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Abstract

In this paper, we discuss the properties of the generating functions of spin Hurwitz
numbers. In particular, for spin Hurwitz numbers with arbitrary ramification profiles,
we construct the weighed sums which are given by Orlov’s hypergeometric solutions
of the 2-component BKP hierarchy. We derive the closed algebraic formulas for the
correlation functions associated with these tau-functions, and under reasonable ana-
Iytical assumptions we prove the loop equations (the blobbed topological recursion).
Finally, we prove a version of topological recursion for the spin Hurwitz numbers with
the spin completed cycles (a generalized version of the Giacchetto—Kramer—Lewariski
conjecture).
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1 Introduction
1.1 Topological recursion and integrability

It is well known that the Chekhov-Eynard—Orantin topological recursion [10] is
closely related to integrability. However, the details of a general relationship between
the two phenomena remain unclear. Although topological recursion is believed to be a
universal property for a huge class of enumerative geometry and physics problems, the
proofs of its validity are often model-dependent and technically involved, and at this
point, despite the lack of understanding of the general relationship, various universal
properties of integrability often help to prove topological recursion.

One of the most general applications of integrability to topological recursion is
given by the weighted Hurwitz numbers. The generating functions of the weighted
Hurwitz numbers are hypergeometric tau-functions of the 2-component KP (2-KP)
hierarchy. The study of topological recursion for the general hypergeometric solutions
of the 2-KP hierarchy was initiated in [1, 2] (subsuming a huge list of particular exam-
ples known before). Many elements of the general construction including quantum
and classical spectral curves were properly identified there. However, the topolog-
ical recursion was proved only for an infinite-dimensional family of solutions with
polynomial weight functions and finite sets of the second times of the 2-KP hierar-
chy. Topological recursion for the much more general families of the hypergeometric
solutions of the 2-KP hierarchy was proved in [4, 5]. The proof there is based on
the free field description of the KP hierarchy, more specifically, on the free fermion
construction and the boson-fermion correspondence.
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These results indicate that the same line of reasoning can be applied to any inte-
grable hierarchy with free fermion description. In this paper, we describe topological
recursion for the hypergeometric solutions of the 2-component BKP (2-BKP) hier-
archy. A well-known neutral fermion description of the BKP hierarchy allows us to
follow the general approach for the 2-KP hierarchy, derived in [4, 5]. Many steps can
be repeated without essential changes, but some specifics of the 2-BKP case (mostly
important, the built-in oddness of the parametrizations) require extra analysis and lead
to new phenomena. We derive the general closed algebraic formulas for the correlation
functions in the 2-BKP case and prove the blobbed topological recursion [8], that is,
the linear and quadratic loop equations.

1.2 BKP and spin Hurwitz theory

The BKP hierarchy is believed to govern the spin Hurwitz numbers in essentially the
same way as the KP hierarchy governs the ordinary Hurwitz numbers [19]. However,
the important construction of the weighted spin Hurwitz numbers (in the sense of
[13]) is still unavailable in the literature. In this paper we show how to construct
integrable generating functions of spin Hurwitz numbers for arbitrary ramification
profiles and number of the branch points. These generating functions are Orlov’s
hypergeometric tau-functions of the 2-component BKP hierarchy [20], and the weights
associated with the ramifications serve as parameters. It is not clear at the moment
how to reduce naturally the number of parameters and to define the direct analogs
of weighted Hurwitz numbers in the spin case. To this end, we suggest two possible
candidates for the elementary weight functions.

It is well known that the tau-functions of the KP and BKP hierarchies are related
to each other by a simple quadratic relation [9]. Following Orlov [20], we describe
this relation for the hypergeometric tau-functions. Namely, for any hypergeometric
tau-function of the 2-BKP hierarchy we find the corresponding tau-function of the
2-KP hierarchy. It is easy to see that such KP tau-function is not unique. This relation
between tau-functions should lead to the non-trivial relations between the spin and
ordinary Hurwitz numbers.

1.3 Giacchetto-Kramer-Lewanski conjecture and its generalization

Additional input and motivation to study the correlation functions of the corresponding
hypergeometric 2-BKP tau-functions comes from a recent work of Giacchetto, Kramer,
and Lewarnski [12]. They study in detail the theory of so-called spin Hurwitz numbers
with completed cycles, both single and double, whose elements occur naturally in a
number of other works in relation to computation of the volumes of strata in the moduli
spaces of holomorphic differentials [ 11] and Gromov—Witten theory of Kéhler surfaces
[17, Introduction].

Remarkably, Giacchetto, Kramer, and Lewariski propose a conjectural statement on
Z-equivariant version of topological recursion for the correlation differentials of these
numbers, and they prove that the statement on topological recursion is equivalent to an
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ELSV-type formula for spin Hurwitz numbers with completed cycles that expresses
these numbers in terms of the Chiodo classes twisted by the Witten 2-spin class.

Using the formulas for the correlation functions and loop equations we prove a
natural generalization of the Giacchetto—Kramer—Lewariski conjecture, that is, a Z>-
equivariant version of topological recursion for the double spin Hurwitz numbers with
arbitrary finite linear combinations of the spin completed cycles.

Let us remark that while with the motivation coming from [12] we focus on this
particular family of spin Hurwitz numbers, we expect that our modification of the
methods of [4, 5] should immediately work for other families of the generating func-
tions of the spin Hurwitz numbers, analogous to the families investigated in [4]. We
also expect that the integrable approach to the topological recursion in the BKP case
should be as universal as for the KP case. Moreover, without significant modifications,
it should also work for other integrable hierarchies described by free fermions.

1.4 Notation

A partition A is strict, if Aj > Ay > A3 > -+ > Agy > Aeoy+1 = 0, where £(Q) is
the length of the partition. We denote the set of strict partitions, including the empty
one, by SP. A partition A is odd if all parts in A are odd. We denote the set of odd
partitions, including the empty one, by OP. For a partition A by A(k) we denote the
number of parts equal to k.

1.5 Organization of the paper

In Sect. 2 we recall the neutral fermion description of the BKP hierarchy. In Sect. 3 we
explain how to construct the generating functions of the spin Hurwitz numbers that
solve the 2-BKP hierarchy and how these tau-functions can be related to the generating
functions of the ordinary Hurwitz numbers. Section4 is devoted to the correlation
functions for the general hypergeometric tau-functions of the 2-BKP hierarchy. In
Sect.5 we prove that these correlation functions, under mild analytic assumptions,
satisfy linear and quadratic loop equations. In Sect.6 we derive explicit expressions
for the n-point correlation functions. In Sect. 7 we use these expressions to prove the
topological recursion for the spin Hurwitz numbers with the spin completed cycles.

2 Neutral fermions and boson-fermion correspondence

In this section we remind the reader the neutral fermion formalism and boson-fermion
correspondence in the framework of the BKP hierarchy. More detailed descriptions
can be found in [9, 20-22].
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2.1 Neutral fermions

Let ¢, k € Z, be the neutral free fermions satisfying the canonical anticommutation
relations

(B, dm) = (=1 Skim 0. @2.1)

Note that ¢g = 1/2. These relations define the Clifford algebra as an associative
algebra.

For the vacuum vector |O> and the co-vacuum <O , satisfying
ém|0)=0, (0|¢p_n =0, m <0 (2.2)
the elements ¢y, ¢x, - . . @i, |O) with ki > ko > --- > k,, > 0 form a basis of the
neutral fermion Fock space Fp,
Fg = span {¢r, Pk, - - - Pk, [0) [ ki > ko > -+ >k = 0}, (2.3)
and its dual
Fj = span {(0|¢x,, ... Prou, | ki <ko < -+ <km <0}. 2.4)
The space Fp splits into two subspaces
Fp=F)® Fp, 2.5)

where fg and F }9 denote the subspaces with even and odd numbers of generators ¢y,
respectively. The same decomposition exists for F7.

There is a nondegenerate bilinear pairing Fp x Fj; — C, and the pairing of
(U] € F} and |V) € Fp is denoted by (U|V) with

(010) = 1. (2.6)
The vacuum expectation values of an element a of the Clifford algebra is a pairing of
(0] and a|0), which is denoted by (0]a|0). It is uniquely defined by the anticommutation
relations (2.1), property (2.2), and the following relation:

(0]gol0) = 0. (2.7)

In particular, if a is an odd element of the Clifford algebra, then (0|a ’O) = 0.Itis easy
to see that the bases in (2.3) and (2.4) are orthogonal. Let us focus on the space .7-'2 and
its dual. The basis can be labelled by strict partitions A € SP in the following way:

|A> _ {¢A1¢Az e Driy |0> for ¢(A) =0 mod 2, 2.8)

V205,05, - brg,$0[0) for £0) =1 mod 2,
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and similarly for ]—'g*. From the anticommutation relations we have

(M) = (=DM . 2.9)
It is easy to see that
(0| [0) = Sk, 0 HIm], (2.10)
where
0 for m <0,
1

H[m] = 3 for m =0, (2.11)

(=™ for m > 0.

Bilinear combinations of neutral fermions ¢ ¢, satisfy the commutation relations
of the Lie algebra B,. Let (E i, j) = 8 k0.1 be the standard basis of the matrix units

{Eij|i,j € Z}. Then ¢y¢_ corresponds [9] to

Fen = (=1)"Egn — (=D E_p ¢ (2.12)
with the commutation relations

[Fa,lﬁ Fc,d]
= (=1)28p e Fug — (—=1)%arc0F-pa + (—1)8p1a.0Fe—a — (—1)84.aFc.p.
(2.13)

For the bilinear combinations of neutral fermions we introduce the normal ordering
by

D Pm:= Pcdm — (0|dxdm |0). (2.14)
It is skewsymmetric
Dkbm= — PPk, (2.15)

in particular, :¢y¢r:= 0. The normal ordered quadratic combinations of neutral
fermions satisfy the commutation relations of a central extension of the algebra Bsg:

[:batpis Betpa]l = (=1 8b1c.0 :papa: —(—1)*8artc.0 :PpPa:
+ (=128 1d.0 :cba: —(—)*8atd.0 Pcp:
+ Be.p8ard — Sa—c.08p-a.0)((=1)*H[b] — (=1)’ H[a]), (2.16)
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where H[a] is given by (2.11). The operator :¢x¢_: corresponds to the projective
representation of the Lie algebra B, and will also be denoted by Fj .
Let us consider the generating function

$(2) =) hd. 2.17)

keZ

It satisfies the anti-commutation relation

{02, p(w)} =8z + w). (2.18)

Here we introduce the delta-function

5(z — w) = Z(%)k (2.19)

keZ

It satisfies
S(z—w)f(z) =6z —w)f(w) (2.20)

for any formal series f(z) € C[[z, z~'] and can be represented as

28(z +w) = : : (2.21)
w) =1 —_—— - .
z |z]>|w] T+ w |w|>z] Wtz

where 17|~ |, 1s the operation of Laurent series expansion in the region |z| > |w].
Quadratic combinations of the generating functions ¢ (z) generate a Lie algebra
with the following commutation relations

[$1(z1)P(w1), P(22)p (W2)] = 8(w1 + 22)P (z1)P(w2) — 8(z1 + 22)P(w1)P (w2)
+ 8(wy + w2)P(22)¢(z1) — §(z1 + w2)P(z2)P (w).

(2.22)
For the normal ordered operator we have
1 Z—w
¢ ()P (w) =9 ()P (W): + 3 z>w| - (2.23)
2 Z4+w
2.2 Vertex operators
For k € Zoqq we introduce bosonic operators
1
Je=35 2 D" (2.24)

mez

) Birkhauser
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satisfying a commutation relation of the Heisenberg algebra

k
[Jk, Jm] = §8k+m,0~ (225)
From (2.2) we have:
Jn|0)=0, (0[J_py =0, m>0. (2.26)

Let us consider the vertex operator for the BKP hierarchy introduced in [9],

=~ 1 9
My _ k B 19
Vg ' (2) = exp Z 't | exp 2 Z el B (2.27)
keZly keZty,
These operators satisfy the anticommutation relation
{V\él)(z), Vél)(w)} =25(z+ w) (2.28)

similar to the relation (2.18).
It is convenient to introduce generating functions of the bosonic operators:

L= nh. J@®= Y s (2.29)

+ +
k€Zyyq k€Zgyq
Then one has

Vs (@)(0]e’+® = 2(0]goe’ Vo (2),

v Ji(t Jo(t (230)
Vi (2)(0]goe”™*® = (0]e™+ Vg (2).
Let us consider a bilinear combination of the vertex operators
~ 1~ ~
Ye(z, w) = 5vl(;)(z)vtgl)(u;). (2.31)

Using the anti-commutation relation (2.28) it is easy to show that the vertex operators
Y (z, w) satisfy acommutation relation equivalent to the relation (2.22) for the bilinear
combinations ¢ (z)¢ (w):

[?B(Zl, wi), Yp (22, w2)| = 8wy + 2)Yp(z1, w2) — 8(z1 + 22) Vg (wy, w))

+8(wi + w)Yp (22, 21) — 8(z1 + w2) Y (22, ).
(2.32)

W Birkhauser
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It is also convenient to consider its regularized version, corresponding to

P (2P (—w):

I—w

_, 2.33
Z+w ( )

%) 7, !
Vi (2, w) =Yp(z, w) — 5zl

where for the second term we assume the series expansionin |z| > |w]|. This expression
has no pole at z = —w, moreover, it is antisymmetric with respect to the permutation
of z and w. These vertex operators can be represented as

_ kypky — Ly 1) o
7O wy = 1222 (ezkezxdd w2 T, (e ) 1) (234
2z+w

From (2.30) it follows that

Vi @ w){0]e” O = (0] 2 21 w): (235)

2.3 Boson-fermion correspondence

For the neutral fermions the boson-fermion correspondence describes an isomorphism
(22]

ob: Fo~BY =Clt,n,t...] (2.36)
fori =0, 1. Here
op(i) =1, (2.37)

where we introduce |1) = ﬁ¢o|0), and for both i = 0, 1 we have

k i iv-1_ 0
t, ohlioh) ™l = (2.38)

L7 iyl =
opJ_i(op) 3 o

for k € Z;rdd. The boson-fermion correspondence is given by

. <1|ej+(t)|a) for |a> € ]-"};,
op(la) = 2.39
50D =Vl Ola)  for |a)e 70, (239
where (1| = ﬁ(O‘qﬁo. The boson-fermion correspondence between two different
representations of the central extension of the By, algebra is given by
ol (P w): (o5~ =V (2, w). (2.40)

Below we will work only with .7-"2 component of the fermionic Fock space and its
bosonic counterpart.

) Birkhauser
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Relation between the Schur Q-functions and the BKP hierarchy, in particular, is
described by the following result of You:

Theorem 2.1 ([22]) For the states (2.8) the boson-fermion correspondence yields
op(|a) =27 D20, (t)2). (2.41)
Here Q); are the Schur Q-functions (see Section III.8 of [18] for definition and details).

It was shown by Date, Jimbo, Kashiwara, and Miwa [9] that for any group element
of the central extension of the algebra B,

G =exp Z akm Oxbm: |, (2.42)
k,meZ

the bosonic image of the fermionic state Ge]*(s)|0> solves the 2-BKP hierarchy.
Namely,

t(t,s) = (0]e’* P Ge’-®|0) (2.43)

is a tau-function of 2-BKP hierarchy.

3 Hypergeometric tau-functions and weighted spin Hurwitz numbers

In this section we suggest a way to construct the weighed sums of the spin Hurwitz
numbers which solve the 2-BKP hierarchy. There is a certain ambiguity associated to
the choice of the weights, and we discuss two natural candidates for the role of the
elementary weight functions.

3.1 Hypergeometric tau-functions of 2-BKP hierarchy

Following Orlov [20] we consider a set of parameters 7,,,n € Z,suchthat7,, = —7_,,.
In particular, 7y = 0. Then

DD i =2 Y (D' T =2 Y (=D TiFrx. (3D

kel kel kel

Consider the group element

D =exp (Z(—l)ka :¢k¢_k:) : (3.2)
keZ
then
t(t,s) = (0]e’* O De’-®0) 3.3)

W Birkhauser
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is a tau-function of the 2-component BKP hierarchy symmetric in the variables #; and
sk. From Theorem 2.1 it follows that this tau-function has an equivalent description
(20]

t(t,s) = Y 27 PTG 0,(4/2) 04(5/2). (3.4)
reSP

Here SP is the set of all strict partitions including the empty one. These are the
hypergeometric tau-functions of the 2-BKP hierarchy.

Consider 7 (x), an odd function such that T (k) = T for k € Z. For future applica-
tions it is natural to introduce the topological expansion parameter h. Consider a new
even function v/ (z) such that

YhGE+1/2)=TE+1) —T(). (3.5)

We assume that ¥/ (z) is itself a series in 72, ¥ (h%,2) = > 520 h?€¥q(z), where
Yrp4(z) is an even formal power series in z, therefore T also depend on /. The constant
term of this series, Yo = ¥ (0, z), is also denoted by ¥ = ¥ (2).

Remark 3.1 Our definition of the parameters T corresponds to the doubled parameters
of [20] with the inverse sign.

3.2 Spin Hurwitz numbers

Spin Hurwitz numbers, which count the ramified coverings with sign coming from
spin structure, were introduces by Eskin, Okounkov, and Pandharipande [11]. Using
TQFT, Gunningham [14] found a combinatorial expression for all genera spin Hurwitz
numbers, which uses the representation theory of Sergeev’s group. In this section we
recall this combinatorial expression. We address the reader to [11, 12, 14, 16, 17, 19]
for the basic definitions and properties. Different authors use different conventions,
our notation is consistent with that of [12].
For any set of variables or parameters r; and any partition u let us denote

£(w)

re = 1" (3.6)

j=1

Let OP(d) and SP(d) be the sets of odd partitions and strict partitions of the size d
respectively. Then the Schur Q-functions can be expanded as

A
EM=8(1) ¢
0=2"71 > Lp, 3.7)
1eop(a))
with the inverse relation
_ _ L)+
pu=2" 3" 27T 0;. (3.8)
AESP(|u])

) Birkhauser
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Here py = kt; are the independent variables,

0, for even £
S(u) = ) (3.9)
1, for odd £(u)

and z,, = [ (k) kPP,
The characters of the Sergeev group Qf satisfy the orthogonality relations

el
3 ot S s (3.10)
weOP(d) n
and
A
Y ottt 3.11)
2eSP(d) ‘o

Let us also introduce the central characters

244!
Ao =er
fu - 26(/‘)2,1 dim VA °H*° (3.12)
Here
dim V* = ¢y =277 410, (3.13)

Pk=0k1

is the dimension of the irreducible supermodule associated with the strict partition A.

Let us consider the disconnected spin Hurwitz numbers for the CP! with the ram-
ifications at k branch points given by odd partitions w1, ..., ux with |u;| = d. The
Gunningham formula [14, 16] describes them in terms of the central characters of the
Sergeev group:

k
g5k g, _ dim V*
Hi (1, ) =274 Limt C /2 Z 2 m)( ) 1_[ o G149
2€SP(d) j=1

where €*(u) = || — £(w) is the colength of the partition p.

3.3 From spin Hurwitz numbers to 2-BKP hierarchy

Let us single out two of the k partitions and denote them by u and v. Using Eq. (3.12)
we can rewrite the spin Hurwitz numbers (3.14) as follows

W Birkhauser
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A Ak—z
0 — L) +e k=2 g s ¢ A
HY (i, .oy i, o, v) = 27 2EOOHEOIHL7 5 Gu) Z 2 ()Z_Z_Unfw‘
A€SP(d) e |
(3.15)

Let us introduce k — 2 families of weights r,(,,j) forl < j<k-—-2,meZy,

associated with £k — 2 branch points. Then for the spin Hurwitz numbers (3.15) we
introduce their weighted combinations

Hi vowy= > Hj(ui. ... e o VR )Ry 06,
H1smens itk —2 €OP(d)
(3.16)

where

dim V¢
dndr

Ru(r) = Bt () —t(w)/2 Z
0 €SP(d)

27Ty (3.17)

Let us stress that the trivial ramifications p; = 19 are allowed in the summation.
For the empty partition we put Ry = 1. If we compare this expression with the
decomposition of the functions p,, (Q) in the basis of Schur Q-functions (3.8), then
using Eq. (3.13) we get

Ryu(r) = h= 8 W= W2, (0, (8k1)re). (3.18)

In particular,

1
Rin(r) = 5Q[1](5k,1)"1 =71,

1
Ry (r) = 5Q[2](8k,1)”2 =1y,
(3.19)

1 /1 1
Ri3(r) = 2h%) <§ 0318k, 1)r3 — EQ[2,1](5k,1)”2rl> = 3?(73 —1rary),

1 1 1
Ry = 5Q[3](5k,1)"3 + ZQ[z,l]((Sk,l)rzrl = 5(2r3 + rory).

Definition (3.17) is justified by the following observation: from the orthogonality
relation (3.10) it follows that

> 2 EWRER, () =1 (3.20)
neOP(d)

) Birkhauser
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Therefore

L+ ohek A2 ()
HY (v,p)=2"" 2 § 278G 2 v T4 3.21)
d.xiVs 1 Zu Zv H » (
reSP(d) j=1
By the Riemann—-Hurwitz formula

k=2
2—2g = €(u) + L) — Y L), (3.22)

i=1

where g is the genus of the covering curve. Consider the following generating function

0 L) L)
_ _ L+
=3 3 WO w0 T T vites:
d=0 pu,veOP(d) j=1 j=1
(3.23)
Then for any choice of parameters r,Ej ) from (3.21) we have

Theorem 3.1 The generating function t(t,s) is a hypergeometric tau-function of the
2-BKP hierarchy

k-2
rt.s) = Z 0,(t/2)0,(s/2) "ij)'

P ) 1 (3.24)
This tau-function can be identified with (3.4) if one puts
I, )
T =5 ;logrm ) (3.25)

Similarly to the case of ordinary Hurwitz numbers, we can consider the limit when
the maximal number of the branch points & tends to infinity.

3.4 Weighted spin Hurwitz numbers

In the previous section we have constructed the weighted sums of the spin Hurwitz
numbers that lead to the tau-functions of the 2-BKP hierarchy. While working with
arbitrary parameters r,ﬁj ) allow us to trace more information about the spin Hurwitz
numbers from the properties of the tau-function, similarly to the case of the ordinary
Hurwitz numbers [2, 13, 23] we would like to introduce the distinguished weights,
parametrized by one parameter ¢;, j =1, ..., k — 2 for each of k — 2 points.

By analogy with the ordinary weighted Hurwitz numbers, see [ 13] and, more specif-

ically, in [2, Equation (3.1)], one would tend to put R/L(r(j )y = cﬁ*(u)' For this choice

W Birkhauser
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the weighted spin Hurwitz numbers (3.16) would be independent of /. However, it is
easy to see that R, should depend on £-this is clear from (3.19). Therefore, for the com-
binations of the spin Hurwitz numbers defined by (3.16) we need some “completion”
of the partitions for the rational weight functions,

oo
Ry (r?y =" RO, (3.26)
k=0

anew effect of spin Hurwitz numbers which is absent in the theory of ordinary weighted
Hurwitz numbers.

Let us consider the generating function (3.24) for the case with the maximal number
of the branch points k = 3. We claim that this tau-function can be considered as a
generating function of a spin version of dessins d’enfants. We also put s = & 1A ",
therefore the non-trivial branching is allowed only at two points. Then the tau-function
(3.24) reduces to

() = Z 05.(t/2) 05.(8k,1)

20GOFIAT BT * (3:27)

reSP

where r, = ril). From the orthogonality relation (3.11) and Eq. (3.23) it follows that

®=y h‘“’%‘i‘”lé@w)uﬁ p, 2 (3.28)
T = i . .
. it Zu
neOP j=1

To relate R, to ¥ (z) we use the results of Sect. 4 below. From Eq. (3.28) it follows
that the coefficients R, (r)’s are proportional to the coefficients of the correlation
functions W, namely

° — —M n
We=h™" Y 277 Ru(r) ) XN XN (3.29)
neOP L(u)=n oEeS,

If we require R,(LO) =" then for n = 1 the leading term of Eq. (3.29) reduces to

1 k—1
Wo.1(0) = 5 3 <%> Xk, (3.30)

keZlyy

After identification of this expression with the general expression for the correlation
function given by Proposition 4.4 we find ¥ (z),

1 1+ /112222
¥(2) = ; log % (3.31)

One can identify it with E, however, it is also possible to consider the /-deformations.
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Another possibility is to consider

— 1 c°z
Y(z) = 7 log (1 + T) (3.32)

The associated functions R, (3.19) are rational functions of ¢,

1
Ruy(r) =1+ ge’h?,

1 9
Rynr) = <1 + §02h2> <1 + §62h2> ,

1 9
Rpy(r) = ¢ (1 + gczhz) (1 + gczhz) ,

1 9 17
Ruiay(r) = <1 + §c2h2) (1 + §c2h2> (1 + §c2h2> .

For ¢ = 1 the generating function t(t) for this choice of parametrization can be
identified with the generalized BGW tau-function [3],

(3.33)

T8GW (t/2)|yar, 2 =T(t 51T, (3.34)
h

3.5 From BKP to KP

It is well known that the solutions of the BKP hierarchy are related to the solutions
of the KP hierarchy for the particular choice of the variables [9]. Following [20], in
this section we consider this relation for the hypergeometric tau-functions of both
hierarchies. Namely, we relate any hypergeometric 2-BKP tau-function (3.4) to a
hypergeometric tau-function of the 2-KP hierarchy.

Let us consider a 2-component system of neutral fermions ¢,§a) ,a = 1,2, satisfying
the anti-commutation relations

{60} = =1/ 61md 10 (3.35)

Following [15] we can relate them to the charged free fermions

v+ (=DIy*, Y — (=g
M _ 7 7T (N S el 3.36
9 7 . ¢ =V-1 7 (3.36)
for j € Z. We immediately have
v v g = D7 (06 + 06 ). (337)
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Consider the bosonic operators for the charged fermions

B ="t (3.38)
JEZL
Then for odd k& we have
I =1V + 2, (3.39)

where the bosonic operators Jk('/ ) are given in terms of the corresponding neutral
fermions by Eq.(2.24).
Let us consider the hypergeometric 2-KP tau-function

Tkp(t, §) = (0]e "+ O 2 XIm TiCHIVim i) 1X06) o), (3.40)

where T} are some parameters and JfP t) = Z,‘zil t Jf,f . Note that the group element
in (3.40) is not the most general diagonal group element. However, for this choice of
the the group element we have a simple relation between this tau-function and a tau-
function of the 2-BKP hierarchy. If all even time variables vanish, 7, = sy = 0 for
k € Z,, then in terms of the neutral fermions we have

m o)) © (1T oD oM et @ @ (D) @
p(t, s)|t2k=52k=0 :(0‘€J+ O+J) (1)622J=1( 1) TJ(JPJ ¢7JA+.¢1 4)7] )6',* (s)+J" (s)|0>

(3.41)
Therefore [20]
wp(t, )], o o= Tt (3.42)
where
z(t,5) = (0|e”+ 2 Lt D 150505 1-6) o) (3.43)

is a hypergeometric tau-function of 2-BKP hierarchy (3.4). By definition, it depends
only on odd times 741 and s2x1-

Let us compare the expansions of the tau-functions txp and t in terms of the
corresponding sets of the Schur functions. For the hypergeometric 2-KP tau-function
(3.40) one has

xp(t,s) = Z 2 Xipa VG=i=1/D) ¢ 6)¢ (5), (3.44)
A

where s, are the ordinary Schur functions and the sum runs over all partitions. These
tau-functions are generating functions of the ordinary weighted Hurwitz numbers. For
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the 2-component BKP tau-function (3.43) we have

= 2 o FG—1/2)) @1(£/2) Q5.(8/2)
T(t,s) = ZS e* 2.0 j QU206 (3.45)
reSP

We see that for any hypergeometric tau-function of 2-BKP there exist a hyper-
geometric tau-function of 2-KP satisfying (3.42). It is easy to see that such 2-KP

tau-function is not unique. Let A" denotes the transpose partition of A. Then, as it
follows i.e. from the Giambelli formula,

s (t) |12k:O = sy () |f2k:0 (346)

and for the Eq. (3.44) we have

2 C o U (R(j—i—1/2
Tk p(t, S)|t2k:s2k:0 = Ze Z:('v!)d]/f( (=i /))S)J(t)s)»’(S)|t2k:S2k:0
A
S T (R(i—ie1/2
= Ze 2. jyex WG —i=1/ ))Sl(t)sk(s)‘t2k=52k=0
A
= Z 2 L VG125, (8)s5(8) }t2k=52k:0' (3.47)
s

Therefore, (3.42) is also satisfied for the tau-function (3.44) with ¥ (z) substituted by
Y(—z — h).

Hence, we can relate any generating function of the spin Hurwitz numbers (3.45) to
the generating function of the ordinary Hurwitz numbers (3.44). Moreover, we have at
least two different hypergeometric tau-functions of the 2-KP hierarchy, corresponding
to a given hypergeometric tau-function of the 2-BKP hierarchy. We expect that this
identification should lead to a non-trivial relation between spin and ordinary Hurwitz
numbers.

Let us consider a few examples. If 7'(x) = ax, then ¥/ (z) = a is a constant, and
the tau-function of the 2-BKP hierarchy is very simple

ttys) = 3 2 2D/

%)
reSP 2

(3.48)
=exp|a Z kty sk

T
k€Zyyq

More complicated example corresponds to 7' (x) = % + ax for some a and b. It
is associated with to 1/ (z) = %zz + % + a. The identity (3.42) for this case with

a=2band h = 1 was proven by Lee [17]. On the KP side the generating function,
considered by Lee, is given by the last line of (3.47).
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4 Diagonal group element and n-point functions

In this section we prove explicit closed algebraic formulas for the correlation functions
We n.
g

4.1 Operators J;
For the diagonal group element (3.2) introduce the operators
Iy =D ' 1D, 4.1

Our first goal is to provide a few explicit formulas for these operators. To this end, we
introduce a fermionic operator

Eu, a) = pa'e"?)p(—a" e /?):
= Z (=D™ Om—kDP—m: ake(m—k/Z)u
k,meZ
= Z (—1)" Eyy_g make™m=k/Du 42)
k,meZ
Let
2 — =22
@ =—pr— @.3)

Then in terms of the bosonic operators (2.24) the operator £ (u, a) is areparametrization
of the operator \7532) given by (2.34), and can be represented as

114 et
5(u,a)=§1+e_u exp (20 Y a*SGhuwyiy [exp |20 Y aF Sty | -1].
— e
keZdy, keZdy,

4.4)

Proposition 4.1 The operators Ji belong to the image of the projective representation
of Bxo for all k € Zoqq

1 N
Te= 5 Yo (=) lelm Tt T f (45)
2
meZ
and
1 . .
Jk — E[ak]ezT(3“+l/2aa")72T(3“71/2‘“’”)5(14, a)|u:0' (46)
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Proof From (2.13) we have

[Z(—l)“TaFa,a, Fk,m} = (Ti = Tk = T + To) Fim. @.7)
ae’
Hence

D_lﬁk,mD — o AT ATy =T ﬁk’m (4.8)
and

1 _ _ A

Jk — E Z(_l)m+leTk+m T—k—m Tm+T7m Fm,m+k’ (49)
meZ

or, equivalently

1 L .
T =5 ) (Ol on =it lon b,y . (4.10)

mez

Comparing it to (4.2) we get

T = l[ak]er(au+1/2aaa)—r(—au—1/2aaa)—T(au—1/2aaa)+T(—au+1/2aaa)5(u a)|

(4.11)
O
4.2 Topological expansion
In terms of ¥ we can rewrite the formula for Jy, k € Zjdd, as
1 _ B .
— E Z(_l)m+leTk+m Tfkfm Tm+Tfm Fm,m+k
mez
1 m-+1 £ 2 1
=5 2 D" exp 23 W2 m = 5+ ) ) Fon s (4.12)
mez i=1
Let  ¢e(y) - exp (20 VU2, y + 1 ————+z)))

Skﬁa
:exp( #w(hz y)) Then

1 k A
=5 2 D" g hilm + 2)) Fm

mez

W Birkhauser



Elements of spin Hurwitz theory: closed algebraic... Page210of44 26

- ——Za ¢k(y)\ at1E (hu, —a)
1 khdy) —
=73 Z dy exp (%—S((ha y)) v, y)) \ _
r=0 Y
ffw
[u ak] —exp | 2hu Y (—a) Sy T
leZ0

exp | 2hu Y (—a)'S(hu)J;
leZly,

I, (SUhdy)—
4 gay eXp( Sty V" ’y)) -

ehu/Z + e*hu/2

[u”a*] il exp | 2hu Z a 'S{huyJ_;
leZtyy
exp | 2hu Y a'SUhu)Jy | . (4.13)
leZly,

We also consider an arbitrary series y(h2,z) = 220:0 124 y,(z), where each y,(z)
is an odd formal power series in z. The constant term of this series, yop = y(0, z), is
also denoted by y = y(z). The prime object of our interest in this and the subsequent
sections are the h-expansions of the (disconnected) n-point functions

ki kn
"t (t, X X
H® = Z Btr(—at|t e (4.14)
Kivkn€Zly, 0O ! "
and
Wy =D;---D,H;, (4.15)
where D; := X,;dy,. Then from the definition of the operators J,, we have
o0 mi my J_ .
. X7 Xy Yo Yt T @
Hi= O I e 0}
mi,...mn €ZLg 44
(4.16)
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J_
Z?:o r* Zkezt]d hkk [Zk]yd (2) |
o

we= S XX 0Ty e 0).

(4.17)

Using the inclusion—exclusion formulas, we define the connected n-point functions
H,, and W, n > 1, and they expand in & as

oo oo
Hy =) Hy b2 Wy =Y W, %2, (4.18)
g=0 g=0
4.3 Preliminary formulas for Hy and W},

Denote

w o zw
z—w)?  (z+w)?

B(z,w) := (4.19)

Proposition 4.2 We have the following formula for Hy:

. m; r S(m;hdy)
H = Z l_[ X Z 1_[8 exp (Zm, Sn(iha) 1//) ‘y:O

mi, Z:ddl 1 ..... rp=0i=1

n huj hu;

n it —
P m e te 2 S(huizid.);
[ |uiz" 1| | e isi%a)i
,11 L E 4uih8(l/liﬁ)

l_[ (eEZMiMjS(FLuiZiazi)S(huijazj)B(Zl‘,Zj) _ 1) 7 (4.20)

1<i<j<n

where Y = ¥ (h?, y) and y; = y(h?, z;). An analogous formula for Wy is obtained
by replacing T]7_, mLle’ in Equation (4.20) by [/_, X!"".

Proof This formula should be understood as an expansion in the sector |71 | < |z2]| <
- & |zn| < 1, and it comes directly from the commutation of the operators Jj given
in Equation (4.13), once one observes that

1
[/+@. J-()] = 7B w). @.21)

We refer also to an argument in [5, Section 3.2], which does exactly the same in a bit
different situation. O
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4.4 Closed algebraic formula for Wy ,
We use a change of variables of exactly the type as in [1], namely,
X = ze 2VOQ@), (4.22)

Define D := Xdy and define Q by D = Q~!zd.. In the case we have variables
X1, ..., Xy, we define z; by X; := X(z;), and furthermore we use the notation
D; = X;dx;, Qi = zi/Xi - dXi/dzi, ¥; = Y(W*, zi), yi = y(@), ¥; = Y (2, 30),
and ¥ = ¥ (yi).

Theorem4.1 Forg >0,n>2,2g —2+n > 0, we have:

oo n ) ) 1 o S(r,favl 1//
Wen =[R2 ) [l_[ D111 G- Vo™ ST [ "]}
j i=1 !

hu; ﬂ
1—[6 7 e 2 . i (S(hu;izi9;,)y; —yi) Z
Pl 4u; hS (u;h) ST,

l—[ (eh ukt ¢S (Rugzidy )S(huezedz, ) Bzk,ze) _ 1) (4.23)

(vk,ve)EEY

Here Ty, is the set of all connected simple graphs on n vertices vy, ..., vy, and E,, is
the set of edges of y.

Remark 4.1 1t is an explicit closed algebraic formula of the same type as in [4, 5]. In
particular the sum over ji, ..., ju, 71, ..., I is finite for every (g, n).

Remark 4.2 Note that y; and hence 9y, are odd in z;. Note also that E, and hence

S(t; hdy,;)

S(Eha ‘) 1//, are even in z;. Note also that D; and Q; are even in z;. Note also that in
the second line the coefficient of ulr’ for odd r; is even in z; and the coefficient of ul
for even r; is odd in z;. These observations imply that the right hand side of (4.23) is
necessarily odd in z1, ..., z,.

Remark 4.3 Note that the structure of the formula suggests that there might be non-
trivial poles along the diagonals z; = z; and antidiagonals z; = —z;, but in fact the
statement of the theorem in particular implies that these polar parts cancel and the
resulting formula is non-singular at the diagonals and antidiagonals. Cf. a discussion
in [5, Remark 1.3 and Corollary 4.10].

Proof of Theorem 4.1 Recall the formula for W? in Proposition 4.2. Passing to the
connected n-point functions W,, via inclusion—exclusion formula we replace

1—[ <eh2u,—uj8(huiz,-32i)S(hujzjazj)B(zi,Zj) _ 1) (4.24)

I<i<j<n
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with
Z 1_[ (eﬁzukues(ﬁumazk)S(hwzeaz[)B(Zk,ze) _ 1) ) (4.25)
V€L (g, ve)€Ey,

Using the series expansion in u1, ..., u, (cf. [5, Lemma 4.5]), which is applicable

only if n > 2 (hence the restriction on n in the statement of the theorem) we can
rewrite the formula as

S(m;hdy) —

R O I LT vl s C

ml’“_,mnEZ;rddizl Iy ip=01i=1

n n e% —+ e_% ( )
ri _mi uj S(huiZiaZ')yifyi
u. Z —_—]—¢€ ¢
T |
i=1 i=1

2 : 1_[ (ehzukugS(hukaa IS (Rugzedz)) B(zi,ze) 1) . (4.26)

V€ElH (vr,ve)€EEY

The next observation that we use is the following. Replace the summation in Equa-
tion (4.17) from Zml,...,mnelim 0 >y myeZosq- This replacement changes the
disconnected W, but when we pass to the connected ones, this replacement just
changes the W » by adding to it the singular term }‘B(X 1, X2) (hence the condition
2g — 2+ n > 0 in the statement of the theorem), cf. [5, Proposition 4.1]. With this
adjustment, we have for g > 0,n > 2,2¢g —2+n > 0O:

Won =2 Y [ Z [Top e St
M1,y €2ZLodd i=1 r =0i=1
n n % _hi
T« |TT¢ PEe 2 un(Stuiziog)5i-v)
el ! izl 4u,-h5(u,-h)
Z l—[ (emukugS(hukszzk)S(Fmeuaz[)B(zk,zz) _ 1) ) (4.27)

v €y (v, ve)€Ey,

Now note two things. First, 9y’ exp (Zml Sg?,‘iga) ) v ) is even in z; for even r; and odd

in z; for odd r;. On the other hand, in the expression

n n Tw _hy
Hu{fz{ﬂi l_[e 2 te 2 i (S(huizide)3; i)
e L ie1 4u,-h5(u,~h)
Z 1_[ (eEZMkugS(hukzk8Zk)S(ﬁugz;zB,£)B(zk,ze) _ 1) (4.28)

yeln (v, v)€kEy

we only have terms with 7; 4+ m; odd. This means that the whole expression in which
we take the coefficients of []_[l,1 zm’] isoddinzy, ..., z,, and thus we can extend the
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summation to my, ..., m, € Z. Second, we can use the trick that for a polynomial g
in m we can replace Z X™g(m) by Zoo DJ X™[t/]g(t). These two ideas allow to
rewrite (4.27) as

o n
Wen =[R2 N DIl Y [x[ e
J1seees Jn=0 my,...mpeZi=1
S(mjhdy)—
Z l_[ =2t wi art 2m; S(ha}; llfl
Ty, =0i=1
hul ﬁu,
i ui (S(huizid,)y;—yi)
[ —— L i
[l_[ ]ll_[ 4u,h$(ulh)
Z l_[ (e 2ugiey S (huugzx 0z, )S (Ratpzedz,) B(zroze) _ 1) (4.29)
y€ln (vg,ve)€Ey,
(here foreachry, ..., r, the second line expands in i with the coefficients that are man-
ifestly polynomial in #1, ..., t,). Finally, we apply the Lagrange—Biihrmann formula

for X; = zie ?Vi to Equation (4.29) (cf. [5, Lemma 4.7]) and obtain the statement of
the theorem.

4.5 Special cases

In this section we discuss the formulas for W, , for (g,n) = (0,2) and n = 1,
in the variable z related to X by X = ze 2Y0@) We begin with unstable terms
(g,n) =(0,2) and (0, 1).

Proposition 4.3 For (g, n) = (0, 2) we have:

1
Wo2 = 23(11, 22) — ZB(XL X»). (4.30)

Proof Indeed, as we discussed in the proof of Theorem 4.1, the change of summation
fromm € Z(‘):ld tom € Zygg and the commutation rules for J4 (X1), J—(X>2) imply
that the (0, 2) term gets a correction. We have:

1
W0’2+ZB(X1’X2) = Z Xmlxmz[zml mz] 2m11//1+2m2¢2 B(Zl )

my,m3€ZLodd

Z XlemZ[Zml m2] 2m11//1+2m21//2 B(Zl ZZ)

mi, m2€Z

1
- B(z1.22). 431
10,0, (21, 22) 4.31)
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In the second line, in order to change the summation from m, my € Zogg tomy, my €
Z,weusethat B(z1, z2)isoddin z; and zo and 1 = ¥ (y1) (respectively, Yo = ¥ (y2))
is even in 77 (respectively, z2). 0O

Proposition 4.4 For (g, n) = (0, 1) we have: Wy 1(X) = y(2)/2.

Proof 1t is a straightforward computation. First, recall that

S(mhdy) —,, 0 hu _hu
2m —gga5- ¥ (h7,y) e2 +e 2 29.)y(h2
H()'I(X) [h™ 1] Z Zar S(hdy) — urzm] hS@h euS(huﬁé)}(h ,2)
mezZ7, odd ’
) ey (@)
Z Zar mlll(\)‘ [u" 7] (4.32)

+
meZOdd

With this equation, in order to compute Wy, 1, we consider its differential. We have:

ety (@)
DWo ()= 3 X’"ZB’ 2’"‘“”‘ [u” 2120,
merdd r=0
(2)

— Z szar 2m1ﬁ(y)‘ rzm]eu) ¢ Qsz(Z)

merdd r=0
— Z XM 7™ ]2V (@) 9Dy (2)

2

mEZo+dd
= 3 xmpmemoan 20YE

mez 2

1
= EDy(Z). (4.33)

Hence Wy 1(X) = y(z)/2. O

4.5.1 Stable terms forn = 1

Consider g > 1, n = 1, that is, we consider W| = Z?:o h2e—l We 1(X).

Proposition 4.5 Under the change of variables X = ze~>Y V@) ywe have:

Suhy)—

J=lppn, 22 Sy v PV

Wi(X) = + E D/ [t ]e (hay) s

j=1
00 - hu _hu
il 2 SUR) e e 2 N

DI o= 2V g7 o~ Sty r w(SEMuzd)y= | (434
+j;0 ge e W\ Zansan) ¢ (4.34)

Herey = y(2),y = V(h*,2), ¥ = ¥ (), ¥ = ¥(h*, y), and D = Xdx.
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Proof By direct commutation of the operators, we have:

hu
S(mhdy) —
2m v T 4e? S(huzd,)y
W X — Xm ar S(hd)) ‘ r m - u 20z)Y
1(X) mEZT Z 5 4uhSuh) ©
‘'odd
2 )y e% + e_% ety
_ xm P S(hd\) ‘ w2 ptShuzd)y _ Z
XZ; ZO N LS wh) 2uh
me
S(mhiy) uy
+ Y mear S d’\ W (435)
meZr 2uh

odd

The first summand is regular in «, so it can be computed as in the proof of Theorem 4.1:

hu _ hu
> X’"Zar S| wrem (Gl sty _ <
4uhS (uh) 2uh

T
meZgyq

2 Sh) ¥yt fuS(huzayy L
— XM 8r S(hay) e WyTU UZ0z)y _
=2 X"z ]Z I Zansan 2uh

meZ
hu

hu
S(thdy)— -5 -5
Z D] [[‘]] 72”#3;62[%1#”/] e? + e 2 efuy+uS(huzaz)i . (4'36)

4uhS (uh)
Jj.r=0

The second summand of (4.35) can be computed by differentiation.

o SO oy
D xm 8’ S(hay) ‘
> X3y el
mezodd
e S(mhiy)— @D oD
SR ONEE []*,?
meZ:dd r=0 =
S(mhdy)—
_ Z X"’ZB’ 2 Sy V[ m] =3 X m]zar 2m S 5 r]QDy
msZ meZ
S(thiy) — S(thiy) —
—2t421 b Dy 1 —20y+21 W3y Dy
— D/t e S(hay) D D/ SRay) . 4.37
ZO[] 5 2h+; [t/]e > @37

Combining these two computations, we obtain the statement of the proposition. O

5 Loop equations

Consider the change of variables X = ze~2¥ @) In this section we make a number
of extra assumptions of analytical nature on the coefficients ¥4 and y»g4 of the h%-
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expansions of ¥ and y, and with these assumptions we prove the linear and quadratic
loop equations for the W, ,,’s that we computed in the closed form in the previous
section (or, more precisely, for the symmetric differentials that we construct from
We n's).

g.n

5.1 Assumptions
Let z be a global affine coordinate on CP!. We assume that ¥/ (y(z)) and y’(z) can
be analytically extended to rational functions on CP'. These assumptions imply that
X = ze~ 2V (") extends to a global function on CP! and d log X is a rational 1-form
in the global coordinate z.

The rational 1-form d log X has a finite number of zeros, and we assume that all
zeros of d log X are simple. We also assume that the coefficients of the positive degrees

of hin the series ¥ (12, y(z)) and y(h?, z) are rational functions in z as well, and their
singular points are disjoint from the zeros of d log X.

Proposition 5.1 Under these assumptions the symmetric n-differentials

Wen i=2"EW, 0 (X1, ..., X))

n
1
HdlogXi +8g‘()8n,2§B(le X>)dlog X1dlog X2, g>0,n>1, (5.1)

i=1
analytically extend to global rational differentials on (CPY)" for 2g —2+n > 0.

Proof This statement follows directly from the structure of formulas given in Equa-
tions (4.23) and (4.34). m]

Note the factor 2! 8. It is a compensation for the fact that the natural Wo.1 and Wy 2
that we obtained in the previous section are twice less than the formulas one might
expect from the point of view of the spectral curve topological recursion, see Sect. 7.1.

5.2 Blobbed topological recursion

Let p be a simple zero point of d log X. Let o denote the deck transformation of X
near p.

Definition 5.1 We say that the system of symmetric n-differentials {wg ,}¢>0,,>1 sat-
isfies the linear loop equations at p if forany g > 0, n > 0,

a)g,n+l(w’ Z[[n]]) +wg,n+l(a(w)’ Z[[n]]) (52)
is holomorphic at w — p and vanishes at w = p.
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We say that the system of symmetric n-differentials {wg ,}¢>0,>1 satisfies the
quadratic loop equations at p if forany g > 0,n > 0, (g, n) # (1, 0),

wg—1,n+2(w, o (W), Z[,)) + Z Wgy iy +1(W, 21)@gy ny+1(0 (W), 21,) (5.3)

g1+82=¢
I L|12=[[n]]

is holomorphic at w — p and has a zero of order at least two at w = p. In the case
(g, n) = (1, 0) we require the same property, but we remove the singularity from the
first summand, that is, we replace wg 2 (w, o (w)) with

1
(wo‘z - EB(XI, X»)d log X1d log Xz) | X=X (w), X=X (o (w))

= 2Wy2(X1, X2)d log X1d log Xo|x,=x(w), Xo=X (o (w))- 5.4

If all zero points of d log X are simple and wy ,’s satisfy the linear and quadratic
loop equations at each of them, then we say that the system of symmetric n-differentials
{wg.n}e>0,n>1 satisfies the blobbed topological recursion [8].

Theorem 5.1 Under the analytic assumptions listed in Sect. 5.1 the system of symmet-
ric differentials (5.1) satisfies the blobbed topological recursion.

5.3 Proof of Theorem 5.1

Consider the connected correlation function defined as
2g—2 n
Wen = [R272F71 Y~ XXy

J_
DEZ?:O 2 Yoz, M ya) |

<O|hj—:111[a0]€(hv, Ay o, 0. (5.5

(here by (0| — |0)O we mean the connected vacuum expectation obtained by inclusion—
exclusion formula from the disconnected one).

Lemma5.1 For ). In X" [(hm) =3, e Jn X™ /(hm) we have:

meZodd
Jn X" E(hw, X) + E(—hv, X
S I e, a) | = S xay) (LR EECI D) s 6
hm 2
meZ
Proof A straightforward computation using Equations (4.4) and (2.25). O

Remark 5.1 Note that £(u, X) = —E(—u, —X). Hence the right hand side of Equa-
tion (5.6) is odd in X. Note also that the right hand side of Equation (5.6) is manifestly
odd in v.
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Our next goal is to compute the coefficients of v! and v3 in (5.6) applied to the
covacuum.

Lemma 5.2 We have:

(0|[v‘]v$(hvxax)<g(h”’x) +2€(_h”’x)) = Z X" I (5.7)
meZJr
(0[S (X ax) (g(h”’ X +25(_h”’ X)) = ( (Xax)* + > > X"
meZ:dd
4
+h2§(o|( 3 X’"J,,,) (5.8)
mEZ:dd
Proof A straightforward computation using Equation (4.4). O

Corollary 5.1 We have:

4
Wg.n(X[n]]) =v (2Wg,n (X[[n]])> + U3(§<W3*2,n+2(xlv X1, X1, X[[n]]\l)

+3 Y Wemti (X1, Xi)Wey a2 (X1, X1, X1)
g1tg2=g—1
LiuhL=[n]\1
+ Y ng,n1+1(xl,Xll)Wgz,n2+1<X1,X12>Wg3,n3+1(xl,X13))

81+82+83=¢
LuhLul=[n]\1

1 1
+ <g(xlaxl)2 + g> Wg_l,n<x[[n]]>> + 0@, (5.9)

where we have to substitue Wy 2(X;, X ;) + ;ltB(Xi, X ;) instead of Wo2(X;, X ) in
all instances when the arguments are not the same, that is, i % j.

Now, repeating mutatis mutandis the arguments of the proofs of Theorem 4.1 and
Propositions 4.3, 4.4, and 4.5, we obtain closed algebraic formulas for W .

Lemma 5.3 Under the change of variables X = ze=*V @) we have:

S(; hiy) —
2t; i
Wea(Xp) = 6247 Z [HW o2 SO }

St hiy,
[D{' g e 5‘1"“"“ Y uS(uhay, e +e—“w>[u”1]
1

n hu _hui

e +e 2 i (Shuizid)¥i—3i) Z l—[ (ehzukWS(ﬁukzkazk)S(hugzlazz)B(Zk,u) _ 1)
! 4u; hS (u;h)
i=1 el (vk,vp)€Ey,

(5.10)
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forn > 2, (g,n) # (0,2). Here T';, is the set of all connected simple graphs on n
vertices v1, ..., vy, and E, is the set of edges of y.
In the case (g, n) = (0, 2) we have

v(gv)’l +€—U)71)
Woor= ————B(z1,2 5.11
0,2 10,05 (z1,22) (5.11)

In the case (g, n) = (0, 1) we have
Lo, _
W()’l = E(eU}l — e vyl). (512)

In the case g > 1, n = 1 we have

) o 2 St hiy, )E
_ _ T, 1 , _
Wg,l =[h2g 1] Z D.lll[tljl]ae 2l]¢|8;:e S(hiy,) vS(tlfLBy])(e”“ te Uyl)
J1,r1=0
[T
[url]e 2 te 2 et U S (i z19;)y)
U 4uy hSuy b
o0 Sty hdy) —
; L =200 20 e D
+[h2g71] Z D]'fl[t]']e 120 S(hdy)) I/jle(tlhay])(evy] +6*UY1)7y.
Ji1=1

(5.13)

In all these formulas we use y; = y(z;), v; = y(?, zi), ¥i = ¥ (3i), ¥; = v (B2, y),
Qi = 0@z, Xi = X(z), Di = X;0x, = 0] ' 20,

Proof First, observe that [a°]€ (hv, a) can be represented as the coefficient of [e!]in
the expression

ee[cz()](‘,'(hv,a) — € Yrez(—DFe™ gy — € ZkEZJr (=¥ ek —e=hvky: g s (5.14)

For T (k) = 55 (e — ™™k we have T (k + 1) — T (k) = Ay (h?, h(k + %)), where

v v ) h2 ’
(€% —e ) e e V) = v+ 0P (— + y—) +0@).

24" 2
(5.15)

1

s
Atﬁ(ﬁ,y)—%

Define J; as the conjugation of Jj with the operator given in (5.14). It is operator of
exactly the same type as Jy, we just replace ¥ (1%, y) by ¥ (h2, y) + e Ay (h%, y) in
its definition. By (4.13) we have:
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1 & S(khody) — -
Te=72 dyexp (2k S((ha;)) W, y) + AP (2, y))> ‘y:O

X ehu/2+e—hu/2 ; ;
[u"a ]W exp | 2hu Z a 'Shu)J_; | exp | 2hu Z a'S(lhu)J;
uhS(u
leZiy, leZly

(5.16)

Let Wy, = Y52 h*$72*"W, ,. Then

1
Wa (X)) = [€'] Z — XX

- 00 pad Ik k .
(O[T . Ty 0" Ttz 7 @ g (5.17)
By commutation of the operators, we have:
n o0 1
_ m; _ r.1qar
Wa= Hxi Y m1[€ 19!
mi,..., WlnEZ;jdl:l Flyees rp=
S(mhay) — — 5
exp (2m1 oY) (5 4 e AR, ‘
xp( ™ day T AT M|,
Py hu;
S(m;hdy) e?2 +e 2 VT
ol om;noy) ) ri mi ui S (huizid:,)y;
H exl’( " S (i) ) H” 11 huihSuih) ©
Z l_[ (eh uku/gS(ﬁukszZk)S(hu@zgazz)B(Zk,zz) _ 1) , (5.18)
v€ln (vp,v)€Ey,
where I', is the set of all connected simple graphs on n vertices vy, ..., v,, and Ey, is

the set of edges of y.
As in the proof of Theorem 4.1 and Propositions 4.4 and 4.5, we use that for any
formal power series G(y) in y and F(u) in u, we have

3 G lymolu 1F@) = Y 3G le™ F(u) (5.19)

r=0 r=0

( [5, Lemma 4.5]). Applying it to Equation (5.18) in the cases n > 2, (g, n) # (0, 2)
(these cases have to be treated separately, it is the same situation as in the proof of
Theorem 4.1), we obtain:
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n oo
m= X [y
ml..”.mneZ;rdd i=1 Flyees =0
- S(myhdy,) W
e vy <exp (2 ‘7‘9@3”))1 Uy ) vS(mihdy, ) (@™ + e ™)
n hxq
om: ) S(m;hdy,)— )T —
2mii gri o, S0y i i (S(huizidz)y; —y)
Ee i exP( S (hay,) >[H ]1_[ du; ﬁ,S(uh
Z l_[ (ehzukugS(hukszZk)S(hugzgazg)B(zk,zz) _ 1) , (520)

v €l (v, ve)€Ey

Starting from this point all further steps just repeat the computations made in the proof
of Theorem 4.1. We use three ideas:

e extend the summation tomy, ..., m, € Z;
e capture the polynomial dependence on my, ..., m, replacing their entrances by

11, ..., 1, and applying [ ]}, Z?le Dili [tiji];
e apply Lagrange—Biihrmann formula for the change of variables.

This completes the proof of Equation (5.10). All other equations stated in the lemma
are obtained by small variations of this argument, which repeat the corresponding
special cases in the proofs of Propositions 4.3, 4.4, and 4.5. O

Corollary 5.2 The functions Wy , g > 0, n > 1, are formal power series in v, whose
coefficients are rational functions in the variables Z[a]> that near each simple zero
point p of dlog X satisfy the property that

Wean @1 2ay1) + Wen (@ @1, 21 (5.21)

is holomorphic at 71 — p. Here o is the deck transformation of X at p.

Proof This follows directly from the structure of the formulas in Lemma 5.3. We apply

D{ ' to a rational function that has a simple pole at w — p (coming from the factor
1/01). A function with at most simple pole automatically satisfies (5.21), and the
operator D preserves this property. O

Proof of Theorem 5.1 Fix a zero point p of d log X (which by assumption is simple)
and let o be the deck transformation of X near this point. For any function f(z) defined
in the neighborhood of p we define

S:f(2) = f@) + f(o(2)). (5.22)

Then the linear loop equations at the point p for the symmetric differentials expressed
as in Equation (5.1) can be equivalently rewritten as

521 Wen (2 [n)) (5.23)

is holomorphic at z — p for any (g, n). Corollary 5.2 applied to the coefficients of
[v!']in W, implies that it is indeed the case.

) Birkhauser



26  Page 34 of 44 A. Alexandrov, S. Shadrin

Note also that Corollary 5.2 applied to the coefficients of [v] in W n implies
that S;, [v3]Wg,n is holomorphic at z — p for any (g, n). Using explicit formula for
[v3]23—¢ W n given in Equation (5.9) and the linear loop equations, we conclude that

SZ1 (21_(g_2) Wg,2,n+2(Zl 521521 Z[[nﬂ\l)

1—- 1—
+3 0 ) 2 g 22 TR Wy 4021 21 2ny)
g1+g2=g—1
I]I_IIZZ[[n]]\l
1— 1— 1—
+ > 2EW G )2 T Wy 1 (21 20)2 g3wg3,n3+1<m,z,3))

81+82+83=¢
I LI[2I_I[3=|In}]\1

(5.24)

is holomorphic at z — p for any (g, n). Here we abuse the notation a little bit since
each time we use 2Wy 7(z;, z;) withi # j, we actually mean %B(zi, Zj)-

This particular system of equations is studied in a bit different situation in [7,
Lemma 20]. The main difference between our situation and the one studied in [7,
Lemma 20] is the choice of B, which is the standard Bergman kernel in [7], but it
does not affect the proof in any step. Another difference is the rescaling of Wy , by
21=¢ in the definition of wg s, but both (5.24) and the quadratic loop equations are
homogeneous with respect to this rescaling.

So, adjusted in our situation [7, Lemma 20] proves that the holomorphy of the
expression given in (5.24) implies the quadratic loop equations for the symmetric
differentials wg , given by Equation (5.1), under the condition that y does not vanish
at z = p. The latter condition is obviously satisfied in our situation. Indeed, the point
p satisfies the equation 1 — 2pvy’(y(p))y’(p) = 0. On the other hand, v’ is an odd
function in y, so at any point z where y(z) = 0, we have 1 — 2z¢/(y(2))y'(z) = 1.
Therefore, y does not vanish at z = p. Hence the symmetric differentials wy ,, satisfy
the quadratic loop equations.

6 Formulas for Hy ,
In this section we derive expressions for Hg , by integration of the earlier derived
expressions for Wy ,,. Since the case of W, ;| was a bit special, we firstly perform a

separate computation for Hy .

Proposition 6.1 For g > 1 we have:

S ) o Sandy) = p
Hei = 1761 DI V2 sty wTy
j=2

00 hu

K28 DI o 1 —2y 4 2’%E e% te 2 uy+uS(huzd,)y
t o r y r c-Te ° —uy B
+1 ],Z—; [ ]g g e N s
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z 1 — “dz
2g _ 1 2g 5 . 1
+ [ ]/0 (S(hay)w w)ydzﬂh ]/0 2 o=y (6.1)

Here, as usual, we use y = y(z), y = YR, 2), v = v () = vO@) ¥ =
Y(h*,y) =¥ (7%, y(2), 0 = Q(2), X = X(2), D = Xdx = Q0 'z0..

Proof Recall that for g > 1

0 . o Shdy) = D
Wei = [12] DI~ [7]e V2 s I”Ty
j=1
0 ; hu _lu
| ZtS(Iﬁ()y)E e2 +e 2 S _
+ [K28 DIt — =2tV gr o™ Sy Vi r | S8 T muy+uS(huzd)y |
[ ]_Z_O (15 ale UR ] S
j’r_
(6.2)
Hence, for g > 1
o0 ) o S@hdy) = D)
Hyy = [128] DIl je >V sy ¥ 22
j=2
o0 [ele] . hu __hu
o 1 ZIME e2 +e 2 S —
+ [R28 D/ Ze 2 gr At sGan Vi ST C T pmuy+uS(huzd,)y
[ ]X_} [ ]Z(;Q ¢ W s
j= r=
z B Sany)— p
+ [12¢] / dz 212 sy v DY
0 z 2
hu hu
Z Q 9] 1 ZIS(tﬁay)E ez _i_e*T _
+ K28 / dz= 9 eV gr o7 STy Yy €7 TC T muytuS(huzdy)y
< | Z[];Q ; W —san
(6.3)

(note that the constant term in z of this expression vanishes). The third term here can
be computed as

S(thdy)

200 [ Qg 2025 v DY o /Z <;__ )@
[ ]/0 dz=[t"]e > M saay Y )

z
z 1
=h2g/( —)’d.6.4
[ ]0 S(hay)l'/} ¥ ) ydz. (64)
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The fourth term can be computed as

, 00 Sah hu hu
[h28] fz dzg[to] Z 1 —2t1//ar ts(fnaa)‘>)¢[ ] (e 2 te 2 e—uy-i—uS(huzaZ)y)
0 z

4uS(uh)
ey [Tz o (€ e s
=h ]/ [u ]( s )
2 q 2 d
=i [ Ea-n=vn [ Eo-n. ©3)
0 2z 0 2z

Combining these formulas, we obtain the statement of the proposition. O
In the case n = 2 we have the following formula for H, >.

Proposition 6.2 In the case g = 0 we have

1 (z1 — 22)(X1 + X3)
= —1 . .
oo = g log & — xo) ©0)

For g > 0 we have:

2 Gl i L ongan 20 753(?:5?3)% i
o= 35 [0 et S5
13

Jis2=1 ~i=l1

ry,r2=0
Fuai )2 o —hui )2
ehui/ +e Ui/ efu,-yi+u,$(hu,<ziazi)y,-:| (ehzuluzs(hulzlﬂzl)S(huzzzﬁzz)B(zl,zz) _ 1)
4u-hS(u-h)
2 s<zm‘])E
1
g
hu/2 —hu/2
e/ 4 g=hu/ e_uy1+u8(ﬁuz1azl).ﬂj|lhus(huma_ )< . a )
v 21
4uhSuh) 2 21—22 z21t22
o) ) S(thiy,) —
1, 1 =2ty ar Zshd Voo r
+[h2g] |:D./ [t-/]fe 23,7 (hdy, ) [ ]
jgl 2 Q2 2
r=0
hu/2 —hu/2 _ 71
e e ) . . . 4
+7e—u}2+u$(hu~2372)y2 —huS(ﬁuzgazz)( 2 2 ) (6.7)
4uhS(uh) 2 22—221 2+

Here we use the notation y; = y(z;), y; = Y(IHZ, 2), Yi = Vi), Ui = (2, ),
Qi = 0(z), Xi = X(zi), Di = X;0x; = Q; 'zi0 fori =1,2.

Proof Note that all formulas above are odd in both arguments, hence they vanish if
any of their arguments vanishes. Hence it is enough to check that D1 Dy Hy o = W, 5.
In the case g = 0 it s a straightforward computation. For g > 1 we recall the relevant
special case of Equation (4.23):
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W 2= [ﬁ g] Z |:l—[ DJt t!x Q —2!,% a;:e 1 Sthay,) v, [M?]
i

Jisj2 Li=l1

ry,r2=0
2 hui/2 —hui/2
M T Sz, (Pt St e )
il 4u,-h5(u,—h)
(6.8)
Note that
S(thiy S(thay)
Z D][tf] —2t1[/8r 2t S(hd\)w[ "= [MO]—’_ZZD]U]] —2rz//ar 2t s(lm‘)?//[ "
Jj,r=0 r=0 j=1
(6.9)

The second summand here can be trivially integrated by applying D~'. In order to
integrate the cases of application of é[uo] we observe that for any y € I, the

coefficient of u? in

1, el /2 4 p=hui/2
0 duihS (uih)

1 Zk Zk
= D; —hu;S(hi 0 _ . 6.10
i 5 Pk S (hugzx Zk)(Zk_Zi Zk+1i> (6.10)

—u;yi+u;i S(huizidz;)y; (ehzuiuks(huiz,‘f)zl.)S(hukaQZk)B(Zi.Zk) _ 1)

(here k = 2ifi = 1 and k = 1if i = 2), which also admits application of D, ' In
particular, if we apply this term for both variables, we have:

2 1, ehui/2 4 g=hui/2

I1 o M T s @)

i=1
(eh2u1u28(hulz| 3;)S (huz229:5) B(21,22) _ 1)

e uiyituiS(huizi o)y,

1
. B(z.2). 6.11
4010 (e1,22) (6.11)

so this case doesn’t contribute to [hzg ], g = 1. Combining these computations with
the application of Dl_1 Dy !, we obtain the statement of the proposition. O

Finally, in the general case of n > 3 we have the following expression for Hy ;.
Proposition 6.3 Foray € I'y let I, denote the subset of vertices of y of index > 2.
Let K, C E, be the subset of the set of edges that connect a vertex of index 1 to
another vertex. When we write (v;, v) € K, we assume that v; is the vertex of index

1 (and, therefore, vy € I,,). We have:
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S(t; hdy; ) —

[s e )
a =1 giv U opun o 2 staaes Vi
H,, = [hzg 2+n] } : l | } : } :Dlj [li] ]Ee 269 8;;_(: S(hiy,;) [u:]

yelyiel, | r;=0 ji=1
ehui/Z +efhu,-/2

e i yitui (S(hu;zid;)y;
4u; hS(u; h)

iel,
l—[ (eﬁzuku[S(ﬁukzkE)Zk)S(huzzzﬁzé)B(Zk,zz) _ 1)
(vk,ve)€EEY\Ky,

I1 (%huksmukzkau)(% %)+

(vi, vk )€Ky T %t

oo 00 ) ) SRy —
SO S i1y Lot S
. i
ri=0ji=1 Qi
hu;i /2 —hu;/2 _
e e T iyt (S (i) (ehzuiuksmuiz,-azi>S<rmkzkazk)B(z,-,m_1> .
414,}7,8(14,}1)

6.12)

Here, as usual, we use y; = y(z;), y; = ?(7112, ) i = Yy, ¥y = v, v,
Qi = 0(zi), Xi = X(zi), Di = X;0x; = Q; zi0y.

Proof Note that H, , as given in Equation (6.12) vanishes if we set any of its variables
to zero (since it is odd in each of its variables). So, the only thing that we have
to check is that indeed D --- D, Hg , = W, , as given by Equation (4.23). Recall
Equation (4.23):

[ n o 5 5(:,-fs,ayi>E
282 irgdi =21y gri ,~1 TS @Ay Vi, i
Wen =127 30 T]DJ 1 e 0™ S0 Vi
Jlaeerjn, Li=1 !
Flyeersbn=0
hu;/2 —hu;/2
Me—uiyi-i-uis(ﬁumazi)ﬁ
e 4u; hS (u;h)
Z 1_[ (emukqu(hukasz)S(huzzzazz)B(zk,u) _ 1) ] (6.13)
yel, (v, ve)€E,
Note that
o0 o0 o0 P
L2y ar 2 S 1 1 2 SUh
DIt/ ]—e Vo e™ ST V[ = —[u®] + DI [t/ —e 2V gre™ SH V",
Ze oIt L L PG

(6.14)

The second summand here can be trivially integrated by applying D~!. In order to
integrate the cases of application of é[uo] we observe that for any y € Iy, the

coefficient of u! in
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ehu,-/2 + e*hu,-/Z

—u;yi+u; S(hu;zid;.)y; ( h2u;u S (huizidz,)S (hugzrds, ) B(zi k) _ )
e Hii i i2i0z; )i e i k 1 615
4u; hS(u;h) l_[ ( )

(vi,vk)EE,

is non-trivial if and only if i has index 1 in y. Then there is only one edge (e¢;, ex) € E,
that is attached to the vertex i. In this case,

1 0 ehui/2+e—hu;/2

7[“[]

e—u;yi+ui8(ﬁuiz,3;i )i (eh'lLt,-zuS(th,-z,-Bz’. )S(hugz 0z, ) B(zizk) _ l)
0 4u; NS (uih)

11 1 2k Zk
= — —hupS(hugzk9,,) B(zi, 2k) = Dj = hupS(huy z1. 9, - , 6.16
0, 2 "uS (huzidz) B @i, zi) = Diy e S( kk”k)(Zk—zi Zk+2i> (6.16)

and we can apply D;” ! to the latter expression. This explains the special summands
for (v;, vr) € K, in Equation (6.12) and completes the proof of the proposition. O

7 Topological recursion for spin Hurwitz number with completed
cycles

The goal of this Section is to prove a conjecture proposed by Giacchetto, Kramer, and
Lewariski. In our terms, it concerns the symmetric n-differentials constructed from
Orlov’s hypergeometric 2-BKP tau-functions for ¥ = 1s (hoy) y2$ and y = z. Butin
fact we consider a more general situation, with E =1s (hoy)P(y)andy =y = R(2),
where P is an arbitrary even polynomial in y and R is an arbitrary odd polynomial in
z, since the arguments in this more general situation do not differ from the ones for
the Giacchetto—Kramer—Lewanski situation.

Remark 7.1 Note that if we put ¥ (y) = %S (hdy) P(y), then the weight for the KP
hypergeometric tau-function (3.44) does not coincide with the deformation, considered
in [4]. Therefore, if in the relation (3.42) one of the tau-functions, g p or 7, is described
by a suitable version of topological recursion, the other one is not described by it.

7.1 Topological recursion in the odd situation

Consider CP! with a fixed global coordinate z, and with two functions, X and y such
that X (—z) = —X(z) and y(—z) = —y(—z), with an extra assumption thatd X /X is a
rational differential with the simple critical points py, ..., py (itis clear that N must
be even and the set of critical points is invariant under z <> —z) and y is holomorphic
near the critical points with dy|,, # 0. It is not necessary but both convenient and
sufficient for our goals to assume that y is meromorphic. Let

1 1
_|_
(z1 —22)* (21 + 22)?

1
B(z1,22) == 5 < )dzldzz. (7.1)

With this input we construct a system of symmetric differentials wg ,, g > 0,n > 1,
given by
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0,1(z1) = y(z1)d log X(z1);
w0,2(z1,22) = B(z1, 22); (7.2)

and for 2g — 2 + n > 0 we use the recursion

/UI(Z) B(Z17 )

Z
wq,1(0;(z1)) — wo,1(z1)

N
1
wgn (21, -2 20) =5 E Res; s p; (wg—l,n+1(2, 0i (2, Z[n]\ (1))
i=1

+ > w81,1+|11\(z’111)w32,1+|12\(6i(z)’212)>’

g1+g2=g.Iiub=[n]\{1}
(g1,1111),(g2.112])#(0,0)
(7.3)

where o; is the deck transformation of X near p;,i = 1,..., N. We wouldn’t go into
the discussion of this peculiar version of this topological recursion, as it should be
done in a more general equivariant setup.

For our goals it is sufficient to state the following equivalent reformulation of this
version of topological recursion, which is completely parallel to [8, Theorem 2.2] and
[6, Section 1].

Lemma 7.1 A system of meromorphic symmetric differentials wg », 2¢ —2 +n > 0
is obtained from the given starting data (that includes the formulas for w1 and w2)
by topological recursion (7.3) if and only if

(1) This system of differentials satisfies the blobbed topological recursion (see Defi-
nition 5.1).
(2) Foranyg >0,n>1,2¢ —2+4+n >0

wg,"(z[[n]]) = Z (1_[ Reswj%pij /p‘f B(., Zj)>wg,n(w[[n]]) (7.4

ilyein=1 " j=1

(this is the so-called projection property).
Proof The same argument as in [8, Section 2.4]. O

If we represent the symmetric differential wg , as wg , = 278 W, , [T/, d log X,
wo,2 = 2Wo,2d log Xd log X + B(X1, X3), where Wy, = Dy--- D, H, ,, D; =
X;0x;, then the linear loop equations in combination with the projection property
can be equivalently reformulated in terms of H, ,,. This reformulation can be directly
applied in the odd case that we consider here, and we recall it and prove for the
particular n-point functions of spin Hurwitz numbers with completed cycles in the
next section, Sect.7.2.

7.2 Quasi-polynomiality

The goal of this section is to prove some special property of the functions H ,,, and, as
a corollary, W, ,’s that is sometimes called quasi-polynomiality in the literature and
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in the context of topological recursion is equivalent to a combination of the so-called
projection property and the liner loop equations. We refer to [4, Section 3] for a full
discussion.

Recall that with ¢ = lS(hay)P(y), P(—y) = P(y) is a polynomial, and y =
y = R(z), R(—z) = —R(z) is a polynomial we have X = zexp(—P(R(z))). Let
Pls---, PN € CP! be the critical points of X. Here N = deg P - deg R € 27, we
assume that all critical points are simple, and the set of critical points is obviously
invariant under the involution z <> —z.

Define the space ®, as the linear span of functions ]_[lN: 1 fi(zi), where each f;(z;)
is a rational function on CP!, fi(—zi) = —fi(zi), fi has poles only at the points
P1s---, PN, and the principal part of f; at px, k = 1,..., N, is odd with respect to
the corresponding deck transformation oy of function X near pi. The last condition
can be reformulated as a requirement that for any k = 1, ..., N the locally defined
function f;(z;) + fi(oxz;) is holomorphic at z; — py.

Proposition 7.1 In the case Y = %S(ﬁay)P(y), P(—y) = P(y) is a polynomial, and
Y =y = R(2), R(—z) = —R(2) is a polynomial, the functions Hg , belong to the
space ©,, foranyn > 1, g > 0 such that2g —2 +n > 0.

Proof In the proof we analyze the formulas obtained in Propositions 6.1, 6.2, and 6.3.
It is clear from the structure of the formulas (6.1), (6.7), and (6.12) that with our
assumptions Hy , are rational functionsin z1, ..., Z,.

Consider Hy , as a function of z1, treating the rest of the variables as parameters.
From the shape of the formula we see that it might have poles at 71 — =z;,i =

2,...,n, 71 — 00, and at the zeros of Q. In this case O = zd;logX = 1 +
79, P(R(z)), and its zeros are exactly py, ..., py-
From Remark 4.3 it follows that there are no singularities atz; = +z;,i =2, ..., n.

In all terms of the formulas (6.1), (6.7), and (6.12) the principal part at z; — px is
generated by the iterative application of the operator D| = X dx, = 0@z 'z 0z,
to a function that is either holomorphic at z; — py (as in the first summand of (6.1)),
or has a simple pole at z; — py (as in the second summand of (6.1), where we divide
a function holomorphic at z; — pi by Q(z1)). Holomorphic functions and functions
with a simple pole automatically have principal parts at z; — py that are odd with
respect to the deck transformation at pi, and the operator D preserves this property
(while increasing the order of the pole at py).

Let us now check that there is no pole at z; — oo. Note that the terms that really
look special, the last two summands in Equation (6.1), vanish with our assumptions
(and that is crucially important since for any other choice of 1 and y with given ¢ = P
and y = R it wouldn’t be the case). To all other terms in the formulas (6.1), (6.7),
and (6.12) the same rough estimation of the order of pole is applicable, cf. [4, Lemma
4.6]. We perform it here only for the second summand in Equation (6.1), since in all
other cases the analysis is exactly the same. To this end, consider

) o o © - 27 Sty 7 e% +e*% SRz
B2 DIl e 2V gro T Sm Vi | S o muy+uS (huzdy)y
[ ]jE_l [ ];:0 0 ¥ [u"] 1S h)
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o o
. . 1 : ,
— [th] E D‘/_l[tj] E E(ay + 2tP/(y))re2l(8([hdy)—I)P(y)

j=1 r=0

e e
u” eu(S(huzaz)*l)R(Z) 7.5
[ ]< 4uS(uh) 7

Note that the operator D = Q~!z9z decreases the order of pole at z — 0o by
deg Q = deg P deg R. The same holds for the factor Q! alone. This means that the
order of pole in (7.5) at z — oo is equal to the order of pole at z — oo of

/

00
[h2g] Z(a)’ + 2tP/(y))reZZ(S(lhﬁ)v)—l)P(y)
r=0

hu hu
e2 +e 2
('] ( eu(S(szBZ)—l)R(z)> ’ (7.6)

t=7— deg P deg R

4uS (uh)

where by | we mean that we only select the terms with deg r > 1. With this substitution
observe that each application of the operator 9, + 2¢P’(y) decreases the order at
z — oo by deg R. Thus the order of pole of (7.6) at z — o0 is equal to the order of
pole at z — oo of

hu

huo o _hu
[728]2(Sthiy) =D P () (92 +te ? eu(S(huzBZ)—l)R(z)>

/ 4

u:Z—degR ?

(7.7)

4uS(uh)

=z~ deg P deg R

where by |” we mean that we only select the terms with deg u > 0. The latter expression
is manifestly regular at 7 — oo.

Finally, extending our arguments to all variables zi,...,z,, we obtain that
Hg n(z1,...,21), 28 —2 4+ n > 0, is a rational function that in each of its vari-
ables has poles only at the points pq, ..., py with the odd principal parts with respect
to the corresponding deck transformations. This immediately implies that H, , € ©,.
]

7.3 Giacchetto—Kramer-Lewanski conjecture and its generalization

Consider the n-functions H, , constructed from Orlov’s hypergeometric BKP tau-
functions for ¥ = %S (hdy)P(y) and y = y = R(z), where P is an arbitrary even
polynomial in y and R is an arbitrary odd polynomial in z. Recall X = X(z) =
zexp(—P(R(z))). Recall that we defined W , = Dy --- Dy Hy ,,, and we set

n
dX; 1
W) == 2" W Xpp [ | 7’ +84,080,25 B(X1, X2)d log X1d log X»,
i=1

(7.8)
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With this assignment, it follows from Propositions 4.3 and 4.4 that
wo,1(z) = ydlogX and  wo2(z1,22) = B(z1, 22). (7.9)

For all other wg ,, ¢ > 0,n > 1,2¢g — 2+ n > 0, we have the following theorem

Theorem 7.1 (Generalized Giacchetto—Kramer—Lewariski conjecture) The symmetric
n-differentials wq , are obtained by the odd topological recursion (7.3) for the initial
data X = zexp(—P(R(2))) and y = R(2).

Proof According to Lemma 7.1 we have to check the blobbed topological recursion
and the projection property. The blobbed topological recursion follows from Theo-
rem 5.1, which is proved in a much more general situation (it is obvious that the analytic
assumptions listed in Sect. 5.1 are satisfied). On the other hand, the linear loop equa-
tions and the projection property are equivalent to the statement of Proposition 7.1.

O
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