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ABSTRACT~ The prequantization scheme for the three dlmensional 

classical Kepler and harmonic oscillator problems has been discussed 

in the light of the work of Souriau and Kostant and via the spectrum- 

generating algebras associated with the dynamical systems. 

I • Introduction 

Recently,a surge of activities on the problem of quantization of classical 

systems has been initiated by Souriau's programme I and Kostant's work on 

quantization and unitary representations 2. 

Weyl's ~Q_ -rule: Earlier~Weyl 3 prescribed a remarkable method of 

constructing phase-space representation of quantum meohanics( i.e.,a linear 

one-to-one map of operators in a Hilbert space into c-number functions). 

If g(q,p) is a classical observable,then define the Fourier transform as 

~ , ~ )  = ~~_,~ "F(~,~L) e ( - ~  t " L P ) a ~  a %  (1.1) 

Since the correspondence is lineartthe phase-space representation can 

be completely specified by the operators associated with exp( i( ~ ~4-~)). 

He prescribed then the XZ-rule such that ~ (~ ~ Jr ~ ~) 
~, ~ .~-'r "t ~P~ e ;~ ~ ( ' ~ , , ~ ' )  e (1.2) 

Thus~ the operator g ~ ^ (q,p) corresponding to g(q,p) is given by 

We have the inverse mapping~ 

9~$,P) = '- [~ T. (~ ~ ) .q..£-~...t,[),~ (1.4) 
× e. d~. 4%'  
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%Q(~p~) is the boundary value of an entire analytic function of ~ ~ "~ and 

has no zeros for real ~i~ . Further, 

Q ~ ( ~  ,~)  = ~ Z ( - ~ - ~ ) ~  (1 .5)  

o~a  c 2 ( 0 , o )  = i • ( ~ . 6 )  

(1.5)  imp l ies  the r e a l i t y  cond i t i on  f o r  .~Z and ens=res tha t  the rea l  func t ions  

are mapped onto s e l f - a d j o i n t  operators and vioe-versa.~qeyl ts ~ - r u l e ~  however 

fails in general since the distribution function could be negative. 

In ~2_hE_~i~SE_5~E£5£~,one resorts to formal quantization of 

classical generalized coordinates X k and the canonical momenta Pk which are 

defined locally.If we consider M=sl,the unit circle,multiplication by the 

angle X= e~ is not an operator in the Hilbert space of periodic functions 

f(e)= F( e+ ~).This elucidates the difficulties with the formal quantization 

of generalized coordinates and momenta. 

Dirac's work involves a map of classical dynamical variables 

fi to self-adjoint,irreducible operators K(fi) with suitable domains in a 

Hilbert space satisfying 

LK(fi) , K(fj)~ = i ~K( [ fi~ ~j3 ) 

and K(1) = I . 

In all conventional approaches~the solution of the Dirao problem is carried 

out by quantizing the Heisenberg algebra:(q,p,I) while no apriori guarentee 

is made for preserving the self-adjointness of the rest of the operator 

functions f(q,p). 

Van Hove's prequantization scheme4: Let T~> 0.A prequantization scheme on 

a manifold M(= R2n , the Euclidean phase-space) is a mapping f(q,p) ( the C e° 
• e 

functions of infin~imal canonical transformations which generate one-parameter 
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subgroups of the Lie pseudo-group of contact transformations) onto the set 

of self-adjoint operators in a complex,infinite dimensional,separable Hilbert 

space such that 

Van Hove's method of Euclidean prequantlzation fails,however,ln a simple 

dynamical system like the Kepler problem where the Hamiltonian vector field 

is not'complete' since orbits with l=0 reach the point q=0 within a finite 

lapse of time. 

Souriau's scheme: I Let ( M, ~) be the symplectic manifold of a classi~l 

dynamical system, M= the state space and ~ = the symplectic close~ 2-form 

on M. The diffeomorphism ~ : M-->M is a canonical t~ans£omnation if 

~(sA) = ~ .Let F(M) be ~real-valued functions on M.For each f ~- F(M), define 
a 

the vector field Xf such ~t 
a 

fa = Xf ~ 
a 

a 
Unae~ the above Poisson bracket relation,the vector space F(M) becomes a Lie 

algebra. 

Considerthe Haziltonian dynamical system(M, ~ ,H) where H ~ F(M) 

is the Hamiltonian function if it has no critical points( dH =0). The integral 

curves of the vector field X H are solutions of the Hamilton's equations and 

generate the one-parameter group of canonical transformations.Thus,in Souriau's 

scheme,the vector fields X H are complete also.The essential featGre of 

Souriau's prequantization scheme is that it enables to construct the contact 

manifold ~÷1, one dimension higher than the phase space ~. 

2. Dynamical Prequantization ~,6 ,7 

We d~scuss in thls section the prequahtization scheme for the classical 
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Kepler and harmonic oscillator problems in the light of the Kostant- 

Souriau scheme and using the dynamical symmetry associated with the 

classical mechanical systems. 

a) Let (M, fl ) be the symplectic manifold for a classical dynamical 

systemj M= the state space and /)_=the canonical closed 2-form on M. It 

admits a maximal dynamical symmetry K( K, correspondingly is the Lie algebra 

of infin&tesimal canonical transformations on M) acting transitively on 

each energy surface M E ~ K/K 0 , K 0 being the stability subgroup of some 

point on ME.This implies that all the orbits of the dynamical system are 

diffeomorphic to one another and that the Hamiltonian is a certain function 

of the canonical invariants of K. 

b)The vector field X H on M generates a global action in .O-of R(R= 0(2) or 

U(1) for compact orbits, = 0(1,1) for non -compact orbits).This defines the 

Hamilton group G H ( = R) and the Hamiltenian appears as a function of the 

single o~ element of the Lie algebra. 

c)There exists a dynamical group( spectrum-generating group) G such that 

it possesses a global canonical action in ~O_ and contains K E G H as 

subgroups.The compact and non-compact orbits correspond to different open 

intervals of the energy and correspondingly there exists analytic continuation 

within the submanifolds(energy surfaces). 

Further,the elements of the Lie algebra G of G satisfy 

the classical equation of motion, 

~ + [ H , ~  = o • 

Note that the elements of K and G are independent of time as it should be. 

d) We note that the construction of the canonical realisation for C provides 

directly Souriau's prequantization in the following sense. 

The irreducible representation of C ( quantal representation) is 
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such that every eigenspace of G H carries an irreducible representation of 

the 'symmetry group' K~ i.e.,the Casimir operators of • commutes with ~H 

(irreducibility condition). 

3.Construction of the spectrum-generating algebras 

Let (M, ~O_ ) be the symplectic manifold of a classical dynamical 

s y s t e m °  5~2 ,~ t h e  s y m p l e c t i c  c l o s e d  t w o - f o r m  on M i s  s u c h  t h a t  ctf~=O. L e t  F(M)= 

~f1' f2' ....... 'fn~ be the C functions on M. ~-Ais called the phasespace for the 

u n d e r l y i n g  d y n a m i c a l  s y s t e m  and  i n  t h e  c a n o n i c a l  c o - o r d i n a t e s  i s  g i v e n  by  

o_ : ~dpi^dq i -d~de. (3.~) 

For V f E F(N), we define the covariant and the contravariant vector fields 
a 

df  a and  Xf  r e s p e c t i v e l y  a s  

df a = Xfa j • =( ~fa/~Pi ) dpi +(~fa/~qi ) dqi 

) . (3.2) 

a 

where Xfa_l#i defines the contraction of -q by Xfa. Let~Xfal = V(N). For 

xf(fb) = m#~ +# ~ -- . . . .  

= (3.4) 

Under the Poisson bracket relation (3.4),the real vector space F(M) becomes 

a Lie a l g e b r a . T h e  map f ~ Xf  i s  a L i e  a l g e b r a  homomorphism o f  F(N) i n t o  
a 

a 

v(M) on Nl 

i.e., X~f +~g =~Xf +~Xg, 

xcf,g 3 = xfzg - x~f, ,f,g ~ F(~). (3.5) 

Consider the triplet (N, #Z t H), the dynamical system°Then 
/ ,  

H-~ X H = ~ _~ )F (~ ~ ~ H ~ ~ (3.6) 

If H : H(Pi,qi), then ~ =0o Now, 

t 
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~#~ + E'~, #o.3 (3.8) xH(q) - ~-~ 

Using the classical equation of motion,we have 

~ = 0. (3.9) [H, faj+~ ~ - dfa/ at 

dfa/ r _ = Thus, ~ = { f a '  a = 1 ,2 ,3 ,  . . . . . .  ,n : d% = ~+~_ + iH ' f a J  O~ 

~efines the spectrum generating algebra for the given Hamiltonian H. If 

[H , fa~ = 0 = XH(fa) , then we obtain the symmetry algebra K ~ =~fa' 

1<aam%n : D@c~=__ 0,[H , fa] = 0~ o 

6,8 
4.(a) Kepler motion 

We have H = p2/  2 + V (q ) ,  V(q)  = V( q2 ) = - l / q ,  ( 4 .1 )  

where we have used the reduced mass 2~ =I and the coupling parameter 

=1.The constants of the motion which have vanishing l~oisson bracket 

with H are given by 8 

_L =a x~ , 

f =al (q2, H, 12) q +a 2 ( q2, H, z 2) 

" 2 __4A_ , (4.2) = ( ~o/I ) _LxA 

where A = p X L - q/q( the conventional Lenz-vector), 

_ _ (4.3) ucA =J2 (i_dl 2);~ +(P'q/qZ2)_q , 

al= ~o I ( p.~ / 12q ) -~2(2H +l/q), ( 4 . 4 )  
! 

a 2 = ~e (  1 - q / 1 2  ) + g2_P.q • (4 .~ )  

~o '  c~2are a r b i t r a r y  cons tan ts  depending upon H and 12. The vec to rs  A 

and L X A 

motions ( E< 0 ),we have 

2 
_r._f = a I q 

where %(H) > 

lie on the plane of the orbit and so also f. For negative energy 

2 2 
+ 2 ala 2 p.q + a 2 p 

=-~12 +re(H), ( 4 .6 )  

12 ~ - I/2H and m-- = +I. For E ~ O~ ~ takes 

values -1 and 0 respectively.Thus, the symmetry algebra K is spanned by 
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(~ , ~ ) whose Poisson bracket relations satisfy the Lie algebra isomorphic 

to 0(4) for E 0.Further, the Casimir invariants are given by 

01= ~2+ ~2  = o"o(~), 
C 2 = 0 ~  _ L. - f o 

We note that the symmetry algebra K possesses the local canonical action 

on the energy surface ME~ 0(4)/ 0(2), i.e., ME is a homogeneous space 

with stability subgroup 0(2). We consider ~ to be such that the commutant 

of 0(4) is 0(2) and • contains 0(4) E 0(2) as subgroups. 

Let ~ = 0(4,2) whose elements satisfy the following equal- 

time Poisson bracket relations: 

Lab' Lcd]j gac Lbd + gbd Lac - gad Lbc - gbc Lad' 

a,b,c,d = 1,2,5,4,5,6 and gii = g44 =- g55 =-a 66 = 1 ; i,j = 1,2,3. 

Let us identify L i =~j~Ljk , f = M z Li4 ' ~ = Li 5 ' 

~L = Li6 , T = L45 , % = L46 and ~o = L56 ° 

Let ~ = A I ~ + A 2 ~ . 

From (4 .7 )  and (4 .8) ,  we have 

[-f,~_'-/~ = S = a l % - a  2A I 

(4 .7 )  

(4 .8 )  

+ terms involving _~ X p , q X q 

and _q X p , (4.9) 

and [ S, f he = B = A I _q + A2 p . (4.10) 

6 From (4.9) and (4.10), we obtain 

A2 _ t i  "bcJ -~Q2 -- t/& ( ( l \  %2. -)r' G.~_ tA) ~_S , 

u= #._q (4.11) 

A - a2A Thus, S = a I 2 1 

We consider the following cases: 

©< 3 
~-~ (4.12) 
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a) ~ : 0  M = ! f = ~ A  v ' ~  - - 

x ,) b) ~ = o o1,= 'I-~=-~ ~ = 
For case (a) (using (.4.12) and equation of motion),we have 

Y c ~ )  I t-vz~a1~- 

= (-~)½ ( u - ~ t )  . ( 4 . 1 ~ )  

(4.13) shows that S is a linear combination of two rotational scalars 

and T (say) with arbitrary coefficients X(H) and Y(H). Let us put 

x(~) = x(~) (-~)½ 

~ ~ t  ~ - ~ ~'~'F and ~$ = V'- ~ ~4 

T = - -  t'k'~.~4~ ~C~A~ 4 W u C o ' ~  " (4.14) 

Substituting for S from (4.14) in (4.11) and using the values of a I and a 2 , 

we obtain after some simplification 

M_ = q ~ cos~ -(-2H) -½ ( u p - q / q ) sin~ 

and P = q p sin~ + (- 2H) -½ ( u p - _q /q ) oos~ 

Now, the equal-time commutation rela$+ion between M 

= (-2H) ~. 

Note that is independent of time. 

(4.15) 

and gives us 

(41G) 

For case(b),we obtain the following expressions for M, ~ , ~, T and ~o" 

- y ~ , ,  L -  ~_ ~ * ~-~/~_ ~ c~:"- "~) -~ ~(4.17)~°~ 

The structure for p, T, ['O remains same as in the case (a). 
4 

The Casimir invariants for 0(4,2) and O(4) 1,2,3, 4 are given by 

L ab 
Q2 = ½ Lab = O, 

Q3 1/48 ~ abodef 
= - LabLcdLef = 0, 
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= LbC Lda 2 Q~ 1 /4  ( Lab Lcd - Q2 - 8 Q2 ) = O, ( 4 . 1 8 )  

C 1 

C 
2 

-- L 2 + f 2  = - 1 / 2 H  = ( ["o )2 ,  

= L.~ = 0. (4.19) 

We note that the eigenspace { ~x~Iof 0(4)1,2,3,4 furnishes the eigen- 

states for ~ (irreducibility conditien).In case of non-compact orbits 

ire , ,for ~H = 0(1,1), ~ is still 0(4,2)~ however, the symmetry algebra 

is 0(3,1)1,2,3,5 and GH is generated by L46. 

4.b Harmonic oscillator ~ 

We have H = p2 /2  + q2 /2  , m=OD= 1. ( 4 . 2 0 )  

In this case, • = SU(3) and is spanned by ~, Tij~where 

L=qX~ , 

T.. zJ = TI qiqj + T2 ( qiPj + qjPi ) + T 3 PiPJ - I/3 5 ~  Tkk, 

(4.21) 

where T1, T~,T3 are given by 
~2 

2 = 6"- = +1.  T1 ~3 - T2 ( 4 . 2 2 )  

~ , ~2 , % are arbitrary functions of H and 12 and satisfy 

.+ +1, 

2H #~ + 212 W3 = { (H)" 

The Casimir operators C 2 , C 3 are given by 

C~ = L i L i + ½ Tij Tij ( - 2 H / , / 3  )2, 

(4.23) 
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c 5 = ( 3 L i Lj - Tjk mki ) mij 
3 

= - -  '~,j-3~[~)= ( -- 2H / ' / y  )3 ( spec ia l  case; c~-~2~-"O- , i -~ .  

(4,24) 

The energy surface M E on which the global canonical action of K is defined 

is given by 5 

N E ~ SU(3)/  S U ( 2 ) ; ~ , E  $ 0, 

SU(3)/SU(3)~E = 0 , (4.25) 

where K ° = SU(2) (SU(5)) is the stability subgroup of some point on the 

homogeneous space(energy surface) for E 20( E =0). Thus,the whole phase space 

f/&is filled by the energy surface according to 

.0_~= ~.oi U !_ ~ ~ J . ~  = ~ "  ' (4 .26)  

The Hamiltonia_n flow defines in R 6 a global action of U(1) which together 

with SU(3) gives the global realisation of SU(5,I). 

To construct • = SU(3,1) = ~ q  • L , T i j ,  P, _K ,S l  
9~ 

a f a /  dt = O= ~__~+[H, f -~ ~£ a J } satisfying the Poisson bracket relations~ 

[ L t ,  L j~ = d,:,j&L k 

[Li, mkm-]=Eikl ~Im + ~iml Tkl, 

[ T i j  , T k l~  = Lm( ~C~'f~ ' ~  + t£A~r~ L" ~ "+ ~ j k ~ , "  gA ~ ~ 4 1 ~  \ " 

&Li ' P ~  = ~ i ; k ? k ,  

[L L , Kj ] 

p " n  

-TLj ~ k j 

T i j  ' K k 

we proceed as follows: 

Let 

= ~ ijk Kk 

= K i ~ + Kj ~ ~ , 

= -  ( Pi ~ '~  + Pj S~~ ) , 

P = f p 

(4.27) 

+g _q 

, , ~  
K = .r p + g . (4 .28)  

Using (4.27) and the classica equation of motion, we finally obtain (for the 

special case : ~,~'= ~,' ~;,-"- ,d~.~-= O, ~{..J"}.)"= &{"} ) 
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~ij = ( qiqj + hPJ ) -~H/3) 8 ij' 

= ~ cos t - ~ sin t, 

K = p sin t + q cos t, 

S = 2Ho 
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