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Abstract: This paper is concerned with intriguing possibilities for non-conventional critical behavior
that arise when a nearly critical strongly non-equilibrium system is subjected to chaotic or turbulent
motion of the environment. We briefly explain the connection between the critical behavior theory
and the quantum field theory that allows the application of the powerful methods of the latter to
the study of stochastic systems. Then, we use the results of our recent research to illustrate several
interesting effects of turbulent environment on the non-equilibrium critical behavior. Specifically, we
couple the Kazantsev–Kraichnan “rapid-change” velocity ensemble that describes the environment
to the three different stochastic models: the Kardar–Parisi–Zhang equation with time-independent
random noise for randomly growing surface, the Hwa–Kardar model of a “running sandpile” and
the generalized Pavlik model of non-linear diffusion with infinite number of coupling constants.
Using field-theoretic renormalization group analysis, we show that the effect can be quite significant
leading to the emergence of induced non-linearity or making the original anisotropic scaling appear
only through certain “dimensional transmutation”.

Keywords: cooperative systems; critical behavior; renormalizaton group; universality; scaling; kinetic
roughening; random growth; self-organized criticality

1. Introduction

To see a World in a Grain of Sand
And a Heaven in a Wild Flower
Hold Infinity in the palm of your hand
And Eternity in an hour
Auguries of Innocence by William Blake

Numerous physical systems of different physical natures demonstrate very interesting
singular behaviors in the vicinity of their critical points. Critical behavior of strongly
non-equilibrium systems has attracted constant attention over the decades; see, e.g., [1–12]
and the literature cited therein. Examples are provided by kinetic roughening of surfaces
or interfaces [6,7,9], propagation of flame, smoke and solidification fronts, percolation
processes [5], random walks and diffusion in random (e.g., porous or turbulent) media [12],
models with self-organized criticality [11], transitions between fluctuating and absorb-
ing states [1,2], reaction–diffusion problems [3] and many others. In comparison with
more conventional equilibrium cases, their critical behavior is much richer but much
less understood.
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Any system of this kind necessarily involves many strongly interacting degrees of
freedom of different scales. The very formulation of corresponding models is an extremely
demanding task, and the same is true for their effort- and time-consuming quantitative and
qualitative analysis.

However, experience with equilibrium nearly-critical states shows that principal
universal properties of many-body cooperative systems can be adequately and nearly
exhaustively described by phenomenological or simple microscopic models, designed
on the basis of considerations of simplicity, dimensions and symmetries. The guiding
examples are provided by various mean-field theories and by the Ising and Heisenberg
models of second-order phase transitions in liquid–vapor or magnetic systems.

Such systems share a characteristic feature which is that the correlation length diverges
near the critical point despite the microscopic interactions being short range. It means
that the precise nature of the systems (whether they correspond to liquids or solid states
like magnets, superconductors, etc.) becomes unimportant as their behavior is governed
by highly universal power laws for correlation functions. Universality here refers to sole
dependence of essential characteristics (critical exponents, normalized scaling functions and
amplitude ratios) on the “global” features such as the systems’ symmetries and dimensions.
This is expressed in the idea of “universality classes”. All of that makes it possible to
develop the critical state theory for all those different systems instead of creating a new
particular theory for every example of critical phenomena (which is, of course, a very
important undertaking in itself).

The modern critical state theory relies on the field-theoretic renormalization group
(RG); see [13–16] for the details and the references.

The RG analysis allows us to formulate so-called RG equations for renormalizable
field theories and to calculate the fixed points coordinates of those equations. Infrared (IR)
attractive fixed points define critical behavior, i.e., universality classes. The field-theoretic
φ4 model is written for a scalar order parameter with O(n)-symmetry, and it describes the
universality class of the most common equilibrium phase transitions. The number of scalar
components n and the space dimension d are universal parameters, so universal features of
the critical behavior depend only on them. The latter are calculated via perturbation theory
where the role of the small parameter is usually played by ε = 4 − d, i.e., the deviation
of the space dimension from its “logarithmic” value d = 4. (In general, the choice of
small parameter depends on the model. In particular, for the φm interaction, the deviation
from the logarithmic dimension d = 2m/(m − 2) plays that role. For many other models
(turbulence, advection), the logarithmicity is not achieved by changing d, and the analog of
ε has a different physical nature and is not related to d (see below). For some models, there
can be several such parameters, which leads to generalized “multiple ε expansions”; see,
e.g., [17–28] and references therein).

By the early 1980s, the RG approach was largely complete and became the common
language of physicists when discussing phase transitions and critical phenomena. In subse-
quent years, the realm of applicability of the RG rapidly grew; it now includes critical dy-
namics [29,30] and Chapter 5 in [16], strongly non-equilibrium phase transitions, diffusion-
limited chemical reactions [1–4,31], driven diffusive systems [32,33], percolation [5], rough-
ening of fluctuating surfaces, growth processes and propagation of fronts [6–10,34–36], tur-
bulence and turbulent transport [37,38], systems with self-organized criticality [11,39–46]
and random walks and anomalous diffusion in random media [12,47–52] (not an exhaus-
tive list).

In many semi-phenomenological formulations, those phenomena are described by
stochastic differential equations for smoothed (coarse-grained) fields with additive random
forces (noises). The key point for the applicability of the field-theoretic RG approach is the
general statement that such equations can be reformulated as certain field-theoretic models
for extended sets of fields; see the original references [53–59] and Chapter 5 in [16] for the
review, proof and discussion.
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Thus, problems of non-equilibrium dynamics can be studied with the well-developed
techniques of quantum field theory (QFT): functional methods (including various
Schwinger–Dyson equations, Ward identities, Legendre transformations of generating
functionals), various methods of calculation of higher-order Feynman diagrams, renormal-
ization theory (including composite operators), short-distance operator–product expansions
and instanton calculus and resummations of asymptotic series; see [13–16] for the details
and the references.

Another important direction to study is focused on more realistic (“non-ideal” or
“dirty”) systems and the effects of various external disturbances, perturbations and that of
internal irregularities, heterogeneities and disorder.

The available experience with real nearly-critical systems has revealed their dramatic
susceptibility to all kinds of perturbations, including gravity, experimental setup topology,
presence of impurities, environment movement, etc.; see, e.g., [60] for the liquid–vapor
transition. “Pure” systems in a state of thermodynamic equilibrium (that ordinarily would
display ideal critical behavior in infinite volume) may be still troubled by finite size effects,
non-equilibrium impurities, finite evolution (aging) time, etc.

The effect can be as considerable asa phase-transition-type change; new universality
classes with unforeseen features can also appear [61]. In particular, the effects of disorder
on original “ideal” models were covered in a vast number of papers [62–68].

As another prominent example, the critical behavior of a system can also be highly
affected by the motion of the surrounding medium: see [24,69–74]. In practice, real systems
can hardly be isolated from the influence of surrounding mediums, like turbulent motion
in the atmosphere, in the ocean, or, especially, in forest fires.

In this paper, we briefly review our recent research concerning the effects of the
turbulent environment on non-equilibrium critical behavior. In Section 2, we introduce
the basic stochastic models of growth phenomena, surface roughening, landscape erosion
and self-organized criticality. In Section 3, we introduce two basic models of turbulent
fluid: the Kazantsev–Kraichnan ensemble and the stirred Navier–Stokes equation. Then we
couple the Kazantsev–Kraichnan ensemble to the three different stochastic models: to the
Kardar–Parisi–Zhang equation with time-independent random noise (Section 4) of surface
roughening, to the Hwa–Kardar model of self-organized criticality (Section 5) and to the
extended Pavlik model of non-linear diffusion (Section 6). We apply the field-theoretic
approach to the resulting problems and then discuss the findings and perspectives of this
kind of research in Section 7.

We show that the effect of environment can be as strong as leading to emergence
of induced non-linearity practically changing the original model itself (the case of the
Kardar–Parisi–Zhang equation) or making the original anisotropic scaling to appear only
through certain “dimensional transmutation” in a specific regime of critical behavior (the
case of the Hwa–Kardar model). In those instances, the competition between intrinsic
dynamics and external disturbance resulted in a symmetry breaking: Galilean symmetry
of the Kardar–Parisi–Zhang equation and spatial anisotropy of the Hwa–Kardar equation.
In the case of the extended Pavlik model, the symmetry of the original model held resulting
in two-dimensional infinite surfaces of fixed points that govern its critical behavior.

2. Basic Stochastic Models

2.1. Kardar–Parisi–Zhang Equation

Over decades, constant interest has been attracted to the random growth phenomena
and surface roughening. The vast number of examples include bacterial colony spread,
growth of tumors, fronts propagation (roughening of a phase boundary between, e.g., a
burning part of a rye field and an unaffected part), molecular beam epitaxy and many
others; see [6–10,34–36] and references therein.
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The experience shows that various correlation and response (Green’s) functions of
these problems demonstrate scaling (self-similar) behavior in the IR range (long times,
large distances). In particular, for the structure functions, one has

Sn(t, r) = 〈[h(t, x)− h(0, 0)]n〉 ≃ rnχFn(t/rz), r = |x|, (1)

while for the linear response function one usually has

G(t, r) = 〈h(t, x)h′(0, 0)〉 ≃ r−dF(t/rz), (2)

where the brackets 〈·〉 denote averaging over the statistical ensemble, χ and z are the
traditional notation for the two main critical exponents, the roughness exponent and the
dynamical exponent, respectively, and Fn(·), F(·) are certain scaling functions.

Here and below, throughout the paper, we denote x = {t, x}, where x = {xi},
i = 1, . . . , d is the spatial coordinate of the d-dimensional substrate, h = h(x) = h(t, x)
is a certain basic scalar field, e.g., fluctuating part of the surface height), h′ = h′(x) is an
auxiliary response field (see below).

The goal of the theory is to establish scaling relations of the type (1) and (2) on the
base of certain dynamical models, to calculate the critical exponents like χ and z and
scaling functions like F(·) in a systematic way and to investigate their universality (that is,
the dependence on the dimension of space d and other parameters of the model).

The most celebrated model of the surface dynamics is the Kardar–Parisi–Zhang (KPZ)
equation [75], sometimes referred to as “the Ising model for non-equilibrium phenomena”.
It is described by the stochastic equation of the form:

∂th = ν0∂2h + V(h) + f . (3)

Here and below, ν0 > 0 is the surface tension coefficient (in other applications, the vis-
cosity or diffusivity coefficient), ∂t = ∂/∂t, ∂i = ∂/∂xi, ∂2 = ∂i∂i is the Laplace operator
and f is the random noise to be specified below; summation over repeated vector indices is
always implied.

In the original KPZ model, the non-linearity V(h) is taken in the form

V(h) =
λ0

2
(∂h)2 =

λ0

2
(∂ih) (∂ih), (4)

where the coupling constant λ0 can be of either sign.
To be precise, the model pioneered in [76], where it was written for a potential vector

field vi = ∂ih and included as a stochastic d-dimensional generalization of the Burgers
equation. Then d has the meaning of the full coordinate space.

In the majority of studies, the noise f = f (x) is taken to be Gaussian and white in time
and space. Then, it is defined by the pair correlation function. (The noise f is supposed
to have a certain constant component 〈 f 〉 that guarantees that 〈h(x)〉 = 0, which follows
from the meaning of h as a fluctuating part, but in practical calculations both of them can
be simultaneously ignored).

〈 f (x) f (x′)〉 = D0 δ(x − x′) = D0 δ(t − t′) δ(d)(x − x′), D0 > 0. (5)

Other relevant types of the noise statistics will be introduced later in Section 2.4.
Equation (3) is studied on the entire t axis; the retardation condition is assumed; the

asymptotic condition for the field h at t → −∞ is irrelevant due to the presence of the
random noise.

The RG was applied to the stochastic problem (3)–(5) in the very first papers [75,76]
in the form of Wilson’s recursion relations. Later, the more advanced field-theoretic RG,
suitable for higher-order calculations, was employed; see [77] for the references and criti-
cal discussion.
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The original stochastic problem can be reformulated as a certain multiplicatively
renormalizable field-theoretic model which is logarithmic at d = 2, so that the part of a
formal small expansion parameter is played by the deviation ε = 2 − d.

The corresponding β function (coefficient in the differential RG equations) for the
coupling constant u, the renormalized analog of the combination u0 = λ2

0 D0/4πν3
0 (the

actual expansion parameter in ordinary perturbation theory) has the form (in the most
convenient minimal subtraction renormalization scheme):

β(u) = −u (ε + u). (6)

This result is exact to all orders of perturbation theory; see [78,79].
Possible asymptotic scaling regimes are governed by the fixed points u∗, solutions

of the equation β(u∗) = 0. The point is IR attractive for β′(u∗) > 0 and IR repulsive
(ultraviolet (UV) attractive) for β′(u∗) < 0. From (6), it follows that the trivial (free or
Gaussian) fixed point u∗ = 0 is IR repulsive for d < 2 and attractive for d > 2. For this
fixed point, the exponents in (1) are found exactly: χ = (d − 2)/2, z = 2 and χ = 0, z = 2,
respectively.

The nontrivial point u∗ = −ε is IR attractive for d < 2 but lies in the unphysical region
u∗ < 0. For d > 2, this fixed point lies in the physical region u∗ > 0 and is IR repulsive.
It is interpreted as the boundary between the interval 0 < u < u∗, where the IR behavior
is governed by the Gaussian point u∗ = 0, and the region u > u∗. There, the IR behavior
is supposed to be described by a certain strong-coupling regime; see, e.g., the discussion
in [80] and references therein.

Within the RG framework, it is natural to associate this strong-coupling regime with
a certain nonperturbative IR attractive fixed point, not “visible” in the perturbative β
function (6). By continuity, this hypothetical point should also exist for d ≤ 2, because the
scaling behavior is observed there, too. Existence of the strong-coupling fixed point is
supported by the functional RG [81–84].

Thus, according to the common opinion, nontrivial scaling behavior exists for all
1 ≤ d < dc, where dc is the upper critical dimension. In early works [77,80], it was argued
that dc ≤ 4, while more recent studies suggest that dc = ∞; see [85,86].

It is interesting to note that this pattern of fixed points of the KPZ equation is nicely
modeled by the simple modification of (6) of the form β(u) = −u (ε + u − au2) with a > 0.
In particular, it “predicts” the finite value dc = 2 − 1/4aε > 2. At d = dc the analog of
the strong-coupling fixed point coalesces with the perturbative UV fixed point, so that
for d > dc, they both disappear. Then, for all u > 0, the IR behavior is governed by the
Gaussian point u∗ = 0. For d = 2, the β function of this form was obtained in [87], where a
non-minimal renormalization scheme was employed.

For general d, the symmetry of the model (which takes on the form of Galilean
symmetry in terms of the potential vector field vi = ∂ih) gives the exact relation χ + z = 2;
see, e.g., [80] for the references. For d = 1, the fluctuation–dissipation relation makes it
possible to find the exact values χ = 1/2, z = 3/2 [76].

Some attempts were undertaken to derive exact results for d > 1. In [88], an infinite
sequence of possible “quantized” exact values of χ were obtained using certain nonper-
turbative requirements imposed onto the operator product expansion; two of them were
identified as the values for d = 2 and 3. In [89], the fractal nature of a rough surface plays
the central role and the exact values of the exponents are expressed in terms of its fractal di-
mension. In both cases, the results are in reasonable agreement with numerical simulations.

2.2. Generalized Pavlik’s Model

Numerous modifications of the original KPZ equation have been proposed:
“colored” noise f with finite correlation time [90,91], “quenched” h-dependent and
time-independent noise [92,93], vector or matrix field h [94–96], random coupling con-
stant [66], inclusion of superdiffusion [97], long-range temporal correlations [98], inclusion
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of anisotropy [92,99–101], conservation law for the field h [102–104], modified non-linearity
V(h) [105] and so on.

Probably the most interesting modification was introduced by Pavlik [105], where the
non-linear term in (3) is taken in the form

V(h) ∼ ∂2h2/2 = (∂h)2 + h∂2h. (7)

The first term is the original KPZ non-linearity (4), while the second can be viewed as
an h-dependent contribution to the surface tension, which makes it essentially non-linear.

Note that in the absence of the noise, Equations (3) and (7) take on the form of the
conservation law for the quantity h. In this respect, Pavlik’s model has a close formal
resemblance to the anisotropic models of self-organized criticality [106,107] and of land-
scape erosion [108,109], where the non-linearities also have the forms of total derivatives,
and the model can be viewed as an isotropic analog of the latter ones. In fact, a variation of
the Pavlik’s model first appeared in [110] in connection to SOC where the need to extend
the variation to include an infinite number of terms in the presence of time-independent
non-conserved noise was established.

It should be noted that the idea that the non-linearity in diffusion equation might
include arbitrary powers of the scalar field has naturally been around for a long time.
For example, it was suggested as early as 1937 that a fluid flow through porous
media may be described by a deterministic diffusion equation with non-linearity of
the form ∂2h(1+m)/m, see Equation (5) in [111]. Another examples are provided by the
equations [112,113].

Indeed, the model [105] in its original formulation appears not to be self-sufficient: it
is not closed concerning renormalization. The dimensional analysis and more sophisticated
renormalization considerations show that an infinite number of non-linear terms ∂2hn

with all n ≥ 2 are equally relevant and should all be included in the model from the very
beginning [114]. Thus, the generalized renormalizable model necessarily involves infinitely
many coupling constants:

V(h) =
∞

∑
n=2

λn0∂2hn/n!. (8)

Later, a similar infinite-charge situation was also encountered in stochastic models of
strongly non-linear diffusion [115,116]. More examples are provided by stochastic models
of landscape erosion: there, correct RG analysis also requires extending the original mod-
els [108,109] by adding infinite number of interaction terms and corresponding coupling
constants [117–121]. These issues are discussed below in Section 2.4.

Recently, the extended Pavlik model (8) was used in the papers [122,123] to describe
the critical activity of brain neurons and was introduced as the IR limit of the Wilson–Cowan
equation, while before that it had been mostly discussed in connection to diffusion [124,125].

2.3. Hwa–Kardar Continuous Model of SOC

The concept of self-organized criticality (SOC) was famously introduced to explain
the abundance of phenomena with the IR range power-law scaling of spatial, temporal
or spatial–temporal correlations in Nature [11,39–46]. Unlike equilibrium systems that
undergo phase transitions when a tuning parameter made to arrive at its critical value,
non-equilibrium systems with SOC are believed to evolve to their critical state without
any external tuning taking place. Rather, their intrinsic dynamics drive them towards the
critical point.

The pursuit of verifying this exciting concept gathered scientists from very different
fields such as biology [126,127], neurology [128–133], studies of social networks [134–139]
and others. While many questions surrounding the concept and its applicability are still
open despite the high maturity of the field [140–143], the rapid pace of technological
advancement, especially in data analysis, makes one hopeful for swift resolution of some
of these questions.
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In the study of the equilibrium critical behavior of discrete systems, continuous models
have been successfully used to investigate universal scaling. It was established, for example,
that the discrete Ising and Heisenberg lattice models belong to the universality class of
the continuous O(n)-symmetric ϕ4 model; see [13–16]. A non-equilibrium example is
provided by the KPZ universality class [6] that covers numerous discrete models of surface
roughening; for the reaction-diffusion models, see, e.g., [144]. The conserved directed
percolation was also considered from this point of view [145,146]; its relation to the Manna
universality class of SOC makes that example particularly pertinent.

Thus, one can hope that basic universal IR properties of the discrete models of SOC can
be described by certain continuous (coarse-grained) models, similar to models of critical
dynamics, without “throwing the baby out with the water”.

A continuous model of SOC was introduced by Hwa and Kardar in [106,107]; it is an
anisotropic stochastic differential equation describing the dynamics of a “running” sandpile
(a sand-dune or a barkhan), in particular, its surface. Sand entering the system from above
causes avalanches that come down in a set direction. The surface grows rougher and
rougher with time while remaining flat on average.

The equation for h(x) = h(t, x), the deviation of the sand profile height from its
average, reads

∂th = ν⊥0 ∂2
⊥h + ν‖0 ∂2

‖h + V(h) + f (9)

with
V(h) = λ0∂‖h2/2. (10)

Here, we used several new notations; a unit constant vector n denotes the set di-
rection for the sand transport; decomposition x = x⊥ + n x‖ with (x⊥ · n) = 0 allows
us to introduce two spatial derivatives: the (d − 1)-dimensional gradient ∂⊥ = {∂i},
i = 1, . . . , (d − 1), and the one-dimensional gradient ∂‖ = (n · ∂). There are two different
diffusivity coefficients ν‖0 and ν⊥0 and a coupling λ0. The random noise f (x) is defined as
in Equation (5).

The model is logarithmic at d = 4 and has a nontrivial IR attractive fixed point for
d < 4 [106,107].

2.4. Pastor–Satorras–Rothman Model of Landscape Erosion

The Pastor-Satorras–Rothman anisotropic model [108,109] of landscape erosion was
introduced in order to explain discrepancies in the results of experimental measurements of
the roughness exponent χ. The reported results clustered at the opposite ends of a relatively
wide range of values, prompting the authors of [108,109] to consider the role of anisotropy
of the landscape at the small length scales.

The model is a stochastic differential Equation (9), but with

V(h) = λ0∂2
‖h3/2. (11)

The function V(h) is odd in h so as to preserve the symmetry h, f → −h,− f . There is
also symmetry x‖ → −x‖.

The authors of [108,109] considered two types of random noise f . The first type was
ordinary white noise (5); the resulting model was logarithmic at d = 2. The second type
was the time-independent (static or columnar) noise with the correlation function

〈 f (x) f (x′)〉 = D0 δ(d)(x − x′), D0 > 0. (12)

The noise (12) corresponds to a case where the main cause of scaling in the process
of erosion is heterogeneity of the soil rather that random external disturbances (such as
rainfall and so on). It was introduced in [147] and was prompted by the features of erosion
observed in experiments [148] (also cf. [63–65] regarding connection to non-universality in
directed percolation).



Symmetry 2023, 15, 1556 8 of 30

The noise (12) is a special case of a quenched noise (the authors of the present paper
cannot comment on the obvious oddity that the deterministic correlation function (13)
depends on the random field h):

〈 f (x) f (x′)〉 = D0 ∆(h − h′) δ(d)(x − x′), (13)

where h and h′ are the values of the scalar field at the corresponding points x and x′.
Although this noise appears in many different problems [1,62,92,100], it resists analytical
approaches due to the factor ∆(h − h′).

It turns out that the models (9) and (11) are renormalizable only in their extended
version with infinitely many coupling constants; this holds both for the white noise (5) and
for the time-independent noise (12); see [117–121]. For the extended model,

V(h) = ∑
n

λn0∂2
‖hn/2. (14)

Note that it is possible to consider a narrowed version of V(h) odd in h; that is,
n = 2k + 1 in (14). Then, the symmetry h, f → −h,− f guarantees its renormalizability.
The original model [108,109] belongs to this subclass. This “odd” version of the model (14)
with the time-independent noise (12) was investigated in [119] within the functional RG.
A line of IR attractive fixed points in d = 2 was found confirming the hypothesis of
non-universality (that would explain a wide range of experimental results).

3. Models of Turbulent Velocity Fields

The interaction with the surrounding fluid is usually introduced with the “minimal”
substitution in Equations (3) and (9):

∂t → ∇t = ∂t + (v · ∂) = ∂t + vl∂l . (15)

Here ∇t is the Galilean covariant (Lagrangian) derivative, while v(x) = {vi} with
i = 1, . . . , d is the velocity field. In the following, we assume that the fluid is incompressible so
that the velocity field is transverse: (∂v) = 0, i.e., (kv) = 0 in the momentum representation.

The Navier–Stokes stochastic differential equation for an isotropic incompressible
viscous fluid with an external random stirring force has the form (see, e.g., original pa-
pers [76,149–151], monographs [16,37] and the review [38]):

∇tvi = ν0∂2vi − ∂i℘+ fi, (16)

where ν0 is the kinematic viscosity coefficient and ℘ is the pressure. The latter can be
expressed in terms of v as ℘ = −∂−2∂i∂kvivk. To be precise,

℘(t, x) = −
∫

dx′ ∆(x − x′)∂i∂k vi(t, x′)vk(t, x′), (17)

where ∆(x − x′) defined as the Green function for the Laplace equation, ∂2∆(x − x′) =
δ(x − x′).

As the velocity field is transverse, so is the external random force per unit mass fi.
We employ for it often used Gaussian probability distribution with a zero mean and a
correlation function of the form:

〈 fi(t, x) f j(t
′, x′)〉 = δ(t − t′) Dij(x − x′), (18)

where

Dij(x − x′) =
∫

k>m

dk

(2π)d
Pij(k) D(k) exp {i k(x − x′)} (19)
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with the transverse projector Pij(k) = δij − kik j/k2 and an amplitude D(k) > 0 that depends
on the wave number k ≡ |k|. The correlation function (18) and (19) obviously satisfies the
transversality condition ∂i Dij = 0.

The Dirac function δ(t− t′) in (18) is chosen to preserve the Galilean symmetry. The cut-
off at k = m (related to the typical largest scale L = 1/m), provides an IR regularization.
The sharp cutoff is chosen for convenience.

The simplest choice D(k) = B0 with a constant B0 > 0 describes uniform (in relation to
the momentum and the frequency) random mixing of the fluid that takes place at all scales
k > m [149]. The presence of the projector causes entanglement between different k-modes
while also introducing non-locality. Indeed, in the coordinate representation, one obtains:

Dij(x − x′) = Pij(∂) δ(x − x′) = δijδ(x − x′)− ∂i∂j ∆(x − x′), (20)

with ∆(x − x′) from (17).
For m = 0, the case D(k) = B0 involves a finite mode at k = 0; it can be interpreted as

an overall macroscopic random “shaking” of the fluid container as a whole; see footnote15

in [149]. This model is logarithmic at d = 4.
The choice D(k) = B0k2 describes a fluid in thermal equilibrium [37,76,149]; it is

logarithmic at d = 2.
The choice

D(k) = B0 k4−d−y, B0 > 0 (21)

is often used when investigating fully developed turbulence with the RG approach. It was
introduced in [150,151]; for a more detailed discussion, see, e.g., the monographs [16,37] and
the review paper [38]. The model (21) is logarithmic for y = 0 and arbitrary d. The marginal
value y → 4 has the following physical interpretation: at that limit, D(k) in (21) resembles
representation of the function δ(k) in power terms. It is this function that models the
energy pumping by the largest-scale vortices. Various extensions of the model (16) and (18),
where the random force fi has a finite correlation time, were studied, e.g., in [152–154].

Another widely used statistical ensemble for the velocity field is the Kazantsev–
Kraichnan model, described by a random Gaussian field, white in time and self-similar
in space. At the end of the 1990s, Kraichnan’s model of passive scalar advection received
much attention from the turbulence community because it elucidates the origin of intermit-
tency and anomalous scaling in fluid turbulence; see [155] and references therein. For the
first time, the anomalous multiscaling was established on the base of a dynamical model
within controlled approximations and regular perturbative expansions. That was possi-
ble due to the relative simplicity of the model, which allows for some exact results and
accurate simulations.

In the model, the velocity field has zero mean and the correlation function of the form
similar to (18) and (19):

〈vi(t, x)vj(t
′, x′)〉 = δ(t − t′)Dij(x − x′),

Dij(r) = B0

∫

k>m

dk

(2π)d

1
kd+ξ

Pij(k) exp(ik · r), B0 > 0.
(22)

The quantity 0 < ξ < 2 is similar to the Hölder exponent related to the “roughness”
of the velocity field. As such, the marginal value ξ → 2 corresponds to a smooth surface
and is referred to as Batchelor’s limit while the “Kolmogorov” value that models turbulent
motion is ξ = 4/3.

Various extensions of the ensemble (22) were also studied: inclusion of anisotropy, com-
pressibility, finite correlation time, and so on. Of special interest is the strongly anisotropic
ensemble in d = 1 + 1 dimensions due to Avellaneda and Majda [156,157], where some rig-
orous exact results are available. The d-dimensional generalizations of this ensemble were
studied in connection to the turbulent advection of the vector (magnetic) fields [158–161].
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4. Surface Roughening in a Random Environment: Induced Non-Linearity

In this section, we consider the problem of roughening dynamics of a surface in the
external turbulent medium. The surface is described by the profile field h(x) governed by
the KPZ Equation (3) with the time-independent noise (12) and subjected to a turbulent
environment, represented by the Kazantsev–Kraichnan ensemble (22). The effect of the
advection is initially introduced by the the “minimal” replacement (15). It turns out that
this necessarily leads to the emergence of non-linear interaction, quadratic in the velocity
field [162].

Before the proper exposition of the significant features related to this theory, let us
discuss several convenient substitutions. Firstly, in the Kazantsev–Kraichnan ensemble,
we put B0 = 1 in (22) by dilating the velocity field. We also substitute D0 = 1 in the
expression (5). Both substitutions can be made without a loss of generality. Naturally,
after that dilatation, the minimal subtraction (15) should be replaced by

∇t = ∂t + w0ν1/2
0 (v · ∂) = ∂t + w0ν1/2

0 vl∂l . (23)

Here, w0 is a coupling constant that originally entered the amplitude B0 with the
relation B0 = w0ν0 following from dimensional considerations (see below).

According to the general statement (see, e.g., Chapter 5 in [16]), the full stochastic
problems (3), (12) and (22) can be reformulated as the field theory for an extended set of
fields Φ = {h, h′, vi} with the action functional S(Φ):

S(Φ) =
1
2

h′h′ + h′{−∂th − w0ν
1
2
0 (vi∂i)h + ν0∂2h +

1
2

g0ν2
0(∂h)2}+ Sv(Φ), (24)

where h′ is the Martin–Siggia–Rose response field and

Sv(Φ) = −
1
2

∫
dt
∫

dx

∫
dx′vi(t, x)D−1

ij (x − x′)vj(t, x′) (25)

with Dij(r) from (22). Here, we omitted the necessary integrations in the first line for conve-
nience, but they are assumed. By employing the field-theoretic formulation, one can acquire
a multitude of correlation and response functions, namely Green’s functions, pertaining
to the primary stochastic problem. These functions are derived via functional averaging,
utilizing S(Φ) in (24) as the weight function. Note that λ0 from (4) was replaced by g0ν2

0
in (24) as λ0 = g0ν2

0 from dimensional considerations; g0 here is another coupling constant.
The next step is to address UV divergences by implementing the renormalization

procedure. The assessment of UV divergences relies on canonical dimensions, see,
e.g., Sections 1.15 and 1.1 in [16]. Dynamic models have two independent scales: a time
scale [T] and a space scale [L] (see Sections 1.17 and 5.14 in [16]); therefore, the determina-
tion of the canonical dimension for a given quantity F is contingent upon two numerical
values, specifically the frequency dimension denoted as dω

F and the momentum dimension
denoted as dk

F.

[F] ∼ [T]−dω
F [L]−dk

F . (26)

As soon as all the terms in the action functional are required to be dimensionless with
respect to both canonical dimensions, one can find the expressions for those canonical
dimensions; the obvious normalization conditions are

dk
ki
= −dk

xi
= 1, dω

ki
= dω

xi
= 0, dk

ω = dk
t = 0, dω

ω = −dω
t = 1. (27)

The full canonical dimension dF is determined by the equation dF = dk
F + 2dω

F .
The presence of the factor 2 in this equation arises from the relationship ∂t ∝ ∂2 in the
context of the free theory. All the canonical dimensions for the theory (24) and (25) are
presented in the Table 1. The parameters x0, x, µ will be defined later.
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The model is logarithmic (all coupling constants become dimensionless) at ε = 0,
i.e., at d = 4, and ξ = 0.

Table 1. Canonical dimensions of the fields and the parameters in the theory (25); ε = 4 − d.

F h h′ vi ν0, ν g0 w0 x0 µ g,w,x

dω
F −1 1 1

2 1 0 0 0 0 0
dk

F
d
2

d
2 − ξ

2 −2 ε
2

ξ
2 ξ − ε

2 1 0
dF

d
2 − 2 d

2 + 2 1− ξ
2 0 ε

2
ξ
2 ξ − ε

2 1 0

The determination of the full dimension dΓ for a 1-irreducible Green’s function Γ,
which incorporates Nh fields h, Nh′ fields h′, and Nv fields vi, can be achieved through the
utilization of the subsequent expression:

dΓ = d + 2 − dhNh − dh′ N
′
h − dvi

Nv. (28)

Within the framework of the logarithmic theory, the value of dΓ serves as the formal
index denoting the UV divergence δ of the corresponding Green’s function. Consequently,
the divergent component of the function Γ and the potential counterterms can be expressed
as polynomials of degree δ = dΓ|d=4.

For the model described by Equations (24) and (25), the actual divergence index δ′

deviates from the formal index δ by δ′ = δ − Nh. This deviation occurs because the field h
is incorporated into the action functional solely through its spatial derivative form.

Taking into account the aforementioned condition, a list of potential counterterms can
be compiled. These include ∂2h′ and ∂th

′ (both responsible for renormalizing the mean
value of h), h′h′, h′∂2h, h′∂th, h′(∂h)2, and h′(vi∂i)h (all five of which already exist in the ac-
tion functional). Additionally, there is h′(∂ivi), which vanishes due to the incompressibility
of the fluid. Finally, a new counterterm is introduced as h′v2.

In order for the model to be renormalizable, the additional term ∼ h′v2 needs to be
introduced into the action functional as given by Equation (25). Thus far, our analysis
has revolved around the KPZ equation, which included turbulent advection through the
Lagrangian derivative ∇t. It is important to emphasize that the inclusion of this new term
in the action functional effectively transforms the equation into a different form:

∂th + w0ν
1
2
0 (v∂)h = ν0∂2h +

1
2

g0ν2
0(∂h)2 +

1
2

x0

ν0
v2 + f . (29)

The full action functional therefore is as follows:

S(Φ) =
1
2

h′h′ + h′
{
−∂th − w0ν

1
2
0 (vi∂i)h + ν0∂2h +

1
2

g0ν2
0(∂h)2 +

1
2

x0

ν0
v2
}
+ Sv(Φ). (30)

The coupling constant corresponding to the new non-linearity is notated as x0. The fac-
tor ν−1

0 appears from the dimensional considerations.
With the establishment of multiplicative renormalizability for the theory described by

Equation (30), it becomes possible to express the bare fields and parameters in relation to
their renormalized counterparts:

h0 = Zhh, h′0 = Z′
hh′, v0 = Zvv,

g0 = Zgµε/2g, w0 = Zwµξ/2w, x0 = Zxµξ−ε/2x.
(31)

In order to distinguish them from their renormalized counterparts, we have intro-
duced the subscript 0 to the fields. Furthermore, the renormalized theory incorporates
an additional parameter known as the renormalization mass µ, and it involves a set of
renormalization constants denoted as Z.

The renormalized action has the form
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SR(Φ) =
1
2

Z1h′h′ + h′
{

∂th − Z2wν2(vi∂i)h + Z3ν∂2h +
1
2

Z4gν2(∂h)2 +
1
2

Z5
x

ν
v2
}
+ Sv. (32)

The determination of the constants Z is based on the requirement that the relevant
Green’s functions remain UV finite within the specified perturbation theory order. In our
calculation, we employed the MS (minimal subtraction) scheme within the one-loop ap-
proximation. For a detailed illustration of the similar one-loop calculations, see [163].

Given the multiplicative renormalizability of the model, it is possible to derive the
differential RG equation using conventional methods; see, e.g., [16] (Section 1.24). The RG
equation in our case is as follows:

(Dµ + βg∂g + βw∂w + βx∂x − γνDν − γGR
)GR = 0. (33)

Here the symbols Dµ = µ∂µ and Dν = ν∂ν represent differential operators. Addition-
ally, the quantities γν, γGR

(anomalous dimensions) and βg, βw, and βx (beta functions) are
referred to as RG functions. These functions play a crucial role in the characterization of
the model and are defined as follows:

γ f = DRG ln Z f , β f = DRG f , (34)

where f = {g, w, x} and DRG = µ∂µ|e0 .
The asymptotic behavior of the Green’s functions in a multiplicatively renormalizable

model is determined by the attractors of the RG equations. These attractors (or IR attractive
fixed points) are obtained by satisfying the condition that all β functions associated with
the model vanish; see, e.g., [16] (Section 1.42). From (31) and (34), the following relations
for β functions can be obtained:

βg = −g(ε/2 + γg),

βw = −w(ξ/2 + γw),

βx = −x(ξ − ε/2 + γx).

(35)

Coordinates of the fixed points g∗, w∗, x∗ could be found as the roots of the β func-
tions. The fixed point is considered to be IR attractive if all the eigenvalues of the matrix
Ωij(g, w, x) = ∂β f j

/∂ fi (where f again is a set of charges {g, w, x}) at the fixed point have
strictly positive real parts; see, e.g., [16] (Section 1.42).

Including the solutions that account for the marginal values of the charges requires
transitioning to a new set of charges to avoid nontrivial denominators in the β functions.
The appropriate substitution is a set {g, y = xg, α = w2/y}. Omitting the calculation details
of the RG procedure application (see Section 5), we present the following results for the
fixed points in the Table 2.

Table 2. Fixed points for the model (35).

Name Coordinates Stability Region

FP1a g∗ = w∗ = x∗ = 0 ε < 0, ξ < 0, ξ < ε/2
FP2 g∗2 = −ε, x∗ = w∗ = 0 ε < −4ξ, ξ < 0, ε > 0

FP3 g∗2 = −4ξ − 2ε, w∗2 = −16ξ/3 − 4ε/3,
x∗ = (−16ξ/3 − 4ε/3)/g

ε > −4ξ, ξ < 0

FP4 g∗2 = 4ξ − 2ε, w∗2 = 16ξ/3 − 4ε/3,
x = 2g/3

ε > 4ξ, ξ > 0

FP5 g∗2 = −ε, w∗ = 0, x∗ = −8ξ/3g ε < 4ξ, ξ > 0, ε > 0
FP6 g∗ = x∗ = 0, w∗2 = 8ξ/3 empty

FP1b g∗2 = 0, y∗ = 0, arbitrary α∗ ε < 0, ξ < 0
FP7 g∗2 = 0, y∗ = −8ξ/3, α∗ = 0 ξ > 0, ε < 0
FP8 g∗2 = 0, y∗ = −8ξ/3, α∗ = 1 empty
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Stability regions on the ε − ξ plane are shown in Figure 1. It is worth mentioning that
in the regions depicted on the right-hand side of the graph in Figure 1, certain coordinates
of the fixed points exhibit imaginary values, while others assume negative values.

Figure 1. IR stability regions of the fixed points for the renormalized theory (32).

Let us discuss the stability regions in details. For different values of ε and ξ, different
regimes take place. To begin with, let us consider the negative values first (quadrant III
of ε − ξ plane). The domain denoted as FP1 in Figure 1 includes the couple of Gaussian
points FP1a and FP1b. In the regime characterized by negative values of ξ and ε, all the
coupling constants converge to zero in the infrared (IR) limit. Consequently, this domain
corresponds to a conventional diffusion behavior.

Regarding the domain referred to as FP2, it is noteworthy that w∗ = x∗ = 0, which
implies the pure KPZ model (featuring spatially quenched noise and lacking turbulent
mixing) being multiplicatively renormalizable without the inclusion of an additional term
h′v2 in the action functional, as described in reference [121].

In a surprising revelation, the stability region associated with the point FP5 corre-
sponds to a regime where the KPZ non-linearity holds significance, while turbulent mixing
is considered irrelevant. Notably, in this regime, the coordinate x∗ takes on a nontrivial
value, indicating its significance within the system. This observation suggests that the
newly introduced non-linearity h′v2 retains its relevance even in the absence of turbulent
mixing, which initially gave rise to it. Furthermore, it is noteworthy that this regime ex-
hibits a Kolmogorov exponent value of ξ = 4/3, irrespective of the system’s dimensionality
being d = 2 or d = 3.

The same situation arises within the regime associated with the point FP7: the presence
of the new term h′v2 dictates the IR asymptotic behavior, while both the turbulent mixing
and the KPZ non-linearity are considered irrelevant in this context. Finally, in the regimes
characterized by the points FP3 and FP4, both non-linearities and turbulent mixing play
significant roles, as evidenced by the nontrivial values of all coordinates associated with
these fixed points.

5. Non-Conventional Scaling Behavior and Dimensional Transmutation

The goal of this paper is twofold: to illustrate how RG and QFT methods are applied to
problems of non-equilibrium dynamics and to point out several interesting effects that occur
specifically due to the added turbulent mixing. In the Section above, we discussed one of
those effects, namely, the induced non-linearity. In this Section, we deal with another effect
termed here as dimensional transmutation, a phenomenon that consists of a previously
dimensionless parameter acquiring a nontrivial canonical dimension.

Let us formulate the problem to consider; we start with the Hwa–Kardar
model (9) and (10) and put λ = 1 without the loss of generality. The noise is chosen
in its simplest form (5) and the external velocity field is described by Equation (22). As a
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result, we combine in one model the anisotropic stochastic equation (9) and the isotropic
velocity ensemble (22).

To describe the phenomenon of dimensional transmutation, we should first list
the results of the RG analysis of the “pure” Hwa–Kardar model without external field
vi [106,107]. The model is anisotropic (i.e., it contains separate terms with ∂2

⊥h and ∂2
‖h) and

action functional for it reads (cf. Equation (24))

S(Φ) =
1
2

h′D0 h′ + h′
(
−∂th + ν‖0 ∂2

‖h + ν⊥0 ∂2
⊥h −

1
2

∂‖h2
)

. (36)

Since model (36) is anisotropic, it involves two independent scales L‖ and L⊥ instead
of a single scale L (cf. Equation (26)), and an arbitrary quantity F is described by three
canonical dimensions:

[F] ∼ [T]−dω
F [L‖]

−d
‖
F [L⊥]

−d⊥F . (37)

Table 3 contains the canonical dimensions of all fields and parameters for the the-
ory (36), obtained from the dimensionless condition for each member of the action (36). We
denoted a full canonical dimension dF as dF = dk

F + 2dω
F and a full momentum dimension

dk
F as dk

F = d
‖
F + d⊥F . The coupling constant g0 is defined as D0 = g0ν3/2

⊥0 ν3/2
‖0 ; the parameter

u0 which we will need later is defined as u0 = ν‖0/ν⊥0.

Table 3. Canonical dimensions for the theory (36); ε = 4 − d.

FFF hhh′ hhh DDD0 ννν‖‖‖000 ννν⊥⊥⊥000 u0 g0 ggg µµµ

dω
F −1 1 3 1 1 0 0 0 0

d
‖
F

2 −1 −3 −2 0 −2 0 0 0
d⊥F d − 1 0 1 − d 0 −2 2 ε 0 1
dk

F d + 1 −1 −d − 2 −2 −2 0 ε 0 1
dF d − 1 1 4 − d 0 0 0 ε 0 1

From Table 3 and canonical dimensions analysis, it follows that the logarithmic dimen-
sion of the theory is d = 4 and the model is multiplicatively renormalizable with the only
nontrivial renormalization constant Zν‖ . The only parameters that require renormalization
are ν‖0 and g0:

ν‖0 = ν‖Zν‖ , g0 = gµεZg, (38)

where µ is the renormalization mass.
The canonical differential equations for a renormalized Green function GR = 〈Φ . . . Φ〉

read (

∑
i

dω
i Di − dω

G

)
GR = 0,

(

∑
i

d⊥i Di − d⊥G

)
GR = 0,

(

∑
i

d
‖
i Di − d

‖
G

)
GR = 0.

(39)

The index i enumerates all arguments of GR (i.e., ω, k⊥, k‖, µ, ν⊥, and ν‖); the operator
Dx is defined as Dx = x∂x for any x.

To calculate the critical exponents that stand in scaling power laws (i.e., dimensions),
we need to use together above written Equation (39) and the differential RG equation

(
Dµ + βg∂g − γν‖Dν‖ − γν⊥Dν⊥ − γG

)
GR = 0, (40)

where β and γ denote β function for the coupling constant g and anomalous dimensions for
the parameters of the system. To find universality classes of asymptotic (critical) behavior,
we should find zeroes of the β functions, β(g∗) = 0, called also fixed points of the RG
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equations. To obtain IR (not UV) attractive point real parts of all the eigenvalues Ωi of the
matrix Ωij = ∂gi

βgj
must be positive; here g = {gi} is a full set of the charges.

The substitution g → g∗ and, hence, γF → γ∗
F turns Equation (40) into an equation

with constant coefficients, i.e., into an equation of the same type as Equation (39). This
leads to the desired equation of critical scaling:

(
Dk⊥ +Dk‖

∆‖ + ∆ωDω − ∆G

)
GR = 0 (41)

with ∆‖ = 1 + γ∗
ν‖

/2 and ∆ω = 2 − γ∗
ν⊥

.
We want to study the critical scaling behavior where IR irrelevant parameters (namely,

µ, ν⊥ and ν‖) are kept fixed while frequencies and momenta are scaled. Thus, we combine
all these equations to eliminate derivatives with respect to all non-IR parameters and arrive
at the critical scaling equation for a given fixed point. As we will see below, such an
exception is not always possible: it requires a certain balance between the number of IR
and non-IR parameters and the number of independent scaling equations.

The model (36) has two fixed points. The first one is Gaussian (free) fixed point, which
means that g∗ = 0. It is IR attractive for ε < 0 and corresponding critical dimensions
coincide with canonical ones. The second point has the coordinate g∗ = 32ε/9 + O(ε2). It
is IR attractive for ε > 0 and corresponding canonical dimensions read

∆h = 1 − ε/3, ∆h′ = 3 − ε/3, ∆ω = 2, ∆‖ = 1 + ε/3. (42)

This result reproduces a well known answer obtained firstly by Hwa and
Kardar [106,107] for the (fully anisotropic) model (36).

To include turbulent advection in the Hwa–Kardar model we should replace ∂t with
∇t (“minimal” replacement) in the action (36) and add Kraichnan’s velocity ensemble (22).
This leads to the following action functional:

S(Φ) =
1
2

h′D0 h′ + h′
(
−∇th + ν‖0∂2

‖h + ν⊥0∂2
⊥h −

1
2

∂‖h2
)
+ Sv, (43)

Sv = −
1
2

∫
dt
∫

dx

∫
dx′vi(t, x)D−1

ij (x − x′)vj(t, x′). (44)

Here, D−1
ij (x − x′) is the kernel of the inverse operator D−1

ij for the integral operator
Dij from (22) and Sv is responsible for Gaussian averaging over the field v.

The main difference between this case and the previous one is that since that velocity
ensemble is isotropic, it is no longer possible to define two independent spatial scales in
this model. Thus,

[F] ∼ [T]−dω
F [L]−dk

F (45)

and dF = dk
F + 2dω

F . Canonical dimensions of the fields and parameters of the model
are presented in Table 4. From (45), it follows that the ratio u0 = ν‖0/ν⊥0 is completely
dimensionless, that is, dimensionless with respect to all possible dimensions (i.e., frequency
and momentum dimensions) separately.

Table 4. Canonical dimensions for the theory (44); ε = 4 − d.

F h′ h D0 ν‖0 ν⊥0 g0 v B0 x0 u0, u g, x µ

dω
F −1 1 3 1 1 0 1 0 0 0 0 0

dk
F d + 1 −1 −2− d −2 −2 ε −1 ξ − 2 ξ 0 0 1

dF d − 1 1 4 − d 0 0 ε 1 ξ ξ 0 0 1

According to the general rules, in this model with mixing, the ratio u0 should be
treated as an additional charge. Another coupling constant x0 is related to the amplitude B0
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of the correlation function (22) as B0 = x0ν⊥0. Thus, the theory is logarithmic when ε = 0
(i.e., d = 4) and ξ = 0.

The theory is renormalized by introducing five renormalization constants Zi:

ν‖0 = ν‖Zν‖ , ν⊥0 = ν⊥Zν⊥ , g0 = Zggµε, x0 = Zxxµξ , u0 = Zuu. (46)

It follows from calculations that the one-loop expressions for β functions have the form

βg = g

(
−ε +

9
32

g +
9

16
x

u
+

9
16

x

)
, βx = x

(
−ξ +

3
8

x

)
,

βu = u

(
−

3
16

g −
3
8

x

u
+

3
8

x

)
.

(47)

From (47), it follows that the system has two possible IR attractive fixed points. The
first one is Gaussian point FP1 with the coordinates g∗ = 0, x∗ = 0 and arbitrary u∗. The
second point FP2 obtains coordinates g∗ = 0, x∗ = 8ξ/3, u∗ = 1 and corresponds to the
regime of simple turbulent advection (the non-linearity of the Hwa–Kardar equation is
irrelevant in the sense of Wilson). Here, we denote a fixed point of the RG equation with
“FP” as we did in the Section above.

The basins of attractions for points FP1 and FP2 are ε < 0, ξ < 0 (FP1) and ξ > ε/3,
ξ > 0 (FP2). Since there are no fixed points with g∗ 6= 0 in the set, the Hwa–Kardar
universality class is not presented for such values of u.

However, other possibilities are possible solutions with u∗ = 0 and 1/u∗ = 0. To study
these cases, we should pass to new variables w = x/u (for the case u∗ = 0) and α = 1/u
(for the case u∗ → ∞).

The first case yields no new IR attractive fixed points. But, the second case gives us
two more fixed points FP3 and FP4 corresponding to coordinates g∗ = 32ε/9, x∗ = 0,
α∗ = 0 (FP3) and g∗ = 32ε/9 − 16ξ/3, x∗ = 8ξ/3, α∗ = 0 (FP4). The point FP3 corresponds
to the regime of critical behavior where only the non-linearity of the Hwa–Kardar equation
is relevant. The point FP4 corresponds to the situation where both the non-linearity and
the turbulent advection are relevant. The basins of attractions (IR) are ε > 0, ξ < 0 (FP3)
and ξ < ε/3, ξ > 0 (FP4); see [164].

Since original Hwa–Kardar model (36) obtains two independent momentum dimen-
sions, it involves three Equations (39) related to the canonical scale invariance. But, after we
add isotropic turbulent advection (22) to the mix, only two such equations can be derived
for the resulting problem (44). This is precisely what leads to dimensional transmutation.

By combining two scaling equations with differential RG equation taken at the fixed
point, we arrive at the equation of critical scaling. For the Gaussian fixed point FP1
corresponding critical dimensions coincide with canonical ones. For the fixed points FP2,
they are

∆h = 1 − ξ, ∆v = 1 − ξ, ∆h′ = 3 − ε + ξ, ∆ω = 2 − ξ. (48)

Surprisingly, the scaling associated with fixed points FP3 and FP4 is significantly
different from the scaling described by points FP1 and FP2. The difference arises when one
sets β{g∗i }

= 0 in the RG equation

(
Dµ + βg∂g + βx∂x + βu∂u − γν⊥Dν⊥ − γG

)
GR = 0. (49)

If Green functions have well-defined finite limits at g → 0 and x → 0 (it is the case of
points FP1 and PF2) the β functions can be set to zero without any further analysis. But in
the case of points FP3 and FP4 such a straightforward substitution cannot be performed for
βα and we should retain first nontrivial order of the expansion of βα around α = 0 in (49).

The main idea is the following. Let us consider the renormalized correlation function
GR ∼ R(k/µ, g), where g is our coupling (let us suppose for brevity that we have only
one charge), k is momenta and R is a function of dimensionless arguments. If the function
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R(1, g) is finite at g = g∗, we may put g = g∗ directly in the RG Equation (49) and obtain
critical dimensions in ordinary way. But, if

R(k/µ, g) = (g − g∗)a F(k/µ, g), (50)

the naive substitution ḡ → g∗ leads to the vanishing or divergence of the amplitude factor
(here a is some exponent and we suppose that F has a finite limit for g → g∗). To find the
right IR behavior, one should take into account how the invariant constraint approaches its
fixed point, namely ḡ − g∗ ≃ (k/µ)Ω, where Ω = β′(g∗) > 0. This gives

G ≃ k∆G+aΩ F(1, g∗). (51)

This leads to the fact that the correct critical dimension of the function G appears to
be ∆G + aΩ rather than ∆G itself. This leads to modification of the RG equation at the
fixed point: (

Dµ + ωDg−g∗ − γ∗
νDν − γ∗

G − aΩ
)

F = 0, (52)

which differs from the ordinary one by the replacement γ∗
G → γ∗

G + aΩ (see
Appendix A in [165]).

As a result, the critical scaling equation at the point FP3 has the form
(
Dk‖

+Dk⊥ + 2Dω −
2ε

3
Dα − dk

G − 2dω
G − γ∗

G

)
GR = 0. (53)

Now, we should find a general solution for the whole system which includes two
canonical invariance equations, the RG Equation (49) taken at a fixed point, and homo-
geneous counterpart of equation (53). It is an arbitrary function of three independent
variables which we may choose for definiteness as

z1 =
ω

ν⊥k2
⊥

, z2 =
k‖

k⊥
, and z3 = α

(
k⊥
µ

)2ε/3

. (54)

However, it is the case where only the non-linearity is relevant, i.e., model (43) should
coincide with the pure Hwa–Kardar model (36). This means that d‖ and d⊥ are two
independent dimensions, see (39), and additional canonical symmetry arises. Additional
symmetry requires the variables z1, z2 and z3 to be dimensionless with respect to Table 3.
The variables z2 and z3 do not satisfy this requirement, but it is possible to construct a new
variable, z0 = z2z−1/2

3 , which solves the problem. It obtains needed canonical dimensions
and serves along with z1 as the second solution of the homogeneous part of Equation (41):

z0 =
k‖

k
∆‖

⊥ α℘
µε/3 with ℘ =

3
2ε

(
∆‖ − 1

)
. (55)

Here, ∆‖ = 1 + ε/3 and this is in agreement with expressions (42). The presence of
variable z0 with nontrivial ∆‖ 6= 1 means that at fixed point FP3 the coordinates x‖ and x⊥
are scaled independently, while all the IR irrelevant parameters (including α) are kept fixed.
This reproduces the results derived for the pure Hwa–Kardar model (36).

The fixed point FP4 corresponds to the regime where both the turbulent advection and
the non-linearity of the Hwa–Kardar equation are relevant. The critical scaling equation for
it reads

(
Dk‖

+Dk⊥ + ∆ωDω −

(
2
3

ε − 2ξ

)
Dα − dk

G − ∆ωdω
G − γ∗

G

)
GR = 0, (56)
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where ∆ω = 2 − ξ. Three combinations ẑ1, ẑ2 and ẑ3 are possible solutions of its homoge-
neous part:

ẑ1 =
ω

ν⊥k2
⊥

(
k⊥
µ

)ξ

, ẑ2 =
k‖

k⊥
, ẑ3 = α

(
k⊥
µ

)2ε/3−2ξ

. (57)

The variables (57) describe generalized critical scaling where α (i.e., the ratio of ν⊥
and ν‖) is also scaled. The self-similar behavior also involves some dilation of the ratio u,
but to find ordinary critical behavior with fixed definite critical dimensions, we should
know some special dependence on u.

This means that among four universality classes of critical behavior, two classes
turned out to correspond to non-conventional scaling behavior. For point FP3, a kind of
dimensional transmutation takes place, i.e., the ratio u of the two diffusivity coefficients ν‖
and ν⊥ acquires a nontrivial canonical dimension. Due to this, canonical dimensions d‖

and d⊥ scale independently from each other, which means that new canonical symmetry
arises in the model.

For the point FP4, the IR behavior resembles various generalized self-similarity hy-
potheses, like the weak scaling of George Stell [166–168] or the parametric scaling in the
spirit of Michael Fisher [169] for systems with different characteristic scales and modified
scaling laws.

6. Non-Linear Diffusion in a Random Medium: An Infinite-Dimensional Model

In the current section, we investigate the infrared behavior of a scalar field undergoing
anomalous diffusion in the turbulent media. Conservation of the total amount of the
admixture during the diffusion and the advection processes can be described by the
continuity equation of the most general form:

∇th = ∂i Ji + f , (58)

where ∇t is given by (15) and introduces coupling with the media. The random force f
models interaction with large-scale modes of the admixture distribution, which are out of
inertial range and hence beyond the applicability of simplified model (22):

〈 f (x) f (x′)〉 = δ(t − t′)
∫

k>m

dk

(2π)d
D f (k) exp{ik(x − x′)}, (59)

D f (k) = D0 k2−d−y, D0 > 0. (60)

This correlation function is similar to the one written for the external random force
in the Navier–Stokes Equations (18) and (21). The two differences are concerned with the
scalar nature of the force f in (59) (compressibility condition vanishes and so does the
projector Pij in (21)) and with the power of momentum k in the kernel D f (60). On the one
hand, this form of the kernel may be viewed as a power law delta-like distribution, while,
on the other hand, as we will see later, it appears to be of the same IR relevance as turbulent
advection when y = 0. The latter means that the non-linear diffusion and the advection
provide corrections to the possible IR scaling of the same magnitude and neither of them
can be neglected.

Similarly, since we are interested in the asymptotic IR behavior, only the leading term
of the gradient expansion should be kept in the expression for the current

Ji = ∂iV(h) + O(∂3), (61)

where V(h) is from the extended Pavlik model (8). As we will see below, the decision to
consider the extended model from the beginning is justified by the appearance of infinite
number of counterterms needed for renormalization.
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The action functional corresponding to the equivalent field-theoretic model is given
by the sum:

S(Φ) = Sh + Sv, (62)

where

Sh(Φ) =
1
2

h′D f h′ + h′
[
−∇th + ∂2V(h)

]
(63)

includes infinitely many coupling constants, and Sv was previously defined in (25).
Canonical dimension of all the fields and parameters of the model, including

their renormalized counterparts to be introduced below, are calculated employing defi-
nitions (26) and (27) and presented in the Table 5. Note that in order to unambiguously
define canonical dimensions, the amplitude factor D0 is set to be equal to unity without the
loss of generality.

Table 5. Canonical dimensions of the fields and the parameters in the model (62) and (63).

F h h′ v m, µ B0 λn0

dk
F 1 − y

2 d − 1 + y
2 −1 1 ξ − 2 1

2 y(n − 1)− (n + 1)
dω

F − 1
2

1
2 1 0 1 1

2 (n + 1)
dF −

y
2 d +

y
2 1 1 ξ 1

2 y(n − 1)

F λn ν0, ν w0 gn0 w gn

dk
F −(n + 1) −2 ξ 1

2 y(n − 1) 0 0
dω

F
1
2 (n + 1) 1 0 0 0 0

dF 0 0 ξ 1
2 y(n − 1) 0 0

From Table 5, one can see that all the interactions h′∂2hn become logarithmic simulta-
neously as couplings λn0 turn dimensionless with exponent y approaching zero. This is
the precise reason why their inclusion in the initial Equation (58) was a necessary prereq-
uisite for the multiplicative renormalizability of the model. The full model (62) becomes
logarithmic at ξ = y = 0.

Analysis of canonical dimensions shows that all the terms requiring the introduction
of counterterms are already present in the action and, hence, the model is multiplicatively
renormalizable. We also took into account that only the Green functions containing auxiliary
field h′ are non-vanishing due to causality reasons, that the Galilean symmetry forbids the
counterterm h′(vi∂i)h, and that due to incompressibility of the velocity, the field h′ always
enters Green functions only in the form of a spatial gradient.

The UV divergences manifest themselves as poles at y → 0 and ξ → 0 in the correlation
functions. Their elimination requires an introduction of renormalization constants and of
renormalized action functional, which in our case will take the form

SR(Φ) =
1
2

h′D f h′ + h′
{
−∇th + ∂2VR(h)

}
+ SvR(v), (64)

with the renormalized analog VR(h) of the series (8)

VR(h) =
∞

∑
n=1

1
n!

Znλn hn, (65)

and SvR which is the functional Sv from (25) expressed in renormalized variables.
In what follows, it is convenient to introduce new notations and variables, namely

λ10 = ν0; λn0 = gn0 ν
(n+1)/2
0 , (n > 2); B0 = w0ν0. (66)

Their renormalized counterparts are defined by multiplicative renormalization

ν0 = νZν, w0 = wµξ Zw, gn0 = gnµ(n−1)y/2Zgn (n ≥ 2). (67)
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The constants Zn are calculated directly from the requirement of subtraction of the
divergences in the loop contributions, and the others are found from the relations following
from Equations (66) and (67):

Zν = Z−1
w = Z1, Zgn = Zn Z

−(n+1)/2
1 . (68)

The first relation here follows from the fact the velocity distribution does not need par-
ticular renormalization and should only be expressed in terms of renormalized parameters,
so that B = B0.

In order to explicitly calculate the divergent part of the one-loop contribution, we
employ the functional technique developed earlier in [114–118]. In particular, we consider
the generating functional of the 1-irreducible Green’s functions in renormalized theory.
The expansion of the latter in the number of loops l has the form (see, e.g., Section 2.9
in [16]):

ΓR(Φ) =
∞

∑
l=0

Γ(l)(Φ), Γ(0)(Φ) = SR(Φ). (69)

The loopless term is given by the renormalized action (64), while the one-loop contri-
bution is given by the expression:

Γ(1)(Φ) = −(1/2)Tr ln(W/W0), (70)

where W is a linear operation with the kernel

W(x, x′) = −δ2 SR(Φ) /δΦ(x)δΦ(x′), (71)

and W0 is its analog in the free theory. The kernel W is a 3 × 3 matrix in a full set of the
fields Φ = {h, h′, v}. Symbolically, this matrix can be represented as

W(Φ) =




−∂2h′ · V′′ −∂t − V′(h)∂2 −∂h′

∂t − ∂2V′(h) −D f ∂h

h′∂ −∂h Dv


 (72)

where we omitted the vector indices and dependence on the arguments for the sake
of brevity.

In order to calculate renormalization constants Zn, we do not need to calculate the full
expression (70) explicitly; rather, its divergent part is enough, which is already known to
have the form ∫

dx∂2h′(x)R(h(x))

with some function R(h) analogous to (8). This means that we have to calculate (70) only to
the first order in its elements proportional to h′, namely W(hh), W(hv) and W(vh). Moreover,
within the accuracy needed for one-loop calculation, we can set Zn = 1 and v(x) = 0
in the one-loop contribution (70) and (71), while in the loopless contribution Γ(0)(Φ), we
keep only the first nontrivial terms in the renormalization constants Zn with the additional

convention that gn ∼ g
(n−1)
2 . Employing the well-known formula δ(Tr ln K) = Tr(K−1δK)

to vary (70) in θ′, we finally obtain with required accuracy that Tr ln(W/W0) ≃ −I1 + 2I2
where

I1 =
∫

dx D(hh)(x, x)V′′(h)∂2h′(x) (73)

and
I2 =

∫
dx
∫

dx′ ∂ih(x)D(h′h)
(
x, x′

)
D

(υυ)
ij

(
x, x′

)
∂jh

′
(
x′
)
. (74)

In these expressions D(ΦΦ) are the corresponding elements of the matrix W−1 taken at
the vanishing values of the field h′.
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To proceed further, one should make use of the fact that once the two external deriva-
tives are moved to the external fields h(x) and h′(x) in the expressions (73) and (74),
the remaining integrals would contain only logarithmic divergences. According to the
general statement, within the framework of dimensional regularization, logarithmic diver-
gences do not depend on external frequencies or momenta. The latter means that as long as
one concerned only with the calculation of the divergent parts of expressions (73) and (74),
the inhomogeneity of the field h(x) can be neglected and the integral can be evaluated
treating field h(x) as if it was merely a constant. Then D(vv) turns into the standard per-
turbative propagator of the velocity field, while elements D(hh) and D(h′h) become the
corresponding propagators 〈hh〉 and 〈h′h〉 in the presence of homogeneous background
field h, i.e., usual perturbative propagators but with substitution ν∂2 → V′(h) ∂2 with
h = const. The resulting integrals can be calculated in a standard fashion by going over to
the Fourier (momentum-frequency) representation.

The result of those calculations yields the explicit expression for the divergent part of
the one-loop contribution (70):

Γ(1)(Φ) =
ad

4y

( µ

m

)y ∫
dx h′(x) ∂2 F(h(x)) + ad

(d − 1)
2d

wν

ξ

( µ

m

)ξ ∫
dx h′(x) ∂2h(x), (75)

with

F(h) = µ−y V′′(h)

V′(h)
=

∞

∑
n=0

1
n!

µy(n−1)/2 ν(n+1)/2 rn hn. (76)

Finally, the divergences obtained should be subtracted by the appropriate choice of
the renormalization constants in the tree part of the expansion, which gives the desired
one-loop expressions

Z1 = 1 −
ad

4
r1

y
−

ad(d − 1)
2d

w

ξ
, Zn = 1 −

ad

4
rn

y

1
gn

(n > 1). (77)

By adjusting standard formula (34) to the case of infinite number of charges,

γn = D̃µ ln Zn =

[
βw∂w +

∞

∑
n=2

βn∂gn

]
ln Zn (78)

and then making use of the relations (66) and (68), all the RG functions can be expressed in
terms of the basic anomalous dimensions γn as follows:

γgn = γn − (n + 1)γ1/2, γν = −γw = γ1, (79)

βw = w[−ξ − γw] = w[−ξ + γ1], (80)

βn = gn[−(n − 1)y/2 − γgn ] = gn[−(n − 1)y/2 − γn + (n + 1)γ1/2]. (81)

For the further analysis, it is useful to present explicit expression for the beta-function
of the coupling constant w and beta-functions of the first few couplings gn:

βw = −ξ w + (ad/4)
[

2 w(d − 1)/d + g3 − g2
2

]
,

β2 = −y g2/2 + (ad/8)
[

6 w g2(d − 1)/d + 7g3
2 + 9g2 g3 − 2g4

]
,

β3 = −y g3 + (ad/4)
[

4 w g3(d − 1)/d + 6g4
2 − 14g2

2 g3 + 5g2
3 + 4g2 g4 − g5

]
,

β4 = −3 y g4/2 + (ad/8)
[

10 w g4(d − 1)/d − 48g5
2 + 120g3

2 g3 − 60g2 g2
3

−45g2
2 g4 − 25g3 g4 + 10g2 g5 − 2g6

]
.

(82)
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From (82), it follows that there are two intersecting two-dimensional surfaces of fixed
points. Indeed, the equation βw(w∗, g∗2 , g∗3) = 0 has two solutions: trivial

w∗ = 0, (83)

corresponding to the IR asymptotic regime where the advection process appears to be
irrelevant, and the solution

w∗ = 2d [ξ − ad(g∗3 − g∗2
2 )/4]/(ad(d − 1)), (84)

depending on two parameters g∗2 and g∗3 . As for the rest of beta functions, one can see from
their explicit representations that at either of the solutions (83) and (84), the function βn

depends on the first (n + 2) couplings gn, which means that one can arbitrarily choose
values of coordinates g∗2 and g∗3 and then recurrently determine all remaining coordinates
g∗n with n > 3 from the requirement of vanishing of the functions βn−2.

According to the general rule, a fixed point is IR attractive if the real parts of all
eigenvalues of the matrix Ωnm = ∂βn/∂gm|g∗ are non-negative. In the case under consid-
eration, Ω is an infinite matrix and explicit calculation of its eigenvalues is a nontrivial
task, which to date has not been solved. At best, it has been shown that there are regions
on attractor surfaces at which all the diagonal elements Ωnn > 0 so that in these regions
tr[Ω] > 0. Nevertheless, the latter is the only necessary, but not sufficient, condition to
ensure IR attractiveness.

However, if we assume that there are indeed IR attractive regions this will imply that
correlation functions exhibit infrared scaling behavior described by the critical exponents

∆h = (1 − y/2)− (1/2)∆ω, ∆h′ = (d − 1 + y/2) + (1/2)∆ω, (85)

where ∆ω differs for the solutions (83) and (84).
For the sheet with w∗ = 0 in the one-loop approximation, we have a nonuniversal

value of the frequency critical dimension

∆ω = 2 − ad (g∗3 − g∗2
2 )/4 (86)

which means that critical dimensions of the fields h, h′ and hence scaling exponents of
the correlation and response functions in the original model would also be nonuniversal
in the sense that they depend on particular parameters of the admixture self-interaction.
Meanwhile, for every fixed point on the sheet with w∗ 6= 0

∆ω = 2 − ξ (87)

is a universal quantity.
In both cases, critical dimensions of the scalar fields are subject to the exact relation

∆h′ + ∆h = d; (88)

which is probably the main quantitative prediction of the present analysis that can be
tested directly in the experiment even despite the possible non-universality of the IR
scaling behavior.

As another possible application of the results obtained, one can consider a spread of a
cloud of particles injected into the system at the origin. Then, the effective radius of the
particle cloud at the moment t is given by [170]

R2(t) =
∫

dx x2〈h(t, x)h′(0, 0)〉.
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Substituting the scaling representation (2) and taking into account relation (88), one
readily arrives at the spreading law

R2(t) ∝ t2/∆ω (89)

or, equivalently,
dR2(t)/dt ∝ R2−∆ω (t). (90)

By assuming that the system is at some fixed point that corresponds to the solution
(83) and by substituting the most realistic value ξ = 4/3, we end up with nothing else but
a well-known Richardson law [170]. Possible experimental observations of deviation from
this law can be interpreted as evidence in favor of existence of attractive regions on the
second sheet of fixed points (84).

Another interesting, albeit more theoretical, result of the RG analysis described in this
Section is that coordinate w∗ in (84) can be set to zero by appropriate choice of the difference
g∗3 − g∗2

2 ; therefore, surfaces corresponding to the solutions (83) and (84) actually have a line
of intersection. At this line of fixed points critical dimension of the frequency will coincide
with that of the regime when advection is relevant. In this regime, the admixture behaves
at large scales as if it was advected; however, this happens not because of interaction with
the velocity field but due to admixture’s own dynamic, which makes actual advection
irrelevant. This implication refers us to the interesting question of whether admixture that
locally undergoes regular diffusion in turbulent media can be described solely in terms of
the anomalous diffusion equation with the suitable choice of the current which non-linearly
depends on the admixture concentration.

7. Discussion and Conclusions

In this paper, we showcased different interesting effects that take place when a ran-
domly moving environment interacts with a nearly-critical stochastic system. The effect
can be as strong as leading to emergence of induced non-linearity that changes the original
model itself; see how Equation (4) turns to Equation (29). Otherwise, it can make the
original anisotropic scaling to appear only through certain “dimensional transmutation”
in a specific regime of critical behavior; see solution (55) in Section 5. It also can be as
relatively weak as just resulting in the emergence of new expected universality classes (see
Section 6).

Specifically, we applied the field-theoretic RG approach to the three stochastic prob-
lems. In the first problem, a randomly growing surface described by the Kardar–Parisi–
Zhang Equation (3) with the time-independent random noise (12) was studied in a mov-
ing environment modeled by the Kazantsev–Kraichnan ensemble (22). Through the RG
analysis, the appearance of a new non-linearity was established. Surprisingly enough,
the non-linearity turned out to be relevant in several regimes of critical behavior where the
turbulent mixing that induced it is itself irrelevant. Thus, the advection plays the role of a
trigger that turns on the non-linear interaction with the environment.

It is clear that the crucial reason for the strong effect of the moving environment in this
problem is due to the time-independent noise (12) in Equation (3). Indeed, in [171], where
the Hwa–Kardar model was considered with the Avellaneda–Majda ensemble [156,157]
(anisotropic counterpart of the Kazantsev–Kraichnan ensemble) with finite correlation
time, it was the case with the quenched noise that delivered the most interesting results
(nonuniversal critical behavior and a complicated pattern of stability regions). The time-
independent noise breaks the Galilean symmetry of the original stochastic model; it also
raises logarithmic dimension of the model by the two units. Although the latter effect does
not seem impressive at first sight, it plays a key role in the problem of landscape erosion
(see Section 2.4), where only the model with time-independent noise is expected to predict
nonuniversal nontrivial scaling [119].

The second problem involves the Hwa–Kardar model of self-organized
criticality in (5), (9) and (10) that takes into account the environment motion described by
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the Kazantsev–Kraichnan ensemble (22). The effect that we named “dimensional trans-
mutation” [164,165], is observed in the regime where these two systems with different
symmetries coalesce and only the non-linearity of the Hwa–Kardar equation wins: the
resulting critical dimensions are in agreement with those derived for the pure Hwa–Kardar
model (5), (9) and (10). Even more complicatedly, non-conventional scaling was estab-
lished for the regime where both the advection and the non-linearity are relevant; see
Equation (57).

It seems clear that it is the interplay between anisotropic dynamics (9) and isotropic
environment (22) that results in this versatility of critical behavior. Indeed, for the Hwa–
Kardar model coupled to the environment described by the Navier–Stokes equation (see
Equations (16) and (19), the case of D(k) = B0), the curve of fixed points was established.
Moreover, the points on the curve are IR-attractive, simultaneously implying nonuniversal-
ity [172,173].

In ordinary field theories like the ϕ4 model, coupling constants (“charges”) are the
coefficients in the interaction terms and serve as expansion parameters in ordinary pertur-
bation theory. In dynamical models like those considered in this review, the dimensionless
ratios of various kinetic, diffusion and viscosity coefficients should be treated on the same
footing as charges with their own β functions. The possible limits when the corresponding
fixed points tend to zero or infinity give rise to a subtle pattern of IR attractors and, at the
same time, lead to a non-conventional and nontrivial pattern of the critical behavior.

It has long been proposed that various interesting phenomena in complex strongly
interacting many-body systems (e.g., formation of snow-flake structures described by
universal self-similar laws, stochastic resonance etc.) may result from such a rivalry
between intrinsic dynamics and various external disturbances that, in their turn, manifest
themselves as a kind of effective external friction [174–176].

The creation of a framework that would explain all these effects, however, is a difficult
undertaking. The concept of SOC, for example, has been insufficient for that task so far (see,
e.g., discussion in [11]). Nevertheless, with the rapid progress in computational methods
and data analysis, the scientific community is as close to the conclusive testing of SOC as it
has ever been.

Another intriguing concept to explore was recently proposed and discussed
in [177–180], where the interplay between complex topology and driving analyzed through
the lens of geometry and competing higher-order interactions was suggested to be the key
needed to understand critical dynamics.

In the third problem, we considered the non-linear diffusion (58) and (61) described
by the extended Pavlik model (8) with a special choice of a random noise (59) and (60) in
a moving medium modeled by the Kazantsev–Kraichnan ensemble (22). Inclusion of the
velocity field in that case resulted in a pair of two-dimensional surfaces of fixed points in
the infinite-dimensional parameter space (see Equations (83) and (84)) with the first surface
corresponding to the regimes where turbulent advection is irrelevant. While the result (two
sets of fixed points instead of one) is typical for this kind of stochastic problem, it is notable
that the nontrivial regimes are represented with a whole surface of fixed points.

In the examples considered in our review, the velocity field was modeled by the
Gaussian “rapid-change” Kazantsev–Kraichnan ensemble. An important direction of
further study is to apply more realistic statistics or dynamics of the velocity. Specifically, it
is interesting to include finite correlation time, non-Gaussianity, anisotropy, compressibility
and back reaction of the system on the velocity dynamics. In particular, an anisotropic
Gaussian model with finite correlation time was studied in [171], while the Navier–Stokes
equation for incompressible fluid was studied in [73] for a fluid in thermal equilibrium
and in [74] for a turbulent flow. This leads to appearance of new interesting universality
classes and crossover phenomena.

It also seems especially promising to apply the functional RG to the models with an
infinite number of counterterms. The Kazantsev–Kraichnan ensemble was analyzed with
the functional RG in [181] while the landscape erosion was considered in [119]. It would be
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very interesting to see what the results of the analysis of the extended Pavlik model with
turbulent motion included would be.
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136. Tadić, B.; Gligorijevic, V.; Mitrović, M.; Šuvakov, M. Co-evolutionary mechanisms of emotional bursts in online social dynamics

and networks. Entropy 2013, 15, 5084. [CrossRef]
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