
 

 

TPSM Study of even-even 144-148Ce Isotopes  
 

Umera Nawaz1*, Suram Singh1 and Veerta Rani1 
1Department of Physics and Astronomical Sciences, Central University of Jammu, Jammu - 181143, INDIA 

. 

Introduction 
 

Neutron rich nuclei lying in the vicinity of 

doubly magic core 132Sn are becoming one of the 

interesting research areas to study the nuclear 

structure. One such example is Cerium. The 

neutron rich isotopes of cerium provide 

information about the transition region from 

spherical to deformed nuclei. From earlier 

studies it has been observed that in cerium 

isotopes the nuclear deformation begins to occur 
between N = 86 and N = 88. Also, the shape 

transition in the even Ce isotopes from being 

spherical nuclei to deformed has been observed.  

The Skyrme-Hartree-Fock and Bardeen-

Cooper-Schrieffer (BCS) 

approaches(microscopic), and an algebraic 

collective model (macroscopic approach) were 

recently used to investigate cerium isotopes, 

which suggested that the phase transition from 

spherical to deformed occurs between 146Ce and 
148Ce [1]. It has also been found that 142Ce with 

two valence neutrons exhibits a vibrational 
spectrum, but with the addition of more 

neutrons, 148Ce begins to exhibit rotational 

behavior. [2]. 

 

Theory of Applied Model 
 

The aim of this work is to study the nuclear 

structure of neutron rich isotopes of cerium with 

mass number 144, 146 and 148 by applying 
Triaxial Projected Shell Model (TPSM) 

technique. This model has proven to be very 

successful in explaining the structure of various 

nuclear isotopic chains. In TPSM approach the 

intrinsic basis are triaxially deformed which are 

constructed using triaxial Nilsson potential. This 

basis set consists of 0-qp(quasiparticle) state, 

two proton (pp) qp, two neutron (nn) qp, two 

proton and two neutron (2p2n) qp 

configurations. The good angular momentum 

states are subsequently obtained by applying 

three-dimensional angular momentum projection 
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technique. Finally, in the projected basis the 

configuration mixing is carried out and the 

Hamiltonian gets diagonalized. The Hamiltonian 

used is given by [3], 
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where H0 is the single-particle spherical 

Hamiltonian, GM is the monopole pairing 

strength and GQ is the quadrupole pairing 
strength.  

For the even-even system, triaxial 

quasiparticle configuration is composed of 

different K states which are projected along the 

symmetry axis, while the vacuum configuration 

comprises of K = 0,2, 4... states. 

 

Results and Discussions 
 

The yrast energies obtained after the 
diagonalization of the Hamiltonian are shown in 

Fig. 1. This is the lowest energy band that we get 

after configuration mixing of various basis 

states. The figure shows that the calculated 

results are in good agreement with the 

experimental values 

In Fig. 2, the backbending plots are 

obtained for 144Ce, 146Ce and 148Ce isotopes. The 

backbending (S-shaped) curves signify the 

increase in the moment of inertia which results in 

sudden decrease of rotational frequency. For 
144Ce, by TPSM results the backbending is 

observed at 6ħ and this is in accordance with the 

available experimental results. Further, for 146Ce 

TPSM predicts the backbends at 8ħ and 18ħ but 

there are no bends obtained in the plots of 

experimental data. Also, for148Ce, TPSM plots 

show the bends at 8ħ and 20ħ whereas 

experimentally the backbend is only at 20ħ. 

 



 

 

 
 

Fig. 1 Comparison of theoretically calculated 

(TPSM) and experimental yrast band energies 

for 144−148Ce isotopes 

 

Summary 
 

The yrast band and the backbending plots 

are obtained using the TPSM techmnique for the 

even-even 144-148Ce isotopes. The results are 

compared with the available experimental data 

and it has been observed that they are in 

agreement with each other. 

 

 

 
 

Fig. 2 Backbending plots for 144-148Ce in which 

twice of the kinematic moment of inertia i.e., 

2J(1)(ħ2MeV−1) is plotted against square of 

rotational frequency (ħω)2 
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