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Characterising the correlations of prepare-and-measure
quantum networks
Yukun Wang1, Ignatius William Primaatmaja2, Emilien Lavie1,2,3, Antonios Varvitsiotis1 and Charles Ci Wen Lim1,2

Prepare-and-measure (P&M) quantum networks are the basic building blocks of quantum communication and cryptography. These
networks crucially rely on non-orthogonal quantum encodings to distribute quantum correlations, thus enabling superior
communication rates and information-theoretic security. Here, we present a computational toolbox that can efficiently characterise
the set of input–output probability distributions for any discrete-variable P&M quantum network, assuming only the inner-product
information of the quantum encodings. Our toolbox is thus highly versatile and can be used to analyse a wide range of quantum
network protocols, including those that employ infinite-dimensional quantum code states. To demonstrate the feasibility and
efficacy of our toolbox, we use it to solve open problems in multipartite quantum distributed computing and quantum
cryptography. Taken together, these findings suggest that our method may have implications for quantum network information
theory and the development of new quantum technologies.
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INTRODUCTION
Quantum correlations1–3 (namely, entanglement, nonlocality,
steering correlations, etc) are essential resources in quantum
information processing. In short, they are the reason why we see
such unique advantages in quantum communication, cryptogra-
phy, computing, and imaging. The general observation is that the
stronger these correlations are, the more powerful quantum
information becomes. This is especially the case for quantum
communication4 and quantum cryptography,5 where stronger
entanglement means higher quantum fidelity and stronger
information security. For this reason, the characterisation of
quantum correlations is an integral step in many quantum
information protocols and a central research topic in quantum
information science.
In this work, we are interested in characterising the quantum

correlations of prepare-and-measure (P&M) networks, which are
the basic building blocks of quantum communication and
quantum cryptography. The central goal of a P&M quantum
network is to send some classical message z over a quantum
network to a group of receivers (see Fig. 1). This message could be
anything, e.g., a secret key, elements of a database, or a signed
certificate—it depends on the function of the protocol. Quantum
encoding is done by preparing a quantum signal in one of the n
predefined pure states, fjψzignz¼1 (determined by the input z), and
decoding is accomplished by making a measurement (sampled
from a finite set of decoding settings) on the output quantum
signal. For a generic P&M quantum network with k spatially
separated receivers, we write p(a1a2…ak|x1x2…xk, z) to denote the
probability of obtaining outcomes a1a2…ak given decoding
functions x1x2…xk and message z. We use p to denote the entire
list of input–output probability distributions.
Our broad goal is to reveal the fundamental limits of P&M

quantum networks without restrictions on the network and local

decoding strategies. In particular, we are interested in identifying
the set of quantum-realisable correlations p (henceforth called the
quantum set) using only the knowledge of the quantum encoding
scheme {|ψz〉}z. In fact, as we shall show later, it is enough to use
the inner-product information of the encoding scheme (instead of
the complete specification) to achieve tight characterisation of the
quantum network. This type of approach is particularly useful for
analysing the performance of quantum communication and
quantum cryptography. For instance, one can use the quantum
set to derive lower bounds on the quantum network’s error
probabilities.6–8 These bounds essentially tell us what the
encoding scheme could achieve in practice, be it for quantum
cryptography, communication, or distributed computing pur-
poses, as we shall demonstrate later.
Also, from the perspective of quantum information theory, this

approach draws a direct connection between the distinguish-
ability of quantum states and quantum correlations. More
concretely, we first note that if the quantum encoding {|ψz〉}z is
completely orthogonal, i.e., 〈ψz|ψz′〉= δzz′, then p is generally
unconstrained. That is, such encodings are classical states and
hence can be arbitrarily copied—as such, there are no physical
principles that could constrain the input–output probability
distribution (except for the usual normalisation requirements).
The interesting part comes when the encoding {|ψz〉}z is non-
orthogonal. In this case, there are two unique consequences. First,
it is generally impossible for every receiver to learn the same
information about z. This is due to the fact that one cannot clone
non-orthogonal states,9 and consequently, there is a global trade-
off between the amount of accessible information that each
receiver can receive.10,11 Second, no receiver can completely learn
z even if he or she has received {|ψz〉}z with perfect fidelity. This is
because non-orthogonal states are fundamentally indistinguish-
able: there is no measurement that can discriminate them with
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perfect reliability.12 Consequently, probability assignments like
p(a = z|x) = 1 are forbidden. Taken together, these imply that,
contrary to orthogonal (classical) encodings, correlations emanat-
ing from quantum encodings have non-trivial constraints (e.g., see
quantum broadcasting13,14).

RESULTS
To solve the above characterisation problem, we propose a
general computational method that is able to approximate (from
the outside) the quantum set of any P&M quantum network. The
approximation is based on a hierarchy of semidefinite relaxations,
which is a generalisation and novel application of earlier research
in quantum nonlocality.2,15–20 More specifically, we extend and
generalise the hierarchy of semidefinite relaxations proposed in
refs 19,20 to the case whereby the quantum state shared between
the receivers is not fixed. A key feature of our method is that it is
semi-device independent (SDI).21–27 That is, the analysis provided
is independent of how the network and measurements are
implemented. The method only requires that the quantum
encoding {|ψz〉}z is characterised in terms of its Gram matrix, i.e.,
〈ψz|ψz′〉 = λzz′, which in practice can be easily obtained by taking
the inner products of the quantum code states (i.e., using their
specifications).
The main advantage with this approach is that the dimension of

the encoding system is no longer necessary in the analysis—using
the inner-product information is enough to tightly characterise
the quantum set. Indeed, the inner-product information is
sufficient as it tells us how non-orthogonal the encoded states
are and whether they are classical or not. As such, our approach is
more practical than the standard SDI approach, which assumes
the dimension of the quantum encoding system.21–24 Notice that
physical dimension is generally difficult to fix in practice as actual
systems have multiple degrees of freedom. We remark that
alternative SDI approaches based on bounded energy con-
straints26 and the transmission of non-orthogonal binary states27

have also been proposed. These have similar advantages as our
approach, but present analyses using these approaches are so far
limited to binary code states. It remains to be seen if these can be
readily generalised to multiple code states, schemes that are often
used in quantum technologies. In the following, we show that our
method can be used to efficiently analyse any practical quantum
communication protocol,28 including those that use multiple
infinite-dimensional code states.
To keep our presentation concise, we restrict the discussion to

two-receiver P&M quantum networks (see Fig. 1); extension to
larger networks is straightforward. Consider a P&M quantum task,
where random code states are sent across a network to two
independent receivers, called Alice and Bob, for measurement. For
simplicity, we divide the task into two phases: a distribution phase
and a measurement phase. In the first phase, a classical random
source z is encoded into a quantum system |ψz〉 and distributed to
Alice and Bob via an untrusted quantum network. For this type of
transmission, it is useful to work in the purification picture, where
state transformations are given by unitary evolutions.29 That is, by
working in a higher-dimensional Hilbert space, we may see the
transmission as an isometric evolution that takes |ψz〉 to some
pure output state |ϕz〉, which is now shared between the receivers
and the network environment (the purification system). The key
advantage of this picture is that while the dimension and possibly
other properties of |ψz〉 may change after the transmission, the
inner-product information of {|φz〉}z remains the same: 〈ϕz|ϕz′〉 =
〈ψz|ψz′〉. Importantly, this means that our initial knowledge about
〈ψz|ψz′〉 = λzz′ is preserved in the transformed states.
In the measurement phase, Alice and Bob perform independent

and random measurements on |ϕz〉 to gain information about z.
Since there are only two receivers here, we revert back to the
usual convention and denote Alice’s and Bob’s measurements by x

and y and their corresponding measurement outcomes by a and
b, respectively. Then, using the quantum Born rule, we have that
the probability of observing outcomes a, b given measurements x,
y and |ϕz〉 is

pðabjxy; zÞ ¼ hϕzjEax Eby jϕzi; (1)

where fEax g and fEby g are projective measurements satisfying the

following properties: (i) for any x, Eax E
a0
x ¼ 0 for a 6¼ a0, (ii)P

a E
a
x ¼ I, (iii) ðEax Þ2 ¼ Eax ¼ ðEax Þy, and (iv) ½Eax ; Eby � ¼ 0. We note

that there is no loss of generality in assuming projective
measurements here. Indeed, we can always lift any measurement
to a projective one by working in a higher-dimensional Hilbert
space; in our case this is possible since the dimension of the
network is not fixed. The last property reflects the fact that Alice’s
and Bob’s measurements are separable and hence the application
of one has no effect on the outcome of the other.
Our characterisation problem is thus the following: Given an n ×

n Hermitian positive-semidefinite matrix λ, what is the corre-
sponding quantum set p? We denote this set by QðλÞ. In principle,
solving this problem would require optimising over all possible
quantum states and measurements in Eq. (1) subject to the
constraints 〈ϕz|ϕz′〉 = λzz′. However, this task is computationally
intractable: the dimension of the network is not fixed and thus
could be infinite. To overcome this obstacle, we take inspiration
from the characterisation techniques16–20 developed in Bell
nonlocality research,2,15 which is a special case of our problem.
Recall that in a Bell experiment, local random measurements are
made on a fixed source |ϕ〉 instead of a varying source |ϕz〉.
Notably, it was shown in refs 19,20 that the set of quantum
probabilities derived from Bell experiments can be approximated
via a hierarchy of membership tests. There, the basic idea is to
bound the quantum set using a sequence of weaker (but
tractable) characterisation tasks, which nevertheless still represent
very well the original problem.
In this work, we show that a similar characterisation technique

can also be devised for the general problem. More specifically, we
give a general procedure for deriving (tractable) necessary
conditions for any discrete-variable P&M quantum network. To
start with, consider a quantum probability distribution
pðabjxy; zÞ ¼ hϕzjEax Eby jϕzi, where 〈ϕz|ϕz′〉 = λzz′, and with
fEax ; Eby ga;x;b;y satisfying properties (i)–(iv). Let S ¼ fS1; ¼ ; Smg
be a finite set of m operators, where each element is a linear
combination of products of fEax ; Eby ga;x;b;y . Then define G to be the
nm × nm block matrix

G ¼
Xn
z;z0¼1

Gzz0 � ezj i ez0h j;

where Gzz0
ði;jÞ ¼ hϕzjSyi Sjjϕz0 i for all z, z′ ∈ [n], i, j ∈ [m]. Here we

denote by fjezignz¼1 the standard orthonormal basis of Cn and by
Gzz0
ði;jÞ the ij-entry of the matrix Gzz′. By construction, the matrix G is

Hermitian and positive-semidefinite (PSD).30 Furthermore, proper-
ties (i)–(iv) of the measurement operators and the inner-product
constraints 〈ϕz|ϕz′〉 = λzz′ translate to linear conditions on the
entries of G. To see this, we note that if the set S contains
operators fEax ga;x and fEby gb;y , then it can be easily verified that G
satisfiesP
b
Gzz
ða;xÞ;ðb;yÞ ¼

P
b
pðabjxy; zÞ

P
a
Gzz0
ða;xÞ;ða;xÞ ¼ λzz0 :

Therefore, for any discretely modulated P&M quantum network,
it is always possible to define a PSD matrix that captures the
original quantum model (1) in terms of constraints that are linear
in its entries. Importantly, the existence of such a matrix provides
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us with a powerful means to check if a given p is of quantum
origin. More specifically, we can use semidefinite programming
(SDP) techniques31 to verify if p is in the set of compatible PSD
matrices: if p is not a member, we conclude that it is not quantum
realisable. However, successful membership does not necessarily
mean p is of quantum origin. This is due to the fact that our
characterisation method is a semidefinite relaxation32 of the
original problem and hence can only provide an outer-
approximation of QðλÞ.
However, by introducing additional linear constraints via a

hierarchical procedure, it is possible to gain a tighter characterisa-
tion of QðλÞ. In particular, we could use the hierarchy proposed in
refs 19,20 to build a series of increasingly stringent membership
tests, where the associated Gram matrix G grows bigger in each
step and more constraints are generated. More precisely, we
define a sequence of hierarchical sets S1 ¼ fEax ; Eby g, S2 ¼
S1 ∪ fEax Ea

0
x0 g∪ fEby Eb

0
y0 g∪ fEax Ebyg; where Sk is defined inductively

as the set of all operator sequences constructed from Eax ; E
b
y

satisfying Sk � Skþ1. This corresponds to a sequence of Gram
matrices, G1, G2,… with increasing size and constraints. Since the
Gram matrix Gk of a particular kth step is at least as informative as
a smaller sized Gram matrix Gk′, we conclude that the
approximated set QðλÞk is a subset of QðλÞk0 . Therefore, moving
up the hierarchy gives a tighter approximation of the quantum
set: QðλÞ � QðλÞk � QðλÞk�1 ¼ . In the online supplementary
material, we prove that this hierarchy is in fact sufficient: it
converges to the quantum set, limk!1QðλÞk ¼ QðλÞ. Never-
theless, in the applications below, we see that low-level
approximations are already enough to achieve very tight bounds.

APPLICATIONS
Our method can be applied to any quantum communication task
that employs the P&M scheme. To illustrate this point, we provide
two examples of application: (1) distributed quantum random
access coding (QRAC)33,34 and (2) quantum key distribution
(QKD).35,36

In the first, we consider a distributed computing task where two
random bits z0z1 are encoded into a quantum state ψz0z1

�� �
and

sent to Alice and Bob for selective decoding. For the decoding
part, Alice and Bob are each given a random position bit and their
goal is to guess the input bit that is associated with the position
bit. For example, if Alice receives x = 1, she has to guess the value
of z1 via measurement on her share of ψz0z1

�� �
. This task can be

seen as a type of distributed quantum database, where network
users can choose to learn any entry of the database; this includes
the case whereby multiple users can choose to learn the same
entry. To this end, we quantify the network’s ability to distribute
information by Alice’s and Bob’s guessing probabilities, which we
denote by p(a = zx) and p(b = zy), respectively.
At this point, it is useful to recall that if ψz0z1

�� �
is a two-level

quantum system (i.e., a qubit), then the best encoding
strategy (in the case of the standard two-party QRAC) is to use
the so-called conjugate coding scheme:37 |ψ00〉 = | + 〉, |ψ10〉 = | +
i〉, |ψ01〉 = |−i〉, and |ψ11〉 = |−i〉, where |±〉 and |±i〉 are the
eigenstates of the Pauli operators X and Y, respectively. This
gives a guessing probability of 1þ 1=

ffiffiffi
2

p� �
=2 � 0:853,33,34 which

is optimal for qubit code states. Interestingly, using our method,
we find that similar bounds can be established using only the
Gram matrix information of the code states. In particular, we
consider a set of code states {|ψ00〉,|ψ11〉,|ψ10〉,|ψ01〉}, whose Gram
matrix is fixed to that of {|+〉,|−〉,|+i〉,|−i〉}, and ask what is Alice’s
optimal guessing probability given Bob’s guessing probability is
fixed. Our method predicts the following quantum boundary: (2p
(a = zx)− 1)2 + (2p(b = zy)− 1)2 ≤ 1/2, which is drawn in Fig. 2.
The SDP for this optimisation is given in the supplementary
material.
Three remarks are in order here. First, we see that the boundary

(obtained from QðλÞ1) gives the same upper bound as ref. 33 when
one of the receivers is restricted to random guessing. This can be
seen as the case in which one party receives ψz0z1

�� �
with perfect
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Fig. 2 Distributed two-receiver quantum random access coding
(QRAC). The boundary is generated using the first level of the
semidefinite programming (SDP) hierarchy. In principle, the bound-
ary is not necessarily tight, for QðλÞ1 may contain correlations that
are not of quantum origin. However, in our case we show that the
derived boundary is tight: it is saturated by the optimal asymmetric
qubit cloning machine. Suppose the quantum code states are given
by the conjugate coding scheme: |ψ00〉 = |+〉|0〉,|ψ10〉 = |+i〉|0〉,|ψ01〉
= |−i〉|0〉, and |ψ11〉 = |−〉|0〉. The quantum network is assumed to
be an asymmetric cloning channel Uf: |0〉|0〉 → |0〉|0〉 and
j1ij0i ! ffiffiffiffiffiffiffiffiffiffiffi

1� f
p j1ij0i þ ffiffi

f
p j0ij1i, where f ∈ [0, 1]. For the decoding,

we assume that Alice and Bob perform the optimal QRAC
qubit measurements: Eax ¼ ðIþ ð�1ÞaðXþ ð�1Þxþ1

YÞ= ffiffiffi
2

p Þ=2,
Eby ¼ ðIþ ð�1ÞbðXþ ð�1Þyþ1

YÞ= ffiffiffi
2

p Þ=2. Using these and
setting the left subsystem as Alice’s and the right subsystem as
Bob’s, we have that pða ¼ zxÞ ¼ 1=2þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� f Þ=2p

=2 and
pðb ¼ zyÞ ¼ 1=2þ ffiffiffiffiffiffiffi

f=2
p

=2. These give (2p(a = zx)− 1)2 + (2p(b =
zy)− 1)2 = 1/2, which is the quantum boundary predicted by the
QðλÞ1 set

Fig. 1 Scenario and assumptions. The behaviour of a two-receiver
prepare-and-measure (P&M) quantum network is generally
described by p = [p(ab|xy, z)], which expresses the probability of z
transiting to outcomes a, b given measurement inputs x, y. In the
quantum setting, the set of conditional probabilities are given by
pðabjxy; zÞ ¼ hϕz jEax Eby jϕzi, with the constraint that 〈ϕz|ϕz′〉 = λzz′ is
fixed. Our consideration hence assumes three conditions: (1) the set
of code states are pure states, (2) the Gram matrix of these states is
known, and (3) the receivers are independent of each other (they do
not share any quantum resources, although classical randomness is
allowed)
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delity and the other party receives a dummy state. Second, the
boundary specifies a non-trivial trade-off function between Alice’s
and Bob’s guessing probabilities, which is independent of their
measurement strategies. This implies that the bound is absolute
and cannot be improved upon with better measurement
strategies, even if Alice and Bob are allowed to use shared
randomness. Third, although our method can only provide an
outer-approximation of the quantum set, it turns out that the first
level of the hierarchy is already tight. More specifically, there is a
concrete example, which saturates the boundary predicted by
QðλÞ1; see Fig. 2 for more details. This example is given by the
optimal asymmetric qubit cloning machine,38 which optimally
splits the qubit information between multiple parties (according
to some predefined ratio); this is indeed a natural choice as the
goal of the network is to preserve as much quantum information
as possible for each party while splitting it.
In the second application, we prove the security of coherent-

state QKD. Here, one of the receivers (Alice) is the eavesdropper
(renamed to Eve) and her goal is to eavesdrop on the quantum
channel connecting the transmitter and the other receiver (Bob).
For concreteness, we first consider a phase encoded coherent-
state QKD protocol,39 which uses the encoding scheme
ψz0z1

�� �
: ψ00j i ¼ ffiffiffi

μ
p�� �

; jψ10i ¼ � ffiffiffi
μ

p�� �
; jψ01i ¼ i

ffiffiffi
μ

p�� �
, and

ψ11j i ¼ �i
ffiffiffi
μ

p�� �
, where μ is the mean photon number of the

coherent state. To maximise the sifting efficiency of the protocol,
we use

ffiffiffi
μ

p�� �
; � ffiffiffi

μ
p�� �� �

for key generation and i
ffiffiffi
μ

p�� �
; �i

ffiffiffi
μ

p�� �� �
for testing the security of the channel. Correspondingly on Bob’s
side, we have that he uses measurement y = 0 for key recovery
and measurement y = 1 for estimating the channel noise; we write

ε0 and ε1 to denote the error probabilities observed in the key
basis and the test basis, respectively. In this case, the sifting rate of
the protocol tends to 1 (in the limit of infinite keys) when the
probability of choosing the key basis goes to 1.35

In the supplementary information, we show that the expected
secret key rate (per signal sent) is

R1key � max 0; pdet 1� h2ðε0Þ � h2ðεphÞ
	 
� �

; (2)

where εph is the so-called phase error rate of the key basis,41 pdet is
the probability of detection, and h2(⋅) is the binary entropy
function. The quantity of interest here is εph, which is maximised
assuming fixed system parameters (e.g., μ, ε0, and ε1). Crucially, εph
is a linear function of the matrix G, which allows us to use SDP
technique. (For the explicit expression of εph, we refer the
interested reader to the supplementary information). Then, we
use the second level of the hierarchy S2 and maximise εph over
the set of compatible probabilities in QðλÞ2. The outcome of the
numerical optimisation is shown in Fig. 3 along with
the simulation parameters. To benchmark our results against the
best-known security analysis for the protocol, we also plot
the security bound of ref. 40 using the same constraints. From
the figure, it is evident that our secret key rates are always higher
than the ones given by ref. 40. Importantly, this shows that our
method significantly improves the security and feasibility of
practical QKD, despite making only a few assumptions about the
implementation. For completeness, we note that refs 43,44 have
also recently proposed a new security proof technique based on
SDP (but using a completely different approach). In the case of the
current protocol, their simulation outcomes are similar to ours,
however, their method additionally requires that Bob’s measure-
ments are fully characterised and an optical squashing model
exists for the measurements.45

To demonstrate the ability of our method to handle non-
standard QKD protocols, we consider the security of a modified
coherent-one-way (COW) QKD protocol,46,47 which is based on the
transmission of time encoded coherent states {|0〉|α〉,|α〉|0〉,|α〉|α〉}
with α ¼ ffiffiffi

μ
p

. Here, the first two sequences of coherent states
carry the secret bit (i.e., ‘0’ →|0〉|α〉 and ‘1’ →|α〉|0〉) and the last
sequence is a test state used to estimate Eve’s information about
the secret bit. For Bob’s measurements, we use the active
switching measurement scheme proposed in ref. 48 instead of
the original passive switching scheme.46 In this setup, Bob
employs an optical switch to send the incoming states either into
the data line or the monitoring line: the former measures the
arrival time of the incoming states, whereas the latter measures
the coherence (the interference visibility) between two adjacent
states. The advantage of this scheme is that it yields higher
detection probabilities than the passive scheme. Another major
modification is that only the coherence of the test sequence |α〉|α〉
is measured. More specifically, the variant protocol does not
measure the coherence between adjacent encodings (e.g., in
cases like |0〉|α〉;|α〉|0〉 or |α〉|α〉;|α〉|0〉) like in the original protocol.
This modification is largely motivated by earlier research, which
showed that knowing the coherence information between
adjacent encodings does not significantly improve the security
of the protocol.48 Importantly, in discarding these events, we have
two benefits. First, the security analysis is greatly simplified, i.e., we
only need to analyse a single encoding instead of a sequence of
encodings, which can be unwieldy. Second, this opens up the
possibility to explore scenarios whereby the mean photon number
of the test sequence |α〉|α〉 is optimised. More concretely, we can
now adjust the mean photon number of the test sequence to
maximise the secret key rate. In the following, we will use |β〉|β〉 to
represent the optimised test sequence.
Using the same approach as before (i.e., Eq. (2)), we compute

the secret key rate of the variant protocol using a realistic error
model that assumes an imperfect intensity modulator (on the
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Fig. 3 Phase encoded coherent-state quantum key distribution
(QKD). We compare our secret key rate against the one given in
ref. 40. For the key rate simulation, we assume a detector dark count
rate of pdc= 10−7 and an intrinsic optical error rate of 2%. For a given
channel loss 1− η, the probability of detecting a signal is pdet = 1−
(1− pdc)

2 exp(−2ημ) and the error probability is ε = (pdc + (1− exp
(−2μη))0.02)/pdet. Using these, we maximise the expected secret key
rate (2). More precisely, we perform two optimisations. First, for a
given μ we maximise the phase error rate over QðλÞ2 subject to the
above constraints. This gives us a lower bound on the achievable
secret key rate. Then, we optimise the secret key rate over μ. This
gives us an estimate of the optimal secret key rate. Comparing with
the secret key rate of ref. 40 (red line), we see that our method
predicts a higher secret key rate (blue line) for any loss point. For
further comparison, we also plotted the collective beam-splitting
attack bound with zero error42 (the top curve: black dashed line),
which serves as an upper bound on the achievable secret key rate;
note that this bound is not tight and it assumes zero errors
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transmitter side) and an imbalanced beam-splitter on the receiver
side; see the description of Fig. 4 for more details. We first simulate
the expected secret key rates of the protocol using the original
COW QKD test sequence |β = α〉|β = α〉 with errors (red curve) and
without errors (yellow curve). Both of these curves show that
secret keys can only be distributed in the low loss regime (i.e.,
<4 dB loss; or equivalently 20 km of optical fibre length).
Comparing with the collective beam-splitting attack curve42 (black
dashed curve), we observe that the original COW QKD encoding
may be suboptimal. To investigate this possibility, we use the
flexibility of our method and further optimise |β〉|β〉 over a discrete
set of ratios β/α to search for the best test sequence for a given
loss point. We find that the improvement is highly significant. In
the case with zero errors, the optimal ratio is β = α/2 and the
tolerable loss is extended to >35 dB, which spells a ≥30 dB
improvement over the original COW QKD encoding. The secret
key rates (green curve) are also significantly higher and are close
to the collective beam-splitting attack bound (in the low loss
regime). In the case with errors, we also see similar improvements.
More concretely, the optimised variant protocol is now able to
distribute secret keys up to about 21 dB loss with errors, which
translates to a fibre distance of about 110 km. In conclusion, our
findings strongly indicate that it is much more secure to vary the
mean photon number of the test sequence.

DISCUSSION
Taken together, our findings thus provide a powerful method to
analyse the quantum set of any discretely modulated P&M quantum
network, independently of how the network and decoding
measurements are implemented. From the perspective of quantum
information theory, the toolbox can help to reveal the fundamental
limits of quantum communication and to analyse the performance

of any quantum coding scheme. On the application side, the
toolbox can be used to analyse the performance of quantum
network protocols and the security of quantum cryptography, as
evidenced by the three examples given above. Concerning the
latter, it would be interesting to investigate how the toolbox could
be utilised to solve other open problems in quantum cryptography,
e.g., the security of round-robin differential phase-shift QKD49 or
continuous variable QKD protocols with discrete modulations.50

Another interesting direction would be to extend the method to
multiple transmitters like in the case of measurement-device-
independent quantum cryptography.51–56 For instance, it would
be interesting to see how our method can be used to analyse the
security of phase-matching QKD,56 which can break the funda-
mental distance limit of QKD using coherent states.

DATA AVAILABILITY
The data sets generated during the current study are available from the
corresponding author upon request.

ACKNOWLEDGEMENTS
We acknowledge support from the National University of Singapore, the Centre for
Quantum Technologies, the National Research Foundation, and the Asian Office of
Aerospace Research and Development.

AUTHOR CONTRIBUTIONS
C.C.W.L. conceived the main idea of the method with inputs from all authors and
supervised the project. Y.W., I.W.P, and E.L. performed the optimisation and
simulations. C.C.W.L., A.V., and Y.W provided the technical derivations needed to
prove the main results. The paper was written by all authors.

ADDITIONAL INFORMATION
Supplementary information accompanies the paper on the npj Quantum
Information website (https://doi.org/10.1038/s41534-019-0133-3).

Competing interests: The authors declare no competing interests.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

REFERENCES
1. Horodecki, R., Horodecki, P., Horodecki, M. & Horodecki, K. Quantum entangle-

ment. Rev. Mod. Phys. 81, 865–942 (2009).
2. Bell, J. S. On the Einstein-Podolsky-Rosen paradox. Physics 1, 195–200 (1964).
3. Wiseman, H. M., Jones, S. J. & Doherty, A. C. Steering, entanglement,

nonlocality, and the Einstein-Podolsky-Rosen Paradox. Phys. Rev. Lett. 98, 140402
(2007).

4. Gisin, N. & Thew, R. Quantum communication. Nat. Photonics 1, 165–171 (2007).
5. Gisin, N., Ribordy, G., Tittel, W. & Zbinden, H. Quantum cryptography. Rev. Mod.

Phys. 74, 145–195 (2002).
6. Yard, J., Hayden, P. & Devetak, I. Quantum broadcast channels. IEEE Trans. Inf.

Theory 57, 7147–7162 (2011).
7. Hirche, C. & Morgan, C. An improved rate region for the classical-quantum

broadcast channel. 2015 IEEE Int. Symposium Inform Theory (ISIT) https://doi.org/
10.1109/ISIT.2015.7282963 (2015).

8. Savov, I. & Wilde, M. M. Classical codes for quantum broadcast channels. IEEE
Trans. Inf. Theory 61, 7017–7028 (2015).

9. Wootters, W. K. & Zurek, W. H. A single quantum cannot be cloned. Nature 299,
802–803 (1982).

10. Fuchs, C. A. & Peres, A. Quantum-state disturbance versus information gain:
uncertainty relations for quantum information. Phys. Rev. A 53, 2038 (1996).

11. Horodecki, M., Horodecki, R., Sen (De), A. & Sen, U. Common origin of no-cloning
and no-deleting principles - conservation of information. Found. Phys. 35,
2041–2049 (2005).

12. Holevo, A. S. Statistical decision theory for quantum systems. J. Multivar. Anal. 3,
337–394 (1973).

13. Barnum, H., Caves, C. M., Fuchs, C. A., Jozsa, R. & Schumacher, B. Noncommuting
mixed states cannot be broadcast. Phys. Rev. Lett. 76, 2818–2821 (1996).

0 5 10 15 20 25 30 35 40

Loss(dB)

10-8

10-6

10-4

10-2

100

S
ec

re
t k

ey
 r

at
e

Fig. 4 Time encoded coherent-state quantum key distribution
(QKD). For this simulation, we consider an error model that is based
on imperfect intensity modulation and imperfect mixing of
coherent states. On the transmitter’s side, we assume that the
intensity modulator used to perform the on-off keying has finite

extinction ratio, i.e., states are prepared as
ffiffiffiffiffiffiffiffiffiffiffi
1� δ

p
α

�� E
and

ffiffiffi
δ

p
α

�� E

instead of |α〉 and 0j i. Here, we use δ = 0.01. On the receiver side, we
assume that the beam-splitter in the measurement scheme of ref. 48

has a ratio of 51/49 instead of the ideal 50/50. Using these
component models and assuming that each detector has a dark
count rate of pdc = 10−7, we run the optimisation as per the
previous QKD application and obtain four sets of data points using
the original coherent-one-way (COW) QKD encoding and a new
encoding strategy where the test sequence is optimised. For each of
these, we compute the secret key rates with and without errors

Y. Wang et al.

5

Published in partnership with The University of New South Wales npj Quantum Information (2019)    17 

https://doi.org/10.1038/s41534-019-0133-3
https://doi.org/10.1109/ISIT.2015.7282963
https://doi.org/10.1109/ISIT.2015.7282963


14. Barnum, H., Barrett, J., Leifer, M. & Wilce, A. Generalized no-broadcasting theorem.
Phys. Rev. Lett. 99, 240501 (2007).

15. Brunner, N., Cavalcanti, D., Pironio, S., Scarani, V. & Wehner, S. Bell nonlocality. Rev.
Mod. Phys. 86, 419–478 (2014).

16. Tsirel’son, B. S. Quantum analogues of the Bell inequalities. The case of two
spatially separated domains. J. Sov. Math. 36, 557–570 (1987).

17. Landau, L. J. Empirical two-point correlation functions. Found. Phys. 18, 449–460
(1988).

18. Wehner, S. Tsirelson bounds for generalized Clauser-Horne-Shimony-Holt
inequalities. Phys. Rev. A 73, 022110 (2006).

19. Navascués, M., Pironio, S. & Acín, A. Bounding the set of quantum correlations.
Phys. Rev. Lett. 98, 010401 (2007).

20. Navascués, M., Pironio, S. & Acín, A. A convergent hierarchy of semidefinite
programs characterizing the set of quantum correlations. New J. Phys. 10, 073013
(2008).

21. Pawłowski, M. & Brunner, N. Semi-device-independent security of one-way
quantum key distribution. Phys. Rev. A 84, 010300(R) (2011).

22. Bowles, J., Quintino, M. T. & Brunner, N. Certifying the dimension of classical and
quantum systems in a prepare-and-measure scenario with independent devices.
Phys. Rev. Lett. 112, 140407 (2014).

23. Lunghi, T. et al. Self-testing quantum random number generator. Phys. Rev. Lett.
114, 150501 (2015).

24. Woodhead, E. & Pironio, S. Secrecy in prepare-and-measure Clauser-Horne-
Shimony-Holt tests with a qubit bound. Phys. Rev. Lett. 115, 150501 (2015).

25. Berta, M., Fawzi, O. & Scholz, V. B. Quantum bilinear optimization. SIAM J. Optim.
26, 1529–1564 (2016).

26. Himbeeck, T. V., Woodhead, E., Cerf, N. J., García-Patrón, R. & Pironio, S. Semi-
device-independent framework based on natural physical assumptions. Quantum
1, 33 (2017).

27. Brask, J. B. et al. Megahertz-rate semi-device-independent quantum random
number generators based on unambiguous state discrimination. Phys. Rev. Appl.
7, 054018 (2017).

28. Arrazola, J. M. & Lütkenhaus, N. Quantum communication with coherent states
and linear optics. Phys. Rev. A 90, 042335 (2014).

29. Wilde, M. M. Quantum Information Theory. (Cambridge Univ. Press, New York,
2013).

30. Horn, R. A. & Johnson, C. R. Matrix Analysis: Characterizations and Properties CH.7.
(Cambridge Univ. Press, Cambridge, 2013).

31. Vandenberghe, L. & Boyd, S. Semidefinite programming. SIAM Rev. 38, 49–95
(1996).

32. Burgdorf, S., Klep, I. & Povh, J. Optimisation of Polynomials in Non-Commutative
Variables. (Springer, Switzerland, 2016).

33. Ambainis, A., Nayak, A., Ta-Shma, A. & Vazirani, U. Dense quantum coding and
a lower bound for 1-way quantum automata. Proceedings of the thirty-first
annual ACM symposium on Theory of computing–STOC 99 (Atlanta, Georgia, USA,
1999).

34. Nayak, A. Optimal lower bounds for quantum automata and random access
codes. 40th Annual Symposium on Foundations of Computer Science (Cat.
No.99CB37039) 369 (1999).

35. Scarani, V. et al. The security of practical quantum key distribution. Rev. Mod.
Phys. 81, 1301–1350 (2009).

36. Lo, H. K., Curty, M. & Tamaki, K. Secure quantum key distribution. Nat. Photonics 8,
595–604 (2014).

37. Wiesner, S. Conjugate coding. ACM SIGACT News 15, 78–88 (1983).
38. Cerf, N. J. Asymmetric quantum cloning in any dimension. J. Mod. Opt. 47, 187

(2000).

39. Huttner, B., Imoto, N., Gisin, N. & Mor, T. Quantum cryptography with coherent
states. Phys. Rev. A 51, 1863–1869 (1995).

40. Lo, H. K. & Preskill, J. Security of quantum key distribution using weak coherent
states with nonrandom phases. Quant. Inf. Comput. 8, 431–458 (2007).

41. Shor, P. W. & Preskill, J. Simple proof of security of the BB84 quantum key
distribution protocol. Phys. Rev. Lett. 85, 441–444 (2000).

42. Branciard, C., Gisin, N., Lütkenhaus, N. & Scarani, V. Zero-error attacks and
detection statistics in the coherent one-way protocol for quantum cryptography.
Quant. Inf. Comput. 7, 639–664 (2007).

43. Winick, A., Lütkenhaus, N. & Coles, P. J. Reliable numerical key rates for quantum
key distribution. Quantum 2, 77 (2018).

44. Coles, P. J., Metodiev, E. M. & Lütkenhaus, N. Numerical approach for unstructured
quantum key distribution. Nat. Commun. 7, 11712 (2016).

45. Beaudry, N. J., Moroder, T. & Lütkenhaus, N. Squashing models for optical mea-
surements in quantum communication. Phys. Rev. Lett. 101, 093601 (2008).

46. Stucki, D., Brunner, N., Gisin, N., Scarani, V. & Zbinden, H. Fast and simple one-way
quantum key distribution. Appl. Phys. Lett. 87, 194108 (2005).

47. Korzh, B. et al. Provably secure and practical quantum key distribution over
307 km of optical fibre. Nat. Photonics 9, 163–168 (2015).

48. Moroder, T. et al. Security of distributed-phase-reference quantum key distribu-
tion. Phys. Rev. Lett. 109, 260501 (2012).

49. Sasaki, T., Yamamoto, Y. & Koashi, M. Practical quantum key distribution protocol
without monitoring signal disturbance. Nature 509, 475–478 (2014).

50. Leverrier, A. & Grangier, P. Unconditional security proof of long-distance con-
tinuous-variable quantum key distribution with discrete modulation. Phys. Rev.
Lett. 102, 180504 (2009).

51. Braunstein, S. & Pirandola, S. Side-channel-free quantum key distribution. Phys.
Rev. Lett. 108, 130502 (2012).

52. Lo, H. K., Curty, M. & Qi, B. Measurement-device-independent quantum key dis-
tribution. Phys. Rev. Lett. 108, 130503 (2012).

53. Tamaki, K., Lo, H. K., Fung, F. & Qi, B. Phase encoding schemes for measurement-
device-independent quantum key distribution with basis-dependent flaw. Phys.
Rev. A. 85, 042307 (2012).

54. Ma, X. & Razavi, M. Alternative schemes for measurement-device-independent
quantum key distribution. Phys. Rev. A. 86, 062319 (2012).

55. Lucamarini, M., Yuan, Z. L., Dynes, J. F. & Shields, A. J. Overcoming the rate-
distance limit of quantum key distribution without quantum repeaters. Nature
557, 400–403 (2018).

56. Ma, X., Zheng, P. & Zhou, H. Phase-matching quantum key distribution. Phys. Rev.
X. 8, 031043 (2018).

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2019

Y. Wang et al.

6

npj Quantum Information (2019)    17 Published in partnership with The University of New South Wales

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Characterising the correlations of prepare-and-measure quantum networks
	Introduction
	Results
	Applications
	Discussion
	Supplementary information
	Acknowledgements
	Author contributions
	Competing interests
	ACKNOWLEDGMENTS




