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For some class of studies, the space charge is treated
%5 as frozen, allowing to capture the dynamics of incoherent
g phenomena. We explore the possibility that a beam may
— exhibit non-resonant coherent behavior by developing and
studying a one-dimensional model.

INTRODUCTION

The issue of whether space charge effects in a ring can be
modeled by a frozen space charge or not becomes, in term
£ of the dynamlcs the issue of whether the behaV10r of the

ribution to the author(s), ti
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£ densities n, the excess electric potential set up by an extra
5 charge is effectively screened off in a distance Ap by charge
o redistribution in the plasma. This effect is called “Debye
= S shielding” and Ap = ¥/w where ¥ is the thermal velocity

work

£ 2 of the particles and w = [q n/ (meo)] is the plasma fre-
£ quency. For a particle beam of size a stored in an accelerator
f Ref. [1] says that if 1, > a the screening will be ineffective
& and single particle behavior will dominate, while if 1p < a
2 the collective effects due to the beam self-fields will play an
iimportant role. However, a particle beam in an accelerator
% is formed by particles with the same charge state. Therefore
S how the Debye mechanism comes to play it is not so evident.
= To clarify what happens, we construct a simplified model
2 and explore the dynamics.

A ONE DIMENSIONAL MODEL

In order to investigate the role of the Debye length in a
2 particle beam stored in an accelerator, we construct a simple
% one-dimensional model. We consider a region of space with
g a focusing electric field £, = =Kz along the z axis that does
8 not depends on the transverse x and y coordinates. In order
£ to simplify the dynamics, we assume that the particles of
g charge ¢ and mass m are frozen in planes. Therefore, instead
£ of discussing the dynamics of micro-particles we study the
@ motion of micro-planes. One micro-plane has position z,
5 velocity z, is normal to the z axis, and has uniform particle
'g,surface density n,,.
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E The force on a charged particle is F, = gE., being E, the
8 composition of the electric fields along z created by all micro-
= planes and the focusing field. The electric field E,(z,z") cre-
= ated at z by the micro-plane located at z” is readily obtained
£ from Gauss law as E;(z,z") = sign(z — z')gn, /(2€), with
= € the vacuum permettivity. As all particles in a micro-plane
% are subject to the same force, the equation of motion of the
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micro-plane at z is

d*z

dr?
We note two features of this model: 1) the motion of micro-
planes is not subject to “collision”. In fact, when z = z’ there
is a discontinuity in the electric field, but not a divergence.
Therefore for a large number of micro-planes, this effect may
be made arbitrarily small. 2) the acceleration of one plane
due to the Coulomb field exerted by another micro-plane
does not vanish with the distance. This effect is understood
from the infinite extension of the micro-planes. This model
makes stronger the coherent response of this system as any
plane feels equally the forces of all the micro-planes present
into the system.

_ 2 NMp ’
= —qKz+ g —sign(z — 7). (1)
260

A continuous beam is formed by many micro-planes, say
Np, with density distribution function pn(z) = AN(z)/Az,
where AN(z) is the number of micro-planes in [z,z + Az].
From Eq. (1) it is straightforward that the Coulomb force on
a micro-plane located at z is proportional to —N,(z) + N_(z),
where N_(z) = f_ ; pn(z')dz’ is the number of micro-planes
with 7’ < z. Mutatis mutandi for N,(z). As Ny = N.(z) +
N_(z) the equation of motion of one plane reads

2 n
T kazt PN =Nl @)
where in analogy to the beam dynamics in accelerators we
define k;o = (g/m)K.

This equation allows computing the evolution of the distri-
bution of micro-planes when their phase space distribution
is known. The dynamical coordinates of one micro-plane
are (z, z), and a distribution of micro-planes is identified by
a distribution function f(z,z). For brevity of language we
use the term “particle” instead using “micro-plane”. As for
2D beams, a special role is played by a stationary particle
distribution. This special class of particle distributions has
the property that f(z, z) does not change in time. This hap-
pens naturally if all forces acting on one particle are linear in
z and if the particle distribution is a function of the invariant
€ = v.2> + 3,22, being 3., the optical functions of the
system (in the time domain). This means that the particle
distribution is f (2—“ , with E,, is the beam phase space emit-
tance. The linearity of the forces requires N_(z) « z, which
is possible only if

/f (2—1) dz = pn(z) = constant.

for any z inside the distribution. The function f() satisfying
Eq. (3) can be constructed with a “slice by slice” procedure
with the result shown in Fig. 1a. The markers show the nu-

merical findings and the red curve is a fit. This particle dis-
tribution is also modeled with an acceptable approximation,

by transforming the bi-normal distribution (&, ¢) according

3)
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Figure 1: Part a: the function f(e,/E;) is obtained by re-
quiring that the projection is uniform. Part b: particle distri-
bution in the normalized phase space.

to
Z

~ = EFE9) = $F(£.9) o

with F(&,¢) = 12/{4'3[8 + (&% + ¢*)*/%]} and Z, Zqx the
maximum extensions of the distribution in phase space. In
Fig. 1b we show this particle distribution.

A matched stationary particle distribution located in
the interval [—Z, Z] has cumulative number of particles
N_(z) = No(z + Z)/(2Z). Hence the equation of motion
reads % = —kyz + w?z, with w = ('Z—Zé’)l/z the Debye
frequency, and ng = n,No/(2Z) the particle density of the
stationary distribution. It is now convenient scaling the time
to the phase created by the focusing field, namely using the
variable 6 = \/E t, and also scaling the particle coordinate
with the distribution size Z = z/Z. We find

d’z W,
W =-z+ k—ZOZ.

The condition of stationary particle distribution matching
is obtained using the optical functions from the space charge
depressed focusing strength k., = k.o — w?, namely g, =
1/ \/k_Z and y, = 1/B,. Any particle in this system will
satisfy the relation 8,2 + y,z> = constant. Therefore for
a distribution with size Z we find that the consistent size
in the velocity is Zyax = \/k_Z Z, hence using Egs. (4) we
generate the stationary distribution. In Eq. (5) we recognize
the incoherent tune depression Q; inen/Qz0 = V1 — w?/kzo
and for convenience we define the relative Debye “tune”
Q:p/0Q:0 =w/ \/k_zo. These two quantities satisfy relation

(QZ,D/QZO)2 + (Qz,inch/QzO)2 =1

max

&)

THE SPACE CHARGE LIMIT

In this model the space charge limit is reached when
Q;.inch = 0, namely when the Coulomb forces compensate
the force of the lattice. In this case, the stationary particle
distribution is just uniform in [—1, 1] with each particle hav-
ing zero velocity. In order to evaluate/investigate the effect
of a possible Debye mechanism, we consider a particle dis-
tribution at the space charge limit and apply a perturbation
to the velocity of the particles in the region [Zy,Z;]. The
particle density pn(Z2) is now perturbed, hence the cumula-
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Figure 2: Schematic of the particle density perturbation in
the first instants of motion.

tive number of particles is N_(Z) = No-(Z) + SN_(Z), with
Np-(2) corresponding to the stationary distribution, which
create w® = k. In this notation §N_(2) can be positive or
negative, but as the number of particles is preserved, it is
always 0 N_(o0) = 0. Therefore Eq. (2) reads
d’; W 2 .
42 koMo ON_(2). (6)
We next model §N_(2) in the first part of the motion. We
add the velocity Av > 0 to all particles in the region [Z, Z; |
and let the system evolve. Let’s call Z, the particle initially
located at Zy, which is subject to the perturbation. This beam
particle will move with speed v = Av and will leave an empty
region behind (Fig. 2). Hence the cumulative perturbation
in the first instant of motion reads

) No .
SN_(24) = —7°(za

and the equation of motion of the particle Z, is

- 20)9 (7)

d2 2(1 B w2 R

o’ k-0 (%
A generic particle with coordinate Z, in the yellow region
of Fig. 2 is subjected to the same equation of motion as
ON_(2,) = 6N_(%,). The initial conditions of this particle
are Z, = 2,0 and ‘%’ = “5‘[ % = Av/(\/aZ). Therefore
particles in the center of the perturbed region will oscillate
coherently according to

®)

- 2).

Av w
Zr = Zr.0+ —= si 0]. 9
Zr Zr,0 w7 Sln(\/k_zo ) ( )
This formula shows that the oscillation of Z, has amplitude
of Lp = Av/(wZ). 1t is evident that if Lp > Z; — Zy any
particle in the yellow region cannot follow Eq. (9) because
dN_(2) does not follow Eq. (7) already after a phase advance

6 given by \/‘]‘(’_9 = 1 /2. We show this effect in Fig. 3 where
z0

we plot the pafticle distribution after 5 Debye oscillations.

In the part a) the Debye length is Lp = (51 — 29)/20 while
in the part b) we set Lp = (81 - %)/2. The comparison of
the two pictures shows that only if Lp is much smaller than
the size of the perturbed region the perturbation can survive
locally. In both pictures, the initial distribution is colored to
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= Figure 3: Phase space after 5 Debye oscillations. On the
& part a) is the case with Lp /(21 —29) = 1/20, and on the part
":«sb) the case with Lp /(21 — 20) = 1/2.

highlight the dynamics. We see that in Fig. 3a the particles
= do not excessively diffuse, while in Fig. 3b the red colored
£ particles spread over all the initial distribution length. Lp

ttribution t

g plays the role of the Debye length

g

Z  ABOVE THE SPACE CHARGE LIMIT

g

=« The scenario discussed in the previous section regards
Q

£ the case in which the charge density of micro-planes is ex-
'é treme. For a less dense particle beam we do not approach
% the condition Q; incn = 0 and Eq. (2) acquires the form
d*z k, . w2

— =——Z7+ ——0N_(2).
1 )

g
3
2 kzo " kz0 No
=
g
g

n

(10)

Z This equation shows a dynamics governed by the co-
existence of two competing effects: 1) a Debye dynamics
< characterized by the term with w?/k, which involve the
3 perturbation SN_(2); 2) a depressed lattice k, / k.o dynamics,
& which acts incoherently over all particles.

The form of the perturbation §/N_(Z) in the first part of
§ motion is now not equal to Eq. (7), which is an upper bound,
E’ namely |5(Z,)| < (No/2)(24—Z0). From Eq. (10) we see that
< the dominance of the incoherent regime over the coherent
E one surely happens for w? < k, which in terms of optical
o, functions becomes w? < y,/f,. Multiplying and dividing
% by the beam rms phase space emittance this condition reads
f 7 < V,/w, where 7 is the rms size of the beam, and ¥ is
o effectively the rms thermal component of the velocity, hence
gwe recognize here the Debye length Ap = ¥, /w. Defining
E AQ; = Q;.inch — Q0 as the incoherent space charge tune-
+ shift it is straightforward to show that

/l_D _ 1+ AQz/ Qz()

1 Z [_ZAQz/Qz() - (AQz/Qz0)2] 12

S At the space charge limit AQ,/Q.o = —1 the Debye length
'g,is Ap =0, instead at AQ,/Q.0 = —0.29 we find Ap = 7.

g To avoid the complication of modeling the initial pertur-
'é bation we just do not apply any. We instead create several
E matched beams each characterized by a specific relative De-
£ bye length of Ap /7 and study the oscillatory behavior of an
g ad-hoc test particle. The initial conditions of this particle
; are 7 = Zjp; = 0.83,z = 0 and its evolution is computed
% by solving numerically Eq. (10) with 5000 integration steps
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per Debye length for a time interval corresponding to 10
oscillations. In Fig. 4 we show the results. In the part a) the
red markers show Q. /Q;( as obtained from the test particle
motion. For comparison we also plot Q; incn/Qz0 (solid
line), and relative Debye “tune” Q. p/Q.o (dotted line) as
obtained from the theory. In Fig. 4b we show with red mark-
ers the average particle position (taken always positive) and
with black markers the scaled standard deviation of z/Z as
function of Ap /Z. Part a) shows that for Ap/Z 2 0.1 the tune
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Figure 4: Oscillatory properties of a test particle as function
of 4 D / zZ.

of the test particle is locked to the incoherent tune as one
expects. In the interval 0.01 < Ap/Z < 0.1 the test particle
tune makes a transition to the pure Debye tune, which sur-
prisingly becomes equal to the un-depressed tune Q.. Part
b) shows that the average center of oscillation remains close
to the origin of the system z = O for large A /Z, but progres-
sively approach z = z;,,; for Ap/Z — 0.01. In this interval,
the amplitude of oscillation (black markers) remains locked
to the initial amplitude with respect to z = 0. In the interval
107* < Ap/z < 0.01 the amplitude of oscillation shrinks
to z/Z ~ 1072. For Ap /% < 0.01 the average position of the
center of oscillation grows and becomes locked to the initial
particle position.

SUMMARY

With this study, we find evidence that the relative Debye
length effectively is an indicator of the incoherent/coherent

character of the particle dynamics in this model. For small 3

Ap /7 each particle oscillates around its initial position with
the Debye frequency although this system is not a neutral
plasma.
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