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Global gauge anomalies in six dimensions associated with non-trivial homotopy groups π6(G)

for G = SU (2), SU (3), and G2 have been computed and utilized in the past. From the modern
bordism point of view of anomalies, however, they come from the bordism groups �

spin
7 (BG),

which are in fact trivial and therefore preclude their existence. Instead, it was noticed that a proper
treatment of the 6D Green–Schwarz mechanism reproduces the same anomaly cancellation
conditions derived from π6(G). In this paper, we revisit and clarify the relation between these
two different approaches.
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Dedicated to the memory of the late Professor Tohru Eguchi.

1. Introduction and summary

Given a gauge theory, its gauge anomaly must be canceled as a whole in order for the theory to be
consistent. This imposes non-trivial constraints on the possible matter content. One notable subtlety
here is that, even if perturbative anomaly cancellation is achieved, the theory may still suffer from a
global anomaly, coming from a global gauge transformation corresponding to non-trivial elements
of πd(G), where d is the spacetime dimension and G is the gauge group. It was first pointed out in
Ref. [1] that such a situation indeed arises for 4D SU (2) gauge theory with a Weyl fermion in the
doublet.

In six dimensions the situation is subtler, since the anomaly cancellation often involves chiral
2-form fields through the Green–Schwarz mechanism. The cancellation condition can nonetheless
be derived by embedding G in a larger group G̃ whose global anomaly is absent. This approach was
originally developed by Elitzur and Nair [2], and the extension to six dimensions with the Green–
Schwarz mechanism was done in Refs. [3–5].1 The list of simply connected simple Lie groups with
non-trivial π6(G) is2

1 There are many other works from the late 1980s where the analysis in six dimensions was done without the
Green–Schwarz mechanism. We do not cite them here; interested readers can find them by looking up papers
citing Ref. [2] in the INSPIRE-HEP database.

2 Homotopy groups π6(G) for classical groups were computed in Sect. 19 in Ref. [6]. Homotopy groups
π6(G) for G2 and F4 were considered as known in the review article [7] and were attributed to H. Toda; a
derivation can be found in Ref. [8], in which πi(G2) and πi(F4) were completely determined up to i = 21.
Homotopy groups π6(G) for E6,7,8 were determined to be trivial in Theorem V in Ref. [9]. π6(G) for G =
SU (2) = S3 belongs more properly to the unstable homotopy groups of spheres and has been computed by
many people; see footnote 7 of Sect. 19 in Ref. [6] and the comments on p. 428 of Ref. [7].
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π6(SU (2)) = Z12,
π6(SU (3)) = Z6,
π6(G2) = Z3,

(1)

and the references above found a mod-12, mod-6, mod-3 condition for G = SU (2), SU (3), and G2,
respectively. In Ref. [4], it was indeed found that the F-theory compactification to six dimensions
only produces gauge theories that are free from the global gauge anomalies.

From the modern point of view, the anomaly of a theory Q in d spacetime dimensions is described
via its anomaly theory A(Q) in (d +1) dimensions, which hosts the original theory Q on its boundary.
The anomalous phase associated with a gauge transformation g : Sd → G is now reinterpreted as
the partition function

ZA(Q)[Sd+1, Pg] (2)

of the anomaly theory on Sd+1 equipped with the G gauge field Pg obtained by performing gauge
transformation g at the equator Sd ⊂ Sd+1.

More generally, the possible anomalies of a symmetry group G are characterized by Invd+1
spin (BG),

the group formed by deformation classes of (d +1)-dimensional invertible phases with G symmetry.
This group fits in the following short exact sequence:

0 −→ ExtZ(�
spin
d+1(BG), Z) −→ Invd+1

spin (BG) −→ HomZ(�
spin
d+2(BG), Z) −→ 0 (3)

where �
spin
d (BG) is the bordism group of d-dimensional spin manifolds equipped with a G bundle

[10]. In particular, the information on global anomalies is encoded in the part

ExtZ(�
spin
d+1(BG), Z) = Hom(Tors �

spin
d+1(BG), U (1)), (4)

while the information on the anomaly polynomial is encoded in the part

HomZ(�
spin
d+2(BG), Z) = HomZ(Free �

spin
d+2(BG), Z). (5)

For 4D theory with G = SU (2) symmetry, the group �
spin
5 (BSU (2)) is indeed Z2, and is generated

by (S5, P[g]) where g : S4 → SU (2) belongs to the generator of π4(SU (2)) = Z2. This corresponds
to Witten’s original global anomaly.

When we apply this argument to six dimensions, we encounter an immediate puzzle. Namely, for
G = SU (2), SU (3), and G2 for which π6(G) is non-trivial, we have

�
spin
7 (BSU (2)) = 0,

�
spin
7 (BSU (3)) = 0,

�
spin
7 (BG2) = 0,

(6)

and in particular the configuration (S7, P[g]) for [g] ∈ π6(G) is null-bordant. Therefore, the partition
function of the anomaly theory on this background should be automatically trivial when the anomaly
polynomial is canceled, and there should be no global anomalies at all for the gauge groups G =
SU (2), SU (3), and G2. But the old computations indeed found non-trivial anomalous phases, so one
is led to wonder whether they were legitimate to start with.

The way out is suggested by another set of observations made more recently, in Sect. 3.1.1 in Ref.
[11] and in Refs. [12,13]. Namely, it was observed there that the mod-12, mod-6, mod-3 conditions
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for G = SU (2), SU (3), G2 theories can be derived by demanding that the factorized anomaly
polynomial of the fermions can actually be canceled by a properly constructed Green–Schwarz
term. For example, the non-(purely) gravitational part of the anomaly polynomial3 of n fermions in
3 of SU (3) is

Ĩfermion = n

6
· 1

2
· c2(F)

(
c2(F) + p1(R)

2

)
(7)

and it is always factorized, which is a necessary condition for the Green–Schwarz mechanism to
be applicable. But it is not a sufficient condition. The instanton configurations of the G gauge field
correspond to strings charged under 2-form fields, and their self Dirac pairing is given by n/6, which
needs to be an integer. This shows that n needs to be divisible by 6 (see Sect. 3.1.1 in Ref. [11]).
Furthermore, when this is the case, one can actually construct a theory of 2-form fields with this
anomaly, thanks to the series of works by Monnier and his collaborators [12–23].

As we have discussed, there are now two ways to understand the mod-12, mod-6, mod-3 conditions
for G = SU (2), SU (3), and G2. One is from the absence of global gauge anomalies associated with
non-trivial elements of π6(G), and the other is from the proper consideration of the Green–Schwarz
term canceling the fermion anomaly. The aim of this rather technical paper is to reconcile these two
points of view.

The rest of the paper is organized as follows: In Sect. 2, we carefully study all possible anomalies
of theories with 0-form symmetry G = SU (2), SU (3), G2, and theories with 2-form U (1) symmetry.
This is done by finding the integral basis of the space of anomaly polynomials with these symmetries.
This allows us to deduce the necessary and sufficient condition when the anomalies of fermions
charged under G = SU (2), SU (3), G2 can be canceled by the anomalies of 2-form fields. The
analysis in this section does not use the homotopy groups π6(G) at all.

In Sect. 3, we move on to study how the derivation in Sect. 2 is related to the homotopy groups
π6(G). We do this by carefully reformulating the approach of Elitzur and Nair [2] in more modern
language. The old computations of global anomalies associated with π6(G) can then be reinterpreted
in two ways. The first interpretation, which we give in Sect. 3.2, is simply the following: if we assume
that the perturbative anomaly is canceled by the Green–Schwarz mechanism, the Elitzur–Nair method
shows that there is a global anomaly associated with π6(G) = Zk . But there should not be any global
anomaly, since �

spin
7 (BG) = 0. This means that it is impossible to cancel the fermion anomaly by the

Green–Schwarz mechanism unless a mod-k condition is satisfied. The second interpretation, which
we give in Sect. 3.3, is more geometric: we introduce a 3-form field H satisfying dH = c2(F) to the
bulk 7D spacetime, mimicking an important half of the Green–Schwarz mechanism. This modifies
the bordism group to be considered in the classification of anomalies, and then there actually is a
global gauge anomaly associated with π6(G), which defines a non-trivial element in the modified
bordism group.

Before proceeding, we pause here to mention that the arguments in Sect. 3 that use πd(G) only give
necessary conditions. The derivation given in Sect. 2, in contrast, gives conditions that are necessary
and sufficient at the same time. In this sense, we consider that the latter is better.

3 In this paper, we denote by I the anomaly polynomial of a theory, and by Ĩ the part of the anomaly
polynomial not purely formed by the Pontrjagin classes pi(R) of the spacetime.
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Furthermore, the discussions that we provide in Sect. 2 have already been essentially given in
Refs. [12,13], albeit in a slightly different form. Therefore, strictly speaking, our discussions in this
paper do not add anything scientifically new. That said, the authors were very much confused when
they encountered the apparent contradiction that people discussed global gauge anomalies associated
with non-trivial π6(G), while �

spin
7 (BG) is trivial and therefore there should not be any global gauge

anomalies to start with. The authors wanted to record their understanding of how this contradiction
is resolved, for future reference.

We have four appendices. In Appendix A, we summarize basic formulas of fermion anomalies and
group-theoretical constants. In Appendices B and C, we compute various spin bordism groups of
interest using the Atiyah–Hirzebruch spectral sequence (AHSS) and the Adams spectral sequence
(Adams SS), respectively. Finally, in Appendix D, one of the authors (Yuji Tachikawa) would like
to share some of his recollections of his advisor, the late Professor Tohru Eguchi, to whose memory
this paper is dedicated.

2. Anomalies and their cancellation

In this paper, we are interested in the anomalies of fermionic 6D theories with G symmetry, where
G = SU (2), SU (3), and G2. To cancel them, we are also interested in the anomaly of 2-form fields,
which can couple to the background 4-form field strength G, which is the background field for
their U (1) 2-form symmetry.4 We will study when the fermion anomalies can be canceled by the
anomalies of 2-form fields, by carefully studying all possible anomalies under these symmetries.
As discussed in Eq. (3), the anomalies are then characterized by the group of 7D invertible phases
Inv7

spin(X ), where X = BSU (2), BSU (3), BG2, and K(Z, 4). As πi(BE7) = πi(K(Z, 4)) for i < 12,
we can think of BE7 � K(Z, 4) for our purposes. This equivalence is useful for us, as we will see
below, and has also been used in the past [25–27].

Since �
spin
7 (X ) = 0 for all four cases, the anomalies are completely specified by the anomaly

polynomials, encoded in HomZ(�
spin
8 (X ), Z). Below we do not worry about the purely gravitational

part of the anomalies, which means that we are going to study HomZ(�̃
spin
8 (X ), Z).

Over rational numbers, the anomaly polynomials are then elements of

HomZ(�̃
spin
8 (X ), Z) ⊗ Q � H 8(X × BSO; Q)/H 8(BSO; Q). (8)

As H∗(BSO; Q) = Q[p1, p2, . . . , ] where pi ∈ H 4i(BSO; Z) are the ith Pontrjagin classes of the
spacetime, Eq. (8) becomes

H 4(X ; Q) p1 ⊕ H 8(X ; Q). (9)

Our classifying spaces X have a simplifying feature that

H 4(X ; Z) = Z c2, H 8(X ; Z) = Z (c2)
2 (10)

where c2 is a generator of H 4(X ; Z) corresponding to the instanton number, whose explicit forms
are given in Appendix A. In the rest of this paper, the Pontrjagin classes pi = pi(R) are always for

4 The authors apologize that the same symbol G is used in three distinct ways, for groups in general, for the
specific group G2, and for 4-form background field strengths. Hopefully the context makes it clear which use
is intended.
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the spacetime part and the elements c2 = c2(F) are always for the gauge part. For X = K(Z, 4) or
equivalently for X = BE7, we also use the symbol G = c2(F) interchangeably.

The preceding discussions show that the anomaly polynomials (modulo the purely gravitational
part) are rational linear combinations

Ĩ = a · (c2)
2 + b · c2 ∧ p1, (11)

which has a nice quadratic form to be canceled by the Green–Schwarz mechanism. This is, however,
only a necessary condition, since the Green–Schwarz mechanism cannot cancel anomaly polynomials
with arbitrary rational numbers a, b in Eq. (11). We need to find the basis over Z, not just over Q, of
elements of HomZ(�

spin
8 (X ), Z). They are degree-8 differential forms (11) that integrate to integers

on any spin manifold. We will find in Sects. 2.1, 2.2, 2.3, and 2.4 that they are given by

Ĩ = n · 1

2kG
· c2

(
c2 + p1

2

)
+ m · (c2)

2, n, m ∈ Z (12)

where kG = 12, 6, 3, 1 for G = SU (2), SU (3), G2, and E7, respectively. We then use this result to
find the anomaly cancellation condition in Sect. 2.7. Note that π6(G) = ZkG , but we do not directly
use π6(G) in the derivation in this section.

Before proceeding, we also note that the results analogous to Eq. (12) pertaining to the integrality
properties of the coefficients in the anomaly polynomial were derived in previous literature such
as Refs. [5,28] by explicitly computing the anomaly polynomials for free fermionic theories for
all possible representations of G. The symplectic Majorana condition was often not considered
systematically either. As we will see below, our argument utilizes only a single representation of G,
thanks to the use of the bordism invariance.

2.1. With U (1) 2-form symmetry

Let us start with the case X = K(Z, 4). We will find the dual bases of HomZ(�
spin
8 (X ), Z) = Z ⊕ Z

and Free �
spin
8 (X ) = Z ⊕ Z by writing down two elements from each and explicitly checking that

they do form a set of dual bases.5

First, let us take two elements of HomZ(�
spin
8 (X ), Z). One is

G ∧ G, (13)

where G is a generator of H 4(K(Z, 4); Z). The other element of HomZ(�
spin
8 (X ), Z) that we use is

1

2
· G

(
G + p1

2

)
. (14)

There are two ways to show that it integrates to an integer on spin manifolds. One method to
demonstrate this only uses algebraic topology. Let us first recall that the standard generator λ of
H 4(BSpin; Z) = Z satisfies p1 = 2λ. Now, for any SO bundle, there is a relation

p1 = P(w2) + 2w4 mod 4. (15)

Here, the 2 in front of w4 is a map sending Z2 = {0, 1} to {0, 2} ⊂ Z4. For spin bundles, we have
w2 = 0, and therefore 2λ = p1 = 2w4, meaning that

λ = w4 mod 2. (16)

5 We note that HomZ2(�̃
spin
10 (K(Z, 4)), Z2) was determined in a similar manner in Sect. 3.2 in Ref. [29].
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With this relation we can show∫
M8

G ∧ p1

2
=
∫

M8

G ∪ w4 =
∫

M8

Sq4G =
∫

M8

G ∧ G mod 2, (17)

where we have used the fact that w4 is the Wu class ν4 on a spin manifold. Therefore the expression
(14) integrates to an integer.

The other method is differential geometric, or uses a physics input. We consider the non-
gravitational part Ĩ 1

2 56 of the anomaly polynomial of a fermion in the representation 1
256 of E7,

where 1
2 means that we impose a reality condition using the fact that both 56 of E7 and the Weyl

spinor in six dimensions with Lorentz signature are pseudo-real. In terms of the index theory in
eight dimensions, the same 1

2 uses the fact that 56 is pseudo-real and that the Weyl spinor in eight
dimensions with Euclidean signature are strictly real, and therefore the index in eight dimensions is
a multiple of 2. Using group-theoretical constants tabulated in Appendix A, the anomaly polynomial
can be computed and turns out to be

Ĩ 1
2 56 = 1

2
· c2

(
c2 + p1

2

)
. (18)

We next take two elements of �
spin
8 (X ), following Ref. [30]. One is the quaternionic projective

space HP2. It has a canonical Sp(1) = SU (2) bundle Q, whose c2 generates H 4(HP2; Z) = Z such
that

∫
HP

2(c2)
2 = 1. The Pontrjagin classes of the tangent bundle are p1 = −2c2 and p2 = 7(c2)

2.6

The other is CP1 × CP3 equipped with the element c ∧ c′ ∈ H 4(X ; Z) where c, c′ are the standard
generators of H 2(CP1; Z) and H 2(CP3; Z), respectively.

The pairings between these elements are given by∫
(HP

2,Q)

G ∧ G = 1,
∫

(HP
2,Q)

1

2
· G

(
G + p1

2

)
= 0, (19)∫

(CP
1×CP

3,c∧c′)
G ∧ G = 0,

∫
(CP

1×CP
3,c∧c′)

1

2
· G

(
G + p1

2

)
= −1 (20)

and therefore they constitute dual bases. In other words, the classes (HP2, Q) and (CP1 ×
CP3, c ∧ c′) generate Free �

spin
8 (K(Z, 4)) = Z ⊕ Z, while G ∧ G and 1

2 · G
(
G + p1

2

)
generate

HomZ(�
spin
8 (K(Z, 4)), Z) = Z ⊕ Z.

2.2. With SU (2) symmetry

Let us next consider the case X = BSU (2). Our approach is the same as the previous case. We first
take two elements of HomZ(�

spin
8 (X ), Z). One is c2 ∧ c2 as before, and the other is this time the

non-gravitational part Ĩ 1
2 2 of the anomaly polynomial for the fermion in the representation 1

22. Using
the group-theoretical data in Appendix A, we have

Ĩ 1
2 2 = 1

24
· c2

(
c2 + p1

2

)
. (21)

This can also be derived from Eq. (18) by splitting 56 as 2⊗12⊕1⊗32 under su(2)× so(12) ⊂ e7,
which implies Ĩ 1

2 56 = 12 · Ĩ 1
2 2 under SU (2) ⊂ E7; see, e.g., Table A.178 in Ref. [32].

6 The total Pontrjagin class of HPk is (1−c2)2(k+1)

(1−4c2)
; see, e.g., Ref. [31].
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We next consider two elements of �
spin
8 (BSU (2)). One is (HP2, Q) as before. As the other, we take

(S4, I ) × K3, where S4 is equipped with a standard instanton bundle I on it, which has
∫

S4 c2 = 1,
while K3 has

∫
K3 p1 = −48. Note that S4 � HP1 and I is its canonical Sp(1) bundle.

The pairings of these elements are then∫
(HP

2,Q)

c2 ∧ c2 = 1,
∫

(HP
2,Q)

1

24
· c2

(
c2 + p1

2

)
= 0, (22)∫

(S4,I )×K3
c2 ∧ c2 = 0,

∫
(S4,I )×K3

1

24
· c2

(
c2 + p1

2

)
= −1, (23)

again guaranteeing that they form dual bases. Equivalently, we have now shown that (HP2, Q) and
(S4, I ) × K3 generate Free �

spin
8 (BSU (2)) = Z ⊕ Z, and similarly c2 ∧ c2 and 1

24 · c2
(
c2 + p1

2

)
generate HomZ(�

spin
8 (BSU (2)), Z) = Z ⊕ Z.

2.3. With SU (3) symmetry

Next we consider the case X = BSU (3). Two elements of HomZ(�
spin
8 (X ), Z) can be chosen as

before. One is c2 ∧ c2 as always, and the other is the non-gravitational part Ĩ3 of the anomaly
polynomial in the representation 3. Under SU (3) ⊂ E7, we have Ĩ 1

2 56 = 6 · Ĩ3 and therefore

Ĩ3 = 1

12
· c2

(
c2 + p1

2

)
. (24)

A dual basis to c2 ∧ c2 can be taken to be (HP2, Q) as always. Unfortunately, we have not found
a concrete dual basis to Ĩ3 in �

spin
8 (X ). Instead we need to proceed indirectly, using the AHSS. As

computed in Appendix B, the entries E2
p,8−p of the E2-page for various X are given by

X E2
4,4 E2

6,2 E2
7,1 E2

8,0

BSU (2) Z Z

BSU (3) Z Z2 Z

BG2 Z Z2 Z2 Z

K(Z, 4) Z Z2 Z2 Z ⊕ Z3

(25)

where the other E2
p,8−p are trivial. From the AHSS, it is clear that E2 = E∞ for X = BSU (2), and

indeed�
spin
8 (BSU (2)) = Z⊕Z.We also know Free �

spin
8 (K(Z, 4)) = Z⊕Z from the explicit analysis

in Sect. 2.1. Comparing the bases in Sects. 2.1 and 2.2, we find that under BSU (2) → K(Z, 4), the
image of �

spin
8 (BSU (2)) is 12Z ⊕ Z ⊂ Z ⊕ Z. This means that the extension problem in the AHSS

for K(Z, 4) is solved as follows: we have

0 → E2
4,4 ⊕ Free E2

8,0︸ ︷︷ ︸
=Z⊕Z

→ �
spin
8 (K(Z, 4))︸ ︷︷ ︸

=Z⊕Z

→ Z12 → 0 (26)

where Z12 is composed of E2
6,2 = Z2, E2

7,1 = Z2, and Tors E2
8,0 = Z3 in the last row of Eq. (25).

Since BSU (3) is sandwiched as in BSU (2) → BSU (3) → K(Z, 4), we conclude that
�

spin
8 (BSU (3)) = Z ⊕ Z whose image under BSU (3) → K(Z, 4) is 6Z ⊕ Z ⊂ Z ⊕ Z. This

abstract analysis provides a dual basis element to Ĩ3 = 1
6 · Ĩ 1

2 56.
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2.4. With G2 symmetry

The G2 case is completely analogous to the SU (3) case. One basis of HomZ(�
spin
8 (BG2), Z) = Z⊕Z

is given by c2 ∧ c2 as always and the other is given by

Ĩ7 = 1

6
· c2

(
c2 + p1

2

)
, (27)

which satisfies Ĩ7 = 1
3 · Ĩ 1

2 56 under G2 ⊂ E7. The dual basis to c2 ∧ c2 is given by (HP2, Q). The

existence of the dual basis to Ĩ7 can be argued exactly as before, and the image of �
spin
8 (BG2) = Z⊕Z

under BG2 → K(Z, 4) is 3Z ⊕ Z ⊂ Z ⊕ Z.

2.5. Pure gravitational part

Before proceeding, here we record the dual bases of HomZ(�
spin
8 (pt), Z) = Z ⊕ Z and �

spin
8 (pt) =

Z ⊕ Z. Two generators of the latter were found in, e.g., Ref. [33], which are HP2 and L8, where
4L8 is spin bordant to K3 × K3. They have Pontrjagin numbers p2

1(HP2) = 4, p2(HP2) = 7 and
p2

1(L8) = 1152, p2(L8) = 576, respectively. As for the generators of the former, we can take the
anomaly polynomials Ifermion and Igravitino of the 6D fermion and the gravitino, which can be found
in any textbook:

Ifermion = 7 p2
1 − 4 p2

5760
, Igravitino = 275 p2

1 − 980 p2

5760
. (28)

They have the pairing∫
HP

2
Ifermion = 0,

∫
HP

2
Igravitino = −1, (29)∫

L8

Ifermion = 1,
∫

L8

Igravitino = −43 (30)

and form a pair of dual bases.

2.6. Anomalies of self-dual 2-forms

Now that we have discussed the general structures of anomalies with the symmetries we are interested
in, we would like to study their cancellation. For this, we need to examine the anomalies of self-dual
form fields in more detail.

Let us start by recalling the naive analysis often found in older literature. The one-loop anomaly
polynomial of a self-dual tensor can be found in, e.g., Ref. [34]. In general dimensions, it is given
by ±L/8, where L is the Hirzebruch genus. In six dimensions this gives7

Itensor,one-loop = 16 p2
1 − 112 p2

5760
. (31)

Furthermore, at the level of differential forms, a self-dual tensor B can be coupled to a background
4-form G̃ via dH = G̃, which contributes to the anomaly polynomial by 1

2 G̃ ∧ G̃. Then the total

7 Our sign choice here is for −L/8 while the fermion anomaly in Eq. (28) corresponds to +Â. They are the
anomaly polynomials for the tensor field in the tensor multiplet and for the fermion in the hypermultiplet in
N=(1, 0) supersymmetry in six dimensions.
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anomaly is

Itensor = Itensor,one-loop + 1

2
G̃ ∧ G̃. (32)

Note that this does not integrate to integers on HP2 and L8 when we naively set G̃ = 0. Rather, we
need to set

G̃ = p1

4
(33)

for which we find

Itensor = 196 p2
1 − 112 p2

5760
= 28 · Ifermion, (34)

which does integrate to integers on HP2 and L8. We cannot, however, promote G̃ to be a 3-form field
strength, since p1

4 is not integrally quantized in general, although p1
2 is, as we saw above.

A proper formulation was first proposed by Belov and Moore in Ref. [35] using the results of
Hopkins and Singer [36], and it requires the use of Wu structure in general (4k + 2) dimensions.
This formulation was then developed in detail in a series of papers by Monnier and collaborators
[12–23]. For our case of interest in six spacetime dimensions, a spin structure induces a canonical
Wu structure, and self-dual form fields can be naturally realized on the boundary of a natural class
of 7D topological field theories [27]; an in-depth discussion can also be found in Ref. [37].

In the case of a single self-dual form field of level 1, the bulk theory has the action

S = −
∫

M7

(
1

2
· c
(

dc + p1

2

)
+ c ∧ G

)
(35)

where c is a 3-form gauge field to be path-integrated and G is a background 4-form field strength. It
should more properly be written using its 8D extension as

S = −
∫

M8

(
1

2
· g
(

g + p1

2

)
+ g ∧ G

)
(36)

where M8 is a spin manifold such that ∂M8 = M7, and g = dc is the field strength of c; we extend
g and G to the entire M8. Such extension is guaranteed to exist since �

spin
7 (K(Z⊕n, 4)) = 0, and the

action does not depend on the choice of the extension since we know that 1
2 · g(g + p1

2 ) and g ∧ G
integrate to integers on spin manifolds, as we saw in Sect. 2.1.

At the level of differential forms, one is tempted to rewrite Eq. (35) as

S = −
∫

M7

(
1

2
· c ∧ dc + c ∧ G̃

)
(37)

where

G̃ = p1

4
+ G. (38)

In this sense, a single self-dual 2-form is forced to couple to p1
4 from its consistency, explaining the

observation (33) above. In this paper, we stick to using the unshifted G that is integrally quantized.
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In Eq. (36), we can introduce a new variable ĝ = g + G and rewrite it as

S = −
∫

M8

1

2
· ĝ
(

ĝ + p1

2

)
+
∫

M8

1

2
· G

(
G + p1

2

)
. (39)

As ĝ is path-integrated, the first term produces the pure gravitational anomaly of a single self-dual
tensor field “properly coupled to 1

4p1”, and the second term is the residual dependence on G, which

we saw in Sect. 2.1 to be a generator of HomZ(�
spin
8 (K(Z, 4)), Z).

The other generator was G∧G, which can be realized as the standard anomaly of a non-chiral 2-form
field coupled to G both electrically and magnetically. Combining these two pieces of information,
we find that every possible anomaly of HomZ(�

spin
8 (K(Z, 4)), Z) can be realized by a system of

2-form fields in six dimensions. More generally, if there are n self-dual 2-form fields, the 7D bulk
TQFT has the form

S = −
∫

M8

(
1

2

(
Kij · gi ∧ gj + ai · gi ∧ p1

2

)
+ gi ∧ Yi

)
. (40)

Here, i runs from 1 to n, ci are the 3-form fields to be integrated over, gi = dci are their curvatures,
Yi are the background fields of U (1) 2-form symmetry, and Kij and ai are integer coefficients. For
this expression to be well defined, we need to require8

Kii = ai mod 2 (not a sum over i). (41)

To see this, we first note that the expression 1
2

∑
i 
=j Kij · gi ∧ gj = ∑

i<j Kij · gi ∧ gj clearly
integrates to an integer. Then, we can separately analyze each i. We finally recall that the generators
of HomZ(�

spin
8 (K(Z, 4)), Z) are G ∧ G and 1

2 · G(G + p1
2 ), and we are done.

If det K 
= 1, this theory is not invertible but rather a topological field theory with a multi-
dimensional Hilbert space. Correspondingly, the boundary 6D theory is a relative theory in the sense
of Ref. [40], which does not have a partition function but rather a partition vector. The system then
depends on the background fields Yi in a complicated manner, and cannot be directly used to cancel
the fermion anomaly. However, suppose that Yi has the form Yi = Kij · Gj + Ŷi. In this case, shifting
gi to new fields g̃i = gi + Gi, one can factor out as

S = −
∫

M8

(
1

2

(
Kij · g̃i ∧ g̃j + ai · g̃i ∧ p1

2

)
+ g̃i ∧ Ŷi

)
+
∫

M8

(
1

2

(
Kij · Gi ∧ Gj + ai · Gi ∧ p1

2

)
+ Gi ∧ Ŷi

)
(42)

where the second line is invertible since it only depends on the background field Gi. It is this invertible
part that is used to cancel the fermion anomaly, and the remaining non-invertible part is irrelevant
for our purposes. Setting Gi = ni ·G for a single G and integers ni, we again see that we can produce
an arbitrary element of HomZ(�

spin
8 (K(Z, 4)), Z) as the anomaly of a system of self-dual 2-form

8 This relation can be more invariantly stated as follows. We introduce a lattice � = Zn whose pairing is
given by Kij. Then the vector (ai) ∈ � is a characteristic vector, i.e., 〈x, x〉 ≡ 〈a, x〉 modulo two. That the
coefficients ai multiplying gi ∧ p1

2 in the anomaly polynomial of the fermionic part of a 6D theory form a
characteristic vector was long conjectured in, e.g., Ref. [23] and finally proved in Refs. [12,13]. We also note
that an analogous constraint in the case of 3D Chern–Simons theory coupled to the spinc connection was first
noted in Sect. 7 in Ref. [38], which was later utilized to great effect in Sect. 2.3 in Ref. [39].
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fields. In the examples in M-theory and F-theory treated in Ref. [11], the cancellation was indeed
done in this manner, where Gi were set to c2 of dynamical gauge fields and Ŷi were set to c2 of the
R-symmetry background.

2.7. Cancellation

After all these preparations, the analysis of the cancellation is very simple. Consider a system of
fermions charged under G = SU (2), SU (3), or G2. From the results of Sects. 2.2, 2.3, and 2.4, its
anomaly is necessarily of the form

Ĩfermion = n · 1

2kG
· c2

(
c2 + p1

2

)
+ m · c2 ∧ c2 (43)

where n and m are integers and kG = 12, 6, 3 for G = SU (2), SU (3), and G2, respectively.
Now, take a number of self-dual 2-form fields and use c2 as their background field G. As we saw in

Sect. 2.6, the form of anomalies that can be produced by a system of 2-form fields has the structure

Ĩtensor = n̂ · 1

2
· G

(
G + p1

2

)
+ m̂ · G ∧ G, (44)

where n̂ and m̂ are again integers. This means that the necessary and sufficient condition for the
anomaly of fermions to be cancelable by the anomaly of 2-form fields is

n ≡ 0 mod kG. (45)

Here, π6(G) = ZkG for our G, but we did not use this in the derivation presented in this section.
We note that the coefficient n controls the fractional part of the coefficient of c2 ∧ c2, which comes

from the Tr F4 term in the fermion anomaly. For G = SU (2), SU (3), and G2, we have

trrep.F
4 = γrep. ·

(
trfund.F

2)2, (46)

and we saw in Sects. 2.2, 2.3, and 2.4 that a fermion in the representation 1
22, 3, and 7 corresponds

to n = 1 in Eq. (43). Therefore, the condition (45) can be expanded more concretely into

SU (2) :
∑
i+

γrep.(i+)

γ 1
2 2

−
∑
i−

γrep.(i−)

γ 1
2 2

= 0 mod 12,

SU (3) :
∑
i+

γrep.(i+)

γ3
−
∑
i−

γrep.(i−)

γ3
= 0 mod 6,

G2 :
∑
i+

γrep.(i+)

γ7
−
∑
i−

γrep.(i−)

γ7
= 0 mod 3,

(47)

where γ 1
2 2 = 1/4, γ3 = 1/2, and γ7 = 1/4, and the summation runs over all fermions in the theory

where +/− represents their chiralities. Some values of γrep. are collected in Appendix A.

2.8. Examples: N = (1, 0) supersymmetric cases

Let us provide some concrete examples of the anomaly cancellation. In 6D N = (1, 0) QFT, fermions
charged under the gauge group are gaugini in the adjoint representation and hyperini in the matter
representation. They are in opposite chiralities. Let us restrict the representations of hyperini and
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denote their numbers as follows:

n2 : SU (2) fundamental,
n3 : SU (3) fundamental,
n6 : symmetric,
n7 : G2 fundamental.

(48)

Then, the conditions for the perturbative anomaly cancellation (47) are

SU (2) : 4γadj. − 4γfund. · n2 = 32 − 2 · n2 = 0 mod 12,
SU (3) : 2γadj. − 2γfund. · n3 − 2γsym. · n6 = 18 − n3 − 17 · n6 = 0 mod 6,

G2 : 4γadj. − 4γfund. · n7 = 10 − n7 = 0 mod 3,
(49)

which exactly coincide with the conditions for the absence of global anomalies appearing in Ref.
[4].

3. Relation to π 6(G)

In the last section, we deduced the condition under which the anomaly of a fermion system with G
symmetry can be canceled by the anomaly of 2-form fields for G = SU (2), SU (3), and G2. Our
exposition used a careful determination of integral generators of the group of anomalies. In the end,
we found a mod-12, mod-6, and mod-3 condition, respectively.

Traditionally, the same anomaly cancellation condition was related to the anomaly by a global
gauge transformation associated with π6(G) = Z12, Z6, and Z3 for each G. However, our derivation
in the last section did not use π6(G) at all. In this section, we would like to clarify the relation
between these two approaches.

3.1. The Elitzur–Nair method

Let us first remind ourselves of the method to determine the global gauge anomaly of a system
under G symmetry, assuming the cancellation of perturbative gauge anomalies, by rewriting it as a
perturbative anomaly under a larger group G̃ whose global gauge anomaly is absent. This method is
originally due to Ref. [2]. In the context of the modern bordism approach to the anomalies, it was
rediscovered in Ref. [41] and further developed more extensively in Ref. [42]. The basic idea is as
follows.

The global G gauge anomaly may arise due to gauge transformations g : Sd → G belonging to non-
trivial elements of πd(G) = Zk , which cannot be continuously deformed to the trivial transformation.
The first step is then to embed the gauge group G into a larger group G̃ with πd(G̃) = 0. This means
that g can be trivialized within G̃. Further, assume that our G-symmetric system Q is obtained by
restricting the symmetry of a G̃-symmetric system Q̃. Using this, one can describe the global G
gauge anomaly of Q in terms of the perturbative G̃ gauge anomaly of Q̃.

Let us implement this idea, following Ref. [2]. We first note that the fibration

G
ι−−→ G̃

p−−→ G̃/G (50)

induces a homotopy exact sequence, which we assume to have the form

· · · ι∗−−→ πd+1(G̃)︸ ︷︷ ︸
=Z

p∗−−−→ πd+1(G̃/G)︸ ︷︷ ︸
=Z

∂−−→ πd(G)︸ ︷︷ ︸
=Zk

ι∗−−→ πd(G̃)︸ ︷︷ ︸
=0

p∗−−−→ · · · (51)
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so that the generator of πd+1(G̃) is mapped to a kth power of the generator of Z = πd+1(G̃/G).
Now, to compute the anomaly under g : Sd → G, we consider a G bundle on Sd+1 obtained by
gluing two trivial bundles on two hemispheres at the equator Sd ⊂ Sd+1. The resulting G bundle
on Sd+1 is classified by an element πd+1(BG), which is naturally isomorphic to πd(G). We denote
the resulting G bundle by P[g] where [g] ∈ πd(G) � πd+1(BG). In the modern understanding, the
anomaly is the partition function ZA(Q)[Sd+1, P[g]] of the (d +1)-dimensional anomaly theory A(Q)

evaluated on (Sd+1, P[g]).
From the assumption that πd(G̃) = πd+1(BG̃) = 0, we can extend this G bundle P[g] on Sd+1

to a G̃ bundle on Dd+2. Such an extension is classified by an element [f ] ∈ πd+1(G̃/G) such that
∂[f ] = [g]. Denoting the corresponding G̃ bundle on Dd+2 by P̃[f ], the anomaly is exp(2π iJ ([f ]))
where

J ([f ]) =
∫

(Dd+2,P̃[f ])
IQ̃ (52)

where IQ̃ is the anomaly polynomial of the G̃-symmetric theory Q̃. One can check that the expression
(52) gives a well defined homomorphism

J : πd+1(G̃/G) → R, (53)

since IQ̃ is a closed form and its restriction to G bundles is zero by assumption. Let us now take a

generator [f0] ∈ πd+1(G̃/G) = Z, which maps to a generator [g0] = ∂[f0] ∈ πd+1(BG) = Zk . Then
the global anomaly that we are after is

ZA(Q)[Sd+1, P[g0]] = exp
(

2π iJ ([f0])
)

. (54)

To compute it, note that k[f0] ∈ πd+1(G̃/G) is the image of the generator [g̃0] ∈ πd+1(G̃) �
πd+2(BG̃). In this case, we can attach a trivial G̃ bundle over another copy of Dd+2 to the bundle
(Dd+2, P̃k[f0]) discussed above along the common boundary Sd+1 via gauge transformation in [g̃0],
to form a G̃ bundle P̂[g̃0] on Sd+2. Then

J (k[f0]) =
∫

(Dd+2,P̃k[f0])
IQ̃ =

∫
(Sd+2,P̂[g̃0])

IQ̃. (55)

This last expression is often computable, resulting in the final formula in which the anomalous phase
associated with the gauge transformation in [g0] ∈ πd(G) is given by

ZA(Q)[Sd+1, P[g0]] = exp

(
2π i

k

∫
(Sd+2,P̂[g̃0])

IQ̃

)
. (56)

This derivation was originally devised by Elitzur and Nair [2] for the 4D analysis, where Witten’s
original anomaly in the G = SU (2) case was derived by embedding G to G̃ = SU (3). It was also
rediscovered in the context of our recent progress in the understanding of anomalies in the bordism
point of view by Ref. [41], who embedded SU (2) to U (2) instead.

Let us quickly see how Witten’s anomaly is computed in this framework. The sequence is

· · · ι∗−−→ π5(SU (3))︸ ︷︷ ︸
=Z

p∗−−−→ π5(SU (3)/SU (2))︸ ︷︷ ︸
=Z

∂−−→ π4(SU (2))︸ ︷︷ ︸
=Z2

ι∗−−→ π4(SU (3))︸ ︷︷ ︸
=0

p∗−−−→ · · · ,

(57)
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where SU (3)/SU (2) � S5. We take the doublet in SU (2) minus two uncharged Weyl spinors as the
theory Q, and the triplet in SU (3) minus three uncharged Weyl spinors as the theory Q̃. By restricting
the symmetry from SU (3) to SU (2), the theory Q̃ reduces to Q, since an uncharged pair of Weyl
spinors of different chirality can be given a mass and therefore does not contribute to the anomaly.
The anomaly polynomial of Q̃ is simply 1

3! Tr
( F

2π

)3
, which is known to integrate to 1 against the

generator [g̃0] of π5(SU (3)) = π6(BSU (3)), meaning that J (2[f0]) = 1. Therefore, the anomalous
phase under the generator [g0] ∈ π4(SU (2)) is exp(2π iJ ([f0])) = exp(2π i · 1

2) = −1. In this way,
we see that the anomaly theory of a 4D fermion in the doublet of SU (2) detects the generator of
�

spin
5 (BSU (2)) = Z2.

3.2. 6D analysis, take 1

The analysis of Elitzur and Nair was applied and extended to the 6D case in Refs. [3–5]. However, the
analyses there were not quite satisfactory from a more modern point of view, since the contribution
from the self-dual tensor field was not properly taken into account. The first objection to their analyses
is the following: we know that π6(SU (2)) = Z12 → �

spin
7 (BSU (2)) = 0 is a zero map. How can

there be a global anomaly? The second objection is the following: we know from Sect. 2.7 that we
cannot cancel the perturbative anomaly of a single fermion in 1

22 of SU (2) by that of self-dual tensor
fields. How can we apply the Elitzur–Nair method? We can combine these two objections into a
consistent modern reinterpretation of the old analyses, as follows.

Suppose that the perturbative anomaly of n fermions in 1
22 of SU (2) can be canceled by a com-

bination of 2-form fields, by using c2 of the SU (2) bundle as the background of the U (1) 2-form
symmetry of the 2-form fields. We also assume that the perturbative gravitational anomaly is can-
celed by adding some uncharged fields, and take the combined theory as Q. Since the perturbative
anomaly vanishes, it determines a bordism invariant

�
spin
7 (BSU (2)) → U (1), (58)

but as �
spin
7 (BSU (2)) = 0, it is trivial. In particular, the anomalous phase associated with (S7, P[g0])

for the generator [g0] ∈ π7(BSU (2)) = Z12 should also be trivial, i.e.,

ZA(Q)[S7, P[g0]] = 1. (59)

We now compute this anomalous phase by the Elitzur–Nair method. Taking G = SU (2) = Sp(1)

and G̃ = Sp(2), the sequence is

· · · ι∗−−→ π7(Sp(2))︸ ︷︷ ︸
=Z

p∗−−−→ π7(Sp(2)/Sp(1))︸ ︷︷ ︸
=Z

∂−−→ π6(Sp(1))︸ ︷︷ ︸
=Z12

ι∗−−→ π6(Sp(2))︸ ︷︷ ︸
=0

p∗−−−→ · · · ,

(60)
where Sp(2)/Sp(1) � S7. As the theory Q̃, we take n copies of 1

24 of Sp(2), coupled to the same
combination of 2-form fields, by using c2 of the Sp(2) bundle as the background of the U (1)

2-form symmetry. Note that our presentation of the Elitzur–Nair method in Sect. 3.1 applies to
this case. The anomaly polynomial IQ̃ of Q̃ is n times 1

2 · 1
4! Tr

( F
2π

)4
modulo multi-trace terms.

Now, it is known that the expression 1
2 · 1

4! Tr
( F

2π

)4
integrates to 1 against the generator [g̃0] of

π7(Sp(2)) = π8(BSp(2)) = Z (see Appendix B.2 in Ref. [5]). This means that for ∂[g̃0] = 12[f0]
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we have

J (12[f0]) =
∫

(Sd+2,P̂[g̃0])
IQ̃ = n

∫
(Sd+2,P̂[g̃0])

1

2
· 1

4! Tr
(

F

2π

)4

= n. (61)

Therefore the anomalous phase associated with (S7, P[g0]) is

ZA(Q)[S7, P[g0]] = exp
(

n · 2π i

12

)
. (62)

For the results (59) and (62) to be consistent, we conclude that n needs to be divisible by 12. The
analysis can be extended to arbitrary fermions charged under SU (2), and we can rederive Eq. (47)
as a necessary condition. The argument in this subsection, however, does not say that they are also
sufficient. Differently put, the method in this section does not directly show that the fermion anomaly
can actually be canceled, without the analysis of Sect. 2.7.

The analysis for G = SU (3) and G2 can be rephrased in a completely similar manner by choosing
G̃ to be SU (4) and SU (7) respectively, so will not be repeated.

3.3. 6D analysis, take 2

The argument in the previous subsection can also be phrased in the following manner. Let us start by
assuming that the perturbative anomaly of a single fermion in 1

22 can be canceled. Then, we can apply
the Elitzur–Nair argument to compute the anomaly under the generator [g0] ∈ π6(SU (2)) = Z12,
which is the partition function of the anomaly theory on (S7, P[g0]). The value turns out to be

exp(2π i/12). The configuration (S7, P[g0]) is however null-bordant in �
spin
7 (BSU (2)), and therefore

the partition function should be 1. This leads to a contradiction, meaning that the initial assumption
is incorrect. We conclude that the perturbative anomaly cannot be canceled for a single fermion in
1
22.

This argument still leaves us wondering whether it is possible to have a setup where the anomaly
associated with [g0] is actually exp(2π i/12). It turns out that it can be achieved by considering a
slightly different bordism group as follows. This is essentially the computation done in Refs. [3,4].

So far, we have considered the manifolds in question to be equipped with spin structure and a G
gauge field. Let us equip the manifolds with a classical 3-form field H , which we consider to be a
(modified) field strength of the 2-form field B, satisfying

dH = c2. (63)

This relation makes the part of the anomaly polynomial divisible by c2 cohomologically trivial, and
effectively cancels it. Let us see this more concretely. Take G = SU (2) and consider fermions in
1
22. The partition function of its anomaly theory A(Q) is given by the associated eta invariant η 1

2 2,
whose variation is controlled by the anomaly polynomial

1

24
· c2

(
c2 + p1

2

)
. (64)

With Eq. (63) we can add a local counterterm in seven dimensions, and consider the anomaly theory
to be

ZA(Q)′ = exp
(

2π i

(
η 1

2 2 −
∫

M7

1

24
· H

(
c2 + p1

2

)))
. (65)
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This combination is clearly constant under infinitesimal variations of the background fields, and
gives a invariant of the bordism group equipped with spin structure, a G gauge field, and a 3-form
field satisfying Eq. (63).

The G-field configuration P[g0] on S7 has a cohomologically trivial c2, since H 4(S7) vanishes.
Therefore we can solve Eq. (63) to find H on S7. The G̃-field configuration P̃[f0] on D8 can also be
augmented with a solution to Eq. (63), since H 4(D8) is again trivial. Then the Elitzur–Nair argument
goes through, and this time we actually conclude that

ZA(Q)′ [S7, P[g0], H ] = exp
(

2π i

12

)
. (66)

The classifying space X of a G gauge field and a 3-form field satisfying Eq. (63) can be described
as a total space of the fibration

K(Z, 3) → X → BG (67)

where the extension is controlled by Eq. (63). Therefore the relevant bordism group for us is �
spin
7 (X ).

See Appendix B.6 for the details of the calculations; we do find that �
spin
7 (X ) = Z12, and our

modified anomaly theory A(Q)′ detects its generator. Again the cases G = SU (3) and G2 can be
treated similarly, and we will not detail it.

We now see that with 12 copies of the same fermion system, the global anomaly associated with
π6(SU (2)) vanishes, when the manifolds involved are all equipped with a classical 3-form field H
satisfying Eq. (63). However, this does not directly imply that one can perform the path integral over
the G gauge field and the 2-form field B satisfying Eq. (63). Indeed, the 7D counterterm in Eq. (65)
with 12 copies corresponds to the 6D coupling

−1

2
· B
(

c2 + p1

2

)
(68)

but 1
2(c2 + p1

2 ) is not integrally quantized. As we know from Sect. 2.7, we need to use chiral 2-form
fields in six dimensions to cancel the fermion anomaly in this case, and the subtlety of the chiral
2-forms is not encoded in the classical equation (63).

Before closing, we note that the spacetime structure analogous to Eq. (63), given by providing a
3-form field strength H satisfying

dH = p1

2
− c2 (69)

on a spin manifold, is known as the (twisted) string structure in mathematical literature. This captures
part of the original 10D Green–Schwarz mechanism, where the fermion anomalies of the form

I12 =
(p1

2
− c2

)
X8 (70)

are canceled by the anomaly of the B-field. Indeed, analogously to the analysis in this subsection,
equipping manifolds with (twisted) string structure automatically cancels the factorized I12. It must
be noted, however, that vanishing the anomaly with the use of the (twisted) string structure does not
guarantee that the part X8 is integrally quantized, again as analogous to the 6D analysis. This needs
to be kept in mind whenever we try to use string bordism to study the anomaly cancellation in string
theory.
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Note added

When this paper was almost completed, the authors learned that there is an upcoming work by
Davighi and Lohitsiri [24] that has a large overlap with it.

Appendix A. Fermion anomalies and group-theoretic constants

The perturbative gauge anomaly of a fermion is given by

Ifermion = [̂
A(R) ch(F)

]
8

= (trrep.1) · 7 p1(R)2 − 4 p2(R)

5760
+ p1(R)

24

[
1

2! · trrep.

(
F

2π

)2
]

+ 1

4! · trrep.

(
F

2π

)4

.

(A.1)

In general, the traces have following forms:

trrep.F2 = αrep. · trfund.F2,

trrep.F4 = βrep. · trfund.F4 + γrep. ·
(
trfund.F2

)2,
(A.2)

and in particular βrep. = 0 for SU (2), SU (3), and G2. Explicitly, α and γ for some common
representations are given as follows:

SU (2) SU (3) G2

tradj.F2 4 · trfund.F2 6 · trfund.F2 4 · trfund.F2 αadj.

trsym.F2 – 5 · trfund.F2 – αsym.

trfund.F4 1

2
· (trfund.F2

)2 1

2
· (trfund.F2

)2 1

4
· (trfund.F2

)2
γfund.

tradj.F4 8 · (trfund.F2
)2 9 · (trfund.F2

)2 5

2
· (trfund.F2

)2
γadj.

trsym.F4 –
17

2
· (trfund.F2

)2 – γsym.

. (A.3)
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Furthermore, the instanton number c2(F) is normalized so that

c2(F) = 1

4
· 1

h∨ · tradj.

(
F

2π

)2

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

4
· 1

2
· 4 · trfund.

(
F

2π

)2

= 1

2
· trfund.

(
F

2π

)2

: SU (2),

1

4
· 1

3
· 6 · trfund.

(
F

2π

)2

= 1

2
· trfund.

(
F

2π

)2

: SU (3),

1

4
· 1

4
· 4 · trfund.

(
F

2π

)2

= 1

4
· trfund.

(
F

2π

)2

: G2,

(A.4)
where h∨ is the dual Coxeter number of each gauge group. As a result, the non-gravitational part of
the anomaly becomes

Ĩfermion = 1

24

(
αrep. · trfund.

(
F

2π

)2

∧ p1(R)

2
+ γrep. · trfund.

(
F

2π

)2

∧ trfund.

(
F

2π

)2
)

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

4γrep. · 1

24
· c2(F)

(
c2(F) + p1(R)

2

)
+ 2αrep. − 4γrep.

24
· c2(F) ∧ p1(R)

2
: SU (2),

2γrep. · 1

12
· c2(F)

(
c2(F) + p1(R)

2

)
+ 2αrep. − 4γrep.

24
· c2(F) ∧ p1(R)

2
: SU (3),

4γrep. · 1

6
· c2(F)

(
c2(F) + p1(R)

2

)
+ 4αrep. − 16γrep.

24
· c2(F) ∧ p1(R)

2
: G2.

(A.5)

From our general argument in Sects. 2.2, 2.3, and 2.4, the numerical coefficients before · of the two
terms in each row, such as 4γrep and 1

24(2αrep. − 4γrep.), are guaranteed to be integers.

Appendix B. Bordisms via the Atiyah–Hirzebruch spectral sequence

In this appendix, we compute �
spin
d (X ) for X = K(Z, 4), BSU (2), BSU (3), BG2, and K(Z, 3)-

fibered BSU (2) by using the Atiyah–Hirzebruch spectral sequence (AHSS), associated with the
trivial fibration

pt −→ X
p−→ X . (B.1)

Here we will not give an introduction to AHSS; consult, e.g., Ref. [43] for a detailed introduction to
AHSS for �

spin∗ .9

9 We note that the AHSS first appeared in the physics literature in the context of K-theory classification of
D-branes in Refs. [29,44,45]; see Appendix C, Appendix A, and Sect. 3 of respective references.
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Appendix B.1. K(Z, 4)

The E2-page of the AHSS is as follows:

where the horizontal axis and the vertical axis are for p and q, respectively. The integral homology
of K(Z, 4) is due to Appendix B.2 in Ref. [46]. For Z2 (co)homology, it is known that (see, e.g., Ref.
[47])

H∗(K(Z, 4); Z2) = Z2[u4, u6, u7, u10, u11, u13, . . .] (B.3)

where

Sq2u4 = u6,
Sq1u6 = u7.

(B.4)

The differentials d2 : E2
6,0 → E2

4,1 and d2 : E2
6,1 → E2

4,2 are known to be (mod 2 reduction com-

posed with) the dual of Sq2 [48], and therefore none of the Z2 involved survive to the E∞-page.10 As
a result, one has �̃

spin
7 (K(Z, 4)) = 0. The extension problem for �̃

spin
8 (K(Z, 4)) was solved in Sect.

2.3; see in particular the discussions around Eq. (26). Summarizing, we have the (non-canonical)
isomorphism of groups

Inv7
spin(K(Z, 4)) = Free �̃

spin
8 (K(Z, 4))︸ ︷︷ ︸
=Z⊕Z

⊕ Tors �̃
spin
7 (K(Z, 4))︸ ︷︷ ︸

=0

. (B.5)

10 This indeed agrees with the result in Ref. [49] up to odd torsion.
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Appendix B.2. BSU (2)

The E2-page of the AHSS is as follows:

(B.6)

where the relevant (co)homologies are

H∗(BSU (2); Z
) = Z[c2],

H∗(BSU (2); Z2
) = Z2[c2].

(B.7)

For the range p + q ≤ 7, there are no differentials and all the elements survive to the E∞-page. As
a result, one has

Inv7
spin(BSU (2)) = Free �̃

spin
8 (BSU (2))︸ ︷︷ ︸
=Z⊕Z

⊕ Tors �̃
spin
7 (BSU (2))︸ ︷︷ ︸

=0

. (B.8)

Since BSU (2) = HP∞, each generator of H4i(BSU (2); Z) = Z is the embedded HP4i. As SU (2) =
Sp(1) bundles, they are the canonical bundles Q over HP4i. Therefore, the generator of E2

4,4 = Z

is (HP1, Q) × K3 and the generator of E2
8,0 = Z is (HP2, Q). They are the generators discussed in

Sect. 2.2.

Appendix B.3. BSU (3)

The E2-page of the AHSS is as follows:

(B.9)
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where the relevant (co)homologies are

H∗(BSU (3); Z
) = Z[c2, c3],

H∗(BSU (3); Z2
) = Z2[c2, c3].

(B.10)

Here, c2 and c3 in H∗(BSU (3); Z2
)

are related as

Sq2c2 = c3,

and therefore the differentials d2 : E2
6,0 → E2

4,1 and d2 : E2
6,1 → E2

4,2 are again non-trivial as in

the X = K(Z, 4) case. As a result, one has

Inv7
spin(BSU (3)) = Free �̃

spin
8 (BSU (3))︸ ︷︷ ︸
=Z⊕Z

⊕ Tors �̃
spin
7 (BSU (3))︸ ︷︷ ︸

=0

. (B.11)

As discussed in Sect. 2.3, E2
6,2 = Z2 extends E2

4,4 = Z to form a Z. The generator is a dual basis to

Ĩ3 = 1
6 · 1

2c2(c2 + p1
2 ). Another factor of Z simply comes from H8(BSU (3); Z) = Z.

Appendix B.4. BSU (n ≥ 4)

In passing, we briefly comment on the case of BSU (n ≥ 4). The (relevant part of the) E2-page of
the AHSS is almost the same as BSU (3). The only difference is the additional Z in the E2

8,∗ elements

due to c4 ∈ H 8(BSU (n); Z), which also newly shows up in the anomaly polynomial Ĩn. As a result,
one has

Inv7
spin(BSU (n)) = Free �̃

spin
8 (BSU (n))︸ ︷︷ ︸

=Z⊕Z⊕Z

⊕ Tors �̃
spin
7 (BSU (n))︸ ︷︷ ︸

=0

. (B.12)

In comparison with the BSU (3) case, we find that one factor of Z is given by extending E2
4,4 = Z

by E2
6,2 = Z2 as before, whose generator is obtained by sending the corresponding one for BSU (3)

by the embedding SU (3) → SU (n). This is a dual basis to Ĩn = − c4
6 + 1

6 · 1
2c2(c2 + p1

2 ). The other
two factors of Z simply come from H8(BSU (n); Z) = Z ⊕ Z and are dual to (c2)

2 and c4. Then we
see that a basis of HomZ(�̃

spin
8 (BSU (n)), Z) can be chosen to be Ĩn, (c2)

2, and 1
2c2(c2 + p1

2 ), the
last two of which can be obtained by pulling back from K(Z, 4). Applying the logic of Sect. 2.7, we
find that the anomaly of 2-form fields can cancel the fermion anomaly if and only if the coefficient
of c4 in the anomaly polynomial vanishes.
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Appendix B.5. BG2

The E2-page of the AHSS is as follows:

(B.13)

where the relevant (co)homologies are

H∗(BG2; Zp≥3
) = Zp[x4, x12],

H∗(BG2; Z2
) = Z2[x4, x6, x7].

(B.14)

For the latter, generators are related as

Sq2x4 = x6,

Sq1x6 = x7,
(B.15)

and therefore the differentials d2 : E2
6,0 → E2

4,1 and d2 : E2
6,1 → E2

4,2 are again non-trivial as in

the X = K(Z, 4) case. Since the (co)homology of BG2 is p-torsion free for p ≥ 3 (see, e.g., Ref.
[47]), one can deduce the integral (co)homology as in the E2-page. As a result, one has

Inv7
spin(BG2) = Free �̃

spin
8 (BG2)︸ ︷︷ ︸

=Z⊕Z

⊕ Tors �̃
spin
7 (BG2)︸ ︷︷ ︸
=0

. (B.16)

Appendix B.6. K(Z, 3) → X → BSU (2)

Here we compute �
spin
d (X ) for a fibration K(Z, 3) → X → BSU (2) designed to kill the generator

c2 ∈ H 4(BSU (2); Z) = Z via dH = c2, where H ∈ H 3(K(Z, 3); Z) = Z is also the generator.
To compute �

spin
d (X ), let us first calculate the cohomology group of X via the Leray–Serre spectral

sequence (LSSS), and then throw it into the AHSS. The E2-page of the LSSS is given on the left-hand
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side of the following equation:

(B.17)

where the integral homology of K(Z, 3) is again due to Appendix B.2 in Ref. [46]. The differentials

d4 : E0,3
2 → E4,0

2 and d4 : E0,9
2 → E4,6

2 are non-trivial due to dH = c2, and d4 : E4,3
2 → E8,0

2

is also non-trivial due to

d(H ∧ c2(F)) = (c2(F))2. (B.18)

This results in the cohomology group of X as given on the right-hand side of Eq. (B.17).
The knowledge of H∗(X , Z) allows us to compute the AHSS for pt → X → X , whose E2-page

is as follows:

(B.19)

where the relevant homology groups can be obtained from the universal coefficient theorems. As a
result, one has

Inv7
spin(X ) = Free �̃

spin
8 (X )︸ ︷︷ ︸

=0

⊕ Tors �̃
spin
7 (X ) (B.20)

and Tors �̃
spin
7 (X ) is a finite group with at most 2 · 2 · 3 = 12 elements. As we saw in Sect. 3.3, there

is a bordism invariant with the value exp(2π i/12), meaning that the AHSS is indeed consistent with
the previous analyses on 6D global anomaly claiming

�̃
spin
7 (X ) = Z12. (B.21)
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Appendix C. Bordisms via the Adams spectral sequence

In this appendix, we compute �
spin
d (BG) for G = SO(n), Spin(n), and G2 by using the Adams

spectral sequence

Es,t
2 = Exts,t

A(1)(H̃
∗(X ; Z2), Z2) ⇒ k̃ot−s(X )∧2 (C.1)

where A(1) is the algebra generated by the Steendrod operations Sq1 and Sq2, and ko is the connective
KO theory. The RHS is known to agree with the reduced spin bordism �̃

spin
t−s (X ) for t − s ≤ 7 [50],

allowing us to compute the spin bordism groups of interest to us. Here we will not give an introduction
to Adams SS; consult Ref. [51] for the details (to which we refer for the Adams charts of various
modules below), or see Appendix C in Ref. [52] for a brief description.

Appendix C.1. BSO(n)

Appendix C.1.1. n ≥ 5
The module M BSO = H̃∗(BSO(n); Z2) up to degree 7 is as follows:

(C.2)

where, as is customary, we have used a dot for a basis in a Z2-vector space, and a vertical straight
line and a curved line show the action of Sq1 and Sq2. We therefore have

M BSO≤7
∼= (

J [2] ⊕ A(1)[4] ⊕ A(1)[6] ⊕ A(1)[6])≤7 (C.3)

in terms of Ref. [51], and the Adams chart is correspondingly given as

where the horizontal axis and the vertical axis are for t − s and s, a dot corresponds to a generator,
and the vertical line shows the action of a multiplication by a special element known as h0; a tower
of h0 generates the ring Z2 of 2-adic integers. As this E2-page is too sparse for any differentials, one
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obtains

d 0 1 2 3 4 5 6 7

�̃
spin
d (BSO(n ≥ 5)) 0 0 Z2 0 Z ⊕ Z2 0 Z⊕2

2 0
. (C.4)

Appendix C.1.2. n = 4
Removing wi≥5 from the module M BSO, it becomes (J [2] ⊕ Q[4] ⊕ A(1)[6])≤7 as an A(1)-module.
Correspondingly, the Adams chart becomes

Again, this E2-page is too sparse for any differentials, and one obtains

d 0 1 2 3 4 5 6 7

�̃
spin
d (BSO(4)) 0 0 Z2 0 Z⊕2 0 Z2 0

. (C.5)

Appendix C.1.3. n = 3
Further removing w4 from the module M BSO, it becomes (J [2] ⊕ A(1)[6])≤7 as an A(1)-module.
Correspondingly, the Adams chart becomes

Again, this E2-page is too sparse for any differentials, and one obtains

d 0 1 2 3 4 5 6 7

�̃
spin
d (BSO(3)) 0 0 Z2 0 Z 0 Z2 0

. (C.6)
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Appendix C.2. BSpin(n)

For n ≤ 6, one can use the exceptional isomorphisms to deduce �̃
spin
7 (BSpin(n)) = 0. Therefore,

let us focus on the remaining n ≥ 7 cases. Since M BSpin = H∗(BSpin(n); Z2) up to degree 7 can be
obtained by removing w2, w3, and w5 from M BSO≤7 (see Theorem 6.5 in Ref. [53]),11 it is

(C.7)

which means

M BSpin
≤7

∼= Q[4]. (C.8)

Therefore, the Adams chart is

As there is no room for any differentials, one obtains

d 0 1 2 3 4 5 6 7

�̃
spin
d (BSpin(n ≥ 7)) 0 0 0 0 Z 0 0 0

. (C.9)

Appendix C.3. BG2

Since H∗(BG2; Z2) = Z2[x4, x6, x7] and each element is related as [47]

Sq2x4 = x6,
Sq1x6 = x7,

(C.10)

the result is completely the same as the BSpin case, and in particular one has �̃
spin
7 (BG2) = 0. This

is also consistent with the AHSS computation (B.13).

11 This happens to be completely the same as K(Z, 4), and the result is indeed consistent with the AHSS
computation (B.1). See also Ref. [30].
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Appendix D. Recollections of Eguchi-sensei

In this appendix, one of the authors (Yuji Tachikawa) would like to share memories of his late advisor
Professor Tohru Eguchi, who passed away unexpectedly in early 2019. In the rest of the appendix, I
would like to use the first person, and I would also like to refer to my late advisor as Eguchi-sensei
( ) as I often called him.

My first encounter with him should have been when I was reading the August 1994 issue of a
popular Japanese mathematics magazine, Suugaku Seminar, in which there was a write-up of his
interview with Professor Edward Witten. It was interesting for me to reread that article to prepare this
appendix. The interview was dated May 13, 1994, and there was a discussion of the Seiberg–Witten
theory in it, which was not even available as a preprint at that time. I do not think I understood
anything back then, as I was a high school student at that time. But somehow, by a miraculous action
at distance, I became a student of Eguchi-sensei several years later, and started specializing in the
Seiberg–Witten theory. It was Eguchi-sensei who advised me to read Nekrasov’s influential instanton
counting paper when it appeared in 2002, which became the basis of my career.

In the last year of graduate school, recommendation letters from him and Hirosi Ooguri allowed
me to stay at KITP from August to December 2005 for a long-term workshop. Despite all his duties
in the university, he also attended the workshop for one month in August. While preparing for my
first visit to the USA, he suggested that I stay with him in a large apartment already arranged for
him by KITP, since he did not want to live alone. It is a fond memory that I cooked barely edible
breakfasts for him every day, and we often went to restaurants in Isla Vista together for supper. He
also taught me then what is, according to him, the most delicious and at the same time easiest way
to eat avocado, which is to cut one in half, remove the big stone, and then pour a bit of soy sauce
into the resulting depression. Then all that is left is to scoop the flesh out with a spoon. During my
stay there, I worked on the 6D global anomaly cancellation with Suzuki-kun, another student of
Eguchi-sensei, across the Pacific Ocean using Skype. As this paper can be considered a direct sequel
to that paper [5], I feel it quite appropriate that I dedicate this paper to his memory.

Due to the age difference, Eguchi-sensei was always a father-like figure to me, including the
following unfortunate events in his last few years. In 2015, I was a faculty member in the Department
of Physics at the University of Tokyo, from which he had retired and moved to Rikkyo University. For
various reasons, I wanted to move to my current affiliation, and one day I went to Rikkyo University
to visit him to ask if he could write a recommendation letter for me, as he had done countless times
before. I was surprised then that he flatly refused to do so. I think I now understand how he felt at
that time; he had been in the same Department of Physics at the University of Tokyo for decades.
Surely he felt strongly attached to the place, which I was suddenly trying to abandon. After that,
we met once in a while at workshops and in other places, but I never felt reconciled to him, just as
a father and a son would feel when the partner brought home by the son was not acceptable to the
father.

In late 2018, I knew he was sick, but I was never able to make up my mind to visit him in hospital.
Then came the sudden news of his passing away on January 30, 2019. I deeply regret that I did not
go to see him at least once before he left this world.

On his passing, I recalled a parable of Zhuang-zi:12

12 For the classical Chinese original and the modern English translation, see https://ctext.org/zhuangzi/
perfect-enjoyment#n2831 .
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Roughly: Zhuang-zi’s wife died, and his friend Hui-zi came to mourn her. Hui-zi finds Zhuang-zi
drumming and singing. Hui-zi says: “Not mourning is one thing, but isn’t drumming and singing a
bit too much!” Zhuang-zi replies: “Not so. Of course I was sad when I first realized that my wife
had died! But after reflecting how life forms from nothingness and then goes back to nothingness, it
is no different from the change of the four seasons. She just started sleeping comfortably in a large
room, and there was no use in me crying loudly, so I decided to stop.”

Eguchi-sensei is no more, but in some sense his existence went back to become one with the world,
or the universe, or whatever I should call this entirety, to which I will eventually return, too.
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