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Abstract In the coming era of multi-messenger astro-
physics, pulsars might be one of the most possible electro-
magnetic counterparts of the gravitational wave. The braking
indices, which are related closely to the electromagnetic radi-
ation of pulsars, are shown to be larger for the pulsars with
companion. It motivates us to set up a modified spin-down
equation for accelerated pulsars. In this model, we attempt to
figure out whether acceleration of a pulsar can cause a larger
braking index.

1 Introduction

The gravitational wave, which is theoretically predicted over
100 years ago, has been finally detected recently [1-3]. In
the coming era of multi-messenger astrophysics, it requires
searches for electromagnetic counterpart of the gravitational
wave than ever before. Moreover, the gravitational wave is
related to electromagnetic radiation closely. For instance,
gravitational wave event GW-170817 is produced along with
gamma-ray burst [3] and pulsar timing array is used to detect
gravitational wave.

Pulsars, especially binary pulsars, one of the most possi-
ble electromagnetic counterparts of gravitational wave, are
known as highly magnetized rotational stars in the space.
Pulsars have been observed and investigated extensively
for several decades. Rotation velocity of a pulsar could be
observed precisely. It shows that pulsars would rotate slower
as time goes by. In the canonical model, pulsar can be sim-
ply regarded as a rotational magnetic dipole. Loss of rotation
energy is due to the magnetic dipole radiation [4,5]. For a
pulsar with moment of inertia / and magnetic dipole m, the
evolution of rotation velocity £2 is described by the so-called
spin-down equation,
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where 6 is magnetic inclination angle and c¢ is speed of
light. However, the spin-down equation does not describe
the observed rotation velocity §2 well. The deviation of spin-
down equation can be indicated by a dimensionless quantity,
the so-called braking index,

In the canonical model, the braking index equals to 3, while
almost all observed braking indices are beyond 3 [6,7]. The
deviated braking indices indicate a modified spin-down equa-
tion.

In fact, various models were proposed to deal with the
braking index problem. There are two major scenarios. The
first scenario suggests that pulsars should have other kinds of
radiation source besides the magnetic dipole radiation. And
the second indicates that magnetic moment or moment of
inertia of pulsars should evolve with time. In the first sce-
nario, the expected radiation source might be gravitational
quadrupole radiation [8-10], in which the pulsar is thought
as an imperfect sphere. The energy radiation also can be
caused by the outflow of relativistic particles in pulsar wind
model [11-13], or fall-back disk around pulsars [14—16]. In
the second scenario, the braking index can be given [6,17]
by,

—3+2 2M+ 2% 1 (©)
"= e\ T e 1)

The deviated braking indices turn to require physical origin
for M, 6 and . The magnetic moment, or the magnetic field,
of pulsars might change with time due to Hall drift, Ohmic
decay or other magnetic mechanism [18-20]. It was also
studied statistically by providing phenomenological model
for the evolution of magnetic field [21-23]. For the magnetic
inclination angle, it might evolve with time tending to be in
alignment or out of alignment because of the plasma in mag-
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Fig. 1 Probability distribution of braking indices for the pulsars. The
light gray filled histogram is the braking indices of 32 pulsars with
companions. The gray filled histogram is the braking indices of the rest
409 pulsars. The dark gray filled histogram is the cross region of these
two kinds of pulsars

netosphere [24] or the rearrangement of pulsar components
[25], respectively. The inertia of moment related to equation
of state of the pulsars was also considered [26].

From these models, the deviated braking indices around
3 seem to be well understood. However, as Refs. [22,27]
pointed out, there are numerous braking indices beyond 3
over several orders of magnitude. Maybe, due to limitation
of structure of pulsars or attributing to inaccuracy observa-
tion, the large braking indices are rarely explored. In this
paper, we wish to be confronted with the braking index prob-
lem and focus on the large braking indices. In the ATFN
pulsar catalogue (http://www.atnf.csiro.au/research/pulsar/
psrcat/), there are 441 pulsars whose braking indices can
be obtained. 32 of them have companions. We find that the
32 pulsars tend to have larger braking indices than that of the
rest. The statistical result is shown in Fig. 1. It motivates us
to consider that the gravitational field around pulsars might
cause the large braking indices.

In this paper, we deal with braking index problem by
proposing a modified spin-down equation based on a mov-
ing dipole potential [28]. In the modified spin-down equation,
the braking indices increase with the accelerations of pulsars.
We expect that the gravitational field around a pulsar might
be the possible origin of the acceleration. The paper is orga-
nized as follows. In Sect. 2, we show the magnetic dipole
radiation of a moving pulsar. In Sect. 3, we derive the brak-
ing indices via constructing the modified spin-down equation
and provide estimation of the accelerations of pulsars. The
main conclusions and discussions are summarized in final
Sect. 4.

@ Springer

2 Magnetic dipole radiation of a moving pulsar

In canonical model, the pulsars spin down due to the magnetic
dipole radiation. Likewise, we only refer to the magnetic
dipole radiation of pulsars. The difference is that we consider
an accelerated pulsar based on a moving dipole potential [28].
The potential is of the form,

A,L(x>=av( O ) : )
ret

riuy,

wherer# = x* —z/(t), z* is the position of the dipole, 9, =
"

Bxil“ ut = % and O(7),” = u"py —uup”+e€’,,,u’m’.

The p,, andm? are electric and magnetic dipole, respectively.

Source terms are functions of ¢ which is defined by the light

cone condition,
rfry = (= 2H(1)(xp — zu (7)) = 0. ®)

It implies z° = x% — |x — z| = x® —r. Thus, the point dipole
in the retard potential also can be represented as Q" (7) |y =
Q" (x"—r). The 7 is function of x**. One can calculate partial
derivative of Eq. (5), the partial derivative of 7 referred to x*
is of the form,

£ ©6)
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Using Eqgs. (4) and (6), we can obtain the electromagnetic
field F,, of the dipole,

Fuy = Ay — 0yA,
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w= dut sp_ da )= 4d
where at = - .,a =& and Q = d.TQ. .

The construction of spin-down equation requires the form
of electromagnetic radiation. For simplicity, we calculate the

radiation in the moving frame adapted to u*. Namely, we set
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u = (c, 0) in the electromagnetic field F,,. And changes of
space-time metric are not considered. We would discuss it
in the Sect. 4. In the reference frame of pulsars, the Eq. (7)
can be simplified, such as r#u, = ruy = —cr and the
vanished electric dipole. By making using of normalization
of 4-velocity utu,, = —c?, we know that the time component
of acceleration is zero.

In classical electrodynamics, radiation of electromagnetic
field is derived from the electromagnetic energy—momentum
tensor,

1 1
Th = o < FFFS, +48“F(,pF""’) 8)
And the radiation angular momentum, which is also the radi-
ated electromagnetic torque, is calculated via the surface inte-

gral related to the spatial part of energy—momentum tensor
at spatial infinity,
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The formula can be obtained without any ambiguities,
although the calculation might be a bit cumbersome. Check-
ing the case that a = a = 0, one can obtain the canonical
spin-down equation using the radiation torque. And the brak-
ing index of the canonical spin-down is always 3. In the case

that the acceleration 5 < 1 and —5; < 1, the radiation

c$2 ~
energy of pulsars would not be affected too much. It would
be shown in the next section that the accelerations of the case

could still affect braking indices of pulsars in our model.

3 Braking index of accelerated pulsars

The spin-down equation describes time evolution of the rota-
tion of a pulsar. In this section, we would construct a modified
spin-down equation for an accelerated pulsar and study the
corresponding braking indices.

Using conservation law of the energy momentum tensors,
we know that loss of rotational angular momentum equals to
the radiated electromagnetic torque. The modified spin-down

equation is established as,
12 =N. (10

For simplicity, we assume that the rotational magnetic dipole
of a pulsar satisfies the equation,

m= 2 x m, (11

which means a pure rotation. For pulsars with companions,
a ~ |Ppxal < a2, where Py is orbit period. In the torque
Eq. (9), the a term is shown to be unimportant. Thus, we
assume the pulsars undergoing nearly uniform accelerations.
The electromagnetic torque is of the form,

2

N=——mxm
3¢3

8 4
(15a(m (a xm))—i—Ea m(a x m)
—ga-rh(a xm)). (12)

Using the electromagnetic torque, we can write the modified
spin-down equation as,

2
IR = ——m x m

3¢c3

L (L atia x m) + a-ma x )
- X — X

15ama m 15a m(a x m
6 .
—ga -m(a x m)) . (13)

With the modified spin-down equation, we can calculate the
braking index,

Ifl 1510 2?
i1l _ T oo, (14)
(&12)’ (- 2)de
where |2| = £2. In principle, the braking index can be

obtained by using Eqgs. (11), (13) and (14). For the sake of
intuition, we here would choose representable cases to tell
the story. In these cases, the accelerations of pulsars are cho-
sen to be parallel or vertical to the direction of rotation axes
of pulsars.

3.1 Accelerations of pulsars parallel to direction of rotation
axes

For the pulsars whose accelerations are parallel to the direc-
tion of §2, the modified spin-down equations can be simpli-
fied as,

. 2 1 8
2 = —TSZ(SZ xm) - — <15a(SZ x m)-(a x m)
+E(a -m)(ax (£ x m))) . (15)
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Fig. 2 The braking indices are functions of accelerations of pulsars
for fixed magnetic inclination angle. The accelerations of pulsars are
parallel to direction of rotation axes

The modified spin-down equation can be rewritten as,

. 2 2
—m(a - 2)(£2 x m)-(a x m)
__ Qm’sin®6 2 8a? 16)
N I3 3 15¢2)°

In the case of a = 0, the Eq. (16) reduces to the canoni-
cal spin-down equation (1). The magnetic inclination angle
evolves with time satisfying the equation,

. d .Qm 4 2.2 .
0 = — [ arccos = a“m” cos6 sinf.
dr 2m 151¢5

7

The differential equation can be solved analytically. Solution
is of the form,

4
cotd = cot Ooe_ﬁkbzf, (18)
where k = % and b = 2. They are both constant param-

eters in our models. The Eq. (18) shows that the magnetic
inclination angle evolves towards 6 = 7. The accelerations
of this case could be the causes of oblique rotation of pulsars.
Using Egs. (14), (16) and (17), we obtain the braking indices,

2 cot? 0
n=3—z<%> (%) (19)
1+ (3)

In this case, the braking indices can’t be larger than 3. In
the Fig. 2, we plot the braking index n(b, 6) as function of
acceleration b for fixed magnetic inclination angle 6. The
braking indices decrease with the accelerations of pulsars.
And the braking indices drop to a minimum value as the
acceleration tends to infinity.

lim n =1 — cot? 6. (20)

b—o00
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Fig. 3 The braking indices are functions of magnetic inclination angle
for fixed acceleration. The accelerations of pulsars are parallel to direc-
tion of rotation axes

In Fig. 3, we plot the braking index n(b, ) as function of
magnetic inclination angle 6 for fixed acceleration b. It shows
that the influence of acceleration would become significant,
if the pulsars have small magnetic inclination angle. With the
accelerations of this case, the large braking index can hardly
be obtained.

3.2 Accelerations of pulsars vertical to direction of rotation
axes

The other case is that the accelerations of pulsars are vertical
to the direction of £2. In the case, the modified spin-down
equation can be simplified as,

i

192 = (2 -m)ep — %sz(sz x m)?

9/c8

1 8 @ ma 4 4 00

o5\ T e T g

6
_g(“ X m)ﬂ) , (21

wherea =a -m, 8 = a-(82 x m). The modified spin-down
equation can be rewritten as,

: 2%k (2. (b R
2=—"|Zk(=) cos’0aB +sin’6 | 2°
3\3 2

6. 4
—kb* [ =p> + —@&%) 2, 22
(55 +15a) @)

where @ = %% and B = % For pulsars with
am asem

2 ~ 1s! and 2 < 107196=2 it’s reasonable to use an
N 2 ,

approximation that k2 = % < % <« 1. In the approx-

imation, the modified spin-down equation can be simplified

further as,

. 2 6., 4
Q= —gksinze.{f — kb? <§ﬁ2 + E&2> Q. (23)
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The magnetic inclination angle evolves with time satisfying
the differential equation as follows,

P kb* (8 ., 6132 24
= — —a” — = .
tan6 \ 15 5

In the approximation, & and B seem like trigonometric func-
tions, since the differential equations referred to & and 8 are
given by

a = 28, (25)

p=—0a. (26)

The rotation velocity §2 of pulsars can be solved numerically
with Egs. (23)—(26) in principle. Fortunately, what we focus
is the braking index, which can be obtained without solving
these differential equations,

n= 2—1 s &B
5 k3 (sin29 3 (%)2 (%ﬁ“r 14—5&2))2

3 A% be Ok 27
++<5) f(E,)+( ), 27

where f (% 9) ~ 1. The function f turns to be unimportant
for the most situations, since (k£2)~! > 1. The most inter-
esting is that the positive or negative of n depends on & and
B, which are related to position of pulsars and direction of
the acceleration. Using Egs. (25) and (26), we can obtain that
& = sin¢ and ,3 = cos ¢ approximately, where ¢ ~ 7. It
leads to value of braking indices around the order of mag-
nitude of % We rewrite the braking index in the term of
b, 0, k and ¢ without the unimportant terms,

y 21 b? sin ¢ cos ¢
"5 k23 . . 2
> (sm2 0+3 (%)2 (g cos2 ¢ + % sin? ¢)>
+3. (28)

In Fig. 4, we plot the n(b, 0, k, ¢) as function of the accel-
eration b for fixed 0, k and ¢. The braking indices can be
different from 3 when the acceleration a ~ 1m - s~!. It indi-
cates that the braking indices are more sensitive to the accel-
eration whose directions are vertical to the rotation velocity
of pulsars. And in this case, the absolute value of braking
indices increase with the acceleration. In Fig. 5, we plot the
n(b, 0, k,¢) as function of the magnetic inclination angle
0 for fixed b, k and ¢. It shows that the acceleration affect
braking indices more apparently for alignment pulsars. The
braking indices are also related to the k, namely, moment of
inertia and magnetic dipole of pulsars. Pulsars with larger
moment of inertia or smaller magnetic dipole would have
larger braking indices.

2500
n(b, L 1.x10°16, ’L)
6 6
2000
-------- n(b, &, 1.x10719, )
6 6
1500F .. - b, =, 1.x 10716, )
15 6
1000] —==== I -15 =
n(b, =, 1.x10°15, )
so0f ~ 773
ol .
" 107 10 107®

Fig. 4 The braking indices are functions of acceleration b for fixed
magnetic inclination angle 8, moment of inertia, magnitude of magnetic
dipole and ¢. The accelerations of pulsars are vertical to direction of
rotation axes

1.x 10716,

2000
1.x 10715,
1500 1.x 10716,
= 1000 Lx107%%,
500 ;

Fig. 5 The braking indices are functions of magnetic inclination angle
6 for fixed acceleration b, moment of inertia and magnitude of magnetic
dipole and ¢. The accelerations of pulsars are vertical to direction of
rotation axes

3.3 Order of magnitude estimation for the accelerations

It has been shown that the large braking index can be caused
by acceleration of a pulsar in our model. In this section, we
would provide the order of magnitude estimation of the accel-
eration. In the estimation, we assume that deviation of brak-
ing indices is completely caused by acceleration of pulsars.
The pulsar timing data comes from ATNF pulsar catalogue.

When the direction of acceleration is vertical to the rota-
tion velocity of pulsars, the braking indices can be changed
more apparently than the other case. Therefore, we use
Eq. (26) to estimate the accelerations of pulsars. As |&| <
1, |,3 | < land|sinf| < 1,they turnto be unimportant for the
braking index in the order of magnitude. The approximated
Eq. (26) is reduced to the form,

2

b
-3~ —. 29
=31~ = (29)
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Fig. 6 Cumulative distribution of estimated acceleration for the 32
pulsars with companions

We consider the case that % « 1, which leads to k23 ~ Q.
In the approximation, we could estimate acceleration of pul-
sars completely with the pulsar timing data. The accelerations
can be expressed as function of n and £2,

a = c/|(n—3)82|. (30)

In Fig. 6, the accelerations of 32 pulsars with companions
are shown. The estimated acceleration a ranges from 102 to
10% m - s~2. For most of binary systems, pulsars have accel-
erations around 10*m - s~2. It’s the order of magnitude far
away from the event horizon of black hole. In our model,
the acceleration is covariant and involves the friction force.
In the frame of a moving pulsar, one can show that the fric-
tion force equal to external force always. Thus, our results on
acceleration could indicate the external force, maybe gravity
we expected, experienced by pulsars. The estimated accel-
erations for the 441 pulsars are shown in Fig. 7. For the
pulsars with braking indices less than 100, the braking index
seems not correlation with acceleration. It indicates that, for
the small braking indices, there might be other effect for the
deviated braking indices as reviewed in the introduction. For
larger braking indices, the accelerations of pulsars have pos-
itive correlation with the braking indices overall. And the
pulsars with companions tend to have larger estimated accel-
eration than that of the rest as we expected. Our estimation is
meaningful for the case that a < ¢£2 ~ 108m - s72, the pul-
sar (in the left-top of Fig. 7) with acceleration over 103m - s 72
should be excluded.

4 Discussions and conclusions
In this paper, we discussed the possibility that acceleration
motion of a pulsar can affect its magnetic dipole radiation.

In detail, we derived the modified spin-down equation and
showed that the accelerations of pulsars are closely related to

@ Springer
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Fig. 7 Correlations between the absolute value of braking index n and
the estimated acceleration a

the braking indices. It’s consistent with the statistical results
in Fig. 1 that pulsars in binary systems tend to have larger
braking indices.

Here, we only considered the most simple cases that the
accelerations are along specific directions. As we known, it’s
not realistic. In this sense, our results are preliminary and just
give an order of magnitude estimation. The braking indices
could be affected by acceleration motions of pulsars, only if
the accelerations are larger than 1 m s~2.

We used the acceleration to indicate the external force
experienced by a pulsar. However, the origin of the acceler-
ation in our model still needs to be explored further, espe-
cially, for those pulsars without being marked as binaries.
For the binaries, Keplerian parameters can be used to esti-
mate the accelerations of pulsars via orbit period and mass
of companions. The data of the accelerations can be obtained
from ATNF pulsar catalogue. We found that the accelerations
estimated from braking indices in our results is larger than
that estimated by Keplerian parameters over several orders
of magnitude. Of course, the acceleration experienced by a
pulsar may be a combination of gravity from normal mat-
ter, dark matter and dark energy. In the future, we can test
every component of the acceleration by more accurate obser-
vations.

As suggested by Lyne et al. [6] from observations, the
braking indices that are beyond 3 over several orders of mag-
nitude seem not very reliable. There might be problems from
accuracy of §2 or dependence of fitting models. And in the
ATNF pulsar catalogue, there aren’t data of §2 for most pul-
sars. This limits us to the 441 pulsars. With more accuracy
observations in the future, the studies about the lager braking
indices would be more meaningful.

We calculated the braking indices in local inertial frames
adapted to the 4-velocity for a pulsar. Firstly, This frame is
comoving with a pulsar. Namely, there are not translation
motions of pulsars in the calculation. In this situation, the
radiating angular momentums are clear from physical point
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of view. Secondly, it neglects the changes of metric for the
reference frames. In the uniformly accelerating frames, the
only difference of the metric could be gop compared with
the metric of Minkowski space-time, such as Rindler metric.
The spatial part of energy—momentum tensors are nearly the
same form as that in flat space-time. It indicates that our
calculation might be valid at least in the case of uniform
acceleration motion for a pulsar.
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