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Variational quantum state diagonalization
Ryan LaRose1,2, Arkin Tikku1,3, Étude O’Neel-Judy1, Lukasz Cincio1 and Patrick J. Coles1

Variational hybrid quantum-classical algorithms are promising candidates for near-term implementation on quantum computers. In
these algorithms, a quantum computer evaluates the cost of a gate sequence (with speedup over classical cost evaluation), and a
classical computer uses this information to adjust the parameters of the gate sequence. Here we present such an algorithm for
quantum state diagonalization. State diagonalization has applications in condensed matter physics (e.g., entanglement
spectroscopy) as well as in machine learning (e.g., principal component analysis). For a quantum state ρ and gate sequence U, our
cost function quantifies how far UρUy is from being diagonal. We introduce short-depth quantum circuits to quantify our cost.
Minimizing this cost returns a gate sequence that approximately diagonalizes ρ. One can then read out approximations of the
largest eigenvalues, and the associated eigenvectors, of ρ. As a proof-of-principle, we implement our algorithm on Rigetti’s
quantum computer to diagonalize one-qubit states and on a simulator to find the entanglement spectrum of the Heisenberg
model ground state.
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INTRODUCTION
The future applications of quantum computers, assuming that
large-scale, fault-tolerant versions will eventually be realized, are
manifold. From a mathematical perspective, applications include
number theory,1 linear algebra,2–4 differential equations,5,6 and
optimization.7 From a physical perspective, applications include
electronic structure determination8,9 for molecules and materials
and real-time simulation of quantum dynamical processes10 such
as protein folding and photo-excitation events. Naturally, some of
these applications are more long-term than others. Factoring and
solving linear systems of equations are typically viewed as longer
term applications due to their high resource requirements. On the
other hand, approximate optimization and the determination of
electronic structure may be nearer term applications, and could
even serve as demonstrations of quantum supremacy in the near
future.11,12

A major aspect of quantum algorithms research is to make
applications of interest more near term by reducing quantum
resource requirements including qubit count, circuit depth,
numbers of gates, and numbers of measurements. A powerful
strategy for this purpose is algorithm hybridization, where a fully
quantum algorithm is turned into a hybrid quantum-classical
algorithm.13 The benefit of hybridization is two-fold, both
reducing the resources (hence allowing implementation on
smaller hardware) as well as increasing accuracy (by outsourcing
calculations to “error-free” classical computers).
Variational hybrid algorithms are a class of quantum-classical

algorithms that involve minimizing a cost function that depends
on the parameters of a quantum gate sequence. Cost evaluation
occurs on the quantum computer, with speedup over classical
cost evaluation, and the classical computer uses this cost
information to adjust the parameters of the gate sequence.
Variational hybrid algorithms have been proposed for Hamiltonian

ground state and excited state preparation,8,14,15 approximate
optimization,7 error correction,16 quantum data compression,17,18

quantum simulation,19,20 and quantum compiling.21 A key feature
of such algorithms is their near-term relevance, since only the
subroutine of cost evaluation occurs on the quantum computer,
while the optimization procedure is entirely classical, and hence
standard classical optimization tools can be employed.
In this work, we consider the application of diagonalizing

quantum states. In condensed matter physics, diagonalizing states
is useful for identifying properties of topological quantum phases
—a field known as entanglement spectroscopy.22 In data science
and machine learning, diagonalizing the covariance matrix (which
could be encoded in a quantum state2,23) is frequently employed
for principal component analysis (PCA). PCA identifies features
that capture the largest variance in one’s data and hence allows
for dimensionality reduction.24

Classical methods for diagonalization typically scale polynomi-
ally in the matrix dimension.25 Similarly, the number of measure-
ments required for quantum state tomography—a general
method for fully characterizing a quantum state—scales poly-
nomially in the dimension. Interestingly, Lloyd et al. proposed a
quantum algorithm for diagonalizing quantum states that can
potentially perform exponentially faster than these methods.2

Namely, their algorithm, called quantum principal component
analysis (qPCA), gives an exponential speedup for low-rank
matrices. qPCA employs quantum phase estimation combined
with density matrix exponentiation. These subroutines require a
significant number of qubits and gates, making qPCA difficult to
implement in the near term, despite its long-term promise.
Here, we propose a variational hybrid algorithm for quantum

state diagonalization. For a given state ρ, our algorithm is
composed of three steps: (i) Train the parameters α of a gate
sequence Up(α) such that ~ρ ¼ UpðαoptÞρUpðαoptÞy is approximately

Corrected: Publisher Correction

Received: 30 November 2018 Accepted: 29 May 2019

1Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA; 2Department of Computational Mathematics, Science, and Engineering & Department of
Physics and Astronomy, Michigan State University, East Lansing, MI 48823, USA and 3Department of Physics, Blackett Laboratory, Imperial College London, Prince Consort Road,
London SW7 2AZ, UK
Correspondence: Lukasz Cincio (lcincio@lanl.gov)

www.nature.com/npjqi

Published in partnership with The University of New South Wales

https://doi.org/10.1038/s41534-019-0167-6
https://doi.org/10.1038/s41534-019-0178-3
mailto:lcincio@lanl.gov
www.nature.com/npjqi


diagonal, where αopt is the optimal value of α obtained (ii) Read
out the largest eigenvalues of ρ by measuring in the eigenbasis
(i.e., by measuring ~ρ in the standard basis), and (iii) Prepare the
eigenvectors associated with the largest eigenvalues. We call this
the variational quantum state diagonalization (VQSD) algorithm.
VQSD is a near-term algorithm with the same practical benefits as
other variational hybrid algorithms. Employing a layered ansatz for
Up(α) (where p is the number of layers) allows one to obtain a
hierarchy of approximations for the eigevalues and eigenvectors.
We therefore think of VQSD as an approximate diagonalization
algorithm.
We carefully choose our cost function C to have the following

properties: (i) C is faithful (i.e, it vanishes if and only if ~ρ is
diagonal), (ii) C is efficiently computable on a quantum computer,
(iii) C has operational meanings such that it upper bounds the
eigenvalue and eigenvector error (see Sec. IIA), and (iv) C scales
well for training purposes in the sense that its gradient does not
vanish exponentially in the number of qubits. The precise
definition of C is given in Sec. IIA and involves a difference of
purities for different states. To compute C, we introduce short-
depth quantum circuits that likely have applications outside the
context of VQSD.
To illustrate our method, we implement VQSD on Rigetti’s

8-qubit quantum computer. We successfully diagonalize one-qubit
pure states using this quantum computer. To highlight future
applications (when larger quantum computers are made avail-
able), we implement VQSD on a simulator to perform entangle-
ment spectroscopy on the ground state of the one-dimensional
(1D) Heisenberg model composed of 12 spins.
Our paper is organized as follows. Section II outlines the VQSD

algorithm and presents its implementation. In Sec. III, we give a
comparison to the qPCA algorithm, and we elaborate on future
applications. Section IV presents our methods for quantifying
diagonalization and for optimizing our cost function.

RESULTS
The VQSD algorithm
Overall structure. Figure 1 shows the structure of the VQSD
algorithm. The goal of VQSD is to take, as its input, an n-qubit
density matrix ρ given as a quantum state and then output
approximations of the m-largest eigenvalues and their associated
eigenvectors. Here, m will typically be much less than 2n, the
matrix dimension of ρ, although the user is free to increase m with
increased algorithmic complexity (discussed below). The out-
putted eigenvalues will be in classical form, i.e., will be stored on a
classical computer. In contrast, the outputted eigenvectors will be
in quantum form, i.e., will be prepared on a quantum computer.
This is necessary because the eigenvectors would have 2n entries
if they were stored on a classical computer, which is intractable for
large n. Nevertheless, one can characterize important aspects of
these eigenvectors with a polynomial number of measurements
on the quantum computer.
Similar to classical eigensolvers, the VQSD algorithm is an

approximate or iterative diagonalization algorithm. Classical
eigenvalue algorithms are necessarily iterative, not exact. This
can be seen by noting that computing eigenvalues is equivalent
to computing roots of a polynomial equation (namely the
characteristic polynomial of the matrix) and that no closed-form
solution exists for the roots of general polynomials of degree
greater than or equal to five.25 Iterative algorithms are useful in
that they allow for a trade-off between run-time and accuracy.
Higher degrees of accuracy can be achieved at the cost of more
iterations (equivalently, longer run-time), or short run-time can be
achieved at the cost of lower accuracy. This flexibility is desirable
in that it allows the user of the algorithm to dictate the quality of
the solutions found.
The iterative feature of VQSD arises via a layered ansatz for the

diagonalizing unitary. This idea similarly appears in other
variational hybrid algorithms, such as the Quantum Approximate
Optimization Algorithm.7 Specifically, VQSD diagonalizes ρ by

Fig. 1 Schematic diagram showing the steps of the VQSD algorithm. (a) Two copies of quantum state ρ are provided as an input. These states
are sent to the parameter optimization loop (b) where a hybrid quantum-classical variational algorithm approximates the diagonalizing
unitary Up(αopt). Here, p is a hyperparameter that dictates the quality of solution found. This optimal unitary is sent to the eigenvalue readout
circuit (c) to obtain bitstrings z, the frequencies of which provide estimates of the eigenvalues of ρ. Along with the optimal unitary Up(αopt),
these bitstrings are sent to the eigenvector preparation circuit (c) to prepare the eigenstates of ρ on a quantum computer. Both the
eigenvalues and eigenvectors are the outputs (d) of the VQSD algorithm
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variationally updating a parameterized unitary Up(α) such that

~ρpðαÞ : ¼ UpðαÞρUy
pðαÞ (1)

is (approximately) diagonal at the optimal value αopt. (For brevity
we often write ~ρ for ~ρpðαÞ). We assume a layered ansatz of the
form

UpðαÞ ¼ L1ðα1ÞL2ðα2Þ � � � LpðαpÞ : (2)

Here, p is a hyperparameter that sets the number of layers Li(αi),
and each αi is a set of optimization parameters that corresponds
to internal gate angles within the layer. The parameter α in (1)
refers to the collection of all αi for i= 1, …, p. Once the
optimization procedure is finished and returns the optimal
parameters αopt, one can then run a particular quantum circuit
(shown in Fig. 1c and discussed below) Nreadout times to
approximately determine the eigenvalues of ρ. The precision (i.e,
the number of significant digits) of each eigenvalue increases with
Nreadout and with the eigenvalue’s magnitude. Hence for small
Nreadout only the largest eigenvalues of ρ will be precisely
characterized, so there is a connection between Nreadout and
how many eigenvalues, m, are determined. The hyperparameter p
is a refinement parameter, meaning that the accuracy of the
eigensystem (eigenvalues and eigenvectors) typically increases as
p increases. We formalize this argument as follows.
Let C denote our cost function, defined below in (10), which we

are trying to minimize. In general, the cost C will be non-increasing
(i.e., will either decrease or stay constant) in p. One can ensure that
this is true by taking the optimal parameters learned for p layers as
the starting point for the optimization of p+ 1 layers and by
setting αp+1 such that Lp+1 (αp+1) is an identity. This strategy also
avoids barren plateaus26,27 and helps to mitigate the problem of
local minima, as we discuss in Appendix B of Supplementary
Material (SM).
Next, we argue that C is closely connected to the accuracy of

the eigensystem. Specifically, it gives an upper bound on the
eigensystem error. Hence, one obtains an increasingly tighter
upper bound on the eigensystem error as C decreases (equiva-
lently, as p increases). To quantify eigenvalue error, we define

Δλ : ¼
Xd
i¼1

ðλi � ~λiÞ2 ; (3)

where d= 2n, and {λi} and f~λig are the true and inferred
eigenvalues, respectively. Here, i is an index that orders the

eigenvalues in decreasing order, i.e., λi � λiþ1 and ~λi � ~λiþ1 for all
i∈ {1, …, d− 1}. To quantify eigenvector error, we define

Δv :¼
Xd
i¼1

hδi jδii; with jδii ¼ ρj~vii � ~λi j~vii ¼ Π?
i ρj~vii: (4)

Here, j~vii is the inferred eigenvector associated with ~λi , and
Π?
i ¼ 1� j~viih~vij is the projector onto the subspace orthogonal to

j~vii. Hence, |δi〉 is a vector whose norm quantifies the component
of ρj~vii that is orthogonal to j~vii, or in other words, how far j~vii is
from being an eigenvector of ρ.
As proven in Sec. IV A, our cost function upper bounds the

eigenvalue and eigenvector error up to a proportionality factor β,

Δλ � βC ; and Δv � βC : (5)

Because C is non-increasing in p, the upper bound in (5) is non-
increasing in p and goes to zero if C goes to zero.
We remark that Δv can be interpreted as a weighted

eigenvector error, where eigenvectors with larger eigenvalues
are weighted more heavily in the sum. This is a useful feature since
it implies that lowering the cost C will force the eigenvectors with
the largest eigenvalues to be highly accurate. In many applica-
tions, such eigenvectors are precisely the ones of interest. (See
Sec. II B for an illustration of this feature).
The various steps in the VQSD algorithm are shown schematically

in Fig. 1. There are essentially three main steps: (1) an optimization
loop that minimizes the cost C via back-and-forth communication
between a classical and quantum computer, where the former
adjusts α and the latter computes C for Up(α), (2) a readout
procedure for approximations of the m largest eigenvalues, which
involves running a quantum circuit and then classically analyzing the
statistics, and (3) a preparation procedure to prepare approximations
of the eigenvectors associated with the m largest eigenvalues. In the
following subsections, we elaborate on each of these procedures.

Parameter optimization loop. Naturally, there are many ways to
parameterize Up(α). Ideally one would like the number of
parameters to grow at most polynomially in both n and p.
Figure 2 presents an example ansatz that satisfies this condition.
Each layer Li is broken down into layers of two-body gates that can
be performed in parallel. These two-body gates can be further
broken down into parameterized one-body gates, for example,
with the construction in ref. 28. We discuss a different approach to
parameterize Up(α) in Appendix B of SM.

Fig. 2 (a) Layered ansatz for the diagonalizing unitary Up(α). Each layer Li, i= 1, …, p, consists of a set of optimization parameters αi. (b) The
two-qubit gate ansatz for the ith layer, shown on four qubits. Here we impose periodic boundary conditions on the top/bottom edge of the
circuit so that G3 wraps around from top to bottom. Appendix B of SM discusses an alternative approach to the construction of Up(α), in which
the ansatz is modified during the optimization process
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For a given ansatz, such as the one in Fig. 2, parameter
optimization involves evaluating the cost C on a quantum
computer for an initial choice of parameters and then modifying
the parameters on a classical computer in an iterative feedback
loop. The goal is to find

αopt : ¼ argmin
α

CðUpðαÞÞ : (6)

The classical optimization routine used for updating the para-
meters can involve either gradient-free or gradient-based
methods. In Sec. IV B, we explore this further and discuss our
optimization methods.
In Eq. (6), C(Up(α)) quantifies how far the state ~ρpðαÞ is from

being diagonal. There are many ways to define such a cost
function, and in fact there is an entire field of research on
coherence measures that has introduced various such quanti-
ties.29 We aim for a cost that is efficiently computable with a
quantum-classical system, and hence we consider a cost that can
be expressed in terms of purities. (It is well known that a quantum
computer can find the purity Tr(σ2) of an n-qubit state σ with
complexity scaling only linearly in n, an exponential speedup over
classical computation30,31). Two such cost functions, whose
individual merits we discuss in Sec. IV A, are

C1ðUpðαÞÞ ¼ Trðρ2Þ � TrðZð~ρÞ2Þ ; (7)

C2ðUpðαÞÞ ¼ Trðρ2Þ � 1
n

Xn
j¼1

TrðZ jð~ρÞ2Þ : (8)

Here, Z and Z j are quantum channels that dephase (i.e., destroy
the off-diagonal elements) in the global standard basis and in the
local standard basis on qubit j, respectively. Importantly, the two
functions vanish under the same conditions:

C1ðUpðαÞÞ ¼ 0 , C2ðUpðαÞÞ ¼ 0 , ~ρ ¼ Zð~ρÞ : (9)

So the global minima of C1 and C2 coincide and correspond
precisely to unitaries Up(α) that diagonalize ρ (i.e., unitaries such
that ~ρ is diagonal).
As elaborated in Sec. IV A, C1 has operational meanings: it

bounds our eigenvalue error, C1 � Δλ, and it is equivalent to our
eigenvector error, C1= Δv. However, its landscape tends to be
insensitive to changes in Up(α) for large n. In contrast, we are not
aware of a direct operational meaning for C2, aside from its bound
on C1 given by C2 � ð1=nÞC1. However, the landscape for C2 is
more sensitive to changes in Up(α), making it useful for training
Up(α) when n is large. Due to these contrasting merits of C1 and C2,
we define our overall cost function C as a weighted average of
these two functions

CðUpðαÞÞ ¼ qC1ðUpðαÞÞ þ ð1� qÞC2ðUpðαÞÞ ; (10)

where q∈ [0, 1] is a free parameter that allows one to tailor the
VQSD method to the scale of one’s problem. For small n, one can
set q ≈ 1 since the landscape for C1 is not too flat for small n, and,
as noted above, C1 is an operationally relevant quantity. For large
n, one can set q to be small since the landscape for C2 will provide
the gradient needed to train Up(α). The overall cost maintains the
operational meaning in (5) with

β ¼ n=ð1þ qðn� 1ÞÞ : (11)

Appendix B illustrates the advantages of training with different
values of q.
Computing C amounts to evaluating the purities of various

quantum states on a quantum computer and then doing some
simple classical post-processing that scales linearly in n. This can
be seen from Eqs. (7) and (8). The first term, Tr(ρ2), in C1 and C2 is
independent of Up(α). Hence, Tr(ρ

2) can be evaluated outside of
the optimization loop in Fig. 1 using the Destructive Swap Test
(see Sec. IV A for the circuit diagram). Inside the loop, we only

need to compute TrðZð~ρÞ2Þ and TrðZ jð~ρÞ2Þ for all j. Each of these
terms are computed by first preparing two copies of ~ρ and then
implementing quantum circuits whose depths are constant in n.
For example, the circuit for computing TrðZð~ρÞ2Þ is shown in
Fig. 1b, and surprisingly it has a depth of only one gate. We call it
the Diagonalized Inner Product (DIP) Test. The circuit for
computing TrðZ jð~ρÞ2Þ is similar, and we call it the Partially
Diagonalized Inner Product (PDIP) Test. We elaborate on both of
these circuits in Sec. IV A.

Eigenvalue readout. After finding the optimal diagonalizing
unitary Up(αopt), one can use it to readout approximations of the
eigenvalues of ρ. Figure 1c shows the circuit for this readout. One
prepares a single copy of ρ and then acts with Up(αopt) to prepare
~ρpðαoptÞ. Measuring in the standard basis {|z〉}, where z= z1z2… zn
is a bitstring of length n, gives a set of probabilities f~λzg with

~λz ¼ hzj~ρpðαoptÞjzi : (12)

We take the ~λz as the inferred eigenvalues of ρ. We emphasize that
the ~λz are the diagonal elements, not the eigenvalues, of ~ρpðαoptÞ.
Each run of the circuit in Fig. 1c generates a bitstring z

corresponding to the measurement outcomes. If one obtains z
with frequency fz for Nreadout total runs, then

~λestz ¼ fz=Nreadout (13)

gives an estimate for ~λz . The statistical deviation of ~λestz from ~λz
goes with 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nreadout

p
. The relative error ϵz (i.e., the ratio of the

statistical error on ~λestz to the value of ~λestz ) then goes as

ϵz ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nreadout

p ~λestz

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nreadout

p
fz

: (14)

This implies that events z with higher frequency fz have lower
relative error. In other words, the larger the inferred eigenvalue ~λz ,
the lower the relative error, and hence the more precisely it is
determined from the experiment. When running VQSD, one can
pre-decide on the desired values of Nreadout and a threshold for
the relative error, denoted ϵmax. This error threshold ϵmax will then
determine m, i.e., how many of the largest eigenvalues that get
precisely characterized. So m ¼ mðNreadout; ϵmax ; f~λzgÞ is a function
of Nreadout, ϵmax, and the set of inferred eigenvalues f~λzg. Precisely,
we take m ¼ j~λestj as the cardinality of the following set:

~λ
est ¼ f~λestz : ϵz � ϵmaxg ; (15)

which is the set of inferred eigenvalues that were estimated with
the desired precision.

Eigenvector preparation. The final step of VQSD is to prepare the
eigenvectors associated with the m-largest eigenvalues, i.e., the
eigenvalues in the set in Eq. (15). Let Z ¼ fz : ~λestz 2 ~λ

estg be the
set of bitstrings z associated with the eigenvalues in ~λ

est
. (Note

that these bitstrings are obtained directly from the measurement
outcomes of the circuit in Fig. 1c, i.e., the outcomes become the
bitstring z). For each z∈ Z, one can prepare the following state,
which we take as the inferred eigenvector associated with our
estimate of the inferred eigenvalue ~λestz ,

j~vzi ¼ UpðαoptÞyjzi (16)

¼ UpðαoptÞyðXz1 � � � � � XznÞj0i : (17)

The circuit for preparing this state is shown in Fig. 1d. As noted in
(17), one first prepares |z〉 by acting with X operators raised to the
appropriate powers, and then one acts with UpðαoptÞy to rotate
from the standard basis to the inferred eigenbasis.
Once they are prepared on the quantum computer, each

inferred eigenvector j~vzi can be characterized by measuring
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expectation values of interest. That is, important physical features
such as energy or entanglement (e.g., entanglement witnesses)
are associated with some Hermitian observable M, and one can
evaluate the expectation value h~vzjMj~vzi to learn about these
features.

Implementations
Here we present our implementations of VQSD, first for a one-
qubit state on a cloud quantum computer to show that it is
amenable to currently available hardware. Then, to illustrate the
scaling to larger, more interesting problems, we implement VQSD
on a simulator for the 12-spin ground state of the Heisenberg
model. See Appendices A and B of SM for further details. The code
used to generate some of the examples presented here and in SM
can be accessed from ref. 32

One-qubit state. We now discuss the results of applying VQSD to
the one-qubit plus state ρ= |+〉〈+| on the 8Q-Agave quantum
computer provided by Rigetti.33 Because the problem size is small
(n= 1), we set q= 1 in the cost function (10). Since ρ is a pure
state, the cost function is

CðUpðαÞÞ ¼ C1ðUpðαÞÞ ¼ 1� TrðZð~ρÞ2Þ: (18)

For Up(α), we take p= 1, for which the layered ansatz becomes an
arbitrary single qubit rotation.
The results of VQSD for this state are shown in Fig. 3. In Fig. 3a,

the solid curve shows the cost versus the number of iterations in

the parameter optimization loop, and the dashed curves show the
inferred eigenvalues of ρ at each iteration. Here we used the
Powell optimization algorithm, see Section IV B for more details.
As can be seen, the cost decreases to a small value near zero and
the eigenvalue estimates simultaneously converge to the correct
values of zero and one. Hence, VQSD successfully diagonalized
this state.
Figure 3b shows the landscape of the optimization problem

on Rigetti’s 8Q-Agave quantum computer, Rigetti’s noisy
simulator, and a noiseless simulator. Here, we varied the angle
α in the diagonalizing unitary U(α)= Rx(π/2)Rz(α) and computed
the cost at each value of this angle. The landscape on the
quantum computer has local minima near the optimal angles
α= π/2, 3π/2 but the cost is not zero. This explains why we
obtain the correct eigenvalues even though the cost is nonzero
in Fig. 3a. The nonzero cost can be due to a combination of
decoherence, gate infidelity, and measurement error. As shown
in Fig. 3b, the 8Q-Agave quantum computer retuned during our
data collection, and after this retuning, the landscape of the
quantum computer matched that of the noisy simulator
significantly better.

Heisenberg model ground state. While current noise levels of
quantum hardware limit our implementations of VQSD to small
problem sizes, we can explore larger problem sizes on a simulator.
An important application of VQSD is to study the entanglement in
condensed matter systems, and we highlight this application in

Fig. 3 The VQSD algorithm run on Rigetti’s 8Q-Agave quantum computer for ρ= |+〉〈+|. (a) A representative run of the parameter
optimization loop, using the Powell optimization algorithm (see Sec. IV B for details and Appendix B for data from additional runs). Cost versus
iteration is shown by the black solid line. The dotted lines show the two inferred eigenvalues. After four iterations, the inferred eigenvalues
approach {0, 1}, as required for a pure state. (b) The cost landscape on a noiseless simulator, Rigetti’s noisy simulator, and Rigetti’s quantum
computer. Error bars show the standard deviation (due to finite sampling) of multiple runs. The local minima occur roughly at the theoretically
predicted values of π/2 and 3π/2. During data collection for this plot, the 8Q-Agave quantum computer retuned, after which its cost landscape
closely matched that of the noisy simulator
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the following example.
Let us consider the ground state of the 1D Heisenberg model,

the Hamiltonian of which is

H ¼
X2n
j¼1

SðjÞ � Sðjþ1Þ ; (19)

with SðjÞ ¼ ð1=2ÞðσðjÞ
x x̂ þ σ

ðjÞ
y ŷ þ σ

ðjÞ
z ẑÞ and periodic boundary

conditions, S(2n+1)= S(1). Performing entanglement spectroscopy
on the ground state |ψ〉AB involves diagonalizing the reduced state
ρ= TrB(|ψ〉〈ψ|AB). Here we consider a total of eight spins (2n= 8).
We take A to be a subset of four nearest-neighbor spins, and B is
the complement of A.

The results of applying VQSD to the four-spin reduced state ρ via a
simulator are shown in Fig. 4. Panel (a) plots the inferred eigenvalues
versus the number of layers p in our ansatz (see Fig. 2). One can see
that the inferred eigenvalues converge to their theoretical values
as p increases. Panel (b) plots the inferred eigenvalues resolved by
their associated quantum numbers (z-component of total spin).
This plot illustrates the feature we noted previously that
minimizing our cost will first result in minimizing the eigenvector
error for those eigenvectors with the largest eigenvalues. Overall
our VQSD implementation returned roughly the correct values for
both the eigenvalues and their quantum numbers. Resolving not
only the eigenvalues but also their quantum numbers is important
for entanglement spectroscopy,22 and clearly VQSD can do this.

Fig. 4 Implementation of VQSD with a simulator for the ground state of the 1D Heisenberg model, diagonalizing a four-spin subsystem of a
chain of eight spins. We chose q= 1 for the cost in (10) and employed a gradient-based method to find αopt. (a) Largest inferred eigenvalues ~λj
versus 1/p, where p is the number of layers in our ansatz, which in this example takes half-integer values corresponding to fractions of layers
shown in Fig. 2. The exact eigenvalues are shown on the y-axis (along 1/p= 0 line) with their degeneracy indicated in parentheses. One can
see the largest eigenvalues converge to their correct values, including the correct degeneracies. Inset: overall eigenvalue error Δλ versus 1/p.
(b) Largest inferred eigenvalues resolved by the inferred 〈Sz〉 quantum number of their associated eigenvector, for p= 5. The inferred data
points (red X’s) roughly agree with the theoretical values (black circles), particularly for the largest eigenvalues. Appendix B of SM discusses
Heisenberg chain of 12 spins
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In Appendix B of SM we discuss an alternative approach
employing a variable ansatz for Up(α), and we present results of
applying this approach to a six-qubit reduced state of the 12-qubit
ground state of the Heisenberg model.

DISCUSSION
We emphasize that VQSD is meant for states ρ that have either
low rank or possibly high rank but low entropy H(ρ)=−Tr(ρ log ρ).
This is because the eigenvalue readout step of VQSD would be
exponentially complex for states with high entropy. In other
words, for high entropy states, if one efficiently implemented the
eigenvalue readout step (with Nreadout polynomial in n), then very
few eigenvalues would get characterized with the desired
precision. In Appendix B of SM we discuss the complexity of
VQSD for particular example states.
Examples of states for which VQSD is expected to be efficient

include density matrices computed from ground states of 1D,
local, gapped Hamiltonians. Also, thermal states of some 1D
systems in a many-body localized phase at low enough
temperature are expected to be diagonalizable by VQSD. These
states have rapidly decaying spectra and are eigendecomposed
into states obeying a 1D area law.34–36 This means that every
eigenstate can be prepared by a constant depth circuit in
alternating ansatz form,35 and hence VQSD will be able to
diagonalize it.

Comparison to literature
Diagonalizing quantum states with classical methods would
require exponentially large memory to store the density matrix,
and the matrix operations needed for diagonalization would be
exponentially costly. VQSD avoids both of these scaling issues.
Another quantum algorithm that extracts the eigenvalues and

eigenvectors of a quantum state is qPCA.2 Similar to VQSD, qPCA
has the potential for exponential speedup over classical diag-
onalization for particular classes of quantum states. Like VQSD, the
speedup in qPCA is contingent on ρ being a low-entropy state.
We performed a simple implementation of qPCA to get a sense

for how it compares to VQSD, see Appendix B in SM for details. In
particular, just like we did for Fig. 3, we considered the one-qubit
plus state ρ= |+〉〈+|. We implemented qPCA for this state on
Rigetti’s noisy simulator (whose noise is meant to mimic that of
their 8Q-Agave quantum computer). The circuit that we imple-
mented applied one controlled-exponential-swap gate (in order to
approximately exponentiate ρ, as discussed in ref. 2). We
employed a machine-learning approach37 to compile the
controlled-exponential-swap gate into a short-depth gate
sequence (see Appendix B in SM). With this circuit we inferred
the two eigenvalues of ρ to be approximately 0.8 and 0.2. Hence,
for this simple example, it appears that qPCA gave eigenvalues
that were slightly off from the true values of 1 and 0, while VQSD
was able to obtain the correct eigenvalues, as discussed in Fig. 3.

Future applications
As noted in ref. 2, one application of quantum state diagonaliza-
tion is benchmarking of quantum noise processes, i.e., quantum
process tomography. Here one prepares the Choi state by sending
half of a maximally entangled state through the process of
interest. One can apply VQSD to the resulting Choi state to learn
about the noise process, which may be particular useful for
benchmarking near-term quantum computers.
A special case of VQSD is variational state preparation. That is, if

one applies VQSD to a pure state ρ= |ψ〉〈ψ|, then one can learn
the unitary U(α) that maps |ψ〉 to a standard basis state. Inverting
this unitary allows one to map a standard basis state (and hence

the state |0〉⊗n) to the state |ψ〉, which is known as state
preparation. Hence, if one is given |ψ〉 in quantum form, then
VQSD can potentially find a short-depth circuit that approxi-
mately prepares |ψ〉. Variational quantum compiling algorithms
that were very recently proposed21,38 may also be used for this
same purpose, and hence it would be interesting to compare
VQSD to these algorithms for this special case. Additionally, in this
special case one could use VQSD and these other algorithms as
an error mitigation tool, i.e., to find a short-depth state
preparation that achieves higher accuracy than the original state
preparation.
In machine learning, PCA is a subroutine in supervised and

unsupervised learning algorithms and also has many direct
applications. PCA inputs a data matrix X and finds a new basis
such that the variance is maximal along the new basis vectors.
One can show that this amounts to finding the eigenvectors of
the covariance matrix E[XXT] with the largest eigenvalues, where
E denotes expectation value. Thus PCA involves diagonalizing a
positive-semidefinite matrix, E[XXT]. Hence VQSD can perform
this task provided one has access to QRAM23 to prepare the
covariance matrix as a quantum state. PCA can reduce the
dimension of X as well as filter out noise in data. In addition,
nonlinear (kernel) PCA can be used on data that is not linearly
separable. Very recent work by Tang39 suggests that classical
algorithms could be improved for PCA of low-rank matrices, and
potentially obtain similar scaling as qPCA and VQSD. Hence
future work is needed to compare these different approaches to
PCA.
Perhaps the most important near-term application of VQSD is to

study condensed matter physics. In particular, we propose that
one can apply the variational quantum eigensolver8 to prepare
the ground state of a many-body system, and then one can follow
this with the VQSD algorithm to characterize the entanglement in
this state. Ultimately this approach could elucidate key properties
of condensed matter phases. In particular, VQSD allows for
entanglement spectroscopy, which has direct application to the
identification of topological order.22 Extracting both the eigenva-
lues and eigenvectors is useful for entanglement spectroscopy,22

and we illustrated this capability of VQSD in Fig. 4. Finally, an
interesting future research direction is to check how the
discrepancies in preparation of multiple copies affect the
performance of the diagonalization.

METHODS
Diagonalization test circuits
Here we elaborate on the cost functions C1 and C2 and present short-depth
quantum circuits to compute them.

C1 and the DIP test. The function C1 defined in Eq. (7) has several intuitive
interpretations. These interpretations make it clear that C1 quantifies how

far a state is from being diagonal. In particular, let DHSðA; BÞ :¼
Tr ðA� BÞyðA� BÞ
� �

denote the Hilbert–Schmidt distance. Then we can

write

C1 ¼ min
σ2D

DHSð~ρ; σÞ (20)

¼ DHSð~ρ;Zð~ρÞÞ (21)

¼
X
z; z0≠z

jhzj~ρjz0ij2 : (22)

In other words, C1 is (1) the minimum distance between ~ρ and the set of
diagonal states D, (2) the distance from ~ρ to Zð~ρÞ, and (3) the sum of the
absolute squares of the off-diagonal elements of ~ρ.
C1 can also be written as the eigenvector error in Eq. (4) as follows. For

an inferred eigenvector j~vzi, we define jδzi ¼ ρj~vzi � ~λzj~vzi and write the
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eigenvector error as

hδzjδzi ¼ h~vzjρ2j~vzi þ ~λ2z � 2~λzh~vzjρj~vzi (23)

¼ h~vzjρ2j~vzi � ~λ2z ; (24)

since h~vzjρj~vzi ¼ ~λz . Summing over all z gives

Δv ¼
X
z

hδzjδzi ¼
X
z

h~vzjρ2j~vzi � ~λ2z (25)

¼ Trðρ2Þ � TrðZð~ρÞ2Þ ¼ C1 ; (26)

which proves the bound in Eq. (5) for q= 1.
In addition, C1 bounds the eigenvalue error defined in Eq. (3). Let ~λ ¼

ð~λ1; ¼ ;~λdÞ and λ= (λ1, …, λd) denote the inferred and actual eigenvalues
of ρ, respectively, both arranged in decreasing order. In this notation we
have

Δλ ¼ λ � λþ ~λ � ~λ� 2λ � ~λ (27)

C1 ¼ λ � λ� ~λ � ~λ (28)

¼ Δλ þ 2ðλ � ~λ� ~λ � ~λÞ : (29)

Since the eigenvalues of a density matrix majorize its diagonal elements,
λ � ~λ, and the dot product with an ordered vector is a Schur convex
function, we have

λ � ~λ � ~λ � ~λ : (30)

Hence from Eq. (29) and Eq. (30) we obtain the bound

Δλ � C1 ; (31)

which corresponds to the bound in Eq. (5) for the special case of q= 1.
For computational purposes, we use the difference of purities

interpretation of C1 given in Eq. (7). The Tr(ρ2) term is independent of
Up(α). Hence it only needs to be evaluated once, outside of the parameter
optimization loop. It can be computed via the expectation value of the
swap operator S on two copies of ρ, using the identity

Trðρ2Þ ¼ Trððρ� ρÞSÞ : (32)

This expectation value is found with a depth-two quantum circuit that
essentially corresponds to a Bell-basis measurement, with classical post-
processing that scales linearly in the number of qubits.37,40 This is shown in
Fig. 5a. We call this procedure the Destructive Swap Test, since it is like the
Swap Test, but the measurement occurs on the original systems instead of
on an ancilla.
Similarly, the TrðZð~ρÞ2Þ term could be evaluated by first dephasing ~ρ

and then performing the Destructive Swap Test, which would involve a
depth-three quantum circuit with linear classical post-processing. This
approach was noted in ref. 41. However, there exists a simpler circuit, which
we call the Diagonalized Inner Product (DIP) Test. The DIP Test involves a
depth-one quantum circuit with no classical post-processing. An abstract
version of this circuit is shown in Fig. 5b, for two states σ and τ. The proof
that this circuit computes TrðZðσÞZðτÞÞ is given in Appendix B of SM. For
our application we will set σ ¼ τ ¼ ~ρ, for which this circuit gives TrðZð~ρÞ2Þ.
In summary, C1 is efficiently computed by using the Destructive Swap

Test for the Tr(ρ2) term and the DIP Test for the TrðZð~ρÞ2Þ term.

C2 and the PDIP test. Like C1, C2 can also be rewritten in terms of of the
Hilbert–Schmidt distance. Namely, C2 is the average distance of ~ρ to each
locally dephased state Z jð~ρÞ:

C2 ¼ 1
n

Xn
j¼1

DHSð~ρ;Z jð~ρÞÞ : (33)

where Z jð�Þ ¼
P

zðjzihzjj � 1k≠jÞð�Þðjzihzjj � 1k≠jÞ. Naturally, one would
expect that C2 � C1, since ~ρ should be closer to each locally dephased
state than to the fully dephased state. Indeed this is true and can be seen
from:

C2 ¼ C1 � 1
n

Xn
j¼1

min
σ2D

DHSðZ jð~ρÞ; σÞ (34)

However, C1 and C2 vanish under precisely the same conditions, as noted
in Eq. (9). One can see this by noting that C2 also upper bounds (1/n)C1 and
hence we have

C2 � C1 � nC2 : (35)

Combining the upper bound in Eq. (35) with the relations in Eq. (26) and
Eq. (31) gives the bounds in Eq. (5) with β defined in Eq. (11). The upper
bound in Eq. (35) is proved as follows. Let z= z1…zn and z0 ¼ z01 ¼ z0n be n-
dimensional bitstrings. Let S be the set of all pairs (z, z′) such that z ≠ z′,
and let Sj be the set of all pairs (z, z′) such that zj≠z0j . Then we have
C1 ¼

P
ðz;z0 Þ2S jhzj~ρjz0ij2, and

nC2 ¼
Xn
j¼1

X
ðz;z0 Þ2Sj

jhzj~ρjz0ij2 (36)

�
X

ðz;z0 Þ2SU

jhzj~ρjz0ij2 ¼ C1 ; (37)

where SU ¼ Sn
j¼1 Sj is the union of all the Sj sets. The inequality in Eq. (37)

arises from the fact that the Sj sets have non-trivial intersection with each
other, and hence we throw some terms away when only considering the
union SU . The last equality follows from the fact that SU ¼ S, i.e, the set of

Fig. 5 Diagonalization test circuits used in VQSD. (a) The Destructive Swap Test computes Tr(στ) via a depth-two circuit. (b) The Diagonalized
Inner Product (DIP) Test computes TrðZðσÞZðτÞÞ via a depth-one circuit. (c) The Partially Diagonalized Inner Product (PDIP) Test computes
TrðZjðσÞZjðτÞÞ via a depth-two circuit, for a particular set of qubits j. While the DIP test requires no postprocessing, the postprocessing for the
Destructive Swap Test and the Partial DIP Test scales linearly in n
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all bitstring pairs that differ from each other (S) corresponds to the set of
all bitstring pairs that differ for at least one element (SU).
Writing C2 in terms of purities, as in Eq. (8), shows how it can be

computed on a quantum computer. As in the case of C1, the first term in
Eq. (8) is computed with the Destructive Swap Test. For the second term in
Eq. (8), each purity TrðZ jð~ρÞ2Þ could also be evaluated with the Destructive
Swap Test, by first locally dephasing the appropriate qubit. However, we
present a slightly improved circuit to compute these purities that we call
the PDIP Test. The PDIP Test is shown in Fig. 5c for the general case of
feeding in two distinct states σ and τ with the goal of computing the inner
product between ZjðσÞ and ZjðτÞ. For generality we let l, with 0 � l � n,
denote the number of qubits being locally dephased for this computation.
If l > 0, we define j= (j1, …, jl) as a vector of indices that indicates which
qubits are being locally dephased. The PDIP Test is a hybrid of the
Destructive Swap Test and the DIP Test, corresponding to the former when
l= 0 and the latter when l= n. Hence, it generalizes both the Destructive
Swap Test and the DIP Test. Namely, the PDIP Test performs the DIP Test
on the qubits appearing in j and performs the Destructive Swap Test on
the qubits not appearing in j. The proof that the PDIP Test computes
TrðZjðσÞZjðτÞÞ, and hence TrðZjð~ρÞ2Þ when σ ¼ τ ¼ ~ρ, is given in
Appendix B of SM.

C1 versus C2. Here we discuss the contrasting merits of the functions C1
and C2, hence motivating our cost definition in Eq. (10).
As noted previously, C2 does not have an operational meaning like C1. In

addition, the circuit for computing C1 is more efficient than that for C2. The
circuit in Fig. 5b for computing the second term in C1 has a gate depth of
one, with n CNOT gates, nmeasurements, and no classical post-processing.
The circuit in Fig. 5c for computing the second term in C2 has a gate depth
of two, with n CNOT gates, n− 1 Hadamard gates, 2n− 1 measurements,
and classical post-processing whose complexity scales linearly in n. So in
every aspect, the circuit for computing C1 is less complex than that for C2.
This implies that C1 can be computed with greater accuracy than C2 on a
noisy quantum computer.
On the other hand, consider how the landscape for C1 and C2 scale with

n. As a simple example, suppose ρ= |0〉〈0|⊗⋯⊗|0〉〈0|. Suppose one takes
a single parameter ansatz for U, such that U(θ)= RX(θ)⊗⋯⊗RX(θ), where
RX(θ) is a rotation about the X-axis of the Bloch sphere by angle θ. For this
example,

C1ðθÞ ¼ 1� TrðZð~ρÞ2Þ ¼ 1� xðθÞn (38)

where xðθÞ ¼ TrðZðRXðθÞj0ih0jRXðθÞyÞ2Þ ¼ ð1þ cos2 θÞ=2. If θ is not an
integer multiple of π, then x(θ) < 1, and x(θ)n will be exponentially
suppressed for large n. In other words, for large n, the landscape for x(θ)n

becomes similar to that of a delta function: it is zero for all θ except for
multiples of π. Hence, for large n, it becomes difficult to train the unitary U
(θ) because the gradient vanishes for most θ. This is just an illustrative
example, but this issue is general. Generally speaking, for large n, the
function C1 has a sharp gradient near its global minima, and the gradient
vanishes when one is far away from these minima. Ultimately this limits
C1’s utility as a training function for large n.
In contrast, C2 does not suffer from this issue. For the example in the

previous paragraph,

C2ðθÞ ¼ 1� xðθÞ ; (39)

which is independent of n. So for this example the gradient of C2 does not
vanish as n increases, and hence C2 can be used to train θ. More generally,
the landscape of C2 is less barren than that of C1 for large n. We can argue
this, particularly, for states ρ that have low rank or low entropy. The second
term in Eq. (8), which is the term that provides the variability with α, does
not vanish even for large n, since (as shown in Appendix B of SM):

TrðZ jð~ρÞ2Þ � 2�HðρÞ�1 � 1
2r

: (40)

Here, HðρÞ ¼ �Trðρ log2 ρÞ is the von Neumann entropy, and r is the rank
of ρ. So as long as ρ is low entropy or low rank, then the second term in C2
will not vanish. Note that a similar bound does not exist for second term in
C1, which does tend to vanish for large n.

Optimization methods
Finding αopt in Eq. (6) is a major component of VQSD. While many works
have benchmarked classical optimization algorithms (e.g., ref. 42), the
particular case of optimization for variational hybrid algorithms43 is limited
and needs further work.44 Both gradient-based and gradient-free methods

are possible, but gradient-based methods may not work as well with noisy
data. Additionally, ref. 26 notes that gradients of a large class of circuit
ansatze vanish when the number of parameters becomes large. These and
other issues (e.g., sensitivity to initial conditions, number of function
evaluations) should be considered when choosing an optimization
method.
In our preliminary numerical analyses (see Appendix B in SM), we found

that the Powell optimization algorithm45 performed the best on both
quantum computer and simulator implementations of VQSD. This
derivative-free algorithm uses a bi-directional search along each parameter
using Brent’s method. Our studies showed that Powell’s method
performed the best in terms of convergence, sensitivity to initial
conditions, and number of correct solutions found. The implementation
of Powell’s algorithm used in this paper can be found in the open-source
Python package SciPy Optimize.46 Finally, Appendix B of SM shows how
our layered ansatz for Up(α) as well as proper initialization of Up(α) helps in
mitigating the problem of local minima.
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