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Abstract: State variable and parameter estimations are important for signal sensing and feedback

control in both traditional engineering systems and quantum systems. The Kalman filter, which

is one of the most popular signal recovery techniques in classical systems for decades, has now

been connected to the stochastic master equations of linear quantum mechanical systems. Various

studies have invested effort on mapping the state evolution of a quantum system into a set of classical

filtering equations. However, establishing proper evolution models with symmetry to classical filter

equation for quantum systems is not easy. Here, we review works that have successfully built a

Kalman filter model for quantum systems and provide an improved method for optimal estimations.

We also discuss a practical scenario involving magnetic field estimations in quantum systems, where

non-linear Kalman filters could be considered an estimation solution.

Keywords: Kalman filter; stochastic master equation; stochastic filter

1. Introduction

Parameter estimation and real-time signal tracking methods [1] have been widely
used in the engineering field [2], not only for parameter sensing and measurement [3,4],
but also for feedback control systems [5,6]. With the development of quantum theory and
technology, especially quantum precision measurements and quantum sensing [7], realizing
parameter estimations, signal analyses and state variable control in quantum systems has
become an important research topic [8–10]. Similarly to classical systems, the estimation of
parameters or state variables will directly affect the feedback control of quantum systems.
However, parameter and state variables estimations in quantum systems would be more
complex than those in classical systems. Considering the existence of weak quantum
effects and quantum fluctuations, it is a great challenge to establish a proper evolution
model for state variables or parameters. Finding a suitable algorithm for data analysis
and signal extraction is another difficult problem. With the development of continuous
quantum measurement theory [11], researchers realized that linear quantum mechanical
systems have many similarities with classical systems that are driven by specific noise.
For example, in a continuously observed linear quantum system [12], the state evolution
equation has symmetry to state filtering equation of a linear classical system, which is
called the Kalman filtering equation [13]. Therefore, Kalman filtering methods could be
introduced into quantum systems for the estimation of state variables and parameters.

The classical Kalman filter [14] has been developed for more than 50 years and is still
one of the most important and common estimation algorithms. The great success of the
Kalman filter is due to its small computational requirements, outstanding recursive prop-
erty, and its optimal estimation method for linear systems with Gaussian error statistics [15].
The variants of the Kalman filter, such as the extended Kalman filter [16] and unscented
Kalman filter [17], are extended to solve the problem of estimating the state and parameters
in nonlinear systems. The Kalman filter has been applied in many areas, including navi-
gation positioning systems [18], feedback control systems [19] and also newly developing
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areas, such as machine learning [20]. The Kalman filter is also expected to provide the
optimal estimation of the state variable and parameters of quantum systems [21].

In what follows, we shall mainly review how a quantum system could use the Kalman
filter method for state variables or parameter estimations and the specific applications of
Kalman filtering in quantum systems.

2. Realization of Kalman Filtering in Quantum Systems

In classical systems, according to Bayes statistical inferences [22,23], the best estimator
X̂ of a state variable X is the mean of the conditional probability distribution based on an
observation, Z. If the state variable X is time-dependent, we hope to find the time evolution
equation of the conditional probability, such as the Kushner–Stratonovich equation [24]. By
properly constraining the Kushner–Stratonovich equation, we obtain the Kalman filtering
equation for estimating the state variables.

Similarly to the evolution of conditional probabilities in classical systems, in quan-
tum systems, we can derive the evolution of a “conditional quantum state” based on
observations and obtain the optimal estimation of state variables. The theory of quantum
continuous measurement [25] provides a solution to this problem. The state evolution of
a quantum system under continuous measurements could be described by the following
stochastic master equation (SME) [12]:

dρc = − i

h̄
[H, ρc]dt +D[c]ρcdt +H[c]ρcdw, (1)

where ρc is the quantum state conditioned on measurement outcomes, c is an operator
determined by the measuring process and D[c] and H[c] are superoperators on ρc and will
be explained in the following sections [11]. The first term on the right side of the SME
represents the quantum state evolution due to the system’s Hamiltonian H. The second
term on the right side of the SME, which is defined as D[c]ρc = cρcc† − 1

2

(

c†cρc + ρcc†c
)

,
indicates the decoherence caused by measurements. This term is similar to that for the
interaction between an open quantum system [26,27] and a Markovian environment. In the
third term on the right side of the SME, H[c]ρc = cρc + ρcc† − Tr[(c + c†)ρc]ρc and dw is the
Wiener increment [28], which stands for a Gaussian increment introduced by continuous
measurements. This term denotes the disturbance on the quantum state’s evolution due to
observations. The relationship between Wiener increment dw and observation increment
dr is given by an observation equation [29], e.g.,

dw = 2dr − 〈c + c†〉dt with 〈·〉 = Tr[·ρ], (2)

provided that the observable (c + c†)/2 is measured. We can obtain the optimal quantum
state, i.e., the conditional quantum state, at each time by solving Equation (1) and then
obtain the optimal estimator of any mechanical quantity by using Tr[·ρc].

It is in general difficult to solve the SME. However, in some special cases, the SME can
be re-arranged into a solvable form. For example, for a single quantum harmonic oscillator,
the evolution equations are given by [29]

dρc = − i

h̄

[

p̂2

2m
+

1

2
mw2

0 x̂2, ρc

]

dt +D
[√

2kx̂
]

ρcdt +H
[√

2kx̂
]

ρcdw, (3)

dr =
√

2k〈x̂〉dt +
dw

2
, (4)

where k denotes the measurement strength. If the dynamics of state variables are linear and
their initial states are Gaussian, the above equations can be represented in a more intuitive
form by using the canonical conjugate variables x and p satisfying the commutation relation

[x̂, p̂] = ih̄ and introducing notation d
〈

Â
〉

= Tr[Âdρ] (Â = x̂, p̂) as follows:



Symmetry 2022, 14, 2478 3 of 14

d〈x̂〉 = 〈 p̂〉
m

dt +
√

8kVx̂dw, (5)

d〈 p̂〉 = −mω2
0〈x̂〉dt +

√
8kCxpdw, (6)

V̇x =
2

m
Cxp − 8kV2

x , (7)

V̇p = 2h̄2k − 8kC2
xp − 2mω2

0Cxp, (8)

Ċxp =
1

m
Vp − 8kVkCxp − mw2

0Vx, (9)

where VA =
〈

Â2
〉

−
〈

Â
〉2

is the variance, and Cxp = 〈x̂ p̂+ p̂x̂〉
2 − 〈x̂〉〈 p̂〉 is the covariance.

Equations (5) and (6) show the mean evolution of the position and momentum under
continuous measurements. The above five equations are similar to the Kalman filter
equations of the following classical system evolutions.

dx =
p

m
dt, (10)

dp = −mω2
0xdt +

√
2kh̄dwc, (11)

Qcdt = 4kxdt +
√

2kdwo. (12)

Equation (12) is the observation equation. dwc is the system’s noise independent of the
measurement noise, dw, and dwo is the observation noise related to dw. The Kalman filter
equation given by Equations (10)–(12) is actually in the same form of Equations (5)–(9), but
the expectation values of operators is replaced with classical variables, and the evolution
of the second moment in the SME becomes the mean square error of the estimation in the
classical Kalman filter. We note that this similarity only happens if the dynamical variables
are canonical coordinates that are evolving in a linear quantum system with an initial
Gaussian state.

Furthermore, if we want to estimate both state variables and parameters of the system’s
Hamiltonian, besides the conditional quantum states evolution, we have to know the
conditional probability evolution equation of parameters based on the observations. For
example, to estimate parameter θ in a continuous position measurement, the system
evolution could be written as [30]

dρθ = −i

[

x̂2

2m
+

mω2
0 x̂2

2
+ θx̂, ρθ

]

dt + 2kD[x̂]ρθdt +
√

2kH[x̂]ρθ

(

Idt − 2
√

2kx̄θdt
)

(13)

dp
(

θ|I[0,t+dt]

)

= 2
√

2k(x̄θ − x̄)
(

Idt − 2
√

2kx̄dt
)

× P
(

θ|I[0,t+dt]

)

, (14)

where x̄θ indicates the conditional mean of the position on parameter θ, which is written as

Tr[x̂ρθ ]. x̄ indicates the mean of x̂, which is written as Tr[x̂ρ]. P
(

θ|I[0,t+dt]

)

is the conditional

probability of θ based on the observation in time [0, t + dt].

3. Applications of Kalman Filtering in Quantum Systems

In this section, we provide some examples of using Kalman filtering in quantum
systems, including the position estimation and feedback control of a harmonic oscillator
system [31], the estimation of magnetic fields [32], atomic spin [33] and optical field infor-
mation [34] in a photon–atom interaction system, and reconstruction of quantum state in
quantum tomography [35].

3.1. Position Estimation and Feedback Control

In the suspension photomechanics area, cooling and stabilizing the center of the mass’
motion of a suspended nanosphere [36] are important targets that offer the possibility for
measuring matter–wave interference, studying quantum effects [37], collapsing models
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at smaller than atomic scales [38] and obtaining improved sensitivities compared to that
of a suspended atomic system [39]. The motion of optical levitated nanospheres can be
described by the motion of stochastic quantum harmonic oscillators [40]. Kalman filtering
can provide the optimal estimation of the position of nano-particles; furthermore, it could
apply for feedback controls. There are two common methods to realize feedback control in
a dynamical system [21]. The first one uses estimation, while the other one directly uses
the observation as a control term. The SME including this type of feedback Hamiltonian
would still be linear and could be represented by classical Kalman filter equations.

In 2018, Setter et al. [40] used Kalman filters and FPGA (Field-Programmable Gate
Array) [41] in an experiment to obtain feedback and control randomly moving nano-
particles. As shown in Figure 1, the center of the mass’s translation of captured nano-
particles along the optical axis is cooled in three orders of magnitude from 300 K to
162 ± 15 mK. The comparison of using a band-pass filter and the Kalman filter is shown in
Figure 2, where the Kalman filter significantly improves the signal estimation than other
filtering methods. This work not only shows the advantages of Kalman filtering over other
filtering methods, but also provides a way of applying Kalman filters in quantum fields.

Figure 1. The power spectrum density (PSD) of uncooled particles (in red) in thermal equilibrium at

300 K (at a pressure of 3 mbar) and that of cooled particles (in blue) at a pressure of 5.7 × 10−5 mbar.

The lines represent the Lorentz fit of the spectra. Figure from [40].

Figure 2. The comparison of Kalman filtering and band-pass filtering (filtered Z signal) results. Figure

from [40].

In the experiment of cooling suspended nanoparticles, Magrini et al. [42] used Kalman
filters to construct an equation for the motion of the system. They showed the verification
of their Kalman filter model by demonstrating that the innovation (ǫ(t)) between Kalman
filter estimations (ẑ(t)) and observations (ξ(t)) is a Gaussian zero-mean white-noise process.
The accuracy of the Kalman filtering model is verified.
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JIANG et al. [43] also discussed the feasibility of applying Kalman filters to detect
suspended microspheres. They showed, in Figure 3, that the root-mean-square error of
the displacement of nano-spheres decreases by 1.7 nm and 3.1 nm at 101 kPa and 6 Pa,
respectively, by using a Kalman filter.

Figure 3. Time sequence of micro-particles in optical traps at 101 kPa pressure (left) and 6 Pa pressure

(right), respectively. Figure from [43].

Kalman filtering is also widely used in other optical systems for variable estimation,
such as optimal state estimations for cavity optomechanical systems [4], optical-phase
tracking [1], external force tracking on a mirror [10], the position estimation of mirrors [21],
phase and polarization estimations in quantum key distributions [44], amplitude estima-
tions in high-speed atomic force microscopy [45], etc. [46]. These works promote the
applications of Kalman filtering in quantum systems and provide ideas for extending
efficient algorithms from classical engineering fields to quantum systems.

3.2. Magnetic Field Estimation

As a typical quantum sensor, atomic magnetometers [47–49] developed rapidly in
the field detection area in recent years. It is one of the most sensitive magnetometers that
can compete with a superconducting quantum interference device (SQUID) [50], and it
can be used for brain magnetic field detection [51]. In addition, the device is compact and
can work at room temperature; thus, it is also suitable for geomagnetic exploration [52],
magnetic prospecting [53], submarine exploration [54], mine sweeping [55] and other
fields [56]. The core design of the atomic magnetometer is based on the interaction of
light and atoms. In principle, its fundamental measurement sensitivity [57,58] will be
limited by optical and atomic quantum noise. At present, the method of reducing quantum
noise is to combine squeezed light [59–63] or atomic spin-squeezed states [48,64,65] with
an atomic magnetometer. However, it requires a substantial amount of work, such as
the calibration of noise sources, understanding quantum effects and modelling system
dynamics, before it can be realized. This is because, quantum squeezing is often very weak
and hides below classical noise. Even after reducing most classical noise, due to quantum
fluctuations, the effective information extraction is still a challenge in quantum system.
Some signal extraction affected by quantum noise requires special signal recovery and data
analysis methods. The conditional variance analysis method [66] is a popular solution.
Kalman filtering signal recovery methods have similar ideas compared with conditional
variance analyses; therefore, it has been introduced into atomic ensembles in recent years
for parameter estimation and quantum noise suppression. The recovery of the magnetic
field signal is hereinafter referred to as the estimation of the magnetic field’s signal.

In general, an atomic magnetometer obtains signals with continuous measurements,
such as the Faraday rotation measurement [67], in which the Kalman filter can play a role in
state variables or system parameter estimations. However, it is not a easy task for magnetic
field estimations. There are two reasons. First, the difficult stems from the observables of
the atomic magnetometer system; i.e., the three components of total spin do not satisfy
canonical commutation relations. To estimate both magnetic field and spin components at
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the same time, the system’s evolution cannot be expressed with linear dynamics. Therefore,
the system’s evolution cannot be expressed by a closed set of equations of low-order
moments, such as 〈Jx〉, 〈Jz〉 and

〈

J2
x

〉

. Second, the magnetic field is a parameter in the
system’s Hamiltonian. In addition to the state variable evolution model, we have to build
the conditional probability evolution of the magnetic field under observation. To deal
with the above problems, previous studies assumed that all atoms are polarized along
one direction, and the measurement is focused on short timescales; therefore, one spin
component can be treated as a constant number. Then, the system can be described by
linear dynamics since the magnetic field is not coupled with any spin component. For
example, if the magnetic field is applied along y direction and all atoms are polarized along
the x direction, the evolution of the system can be described as follows [32,68,69]:

d
〈

Ĵz

〉

= γBJe−Mt/2dt + 2
√

Mη
〈

∆ Ĵ2
z

〉

dW (15)

d
〈

Ĵ2
z

〉

= −4Mη
〈

∆ Ĵ2
z

〉2
dt, (16)

where γ is the effective spin magnetic ratio, B is the magnetic field and J is the total angular
momentum. M and n represent the detection intensity and detection efficiency, respectively.

The team of Geremia [32] applied Kalman filters to magnetic field estimations. They
tried to find a model that can describe spin squeezing generation along the observation
direction by using continuous measurements [70] and that can estimate magnetic fields
beyond standard quantum limits by taking advantage of the spin-squeezed state. The SME
describing the evolution of the system can be written in a relatively simple form: the first-
and second-order moments of spin component’s evolution.

dρc = −iγB
[

Ĵy, ρ̂c

]

dt + MD
[

Ĵy

]

ρ̂cdt +
√

MηH
[

Ĵy

]

ρ̂cdW(t) (17)

Kalman filtering has been used to estimate the static magnetic field in the system, and
the following bounds of magnetic field estimation are obtained:

δB ≈ 1

γJ

√

3

Mηt3
, t ≫ JM−1

where γ denotes the effective magnetogyric ratio, J denotes the total atomic spin, M and η

denote the measurement intensity and efficiency, respectively, and t denotes time. Figure 4
shows the results of Kalman filtering in detail. This work gives the theoretical limit of the
magnetic field measurement of an atomic magnetometer based on a very idealized model.
Note that this is a very important theoretical work, even though in practice most atomic
magnetometers do not satisfy the condition of great dissipation. Klaus Mølmer et al. [71,72]
also discussed the mechanism of spin squeezing generated by continuous observations and
provided a good theoretical contribution to the estimation of scalar magnetostatic fields
and perturbation magnetic fields.

Stockton et al. [68] also considered the condition that the system has great dissipa-
tion. However, they discussed the estimation of a magnetic field that evolves with the
Ornstein–Unlenbeck (OU) process [73]. In addition, they also offered a robust magnetic
field estimation method by applying feedback to the system using Kalman filter techniques.
In this way, the estimation remains robust even if there are unknown parameters, such
as atomic density. Their model is still ideal, but it solves a very practical problem since
providing accurate atomic information in an experiment is hard as it involves factors such
as the atomic density, spin polarization and so on. By using the feedback technique, the
magnetic field’s estimation is not significantly dependent on atomic information.

Recently, Binefa and Kołodyński [69] discussed in detail the scaling of the mean square
error ∆2B̃t of magnetic field estimations in various cases. For example, ∆2B̃t is obtained by
the Classical Simulation (CS) method
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∆
2B̃CS

t (qB) =











γy

γ2
gt
≡ ∆2B̃CS

t (0), if t < 1
γg

√

γy

qB
,

√

γyqB

γ2
g

, if (M + γy)−1 & t > 1
γg

√

γy

qB
,

(18)

or by the steady-state solution of the Kalman filter

∆
2B̃SS

t (qB) =





qBγy

γ2
g

+
1

γg J

√

q3
B

Mη
e(M+γy)t/2





1/2

(19)

where γy represents the relaxation of the spin in the y direction. qB represents the vari-
ance introduced by magnetic field noise at each time. γg is the effective gyromagnetic
ratio. M and η are the measurement intensity and efficiency, respectively, and t is time.
Figures 5 and 6 show the scaling of the magnetic field’s estimation. This provides a
theoretical reference for the optimal magnetic sensitivity of an atomic magnetometer.

Figure 4. Comparison of the mean square error of magnetic field determination by quantum Kalman

filters and linear least squares fitting. Figure from [32].

Figure 5. Mean square error of magnetic field estimations with respect to the scaled time ts =

(M + γy)t. The red, black, orange and green dashed lines denote the noiseless solution with γy < Mη,

the CS limit with qB > 0, the CS limit in the absence of fluctuations (qB = 0) and the steady state of

the KF, respectively. Figure from [69].
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Figure 6. Mean square error of magnetic field estimations versus the size of the ensemble at ts = 10−4

(in the inset, ts = 10−2), with the same parameters as the ones used in Figure 5. Figure from [69].

Most of the above works start from the SME, and by approximation, the studies
obtained a closed set of linear evolution equations for describing the quantum system’s
dynamics. Then, Kalman filtering was used to obtain the optimal estimation of mechanical
quantities and parameters under various conditions. The purpose is to find an estimation
limit that is most focused upon by theoreticians. However, experimenters tend to use
Kalman filtering for data analyses to achieve better estimations and sensitivities.

3.3. Waveform Estimation and Tracking of Optical Pump

In atomic magnetometers, the angular momentum of the pump light will be transferred
to spin angular momentum via resonance absorption [74], thus affecting the corresponding
characteristics of the magnetic field. Therefore, the information tracking and feedback
control of the pump field are also very important. The pump light, interacting with
atomic spin, can be treated as a state variable or control term, and its fluctuation can be
described by Gaussian white noise; therefore, it is quite reasonable to use Kalman filters for
waveform tracking.

In 2018, for the first time, Martínez et al. [34] used a Kalman filter model for the
waveform estimations of pump lights in an atomic magnetometer system and verified the
model in an experiment. As shown in Figure 7, by comparing the known inputs of the
estimated signal, the applicability of the atomic statistical model and the reliability of the
Kalman filter are proved experimentally. The pump light proceeds to the Kalman filter
model as a control term, as shown in the following equation:

djt =

(

− 1
T2

ωl

−ωl − 1
T2

)

jtdt +

(

0
ǫ(t)

)

dt + dwJ
t , (20)

where jt = [Tr[jxρc], Tr[jzρc]]
T . ǫ(t) = gp · cos(ωpt) · q(t) + gp · sin(ωpt) · p(t) represents

the waveform of the pump light. q(t) and p(t) are the quantities to be estimated, which
are defined as follows in the OU process:

dqt = −κqtdt + dw
q
t , qt = [qt pt]

T , (21)

where dwJ
t is the system noise, and its statistical characteristics are calibrated directly

from experiments. Since the magnetic field is a known parameter in this model, the state
variable estimation is a linear dynamical problem. Therefore, the canonical commutation
relationships are not required for spin components, which means that no strict assumptions
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are made in the model. This work shows that the Kalman filtering method can recover
waveform details better than the sensor’s intrinsic time resolution and avoid the trade-off
between sensitivity and time resolution in coherent sensing. In addition, it proposes a
new Kalman filter model in atomic magnetometer systems, and this has been validated
by experiments for the first time. It also provides a new idea to study the factors affecting
magnetic field estimations in an atomic magnetometer; in addition, it provides a model for
information encryption and decryption. By using Kalman filters, information carried by
pump lights can be recovered by using magnetometer systems.

Figure 7. (a): Schematic diagram of atomic magnetometer. (b): Comparison of time trace of input

signal, output signal and Kalman filter estimation. (c): Comparison of the power spectrum density of

input signal, output signal and Kalman filtering. Figure from [34].

3.4. Estimation of Spin Components and Noise Squeezing

In the theoretical studies of magnetic field estimations [75], it has been shown that the
accumulation of continuously measured information can bring spin noise squeezing so
that the magnetic field estimation can reach the Heisenberg limit. However, there are many
sources of noise and complex atomic collision processes in magnetic sensing devices based
on thermal atomic systems, which make the preparation and detection of squeezed states
extremely challenging. Kalman filters provide both the mean value and the mean square
error of the state estimation based on accumulated information via measurements. This is
very helpful for quantum noise analyses and noise squeezing evaluation.

In 2020, Kong et al. [33] first applied the Kalman filtering method in a spin exchange
relaxation-free (SERF) atomic system for data analyses and squeezed state/entangled state
detection. Under high temperatures and strong interaction conditions where the SERF
atomic magnetometer [76] operates, a macroscopic entangled state with 1013 atoms is
successfully achieved by quantum non-destructive measurements [77]. In this study, the
magnetic field is treated as a known parameter, and only spin variables are estimated. This
guarantees a linear dynamic model that could be applied with Kalman filter equations. The
Kalman filtering method played an important role in data analyses. As shown in Figure 8, it
has been used to extract spin noise components from observation signals that can compare
with the entanglement criterion [78]. In this experiment, the weak polarization condition
is considered. All atomic spins are initially in a thermal state. The Faraday rotation
measurement method is used to prepare correlations. Under this condition, the evolution
of the system can be written in the following way:

dF = −AFdt +
√

σdW,

where the matrix element of operator A is Aij = −γBhǫhij + Γij ,h, i, j = x, y, z, Γij denotes

system relaxation, Bh is the magnetic field and
√

σdW is the intrinsic spin noise.
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Figure 8. (a): Experimental setup diagram. (b): Klaman filter estimation of the Stocks parameter Sy

with the mean value (red line) and mean square error (pink shadow) based on experimental data

(blue dot) and the optimal estimation for the atomic spin, gFSx (red line). (c): Zoomed-in view the

early signal. Figure from [33].

In this study, the Monte Carlo simulation method [79] has been used to conduct a series
of comparisons between the theory and experiment to validate the Kalman filtering model.
The largest macroscopic entangled state at present, macroscopic spin singlet state [80], is
successfully observed. This is also the first time quantum effects were observed under
the SERF mechanism, which opens a new platform for quantum optics research and
encourages the study of quantum-enhanced precision measurements in high-temperature
thermal atomic systems. This work further expands the application scope of Kalman filters
in a quantum system and applies Kalman filters for noise estimation and data analysis.

3.5. Density Matrix Estimation in Quantum Tomography

Filtration procedures can also help for density matrix estimations [81], for example,
Kalman filter has been used for static quantum state estimation (reconstruction) in quan-
tum tomography [35,82–85]. Quantum state tomography reconstructs quantum states
from experimental data [35], which are mapped onto quantum states by a set of mea-
surement operators. Because of intuitiveness, it is useful for correlation or entanglement
quantifications [86]. Different than common dynamical state estimation, in quantum to-
mography, so far only Kalman filter update equations are used for quantum state recon-
struction [35]. This is because the system has to be static in quantum tomography.

In 2009, Audenaert et al. [35] applied the Kalman filter method for errorbar estimation
of a quantum state measurement with few discrete outcomes, which corresponds to a
probability density function (PDF) over state space. By simplifying the Bayes statistical
inference equation, they obtain the following Kalman filtering update equations [35]:

K̃ = Σ̃H̃T
(

H̃Σ̃H̃T + Θ̃

)−1
, (22)

µ̃
′
= µ̃ + K̃

(

z̃ − H̃µ̃
)

, (23)

Σ̃
′
= Σ̃ − K̃H̃Σ̃, (24)

where µ̃ is the estimated value, Σ̃ is the covariance of estimated value, H̃ represents mea-
surement matrix, z̃ and Θ̃ are related to the mean and variance of the posterior distribution,
respectively. Using the covariance calculated by the above equations, errorbar of derived
quantities can be easily calculated. They also showed two practical applications of this
method: the state reconstruction of an entangled two-qubit state, and reconstruction of an
optical positive operator value measure (POVM).

In the analysis of Czerwinski [86], the Kalman filter method has also been compared
with other density matrix reconstruction methods, such as least-squares reconstruction and
maximum likelihood reconstruction. They pointed out that Kalman filter outperforms the
other reconstruction methods with the standard formula for the expected counts. However,
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the Kalman filter has inferior results in entanglement quantification when the standard
approach involves a linear model of dark counts [86].

Furthermore, if the processes are not linear or the initial system is not Gaussian,
such as Fock or cat states, linear Kalman filters can not provide an optimal estimation.
Therefore, nonlinear Kalman filters or other filter methods, such as Stratonovich’s filtering
theory [87] and the tomographic filtering method [88], have been studied for obtaining
optimal estimations in quantum systems.

4. Conclusions and Discussion

Here, we discuss the connection of the classical Kalman filter method [13] and continu-
ous quantum measurement theory [29] and how to derive Kalman filter equations from the
SME of a quantum system. We also reviewed the successful applications of Kalman filters in
quantum systems, including the position estimation of harmonic oscillator systems [40] and
magnetic field estimations [32], spin component estimations [33] and tracking the pump
light’s waveform in an atomic magnetometer system [34], and also the reconstruction of
quantum state in quantum tomography [35]. In these linear or nearly linear systems with
Gaussian noise, Kalman filtering is an better method for optimal estimation. It offers easier
solutions for quantum estimations and also allows engineers to contribute to quantum
physics quickly. However, nonlinear models often appear in practice where linear Kalman
filters are not applicable. This is a major limitation for its applications.

In a system with light, atom and magnetic field interactions, there are still many
challenging problems, such as choosing the appropriate model for the system and the
Kalman filtering method for a nonlinear evolution process. Currently, all theoretical studies
for magnetic field estimations using the Kalman filter method assume that the evolution
of a system has large dissipations. In the assumption, atomic spins satisfy the canonical
commutation relationship; thus, it can make an optimal estimation relative to the magnetic
field with the linear Kalman filter equation. For magnetic field estimations in a more
practical highly sensitive atomic magnetometer system in which the large dissipation
assumption may not valid, the state variable evolution contains the quadratic term for the
spin and magnetic field’s coupling. The next step could be to use nonlinear Kalman filtering
methods, such as extended Kalman filtering [16] and unscented Kalman filtering [89], to
build a more general model for atomic magnetometers. We note that the extended Kalman
filter can only be numerically solved. Therefore, it cannot produce the optimal estimation,
but it provides a reference for finding the optimal method for magnetic field estimations
relative to general atomic magnetometers.

Author Contributions: Conceptualization, J.K. and K.M.; literature research, K.M., J.K. and Y.W.;

original draft preparation, K.M.; review and editing, J.K., X.-M.L. and Y.W.; supervision, J.K.; project

administration, J.K. and X.-M.L.; funding acquisition, J.K. and X.-M.L. All authors have read and

agreed to the published version of the manuscript.

Funding: This research was supported from the National Natural Science Foundation of China

(NSFC) (Grant No. 12005049, No. 11935012, No. 61871162 and No. 12275062).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Yonezawa, H.; Nakane, D.; Wheatley, T.A.; Iwasawa, K.; Takeda, S.; Arao, H.; Ohki, K.; Tsumura, K.; Berry, D.W.; Ralph, T.C.; et al.

Quantum-Enhanced Optical-Phase Tracking. Science 2012, 337, 1514–1517. [CrossRef] [PubMed]

2. Korayem, A.H.; Khajepour, A.; Fidan, B. A Review on Vehicle-Trailer State and Parameter Estimation. IEEE Trans. Intell. Transp.

Syst. 2021, 23, 5993–6010. [CrossRef]

3. Kitching, J.; Knappe, S.; Donley, E.A. Atomic Sensors—A Review. IEEE Sens. J. 2011, 11, 1749–1758. [CrossRef]

http://doi.org/10.1126/science.1225258
http://www.ncbi.nlm.nih.gov/pubmed/22997332
http://dx.doi.org/10.1109/TITS.2021.3074457
http://dx.doi.org/10.1109/JSEN.2011.2157679


Symmetry 2022, 14, 2478 12 of 14

4. Wieczorek, W.; Hofer, S.G.; Hoelscher-Obermaier, J.; Riedinger, R.; Hammerer, K.; Aspelmeyer, M. Optimal State Estimation for

Cavity Optomechanical Systems. Phys. Rev. Lett. 2015, 114, 223601. [CrossRef]

5. Rossi, M.; Mason, D.; Chen, J.; Tsaturyan, Y.; Schliesser, A. Measurement-based quantum control of mechanical motion. Nature

2018, 563, 53–58. [CrossRef]

6. Geremia, J.M.; Stockton, J.K.; Mabuchi, H. Real-Time Quantum Feedback Control of Atomic Spin-Squeezing. Science 2004,

304, 270–273. [CrossRef]

7. Degen, C.L.; Reinhard, F.; Cappellaro, P. Quantum sensing. Rev. Mod. Phys. 2017, 89, 035002. [CrossRef]

8. Tsang, M.; Wiseman, H.M.; Caves, C.M. Fundamental Quantum Limit to Waveform Estimation. Phys. Rev. Lett. 2011, 106, 090401.

[CrossRef]

9. Tsang, M. Optimal waveform estimation for classical and quantum systems via time-symmetric smoothing. Phys. Rev. A 2009,

80, 033840. [CrossRef]

10. Iwasawa, K.; Makino, K.; Yonezawa, H.; Tsang, M.; Davidovic, A.; Huntington, E.; Furusawa, A. Quantum-Limited Mirror-Motion

Estimation. Phys. Rev. Lett. 2013, 111, 163602. [CrossRef] [PubMed]

11. Wiseman, H.M.; Milburn, G.J. Quantum Measurement and Control; Cambridge University Press: Cambridge, MA, USA, 2010.

12. Jacobs, K. Quantum Measurement Theory and Its Applications; Cambridge University Press: Cambridge, MA, USA, 2014.

13. Kalman, R. A New Approach to Linear Filtering and Prediction Problems. J. Basic Eng. 1960, 82D, 35–45. [CrossRef]

14. Kalman, R.; Bucy, R. New Results in Linear Filtering and Prediction Theory. ASME J. Basic Eng. Ser. D 1973, 83, 95–108. [CrossRef]

15. Jacobs, K. Stochastic Processes for Physicists Understanding Noisy Systems; Cambridge University Press: Cambridge, MA, USA, 2010.

16. Costa, P.J. Adaptive model architecture and extended Kalman-Bucy filters. IEEE Trans. Aerosp. Electron. Syst. 1994, 30, 525–533.

[CrossRef]

17. Julier, S.J.; Uhlmann, J.K. Unscented filtering and nonlinear estimation. Proc. IEEE 2004, 92, 401–422. [CrossRef]

18. Cooper, S.; Durrant-Whyte, H. A Kalman filter model for GPS navigation of land vehicles. In Proceedings of the IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS’94), Munich, Germany, 12–16 September 1994; Volume 1,

pp. 157–163. [CrossRef]

19. Auger, F.; Hilairet, M.; Guerrero, J.M.; Monmasson, E.; Orlowska-Kowalska, T.; Katsura, S. Industrial Applications of the Kalman

Filter: A Review. IEEE Trans. Ind. Electron. 2013, 60, 5458–5471. [CrossRef]

20. Carron, A.; Todescato, M.; Carli, R.; Schenato, L.; Pillonetto, G. Machine learning meets Kalman Filtering. In Proceedings of

the 2016 IEEE 55th Conference on Decision and Control (CDC), Las Vegas, NV, USA, 12–14 December 2016; pp. 4594–4599.

[CrossRef]

21. Doherty, A.C.; Jacobs, K. Feedback control of quantum systems using continuous state estimation. Phys. Rev. A 1999, 60, 2700–2711.

[CrossRef]

22. Brettorst, G.L. Bayesian Spectrum Analysis and Parameter Estimation; Springer: Berlin/Heidelberg, Germany, 1988.

23. van Trees, H.L.; Bell, K.L.; Tian, Z. Detection, Estimation, and Modulation Theory. Part I: Detection, Estimation and Filtering Theory;

Wiley: New York, NY, USA, 2013.

24. Bain, A.; Crisan, D. Fundamentals of Stochastic Filtering; Springer: Berlin/Heidelberg, Germany, 2008.

25. Caves, C.M.; Milburn, G.J. Quantum-mechanical model for continuous position measurements. Phys. Rev. A 1987, 36, 5543–5555.

[CrossRef] [PubMed]

26. Czerwinski, A. Dynamics of Open Quantum Systems—Markovian Semigroups and Beyond. Symmetry 2022, 14, 1752. [CrossRef]

27. Czerwinski, A. Entanglement Dynamics Governed by Time-Dependent Quantum Generators. Axioms 2022, 11, 589. [CrossRef]

28. Wiener, N. Extrapolation, Interpolation, and Smoothing of Stationary Time Series: With Engineering Applications; The MIT Press:

Cambridge, MA, USA, 1949.

29. Jacobs, K.; Steck, D.A. A straightforward introduction to continuous quantum measurement. Contemp. Phys. 2006, 47, 279–303.

[CrossRef]

30. Verstraete, F.; Doherty, A.C.; Mabuchi, H. Sensitivity optimization in quantum parameter estimation. Phys. Rev. A 2001,

64, 032111. [CrossRef]

31. Doherty, A.C.; Tan, S.M.; Parkins, A.S.; Walls, D.F. State determination in continuous measurement. Phys. Rev. A 1999,

60, 2380–2392. [CrossRef]

32. Geremia, J.M.; Stockton, J.K.; Doherty, A.C.; Mabuchi, H. Quantum Kalman Filtering and the Heisenberg Limit in Atomic

Magnetometry. Phys. Rev. Lett. 2003, 91, 250801. [CrossRef] [PubMed]

33. Kong, J.; Jiménez-Martínez, R.; Troullinou, C.; Lucivero, V.G.; Tóth, G.; Mitchell, M.W. Measurement-induced, spatially-extended

entanglement in a hot, strongly-interacting atomic system. Nat. Commun. 2020, 11, 2415. [CrossRef]
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