions H = 1
6 JC JB JAHABC and B =

1
2 JB JABAB. Note that BAB is graded anti-symmetric and HABC is graded anti-
symmetric in the 1-2 and 2-3 indices.



Appendix D

Normal-ordering prescription

The normal-ordered product of the operators O1 and O2 is denoted by (O1O2),
which is defined as

(O1O2)(z) =
∮ dx

x − z
O1(x)O2(z) . (D.1)

This prescription consists in subtracting the poles evaluated at the point of the
second entry. By convention, when nothing is specified, our expressions are
normal-ordered from the right, e.g., O1O2O3...On = (O1(O2(O3(...On)...))). Also,
whenever we are dealing with derivatives of exponentials, such as ∂2eρ, the order-
ing is always done with the exponential on the right, so that ∂2eρ = (∂ρ((∂ρ)eρ)) +

((∂2ρ)eρ). Putting the exponential on the rightmost position agrees with the usual
conformal-normal-ordering [23] when dealing with free fields.

Schematically, note that in terms of the definition in eq. (D.1), we have [65]

(O1(O2O3))(z) =
∮ dx

x − z
O1(x)(O2O3)(z) =

∮ dx
x − z

∮ dy
y − z

O1(x)O2(y)O3(z) .

(D.2)
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Appendix E

Some comments on the RNS superstring

We comment on the physical state conditions of the RNS superstring in bosonized
form, i.e., working with the {ϕ, η, ξ}-CFT.

E.1 Large Hilbert space and picture-changing

Let us recall that the matter part of the RNS superstring action in conformal
gauge corresponding to an uncompactified ten-dimensional manifold is given by
[103]

Sm =
∫

d2z
1
2

(
∂xM∂xM + ψM∂ψM + ψ̂M∂ψ̂M

)
, (E.1)

where M = {0, . . . , 9} and ηMN = diag(−1, 1, . . . , 1) if we are in Lorentz signature.
Note that the anti-holomorphic (left-moving) fields are denoted with a “hat” and,
for simplicity, we will only discuss the holomorphic — or open string — part of the
theory below. The fields xM have conformal weight zero and ψM conformal weight
1
2 . From the RNS worldsheet fields, one can form c = 15 N = 1 superconformal
generators

Tm = −1
2

∂xM∂xM − 1
2

ψM∂ψM , (E.2a)

Gm = iψM∂xM . (E.2b)

The ghost part of the RNS action, which comes from gauge-fixing the N = 1
worldsheet superconformal invariance, reads

Sgh =
∫

d2z
(

b∂c + β∂γ + b̂∂ĉ + β̂∂γ̂
)

, (E.3)

where the fermionic ghosts {b, c} have conformal weights 2 and −1, and the
bosonic ghosts {β, γ} have conformal weights 3

2 and −1
2 , respectively. The c = −15
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N = 1 superconformal generators corresponding to the ghost part are given by

Tgh = −2b∂c − ∂bc − 3
2

β∂γ − 1
2

∂βγ , (E.4a)

Ggh = bγ − 2∂βc − 3β∂c . (E.4b)

In total, the gauge-fixed RNS worldsheet action is

SRNS = Sm + Sgh . (E.5)

In addition, it follows that the fundamental fields satisfy the following OPEs

∂xM(y)∂xN(z) ∼ −ηMN(y − z)−2 , b(y)c(z) ∼ (y − z)−1 , (E.6a)

ψM(y)ψN(z) ∼ ηMN(y − z)−1 , β(y)γ(z) ∼ −(y − z)−1 . (E.6b)

Associated to the gauge-fixed action (E.5) there is a BRST charge

QRNS =
∮

jBRST

=
∮ (

cTx,ψ,β,γ + bc∂c − 1
2

γGm − 1
4

bγ2 +
3
2

∂2c
)

, (E.7)

where jBRST is called the BRST current and Tx,ψ,β,γ is the combined stress-tensor
of all the fields mentioned. Note that Tx,ψ,β,γ has central charge 26 and the total
derivative term 3

2 ∂2c is added to make the BRST current a primary.
Let us now bosonize β = e−ϕ∂ξ and γ = ηeϕ, so that the BRST charge takes the

form

QRNS =
∮ (

cTx,ψ,ϕ,η,ξ + bc∂c − 1
2

ηeϕGm − 1
4

bη∂ηe2ϕ + ∂2c − ∂(ηξc)
)

, (E.8)

where we wrote eq. (E.7) in terms of the bosonized {β, γ}-ghosts and added
the total derivative −1

2 ∂2c − ∂(ηξc) to it compared to eq. (E.4). Note that this
total derivative added to (E.7) lives in the large Hilbert space — it includes the
ξ zero-mode — and that the BRST current in (E.8) still transforms as a tensor.
This total derivative was added so that the BRST current (E.8) corresponds to the
supercurrent G+ of eqs. (2.3). The latter observation has no particular consequence
on the discussion below.

From the rules of the BRST procedure [20] [23] [104], we define the physical
states of the superstring to be GSO projected and ghost-number minus picture-
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number one vertex operators U which are independent of the ξ zero-mode — this
is the small Hlber space condition — and which belong to the cohomology of
QRNS. The condition of being GSO-projected can be realized by considering states
which have no square-root cuts in the OPE with the spacetime supersymmetry

current of Q− 1
2

α .
By defining the ghost-number current as

jghost = −bc − βγ = −bc − ∂ϕ , (E.9)

and the picture-number current as

jpicture = −ηξ − ∂ϕ = i∂χ − ∂ϕ , (E.10)

we have that the ghost-number and the picture-number operators are given by

Nghost =
∮

jghost , Npicture =
∮

jpicture , (E.11)

where we used η = e−iχ and ξ = eiχ.
Consequently, the second condition on the physical states reads

Nghost − Npicute = 1 , (E.12)

where the charges {Nghost, Npicture} were defined in eqs. (E.11). Moreover, the last
two conditions can be implemented by demanding

η0U = QRNSU = 0 , (E.13)

where η0 is the zero-mode of η. Therefore, U is subject to an equivalence relation,
or gauge transformation,

δU = QRNSΛ , (E.14)

for any Λ in the small Hilbert space.
It is interesting to elaborate on why the small Hilbert space constraint is impor-

tant when working with the {ϕ, η, ξ}-CFT. If the requirement η0U = η0Λ = 0 is
relaxed, one could then take

Λ = −4cξ∂ξe−2ϕU ⇒ U = QRNSΛ , (E.15)
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for any U in the cohomology of QRNS. As a consequence, allowing Λ to live in the
large Hilbert space implies a trivial cohomology. Note that eq. (E.15) follows from

QRNS
(
− 4cξ∂ξe−2ϕ

)
= 1 , (E.16)

and one then says that the operator cξ∂ξe−2ϕ trivializes the cohomology.1

Now, consider a physical state U in the cohomology of QRNS, note that the
state V = ξU has the same energy as U, but it is not in the BRST cohomology of
the RNS formalism

QRNSV = QRNS(ξU)

= (QRNSξ)U ̸= 0 , (E.18)

but note further that

0 = Q2
RNSV

=
1
2

QRNS(ZU) , (E.19)

where we defined Z = 2QRNSξ.
In addition, if ZU = QRNSΛ for some Λ in the small Hilbert space, we have

that U = QRNS(YΛ), where Y is the inverse of Z, i.e., ZY = 1. Therefore, the state
ZU is in the cohomology of QRNS. Moreover,

η0(ZU) = 0 , (E.20)

so that ZU belongs to the small Hilbert space and ZU has Nghost − Npicture = 1,
since Z has Nghost − Npicture = 0. Taking into account that QRNS commutes with
the spacetime SUSY generator, we see that ZU satisfies all the conditions to be a
physical state of the superstring.

The operator Z is called the picture-changing operator and Y is known as the

1It is possible to allow Λ to live in the large Hilbert space by considering an additional equiva-
lence relation for U, namely,

δU = η0Ω , (E.17)

for some Ω. This is put to practice in the hybrid formalism, e.g., see eq (3.19).
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inverse picture-changing operator. Explicitly, they are given by

Z = Gmeϕ + b∂ηe2ϕ +
1
2

∂
(
bηe2ϕ

)
+ 2c∂ξ , (E.21a)

Y = 2c∂ξe−2ϕ , (E.21b)

and they satisfy

ZY = 1 , QRNSZ = QRNSY = 0 . (E.22)

Of course, Z has Npicture = 1 and Y has Npicture = −1.
The existence of the operators {Z, Y} implies that each physical vertex operator

is represented by an infinite number of physical states. Indeed, if U is in the BRST
cohomology, we have that

QRNS(ZmYnU) = 0 , (E.23)

and

δ(ZmYnU) = QRNSΛ ⇒ δU = QRNS(YmZnΛ) , (E.24)

thus ZmYnU is also in the cohomology for any m, n ≥ 0.
One should note that the cohomology is only non-trivial when U has conformal

weight zero. In agreement with the old covariant quantization approach [103]. To
see that, suppose U is in the cohomology of QRNS and has conformal weight h,
then one can write U = 1

h QRNS(b0U). And so we have arrived at a contradiction.
Therefore, the non-trivial states in the cohomology of QRNS must have conformal
weight zero.

In addition, we also learn that if U is in the BRST cohomology,

0 = b0(QRNSU)

= (TRNS)0U − QRNS(b0U)

= −QRNS(b0U) , (E.25)

as a consequence, there is a consistent gauge choice for the physical states U by
demanding U to have no double poles with the b-ghost, i.e.,

b0U = 0 . (E.26)
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This condition is known as the Siegel gauge [105].
Eq. (E.26) imply that one can ignore states which have double poles with the

b-ghost when solving the cohomology. If U is the vertex operator representing the
gluon aM, the condition b0U = 0 gives the well known covariant Lorenz gauge
constraint ∂MaM = 0.



Appendix F

The supercurrent G+ in a flat background

From eq. (3.38), we have that

G+
hyb = − 1

24
ϵαβγδ[Dα, {Dβ, [Dγ, {Dδ, e2ρ+3iσ}]}] + G+

C , (F.1)

where Dα = dα2 − e−ρ−iσdα1 and the graded bracket [Dα,O} denotes the single
pole in the OPE between Dα and O. In the following, we evaluate each of the four
contributions separately.

First contribution.∮
dy Dδ(y)e2ρ+3iσ(z) =

∮
dy (dδ2 − dδ1e−ρ−iσ)(y)e2ρ+3iσ(z)

= −(dδ1eρ+2iσ)(z) . (F.2)

The term appearing in (F.2) comes from the single pole in the OPE between
(dδ1e−ρ−iσ)(y) and e2ρ+3iσ(z).

Second contribution.

−
∮

dy Dγ(y)(dδ1eρ+2iσ)(z) = −
∮

dy (dγ2 − dγ1e−ρ−iσ)(y)(dδ1eρ+2iσ)(z)

= i(Πγδeρ+2iσ)(z)− (dγ1dδ1eiσ)(z) . (F.3)

The first term in (F.3) comes from the single pole in the OPE of dγ2(y) and
(dδ1eρ+2iσ)(z). The second term comes from the single pole in the OPE between
(dγ1e−ρ−iσ)(y) and (dδ1eρ+2iσ)(z).

Third contribution. Now we need to compute
∮

dy Dβ(y)
(

i(Πγδeρ+2iσ)(z)

−(dγ1dδ1eiσ)(z)
)

, which is most easily obtained by calculating the relevant terms

162



Appendix F. The supercurrent G+ in a flat background 163

independently. We have that∮
dy dβ2(y)(−1)(dγ1dδ1eiσ)(z)

= −
∮

dy dβ2(y)
∮ dx

x − z
dγ1(x)(dδ1eiσ)(z)

= −
∮

dy
∮ dx

x − z

[
− i(y − x)−1Πβγ(x)(dδ1eiσ)(z)

− dγ1(x)
(
− i(y − z)−1(Πβδeiσ)(z)

)]
= i(Πβγ(dδ1eiσ))(z)− i(dγ1(Πβδeiσ))(z)

= i(dδ1(Πβγeiσ))(z)− i(dγ1(Πβδeiσ))(z) + ϵϵβγδ(∂
2θϵ2eiσ)(z) , (F.4)

where we used that ([Πβγ, dδ1]) =
∮

dy
(

Πβγ(y)dδ1(z)− dδ1(y)Πβγ(z)
)
=

−iϵϵβγδ∂2θϵ2(z) according to eqs. (3.33). We also need

∮
dy dβ2(y)i(Πγδeρ+2iσ)(z) = ϵϵβγδ(∂θϵ1eρ+2iσ)(z) . (F.5)

And ∮
dy (dβ1e−ρ−iσ)(y)(dγ1dδ1eiσ)(z) = (dβ1dγ1dδ1e−ρ)(z) . (F.6)

And lastly, we have∮
dy (−i)(dβ1e−ρ−iσ)(y)(Πγδeρ+2iσ)(z)

= −i
∮

dy (dβ1e−ρ−iσ)(y)
∮ dx

x − z
Πγδ(x)eρ+2iσ(z)

= −i
∮

dy
∮ dx

x − z

(
i(y − x)−1ϵϵβγδ(∂θϵ2e−ρ−iσ)(x)eρ+2iσ(z)

− Πγδ(x)(y − z)−1(dβ1eiσ)(z)
)

= ϵϵβγδ((∂θϵ2e−ρ−iσ)eρ+2iσ)(z) + i(Πγδ(dβ1eiσ))(z)

= ϵϵβγδ(∂θϵ2(∂(ρ + iσ)eiσ))(z) + i(dβ1(Πγδeiσ))(z) , (F.7)

where it was used that ϵϵβγδ((∂θϵ2e−ρ−iσ)eρ+2iσ) = ϵϵβγδ(∂θϵ2(∂(ρ + iσ)eiσ))

−ϵϵβγδ(∂
2θϵ2eiσ) and i(Πγδ(dβ1eiσ)) = i(dβ1(Πγδeiσ)) + ϵϵβγδ(∂

2θϵ2eiσ) to go from
the third to the last line in the computation of (F.7).
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Gathering eqs. (F.4)–(F.7), we have∮
dy Dβ(y)

(
i(Πγδeρ+2iσ)(z)− (dγ1dδ1eiσ)(z)

)
= (dβ1dγ1dδ1e−ρ)(z) + ϵϵβγδ(∂θϵ1eρ+2iσ)(z) + ϵϵβγδ(∂

2θϵ2eiσ)(z)

+ ϵϵβγδ(∂θϵ2(∂(ρ + iσ)eiσ))(z) + i(dβ1(Πγδeiσ))(z) + i(dδ1(Πβγeiσ))(z)

− i(dγ1(Πβδeiσ))(z) . (F.8)

Fourth contribution. According to eq. (F.1), to obtain G+
hyb, we still need to act

with − 1
24 ϵαβγδ

∮
dy Dα(y) in eq. (F.8). We get that

− 1
24

ϵαβγδ
∮

dy Dα(y)(dβ1dγ1dδ1e−ρ)(z)

= − 1
24

ϵαβγδ
∮

dy
(

dα2(y)
∮ dx

x − z
dβ1(x)(dγ1dδ1e−ρ)(z)

− (dα1e−ρ−iσ)(y)(dβ1dγ1dδ1e−ρ)(z)
)

= − 1
24

ϵαβγδ
∮

dy
∮ dx

x − z

[
− i(y − x)−1Παβ(x)(dγ1dδ1e−ρ)(z)

− dβ1(x)
(
− i(y − z)−1(Παγ(dδ1e−ρ))(z) + i(y − z)−1(dγ1(Παδe−ρ))(z)

)
+ (y − z)−1(dα1dβ1dγ1dδ1e−2ρ−iσ)(z)

]
= − 1

24
ϵαβγδ

(
− i(Παβ(dγ1(dδ1e−ρ)))(z) + i(dβ1(Παγ(dδ1e−ρ)))(z)

− i(dβ1(dγ1(Παδe−ρ)))(z)
)
− e−2ρ−iσ(d1)

4(z)

= −e−2ρ−iσ(d1)
4(z) +

i
4
(e−ρ(dα1(dβ1Παβ)))(z) +

3
4
(e−ρdα1∂2θα2)(z) , (F.9)

where (d1)
4 = 1

24 ϵαβγδdα1dβ1dγ1dδ1 and, to get the last line, we used that
−i(e−ρ(dα1(Παβdβ1))) = −i(e−ρ(dα1(dβ1Παβ)))− 3(e−ρdα1∂2θα2) and
−i(e−ρ(Παβ(dα1dβ1))) = −i(e−ρ(dα1(dβ1Παβ)))− 6(e−ρdα1∂2θα2).

The next terms are

− 1
24

ϵαβγδ
∮

dy Dα(y)ϵϵβγδ(∂θϵ1eρ+2iσ)(z)

=
1
4

∮
dy (dα1e−ρ−iσ)(y)(∂θα1eρ+2iσ)(z)

=
1
4

∮
dy
∮ dx

x − z

(
4(y − x)−1∂e−ρ−iσ(x)eρ+2iσ(z)

+ ∂θα1(x)(y − z)−1(dα1eiσ)(z)
)
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= −1
4
(dα1(∂θα1eiσ))(z)− 1

2
(∂(ρ + iσ)(∂(ρ + iσ)eiσ))(z) +

1
2
(∂2(ρ + iσ)eiσ)(z) .

(F.10)

− 1
24

ϵαβγδ
∮

dy Dα(y)ϵϵβγδ(∂
2θϵ2eiσ)(z)

=
1
4

∮
dy (dα1e−ρ−iσ)(y)(∂2θα2eiσ)(z)

=
1
4
(dα1∂2θα2e−ρ)(z) . (F.11)

− 1
24

ϵαβγδ
∮

dy Dα(y)ϵϵβγδ(∂θϵ2(∂(ρ + iσ)eiσ))(z)

=
1
4

∮
dy (dα1e−ρ−iσ)(y)(∂θα2(∂(ρ + iσ)eiσ))(z)

=
1
4
(dα1(∂θα2(∂(ρ + iσ)e−ρ)))(z) . (F.12)

When contracted with − 1
24 ϵαβγδ, the last three terms of (F.8) amount to

− i
4((dβ1Παβ)eiσ). Therefore, we are left with the expression

− i
4

∮
dy Dα(y)((dβ1Παβ)eiσ)(z)

= − i
4

∮
dy (dα2 − dα1e−ρ−iσ)(y)((dβ1Παβ)eiσ)(z)

= − i
4

∮
dy (dα2 − dα1e−ρ−iσ)(y)

∮ dx
x − z

(dβ1Παβ)(x)eiσ(z)

= − i
4

∮
dy
∮ dx

x − z

[(
− 2i(y − x)−1ΠmΠm(x)− 3i(y − x)−1(dα1∂θα1)(x)

)
×

× eiσ(z)

− 3i(y − x)−1(dα1∂θα2e−ρ−iσ)(x)eiσ(z)− (dβ1Παβ)(x)(y − z)−1(e−ρdα1)(z)
]

= −1
2
(ΠaΠaeiσ)(z)− 3

4
(dα1∂θα1eiσ)(z)− 3

4
((dα1∂θα2e−ρ−iσ)eiσ)(z)

+
i
4
((dβ1Παβ)(e−ρdα1))(z)

= −1
2
(ΠaΠaeiσ)(z)− 3

4
(dα1∂θα1eiσ)(z) +

3
4
(dα1(∂θα2(∂(ρ + iσ)e−ρ)))(z)

+
i
4
(e−ρ(dα1(dβ1Παβ)))(z) . (F.13)



Appendix F. The supercurrent G+ in a flat background 166

To obtain the last line we used that ((dα1∂θα2e−ρ−iσ)eiσ) = (∂(dα1∂θα2)e−ρ)

−(dα1(∂θα2(∂(ρ + iσ)e−ρ))) and ((dβ1Παβ)(e−ρdα1)) = (e−ρ(dα1(dβ1Παβ)))

−3i(∂(dα1∂θα2)e−ρ).
Gathering eqs. (F.9)–(F.13), we obtain our final expression

G+
hyb = −(d1)

4e−2ρ−iσ +
i
2

dα1dβ1Παβe−ρ + dα1∂θα2∂(ρ + iσ)e−ρ + dα1∂2θα2e−ρ

− 1
2

ΠaΠaeiσ − dα1∂θα1eiσ − 1
2

∂(ρ + iσ)∂(ρ + iσ)eiσ

+
1
2

∂2(ρ + iσ)eiσ + G+
C , (F.14)

where we have dropped the normal-ordering brackets.
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The supercurrent G+ in AdS3 × S3

Let us prove eq. (4.24), namely,

G+ = − 1
4k

1
24

ϵαβγδQα2Qβ2Qγ2Qδ2e2ρ+3iσ + G+
C , (G.1)

where Qα2 =
∮ (

Sα1e−ρ−iσ + Sα2
)
. Using the current algebra (4.19), we start by

noting that

Qδ2e2ρ+3iσ = Sδ1eρ+2iσ , (G.2a)

Qγ2Qδ2e2ρ+iσ = −Sγ1Sδ1eiσ − i
√

2Kγδeρ+2iσ , (G.2b)

Qβ2Qγ2Qδ2e2ρ+iσ = −Sβ1Sγ1Sδ1e−ρ + i
√

2
(
KβγSδ1 − Sγ1Kβδ + KγδSβ1

)
eiσ

− 2ϵβγδρδ̂ρσ
[(

Sσ1e−ρ−iσ, eρ+2iσ)+ Sσ2eρ+2iσ] . (G.2c)

Therefore,

− 1
4k

1
24

ϵαβγδQα2Qβ2Qγ2Qδ2e2ρ+3iσ

= − 1
4k

(S1)
4e−2ρ−iσ − 1

2k

(
i

2
√

2
Sα1Sβ1Kαβ + δ̂αβSα1∂Sβ1

)
e−ρ

+ TPSUeiσ +
(
∂e−ρ−iσ, eρ+2iσ) , (G.3)

implying we can write eq. (4.20b) as (4.24), as we wanted to show.
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Appendix H

N = 1, N = 2 and small N = 4 super-
conformal algebras

We present the general structure of N = 1, N = 2 and small N = 4 supercon-
formal algebras, as well as their twisted counterparts. We do not try to address
questions such as when and how these algebras can be realized.

H.1 N = 1 and N = 2 superconformal algebras

An N = 1 superconformal algebra with central charge c is given by a conformal
weight two stress-tensor T and a conformal weight 3

2 supercurrent G satisfying

T(y)T(z) ∼
c
2

(y − z)4 +
2T(z)
(y − z)2 +

∂T(z)
(y − z)

, (H.1a)

T(y)G(z) ∼
3
2 G(z)
(y − z)2 +

∂G(z)
(y − z)

, (H.1b)

G(y)G(z) ∼
2
3 c

(y − z)3 +
2T(z)
(y − z)

. (H.1c)

The N = 2 superconformal algebra with central charge c satisfied by the
generators {J, G+, G−, T} is given by

T(y)T(z) ∼
c
2

(y − z)4 +
2T(z)
(y − z)2 +

∂T(z)
(y − z)

, (H.2a)

G+(y)G−(z) ∼
c
3

(y − z)3 +
J(z)

(y − z)2 +
T(z) + 1

2 ∂J(z)
(y − z)

, (H.2b)

T(y)G±(z) ∼
3
2 G±(z)
(y − z)2 +

∂G±(z)
(y − z)

, (H.2c)

T(y)J(z) ∼ J(z)
(y − z)2 +

∂J(z)
(y − z)

, (H.2d)
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J(y)J(z) ∼
c
3

(y − z)2 , (H.2e)

J(y)G±(z) ∼ ± G±(z)
(y − z)

. (H.2f)

Here, T has conformal weight 2, G± has conformal weight 3
2 and J has conformal

weight 1.
Equivalently, in tems of the modes, the N = 2 SCA reads

[Lm, Ln] = (m − n)Lm+n +
c

12(m
3 − m)δm,−n , (H.3a)

{G+
r , G−

s } = Lr+s +
1
2(r − s)Jr+s +

c
6(r

2 − 1
4)δr,−s , (H.3b)

[Lm, G±
r ] = (1

2 m − r)G±
m+r , (H.3c)

[Lm, Jn] = −nJm+n , (H.3d)

[Jm, Jn] =
c
3 mδm,−n , (H.3e)

[Jm, G±
r ] = ±G±

m+r . (H.3f)

H.2 Twisted N = 2 superconformal algebra

To construct an N = 2 twisted theory, we modify the stress-tensor T by adding
+1

2 ∂J to it, so that

T +
1
2

∂J 7→ T , (H.4)

and one can see that the dimension of every field in the theory is modified by −1
2

its U(1)-charge, which is generated by J. In particular, looking at the structure
of the algebra (H.2), we see that the conformal weight of G+ gets shifted to 1,
that of G− gets shifted to 2 and the conformal weight of the rest of the generators
stay untouched. More importantly, the shift in the stress-tensor (H.4) results
in the vanishing of the conformal anomaly in the TT OPE, so that the twisted
stress-tensor is a primary. In contrast, there appears a triple pole in the TJ OPE
proportional to the central charge c.

With the above considerations, we can now write the twisted N = 2 su-
perconformal algebra with central charge c satisfied by the twisted generators
{J, G+, G−, T}1

T(y)T(z) ∼ 2T(z)
(y − z)2 +

∂T(z)
(y − z)

, (H.5a)

1Here, T is the shifted stress-tensor of (H.4).
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G+(y)G−(z) ∼
c
3

(y − z)3 +
J(z)

(y − z)2 +
T(z)

(y − z)
, (H.5b)

T(y)G+(z) ∼ G+(z)
(y − z)2 +

∂G+(z)
(y − z)

, (H.5c)

T(y)G−(z) ∼ 2G−(z)
(y − z)2 +

∂G−(z)
(y − z)

, (H.5d)

T(y)J(z) ∼ −
c
3

(y − z)3 +
J(z)

(y − z)2 +
∂J(z)
(y − z)

, (H.5e)

J(y)J(z) ∼
c
3

(y − z)2 , (H.5f)

J(y)G±(z) ∼ ± G±(z)
(y − z)

. (H.5g)

H.3 Small and twisted small N = 4 superconformal

algebras

A small N = 4 superconformal algebra consists of a conformal weight 2 gener-
ator T, four conformal weight 3

2 fermionic currents {G±, G̃±} and three conformal
weight 1 bosonic currents {J, J++, J−−} forming an su(2) c

6
current algebra. In

the description that we are using, it is convenient to build the small N = 4 SCA
by starting with the N = 2 SCA in Appendix H.1 and lifting the u(1) c

6
to an

su(2) c
6

current algebra. To do that, one adds to the generators {J, G+, G−, T} the
conformal weight 1 bosonic currents J++ and J−− of U(1) charge ±2, respectively,
satisfying the OPES

J(y)J±±(z) ∼ ±2
J±±(z)
(y − z)

, (H.6a)

J++(y)J−−(z) ∼
c
6

(y − z)2 +
J(z)

(y − z)
. (H.6b)

Note that the level of the su(2) current algebra is fixed by the Jacobi identities
and the level of the u(1) current algebra. On top of that, for the algebra to close, we
also need to add two fermionic generators G̃± and, in addition to the non-regular
OPEs in eq. (H.2), we also have

J±±(y)G∓(z) ∼ ∓ G̃±(z)
(y − z)

, (H.7a)
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J±±(y)G̃∓(z) ∼ ± G±(z)
(y − z)

, (H.7b)

G+(y)G̃+(z) ∼ 2J++(z)
(y − z)2 +

∂J++(z)
(y − z)

, (H.7c)

G̃−(y)G−(z) ∼ 2J−−(z)
(y − z)2 +

∂J−−(z)
(y − z)

, (H.7d)

G̃+(y)G̃−(z) ∼
c
3

(y − z)3 +
J(z)

(y − z)2 +
T(z) + 1

2 ∂J(z)
(y − z)

, (H.7e)

T(y)J±±(z) ∼ J±±(z)
(y − z)2 +

∂J±±(z)
(y − z)

, (H.7f)

T(y)G̃±(z) ∼
3
2 G̃±(z)
(y − z)2 +

∂G̃±(z)
(y − z)

. (H.7g)

Therefore, we say that the generators {J, J±±, G±, G̃±, T} form a small N = 4 SCA
with central charge c when they satisfy eqs. (H.2), (H.6) and (H.7).

The twisted small N = 4 SCA with central charge c can be constructed from
the untwisted one in the same way as we constructed the twisted N = 2 SCA
from eq. (H.2), i.e., by shifting the stress-tensor as in eq. (H.4). With respect to
the twisted stress-tensor, the conformal weight of J++ becomes zero, that of J−−

becomes 2, the conformal weight of G+ and G̃+ gets shifted to 1 and that of
G− and G̃− gets shifted to 2. Consequently, we say that the twisted generators
{J, J±±, G±, G̃±, T} form a twisted small N = 4 SCA with central charge c when
they obey eqs. (H.5), (H.6) and

J±±(y)G∓(z) ∼ ∓ G̃±(z)
(y − z)

, (H.8a)

J±±(y)G̃∓(z) ∼ ± G±(z)
(y − z)

, (H.8b)

G+(y)G̃+(z) ∼ 2J++(z)
(y − z)2 +

∂J++(z)
(y − z)

, (H.8c)

G̃−(y)G−(z) ∼ 2J−−(z)
(y − z)2 +

∂J−−(z)
(y − z)

, (H.8d)

G̃+(y)G̃−(z) ∼
c
3

(y − z)3 +
J(z)

(y − z)2 +
T(z)

(y − z)
, (H.8e)

T(y)J++(z) ∼ ∂J++(z)
(y − z)

, (H.8f)

T(y)J−−(z) ∼ 2J−−(z)
(y − z)2 +

∂J−−(z)
(y − z)

, (H.8g)



Appendix H. N = 1, N = 2 and small N = 4 superconformal algebras 172

T(y)G̃+(z) ∼ G̃+(z)
(y − z)2 +

∂G̃+(z)
(y − z)

, (H.8h)

T(y)G̃−(z) ∼ 2G̃−(z)
(y − z)2 +

∂G̃−(z)
(y − z)

. (H.8i)

With respect to the su(2) symmetry, T transforms as a singlet and G+ (G−)

transforms as an upper (lower) component of an su(2) doublet whose lower
(upper) component is G̃−(G̃+). This su(2) rotates the different choices of the U(1)
current J into one another and computations are equivalent no matter what choice
of this U(1) one picks [18].

In addition, there is another SU(2) symmetry (that we refer to as SU(2)outer) of
the N = 4 SCA which acts by outer automorphisms. To see that, consider the
following linear combinations of the fermionic generators2

G+ = u∗
1G+ − u∗

2G̃+ , (H.9a)

G− = u1G− − u2G̃− , (H.9b)

G̃+ = u1G̃+ + u2G+ , (H.9c)

G̃− = u∗
1G̃− + u∗

2G− , (H.9d)

by demanding that G± and G̃± satisfy the same algebra as G± and G̃± we get the
relation |u1|2 + |u2|2 = 1, i.e., u1 and u2 are elements of SU(2)outer. This symmetry
that rotates the supercurrents parametrizes the different embeddings of the N = 2
SCA into the N = 4 SCA and, in general, is not a symmetry of the theory [18] [46].

Lastly, we should mention the important fact that a small N = 4 SCA can
be constructed from any c = 6 N = 2 SCA by defining the SU(2) currents to be
J, J++ = −e

∫
J and J−− = e−

∫
J . The condition c = 6 is necessary in order for

J++ and J−− to have conformal weight 1 when the algebra is not twisted. As
an example, the RNS superstring has a description as a c = 6 N = 2 string and,
therefore, can also be described as an N = 4 topological string [18].

2Note that here they obey the hermiticity properties (G±)∗ = G̃∓ and (G̃±)∗ = G̃∓.



Appendix I

Another basis for the bosonic currents

I.1 Choosing a U(1) direction

In order to label the physical states, it is convenient to single out an U(1) ∈
SL(2, R) and an U(1) ∈ SU(2) direction [80].

We build the SL(2, R)k generators in a standard basis from the currents Ka by
defining

J± = − i
2
(K1 ± iK2) , J3 = − i

2
K0 , (I.1)

which satisfy the current algebra

J3(y)J3(z) ∼ − k
2
(y − z)−2 , (I.2a)

J3(y)J±(z) ∼ ±(y − z)−1 J± , (I.2b)

J+(y)J−(z) ∼ k(y − z)−2 − 2(y − z)−1 J3 . (I.2c)

If desired, one can do the same for the SU(2)k part. We define the linear
combinations1

K3′ = − i
2

K5 , K±′ = − i
2
(K3 ± iK4) , (I.3a)

which satisfy

K3′(y)K3′(z) ∼
k
2
(y − z)−2 , (I.3b)

K3′(y)K±′(z) ∼ ±(y − z)−1K±′ , (I.3c)

K+′(y)K−′(z) ∼ k(y − z)−2 + 2(y − z)−1K3′ . (I.3d)

1The choice to single out the “five” direction in K3′ = K5 comes because σ5 is block diagonal in
our conventions, see eqs. (B.2)
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I.2 SL(2, R) and SU(2) quantum numbers

One can label the vertex operator V in (4.43) by the SL(2, R) quantum numbers
{j, m} and SU(2) quantum numbers {j′, m′}. As before, we will consider zero
amount of spectral flow in this section. Since all the physical degrees of freedom
are contained in the superfield V from eq. (4.50a), we focus on describing its
components in what follows. Moreover, the superfield V0 ⊂ V decouples from
amplitude computations presented in this work.

Accordingly, if V ⊃ V has quantum numbers {j, m, j′, m′}, we write

V = V
( #»

j , #»m
)

, (I.4)

where

#»

j = {j, j′} , #»m = {m, m′} , (I.5)

with j = j′ + 1, the half-BPS condition. The vector
#»

j i labels the SL(2, R)× SU(2)
spin of the representation and #»m characterize the state in the given representation.
As a consequence, under the zero-modes of the diagonal currents defined in
Section I.1, we then have

#»∇3V = #»mV ,
#»∇3 = {∇3,∇3′} . (I.6)

Consequently, the wavefunctions {χα2, aa, ψα2} in (4.50a) can be written as

χα2 = VSL(2,R)×SU(2)
#»

j , #»mα
= VSL(2,R)

j,mα
VSU(2)

j′,m′
α

, (I.7a)

aa = VSL(2,R)×SU(2)
#»

j , #»ma = VSL(2,R)
j,ma VSU(2)

j′,m′a , (I.7b)

ψα2 = VSL(2,R)×SU(2)
#»

j , #»mα
= VSL(2,R)

j,mα VSU(2)
j′,m′α , (I.7c)

where VSL(2,R)
ji,mi

and VSU(2)
j′i ,m

′
i

are SL(2, R) and SU(2) current algebra primaries, re-
spectively. From the properties

[∇a, θα] = − fa β1
α1θβ , (I.8a)

[∇a, (θσbθ)] = fab
c(θσcθ) , (I.8b)

[∇a, (θ3)α] = fa α1
β1(θ3)β , (I.8c)
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one finds that

#»m3 = {m, m′} , #»m± = {m ∓ 1, m′} , (I.9a)
#»m3′ = {m, m′} , #»m±′

= {m, m′ ∓ 1} , (I.9b)

and #»mα = {mα, m′
α} with

#»m1 = {m + 1
2 , m′ − 1

2} , #»m2 = {m − 1
2 , m′ + 1

2} , (I.10a)
#»m3 = {m − 1

2 , m′ − 1
2} , #»m4 = {m + 1

2 , m′ + 1
2} , (I.10b)

and, finally, #»mα = {mα, m′α} with

#»m1 = {m − 1
2 , m′ + 1

2} , #»m2 = {m + 1
2 , m′ − 1

2} , (I.11a)
#»m3 = {m + 1

2 , m′ + 1
2} , #»m4 = {m − 1

2 , m′ − 1
2} . (I.11b)



Appendix J

Gauge invariance in the hybrid descrip-
tion

Let us analyze the consistency of the hybrid vertices (4.80) appearing in the
three-point amplitude for the states in the NS-sector. We take V = i

2(θσaθ)aa, so
that eqs. (4.80) become

V = eρ+iσ i
2
(θσaθ)aa , (J.1a)

G̃+
0 V = e2ρ+iσ J++

C
i
2
(θσaθ)aa , (J.1b)

G+
0 V = − 1

2k
1√
2

eiσ
(

Kaaa + iSα1(σ
abθ)αDaab + i

√
2Sα1(δ̂σaθ)αaa

)
. (J.1c)

Up to a constant, the integrated vertex operator is then given by∫
G−
−1G+

0 V =
∫ (

Kaaa + iSα1(σ
abθ)αDaab + i

√
2Sα1(δ̂σaθ)αaa) . (J.2)

We now check that the integrand of (J.2) is gauge invariant up to a total deriva-
tive. From eq. (4.47), one finds that the gauge transformation for aa is

δaa = ∇aλ , (J.3)

for some λ = λ(g) where g ∈ PSU(1, 1|2) and ∇α1λ = 0. Therefore, under (J.3),
the integrated vertex operator (J.2) transforms as

Ka∇aλ − Sα1θβ fa β1
α1∇aλ

= Ka∇aλ + Sαj∇αjλ

= ∂λ , (J.4)
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as we wanted to show. In arriving to the second line above we used that

∇α1λ = 0 ⇒ Sα2∇α2λ = −Sα1θβ fa β1
α1∇aλ . (J.5)

As a result, we conclude that the integrated vertex operator (J.2) is gauge
invariant up to a total derivative in the group manifold of PSU(1, 1|2).



Appendix K

d = 6 N = 1 super-Yang-Mills

In this section, we closely follow the d = 10 N = 1 super-Yang-Mills descrip-
tion presented in ref. [106, Appendix B].

To describe d = 6 super-Yang-Mills in N = 1 superspace, we define the
super-covariant derivatives

Da = ∂a + Aa , (K.1a)

Dαj = ∇αj + Aαj , (K.1b)

where ∇αj =
∂

∂θαj − i
2 ϵjkθβkσa

αβ∂a with {∇αj,∇βk} = −iϵjkσa
αβ∂a. Then, the field-

strengths are

Fαjβk = {Dαj,Dβk}+ iϵjkσa
αβDa , (K.2a)

Fαja = [Dαj,Da] , (K.2b)

Fab = [Da,Db] , (K.2c)

which are invariant under the gauge transformations

δAαj = ∇αjΛ , δAa = ∂aΛ , (K.3)

for any Λ.
Explicitly, the superspace field-strength constraint Fαjβk = 0 reads [43]

∇αj Aβk +∇βk Aαj + {Aαj, Aβk}+ iϵjkσa
αβ Aa = 0 . (K.4)

Multiplying the above equation by (σabc)αβ and using that (σabc)αβσd
αβ = 0, we

obtain

(σabc)αβ(∇αj Aβk +∇βk Aαj + {Aαj, Aβk}) = 0 . (K.5)
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The converse also follows.
From the Bianchi identity

[{Dαj,Dβk},Dγl] + [{Dγl,Dαj},Dβk] + [{Dβk,Dγl},Dαj] = 0 , (K.6)

we have

iϵjkσa
αβ[Da,Dγl] + iϵl jσ

a
γα[Da,Dβk] + iϵklσ

a
βγ[Da,Dαj] = 0 , (K.7)

which is satisfied if Fαja = −iϵjkσaαβWβk by using the Schouten identity [6, Ap-
pendix A]. Therefore, Fαja = [Dαj,Da] = −iϵjkσaαβWβk gives

∂a Aαj −Dαj Aa − iϵjkσaαβWβk = 0 . (K.8)

The Bianchi identity

[{Dαj,Dβk},Da] + {[Da,Dαj],Dβk} − {[Dβk,Da],Dαj} = 0 , (K.9)

gives

ϵjkσb
αβFab + ϵjlσaαγDβkWγl + ϵklσaβγDαjWγl = 0 . (K.10)

Multiplying eq. (K.10) by σaαβ, we obtain

ϵjlDαkWαl − ϵklDαjWαl = 0 , (K.11)

which imply DαjWαj = 0. Contracting (K.10) with σaβσ and σaασ, we get

−iϵjk(σ
ab)σ

αFab − 4ϵlkDαjWσl + ϵlkδσ
αDβjWβl + ϵjkDαlWσl = 0 , (K.12a)

iϵjk(σ
ab)σ

βFab − 4ϵlkDβjWσl + ϵlkδσ
βDαjWαl + 3ϵjkDβlWσl = 0 . (K.12b)

From (K.12b) − 3 × (K.12a), it follows that

2iϵjk(σ
ab)

β
αFab − 4DαjW

β
k + δ

β
αDγjW

γ
k = 0 , (K.13)

where Wα
j = ϵjkWαk. Consequently,

iϵjk(σ
ab)

β
αFab −Dα[jW

β

k] = 0 , (K.14a)
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4Dα(jW
β

k) − δ
β
αDγ(jW

γ
k) = 0 . (K.14b)

Furthermore, using the equation of motion of d = 6 super-Yang-Mills [43], i.e.,
Dα(jWα

k) = 0, we then have

DαjW
β
k − i

2
ϵjk(σ

ab)
β
αFab = 0 , (K.15)

Now, consider the Bianchi identity

[[Da,Db],Dαj] + [[Dαj,Da],Db] + [[Db,Dαj],Da] = 0 , (K.16)

that implies

DαjFab = iϵjkσaαβDbWβk − iϵjkσbαβDaWβk . (K.17)

Finally, acting with Dγl in (K.15), symmetrizing in the indices {αj, γl}, then using
(K.17) and multiplying by δ

γ
β , we end up with

σa
αβDaWβj = 0 . (K.18)

In summary, the equations describing d = 6 super-Yang-Mills obtained in this
section are

∇αj Aβk +∇βk Aαj + {Aαj, Aβk}+ iϵjkσa
αβ Aa = 0 , (K.19a)

∂a Aαj −Dαj Aa − iϵjkσaαβWβk = 0 , (K.19b)

DαjW
β
k − i

2
ϵjk(σ

ab)
β
αFab = 0 , (K.19c)

σa
αβDaWβj = 0 , (K.19d)

which were shown to follow from the equation of motion Dα(jWα
k) = 0 and the

superspace constraint Fαjβk = 0.
Note also that the superfields {Aa, Wαj, Fab} can be written as

Aa = − i
4

ϵjkσ
αβ
a (∇αj Aβk +∇βk Aαj + {Aαj, Aβk}) , (K.20a)

Wαj =
i
3

ϵjkσaαβ(∂a Aβk −Dβk Aa) , (K.20b)

Fab = Da Ab −Db Aa . (K.20c)



Appendix K. d = 6 N = 1 super-Yang-Mills 181

The θ expansion of the d = 6 SYM superfields is given by

Aαj = − i
2

ϵjkaαβθβk +
1
3

ϵαβγδϵjkϵlmθβkψγlθδm + . . . , (K.21a)

Aa = aa + iϵjkσaαβψαjθβk + . . . , (K.21b)

Wαj = ψαj − i
2
(σab)α

βθβj fab + . . . , (K.21c)

Fab = fab + . . . , (K.21d)

where aa is the gluon, ψαj the gluino and fab = ∂aab − ∂baa the gluon field-strength.
Note further that the first component of Aαj can be gauged away.



Appendix L

PSU(1, 1|2)× PSU(1, 1|2)

The Lie superalgebra g of PSU(1, 1|2)× PSU(1, 1|2) contains 12 bosonic and
16 fermionic generators TA where A = {[ab], αj, a, α̂j}. The index a ranges from
{0 to 5}, the SU(4) indices α and α̂ range from {1 to 4}, j = {1, 2} and [ab] =
{[ab], [a′b′]} with a = {0, 1, 2} and a′ = {3, 4, 5}.

Beyond that, the Lie superalgebra g has a Z4-automorphism [91],1 which
means that it can be decomposed as

g = g0 ⊕ g1 ⊕ g2 ⊕ g3 , (L.1)

where

T[ab] ∈ g0 , Tαj ∈ g1 , Ta ∈ g2 , T
β̂k ∈ g3 , (L.2)

and, in turn, we have that

[gr, gs} = gr+s (mod 4) . (L.3)

Note that this property is manifest in the structure constants (4.113). The super-
trace over the generators must also be Z4-invariant, so that

sTr(grgs) = 0 unless r + s = 0 (mod 4) , (L.4)

where we are denoting the supertrace over the Lie superalgebra by sTr(. . .).
The structure constants (4.113) of the PSU(1, 1|2)× PSU(1, 1|2) Lie superalge-

1The supergroup properties presented in this section also hold for the super-coset descriptions
of AdS2 × S2 and AdS5 × S5 backgrounds as well [91].
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bra satisfy the super-Jacobi identities

(−)|A||C|[TA, [TB, TC}}+ (−)|A||B|[TB, [TC, TA}}+ (−)|C||B|[TC, [TA, TB}}

= −
(
(−)|A||C| fBC

D fAD
E + (−)|A||B| fCA

D fBD
E + (−)|C||B| fAB

D fCD
E
)

TE = 0 ,

(L.5)

where |A| = 0 if it corresponds to a bosonic and |A| = 1 if it corresponds to a
fermionic indice.

The supertrace can be used to further relate the structure constants of the
supergroup with the help of the following identity

sTr
(
[TA, TB}TC

)
= sTr

(
TA[TB, TC}

)
⇒ fAB

DηDC = ηAD fBC
D , (L.6)

where we defined the PSU(1, 1|2)× PSU(1, 1|2) metric

sTr(TATB) = ηAB . (L.7)

In our conventions, some important properties of the metric are

ηABηBC = δA
C , (L.8a)

ηAB = (−)|A||B|ηBA , (L.8b)

XA = ηABXB , (L.8c)

XA = ηABXB , (L.8d)

fA
BC = ηBD fAD

C , (L.8e)

for X an element of the Lie superalgebra. With the help of ηAB, one can define the
structure constants with all indices down fABC. Under permutation of the indices,
they satisfy

fABC = ηCD fAB
D , (L.9a)

fABC = −(−)|A||B| fBAC , (L.9b)

fABC = −(−)|A||C| fCBA , (L.9c)

fABC = −(−)|A||B|+|A||C|+|B||C| fACB . (L.9d)

Explicitly, the non-vanishing components of the PSU(1, 1|2)× PSU(1, 1|2) met-
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ric are

ηab = {ηab , ηa′b′} = {diag(−1, 1, 1), diag(1, 1, 1)} , (L.10a)

η[ab][cd] =

{
1
2

ηa[cηd]b ,−1
2

ηa′[c′ηd′]b′

}
, (L.10b)

η
αj β̂k = δ̂

αβ̂
ϵjk . (L.10c)

Note that δ̂
αβ̂

= 2
√

2(σ012)
αβ̂

, δ̂
αβ̂

= δ̂
β̂α

and the inverse components of the metric
are defined according to

δ̂
αβ̂

δ̂β̂γ = δ
γ
α , δ̂α̂βδ̂βγ̂ = δ

γ̂
α̂ , (L.11a)

ηabηbc = δa
c , η[ab][e f ]η[e f ][cd] =

1
2

δ
[a
c δ

b]
d . (L.11b)

Furthermore, the sigma-matrices obey the relations

σa
αβ = δ̂αα̂δ̂

ββ̂
σaα̂β̂ , σaαβ = δ̂αα̂δ̂ββ̂σa

α̂β̂
, (L.12a)

σa′
αβ = −δ̂α̂αδ̂

β̂β
σa′α̂β̂ , σa′αβ = −δ̂αα̂δ̂ββ̂σa′

α̂β̂
. (L.12b)



Appendix M

d = 6 N = 2 superfields

In terms of the bi-spinor superfield A
αj β̂k, the linearized d = 6 N = 2 su-

pergravity connections and field-strengths appearing in the massless integrated
vertex operator of the Type IIB superstring (4.144) are

Aa γ̂l = − i
2

ϵjkσ
αβ
a Dαj Aβk γ̂l , (M.1a)

Aa βk =
i
2

ϵjlσ
α̂γ̂
a Dα̂j Aβk γ̂l , (M.1b)

E
β̂k

γl =
i
3

ϵl jσaγα
(

Dαj Aa β̂k − ∂a A
αj β̂k

)
, (M.1c)

Eβk
γ̂l =

i
3

ϵl jσaγ̂α̂
(

Dα̂j Aa βk + ∂a Aβk α̂j

)
, (M.1d)

Aab = − i
2

ϵjkσ
αβ
b Dαj Aa βk

= − i
2

ϵjkσ
α̂β̂
a Dα̂j Ab β̂k , (M.1e)

Ea
βk =

i
3

ϵkjσbβα
(

∂b Aa αj − Dαj Aab

)
= − i

2
ϵjlσ

α̂γ̂
a Dα̂jEγ̂l

βk , (M.1f)

Eb
β̂k =

i
3

ϵkjσaβ̂α̂
(

∂a Ab α̂j − Dα̂j Aab

)
= − i

2
ϵjlσ

αγ
b DγlEαj

β̂k , (M.1g)

Fβk γ̂l = − i
3

ϵl jσaγ̂α̂
(

Dα̂jEa
βk − ∂aEα̂j

βk
)

=
i
3

ϵkjσaβα
(

DαjEa
γ̂l − ∂aEαj

γ̂l
)

, (M.1h)

Ωabc =
i
2
(σbc)

α
βDαjEa

βj , (M.1i)

Ω̂abc =
i
2
(σbc)

α̂
β̂
Dα̂jEa

β̂j . (M.1j)

Let us add to the integrated vertex operator (4.144) the remaining terms not
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containing the chiral bosons

WSG = ∂θ̂ β̂k∂θαj A
αj β̂k + ∂θαjΠa Aa αj + ∂θ̂ β̂kΠa Aa β̂k + ΠbΠa Aab + dαj∂θ̂ β̂kE

β̂k
αj

+ dαjΠ
aEa

αj + d̂
β̂k∂θαjEαj

β̂k + d̂
β̂kΠaEa

β̂k + dαjd̂β̂kFαj β̂k

− i
2

Nab

(
∂θ̂ β̂kΩ ab

β̂k
+ ΠcΩ ab

c

)
− i

2
N̂ab

(
∂θαjΩ̂ ab

αj + ΠcΩ̂ ab
c

)
− i

2
Nabd̂

β̂kCβ̂k ab − i
2

N̂abdαjĈαj ab − 1
4

RabcdNcdN̂ab + (. . .) , (M.2)

where in (. . .) we gathered all terms proportional to the {ρ, σ}-ghosts and

{Ω ab
β̂k

, Ω̂ ab
αj , Cβ̂k ab, Ĉαj ab, Rabcd} , (M.3)

are superfields functions of the zero-modes of {xa, θαj, θ̂α̂j}. From BRST invariance
of the integrated vertex, one then obtains that the additional superfields in (M.2)
are related to those in (4.144) by the following equations

DαjEγ̂l
βk − i

2
δk

j (σab)
β
αΩ ab

γ̂l = 0 , (M.4a)

Dα̂jEγl
β̂k − i

2
δk

j (σab)
β̂
α̂Ω ab

γl = 0 , (M.4b)

DαjFβk γ̂l − i
2

δk
j (σab)

β
αCγ̂l ab = 0 , (M.4c)

Dα̂jFβk γ̂l +
i
2

δl
j(σab)

γ̂
α̂Ĉβk ab = 0 , (M.4d)

DαjĈβk ab +
i
2

δk
j (σcd)

β
αRabcd = 0 , (M.4e)

Dα̂jCβ̂k ab +
i
2

δk
j (σcd)

β̂
α̂Rabcd = 0 , (M.4f)

(σabc)
αγDαjC

β̂k δ
γ = 0 , (M.4g)

(σabc)
α̂γ̂D̂α̂jĈ

βk δ̂
γ̂ = 0 , (M.4h)

where Cβ̂k δ
γ = (σab)

δ
γCβ̂k ab and Ĉβk δ̂

γ̂ = (σab)
δ̂
γ̂Ĉβk ab.

We also have that

Dα̂jΩ
ab

β̂k
+ D

β̂kΩ ab
α̂j + iϵjkσc

α̂β̂
Ω ab

c = 0 , (M.5a)

DαjΩ̂
ab

βk + DβkΩ̂ ab
αj + iϵjkσc

αβΩ̂ ab
c = 0 , (M.5b)

Dα̂jΩ
ab

c − ∂cΩ ab
α̂j + iϵjkσcα̂β̂

Cβ̂k ab = 0 , (M.5c)
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DαjΩ̂
ab

c − ∂cΩ̂ ab
αj + iϵjkσcαβĈβk ab = 0 , (M.5d)

and

(σabc)αδDαjΩ
γ

β̂k δ
= 0 , (M.6a)

(σabc)α̂δ̂Dα̂jΩ̂
γ̂

βk δ̂
= 0 , (M.6b)

(σabc)αδDαjΩ
γ

c δ = 0 , (M.6c)

(σabc)α̂δ̂Dα̂jΩ̂
γ̂

c δ̂
= 0 , (M.6d)

(σe f g)αδ(σab)
γ
δDαjRabcd = 0 , (M.6e)

(σe f g)α̂δ̂(σab)
γ̂

δ̂
Dα̂jRabcd = 0 , (M.6f)

where Ω γ

β̂k δ
= Ω ab

β̂k
(σab)

γ
δ , Ω̂ γ̂

βk δ̂
= Ω̂ ab

β̂k
(σab)

γ̂

δ̂
, Ω γ

c δ = Ω ab
c (σab)

γ
δ and Ω̂ γ̂

c δ̂
=

Ω ab
c (σab)

γ̂

δ̂
.

Furthermore, from eqs. (M.4), we can write

Dα̂jDδl Fγl β̂k − 1
2

δk
j (σab)

γ
δ(σcd)

β̂
α̂Rabcd = 0 , (M.7a)

DαjDδ̂l F
βk γ̂l +

1
2

δk
j (σab)

γ̂

δ̂
(σcd)

β
αRabcd = 0 , (M.7b)

and

(σabc)
αγDαjDγl Fδl β̂k = 0 , (M.8a)

(σabc)
α̂γ̂Dα̂jDγ̂l Fβk δ̂l = 0 . (M.8b)
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Background field expansion

After plugging (4.158) into HNS defined by (4.127a) and only keeping terms
quadratic in the fluctuations, using the Maurer-Cartan eqs. (4.119) and ∇2XA =

XBRB
A, the three-dimensional integral over HNS can be written as a two-dimensional

integral over the one-forms JA, which is given by

− i
f 2

∫
B
HNS

= −i
∫ [

− 1
2

JcXb∇XaHabc +
1
2

Ja
(
− X β̂k∇Xαj +∇X β̂kXαj

)
H

αj β̂k a

− 1
2

(
J β̂kXa∇Xαj + JαjXa∇X β̂k

)
H

αj β̂k a −
3
2

(
J β̂k∇XaXαj

+ Jαj∇XaX β̂k
)

H
αj β̂k a +

1
4

(
Jγl Jδmi fδm γl

a − Jγ̂l J δ̂mi f
δ̂m γ̂l

a
)

X β̂kXαjH
αj β̂k a

+
1
2

(
Jγl Jαji fγl b

β̂k + Jγ̂l J β̂ki fγ̂l b
αj
)

XbXaH
αj β̂k a +

(
Jb JγlXaXαji fγl a

β̂k

+ Jb Jγ̂lXaX β̂ki fγ̂l a
αj
)

H
αj β̂k a

]
. (N.1)

Substituting (4.158) into (4.126), the terms independent of HNS and quadratic
in the fluctuations XA are given by

1
f 2

∫
d2z sTr

[
1
2

J2 J2
+ J1 J3 − 1

4
(
2 − fRR

f
)(

J1 J3 − J1 J3
)
+ w∇λ + ŵ∇λ̂ − NN̂

]
=
∫

d2z sTr
[

1
2
∇X2∇X2 +∇X1∇X3 +

1
4

fRR
f

(
∇X1∇X3 −∇X1∇X3)

+
1
4
(
3 − fRR

f
)

J2[X1,∇X1] +
1
4
(
− 1 + fRR

f
)

J2[X3,∇X3]

+
1
4
(
− 1 + fRR

f
)

J2
[X1,∇X1] +

1
4
(
3 − fRR

f
)

J2
[X3,∇X3] +

1
2

J2[[J2, X2], X2]

+
1
4
(
2 − fRR

f
)

J2[[J2, X1], X3] +
1
4
(
− 2 + fRR

f
)

J2[[J2, X3], X1]

+
1
8
(
4 − fRR

f
)

J1[X1,∇X2] +
1
8
(
8 − 3 fRR

f
)

J1[X2,∇X1]
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+
1
8
(
4 − fRR

f
)

J3
[X3,∇X2] +

1
8
(
8 − 3 fRR

f
)

J3
[X2,∇X3]

+
1
2
(
− 2 + fRR

f
)

J1[[J3, X2], X2] +
1
4

fRR
f J1[[J3, X1], X3]

+
1
4
(
− 2 + fRR

f
)

J1[[J3, X3], X1] +
1
8

fRR
f J1

[X1,∇X2]

+
1
8
(
3 fRR

f − 4
)

J1
[X2,∇X1] +

1
8

fRR
f J3[X3,∇X2] +

1
8
(
3 fRR

f − 4
)

J3[X2,∇X3]

+
1
2
(
2 − fRR

f
)

J1
[[J2, X2], X2] +

1
4
(
4 − fRR

f
)

J1
[[J3, X1], X3]

+
1
4
(
2 − fRR

f
)

J1
[[J3, X3], X1] +

1
2

N
(
[∇X1, X3] + [∇X3, X1] + [∇X2, X2]

)
+

1
2

N̂
(
[∇X1, X3] + [∇X3, X1] + [∇X2, X2]

)
+
(
terms involving {X1X2, X2X3, X1X1, X3X3} and no cov. derivatives

)]
.

(N.2)
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