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ABSTRACT3 The prequantization scheme for the three dimensional
classical Kepler and harmonic oscillator problems has been discussed
in the light of the work of Souriau and Kostant and via the spectrum-

generating algebras associated with the dynamical systems,

1eIntroduction
Recently,a surge of activities on the problem of guantization of classical
systems has been initiated by Souriau's prog:ramme1 and Kostant's work on
quantization and unitary representationsz.

Veyl's 2 -=rule: Earlier,Weyl3 prescribed a remarkable method of

constructing phase~space representation of quantum mechanics( i.e.,a linear
one-to~one map of operators in a Hilbert space into c-number functions),

If g(q,p) is a classical observable,then define the Fourier transform as

roe )
qaob) = Y_g,c T(5.7) e QE%-‘_"LPdg dv - (1.1)

Since the correspondence is linear,the phase-space representation can
be completely specified by the operators associated with exp( i(§%+’QP)).

He prescribed then the L =rule such that A A
C(EH T P)

Thus, the operator @ (a,ﬁ) corresponding to g(q,p) is given by
P o0 cCEy b
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We have the inverse mapplng, A $)
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!2(3/{) is the boundary value of an entire analytic funetion of %.7% and
has no zeros for real ¥, . Further,
5 (=% -
Az, = 2CGE o), (4.5)

amd QR (@o) = 1 (1.6)

(1+5) implies the reality condition for 2 and ensures that the real functions
are mapped onto self-adjoint operators and vice~versa,Weyl's 2 -rule, however
fails in general since the distribution function could be negative.

In Schrbdinger approach,one resorts to formal quantization of

classical generalized coordinates X, and the canonical momenta Pk which are

k
defined locally.Ilf we considexr M=S1,the unit circle,multiplication by the
angle X= 6, is not an operator in the Hilbert space of periodic functions

£(6)= F( 6+ £Jt).This elucidates the difficulties with the formal quantization

of generaligzed coordinates and momenta.

Dirac' s work involves a map of classical dynamical variables

fi to self-adjoint,irreducible operators K(fi) with suitable domains in a
Hilbert space satisfying

Lx(g) » x(e)] =s18x( g, £7)
and K(1) =1,
In all conventional approaches,the solution of the Dirac problem is carried
out by quantizing the Heisenberg algebra:(q,p,I) while no apriori guarentee
is made for preserving the self-agdjointness of the rest of the operator
functions £(q,p)e

Van Hove's prequantization scheme4: Let A 7 0.A prequantization scheme on

a manifold M(= R on? the Euclidean phase~space) is a mapping £(q,p) ( the o

functions of 1nf1neer;ma1 canonical transformations which generate one-parameter
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subgroups of the Lie pseudo-group of contact transformations) onto the set
of self-adjoint operators in a complex,infinite dimensional,separable Hilbert

gpace such that

_ 9), kK5)],
K (C£9.F1) = 11*3\ [ KW ]
k(1) = 2.

Van Hove's method of Euclidean prequantization fails,however,in a simple
dynamical system like the Kepler problem where the Hamiltonian vector field
is not'complete' gince orbits with 1=0 reach the point q=0 within a finite
lapse of times

Souriau's scheme:! Let {( M, ©2) be the symplectic manifold of a classie&l

dynamical system, M= the state space and <2 = the symplectic closed 2-form
on My The diffeomorphism 4) ¢t M—>M is a canonical transformation if

¥

¢>(51>==S2.Let ¥(1) ve Creal-valued functions on M.For eacn £ = P(M), define

the vector field Xf such that
a

df =%x.d%2
a fa

Efa, £ = an(fb)’ v £, f = F(4).
Under the above Polsmon bracket relation,the vector space F(M) becomes a Lie

algebra,

Considerthe Hamiltonian dynamical system(M, 52 ,H) where H <= P(M)
is the Hamiltonian function if it has no critical points{ 4H =0). The integral
curves of the vector field XH are solutions of the Hamilton's equations and
generate the one-parameter group of canonical transformations,Thus,in Souriau's
scheme,the vector fields XH are complete algo.The essential featiire of
Souriau's prequantization scheme is that it enables to construct the contact
manifold S)zhjvone dimension higher than the phase space 512%'

5,6 47

2+ Dynamical Prequantization

We discuss in this section the prequahtization scheme for the classical
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Kepler and harmonic oscillator problems in the light of the Kostant=

Souriau scheme and using the dynamical symmetry associated with the
classical mechanical systems,

a) Let (M, n ) be the symplectic manifold for a classical dynamical

system; M= the state space and £l =the canonical closed 2-form on M,I%
admits a maximal dynamical symmetry K( K, correspondingly is the Lie algebra
of infindtesimal canonical transformations on M) acting transitively on

each energy surface ME 2 K/KO y K, being the stability subgroup of some

0
point on ME.This implies that all the orbits of the dynamical system are
diffeomorphic to one another and that the Hamiltonian is a certain function

of the canonical invariants of K.

b)The vector field Xy on M generates a global action in £2or R(R= 0(2) or
U(1) for compact orbits, = 0(1,1) for non —compact orbits).This defines the
Hamilton group GH ( = R) and the Hamiltonian appears as a function of the
single e£ element of the Lie algebra,

¢)There exists a dynamical group( spectrum-generating group) G such that

it possesses a global canonical action in S and contains K B GH as
subgroups.The compact and non-compact orbits correspond to different open
intervals of the energy and correspondingly there exists analytic continuation
within the submanifolds(energy surfaces)a

Further,the elements of the Lie algebra & of G satisfy

the classical equation of motion,

& L. [H,6] =0 -
2t

Note that the elements of K and & are independent of time as it should be,
d) We note that the construction of the canonical realisation for G provides
directly Souriau's prequantization in the following sense.

The irreducible representation of G ( guantal representation) is
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such that every eigenspace of GH carries an irreducible representation of

the 'symmetry group' K, l.e.,the Casimir operators of K commutes with (I-H

(irreducibility condition).

3+.Construction of the spectrum—generating algebras

Let (M, £ ) be the symplectic manifold of a classical dynamical
systems () = the symplectic closed two-form on M is such that d2=0. Let F(M)=
£f1, fz,.......,fni be the Caofunctions on M, f2is call‘ed the phasespace for the
underlying dynamical system and in the canonical co-ordinates is given by

o = Ldei/\dqi -dHAdt, (3.1)
For ¥ faé F(M), we define the covariant and the contravariant vector fields

dfa and X respectively as

£
a
af, = xfa_lﬂ =( ar, / n, ) dp, +('afa/ Qaq; ) day
: . 302
2,3 2k 2 o 2 2 ) -
and X, = e t V3R 9% 2% 2P (3.3)

where X _I,L defines the contraction of {1 by Xp oo Letix f: v(M). For
a a

£, £ e T n v
a? p & (1), we have 3{'» Z (’(ziq be _ _é‘{it ’i&
% (H)= 52 TV L2n g vqr oW

= (3'4)

Under the Poisson bracket relation (3.4),the real vector space F(M) becomes

a Lie algebra.The map fa — Xf is a Lie algebra homomorphism of F(M) into

a
V(M) on Mj
ine., Xﬂ(f+€g‘ :ﬁ(Xf+@X,
X[f'g] = Xfxg -XX £ fy8 & F(M)o (3-5)

%Ltama/m
Consider the triplet (M, Q,H),the dynamical system.Then

= 2 ”K 2 _
B> Xy 2t *% ('a)od A%y ’a‘t’n '3\")

- OM Jp 4+ 28 49 + M ¢ - :
and dH = % <7>)° P = %> 'a{:d (3.7)
If H = H(p.yq.), then 2% =0, Now,

1 1 2t

(3.6)

.’»1?
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x(e) = 2da 4 [wfad (3.8)
a 2t
Using the classical equation of motion,we have
r -, Ofa _ = 0. (3.9)
(5 £+ 22 = ar_/ dt
- - .
Thus, G = §£, & = 1,2,3,0ee000yn 3 df, / dt = 3,?‘,9 +[H ,£] =0k

defines the spectrum generating algebra for the given Hamiltonian H. If
=, £,1=0= XH(fa), then we obtain the symmetry algebra I & =Zfa,

1<asmsn: 2fa=0,/H, £ ]=0¢ .
2>t
44(a) Kepler motion &8

We have H = p2/ 2+ v(q), v(q) = v( q2 ) = = 1/q, (4.1)
where we have used the reduced mass pmv =1 and the coupling parameter
A =1.The constants of the motion which have vanishing Poisson bracket
with H are given by8

L =g %Xp
£ =a1(q2,H,12)g_ va, (o8, 8,19 p

= (( Ae/1?) LX A -gh (4.2)
vhere A=pXL-~ g/a( the conventional Lenz-vector),
4 =1° (1-/2% )p +pea /0 2®)a (4.3)
{ ’
a= oo (peg /1% ) -(2n +1/q), (4.4)
1 /
a, = %o ( 1~ o/1%) 4+ oopeg (44)

/
déa #oare arbitrary constants depending upon H and 12. The vectors é

and L X é lie on the plane of the orbit and so also f, For negative energy
motions ( B< 0 ),we have
2 2
fof = ay 4 + 2 aya, pegd *+ 8,

=1%o (w), (4.6)
where g (H) > 12 2 - 1/2H and = +1, For B 2, 0y G takes

values =1 and O respectively.Thus, the symmetry algebra K is spanned by
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(E » £ ) whose Poisson bracket relations satisfy the Lie algebra isomorphic
to 0(4) for E O.FPurther,the Casimir invariants are given by

c,= 1P+ £2 = op(n),

C2 =0x L.f o
We note that the symmetry algebra K possesses the local canonical action
on the energy surface ME ~ 0(4)/ 0(2), leca, ME is a homogeneous space
with stability subgroup 0(2). We consider & to be such that the commutant
of 0(4) is 0(2) and € contains 0(4) B 0(2) as subgroups.

Let & = 0(4,2) whose elements satisfy the following equal-

time Poisson bracket relations:

[Lab’ Lcdjfé gac Lbd + gbd Lac - gad Lbc - gbc Lad’

ay,byc,d = 1,2,3,4, 5 6 and 8;:= 844 il 855 ==& ¢ = 13 1,5 =1,2,3. (4.7)
Let us identify éLJ,( £5= Ly, o M o= Dig o,
N = Ligr T =Tyss E+ = Ly and T, = Leg o
Let B =A; g +4,p. (4.8)
From (4.,7) and (4.8), we have
[’£ s B ilt =8 = a1A2 - a, A1 + terms involving ¥ X p, g X g
and gXp, (4.9)
and  [S, £ ], =B =4A,q +42p. (4.10)
From (4.9) and (4.10), we obtain 6
2,98
_ru oQ Rz 1 (am +a, P

Mo (g B BIR LG

A, = W 2SS 0%y (Q\%Q'*'On_“)?f .

27 % 29 ow ¢

u= Deg . (4.11)

1A2 a2 1
=[“ (aquz—%@e“ - 2/%] *( Tawe M (4.12)

/’
We consider the following cases:
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1]

‘= 0 ¢ = _1_ £ - 0(, A
a) oo H 2 /=a s L o &
0 o =0, %= Sy L = Vwm(rxd).

For case (a) (using (#4.12) and equation of motion),we have

§ = XMW (_ 1+ 20 cosF——ULS':"‘F> +~qc_g)( 1+2\-\%~§ )G

It

= Ve vzw VT oa
—\-’lLtOSP);
g = (=2 % (w - 2mt) . (4413)

(4.13) shows that S is a linear combination of two rotational scalars
TA and T (say) with arbitrary coefficients X(H) and Y(H). Let us put

X(H) = Y(H) = (-2H)3
+24 .
and ]:'1_ = - “-\/—-E—_Hi_ cosf; -_ Ms‘LMP
T = - ‘:_"_,sz_" S’M\P + wnessf - (4.14)
Vozh '

Substituting for S from (4.14) in (4.11) and using the values of a, and a, ,

we obtain after some simplification

M = qpocosf -(-ZH)-%(uB—g/q)sinﬁ

and I = ap sinF, +(—2H)-%(u2—g/q)oos(a
(4.15)
Now, the equal-time commutation relation between M and gives us
o = (—2H)-%. (4.16)
Note that is independent of time,

For case(b),we obtain the following expressions for M, [ , 31, T and Ty,
M = 1_" [ @y 2%g) g - ng k] cosg
+ M Lo ‘% U+ 28§ )Yy *L‘f'—‘?,\f RECL

D=y Car2ng) g - ugpp 1ocnp
cos
A w \_\,2H.%C(r‘!'U‘L %)F] i
= Yo LG U (4.17)
The structure for 7, T, r’o remains same as in the case (a),
The Casimir invariants for 0(4,2) and 0(4)1 5 3.4 &re given by
= 1 ab
Gy =3 Ly L = 0y
- - < abedef -
Q = 1/48 Loploaler = O»
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=1/4 (L, 1L, 1% -a5-80q,) =0, (418)
c, = 1:2 + £2 =-1/2E = ( Ty )2,
c =L =0, (4.19)

We note that the eigenspace { qﬂmx’ngof 0(4)1,2’3,4 furnishes the eigen~
states for [} (irreducibility condition).In case of non-compact orbits
iyey yfor Gy = 0(1,1), & is still 0(4,2); however, the symmetry algebra
ig 0(3,1)1’2’3,5 and &, is geherated by L46’
i) Harmonic oscillator
We have H = p2/2 .+ q°/2, m== 1, (4420)

In this case, K = SU(3) and is spanned by I, Tij;,where

L=gXp ,
Ty =Ty a9y + Ty (aypy +agpy )+ T3 pipy - 1/3 ef Ty
(4.21)
where T1, T2,T3 are given by
2
. cP1'\-2f-‘1yq>2 + Py,
2 .2 — pa_ <P
r, = \(P-%)e Ltk -
2
T, = ¢ - 2% $o * YAz
2
TP =T = O =+l (4.22)
(P ‘p are arbitrary functions of H and 12 and satisfy
2
oH Ry + 2124’3:@(1{). (4.23)
The Casimir operators 02 , C3 are given by
Cp o= L L 4R T o=- (-2 /VF )2
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Q
]

(50 Iy = Ty Ty ) D4y

3
1 — G
= VW= (-2 / /5 ) (special case; .~ ¥~ G,
(4.24)
The energy surface ME on which the global canonical action of K is defined

is given by

M, x SU3)/ su2)ES.E 3 o,

¥ sU(3)/sU(3)%idE = 0, (4.25)
where K_ = su(2) ( SU(3)) is the stability subgroup of some point on the
homogeneous space(energy surface) for B 20( ® =0). Thus,the whole phase space

N,is filled by the energy surface according to
N < \‘S- < = .
Q=08 U tRX 572 = Fe (4.26)
The Hamiltonian flow defines in Rg 2 global action of U(1) which together
with 8U(3) gives the global realisation of SU(3,1).
To construct & = SU(3,1) =zfa 2Ly T By K S

Ly
af / dt = 0= ?ﬁ?+[H, £ ] } satisfying the Poisson bracket relationsy
a e a
[Lgy L3 = Eoplye

r -
Lhr Tom = €u Tin * S im T,

5

: < e S 4 ey T SUSURRLES
L2507 ol = Tl Stk 250 + Cldon " x4 Sidmy <A T LY e

Lsoo Byl = S5 By

- ) —

Ly o K53 = &5 K

- - _ <, ‘(‘“

'—Tij 9 Pk S = Ki ,:K\ + Kj LRy

T.. , K == (P, & P, 5

i3 * Tk (P ook + By Sk (4.27)
we proceed ag follows:
Let P =f p +g q
1 t
K =f p +g § . (4.28)

Using (4627) and the classica equation of motion, we finally obtain (for the

special case + @y= 1) F,= =0y W= =M
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=
]

(azay + pyey) €H/3) & 350

P =p cost =~gsint,

K = p sin t +4a cos 1,
S = 2H.
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