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Variational quantum state diagonalization

Ryan LaRose'?, Arkin Tikku'?, Etude O’Neel-Judy’', Lukasz Cincio' and Patrick J. Coles’

Variational hybrid quantum-classical algorithms are promising candidates for near-term implementation on quantum computers. In
these algorithms, a quantum computer evaluates the cost of a gate sequence (with speedup over classical cost evaluation), and a
classical computer uses this information to adjust the parameters of the gate sequence. Here we present such an algorithm for
quantum state diagonalization. State diagonalization has applications in condensed matter physics (e.g., entanglement
spectroscopy) as well as in machine learning (e.g., principal component analysis). For a quantum state p and gate sequence U, our
cost function quantifies how far UpU! is from being diagonal. We introduce short-depth quantum circuits to quantify our cost.
Minimizing this cost returns a gate sequence that approximately diagonalizes p. One can then read out approximations of the
largest eigenvalues, and the associated eigenvectors, of p. As a proof-of-principle, we implement our algorithm on Rigetti's
quantum computer to diagonalize one-qubit states and on a simulator to find the entanglement spectrum of the Heisenberg

model ground state.
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INTRODUCTION

The future applications of quantum computers, assuming that
large-scale, fault-tolerant versions will eventually be realized, are
manifold. From a mathematical perspective, applications include
number theory,’ linear algebra, ™ differential equations,>® and
optimization.” From a physical perspective, applications include
electronic structure determination®® for molecules and materials
and real-time simulation of quantum dynamical processes'® such
as protein folding and photo-excitation events. Naturally, some of
these applications are more long-term than others. Factoring and
solving linear systems of equations are typically viewed as longer
term applications due to their high resource requirements. On the
other hand, approximate optimization and the determination of
electronic structure may be nearer term applications, and could
even serve as demonstrations of quantum supremacy in the near
future.'"'2

A major aspect of quantum algorithms research is to make
applications of interest more near term by reducing quantum
resource requirements including qubit count, circuit depth,
numbers of gates, and numbers of measurements. A powerful
strategy for this purpose is algorithm hybridization, where a fully
quantum algorithm is turned into a hybrid quantum-classical
algorithm."”> The benefit of hybridization is two-fold, both
reducing the resources (hence allowing implementation on
smaller hardware) as well as increasing accuracy (by outsourcing
calculations to “error-free” classical computers).

Variational hybrid algorithms are a class of quantum-classical
algorithms that involve minimizing a cost function that depends
on the parameters of a quantum gate sequence. Cost evaluation
occurs on the quantum computer, with speedup over classical
cost evaluation, and the classical computer uses this cost
information to adjust the parameters of the gate sequence.
Variational hybrid algorithms have been proposed for Hamiltonian

ground state and excited state preparation,®'*'?

optimization,” error correction,'® quantum data compression,
quantum simulation,'®?° and quantum compiling.?’ A key feature
of such algorithms is their near-term relevance, since only the
subroutine of cost evaluation occurs on the quantum computer,
while the optimization procedure is entirely classical, and hence
standard classical optimization tools can be employed.

In this work, we consider the application of diagonalizing
quantum states. In condensed matter physics, diagonalizing states
is useful for identifying properties of topological quantum phases
—a field known as entanglement spectroscopy.?® In data science
and machine learning, diagonalizing the covariance matrix (which
could be encoded in a quantum state??) is frequently employed
for principal component analysis (PCA). PCA identifies features
that capture the largest variance in one’s data and hence allows
for dimensionality reduction.®*

Classical methods for diagonalization typically scale polynomi-
ally in the matrix dimension.? Similarly, the number of measure-
ments required for quantum state tomography—a general
method for fully characterizing a quantum state—scales poly-
nomially in the dimension. Interestingly, Lloyd et al. proposed a
quantum algorithm for diagonalizing quantum states that can
potentially perform exponentially faster than these methods.?
Namely, their algorithm, called quantum principal component
analysis (qPCA), gives an exponential speedup for low-rank
matrices. qPCA employs quantum phase estimation combined
with density matrix exponentiation. These subroutines require a
significant number of qubits and gates, making gPCA difficult to
implement in the near term, despite its long-term promise.

Here, we propose a variational hybrid algorithm for quantum
state diagonalization. For a given state p, our algorithm is
composed of three steps: (i) Train the parameters a of a gate
sequence Up(a) such that p = U,L,(o(opt)pU,L,(aopt)T is approximately

approximate
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diagonal, where a, is the optimal value of a obtained (ii) Read
out the largest eigenvalues of p by measuring in the eigenbasis
(i.e, by measuring p in the standard basis), and (iii) Prepare the
eigenvectors associated with the largest eigenvalues. We call this
the variational quantum state diagonalization (VQSD) algorithm.
VQSD is a near-term algorithm with the same practical benefits as
other variational hybrid algorithms. Employing a layered ansatz for
Upla) (where p is the number of layers) allows one to obtain a
hierarchy of approximations for the eigevalues and eigenvectors.
We therefore think of VQSD as an approximate diagonalization
algorithm.

We carefully choose our cost function C to have the following
properties: (i) C is faithful (i.e, it vanishes if and only if p is
diagonal), (i) C is efficiently computable on a quantum computer,
(iii) C has operational meanings such that it upper bounds the
eigenvalue and eigenvector error (see Sec. llA), and (iv) C scales
well for training purposes in the sense that its gradient does not
vanish exponentially in the number of qubits. The precise
definition of C is given in Sec. lIA and involves a difference of
purities for different states. To compute C, we introduce short-
depth quantum circuits that likely have applications outside the
context of VQSD.

To illustrate our method, we implement VQSD on Rigetti's
8-qubit quantum computer. We successfully diagonalize one-qubit
pure states using this quantum computer. To highlight future
applications (when larger quantum computers are made avail-
able), we implement VQSD on a simulator to perform entangle-
ment spectroscopy on the ground state of the one-dimensional
(1D) Heisenberg model composed of 12 spins.

Our paper is organized as follows. Section Il outlines the VQSD
algorithm and presents its implementation. In Sec. lll, we give a
comparison to the qPCA algorithm, and we elaborate on future
applications. Section IV presents our methods for quantifying
diagonalization and for optimizing our cost function.

RESULTS
The VQSD algorithm

Overall structure. Figure 1 shows the structure of the VQSD
algorithm. The goal of VQSD is to take, as its input, an n-qubit
density matrix p given as a quantum state and then output
approximations of the m-largest eigenvalues and their associated
eigenvectors. Here, m will typically be much less than 2", the
matrix dimension of p, although the user is free to increase m with
increased algorithmic complexity (discussed below). The out-
putted eigenvalues will be in classical form, i.e., will be stored on a
classical computer. In contrast, the outputted eigenvectors will be
in quantum form, i.e., will be prepared on a quantum computer.
This is necessary because the eigenvectors would have 2" entries
if they were stored on a classical computer, which is intractable for
large n. Nevertheless, one can characterize important aspects of
these eigenvectors with a polynomial number of measurements
on the quantum computer.

Similar to classical eigensolvers, the VQSD algorithm is an
approximate or iterative diagonalization algorithm. Classical
eigenvalue algorithms are necessarily iterative, not exact. This
can be seen by noting that computing eigenvalues is equivalent
to computing roots of a polynomial equation (namely the
characteristic polynomial of the matrix) and that no closed-form
solution exists for the roots of general polynomials of degree
greater than or equal to five.?® Iterative algorithms are useful in
that they allow for a trade-off between run-time and accuracy.
Higher degrees of accuracy can be achieved at the cost of more
iterations (equivalently, longer run-time), or short run-time can be
achieved at the cost of lower accuracy. This flexibility is desirable
in that it allows the user of the algorithm to dictate the quality of
the solutions found.

The iterative feature of VQSD arises via a layered ansatz for the
diagonalizing unitary. This idea similarly appears in other
variational hybrid algorithms, such as the Quantum Approximate
Optimization Algorithm.” Specifically, VQSD diagonalizes p by
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Fig. 1 Schematic diagram showing the steps of the VQSD algorithm. (a) Two copies of quantum state p are provided as an input. These states
are sent to the parameter optimization loop (b) where a hybrid quantum-classical variational algorithm approximates the diagonalizing
unitary Up(aqpy). Here, p is a hyperparameter that dictates the quality of solution found. This optimal unitary is sent to the eigenvalue readout
circuit (c) to obtain bitstrings z, the frequencies of which provide estimates of the eigenvalues of p. Along with the optimal unitary Up(aopy),
these bitstrings are sent to the eigenvector preparation circuit (c) to prepare the eigenstates of p on a quantum computer. Both the
eigenvalues and eigenvectors are the outputs (d) of the VQSD algorithm
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variationally updating a parameterized unitary Up(a) such that
pyla) : = Up(a)oUj(a) M

is (approximately) diagonal at the optimal value agp,. (For brevity
we often write p for p,(a)). We assume a layered ansatz of the
form

Up(a) = Li(ar)Lz(az) - - - Lp(ap). (2)

Here, p is a hyperparameter that sets the number of layers L{a;),
and each a; is a set of optimization parameters that corresponds
to internal gate angles within the layer. The parameter a in (1)
refers to the collection of all a; for i=1, ..., p. Once the
optimization procedure is finished and returns the optimal
parameters @, one can then run a particular quantum circuit
(shown in Fig. 1c and discussed below) Neagour times to
approximately determine the eigenvalues of p. The precision (i.e,
the number of significant digits) of each eigenvalue increases with
Nieadout @and with the eigenvalue’s magnitude. Hence for small
Nieadout ONly the largest eigenvalues of p will be precisely
characterized, so there is a connection between Neagour and
how many eigenvalues, m, are determined. The hyperparameter p
is a refinement parameter, meaning that the accuracy of the
eigensystem (eigenvalues and eigenvectors) typically increases as
p increases. We formalize this argument as follows.

Let C denote our cost function, defined below in (10), which we
are trying to minimize. In general, the cost C will be non-increasing
(i.e., will either decrease or stay constant) in p. One can ensure that
this is true by taking the optimal parameters learned for p layers as
the starting point for the optimization of p+ 1 layers and by
setting a4 such that L, (a,+) is an identity. This strategy also
avoids barren plateaus?®?” and helps to mitigate the problem of
local minima, as we discuss in Appendix B of Supplementary
Material (SM).

Next, we argue that C is closely connected to the accuracy of
the eigensystem. Specifically, it gives an upper bound on the
eigensystem error. Hence, one obtains an increasingly tighter
upper bound on the eigensystem error as C decreases (equiva-
lently, as p increases). To quantify eigenvalue error, we define

Z o _xi)27 (3)

where d=2", and {\} and {A} are the true and inferred
eigenvalues, respectively. Here, i is an index that orders the
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3
eigenvalues in decreasing order, i.e., A; > A1 and 5\,» > 7\,-+1 for all
ief1, ..., d—1}. To quantify eigenvector error, we define

d
A, =) (8il6), with [6) = p|vi) — Alv) =TT p|¥). )

i=1

Here, |V;) is the inferred eigenvector associated with A;, and
M =1 — |) (| is the projector onto the subspace orthogonal to
|Vi). Hence, |6;) is a vector whose norm quantifies the component
of p|v;) that is orthogonal to |V;), or in other words, how far |v;) is
from being an eigenvector of p.

As proven in Sec. IV A, our cost function upper bounds the
eigenvalue and eigenvector error up to a proportionality factor f3,

M <BC, and A, <BC. (5)

Because C is non-increasing in p, the upper bound in (5) is non-
increasing in p and goes to zero if C goes to zero.

We remark that A, can be interpreted as a weighted
eigenvector error, where eigenvectors with larger eigenvalues
are weighted more heavily in the sum. This is a useful feature since
it implies that lowering the cost C will force the eigenvectors with
the largest eigenvalues to be highly accurate. In many applica-
tions, such eigenvectors are precisely the ones of interest. (See
Sec. I B for an illustration of this feature).

The various steps in the VQSD algorithm are shown schematically
in Fig. 1. There are essentially three main steps: (1) an optimization
loop that minimizes the cost C via back-and-forth communication
between a classical and quantum computer, where the former
adjusts a and the latter computes C for Uy(a), (2) a readout
procedure for approximations of the m largest eigenvalues, which
involves running a quantum circuit and then classically analyzing the
statistics, and (3) a preparation procedure to prepare approximations
of the eigenvectors associated with the m largest eigenvalues. In the
following subsections, we elaborate on each of these procedures.

Parameter optimization loop. Naturally, there are many ways to
parameterize Up(a). Ideally one would like the number of
parameters to grow at most polynomially in both n and p.
Figure 2 presents an example ansatz that satisfies this condition.
Each layer L; is broken down into layers of two-body gates that can
be performed in parallel. These two-body gates can be further
broken down into parameterized one-body gates, for example,
with the construction in ref. 2%, We discuss a different approach to
parameterize Uy(a) in Appendix B of SM.

(a) ] Up(a) — = Ll(al) | LQ(QQ) * ] Lp(ap) [
_r o (i), (0)
A A Gy’ (ag”)
(1)( (l))
1&g
Fig. 2 (a) Layered ansatz for the diagonalizing unitary U,(a). Each layer L; i=1, ..., p, consists of a set of optimization parameters a;. (b) The

two-qubit gate ansatz for the ith layer, shown on four qubits. Here we impose periodic boundary conditions on the top/bottom edge of the
circuit so that G wraps around from top to bottom. Appendix B of SM discusses an alternative approach to the construction of U(a), in which

the ansatz is modified during the optimization process
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For a given ansatz, such as the one in Fig. 2, parameter
optimization involves evaluating the cost C on a quantum
computer for an initial choice of parameters and then modifying
the parameters on a classical computer in an iterative feedback
loop. The goal is to find

Qoo : = argmin C(Up(a)). 6)

The classical optimization routine used for updating the para-
meters can involve either gradient-free or gradient-based
methods. In Sec. IV B, we explore this further and discuss our
optimization methods.

In Eq. (6), C(Up(@)) quantifies how far the state p,(a) is from
being diagonal. There are many ways to define such a cost
function, and in fact there is an entire field of research on
coherence measures that has introduced various such quanti-
ties.?® We aim for a cost that is efficiently computable with a
quantum-classical system, and hence we consider a cost that can
be expressed in terms of purities. (It is well known that a quantum
computer can find the purity Tr(c®) of an n-qubit state ¢ with
complexity scaling only linearly in n, an exponential speedup over
classical computation®*?'). Two such cost functions, whose
individual merits we discuss in Sec. IV A, are

€\ (Up(a)) =Tr(p?) ~ TH(Z(5)?). 7
Co(Upl@)) =Tr(e?) 1 " TH(Z(5)). ®
=1

Here, Z and Z; are quantum channels that dephase (i.e., destroy
the off-diagonal elements) in the global standard basis and in the
local standard basis on qubit j, respectively. Importantly, the two
functions vanish under the same conditions:

Gi(Up(@) =0 & G(Up(a) =0 p = Z(p). ©

So the global minima of C; and C, coincide and correspond
precisely to unitaries U,(a) that diagonalize p (i.e., unitaries such
that p is diagonal).

As elaborated in Sec. IV A, C; has operational meanings: it
bounds our eigenvalue error, C; > A, and it is equivalent to our
eigenvector error, C; = A,. However, its landscape tends to be
insensitive to changes in U,(a) for large n. In contrast, we are not
aware of a direct operational meaning for C,, aside from its bound
on C; given by G > (1/n)C;. However, the landscape for G, is
more sensitive to changes in Up(a), making it useful for training
Up(a) when n is large. Due to these contrasting merits of C; and G,
we define our overall cost function C as a weighted average of
these two functions

C(Up(@) = aCi (Up(@)) + (1 — )G (Up (@), (10)

where g €10, 1] is a free parameter that allows one to tailor the
VQSD method to the scale of one’s problem. For small n, one can
set g = 1 since the landscape for C; is not too flat for small n, and,
as noted above, C; is an operationally relevant quantity. For large
n, one can set g to be small since the landscape for C, will provide
the gradient needed to train U,(a). The overall cost maintains the
operational meaning in (5) with

B=n/(1+q(n—1)). (1

Appendix B illustrates the advantages of training with different
values of q.

Computing C amounts to evaluating the purities of various
quantum states on a quantum computer and then doing some
simple classical post-processing that scales linearly in n. This can
be seen from Egs. (7) and (8). The first term, Tr(0?), in C; and G, is
independent of Up(a). Hence, Tr(0? can be evaluated outside of
the optimization loop in Fig. 1 using the Destructive Swap Test
(see Sec. IV A for the circuit diagram). Inside the loop, we only
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need to compute Tr(Z(p)?) and Tr(Z;(p)?) for all j. Each of these
terms are computed by first preparing two copies of p and then
implementing quantum circuits whose depths are constant in n.
For example, the circuit for computing Tr(Z(p)?) is shown in
Fig. 1b, and surprisingly it has a depth of only one gate. We call it
the Diagonalized Inner Product (DIP) Test. The circuit for
computing Tr(Z;(p)?) is similar, and we call it the Partially
Diagonalized Inner Product (PDIP) Test. We elaborate on both of
these circuits in Sec. IV A.

Eigenvalue readout. After finding the optimal diagonalizing
unitary Up(aqpy), one can use it to readout approximations of the
eigenvalues of p. Figure 1c shows the circuit for this readout. One
prepares a single copy of p and then acts with Up(aqp) to prepare
Pp(@opt). Measuring in the standard basis {|z)}, where z = z2,... z,
is a bitstring of length n, gives a set of probabilities {A;} with

A= (2|p,(@opt)|2) - (12)

We take the A; as the inferred eigenvalues of p. We empbhasize that
the A, are the diagonal elements, not the eigenvalues, of p,(@op).

Each run of the circuit in Fig. 1c generates a bitstring z
corresponding to the measurement outcomes. If one obtains z
with frequency f, for Nieaqout total runs, then

jest
/\ss = fz/Nreadout

gives an estimate for A,. The statistical deviation of 5\5“ from A,
goes with 1/v/Nreadout- The relative error ¢, (i.e, the ratio of the
statistical error on A" to the value of AS™) then goes as

1 \Y Nreadout

€, = — =

: V Nreadout)\§5t fz
This implies that events z with higher frequency f, have lower
relative error. In other words, the larger the inferred eigenvalue A,
the lower the relative error, and hence the more precisely it is
determined from the experiment. When running VQSD, one can
pre-decide on the desired values of Ncagou: and a threshold for
the relative error, denoted emax. This error threshold emax will then
determine m, i.e, how many of the largest eigenvalues that get
precisely characterized. So m = m(Nreadout; €max, {Az}) is a function
Of Nieadout €max, and the set of inferred eigenvalues {A;}. Precisely,

vest
we take m = |/\es | as the cardinality of the following set:
cest o«
)\95 = {/\ZESt 1€z < emax}:

which is the set of inferred eigenvalues that were estimated with
the desired precision.

(13)

(14)

(15)

Eigenvector preparation. The final step of VQSD is to prepare the
eigenvectors associated with the m-largest eigenvalugs, ie., the
eigenvalues in the set in Eq. (15). Let Z = {z: A" € A _4, be the
set of bitstrings z associated with the eigenvalues in A . (Note
that these bitstrings are obtained directly from the measurement
outcomes of the circuit in Fig. 1¢, i.e., the outcomes become the
bitstring 2). For each z€ Z, one can prepare the following state,
which we take as the inferred eigenvector associated with our
estimate of the inferred eigenvalue AS™,

V2) = Up(@opt)|2) (16)

= Up(@opt) (X7 @ --- @ X)|0). (17)

The circuit for preparing this state is shown in Fig. 1d. As noted in
(17), one first prepares |z) by acting with X operators raised to the
appropriate powers, and then one acts with U,L,(tzl(,pt)T to rotate
from the standard basis to the inferred eigenbasis.

Once they are prepared on the quantum computer, each
inferred eigenvector |v;) can be characterized by measuring

Published in partnership with The University of New South Wales
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Fig. 3 The VQSD algorithm run on Rigetti’s 8Q-Agave quantum

n
Angle in Diagonalizing Unitary
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computer for p=|+){+|. (@) A representative run of the parameter

optimization loop, using the Powell optimization algorithm (see Sec. IV B for details and Appendix B for data from additional runs). Cost versus
iteration is shown by the black solid line. The dotted lines show the two inferred eigenvalues. After four iterations, the inferred eigenvalues
approach {0, 1}, as required for a pure state. (b) The cost landscape on a noiseless simulator, Rigetti’s noisy simulator, and Rigetti’s quantum
computer. Error bars show the standard deviation (due to finite sampling) of multiple runs. The local minima occur roughly at the theoretically
predicted values of 71/2 and 371/2. During data collection for this plot, the 8Q-Agave quantum computer retuned, after which its cost landscape

closely matched that of the noisy simulator

expectation values of interest. That is, important physical features
such as energy or entanglement (e.g., entanglement witnesses)
are associated with some Hermitian observable M, and one can
evaluate the expectation value (V,|M|v,) to learn about these
features.

Implementations

Here we present our implementations of VQSD, first for a one-
qubit state on a cloud quantum computer to show that it is
amenable to currently available hardware. Then, to illustrate the
scaling to larger, more interesting problems, we implement VQSD
on a simulator for the 12-spin ground state of the Heisenberg
model. See Appendices A and B of SM for further details. The code
used to generate some of the examples presented here and in SM
can be accessed from ref. 32

One-qubit state. We now discuss the results of applying VQSD to
the one-qubit plus state p:J+)(+| on the 8Q-Agave quantum
computer provided by Rigetti.*® Because the problem size is small
(n=1), we set g=1 in the cost function (10). Since p is a pure
state, the cost function is

C(Up(@)) = Ci(Up(@) = 1~ TH(Z(3)?). (18)

For Up(a), we take p =1, for which the layered ansatz becomes an
arbitrary single qubit rotation.

The results of VQSD for this state are shown in Fig. 3. In Fig. 3a,
the solid curve shows the cost versus the number of iterations in

Published in partnership with The University of New South Wales

the parameter optimization loop, and the dashed curves show the
inferred eigenvalues of p at each iteration. Here we used the
Powell optimization algorithm, see Section IV B for more details.
As can be seen, the cost decreases to a small value near zero and
the eigenvalue estimates simultaneously converge to the correct
values of zero and one. Hence, VQSD successfully diagonalized
this state.

Figure 3b shows the landscape of the optimization problem
on Rigetti's 8Q-Agave quantum computer, Rigetti’s noisy
simulator, and a noiseless simulator. Here, we varied the angle
a in the diagonalizing unitary U(a) = R(11/2)R,(a) and computed
the cost at each value of this angle. The landscape on the
quantum computer has local minima near the optimal angles
a=r/2, 3m/2 but the cost is not zero. This explains why we
obtain the correct eigenvalues even though the cost is nonzero
in Fig. 3a. The nonzero cost can be due to a combination of
decoherence, gate infidelity, and measurement error. As shown
in Fig. 3b, the 8Q-Agave quantum computer retuned during our
data collection, and after this retuning, the landscape of the
quantum computer matched that of the noisy simulator
significantly better.

Heisenberg model ground state. While current noise levels of
quantum hardware limit our implementations of VQSD to small
problem sizes, we can explore larger problem sizes on a simulator.
An important application of VQSD is to study the entanglement in
condensed matter systems, and we highlight this application in
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Fig. 4 Implementation of VQSD with a simulator for the ground state of the 1D Heisenberg model, diagonalizing a four-spin subsystem of a

chain of eight spins. We chose g = 1 for the cost in (10) and employed a gradient-based method to find a,. (a) Largest inferred eigenvalues A;
versus 1/p, where p is the number of layers in our ansatz, which in this example takes half-integer values corresponding to fractions of layers
shown in Fig. 2. The exact eigenvalues are shown on the y-axis (along 1/p = 0 line) with their degeneracy indicated in parentheses. One can
see the largest eigenvalues converge to their correct values, including the correct degeneracies. Inset: overall eigenvalue error A, versus 1/p.
(b) Largest inferred eigenvalues resolved by the inferred (S,) quantum number of their associated eigenvector, for p =5. The inferred data
points (red X's) roughly agree with the theoretical values (black circles), particularly for the largest eigenvalues. Appendix B of SM discusses

Heisenberg chain of 12 spins

the following example.
Let us consider the ground state of the 1D Heisenberg model,

the Hamiltonian of which is
2n

H=> s0.si+, (19)
j=1

with sU) = ((1 /2?(0)@)? +0y+0Y2) and periodic boundary

conditions, $?""V =§". performing entanglement spectroscopy

on the ground state |) 43 involves diagonalizing the reduced state

0 = Tra(|@){W|as). Here we consider a total of eight spins (2n =38).

We take A to be a subset of four nearest-neighbor spins, and B is
the complement of A.

npj Quantum Information (2019) 57

The results of applying VQSD to the four-spin reduced state p via a
simulator are shown in Fig. 4. Panel (a) plots the inferred eigenvalues
versus the number of layers p in our ansatz (see Fig. 2). One can see
that the inferred eigenvalues converge to their theoretical values
as p increases. Panel (b) plots the inferred eigenvalues resolved by
their associated quantum numbers (z-component of total spin).
This plot illustrates the feature we noted previously that
minimizing our cost will first result in minimizing the eigenvector
error for those eigenvectors with the largest eigenvalues. Overall
our VQSD implementation returned roughly the correct values for
both the eigenvalues and their quantum numbers. Resolving not
only the eigenvalues but also their quantum numbers is important
for entanglement spectroscopy,?® and clearly VQSD can do this.
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In Appendix B of SM we discuss an alternative approach
employing a variable ansatz for U(a), and we present results of
applying this approach to a six-qubit reduced state of the 12-qubit
ground state of the Heisenberg model.

DISCUSSION

We emphasize that VQSD is meant for states p that have either
low rank or possibly high rank but low entropy H(p) = —Tr(p log p).
This is because the eigenvalue readout step of VQSD would be
exponentially complex for states with high entropy. In other
words, for high entropy states, if one efficiently implemented the
eigenvalue readout step (with Neadoutr POlynomial in n), then very
few eigenvalues would get characterized with the desired
precision. In Appendix B of SM we discuss the complexity of
VQSD for particular example states.

Examples of states for which VQSD is expected to be efficient
include density matrices computed from ground states of 1D,
local, gapped Hamiltonians. Also, thermal states of some 1D
systems in a many-body localized phase at low enough
temperature are expected to be diagonalizable by VQSD. These
states have rapidly decaying spectra and are eigendecomposed
into states obeying a 1D area law.>*® This means that every
eigenstate can be prepared by a constant depth circuit in
alternating ansatz form,** and hence VQSD will be able to
diagonalize it.

Comparison to literature

Diagonalizing quantum states with classical methods would
require exponentially large memory to store the density matrix,
and the matrix operations needed for diagonalization would be
exponentially costly. VQSD avoids both of these scaling issues.
Another quantum algorithm that extracts the eigenvalues and
eigenvectors of a quantum state is qPCA.2 Similar to VQSD, qPCA
has the potential for exponential speedup over classical diag-
onalization for particular classes of quantum states. Like VQSD, the
speedup in qPCA is contingent on p being a low-entropy state.
We performed a simple implementation of qPCA to get a sense
for how it compares to VQSD, see Appendix B in SM for details. In
particular, just like we did for Fig. 3, we considered the one-qubit
plus state p=|+){+|- We implemented qPCA for this state on
Rigetti’s noisy simulator (whose noise is meant to mimic that of
their 8Q-Agave quantum computer). The circuit that we imple-
mented applied one controlled-exponential-swap gate (in order to
approximately exponentiate p, as discussed in ref. ?). We
employed a machine-learning approach®” to compile the
controlled-exponential-swap gate into a short-depth gate
sequence (see Appendix B in SM). With this circuit we inferred
the two eigenvalues of p to be approximately 0.8 and 0.2. Hence,
for this simple example, it appears that gPCA gave eigenvalues
that were slightly off from the true values of 1 and 0, while VQSD
was able to obtain the correct eigenvalues, as discussed in Fig. 3.

Future applications

As noted in ref. 2, one application of quantum state diagonaliza-
tion is benchmarking of quantum noise processes, i.e., quantum
process tomography. Here one prepares the Choi state by sending
half of a maximally entangled state through the process of
interest. One can apply VQSD to the resulting Choi state to learn
about the noise process, which may be particular useful for
benchmarking near-term quantum computers.

A special case of VQSD is variational state preparation. That is, if
one applies VQSD to a pure state p = |p){y|, then one can learn
the unitary U(a) that maps |¢) to a standard basis state. Inverting
this unitary allows one to map a standard basis state (and hence
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the state |0)®") to the state |p), which is known as state
preparation. Hence, if one is given |¢) in quantum form, then
VQSD can potentially find a short-depth circuit that approxi-
mately prepares |y). Variational quantum compiling algorithms
that were very recently proposed®’*® may also be used for this
same purpose, and hence it would be interesting to compare
VQSD to these algorithms for this special case. Additionally, in this
special case one could use VQSD and these other algorithms as
an error mitigation tool, i.e, to find a short-depth state
preparation that achieves higher accuracy than the original state
preparation.

In machine learning, PCA is a subroutine in supervised and
unsupervised learning algorithms and also has many direct
applications. PCA inputs a data matrix X and finds a new basis
such that the variance is maximal along the new basis vectors.
One can show that this amounts to finding the eigenvectors of
the covariance matrix E[XX'] with the largest eigenvalues, where
E denotes expectation value. Thus PCA involves diagonalizing a
positive-semidefinite matrix, E[XX']. Hence VQSD can perform
this task provided one has access to QRAM>® to prepare the
covariance matrix as a quantum state. PCA can reduce the
dimension of X as well as filter out noise in data. In addition,
nonlinear (kernel) PCA can be used on data that is not linearly
separable. Very recent work by Tang®® suggests that classical
algorithms could be improved for PCA of low-rank matrices, and
potentially obtain similar scaling as qPCA and VQSD. Hence
future work is needed to compare these different approaches to
PCA.

Perhaps the most important near-term application of VQSD is to
study condensed matter physics. In particular, we propose that
one can apply the variational quantum eigensolver® to prepare
the ground state of a many-body system, and then one can follow
this with the VQSD algorithm to characterize the entanglement in
this state. Ultimately this approach could elucidate key properties
of condensed matter phases. In particular, VQSD allows for
entanglement spectroscopy, which has direct application to the
identification of topological order.?? Extracting both the eigenva-
lues and eigenvectors is useful for entanglement spectroscopy,*?
and we illustrated this capability of VQSD in Fig. 4. Finally, an
interesting future research direction is to check how the
discrepancies in preparation of multiple copies affect the
performance of the diagonalization.

METHODS
Diagonalization test circuits

Here we elaborate on the cost functions C; and C, and present short-depth
quantum circuits to compute them.

C; and the DIP test. The function C; defined in Eq. (7) has several intuitive
interpretations. These interpretations make it clear that C; quantifies how

far a state is from being diagonal. In particular, let Dys(A,B) :=

Tr((A -B)(A- B)) denote the Hilbert-Schmidt distance. Then we can
write

G = fg\EIg Dus(p, 0) (20)
= Dus(p, Z(p)) @
= b)) (22)

z, 27z

In other words, C; is (1) the minimum distance between p and the set of
diagonal states D, (2) the distance from p to Z(p), and (3) the sum of the
absolute squares of the off-diagonal elements of p.

C; can also be written as the eigenvector error in Eq. (4) as follows. For

an inferred eigenvector |#,), we define |8,) = p|V,) — A,|V;) and write the
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(a) Destructive Swap Test

(b) DIP Test

(c) PDIP Test
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Fig. 5 Diagonalization test circuits used in VQSD. (a) The Destructive Swap Test computes Tr(oT) via a depth-two circuit. (b) The Diagonalized
Inner Product (DIP) Test computes Tr(Z(0)Z(1)) via a depth-one circuit. (c) The Partially Diagonalized Inner Product (PDIP) Test computes
Tr(Zj(0)Z;j(1)) via a depth-two circuit, for a particular set of qubits j. While the DIP test requires no postprocessing, the postprocessing for the

Destructive Swap Test and the Partial DIP Test scales linearly in n

eigenvector error as

(82162) = (el V) + A — 2e(Velpl7e) 23)
= (ValP?|Vz) — A7, (24)

since (V;]p|V;) = A;. Summing over all z gives
By =" (8albr) = D (elo?|va) — X, (25)
=Tr(p*) = Tr(2(p)*) = G, (26)

which proves the bound in Eq. (5) for g=1. B
In addition, C; bounds the eigenvalue error defined in Eq. (3). Let A =

(5\1, ,Xd) and A= (), ..., Ay) denote the inferred and actual eigenvalues
of p, respectively, both arranged in decreasing order. In this notation we
have

M=A-A+A-A—21-A 27
Ci=A-A—2A-A (28)
=M+2A-A—A-2). (29)

Since the eigenvalues of a density matrix majorize its diagonal elements,

A~ X, and the dot product with an ordered vector is a Schur convex
function, we have

AA>A-A (30)
Hence from Eq. (29) and Eq. (30) we obtain the bound
0<G, (31

which corresponds to the bound in Eq. (5) for the special case of g=1.

For computational purposes, we use the difference of purities
interpretation of C; given in Eq. (7). The Tr(p®) term is independent of
Up(a). Hence it only needs to be evaluated once, outside of the parameter
optimization loop. It can be computed via the expectation value of the
swap operator S on two copies of p, using the identity

Tr(p?) = Tr((p ® p)S). (32)

This expectation value is found with a depth-two quantum circuit that
essentially corresponds to a Bell-basis measurement, with classical post-
processing that scales linearly in the number of qubits.>”*° This is shown in
Fig. 5a. We call this procedure the Destructive Swap Test, since it is like the
Swap Test, but the measurement occurs on the original systems instead of
on an ancilla.

Similarly, the Tr(Z(p)?) term could be evaluated by first dephasing p
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and then performing the Destructive Swap Test, which would involve a
depth-three quantum circuit with linear classical post-processing. This
approach was noted in ref. *'. However, there exists a simpler circuit, which
we call the Diagonalized Inner Product (DIP) Test. The DIP Test involves a
depth-one quantum circuit with no classical post-processing. An abstract
version of this circuit is shown in Fig. 5b, for two states o and 7. The proof
that this circuit computes Tr(Z(0)Z(1)) is given in Appendix B of SM. For
our application we will set 0 = T = p, for which this circuit gives Tr(Z(ﬁ)z).

In summary, C; is efficiently computed by using the Destructive Swap
Test for the Tr(p?) term and the DIP Test for the Tr(Z(p)?) term.

C, and the PDIP test. Like C;, C, can also be rewritten in terms of of the
Hilbert-Schmidt distance. Namely, G, is the average distance of p to each
locally dephased state Z;(p):

1& - ~
Q= ; Dus(p, Zi(P)) - (33)
where Z;(1) = 37, (12)(2]; ® Vi) () (|2)(z]; ® Tuwy). Naturally, one would
expect that G; < G, since p should be closer to each locally dephased
state than to the fully dephased state. Indeed this is true and can be seen
from:

T . N
G=GC - ;;21‘9 Dus(2;(p), 0) (34)
However, C; and G, vanish under precisely the same conditions, as noted
in Eg. (9). One can see this by noting that C; also upper bounds (1/n)C; and
hence we have

G <G <nG. (35)

Combining the upper bound in Eq. (35) with the relations in Eq. (26) and
Eq. (31) gives the bounds in Eq. (5) with 3 defined in Eq. (11). The upper
bound in Eq. (35) is proved as follows. Let z=z,...z,and 2’ = Z; ... Z], be n-
dimensional bitstrings. Let S be the set of all pairs (z, ) such that z#Z,
and let S; be the set of all pairs (z, 2) such that z#z. Then we have

G = Z(z.z’)gs |(z|;3\z’)\2, and
n
nG=> Y |plz)} (36)
=1 (22)es;
2 Z |<z|/:)‘z/>‘2 =G, (37)
(z,z’)ESU

where SU = Ujf’:, S; is the union of all the §; sets. The inequality in Eq. (37)
arises from the fact that the S; sets have non-trivial intersection with each
other, and hence we throw some terms away when only considering the

union SY. The last equality follows from the fact that SY = G, i.e, the set of
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all bitstring pairs that differ from each other (S) corresponds to the set of
all bitstring pairs that differ for at least one element (SY).

Writing G, in terms of purities, as in Eq. (8), shows how it can be
computed on a quantum computer. As in the case of C;, the first term in
Eq. (8) is computed with the Destructive Swap Test. For the second term in
Eq. (8), each purity Tr(Z;(p)?) could also be evaluated with the Destructive
Swap Test, by first locally dephasing the appropriate qubit. However, we
present a slightly improved circuit to compute these purities that we call
the PDIP Test. The PDIP Test is shown in Fig. 5c for the general case of
feeding in two distinct states o and T with the goal of computing the inner
product between Zj(o) and Z;(t). For generality we let /, with 0 </ < n,
denote the number of qubits being locally dephased for this computation.
If I>0, we define j=(j, ..., j) as a vector of indices that indicates which
qubits are being locally dephased. The PDIP Test is a hybrid of the
Destructive Swap Test and the DIP Test, corresponding to the former when
/=0 and the latter when /= n. Hence, it generalizes both the Destructive
Swap Test and the DIP Test. Namely, the PDIP Test performs the DIP Test
on the qubits appearing in j and performs the Destructive Swap Test on
the qubits not appearing in j. The proof that the PDIP Test computes
Tr(Z(0)Zj(1)), and hence Tr(Zj(p)’) when o=T1=p, is given in
Appendix B of SM.

C; versus C,. Here we discuss the contrasting merits of the functions C,
and G, hence motivating our cost definition in Eq. (10).

As noted previously, C, does not have an operational meaning like C;. In
addition, the circuit for computing C; is more efficient than that for C,. The
circuit in Fig. 5b for computing the second term in C; has a gate depth of
one, with n CNOT gates, n measurements, and no classical post-processing.
The circuit in Fig. 5¢ for computing the second term in G, has a gate depth
of two, with n CNOT gates, n — 1 Hadamard gates, 2n — 1 measurements,
and classical post-processing whose complexity scales linearly in n. So in
every aspect, the circuit for computing C; is less complex than that for C,.
This implies that C; can be computed with greater accuracy than C, on a
noisy quantum computer.

On the other hand, consider how the landscape for C; and C, scale with
n. As a simple example, suppose p = |0)(0|®---®|0)(0|. Suppose one takes
a single parameter ansatz for U, such that U(6) = Rx(6)®---®Rx(6), where
Rx(6) is a rotation about the X-axis of the Bloch sphere by angle 6. For this
example,

G(6) =1-Tr(Z(%)*) =1 —x(6)" (38)

where x(8) = Tr(Z(Rx(6)]0)(0|Rx(6)")?) = (1 + cos?6)/2. If @ is not an
integer multiple of m, then x(6)<1, and x(6)" will be exponentially
suppressed for large n. In other words, for large n, the landscape for x(6)”
becomes similar to that of a delta function: it is zero for all 6 except for
multiples of 7. Hence, for large n, it becomes difficult to train the unitary U
(0) because the gradient vanishes for most 6. This is just an illustrative
example, but this issue is general. Generally speaking, for large n, the
function C; has a sharp gradient near its global minima, and the gradient
vanishes when one is far away from these minima. Ultimately this limits
Cy's utility as a training function for large n.

In contrast, C, does not suffer from this issue. For the example in the
previous paragraph,

C2(6) = 1 - x(6), (39)

which is independent of n. So for this example the gradient of C, does not
vanish as n increases, and hence C, can be used to train 6. More generally,
the landscape of C; is less barren than that of C; for large n. We can argue
this, particularly, for states p that have low rank or low entropy. The second
term in Eq. (8), which is the term that provides the variability with a, does
not vanish even for large n, since (as shown in Appendix B of SM):
T(Z(E)?) > 2710 > (40)
Here, H(p) = —Tr(plog, p) is the von Neumann entropy, and r is the rank
of p. So as long as p is low entropy or low rank, then the second term in C,
will not vanish. Note that a similar bound does not exist for second term in
C;, which does tend to vanish for large n.

Optimization methods

Finding a,p: in Eq. (6) is a major component of VQSD. While many works
have benchmarked classical optimization algorithms (e.g., ref. 42) the
particular case of optimization for variational hybrid algorithms*? is limited
and needs further work.** Both gradient-based and gradient-free methods
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are possible, but gradient-based methods may not work as well with noisy
data. Additionally, ref. 2° notes that gradients of a large class of circuit
ansatze vanish when the number of parameters becomes large. These and
other issues (e.g. sensitivity to initial conditions, number of function
evaluations) should be considered when choosing an optimization
method.

In our preliminary numerical analyses (see Appendix B in SM), we found
that the Powell optimization algorithm® performed the best on both
quantum computer and simulator implementations of VQSD. This
derivative-free algorithm uses a bi-directional search along each parameter
using Brent's method. Our studies showed that Powell's method
performed the best in terms of convergence, sensitivity to initial
conditions, and number of correct solutions found. The implementation
of Powell’s algorithm used in this paper can be found in the open-source
Python package SciPy Optimize.*® Finally, Appendix B of SM shows how
our layered ansatz for U,(a) as well as proper initialization of U,(a) helps in
mitigating the problem of local minima.
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