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Abstract: It is well known that the soft-wall holographic model for QCD successfully reproduces
not only the linear Regge spectrum, but also, via the holographic Wilson confinement criterion, the
“linear plus Coulomb” confinement potential, which is similar to the Cornell potential. This property
could be interpreted as a holographic counterpart of the hadron string picture, where the linearly
rising potential and Regge-like spectrum are directly related. However, such a relation does not exist
in the bottom-up holographic approach. Namely, the Cornell-like potentials arise in a broad class of
bottom-up holographic models. The standard soft-wall model is merely a particular representative of
this class. This fact is relatively unknown, so we provide a comprehensive discussion of the point. As
an example, we consider a soft-wall-like model with linear dilaton background in the metric. This
model leads to a hydrogen-like spectrum. A “linear plus Coulomb” confinement potential within
this model is calculated. The calculation of renormalized potential at short distances turns out to be
complicated by a new subtlety that was skipped in general discussions of the issue existing in the
literature. However, the confinement potential of the model is shown to be not very different from
the potential obtained in the standard soft-wall model with a quadratic background.

Keywords: AdS/QCD; heavy-quark potential

1. Introduction

The soft wall (SW) holographic model has enjoyed a considerable phenomenological
success in applications to various problems in the physics of strong interactions (see, e.g.,
a review of recent literature in [1]). The SW model was originally introduced in [2,3]
as a bottom-up holographic model with a certain static gravitational background that
reproduces the Regge spectrum of light mesons.

This background does not represent a solution of some known full-fledged dual 5D
gravitational theory; rather, it interpolates, through a model, some important contributions
from a hypothetical, unknown dual string theory for QCD. The crux of the matter is
that QCD is weakly coupled at high energy due to asymptotic freedom, and the dual
description of weakly coupled theories requires highly curved space-times, for which
the approximation by usual general relativity is not enough to analyze the dual theory.
As their dual formulations cannot be given in terms of a gravitational field theory, one
must involve, strictly speaking, the full dual string theory [4]. This task is too difficult to
implement, but phenomenologically, one can guess a background that correctly reproduces
the high-energy behavior of two-point correlation functions in QCD together with leading
power-like non-perturbative corrections known from QCD sum rules. Such a background
was invented in [2,3], which gave rise to the SW holographic approach.

Among numerous phenomenological applications of SW model which rapidly fol-
lowed after its inception, there was a derivation of heavy-quark potential by Andreev and
Zakharov [5], which is the focus of our present work. The found potential turned out to be
similar to the well-known Cornell potential [6]. The paper [5] was followed by many works
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in which the derivation of confinement potential was analyzed within various AdS/QCD
models [7-16]. They are based on a general result proved in Ref. [17]: that Cornell-like
behavior arises from the AdS/CFT correspondence using quite general conditions on the
geometry, which were found. A good review of the issue is given in Ref. [11]. The potential
derived in [5] was quantitatively compared with potentials obtained within some general
AdS deformed metrics in [8], and it was found that a geometry based on a simple quadratic
warp factor used in [5] formally agrees most closely with the data in comparison with more
complicated geometries.

In this paper, we discuss the holographic relationship between linear confinement in
the sense of the area law for Wilson loops and the Regge behavior of the mass spectrum.
They turn out to be completely unrelated in the bottom-up holographic approach: One
can construct an infinite number of bottom-up holographic models which do not lead
to a Regge spectrum but do have a property of linear confinement. As an example, we
analyze in detail a SW holographic model with a linear exponential background in the AdS
metric. The spectrum of this model is hydrogen-like; nevertheless, we show by an explicit
calculation that the heavy-quark potential following from the model is close to the potential
derived within the standard SW model with a quadratic exponential background in [5],
and for a more general case, in [15,16]. Our main results have been briefly announced in the
conference paper [18]. Here, we expand the discussions and provide detailed calculations.

The paper is organized as follows. The simplest scalar SW holographic models with
quadratic and linear exponential background in the AdS metric are recalled in Section 2. In
Section 3, we briefly review the derivation of confinement potential from the holographic
Wilson loop and discuss some important consequences. Then, in Section 4, we show a de-
tailed calculation of confinement potential in the scalar SW model with a linear exponential
background. The summary and some concluding remarks are provided in Section 5.

2. The Simplest SW Holographic Models with Quadratic and Linear
Exponential Background

Perhaps the simplest variant of the soft-wall holographic model is given by the follow-
ing 5D action for a real massless scalar field ®:

S— / i dz /3 $MN o PON D, )

where ¢ = |detgyn|. The metric is given by a modification of the Poincaré patch of the
AdSs space:

2
ds* = gundxMdxN = hlj—z (Wvdx”dx" - dzz), )
h= 23, 3)

Here, 17,y = diag{1, —1,—1, —1}, z > 0 is the holographic coordinate, R denotes the radius
of AdSs space and ¢ > 0 represents a parameter with dimensions of mass squared that
introduces the mass scale into the model. The factor of 2/3 in (3) was chosen for our
convenience. The SW holographic model in this form was first proposed in [3] (a massless
vector field and ¢ < 0 were used in the formulation of Ref. [3]).

The corresponding equation of motion,

N (\/g gMNan>) —0, @)

takes the form ,
CZ
019, ® — B2y, (62382<D> =0. ®)
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It is evident that the same equation of motion follows from the action
5= / d dz /3 e¢FgMN D DN D, ©)

in which the metric modification (3) is replaced by the “dilaton” background ¢ in the
action. This formulation of SW holographic model was put forward in [2] for massless
vector fields and ¢ < 0. Its extension to the massless scalar fields (as in (6) but again with
c < 0) was first studied in [19]. Now the formulations with dilaton background of the
kind (6) are most frequently used in the literature, with various Lagrangians, backgrounds
and different signs for the mass parameter c. By redefining the field ® = z3/ 2g=c2*/ 2¢in (5),
we get

"9y — 92, + (0222 - % - 2c> ¢=0 @)

The free hadronic states in holographic QCD are described by the plane-wave ansatz in
physical space-time: ’
¢(x,z) =eTy(z), ¢*=m? 8)

where (z) is a z-dependent profile function. This ansatz leads to the one-dimensional
Schrodinger equation for the mass squared:

—¢'+ V)Y = my, ©)
with the potential of the harmonic oscillator type:
V(z) = 2% + % —2c. (10)

The corresponding normalizable solutions yield the discrete Regge-like mass spectrum:
ma =4c(n+1), n=0,12,.... (11)

We define the soft-wall holographic model with linear dilaton via the replacement of
function h(z) in (3) by
h = e*=/3, (12)

The factor of 4/3 in (12) is again chosen for simplification of the expressions which will
follow. The mass parameter ¢ > 0 has now the dimension of linear mass. Equivalently,
the model can be defined via the replacement of quadratic dilaton background ¢ in the
action (6) by the linear dilaton background e??. By repeating the same steps as above, we
arrive (making use of the field redefinition ® = z3/2¢=c2 ¢) at the Schrodinger Equation (9)
with the potential

15 3¢
it
This potential is identical to the potential for the radial wave function in the Coulomb
problem. The corresponding discrete spectrum is

V(z) = (13)

9¢2
m2 = ¢?

- =0,1,2,... 14
n 4(n+k)2/ n 7 7=y 7 ( )

where k is the positive solution to the condition on the existence of normalizable solutions
(in the Coulomb problem, this condition is k(k — 1) = I(I + 1), where [ is the orbital
quantum number; thus, k = [ 4+ 1, and one obtains the famous Coulomb degeneracy
between the radial and orbital excitations):

k(k—1) =15/4, (15)
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namely, k = 5/2.

3. The Confinement Potential from the Holographic Wilson Loop

The holographic derivation of a static potential between two heavy sources was
originally proposed by Maldacena in [20]. In brief, one considers a Wilson loop W situated
on the 4D boundary of Euclidean 5D space with the Euclidean time coordinate 0 <t < T
and the remaining 3D spatial coordinates —r/2 < y < r/2. Such a Wilson loop can be
related to the propagation of a massive quark [20]. The expectation value of the loop in the
limit of T — co is equal to (W) ~ e~ TE("), where E(r) is interpreted as the energy of the
quark-antiquark pair. This expectation value can be also obtained via (W) ~ =%, where S
represents the area of a string world-sheet which produces the loop W. Combining these
two expressions, one gets the energy of the configuration, E = S/T. A natural choice for
the world-sheet area is the Nambu-Goto action:

L
5 [ @8 /det[Gandn X Mo X ], (16)

where «' is the inverse string tension; XM are the string coordinates” functions, which
map the parameter space of the world-sheet (1, ¢>) into the space-time; and Gyy is the
Euclidean metric of the bulk space.

This idea was applied to the vector SW holographic model in [5]. The asymp-
totics of the obtained potential at long and short distances qualitatively reproduced the
Cornell potential:

V(r) = —; + or + const, (17)

which was accurately measured in the lattice simulations and is widely used in the heavy-
meson spectroscopy [6]. The calculation of Ref. [5] was further extended to the cases of
SW models generalized to an arbitrary intercept parameter (i.e., when the linear Regge
spectrum has a general form m2 ~ an + b, where the intercept b is arbitrary) and to the
scalar SW model in [15,16], where many details of the derivation can be found. Below, we
briefly summarize the results.

The Euclidean version of the metric (2) takes the form

. [R? R?

The string world-sheet (16) has a well-known property of reparameterization invariance.
By choosing the parametrization §; = t and ¢, = y and integrating over t from 0 to T
in (16), one arrives at the action

/2
TR2 '
S= g | WVITE, 19)
—r/2

where 2z’ = dz/dy. The action is translationally invariant (there is no explicit dependence
of the Lagrangian on y); hence, there exists a conserving quantity which represents the first
integral of equation of motion:

— ——— = Const. (20)
Since z = 0 at the ends of the Wilson loop, ¥ = £r/2, and the system is symmetric, z has its

maximum value at y = 0:
zZo = z|y:0. (21)
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The integration constant in (20) can be expressed via zg. Using z’|,_, = 0in (20), one can
obtain the following expression for the distance r:

2
r—2y A /d’m 4 (22)
h2
1—o* h2

where
hy = h|Z:Z0, v=12/29, A=cz. (23)

The expression for the energy can be derived from E = S/T using the action (19) and
expression (22). The relevant details can be found, e.g., in [15]. The final result is

R2
\/7/ 2 [ 5
\/1—v4h2

The integral in (24) is divergent at v = 0, but it can be regularized by imposing a cutoff of

e—0:
R (¢ fdo| A0 F do
[c [do ,0 /
E= X/? hz_D /72 )
0 1—v4

(24)

h2
and introducing the regularized energy Er:
R*D
Er = s , D= h|,_,, (26)

where D is the regularization constant. One can argue that the infinite constant in Ey is
related with the quark mass and must be subtracted when calculating the static interaction
energy [17]. The resulting finite energy is

1
R? [c| [dv h
E—;JVX/af““;‘D —Dl @7)
0 _ 42

U2

The expressions (22) and (27) give the static energy E(r) as a function of distance
between sources. For the quadratic dilaton correction to the AdS metric (3), the function
E(r) cannot be found analytically. However, one can calculate the asymptotics at large and
small r. The results for the simplest scalar SW model are as follows [16]:

2
ec
E S W(Tmr o = 37 (28)
Rz Ko
E o {_7 + Uor}’ (29)
where )

1

2 =
Ko = 1 co T<4) (30)

2mp?’ 0=tz PT (2m)3/2°

The expressions (22) and (27) have physical meanings only if they are real-valued, i.e.,
if the expression under the square root is positive. One can show [16] that this restriction
leads to the condition

0:Go0l,—zy =0, Gooly—zy # 0. (31)
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In fact, this condition represents a general statement first derived in [17] (and formulated
in a more clear and concise way in [21]): The Gy element of the background metric dual
to a confining string theory in the sense of the area-law behavior of a Wilson loop must
satisfy (31).

The condition (31) can be given a heuristic physical interpretation [22]. The time-time
component of metric is directly related to the gravitational potential energy U for a body
of mass m: U = mc?,/goo. The confinement behavior can be qualitatively deduced by
following a particle in the AdS space as it goes to the infrared region (large z)—in general
relativity, this would correspond to an object falling by the effects of gravity. If the potential
U(z) has an absolute minimum at some z, then a particle is confined within distances
z ~ zg. In this situation, one can think of a particle confined effectively in a hadron of
size zg. Such a physical picture has a nice visualization within the light-front holographic
approach, where the holographic coordinate z is proportional to the interquark distance in
a hadron [22]. The condition (31) becomes nothing but the condition for extremum of the
potential: U(z) = mc?+/g00(z)-

The analysis of Ref. [17] (see also a brief summary in [21]) contains another general
result: The large-distance asymptotics of potential energy in a confining string theory is
given by

Goo(z
=, 20(7’;?) r. (32)
This asymptotics can be directly derived from (22) and (24) by expanding the corresponding
integrands at v = 1, expressing the integral in terms of r, and then substituting it into E (this
procedure will be demonstrated below for the SW model with linear dilaton). Since Gy
in (3) reaches its minimum value at z% = 2%, we get Goo(z0) = 2ecR?/3, and the relation (32)
leads immediately to the large-distance asymptotics displayed in (28).

A theorem of Ref. [17] states that (31) is a sufficient condition for linear confinement in
the sense of area law for Wilson loops. It is obvious that the SW holographic model with
positive quadratic dilaton represents just a particular case when the linear confinement
holds. One can easily construct an infinite number of other bottom-up holographic models
with linear confinement. In particular, the quadratic function z? in (3) may be replaced by
z% and o > 0, i.e., by any positive power of z. If « # 2 then the spectrum will not have a
Regge form. Thus, the linear confinement in the bottom-up holographic approach is not
related to the Regge behavior of mass spectrum.

The Coulomb behavior for short distances is governed by the AdS metric at small z.
Therefore, if the ultraviolet AdS asymptotics are not violated (and they cannot be violated
in sensible holographic models because otherwise the holographic dictionary from the
AdS/CFT correspondence is lost), the Coulomb short-distance asymptotics will always
be reproduced.

The discussion above shows that the asymptotic structure of the Cornell potential (17)
can be reproduced in a broad class of bottom-up holographic models. In particular, the
choice (12) of function h(z) in the metric (18), corresponding to the linear dilaton, « = 1,
will also result in a Cornell-like potential. Below, we derive this potential for the given
special case and finally estimate a quantitative difference with the case of quadratic dilaton.

4. Confinement Potential in the Scalar SW Model with a Linear Exponential
Background

4.1. Expressions for Distance and Energy

Consider the scalar SW model of Section 2 with a linear exponential background (12)
in the metric (18). We introduce this notation:

A = czo, vs. = z/ 70, hy = eicz0/3 — 64?\/3/ (33)
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and the expressions for the distance (22) and energy (24) take the form
1
2,4A(1-0)/3
r= % / dv ve ’ (34)
¢ V1 — v4e8A(1-0)/3
R2 ¢ | Ao/3
= ¢ / dv . (35)
! A 5 V11— v4e8A(1-0)/3
A simple analysis of the reality condition for two expressions above,
1-0* 098 >0, velo0,1], (36)
shows that the given condition is satisfied if
3
0<A< 2. (37)

2

The integral for potential energy (35) must be regularized in order to eliminate the
divergence at v = 0. This should be done carefully so that all emerging divergent terms
are properly subtracted. First, we expand the integrand of (35) at v — 0 (note that in the
series expansion of the square root in the denominator its first, second, and third order
derivatives are all equal to zero at v = 0):

etho/3 1 4A1
024/1 — p4e8M1—0)/3 v—0 v 30

From (38), it follows that in order to regularize the energy, we must subtract two terms:

+0(1). (38)

1
R? ¢ edho/3 1 411
Be— € fao RS
! A ) 2\ — phe8rA1-0)/3 02 30

1

R? ¢ 1 41

=~ [do|[ =+ =>==).

+mx’/\/ v<v2+30> 39
€

The second integral here can be easily calculated:
R2c [ (1 4r1 R* ¢ 1 4
——|dv| 5+ )=—~(-1+-——1 4
! A 0(02+ 3 U) mx’)L( teT3 ns), (40)
€

and we get the regularized energy:

R>c/1 4\

where the physical finite energy E is

1

2 4Av/3

- R¢c /dg € IR N (42)
! A / 02 \ (/1 — v4e8A(1-0)/3 3

Note that compared to the previous case (26) the e-terms in the regularized energy (41)
depend on A, or equivalently, on z.
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4.2. Asymptotics of Energy at Small Distances

The small distances in the energy (42) corresponds to small A. Thus, the small distance
behavior of the potential energy can be found from the asymptotic expansion at A — 0 of
the expressions for distance and energy. By expanding the integrand in (34) at A — 0, we
get (we will need terms up to O(A?); the O(A3) terms are neglected)

1 2 201 _ 2.2 4V _ 2
S %/dv v 4V v (1-90) 8\ 0 (1+20%)(1—0) (43)
/ 1—of 3 (1—0v4)%/2 9 (1 —0%)5/2

The result of integration can be written in terms of the incomplete beta function as
1 1
/ doo® (1 — o4y hme(” b+1> (44)
0 T 4xo

which lead to the following expression:

A 31 4A 3 1 1
8A2 3 3 3 5 3 7 3
9[Bx(4’_2) —2B; (1'_2> +Bx<4,—2> +23x<4/—2>—
3 9 3
4Bx<2,—2>+2Bx<4,—2>H, (45)

The first beta function has two positive arguments, so it does not contain any divergences.
To show that the divergences from other beta functions cancel each other out, we make use
of the following expansion for the incomplete beta function:

0 (a _ )bl

+(9<(x— 1)”2). (46)

We can see immediately that for the incomplete beta functions inside the first square
brackets, only the first two terms in the expansion (46) are important. In addition, since the
second arguments of these beta functions are equal and the beta functions have opposite
signs, the divergences stemming from the second term of the expansion (46) cancel each
other out.

The expansions for each of the incomplete beta functions inside the second square
brackets are

(33) 2 0(3-3) -0 e o o),
(1) @B<L—i>+§u—xwﬂ+§<l (1),
BX<Z,—;) x:13<i,—§>+§(1 )24 1= 021 0((x - 1)), .
b (5-3) (i3 +Jo-odum e
&(2,—3) x:13<2,—2> +§(1— )~3/2 %(1 1/2+0( (x—1) 1/2)
(53 2 o(33) 20w o(e ),



Universe 2023, 9, 114 9 of 14

Taking into account the coefficients in front of the beta functions, we can obtain the cancel-
lation of all divergent terms schematically:

1-24+142-4+2=0,

2 1 - -2 (48)

Thus, we can switch to the usual “complete” beta functions.
The remaining beta functions are then equal to

31 2 3 1 1 1
— = = — — —— = —— 1—7 = —
(i2) =5 ea) =y o(a) =2
3 3\ 1 3 2 5 3\ _ mp
B<4’_2) 20’ B<1’ 2> 3’ 3(4’ 2) 6’ #9)
7 3\ 1 3\ 4 9 3\ _ 5mp
B(I_Q)__af B<Z 2)"3’ B(x z)“ 6’
where the constant p is the same as in (30). Putting it all together, we obtain

AT 27 422 (1 3mp?
AZOPC[1+3(2P_1)+9<2_4P+2)]‘ (50)

Now consider the ultraviolet asymptotics of the energy. By expanding the integrand
of (42) at A — 0 up to O(A?) terms, we obtain

1
R? ¢ 1 1
E=——||dv|5|——-1
A—>07m’)LL/ U<2;2(1/1_U4 >+
4A (1 1 v* — 03
— -1+ ——= |+
3\v\V1—v4 (1 —ov4)3/2
2 2 5.3 o4 6 _ 107 8
8A~1+42v 20 20* +v° — 4o +4v+ ~1|. 61
9 (1—v4)5/2

The first term in (51) was integrated before. The result is

1
do 1 1 11

The second term in (51) can be rewritten as
1 X X
8 () i [
v \V1— o4 Cxoles0|) pley/1 — o4 v
0 y—0 y y

= lim lim /de /ydv [ do
© xo1e0 i’ vl=ey/1 — 04 5 vl=¢y/1 — o v
y

y—0

We can now integrate using (44), and we obtain

1. . 1 1
C= 4;{%11—%{&(5'2) —By<e,2) —lnx—i-lny} =... (54)
Y
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Using the expansions (46) and

a

— ]L a+1
By(”fb) y50 a + Oy, (55)

it is seen that all divergences cancel each other out:

L= 1limlim{B<s,;> —2VT—2+0((x—1)*?)-

x—1e—0
y—0

3
y? + Oy 1nx+1ny} =... (56)

The x — 1 limit can be taken safely. By expanding the remaining terms at ¢ — 0, we obtain

_1, 1_ . 1 _1_ e+1 —
45%%{3 % ¢<2) - Iny+ O(e) + O(y )—f—lny}... (57)

where 1 is the Euler constant and ¥ is the digamma function. The cancellation of all
dangerous divergencies is clearly seen. The final result of integration is

.:_1(7+¢(§)) = —1(-2m2), (58)

where we have used the known value for ¢(1/2).

The third term in (51) has been already integrated in the calculation of the small
A asymptotics of the distance. This term can be rewritten in terms of incomplete beta
functions using (44):

1 3 3 3 3 5 3
w(pmg) rom(p) (1) (3 3)
7 3 3 9 3
+Bx<4,—2) — 4By <2,—2> +4Bx<4,—2>. (59)

The expansion of the first term in (59) is

(3 o33) 2o oo ). e

The expansion of other terms in (59) is given in (47). While taking into account the expan-
sions (47) and the coefficients in (59), we can check that all divergences are canceled schematically:

142—-2-2+1-4+4=0,
5 2 1 1 2 (61)

Collecting all the terms together, the expansion of energy at small A becomes

R? ¢ 11 4) 3 1 1
E_WA[B<4’2>+3<ZIHZ+B(4’2)B<1’2>>
8A2 1 3 3 3 3 5 3
o (i) (e 3) o (3) (G 3)
7 3 3 9 3
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By substituting the values of corresponding beta functions from (49) and from

L1V 2 1 3y s
3(4,2)_ 2 3(4, 2)_ %, (63)

we obtain, finally,

R? ¢ 2) 422 (1 9702
EAgozmxlpA{lJrB(l2p(1n2+1))+9<2+4p 5 )} (64)

The last step is to derive E(r) at small r using the expansions (50) and (64). A straight-
forward way consists of making series reversion in (50) and substituting A(r) into (64). By
writing the expansion (50) as

r = mA4aA® +azAd 4+ O\, (65)
A—=0

where the series coefficients are equal to

1 2(2p0—1) 4 (1 3mp?
= — = - = —_—— —_— 4 —
a oc’ ap 300 as 9pc <2 0 + > ) (66)
we can obtain the reversed series A(r):
A = Arr+ Ayr® + Ay + O(rh), (67)
r—0
with coefficients
20%c*(1 -2
Alzal_lzpc, Azz—al_r’az:ipc( p),
40%c3 3 N 3 (68)
— ~5(n.2 2
Az =a;>(2a; — aa3) = 5 [(8— 2>p —4p—0—2].
From (67), we also obtain the series expansion for 1/A:
11 A A3 Az )
The substitution of (67) and (69) into (64) yields
R% |1 A, B A3 A3 AiB, )
E= —F— | ———+— —= - = 7
r—0  27a’p | Arr A%—i_ 3 +<A§’ A%+ 9 r+ 0| (70)
where for compactness we temporarily introduced two new notations:
1 97p?
By =2(1-2p(In2+1)), By=4(5+40-——). (71)

By inserting the values of the coefficients A; and B; into (70), we finally found the ultraviolet
asymptotics of potential energy:

R? 1 1 2In2 2% ’
Eoow 727'cp2;+ T (B +4)p —Hr+ O )] @2

It is interesting to compare (72) with (29) and (30). The leading Coulomb contributions
are equal, as they must be, since both models share the same leading ultraviolet background
determined by the metric of AdS space. However, the next-to-leading contributions are
different: it is a constant in the case of a SW model with linear dilaton, and it is linear
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in r in the SW model with quadratic dilaton. The linear-in-r correction in (72) becomes
the next-to-next-to-leading contribution. Our calculation of short-distance energy (72) has
turned out to be substantially more cumbersome than the calculation of (29) in [16] because
we needed to calculate this last contribution.

This remark is rather important because many discussions of holographic confinement
potential in the literature make use of a general relation for renormalized energy from the
original analysis of Ref. [17]. However, that relation was derived using one subtraction of
the infinite constant, whereas we needed two subtractions, and this caused the aforemen-
tioned subtleties in the calculation of renormalized energy. It is precisely because of these
subtleties that we had to re-calculate the energy from the very beginning. One can show
that this situation occurs for any metric deformation (z) in (2) of the form

h =", (73)

when 0 < n < 1. A discussion of this point will be presented elsewhere. In particular, a
study of the confining potential for the warp factor (73) was performed in Ref. [13]. One
might conclude that our analysis is a particular case of the analysis in [13] for n = 1.
However, as we have emphasized above, this is not the case.

4.3. Asymptotics of Energy at Large Distances

The large distances in the energy (42) correspond to large A. However, the reality
condition (36) restricts the maximum value of A by A = 3/2 (see (37)); hence, the large-
distance behavior of the potential energy should be derived from the asymptotic expansion
atA — 3/2.

In our further analysis, we closely follow Ref. [16], where we derived the given infrared
asymptotics in the scalar SW model with quadratic dilaton. The main contribution to the
integrals for the distance (34) and the energy (35) comes from the upper integration bound,
v = 1, since the integrals diverge in the upper limit. We need to expand the integrands
around that point. The corresponding expansion of expression under the square root is

1—04319/3 — A(A)(1—0)+BA)(0—1)?, (74)
v—1
8A 320 3247
A(M)=4-—=,  BA)=—F—-—5—6 )

The other factors under the integrals either do not diverge or do not depend on v. This
leads to the following expressions for the distance and energy:

dov

76
e c/\/A (1-0)+BA)(v—1)?2 76)
R? ¢ dv
E — PAN/3 / 77
oot Tl AC VAMN 1 —v) +BA)(v—1)2 7
By substituting the integral in (76) into (77) and taking the limit A — 3/2, we obtain
295,22
p o R, (78)

r—oo ' 97T

It can be easily checked that the obtained asymptotics (78) satisfy the general rela-
tion (32) for the infrared behavior of energy in confining string theories. Indeed, Gog in (12)
reaches its minimum value at zy = % We then obtain Ggy(zg) = 4¢%c2R?%/9, and the
relation (32) reproduces (78).
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5. Concluding Remarks

We briefly reviewed the calculation of potential energy arising between static sources
within the framework of the soft-wall holographic approach to strong interactions. In the
case of a positive quadratic dilaton background, this calculation is known to result in a
Cornell-like potential. We argued further that the qualitatively same static potential must
arise for a broad class of modified SW models with positive dilaton backgrounds which
do not lead to Regge spectrum. As an example, we considered in detail a particular case
of other type of the dilaton background, namely, a scalar SW model with “linear dilaton”.
The spectrum of this model is hydrogen-like—i.e., it has no Regge behavior, even vaguely.
However, the static potential predicted by this model is very similar. Below we demonstrate
a one unexpected aspect of numerical similarity.

The derived large- and small-distance behavior of energy, given by (78) and (72), can
be compactly rewritten as

R2 2¢2¢2

c
= ?0'001”, Ooo = P (79)
E R—Z[—@—i-C—HTr} (80)
G o)
where
=L c-Xm2 20 P (GBr+a)p-4), p= (%) (81)
2mp?’ 3’ 97 27)3/2

If we measure the energy in units of R?/a’, the quantity ¢ becomes the slope of linear
potential. This slope is different at large and short distances. In the Cornell potential (17),
however, the slope is the same at all distances. Consider the ratio of slopes in the large- and
small-distance asymptotics derived for our scalar SW model with linear dilaton,

oo e?

o
Linear dilaton : — = ~ 1.23. 82
o PGt a4 (52

It is seen that the difference in the slopes is not very significant, especially taking into
account that the bottom-up holographic approach is supposed to describe QCD in the
large-N, limit—the discrepancy is roughly within the accuracy of this limit.

Let us compare the ratio (82) with the analogous ratio in the scalar SW model with
quadratic dilaton, which follows from (28) and (30):

Quadratic dilaton : (;io = HLpZ ~ 1.24. (83)
0

We see that the ratios in (82) and (83) are impressively close. Note also that this ratio in
the vector SW model with quadratic dilaton coincides with (83) identically [5]. All this
indicates that within the SW bottom-up holographic approach, the given ratio seems to be
approximately model-independent.
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