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ABSTRACT Autism Spectrum Disorder (ASD) significantly impacts social communication, interaction, and
behavior. Early diagnosis and timely intervention can improve outcomes by enabling tailored therapeutic
strategies. Electroencephalography (EEG) has emerged as a non-invasive tool to capture brain activity and
facilitate the early detection of ASD using machine learning techniques. However, attaining high accuracy
with minimal EEG channels remains a challenge. This study analyzed EEG data from 10 children with
ASD and 10 Typically Developed (TD) children using three electrode combinations: C3-C4, C3-Cz, and
C4-Cz. EEG signals were spatially filtered using a wavelet-based regularized filter bank common spatial
pattern. Key features, including peak-to-peak amplitude, were extracted, and correlation-based feature
selection identified the most informative features. Classification with Support Vector Machine (SVM)
identified the C4-Cz pair as the most effective, achieving the highest accuracy. Further analysis applied
Neural Networks (NN), Quantum Support Vector Machines (QSVM), and Quantum Neural Networks
(QNN) to classify data from the C4-Cz pair. QSVM with amplitude embedding feature map outperformed
others, achieving an accuracy of 94.7%. Performance was further improved by incorporating an enhanced
feature set comprising peak frequency, Stockwell transform coefficients, and peak-to-peak amplitude. The
proposed system, leveraging these refined features and QSVM, achieved an exceptional accuracy of 98.9%.
To our knowledge, this is the first study utilizing an enhanced feature set derived from reduced brain lobes
and quantum machine learning for ASD classification, offering a novel and highly accurate diagnostic
approach.

INDEX TERMS Autism spectrum disorder, quantum neural network, quantum support vector machine,
wavelet, common spatial pattern.

I. INTRODUCTION

Autism Spectrum Disorder (ASD) is a complex neurological
and developmental disorder. The complicated and poorly
understood etiology of ASD includes neurobiology, genet-
ics, and environmental exposures, resulting in a wide range
of presenting behaviors and symptoms. Recent estimates
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suggest that in 2020, approximately 1 in 36 children aged
8 years were affected by ASD, with boys being four times
more likely to be diagnosed compared to girls. This preva-
lence is higher than previous estimates from 2000 to 2018
[1]. Data is utilized from the Medical Expenditure Panel
Survey (MEPS) connected to the National Health Interview
Survey (NHIS) Sample Child Core questionnaire to deter-
mine ASD case status among 45,944 children aged 3 to
17 years. Data revealed that the additional yearly cost per
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child associated with an ASD diagnosis, compared to children
without an ASD diagnosis, ranged from $3930 to $5621
(2018 US dollars), underscoring the substantial financial
burden on the United States healthcare system [2]. Under-
standing the unique perspectives of individuals with autism is
paramount for providing adequate support in navigating daily
challenges. With an increasing emphasis on early detection,
interventions can be implemented swiftly, potentially improv-
ing the quality of life for those with ASD [3]. However,
numerous barriers contribute to delays in diagnosis, includ-
ing healthcare provider’s discomfort in identifying autism,
delayed referrals, and parent’s challenges in recognizing
developmental concerns [4]. Valid diagnostic tools such as
the Autism Diagnostic Interview-Revised (ADI-R) in Chi-
nese version play a significant role in diagnosing ASD in
clinical settings [5]. The reduced subsets of ADI-R items
and the Autism Diagnostic Observation Schedule (ADOS)
may effectively distinguish ASD from other mental dis-
orders, emphasizing the importance of accurate diagnostic
instruments [6]. While the ADI-R and Second Edition of
ADOS (ADOS-2) demonstrate a high degree of accuracy
in research settings, their performance in clinical settings
is less robust. Nonetheless, ADOS-2 appears to outperform
ADI-R in diagnostic accuracy [7]. Nowadays, researchers are
actively investigating diagnostic approaches for ASD utiliz-
ing electrophysiological and neuroimaging methodologies,
especially functional Magnetic Resonance Imaging (fMRI).
However, the temporal resolution of fMRI is constrained
because of the circulatory system of the brain’s delayed reac-
tion and the inherent time limitations of the imaging process,
rendering it less effective in capturing swift changes in brain
activity [8].

Comparatively, EEG presents several advantages over
fMRI, particularly its ability to study brain physiology
across various age groups and developmental stages. Elec-
troencephalography (EEG) and other electrophysiological
techniques, like Magnetoencephalography (MEG), provide
non-invasive methods to assess brain rhythms and dynamics,
allowing for direct observation of neural activity with high
temporal resolution [9]. Park et al. gathered information from
medical records, psychological tests that measure intelligence
quotient (IQ), and quantitative EEG (QEEG) during resting-
state evaluations. Patients with each psychiatric condition and
Healthy Controls (HCs) were divided into binary classifica-
tion models using a combination of QEEG characteristics,
such as Functional Connectivity (FC) and Power Spectrum
Density (PSD) at frequency bands. Prediction performances
were examined using Machine Learning (ML) techniques
such as Support Vector Machine (SVM), random forest, and
elastic net [10]. Major mental illnesses may be predicted by
ML in EEG, which can also serve as an objective indica-
tor of psychiatric diseases. In this research work, EEG was
examined with classical ML and quantum ML for autism
classification using the wavelet-based filterbank regularized
common spatial pattern.
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Il. RELATED WORKS

Sinha et al. extracted features using Discrete Wavelet Trans-
form (DWT) in the time and frequency domain after prepro-
cessing the prerecorded EEG data using a digital filter. Neural
networks, K-nearest neighbor (KNN), SVM, Linear Discrim-
inant Analysis (LDA), and subspace KNN are some of the
classifiers that utilize features for classification. Subspace
KNN provides better accuracy for time-domain features [11].
Esqueda-Elizondo et al. calculated the band PSD to identify
features related to attention detection and neurofeedback,
including Alpha Relative Power (ARP), Theta Relative Power
(TRP), Theta—Beta Ratio (TBR), Beta Relative Power (BRP),
Theta/(Alpha+Beta), and Theta—Alpha Ratio (TAR). They
employed these attributes to assess and train various machine-
learning models. Multi-Layer Perceptron-Neural Network
(MLP-NN) is used for classification [12]. Alotaibi and
Maharatna determined the graph-theoretic parameters from
three distinct methods based on a Phase-Locking Value (PLV)
that have been quantitatively used to define the functional
brain connection networks and were utilized as features in
ML. Both the trial-averaged PLV technique and the cubic
SVM were successful in autism classification [13]. In several
studies, geometrical and graphical features are extracted to
examine the complexity of EEG signals. For instance, Sadiq
et al. explored the phase space dynamics of EEG signals to
better visualize their chaotic and complex nature. They also
identified 34 graphical features to decode the chaotic patterns
of EEG signals [14]. Akbari et al. derived geometric features
from the shapes of EEG signals. They selected relevant fea-
tures using binary particle swarm optimization and employed
SVM and KNN classifiers to differentiate between normal
and depressed EEG signals [15]. Akbari et al. calculated
geometrical features using the Poincaré pattern derived from
DWT coefficients. Their findings suggest that the Poincaré
pattern of seizure-free EEG exhibits more regular geometric
shapes compared to that of seizure-related EEG [16].

Peketi and Dhok utilize Variational Mode Decomposition
(VMD) to divide the EEG data into five distinct modes. For
each mode, they extract thirty non-linear and linear features
from both the time domain and the frequency domain. The
dataset they selected faces a class imbalance issue, which
they address using data augmentation through the synthetic
minority oversampling technique. Subsequently, they com-
pare three well-known machine learning classifiers. The best
results were achieved using the fifth mode of VMD in
conjunction with an SVM classifier with a fine Gaussian
kernel [17]. Sadiq et al. introduced a framework that employs
a multivariate variational mode decomposition method to
extract multi-domain features and utilized wrapper and filter
feature selection techniques. This framework is adaptable for
classifying subject-dependent or independent brain-computer
interface systems [18]. Subudhi et al. utilized Independent
Component Analysis (ICA) to split these signals into additive
subcomponents after preprocessing and low-pass filtering.
Further investigation into significant nonlinear properties can
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reveal non-biological phenomena and event-related possibil-
ities. Then, SVM is employed for classification [19].

Baygin et al. extracted features from EEG signals using
a one-dimensional local binary pattern. These features
were then transformed into spectrogram images through a
Short-Time Fourier Transform (STFT). For feature extrac-
tion, selection, and ranking, they employed the ReliefF
algorithm along with a hybrid deep lightweight feature gen-
erator. To automate autism identification, shallow classifiers
were utilized, with SVM achieving the highest accuracy
among them [20]. Mohiud Din and Jayanthy utilized Con-
tinuous Wavelet Transform (CWT) to produce EEG signal
scalograms. Deep Convolutional Neural Networks (CNN)
that have already been trained, such as AlexNet, GoogLeNet,
SqueezeNet, and MobileNet, were utilized to classify the
scalograms that were acquired from the EEG signals of par-
ticipants and to extract characteristics from the scalograms.
In addition, the features were extracted using deep CNN and
are classified using the Relevance Vector Machine (RVM)
and SVM. GoogleNet, AlexNet, SqueezeNet, and MobileNet
are deep CNNs used for categorization. SqueezeNet is more
accurate at categorizing the scalograms that are produced
from EEG data. Higher accuracy was achieved when scalo-
gram features were retrieved using SqueezeNet and then fed
into an SVM classifier [21]. Sadiq et al. analyzed scalograms,
learning rates, features from untuned pre-trained models,
pre-trained convolutional neural networks, and optimizers to
improve the robustness of brain-computer interface systems.
Their findings indicated that ShuffleNet achieved better accu-
racy at lower learning rates, resulting in optimal performance.
However, the presence of noisy scalograms and features
slightly reduced accuracy [22]. Tawhid et al. pre-processed
the raw EEG data using a variety of methods, including
normalization, filtering, and re-referencing. A STFT is then
utilized to convert the EEG signal into two-dimensional (2)-
D) images. Textural features are then retrieved, Principal
Component Analysis (PCA) is used to select significant
features, and the results are trained into an SVM classi-
fier [23] and three distinct models of convolutional neural
networks. CNN model surpasses previous approaches and
achieves greater accuracy compared to the SVM model [24].
A few studies utilized the Multiscale Principal Compo-
nent Analysis (MSPCA) to remove the noise of EEG data.
Sadiq et al. developed an automated Multivariate Empirical
Wavelet Transform (MEWT) algorithm. The algorithm uses
an MSPCA method for robustness against noise, an auto-
mated channel selection approach, a method for sub-band
alignment, and a reliable feature selection technique based on
correlation. The algorithm also provides better classification
accuracy for subject-specific cases, subject-independent, and
subjects with limited training data [25].

Sadiq et al. utilize methods such as MSPCA, Improved
Empirical Fourier Decomposition (IEFD), Empirical Fourier
Decomposition (EFD), and feedforward neural network clas-
sifiers to enhance brain-computer interface systems for
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classifying motor imagery EEG tasks. Their framework
increases classification accuracy by examining various com-
binations of signal decomposition and feature selection
methods, validating the results through performance metrics
and statistical analysis [26]. Similarly, Yu et al. developed
an automated framework for detecting motor and men-
tal imagery (Mel) EEG tasks [27]. Sadiq et al. utilized
MSPCA to obtain noise-reduced EEG signals. After denois-
ing, the signals were decomposed into various modes using
empirical wavelet transform. This process was followed by
two-dimensional modeling and the extraction of geometric
features. Finally, both cascade-forward and feedforward neu-
ral networks were employed for motor imagery classification
tasks [28].

Alturki et al. utilized ICA to remove artifacts from EEG
datasets. They extracted EEG features using energy, band
power, and entropy in combination with Common Spatial
Pattern (CSP) techniques. Four classification methods were
employed in the study such as Artificial Neural Networks
(ANN), KNN, SVM, and LDA. The best performance was
achieved by combining CSP, Local Binary Pattern, and
KNN [29]. Antony et al. utilized Online Recursive Indepen-
dent Component Analysis (ORICA)-CSP to extract features.
ORICA-CSP approach is combined with the Adaptive Sup-
port Vector Machine (A-SVM) for classification [30]. Hwang
et al. employed Filter Bank CSP (FBCSP), which is based on
overlapping bands, to extract specific spatial features from
the subject. In this method, time-varying EEG signal data is
generated using a sliding window technique [31]. Mohamed
et al. employed Scaled and warped CSP (SWCSP) in the
data. To identify the most discriminating SW-CSP filters, the
Fisher’s score method is utilized [32]. To extract the fea-
ture, Moufassih et al. used Boosted Tangent Space Mapping
(BTSM) and Multi-Band CSP (MBCSP). An automatic fea-
ture selection algorithm reduces high-dimensionality space.
The class of the Motor Imagery trial is determined using the
Logit Boost classifier [33].

Rithwik et al. employed Filter bank-based Spatially Reg-
ularized CSP (FBSRCSP) method to decode bidirectional
hand movements. Regularization techniques enhance direc-
tion discriminability and use LDA for classification accuracy.
The FBSRCSP offers the better average classification accu-
racy [34]. Shang et al. divide EEG signal into multiple
frequency bands using enhanced wavelet threshold algorithm,
and constructing spatial filters to extract EEG signal char-
acteristics. The SVM optimized with a genetic algorithm,
is used for EEG signal classification [35]. Wang et al. utilized
Geodesic Filtering CSP (GFCSP) and filter-bank Feature
Weighted SVM (FWSVM) for the classification of motor
imagery [36]. Wang et al. extracted the Event-Related Desyn-
chronization (ERD) and Movement-Related Cortical Poten-
tial (MRCP) features using Common Spatial Pattern and
Discriminative canonical pattern matching (DCPM). Fisher
Discriminant Analysis (FDA) classifier is utilized for classifi-
cation [37]. Zahid et al. employed the Maximum-A-Posteriori
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(MAP)-CSP framework to classify multiple motor imagery
tasks. They filtered pre-processed EEG signals in the mu
and beta brainwave frequency range, then selected the most
crucial features, and un-regularized LDA was utilized for
classification [38]. Zhang et al. utilized Common spatial
pattern and Tikhonovo regularisation CSP (TRCSP) spatial
filters for feature extraction, with SVM and LDA for classifi-
cation. The TRCSP-SVM method demonstrated significantly
better performance [39]. Zhang et al. utilized TRCSP to
extract features based on temporal-spatial- frequency. The
method extracts diverse feature subsets, uses the base model,
such as the Least Absolute Shrinkage and Selection Opera-
tor (LASSO), and uses diverse models for ensemble model
construction [40]. Lins et al. preprocessed the EEG sig-
nals, extracting Higuchi fractal dimension, complexity, and
mobility features. They trained Quantum ML (QML) models
using quantum circuit layers and compared the results [41].
Aksoy et al. employed wavelet transformations on EEG
data and extracted statistical features, which were subse-
quently dimension-reduced using PCA. Dimension-reduced
data is exposed to conventional classification techniques,
after which it is translated into qubit format using feature
maps, and QML models are used for classification [42].

Enad and Mohammed employed PCA, min-max normal-
ization, and recursive feature elimination to preprocess the
dataset. They compared traditional classifiers, such as ANN
and SVM, with a QML approach. Two distinct QML classifi-
cation methods, Quantum Support Vector Machines (QSVM)
and Quantum Neural Network (QNN), were analyzed. The
bagging-QSVM model showed significantly better perfor-
mance [43]. Garg et al. utilized Quantum SVM to classify
emotions on the benchmark dataset [44]. Accuracy and exe-
cution speed of QSVM classification based on selecting
the correct quantum feature map for complex datasets [45].
Stochastic gradient descent (SGD) has been shown in numer-
ous theoretical works in the deep learning regime to be an
effective tool for learning models to escape saddle points
efficiently. Although Qian et al. used SGD with the correct
batch size to slightly enhance QNN optimization, other reg-
ularization techniques, such as weight decay, do not improve
the trainability of QNNs [46].

A. RESEARCH GAP
The work proposed addresses the following research gaps in
ASD and Typically Developed (TD) classification.

1) An objective method for diagnosing ASD requires a
higher number of EEG channels to facilitate a thorough
analysis of neural activity.

2) Enhancing accuracy in distinguishing between ASD
and TD over time, frequency, or time-frequency
domain features requires improvement when utilizing
the minimum number of channels.

3) The accuracy of QSVM relies on the selection of an
appropriate quantum-based feature map.
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4) The accuracy of QNN depends on both the selection of
an appropriate combination of quantum feature maps
and the optimization algorithm employed.

B. RESEARCH CONTRIBUTIONS
The key contributions of this research are as follows:

1) Identify the optimal combination of two electrodes for
ASD detection.

2) Enhance discrimination between ASD and TD by
extracting spatial patterns from EEG signals using
wavelet—based filterbank regularized CSP.

3) Utilize amplitude embedding to improve the classifica-
tion performance of QSVM for autism classification.

4) Utilize the combination of amplitude embedding quan-
tum feature map and the SGD optimization algorithm
to enhance the performance of QNN.

lll. MATERIALS AND METHODS

The proposed approach is divided into 5 main steps: (1)
Data acquisition and preprocessed data, (2) wavelet-based
Filter Bank regularized Common Spatial Pattern, (3) Feature
extraction, (4) Feature selection, and (5) Machine learning
methods. The overall proposed approach block diagram is
shown in Figure 1.

A. DATA ACQUISITION AND PREPROCESSING

Ten ASD children and ten children with TD, ages between
five and seven, participated in the research study. Using
the Fifth Edition of the Diagnostic and Statistical Manual
of Mental Disorders (DSM V) evaluation, the individual’s
cognitive abilities were assessed. The research study received
prior approval from the Institutional Review Board and Ethics
Committee of the Sri Ramachandra Institute of Higher Edu-
cation and Research (SRIHER). The parents or guardians of
the children gave their informed consent before data collec-
tion. The “Indian Scale for Assessment of Autism (ISAA)”
was used to diagnose autism, classifying children as having
autism if their score was 70 or more and as not having autism
if it was less than 70. Children with ASD were trained to
focus on the video while the data was being collected. The
video’s visual screen was placed 45 centimeters away. During
visual screen follow-up sessions of training, sometimes their
favorite cartoon videos are presented.

An SRIHER-affiliated occupational therapist suggested
these particular videos. Ag/AgCl electrodes were applied to
the scalp during the EEG signal acquisition process, and
good conduction was ensured via conductive gel and tape.
Following the 10-20 International Standard, three electrodes
of raw EEG signals were acquired at a 500 Hz sample
rate. In this research, EEG signals from the C3, C4, and
Cz electrodes were utilized. The Nihon Kohden Neurofax
MEB9000 version 05-81 at a sensitivity of 7 £V was utilized
to record EEG signals. Preprocessing was conducted using
their software tools. Low-pass and high-pass filters with a
cutoff frequency range of 0.53 to 70 Hz were applied, fol-
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FIGURE 1. Block diagram of the overall proposed approach.

lowed by a 50 Hz notch filter. The ocular artifacts in the EEG
signals were eliminated using a thresholding method. The
threshold was determined based on the average amplitude of
the eye blink signal. To establish this, the eye blink signal
was recorded for 10 seconds during both eye-open and eye-
close events. Signals exceeding this threshold were excluded,
and the remaining data was used for further analysis. Muscu-
lar artifacts typically appear as sharp, high-frequency bursts
(spikes) or periodic activity in the 20-70 Hz range in the
obtained EEG data. These artifacts are visually inspected and
removed manually by an expert.

B. WAVELET-BASED FILTER BANK REGULARIZED
COMMON SPATIAL PATTERN

EEG signals are non-stationary; therefore, the Fourier trans-
form does not help evaluate EEG signals. The DWT offers
a method to quantitatively analyze the multiple frequency
bands of EEG brain waves. In this research work, wavelet
decomposition is applied to an EEG signal using the
Daubechies 4 (db4) wavelet at level 3, decomposing it into
several layers that represent different frequency components
and details. Filters are then applied to the wavelet detail coef-
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ficients to emphasize specific frequency components that are
relevant for classification or analysis. The modified wavelet
coefficients are used to reconstruct the decomposed signal,
providing a transformed representation of the EEG data.
This reconstructed data is subsequently processed through a
Butterworth filter bank for signal filtration and divided into
six frequency sub-bands (8-12 Hz, 12-16 Hz, 16-20 Hz, 20-
24 Hz, 24-28 Hz, and 28-32 Hz). Finally, spatial filtering
is performed using the wavelet-based filterbank regularized
CSP approach, which aims to minimize the variance within
the other class while maximizing the variance within one
class.

Given a single trail matrix Ey ;€ X™*® where m represents
the number of electrodes and s is the number of data points,
the mean normalized covariance matrix is determined by Eq.

(D).

1 ~N Ex El,
Ci= Dy ()
= trace (Ek,iE,Zi)
where N represents the number of trails that follow for each
class, i = 1, ..., n is the segment that corresponds to class

i, and k is the class type (either ASD or TD). Tikhonov
regularization should be applied to each class’s covariance
matrix.

The composite covariance matrix is generated by taking the
mean of the regularized covariance matrices for each class.
The generalized eigenvalue decomposition method is applied
to the composite or average covariance matrix to obtain the
corresponding eigenvalues and eigenvectors. Using the eigen-
values of the composite matrix, the whitening matrix P was
constructed according to Eq. (2) to normalize the variances to
a value of one.

P=vi 'xVvT @)

The generalized eigenvalue decomposition is applied to
each class S matrix, which is a combination of matrix multi-
plication of the transpose of the whiten matrix, the covariance
matrix for each class, and the whiten matrix to obtain the
eigenvalues and associated eigenvectors. The eigenvector B
and eigenvalue A of the S matrices are determined for each
class. The projection matrix is then acquired using Eq. (3).

w=B"p ©)

The Projection matrix (W) is derived from the transpose
of eigenvector (B) and the whitened matrix (P). The CSP
algorithm yields the projection matrix W, which strives to
maximize the variance ratio between two distinct classes of
data. The W matrix’s initial row, which has the most sig-
nificant eigenvalue, and the last row, which has the smallest
eigenvalue, is used in this way to create the most significant
spatial pattern. In Equation 4, the EEG signal is recovered.

X=w"z “)

The spatial pattern is represented by each column of the
W1, which is regarded as an EEG distribution vector. Con-
sider X to be a mxs matrix, where m represents the number
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of EEG electrodes and s represents the number of data points.
The rows of the CSP projection matrix W are arranged to
represent spatial filters, and the columns to represent common
spatial patterns. The process of calculating W for every class
entails increasing the ratio between the mean covariance
matrices of those classes.

C. FEATURE EXTRACTION AND SELECTION

In this work, peak-to-peak amplitude is used as a feature for
classification. The feature vector (Xj) is calculated from Z
(i.e. Zy wherei =[1, ..., d]). The calculation of Xj using the
log peak-to-peak amplitude method is as follows in Eq. (5).

pip (Zy)
X; =log| ———— 5
(Z?L pip (Z»)

When predicting a linear relationship between the signals of
interest, the correlation coefficient is useful. It is very good
at expressing linear dependencies and gives a clear under-
standing of the strength and direction of the relationship.
Therefore, it is utilized in this particular scenario to compute
the Pearson correlation coefficients between each feature in
the input feature matrix X and the target variable y. Features
with high correlations with the target variable are indeed more
informative for prediction. The resultant r value is between
—1 and 1. SelectKBest is a more comprehensive approach
since it allows the feature selection process to be performed
using an extra scoring function parameter.

D. SUPPORT VECTOR MACHINE

For classification tasks, SVM is a widely used supervised
machine learning method. Although many possible decision
boundaries could divide the classes, its primary goal is to
create an optimal hyperplane, or decision boundary, within an
n-dimensional space to effectively separate different classes
for accurate classification. The features in the dataset deter-
mine the dimensions of the hyperplane. The hyperplane will
be a straight line if the dataset only has two features. SVMs
offer various kernel functions, including the polynomial func-
tion, Radial Basis Function (RBF), and linear function. This
research employs the RBF kernel and is calculated using Eq.

(6).
B IX1 — X2
K (X1, X)) =ep| ———5—5— (6)

202

where o is the variance and hyperparameter, || X; — X>|| is the
Euclidean Distance between two points X and X».

E. NEURAL NETWORK

Neural networks (NN) process complex data to detect pat-
terns, similar to the human brain. They are composed of
three layers: Input, Hidden, and Output. Each neuron receives
information, performs calculations, and passes the results to
the next layer. The hidden layers transform the input data,
with weights determining the influence on the output. Bias
represents the deviation from the intended value; low bias

15744

indicates more assumptions, while high bias indicates fewer
assumptions, which can impact the accuracy of the model.
The linear combination of the inputs is given in Eq. (7).

Z=xW+b )

where x is the input vector, W is the weight matrix, and b is
the bias vector. The first and hidden layer output is calculated
with the ReLLU activation function as follows in Eq. (8).

a=ReLU () ®)
The final layer output is calculated with the sigmoid activa-
tion function. The sigmoid activation function is calculated
using Eq. (9).

sigmoid (Z) = T5e7 O]

Binary cross-entropy loss function is calculated using Eq.
(10).

1
loss = = > vi-log (p (50 + (1 = 30 Tog (1 = p ()
(10)

where y is considered as a label and p(y) is considered as a
predicted probability of the data point being the desired class
for all N data points.

F. QUANTUM MACHINE LEARNING

Recently, there has been significant growth in the fields of
ML and Deep Learning (DL). However, these models require
millions of parameters to learn as the number of features rises,
which results in inefficient training and substantial computa-
tional burdens. Quantum computers have demonstrated the
capability to address these issues by computing several states
concurrently using existing technologies. They utilize three
quantum physics properties: entanglement, superposition,
and interference. Due to quantum physics properties, qubits
(the fundamental units of quantum computers) maintain
strong correlations even over large distances (entanglement),
exist in several states at once (superposition), and be influ-
enced to favor specific outcomes (interference). This inherent
potential of quantum computing brings the research com-
munity closer to achieving Artificial General Intelligence.
Quantum-enhanced machine learning is a technique designed
to improve traditional machine learning algorithms using
quantum computing. This approach is a subfield of quan-
tum information processing [47]. For instance, a classifier
based on Quantum Machine Learning utilizing a Variational
Quantum Circuit (VQC) with adjustable hyperparameters.
The three primary parts of this quantum circuit are an encoder,
which creates quantum states from input data, a decoder,
which creates output states, and an evaluator, which compares
the circuit’s output values with the associated input labels.
Pauli-Z operators are used in the evaluation, and the average
evaluated value is used to improve statistical correctness.
By optimizing the cost function, the quantum gates of the
decoder are parameterized to simulate the input training
data [48].
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1) QUANTUM SUPPORT VECTOR MACHINE

SVM classifies difficult datasets using the ‘“kernel trick”,
which projects input data points into a high-dimensional
space and facilitates the solution to non-linear separa-
ble issues. Currently, there are several kernel functions
utilized, which can be computationally expensive and inef-
ficient. So Quantum Kernel is used. Quantum kernels use
quantum mechanics to improve feature vector mapping.
Quantum Kernel-Based Machine Learning, incorporating
QSVM, is revolutionizing data analysis and classifica-
tion. By integrating quantum principles, these innovations
unlock unprecedented computational capabilities, outper-
forming classical methods in various applications. Quantum
kernel machine learning relies on using quantum feature
maps to carry out the kernel trick. Here, a quantum feature
map transforms a classical feature x into a point in Hilbert
space, yielding the quantum kernel. ¢(x). It is mathematically
illustrated by Eq. (11).

Kij = (¢ G | ¢ (@) (11)

where K;; is the kernel matrix, ¢ (x) is the quantum fea-
ture map, x;, and x; are n-dimensional inputs, and |{a | b)|?
denotes the two quantum states, a and b, overlap. Figure 2.
Depicts the block diagram of the QSVM.

Feature

extraction

Y(xy), Plx2) k(xq,%3) Support
Feature Quantum Vectgr
Map Kernel Machine

+

Qubit

FIGURE 2. Block diagram of the Quantum SVM.

2) QUANTUM NEURAL NETWORK

The hidden layers in the neural network are replaced by a
quantum-based layer to create a QNN. The inputs for the
quantum layer of the neural network will be gathered from the
outputs of the preceding layer. After that, the measurement
observable from the quantum layer was gathered and used as
input for the subsequent output layer. Figure 3. depicts the
block diagram of QNN with two quantum layer.

IV. RESULT ANALYSIS

This section discusses the environmental setup utilized for
the research work, the analysis of different Combinations
of electrodes, and the analysis of quantum machine learning
techniques.
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FIGURE 3. Block diagram of the quantum neural network.

A. ENVIRONMENTAL SETUP

Colab was used along with Python 3.7.12. The dataset
was divided with an 80/20 split using the train split
algorithm, ensuring subject independence to prevent any
potential data leakage between the training and testing sets.
Specifically, data from each subject was kept exclusive to
either the training or testing set. Scikit-learn were used
to carry out the standardization processes. Numpy, Scipy,
and Pandas were used to read and process the data. Pen-
nylane and Sklearn libraries are utilized for classifiers.
Accuracy, specificity, precision, F1 score, and sensitiv-
ity were used to gauge the performance of the proposed
approach.

B. ANALYSIS OF DIFFERENT COMBINATION OF
ELECTRODES

Initially, various combinations of the electrodes were exam-
ined to assess their impact on accuracy. Combining C3
and C4 electrodes yielded an accuracy of 85.1%. Simi-
larly, combining C3 and Cz electrodes produced an accuracy
of 91.2%, while combining C4 and Cz electrodes resulted
in an accuracy of 93.9%. Upon analyzing these com-
binations, it was observed that either C3 or C4, when
combined with the midline electrode Cz, achieved the high-
est accuracy. Specifically, the combination of C4 with Cz
consistently demonstrated better accuracy across SVM with
an RBF kernel. Figure 4 depicts the performance metrics
of three different combinations of electrodes with an SVM
classifier.

The input layer, one intermediate layer, and the output layer
of the NN model were used to train the combination of the C4
and Cz electrodes. The model employs the Adam optimizer
for optimization and the binary cross-entropy loss function.
Fig. 4. depicts the performance metrics for the combination
of the C4 and Cz using SVM. Table 1. shown the evaluation
of performance metrics for SVM and Neural Networks with
C4-Cz Electrode Combination.

TABLE 1. Performance metrics for the C4-Cz electrode combination using
SVM and neural networks.

Method Accuracy Precision  Sensitivity  Specificity F1-
(%) (%) (%) (%) Score
(%)
SVM 93.85 93.85 94.73 92.98 93.93
NN 90.9 89.6 91.5 90.4 90.5
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FIGURE 4. Performance metrics of the three different combinations of
electrodes with SVM classifier.

C. ANALYSIS OF QUANTUM MACHINE LEARNING

This section presents an analysis of QSVM and QNN. Pen-
nyLane is an open-source, cross-platform Python library that
supports a wide array of tasks in quantum computing, quan-
tum chemistry, and quantum machine learning. Train the
quantum circuits with their different programming capabil-
ities for quantum computers, which are designed to work
smoothly with hardware, simulators, and classical machine-
learning libraries.

1) QUANTUM SUPPORT VECTOR MACHINE ANALYSIS

A quantum kernel encodes two classical input vectors, x1, and
X2, into quantum states using amplitude embedding. It then
applies the adjoint of the embedding for x» to reverse its
effect and measure the similarity between the quantum states
of x; and x;. This similarity is determined by calculating
the expectation value of a Hermitian projector, yielding the
quantum kernel value. The kernel matrix, a symmetric matrix
representing pairwise quantum kernel evaluations between
data points, is integral to the process. SVM is a supervised
machine learning algorithm utilized for classification tasks,
relying on a quantum kernel matrix to operate in a higher
dimensional space. Figure 5 depicts the quantum state vector
obtained by amplitude embedding for the classical feature of
the EEG signal.

Quantum State Vector:

[0.00240486+0.] ©.01442916+0.] ©.00721458+0.j ©.01923889+0.]
©.2885833 +0.j ©.2885833 +0.j ©.2885833 +0.j ©.2885833 +0.j
©.2885833 +0.j ©.2885833 +0.j ©.2885833 +0.j ©.2885833 +0.j
0.2885833 +0.j ©.2885833 +0.j ©.2885833 +0.j 0.2885833 +0.7]

FIGURE 5. Quantum state vector obtained after amplitude embedding.
The Bloch sphere is a geometric representation of qubit
states as points on the surface of a unit sphere. To com-

pute the Bloch sphere for a specific qubit, the reduced
density matrix is required, which is obtained by tracing out
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the other qubits from the full-density matrix (2"-2“b" x
2n-qubits) of the system. The full density matrix is calcu-
lated using the outer product of the state vector with its
conjugate transpose, encapsulating all information about the
quantum system, including both pure and mixed states. The
total number of possible states for the system is 2"-94Pis,
where n_qubits refers to the number of qubits in the system.
In this research, four qubits are utilized. The reduced density
matrix is computed by iterating over all possible basis states
i and j of the entire quantum system. If the state of qubit
at indices i and j is the same, the corresponding element
of the full density matrix is added to the reduced density
matrix.

The reduced density matrix is then used to calculate
the Bloch vector, which geometrically represents the quan-
tum state of the qubit on the Bloch sphere. The Bloch
vector consists of three components: x,y, andz. The x-
component is calculated from the real part of the sum of
the off-diagonal elements, providing information about the
coherence between the |0) and | 1) states. The y-component
is derived from the imaginary part of the difference between
the off-diagonal elements, indicating coherence in a different
orientation on the Bloch sphere. The z-component is deter-
mined from the diagonal elements of the reduced density
matrix, representing the populations of the | 0) and | 1) states.
Padding with a constant value of 12 is utilized during the
amplitude embedding process. Include the Hadamard gates
to all qubits to create superposition in the Bloch sphere.
Figure 6. Depicts the Bloch sphere vector representation of
the individual qubit.

Qubit 0 Qubit 1

10) x 10) x
1 : 4 1 z
\ /| \\\
\ & \
\ Ay y
X et X "
1) 1)
Qubit 2 Qubit 3

I0)” : |0)” X

o g
‘ N7 Oy N/ ‘/‘)/y
3 H=fs F e/l
|i) Ii)
FIGURE 6. Bloch sphere representation of Qubit0, Qubit1, Qubit2, Qubit3.
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2) QUANTUM NEURAL NETWORK ANALYSIS
The QNN model begins with 4-dimensional input data, which
is fed into the initial classical layer. During training, 20%
of the neurons in this layer are randomly set to zero, cour-
tesy of the dropout layer. The outputs from this classical
layer are then directed towards two separate 2-qubit quantum
layers, where quantum computations process the classical
information. Subsequently, the outputs from these quantum
layers are merged. The combined output is passed to the final
classical layer, consisting of 2 neurons. This final classical
layer produces the ultimate output. Quantum layers, obtained
via QNodes, can be converted into keras layers using the keras
Layer class from the qnn module. To embed the classical data
into a quantum feature map, amplitude embedding is utilized.
The weights argument of the QNode is trainable and pos-
sesses a shape given by several layers and several qubits,
which is passed to BasicEntangler Layers. Finally, the QNode
returns expectation values for the Pauli-Z observable, which
holds significant importance in quantum mechanics and
quantum computing. It offers a means to investigate and
manipulate quantum states and their properties. Figure 7.
depicts the accuracy and loss metrics during training and
validation for QNN. Table 2 shows the comparison of per-
formance metrics for quantum machine learning using the
combination of C4 and Cz.

Model accuracy Model loss

N o s | icoton
aL \

Transform (ST) merges the benefits of both the STFT and
Wavelet Transform, overcoming their limitations. The ST
is characterized by its use of a scalable, moving Gaussian
window that adapts its resolution depending on the frequency
of the signal. This unique feature allows the ST to provide
frequency-dependent resolution, offering higher time reso-
lution for high-frequency components and better frequency
resolution for low-frequency components.

Moreover, the S-transform maintains a direct and explicit
relationship with the Fourier spectrum, providing a more
flexible and informative tool for time-frequency analysis.
As a result, the ST is particularly effective for analyzing
non-stationary signals, where frequency content changes over
time. In this research work, the ST is used to decompose
a signal into its time-frequency components, focusing on
a specific frequency range defined by minimum frequency
and maximum frequency. The frequency range is first con-
verted into corresponding indices based on the sampling
frequency (fs) and signal length. The ST is then computed,
and its components within the target frequency band are
extracted. The mean absolute values of the Stockwell Trans-
form and peak frequencies (Welch method) for each signal
across six subbands for each EEG segment are extracted.
The average values across two signals for each subband are
then calculated. The peak-to-peak amplitude values extracted
previously are combined with frequency-domain and time-
frequency domain features. The feature vector, comprising
a total of 24 features per EEG segment, is then generated.
Correlation-based feature selection was applied to select the
top 4 most relevant features for classification, which helped
to optimize the model’s performance. Figure 8. Depicts the
performance metrics of different feature combinations with
QSVM for autism classification.

[ H 10 15 20 25
Epoch

(a)

[ 5 10 15 20
Epoch

(b)

100

989

96.5

98.8
974

9.0
96.5

98.8
96.5

989
96.4

FIGURE 7. Training and validation metrics for Quantum Neural Network
(QNN) (a) Accuracy (b) Loss.

TABLE 2. Comparison of performance metrics of the quantum machine
learning for the combination of C4 and Cz.

Method Accuracy  Precision Sensitivity Specificity F1-Score
(%) (%) (%) (%) (%)

QSVM 94.73 93.94 98.24 91.22 94.41

QNN 93.94 92.45 96.08 91.67 94.23

D. EFFECT OF THE COMBINATION OF FREQUENCY AND
TIME-FREQUENCY DOMAIN FEATURES

Conventional methods like the STFT and wavelet transform
are commonly used for time-frequency analysis. However,
both face challenges related to resolution. The STFT uses a
fixed-sized window, which compromises the ability to bal-
ance time and frequency resolution. The Wavelet Transform,
on the other hand, offers multi-resolution analysis but lacks
a direct and explicit alignment with the Fourier spectrum,
which can make interpretation less intuitive. The Stockwell
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95

Values obtained in (%)

Accuracy Precision Sensitivity Specificity Fl-score
W Peak-to-peak amplitude +Peak frequency-> QSVM
I Peak-to-peak amplitude +Peak frequency+Stockwell transform-> QSVM

FIGURE 8. Performance metrics of different feature combinations with
QSVM.

V. DISCUSSION

The objective of this research is to identify ASD and TD
individuals using a minimal number of EEG channels. Differ-
ent combinations of three electrode placements, specifically
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TABLE 3. Comparison of the proposed system with existing systems.

Number
Method of
channels

Accuracy

Classifier (%)

Source

Texture-based

features extracted 16

from spectrogram channels
images

Features are

derived from

spectrogram images

using the pre- 64
trained models channels
ShuffleNet,

MobileNetV2, and

SqueezeNet.

Alpha, beta, delta,
theta, and gamma,
along with mean,
variance, standard
deviation, kurtosis,
skewness, and
Shannon entropy
features, were
extracted.

The integration of a
wavelet-based
regularized filter
bank common
spatial pattern with
peak-to-peak
amplitude,
Stockwell
transform, and peak
frequencies
features.

Tawhid et

al. [23] SVM 95.25

Baygin et

al. [20] SVM 96.44

Sinha et al.
[11]

16 Subspace

channels KNN 2.8

2
channels

Proposed

approach QSVM 98.24

(C3, C4), (C3, Cz), and (C4, Cz), were evaluated as inputs
to the system. Initially, the EEG signals are processed using
wavelet transform with the Daubechies 4 (db4) wavelet at
level 4. The wavelet transform breaks down a signal into dis-
tinct frequency components, which involves Approximation
Coefficients representing low-frequency (coarse) details of
the signal. Detail Coefficients are capturing high-frequency
(fine) details of the signal. Filtering and Reconstruction
After decomposition, filters are applied to the wavelet detail
coefficients obtained at various levels. Post-filtering, the
modified wavelet coefficients are used to reconstruct the
signal. The reconstructed signal undergoes processing with a
filterbank Tikhonov regularized CSP to enhance discrimina-
tion between two classes using spatial features of the signal.
The spatially filtered signal is then used to extract peak-
to-peak amplitude features with a vector length of 12 for
the EEG segment, and correlation-based feature selection
selects the top 4 features. An SVM classifier is employed
to classify the EEG signal. Among the tested combinations
(C4, Cz), better accuracy was achieved. When trained on a
neural network, the combination (C4, Cz) attained an accu-
racy of 90.9%. The research work incorporated quantum
machine learning techniques to enhance classification perfor-
mance. Feature maps are crucial to quantum machine learning
because they convert classical data to quantum data.

In this work, a quantum kernel with amplitude embedding
was applied instead of a classical kernel in the SVM, resulting
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in an accuracy of 94.7%. The neural network architecture was
modified by incorporating two 2-qubit quantum layers with
amplitude embedding instead of traditional hidden layers.
This approach achieved an accuracy of 93.9% with the SGD
optimizer. The incorporation of quantum machine learning
techniques further improved the performance, showcasing
the potential of quantum approaches in enhancing classi-
fication accuracy beyond classical methods. Incorporating
additional features, peak frequency and Stockwell trans-
form with peak-to-peak amplitude, provides further enhanced
accuracy when it is classified using QSVM. Unlike previ-
ous methods, which focus solely on time, frequency, and
time-frequency domain information with machine learning
and deep learning, our approach integrates time, frequency,
and time-frequency domain information with spatial infor-
mation and quantum machine learning. This allows for better
classification and improves accuracy compared to traditional
approaches. Table 3 presents a comparison between the pro-
posed system and existing systems.

VI. CONCLUSION

This study explores the challenge of diagnosing ASD using
EEG data and advanced machine learning techniques. The
goal was to identify the best combination of EEG electrodes
to enhance classification performance. EEG signals were
processed, and three electrode pairs—C3-C4, C3-Cz, and C4-
Cz—were analyzed. Among these, the C4-Cz pair, combined
with an SVM classifier achieved the highest classification
accuracy and was selected for detailed analysis. Quantum
machine learning methods, including QSVM and QNN with
amplitude embedding, were then applied. By incorporat-
ing additional features such as peak frequency, Stockwell
transform coefficients, and peak-to-peak amplitude, QSVM
achieved an accuracy of 98.9%. The electrode combinations
were compared based on their classification performance,
leading to the selection of the most effective pair for analysis.
Future research could expand the scope to include larger and
more diverse participant groups. Investigating self-supervised
learning approaches for ASD detection using Magnetoen-
cephalography (MEG) signals and applying neural structured
learning with Riemannian features are promising future
directions for advancing this field.
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