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Charm penguin diagrams are known to be the main contribution to charmless B decay process with 
strangeness variation equal to minus one, which is the case of B± → K ± K + K − decay. The large phase 
space available in this and other B three-body decays allows non trivial final state interactions with all 
sort of rescattering processes and also access high momentum transfers in the central region of the Dalitz 
plane. In this work we investigate the charm Penguin contribution to B± → K ± K + K −, described by a 
hadronic triangle loop in nonperturbative regions of the phase space, and by a partonic loop at the quasi 
perturbative region. These nonresonant amplitudes should have a particular structure in the Dalitz plane 
and their contributions to the final decay amplitude can be confirmed by a data amplitude analysis in 
this channel. In particular, the hadronic amplitude has a changing sign in the phase at D D̄ threshold 
which can result in a change of sign for the CP asymmetry.

© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The general method to access directly CP asymmetries and par-
tial branching fraction in charmless B decays uses mainly the rel-
ative contributions of Penguins and Trees quark diagrams. In the 
BSS [1] approach the weak phase comes from the Tree ampli-
tude, which interferes with the strong phase coming from the 
Penguin amplitude producing CP violation. The factorization ap-
proach within this method describes well the two-body charmless 
B decay branching fraction [2]. However, the same is not true for 
the predicted CP asymmetries, where there are several deviations 
from the experimental data [3].

The factorization approach has been also used for charmless 
three-body B decays, although, in this case, it is a more delicate 
approximation. The form factors present in these three-body de-
cays are much more complex, depending on two Dalitz variables and 
spread through the large energy range available in these decays. In 
general they are parametrized by resonances, based in the quasi 
two-body approximation for the decay process. The nonresonant 
contribution is a complicated issue: the full treatment should in-
clude proper three-body rescattering effects which are not well 
understood. From the experimental analysis side, they usually fit 
data with ad hoc functions that are not based in any fundamen-
tal or phenomenological theory. On the other hand, the authors 
in Refs. [4,5] used Heavy Meson Chiral Perturbation Theory (HM-

* Corresponding author.
E-mail address: pmagalhaes @cbpf .br (P.C. Magalhães).
https://doi.org/10.1016/j.physletb.2018.02.062
0370-2693/© 2018 The Authors. Published by Elsevier B.V. This is an open access article
SCOAP3.
ChPT) to estimate nonresonant form factors in B → hhh (h ≡ light 
mesons) and argued that they are dominated by tree quark topolo-
gies. However, these amplitudes are limited to kinematic regions 
where the two-body invariant mass of the pair in the final state is 
small enough to validate ChPT.

When moving to hadronic (long distance) interaction contribu-
tions in charmless three-body B decays, two out of the three light 
pseudo-scalars in the final state have access to a large range of 
energy in the available phase space, which allow them to rescat-
ter into other mesons. Although absent in factorization approach, 
many authors [6–12] have shown that rescattering plays an impor-
tant role in B decays. In particular, they proved the relevance for 
B two-body charmless decays of charm mesons rescattering into 
light ones, namely, in the understanding of the observed Branching 
fractions [9,12] and CP violation [6–9]. In reference [8] they call the 
effect or source of CP asymmetry from rescattering as “compound 
CP violation”. It is remarkable that this rescattering contribution 
was never studied before within a three-body formulation.

In this paper we study the contribution of a double charm in-
termediate interaction to the B± → K ±K +K − decay. The LHCb 
experiment reported recently a large integrated CP asymmetry 
on this decay: AC P (B± → K ±K +K −) = −0.036 ± 0.004 ± 0.002 ±
0.007 [13]. Although this process has some suppression, the weak 
decay involving two charm quarks is more favourable than the one 
with two light quarks, which can compensate this suppression and 
give a significant contribution to the total decay amplitude. The 
B± → K ±K +K − process is a particular interesting place to study 
this contribution because: (i) it has a large BR compared to other 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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Fig. 1. B± → K ± K + K − decay from LHCb experiment [13]: (left) full data Dalitz plot (B+ + B−); (center) events for B+ and B− projected on m(K K )high [17]; and (right) the 
CP-asymmetry (B+ − B−) of the events projected on m(K K )high [17].
charmless three-body B decays: (3.40 ± 0.14) × 10−5 [14]; (ii) it is 
dominated by the penguin weak topology; and (iii) the experimen-
tal data from LHCb [13], Fig. 1(left), show a significant population 
of events spread up to high values of invariant masses, confirming 
previous data distribution from BaBar [15] and Belle [16] on this 
channel.

The same LHCb paper [13] study the CP asymmetry distribu-
tion in the Dalitz plot for the four channels: B± → K ±π+π− , 
B± → π±π+π− , B± → π±K +K − , B± → K ±K +K − . In particu-
lar, they showed a clear correlation between the channels B± →
K ±π+π− and B± → K ±K +K − decays, observed in the region 
where π+π− → K +K − has an important contribution in the 
hadron–hadron scattering amplitude [18] – i.e. between 1 and 
1.6 GeV. The B± → K ±π+π− has a positive CP asymmetry in this 
region whereas the B± → K ±K +K − has a negative one. A sim-
ilar correlation in the CP asymmetry, i.e. in the same mass re-
gion, was observed between the two channels B± → π±K +K −
and B± → π±π+π− . These results indicate that the rescattering 
process π+π− → K +K − is present in these decays [10,11], carry-
ing the strong phase necessary for CP violation and conserving CPT 
global symmetry as discussed in Ref. [10,11].

The Fig. 1(center) shows the events for B+ and B− integrated 
in m(K K )low presented by LHCb [17] for the B± → K ±K +K − de-
cay, where the two peaks corresponds to the vector resonance 
φ(1020) in this particular projection. By subtracting both curves 
in Fig. 1(center) we access the amount of events related to CP vi-
olation on that projection, Fig. 1(right). Inspecting Fig. 1(right) it 
is possible to identify that the negative CP asymmetry is placed in 
the region where the rescattering ππ → K K we mention above is 
important in the m(K K )low variable. After that, the CP asymmetry 
changes sign crossing zero at 4 GeV, near the D D̄ open channel. 
Moreover, LHCb [17] data distribution observes the same change 
in CP asymmetry sign at 4 GeV in B± → K ±π+π− but with an 
opposite direction. The same correlation was also observed be-
tween the channels B± → π±π+π− and B± → π±K +K − at the 
same 4 GeV invariant mass. Analogously of what was seen for the 
π+π− → K +K − rescattering contribution to three-body charm-
less B decays, we investigate the hypotheses that the rescattering 
process D D̄ → P P̄ could provide also the strong phase needed to 
observe CP asymmetry in the high mass region.

2. Charm Penguin dynamics

In a recent paper [19], the authors discussed the characteristics 
of the three-body momentum distribution along the phase space, 
for the particular process B+ → π−π+π+ . They showed that the 
peripheral regions of the Dalitz plot, where the light resonance 
is placed, are essentially nonperturbative. On the other hand, the 
central region of the Dalitz is dominated by large transfer momen-
tum requiring a quasi perturbative treatment of QCD.

Within this scenario the charm Penguin (CharmP) diagram, in 
Fig. 2, contributes in distinct Dalitz regions with a different be-
haviour: one involving short distance physics expressed by partons 
Fig. 2. Penguin weak topology diagram for B± → K ± K + K − .

Fig. 3. Left diagrams: double charm partonic loop producing K + K − (upper panel) 
and double charm hadronic loop producing K + K − (lower panel). Right: triangle 
diagram for hadronic loop for B+ → K − K + K + with vector form factor.

loop and placed in central region; and the other one involving 
the long distance dynamics, which can be described by hadron 
loops, and are expected to be relevant in the peripheral Dalitz re-
gion. Other than give a significant contribution for the total decay 
rates, the CharmP can be the mechanism to explain experimental 
observations in charmless three-body B decays: the abundant phe-
nomena of CP violation at high masses, providing the strong phase 
one needs; and the significant population of the high mass phase 
space by a nonresonant amplitude.

In order to check to which extend the separation between short 
and long distance can be used to represent the B± → K ±K +K −
decay amplitude, we investigate the two Charm Penguin contribu-
tions at the partonic and mesonic levels represented, respectively, 
in Figs. 2 and 3. The kinematical range where these contributions 
may be dominant are studied and we found quite different pat-
terns for the two Charm Penguin contributions at the partonic and 
at the meson levels. We study their signatures and contributions 
to the final decay amplitude that should be identified in a future 
amplitude data analyses.

3. Partonic charm Penguin

B decays involving strangeness variation equal to minus one are 
dominated by the Penguin contribution, which is the case of the 
B± → K ±K +K − decay. Inspecting the LHCb data [13] in Fig. 1(left) 
one can note that in the middle of the Dalitz plot, i.e. the region 
where we could expect partonic physics to play an important role, 
is populated with a considerable number of events. Moreover, in 
the same region, the data shows the undoubted presence of the 
scalar χc0(3415), which is also a hint that this is a rich cc̄ en-
vironment for the nonresonant scalar amplitude from the charm 
penguin to take place.
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Fig. 4. Partonic charm Penguin proposed by Ref. [7], eq. (1): (left) real (dispersive), imaginary (absorptive) amplitudes; (right) phase in radians.
We considered the charm penguin contributions as represented 
by the diagram of Fig. 2. However, is very hard to precise the effec-
tive charm mass propagating inside the loop due to the exchange 
of gluons and how the hadronization affects this picture. To guide 
our calculation one follows the structure proposed by Mannel et 
al. [19] to describe the center region of the Dalitz plot for B+ →
π−π+π+ . The authors propose a functional form of this amplitude 
to be Ap(s) = T (s)(M2

B − s) f+(s). Translating to B+ → K −K +K +
process, f+(q2) is the B → K vector form factor, which can as-
sume the single pole parametrization: f+(s) = 1

1−s/M∗2
Bs

, with M∗
Bs

being the mass of a vector meson B∗
s . The function T (s) is the ker-

nel, which we identify as the charm parton loop. The cc̄ bubble 
loop contribution is very well known and was calculated also by 
Gerard and Hou (1991) [7], with a real and imaginary part given 
by:
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where x = s/m2
c . In Fig. 4 one can recognize that the double charm 

loop behaves exactly as all bubble loop function, which are well 
known.

The goal here is precise. Once charm mass is about one third 
of B mass, charm Penguin could give a clear signature in charm-
less three-body B decay. Indeed the effect described by Gerard and 
Hou in Fig. 4, i.e. the maximum of the real contribution and the 
beginning of the imaginary contribution, are inside the three body 
phase space.

As we have discussed previously, the issue on the partonic 
charm loop is the value of its mass. In order to accommodate this 
uncertainties, we integrate the bubble loop quark function in the 
charm mass convoluted with a Gaussian distribution centred in 
mc = 1.5 GeV and width � = 20 MeV. Those values could be taken 
as a free parameter when fitting real data. The final contribution 
to the partonic amplitude becomes:
A P
p = (M2

B − s) f+(s)

m+
c∫

m−
c

dm �(s)
1

2π �2
e

(m−mc )2

2 �2 , (2)

where m±
c = mc ± 1.0 GeV. The results for the nonresonant par-

tonic penguin amplitude and phase are given in Fig. 5. Although 
the final amplitude has an arbitrary normalization there is a clear 
peak around 3 GeV. The phase is zero below threshold and rise 
continues after it. This phase variation will, if present, change the 
interference pattern with the other amplitudes, which could be no-
ticed in data.

4. Hadronic Penguin

The nonresonant hadronic charm loop is expected to be impor-
tant for low relative momentum between the mesons in the final 
state, corresponding to the boundaries of the Dalitz plot. Despite of 
the hadronization effect, one can expect the weak transition am-
plitude to be described by the diagram in the left panel of Fig. 3. 
However, we used an effective description in terms of hadronic 
degrees of freedom which simplifies these interactions and are 
summarized by the triangle loop given in the right panel of Fig. 3. 
It is worth to mention that there could be a superposition of sim-
ilar processes with excited D∗

s states, but here we are considering 
only the ground state D+∗

s with mass 2.1 GeV.
In the triangle loop, one note that besides the weak vertex 

and the triangle loop itself, we need the scattering amplitude 
D D̄ → K K̄ , which is not known in literature. Because of the dif-
ferent scales it is difficult to extract this interaction from a funda-
mental Lagrangian, what would require SU (4) [20]. Therefore, we 
propose a phenomenological amplitude T D D̄→K K̄ (s) based on S-
matrix unitarity and inspired in Regge theory, which is developed 
in details in the Appendix A (note that this amplitude is concisely 
denoted by t12). For the hadronic triangle loop we use the same 
technical tools find in Refs. [21,22] developed for the three-body 
decays D+ → K −π+π+ and also applied to B+ → π−π+π+ [23]. 
The weak vertex parameters are inside the constant parameter C0
and the transition matrix B+ → D0W + is described by a form fac-
tor.

The total amplitude for the hadronic loop including the dressing 
of the D D̄ → K K̄ vertex by the T D D̄→K K̄ (s) scattering amplitude is 
given by:

Ah
P = i C0 T D D̄→K K̄ (s)

×
∫

d4�

(2π)4

(
	D0 + 2	

D̄0 − 2 s + 3 M2
π + M2

B − l2
)

	D0 	
D̄0 	D∗ [l2 − M2

B∗ ] , (3)

where 	Di = m2 − s + iε are the meson propagators.
Di
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Fig. 5. Modulus, real and imaginary parts (left) and phase (right) of the total partonic charm Penguin amplitude, eq. (2).

Fig. 6. Modulus (left) and phase (right) for the hadronic triangle loop contribution, integral in eq. (3).
The exclusive contribution from the hadronic triangle loop, i.e. 
the integral above, results in the magnitude and phase shown 
in Fig. 6. Comparing the results from the hadronic triangle loop, 
Fig. 6, with the partonic one, Fig. 4, one can see that both have a 
peak at threshold. However, the differences remain on the energy 
of the open channel and in the absorptive part, which is non zero 
below the threshold for the hadronic loop.

The total decay amplitude is obtained after the hadronic loop 
is multiplied by the D D̄ → K K̄ scattering amplitude, given by 
eq. (A.8). The final results for the magnitude and phase are show 
in Fig. 7. One can note that the rescattering amplitude D D̄ → K K̄
plays an important role. It imposes a zero at the D D̄ threshold at 
the same place the triangle loop has a peak. Although this rescat-
tering amplitude have parameters that needs to be fixed in a fit 
to data, the minimum feature is that the D D̄ threshold is charac-
terized by a zero between two bumps, with the higher mass one 
more pronounced and is also where the phase changes it sign. This 
changing sign in the phase is a very important characteristic in or-
der to produce a pattern of interference between amplitudes that 
leads to changing sign in CP asymmetry. It is worth remember 
though that we are considering only one triangle amplitude and 
the corresponding two-body rescattering into K K̄ final state.

5. Discussion

There are many interesting issues one could explore from our 
study. The structure we follow for the partonic calculation re-
sult is wide amplitude which will be spread in the center of the 
Dalitz plane. This nonresonant amplitude can explain the signifi-
cant number of events observed in the central region of the Dalitz 
plot, as show in Fig. 1 (left). The hadronic amplitude, on the other 
side is characterized by two narrow peaks in between a zero at the 
double charm open channel.

The strong phase variation is an important signature to be ob-
served in both charm loops. In the partonic one the phase starts 
at zero in the double charm threshold, around 3 GeV, and rise 
abruptly after that. In the hadronic one, the change of the phase 
sign, Fig. 7(right), is placed in a region close where data, Fig. 1
(right), shows a CP asymmetry change in sign. Although we factor-
ized the study of each charm loop, both are expected to contribute 
to the final amplitude. It is worth mention that we are not consid-
ering all the nonresonant nonperturbative sources. There could be 
other charm hadronic triangles with heavier mesons besides other 
source amplitudes such as the rescattering ππ → K K . Moreover, 
these nonresonant amplitudes are placed in a rich environment 
with other resonant amplitudes whose interference are not triv-
ial. More than proving that the observed CP violation data is given 
by the specific hadronic loop described in Fig. 7, we provide one 
important final state interaction (FSI) mechanism which could pro-
duce CP asymmetry at higher energies.

To illustrate our discussion, we briefly recall previous CP viola-
tion studies [10,11] where the leading order (LO) decay amplitude 
including the FSI, which respects the CPT constraint [6], is written 
as:

A±
L O = A0λ + e±iγ B0λ + i

∑
λ′

tλ′,λ
(

A0λ′ + e±iγ B0λ′
)

, (4)

where γ is the weak phase, the amplitude source are repre-
sented by A0λ and B0λ , λ is the hadronic channels and tλ′,λ =
ı
(
δλ′,λ − Sλ′,λ

)
the scattering amplitude between channels λ and 

λ′ coupled by the strong interaction S-matrix 
(

Sλ′,λ
)
.

The leading order decay amplitude Eq. (4) can be put in cor-
respondence with both the partonic Eq. (2) and the hadronic loop 
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Fig. 7. Modulus and phase for the total contribution from Hadronic charm penguin, eq. (3).
Eq. (3). In this case, the partonic loop is associated with A0λ and 
the hadronic loop with ı tλ′,λ A0λ′ , with the proviso that the D D̄
in the hadronic loop is taken as on-mass-shell contribution. The 
source terms B0λ are the ones carrying the weak phase. The CP 
asymmetry is given by 	�λ = |A−

L O |2 − |A+
L O |2, which leads to:

	�λ = 4(sinγ ) Im

{
(B0λ)

∗ A0λ

+ i
∑
λ′

[
(B0λ)

∗ tλ′,λ A0λ′ − (
B0λ′ tλ′,λ

)∗
A0λ

]}
, (5)

where in the right hand side, the second and third terms are 
associated with “compound” CP asymmetry [9]. Therefore, the in-
terference between the source terms, the partonic loop and the 
ones carrying the FSI is evident and suggests that the position of 
the sign change in the CP asymmetry (see Fig. 1 right) can be 
shifted with respect to the sign change position in the phase of 
the hadronic loop given in Fig. 7.

In order to evaluate our proposal, namely the relevant contri-
bution of the hadronic loops and the partonic loop in different 
kinematic regions, it is important that the future amplitude analy-
sis of the B± → K ±K +K − decay include these amplitudes in their 
data fits. Only then we will be able to confirm the clear separation 
of the relevance of partonic vs hadronic loops considering the final 
state interaction.

Next years will be very important to the studies involving 
rescattering effects and compound CP asymmetries. New data tak-
ing by Belle II experiment [27], expected to have forty times 
more events in 2020 than the Belle experiment, will give us high 
statistics on charmless three-body B decay channels with neutral 
mesons in the final state. Considering this together with the high 
statistics data from LHCb for charmless three-body decays involv-
ing charged mesons, it would emerge a complete picture of the 
correlation between the CP violation in different decay channels 
through compound CP asymmetries [8,9].

In summary, motivated by the separation of the short and long 
distance physics in the distribution of events in the Dalitz plane 
for the B± → K ±K +K − decay, we invoke a hadronic description, 
which we confirm that presents a very distinct pattern from the 
partonic one in the allowed kinematic region, driven strongly by 
the final state interaction amplitude, which couples the virtual in-
termediate double charm state to the K + K − channel, and leaving 
a noticeable mark in the high mass region. Such mechanism could 
be important to explain the CP violation observed at high mass.
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Appendix A. S-matrix and scattering amplitude model

The two channel S-matrix is parametrized as

S =
(

η e2iδ1 i
√

1 − η2 ei(α+β)

i
√

1 − η2 ei(δ1+δ2) η e2iδ2

)
(A.1)

where δ1 and δ2 are the phase-shifts and η is the inelasticity 
parameter, which accounts for the probability flux between the 
two coupled channels. Since we are dealing with a three-body de-
cay, the FSI effect will appear as a distribution depending on one 
of the two-body invariant masses, therefore the scattering ampli-
tude cannot be obtained only asymptotically. We deal only with 
the S-wave amplitude, while the amplitudes inspired in the Regge 
theory [24,25] needs to carry the dependence on higher angular 
momentum partial waves.

Our proposal for the off-diagonal matrix element is:√
1 − η2 = N

√
s/sth 2 − 1

( sth 2

s

)ξ

(A.2)

where N is a normalization. For the phases we suggest the follow-
ing parametrization:

e2iδ1 = 1 − 2ik1

c + b k2
1 + ik1

= c + b k2
1 − ik1

c + bk2
1 + ik1

(A.3)

e2iδ2 = 1 − 2ik2
1
a + ik2

=
1
a − ik2
1
a + ik2

(A.4)

where k1 =
√

s−sth 1
4 and k2 =

√
s−sth 2

4 . For channel 2, we choose 
a scattering length dominated parametrization. The scattering am-
plitude is defined as ti j = i(δi j − Sij). Above the threshold, s > sth2, 
the expression of t12 become:

t12 = −i
√

1 − η2

[(
c + bk2

1 − ik1

c + bk2 + ik1

) (
1
a − ik2
1 + ik2

)] 1
2

. (A.5)

1 a
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Fig. A.8. Amplitude for D D̄ → K K̄ scattering, eqs. (A.7) and (A.8): (left) modulus, real and imaginary parts; (right) phase in radians.
The analytic continuation of the transition amplitude t12 below 
the threshold of channel 2, can be obtained noticing that k2 → iκ2

for s < sth 2, and now κ2 = √
sth 2 − s/2. However, one needs to 

take care of the amplitude behaviour at low values of s, once it 
modulus was tailored to reproduce power-law decrease at large 
momentum. One phenomenological possibility is to introduce an 
infrared cutoff in (A.2) as follows:

√
1 − η2 = N (s/sth 2)

α
√

s/sth 2 − 1

(
sth 2

s + sQ C D

)ξ+α

(A.6)

where sQ C D is an infrared cut-off estimated to be of the order 
of the hadronic scale sQ C D ∼ 1 GeV2. In addition, we introduce 
a factor s in the non-physical region, expressing that the cou-
pling between the open channel of the two light-quarks and the 
closed channel of the two-heavy quarks is damped when entering 
deeply in the non-physical region as sα . Note that we have kept 
the asymptotic power of the amplitude, namely ∼s−ξ . Therefore, 
our proposal for the scattering amplitude D D̄ → K K̄ and the ana-
lytic continuation below threshold, s < sth 2, is given by:

t12 = N
sα

sαth 2

2κ2√
sth 2

(
sth 2

s + sQ C D

)ξ+α

×
[(

c + bk2
1 − ik1

c + bk2
1 + ik1

) (
1
a + κ2
1
a − κ2

)] 1
2

, (A.7)

and for s ≥ sth 2 is written as:

t12 = −i N
2 k2√
sth 2

(
sth 2

s + sQ C D

)ξ (
m0

s − m0

)β

×
[( c

1−s/s0
− ik1

c
1−s/s0

+ ik1

) (
1
a − ik2
1
a + ik2

)] 1
2

, (A.8)

where 
(

m0
s−m0

)β

was introduced to modulate the shape of the am-

plitude bump.
The parameters should be fitted to the data. But, in order to 

produce a toy Monte Carlo for the transition amplitudes (A.7) and 
(A.8) we guessed them following the phenomenology inputs. The 
parameter b and c are residues of the pole in k cot δ expression 
and we used c = 0.2 and b = 1. For the scattering length a in the 
2 channel, we can take the limiting case a → ±∞, namely the two 
heavy mesons are strongly interacting close to the threshold. The 
IR scale sQ C D is of the order of 1 GeV2, or may be less ∼�2

Q C D and 
from previous studies [26] we found ξ ∼ 2.5. For the other ad doc 
parameter we chose: α = 3, but higher powers are not excluded, 
m0 = 8 and β = 2. With this choice of parameter our scattering 
amplitude is given in Fig. A.8.
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