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Abstract
For some class of studies, the space charge is treated

as frozen, allowing to capture the dynamics of incoherent

phenomena. We explore the possibility that a beam may

exhibit non-resonant coherent behavior by developing and

studying a one-dimensional model.

INTRODUCTION
The issue of whether space charge effects in a ring can be

modeled by a frozen space charge or not becomes, in term

of the dynamics, the issue of whether the behavior of the

beam in a high-intensity beam is coherent or incoherent. In

neutral plasmas, this property is incorporated into the Debye

length of λD . If a test particle is placed into a neutral plasma
having a temperature T and equal positive ion and electron

densities n, the excess electric potential set up by an extra
charge is effectively screened off in a distance λD by charge

redistribution in the plasma. This effect is called “Debye

shielding” and λD = ṽ/ω where ṽ is the thermal velocity
of the particles and ω =

[
q2n/(mε0)

]1/2
is the plasma fre-

quency. For a particle beam of size a stored in an accelerator
Ref. [1] says that if λD � a the screening will be ineffective
and single particle behavior will dominate, while if λD � a
the collective effects due to the beam self-fields will play an

important role. However, a particle beam in an accelerator

is formed by particles with the same charge state. Therefore

how the Debye mechanism comes to play it is not so evident.

To clarify what happens, we construct a simplified model

and explore the dynamics.

A ONE DIMENSIONAL MODEL
In order to investigate the role of the Debye length in a

particle beam stored in an accelerator, we construct a simple

one-dimensional model. We consider a region of space with

a focusing electric field Ez = −Kz along the z axis that does
not depends on the transverse x and y coordinates. In order

to simplify the dynamics, we assume that the particles of

charge q and mass m are frozen in planes. Therefore, instead

of discussing the dynamics of micro-particles we study the

motion of micro-planes. One micro-plane has position z,
velocity �z, is normal to the z axis, and has uniform particle

surface density np .

The force on a charged particle is Fz = qEz , being Ez the

composition of the electric fields along z created by all micro-
planes and the focusing field. The electric field Ez(z, z′) cre-
ated at z by the micro-plane located at z′ is readily obtained
from Gauss law as Ez(z, z′) = sign(z − z′)qnp/(2ε0), with
ε0 the vacuum permettivity. As all particles in a micro-plane

are subject to the same force, the equation of motion of the

micro-plane at z is

m
d2z
dt2
= −qKz + q2

np

2ε0
sign(z − z′). (1)

We note two features of this model: 1) the motion of micro-

planes is not subject to “collision”. In fact, when z = z′ there
is a discontinuity in the electric field, but not a divergence.

Therefore for a large number of micro-planes, this effect may

be made arbitrarily small. 2) the acceleration of one plane

due to the Coulomb field exerted by another micro-plane

does not vanish with the distance. This effect is understood

from the infinite extension of the micro-planes. This model

makes stronger the coherent response of this system as any

plane feels equally the forces of all the micro-planes present

into the system.

A continuous beam is formed by many micro-planes, say

N0, with density distribution function ρN (z) = ΔN(z)/Δz,
where ΔN(z) is the number of micro-planes in [z, z + Δz].
From Eq. (1) it is straightforward that the Coulomb force on

a micro-plane located at z is proportional to −N+(z)+N−(z),
where N−(z) =

∫ z

−∞ ρN (z′)dz′ is the number of micro-planes
with z′ < z. Mutatis mutandi for N+(z). As N0 = N+(z) +
N−(z) the equation of motion of one plane reads

d2z
dt2
= −kz0z + q2

np

2mε0
[2N−(z) − N0]. (2)

where in analogy to the beam dynamics in accelerators we

define kz0 = (q/m)K.
This equation allows computing the evolution of the distri-

bution of micro-planes when their phase space distribution

is known. The dynamical coordinates of one micro-plane

are (z, �z), and a distribution of micro-planes is identified by
a distribution function f (z, �z). For brevity of language we
use the term “particle” instead using “micro-plane”. As for

2D beams, a special role is played by a stationary particle

distribution. This special class of particle distributions has

the property that f (z, �z) does not change in time. This hap-
pens naturally if all forces acting on one particle are linear in

z and if the particle distribution is a function of the invariant
εz = γz z2 + βz �z2, being βz, γz the optical functions of the
system (in the time domain). This means that the particle

distribution is f
(
εz
Ez

)
, with Ez is the beam phase space emit-

tance. The linearity of the forces requires N−(z) ∝ z, which
is possible only if∫

f
(
εz
Ez

)
d �z = ρN (z) = constant. (3)

for any z inside the distribution. The function f () satisfying
Eq. (3) can be constructed with a “slice by slice” procedure

with the result shown in Fig. 1a. The markers show the nu-

merical findings and the red curve is a fit. This particle dis-
tribution is also modeled with an acceptable approximation,

by transforming the bi-normal distribution (ξ, φ) according
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a) b)

Figure 1: Part a: the function f (εz/Ez) is obtained by re-
quiring that the projection is uniform. Part b: particle distri-

bution in the normalized phase space.

to
z
Z
= ξF(ξ, φ) �z

�zmax
= φF(ξ, φ) (4)

with F(ξ, φ) = 12/{41/3[8 + (ξ2 + φ2)3/2]} and Z, �zmax the

maximum extensions of the distribution in phase space. In

Fig. 1b we show this particle distribution.

A matched stationary particle distribution located in

the interval [−Z, Z] has cumulative number of particles
N−(z) = N0(z + Z)/(2Z). Hence the equation of motion
reads d2z

dt2
= −kz0z + ω2z, with ω = ( q2n0mε0

)1/2 the Debye
frequency, and n0 = npN0/(2Z) the particle density of the
stationary distribution. It is now convenient scaling the time

to the phase created by the focusing field, namely using the

variable θ =
√

k0z t, and also scaling the particle coordinate
with the distribution size ẑ = z/Z . We find

d2 ẑ
dθ2
= −ẑ +

ω2

kz0
ẑ. (5)

The condition of stationary particle distribution matching

is obtained using the optical functions from the space charge

depressed focusing strength kz = kz0 − ω2, namely βz =
1/
√

kz and γz = 1/βz . Any particle in this system will

satisfy the relation βz �z2 + γz z2 = constant. Therefore for
a distribution with size Z we find that the consistent size

in the velocity is �zmax =
√

kzZ , hence using Eqs. (4) we
generate the stationary distribution. In Eq. (5) we recognize

the incoherent tune depression Qz,inch/Qz0 =
√
1 − ω2/kz0

and for convenience we define the relative Debye “tune”

Qz,D/Qz0 = ω/
√

kz0. These two quantities satisfy relation
(Qz,D/Qz0)2 + (Qz,inch/Qz0)2 = 1.

THE SPACE CHARGE LIMIT
In this model the space charge limit is reached when

Qz,inch = 0, namely when the Coulomb forces compensate

the force of the lattice. In this case, the stationary particle

distribution is just uniform in [−1,1] with each particle hav-
ing zero velocity. In order to evaluate/investigate the effect

of a possible Debye mechanism, we consider a particle dis-

tribution at the space charge limit and apply a perturbation

to the velocity of the particles in the region [ẑ0, ẑ1]. The
particle density ρN (ẑ) is now perturbed, hence the cumula-

ω

ẑ0 ẑa

1−1 ẑ1
ẑ

Figure 2: Schematic of the particle density perturbation in

the first instants of motion.

tive number of particles is N−(ẑ) = N0−(ẑ) + δN−(ẑ), with
N0−(ẑ) corresponding to the stationary distribution, which
create ω2 = kz0. In this notation δN−(ẑ) can be positive or
negative, but as the number of particles is preserved, it is

always δN−(∞) = 0. Therefore Eq. (2) reads
d2 ẑ
dθ2
=
ω2

kz0

2

N0
δN−(ẑ). (6)

We next model δN−(ẑ) in the first part of the motion. We
add the velocity Δv > 0 to all particles in the region [ẑ0, ẑ1]
and let the system evolve. Let’s call ẑa the particle initially
located at ẑ0, which is subject to the perturbation. This beam
particle will move with speed v = Δv and will leave an empty

region behind (Fig. 2). Hence the cumulative perturbation

in the first instant of motion reads

δN−(ẑa) = −N0

2
(ẑa − ẑ0), (7)

and the equation of motion of the particle ẑa is

d2 ẑa
dθ2

= − ω
2

kz0
(ẑa − ẑ0). (8)

A generic particle with coordinate ẑr in the yellow region

of Fig. 2 is subjected to the same equation of motion as

δN−(ẑr ) = δN−(ẑa). The initial conditions of this particle
are ẑr = ẑr ,0 and

dẑr
dθ =

dẑr
dt

dt
dθ = Δv/(

√
kz0Z). Therefore

particles in the center of the perturbed region will oscillate

coherently according to

ẑr = ẑr ,0 +
Δv

ωZ
sin

(
ω√
kz0
θ

)
. (9)

This formula shows that the oscillation of ẑr has amplitude
of L̂D = Δv/(ωZ). It is evident that if L̂D > ẑ1 − ẑ0 any
particle in the yellow region cannot follow Eq. (9) because

δN−(ẑ) does not follow Eq. (7) already after a phase advance

θ given by ω√
kz0
θ = π/2. We show this effect in Fig. 3 where

we plot the particle distribution after 5 Debye oscillations.

In the part a) the Debye length is L̂D = (ẑ1 − ẑ0)/20 while
in the part b) we set L̂D = (ẑ1 − ẑ0)/2. The comparison of
the two pictures shows that only if L̂D is much smaller than

the size of the perturbed region the perturbation can survive

locally. In both pictures, the initial distribution is colored to
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a) b)

Figure 3: Phase space after 5 Debye oscillations. On the

part a) is the case with L̂D/(ẑ1 − ẑ0) = 1/20, and on the part
b) the case with L̂D/(ẑ1 − ẑ0) = 1/2.

highlight the dynamics. We see that in Fig. 3a the particles

do not excessively diffuse, while in Fig. 3b the red colored

particles spread over all the initial distribution length. L̂D

plays the role of the Debye length.

ABOVE THE SPACE CHARGE LIMIT
The scenario discussed in the previous section regards

the case in which the charge density of micro-planes is ex-

treme. For a less dense particle beam we do not approach

the condition Qz,inch = 0 and Eq. (2) acquires the form

d2 ẑ
dθ2
= − kz

kz0
ẑ +
ω2

kz0

2

N0
δN−(ẑ). (10)

This equation shows a dynamics governed by the co-

existence of two competing effects: 1) a Debye dynamics

characterized by the term with ω2/kz0 which involve the
perturbation δN−(ẑ); 2) a depressed lattice kz/kz0 dynamics,
which acts incoherently over all particles.

The form of the perturbation δN−(ẑ) in the first part of
motion is now not equal to Eq. (7), which is an upper bound,

namely |δ(ẑa)| < (N0/2)(ẑa− ẑ0). From Eq. (10) we see that

the dominance of the incoherent regime over the coherent

one surely happens for ω2 < kz , which in terms of optical
functions becomes ω2 < γz/βz . Multiplying and dividing
by the beam rms phase space emittance this condition reads

z̃ < ṽz/ω, where z̃ is the rms size of the beam, and ṽ is

effectively the rms thermal component of the velocity, hence

we recognize here the Debye length λD = ṽz/ω. Defining
ΔQz = Qz,inch − Qz0 as the incoherent space charge tune-

shift it is straightforward to show that

λD
z̃
=

1 + ΔQz/Qz0

[−2ΔQz/Qz0 − (ΔQz/Qz0)2]1/2
.

At the space charge limit ΔQz/Qz0 = −1 the Debye length
is λD = 0, instead at ΔQz/Qz0 = −0.29 we find λD = z̃.
To avoid the complication of modeling the initial pertur-

bation we just do not apply any. We instead create several

matched beams each characterized by a specific relative De-

bye length of λD/z̃ and study the oscillatory behavior of an
ad-hoc test particle. The initial conditions of this particle

are ẑ = ẑini = 0.83, �z = 0 and its evolution is computed

by solving numerically Eq. (10) with 5000 integration steps

per Debye length for a time interval corresponding to 10

oscillations. In Fig. 4 we show the results. In the part a) the

red markers show Qz/Qz0 as obtained from the test particle

motion. For comparison we also plot Qz,inch/Qz0 (solid

line), and relative Debye “tune” Qz,D/Qz0 (dotted line) as

obtained from the theory. In Fig. 4b we show with red mark-

ers the average particle position (taken always positive) and

with black markers the scaled standard deviation of z/z̃ as
function of λD/z̃. Part a) shows that for λD/z̃ � 0.1 the tune

a) b)

Figure 4: Oscillatory properties of a test particle as function

of λD/z̃.

of the test particle is locked to the incoherent tune as one

expects. In the interval 0.01 � λD/z̃ � 0.1 the test particle
tune makes a transition to the pure Debye tune, which sur-

prisingly becomes equal to the un-depressed tune Qz0. Part

b) shows that the average center of oscillation remains close

to the origin of the system z = 0 for large λD/z̃, but progres-
sively approach z = zini for λD/z̃ → 0.01. In this interval,
the amplitude of oscillation (black markers) remains locked

to the initial amplitude with respect to z = 0. In the interval
10−4 � λD/z̃ � 0.01 the amplitude of oscillation shrinks
to z/z̃ 
 10−2. For λD/z̃ � 0.01 the average position of the
center of oscillation grows and becomes locked to the initial

particle position.

SUMMARY
With this study, we find evidence that the relative Debye

length effectively is an indicator of the incoherent/coherent

character of the particle dynamics in this model. For small

λD/z̃ each particle oscillates around its initial position with
the Debye frequency although this system is not a neutral

plasma.
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