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Abstract
Identification of malicious attacks in network traffic is one of many important big data problems that have been approached
from different directions, including machine learning. In this paper, it is used as an example for investigating the applicability
of quantum machine learning to such problems. Particular focus is kept on the NISQ era, in which available computer sizes
are typically fairly small. Instead of applying typical cutting and knitting techniques with their associated overhead cost, we
use the trainable output layer inherent in many hybrid QML approaches to re-combine the results from a collection of smaller
QVCs executed on different machines. It is compared to classical and established quantum approaches on four real-world
datasets.

Keywords Quantum machine learning · Quantum variational circuits · Cyber-attack detection ·
Gate-based quantum computers

1 Introduction

Within today’s interconnected world, an abundance of net-
work flow data exists and is continued to be created every
second. A great challenge is to detect malicious packages
within the network traffic to prevent cyberattacks (Oliveira
et al. 2021). This big data problem (Wang and Jones 2021)
has been studied with classical machine learning (ML). In
this paper, however, we investigate whether and how such
problems can be approached with quantum machine learn-
ing (QML).
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The release of IBM’s quantum hardware to the public
in 2016 boosted the research in quantum computing (QC),
and a journey to explore possible applications of QC in the
future began. The main research areas of QC are cryptogra-
phy, simulation (mainly of physical processes), optimization,
and ML. While the first three concerns speeding up compu-
tations, the direct benefit of fusing QC and ML to QML is
not fully understood (Schuld and Killoran 2022). However,
research indicates that QML models can achieve the same
results as their classical counterparts while utilizing smaller
models, meaning less trainable parameters (Chen et al. 2020;
Griol-Barres et al. 2021).

Within QML, multiple algorithms have been developed
and successfully applied, including quantum support vec-
tor machines (Rebentrost et al. 2014; Havlíček et al. 2019)
and quantum reinforcement learning (Dong et al. 2008; Chen
et al. 2020;Meyer et al. 2022). Thiswork focuses on quantum
variational circuits (QVC), otherwise known as parame-
terized quantum circuits (PQC), which are either used to
implement a quantum counterpart to classical neural net-
works (NN) or to combine them with NN to quantum-hybrid
models. They have already shown great success in differ-
ent applications (Azevedo et al. 2022; Mari et al. 2020).
However, due to the limited size and quality of quantum com-
puters available, the considered problems are usually small
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in nature. Thus, the question remains how they can be scaled
to big data scenarios.

One approach to reduce the computational complexity,
by which we mean the number of qubits and operations
involved, is cutting the quantum circuit into smaller sub-
circuits (Dunjko et al. 2018; Peng et al. 2020). These circuits
can be evaluated in parallel to reduce the problem to multi-
ple smaller quantum computers instead of one larger system.
Furthermore, performing multiple computations in parallel
can be beneficial in terms of runtime. However, circuit cut-
ting comes with a computational overhead, since it requires
recomputing multiple circuits and inserting the results into
other computations.

In this work, we introduce the idea of stacking multiple
QVC in one model to overcome the limitations of current
machines. Although our approach shares conceptual similar-
ities with circuit cutting and knitting, it relies solely on ideas
from QVC and classical machine learning. Furthermore, no
additional classical computations are required, and it can eas-
ily be run in parallel on multiple quantum processors.

To show the potential benefits of this approach, we focus
on the classification of network traffic data. We are thus
addressing the issue of applying QVC and the new stacked
QVCs to big data settings. Additionally, we compare the
novel idea with established approaches and also compare
the results to a classical DNN model, which is motivated by
the work of Dutta et al. (2020).

For our experiments, we focus on the IoT-23 (Garcia et al.
2020) dataset that contains labeled network flow data from
different IoT environments. Since LSTMs are still difficult to
implement as a quantum model, we use a simplified version
of the model by Dutta et al., which only uses a deep neu-
ral network (DNN). Our results show, that using this kind
of approach, large models can be split efficiently across dif-
ferent quantum computers without a significant decrease in
prediction quality.

2 Related work

The realm of cybersecurity starts to attract researchers from
QML. Gong et al. compare VQCs against DNN, support
vector machines, K-nearest neighbors, Naive Bayes, and
decision trees on the KDD Cup99 dataset, which focuses
on network intrusion. They find that their VQC approach
achieves overall the highest precision, recall, and F1 score
and the lowest false negative rate compared to all other
approaches. Furthermore, they test their model, which was
trainedwith TensorFlow quantum (TFQ), with 100 randomly
sampled data points on IBM quantum computers. Using
the erroneous quantum hardware, they measure a prediction
error of 11.96%, compared to the TFQ simulator. Thus, their

approach suffers from the system noise of the quantum com-
puter (Gong et al. 2022).

A different approach to cyber-attack detection was taken
in Islam et al. (2022). The authors studied the controller
area network (CAN) attack dataset for in-vehicle cyber-
attack detection. They specifically focused on amplitude shift
attacks, where the amplitude of a feature is shifted by a ran-
dom value. Within their work, they encode the CAN data as
an 13× 13 image, which is used for further processing. The
authors compare an LSTM, pure QVC, and a hybrid QVC.
For the hybrid QVC, they used a convolutional neural net-
work (CNN) for feature extraction. The extracted features are
then used in the QVC. Their results show that the quantum-
hybrid approach outperformed the other two models with an
evaluation accuracy of 93.97%, which is about 6%more than
the LSTM and more than 30% better than the pure quantum
model.

The following three articles study QVC approaches in the
realm of Botnet DGA attack detection. In Suryotrisongko
and Musashi (2022a), different architectures of hybrid QVC
models are compared to a classical NN on a dataset with
more than 1 million domain names. For the comparisons,
the same classical architecture is used in both cases, while
in the quantum-hybrid model, a QVC layer is added before
the output layer. Due to prolonged runtime of the quantum
models, the authors sub-sampled the dataset with 100, 1000,
and 10,000 samples and trained the models on the smaller
datasets. The results show that both quantum and classical
models achieve similar accuracy, while the quantum mod-
els’ performance depends greatly on the choice of the initial
random seed value. Furthermore, the authors compare the
different QVC models using the noise models of IBM quan-
tum computers.

The research is continued in Suryotrisongko and Musashi
(2022b) where they compare different combinations of fea-
ture encoding, variational forms, and optimizers for QVC
model training on the same dataset as in Suryotrisongko and
Musashi (2022a). In total, 192 experiments are performed,
and the results compared. They conclude that the TwoLo-
cal variational model and the RawFeatureVector encoding
achieve on average the best results. However, their QVC
model only used one layer and two qubits, which is very
small and not very expressive (Schuld et al. 2021). Simi-
lar to the previous paper, the authors evaluate a collection
of models using noise models from IBM quantum com-
puters. The results show that the selection of encoding
strategy and variational form has a large influence on the
results of the model, similar to model selection in classical
NNs.

The last paper concerns Botnet DGA detection by a robust
hybrid QVC model, which is trained using adversarial train-
ing (Suryotrisongko et al. 2022). The same dataset as in the
previous papers is used. To show the vulnerability of QVC
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models against adversarial attacks, first, a baseline QVC
model is trained, and adversarial attacks using the fast gradi-
ent sign method (FGSM), projected gradient descent (PGD),
and basic iterative method (BIM) are performed, showing
declining prediction accuracy in the adversarial example
attack scenarios. Using adversarial training, the prediction
accuracy was improved, revealing that adversarial training
can be used in QVC models to reduce the effect of adversar-
ial example attacks. For all experiments, quantum simulators
with noisemodels of different IBMquantum computers were
used.

The literature review shows that cybersecurity is a promis-
ing research field for QML, since QVC approaches exhibit
similar or improved performance compared to classical mod-
els. Furthermore, it highlights that the models’ performance
depends on the model selection, as seen in Suryotrisongko
andMusashi (2022b). On a practical basis, it can be observed
that training QVCs on real quantum hardware is not feasible
due to long runtimes and noise. Using simulators, however,
does not remedy the runtime issue. Both approaches have
severe limitations on the number of qubits used and thus
restrict the size of datasets used. Thus, utilizing smaller mod-
els in parallel canhelp to reduce the runtimeandallowsolving
larger datasets.

3 Methods

Before we present the experiments and results, we will first
provide the background of QVC in light of classical ML.
Furthermore, we will introduce the concept of vertical layers
in QVC to improve the impressibility of QML models. An
introduction to the basic elements of QC can be found, for
example, in Schuld and Petruccione (2021).

3.1 ML perspective on quantum variational circuits

Following the usual supervised learning setting for a predic-
tion problem, we have a labeled dataset D = {xi , yi }Ni=1 with
xi ∈ R

n , yi ∈ N and N ∈ N samples. The goal is to find a

function f � : Rn → N that minimizes

N∑

i=1

l(yi , ŷi ), (1)

the distance between the observed data and the prediction
given by ŷi = f �(xi ), where the difference is measured by a
loss function l : N×N → R. The specific choice of the loss
function depends on the problem at hand. For example, the
binary-cross-entropy l(y, ŷ) = −y log(ŷ)− (1− y) log(1−
ŷ) is the de facto standard choice for a binary classification
problem.

To determine a function that minimizes the loss, we use
a model fθ , which is a function parameterized by a vector
θ ∈ R

d and f � = fθ� is obtained by solving

θ� = argmin
θ

N∑

i=1

l(yi , fθ (xi )). (2)

In the classical setting, the model is usually a NN or linear
model.

In the QML setting, the model is given by

fθ (x) =
[
〈0|U †(x, θ)MiU (x, θ)|0〉

]q
i=1

, (3)

where {Mi }qi=1 is a set of observables and U (x, θ) a param-
eterized unitary, called QVC. The common definition for the
QVC is U (x, θ) = Uenc(x)U (θ1) . . .Uenc(x)U (θd), which
is a composition of a data encoding and a trainable quantum
circuit that are repeated for several times. Each block of data
encoding and trainable circuit is called a layer, as an analogy
to hidden layers in NN. Finding a U (x, θ) that can solve the
problem at hand is a challenging task and can be compared
to defining the structure of a NN (Elsken et al. 2019; Pham
et al. 2018). To answer this question, multiple works have
been performed on possible architectures for data encoding
and trainable circuits (Suzuki et al. 2020; Sim et al. 2019;
Hubregtsen et al. 2021). The circuit used in this work can be
found in Fig. 1.

The training process of QVCs follows the classical
gradient-based approach. The gradient of aQVCwith respect

Fig. 1 The quantum variational circuit use in this work depicted with two horizontal layers on three qubits
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to a parameter can be computed using the parameter-shift
rule (Mitarai et al. 2018). The gradient of θi is given by

∂ fθ
∂θi

= fθi+(x) − fθi−(x)

2
, (4)

where θi± denotes a shift of the i-th parameter by±π
2 . Thus,

evaluating theQVC twicewith a shift in the respective param-
eter results in the exact gradient. The above holds in the case
of Pauli-Gates. A general version of the parameter-shift rule
can be found in Wierichs et al. (2022).

This already suffices to train a QVC. The training process
is depicted in Fig. 2. However, usually two more steps are
integrated into the QVC. The first is a feature transformation,
before the features are encoded into the QVC, and the second
is a post-processing step of the measured expectation values.
The former improves the training by decoupling the feature
dimension of the dataset and the number of qubits in the
QVC, while the latter helps to better utilize the measured
expectation values for the final prediction.

For the feature encoding, a transformation φ(·) is applied
to the raw input values to extract only relevant features for
the QVC. A common approach is to use an encoding for φ,
which results in a quantum-hybrid model. Some examples
can be found in Suzuki et al. (2020); Schuld and Killoran
(2019); Havlíček et al. (2019). The benefit of the feature
transformation can easily be seen in the case of an angle
embedding (Schuld and Petruccione 2021), where each fea-
ture is encoded by a rotation on a specific qubit. Thus, the
number of qubits scaleswith the number of features and high-
dimensional datasets become intractable to compute with
today’s quantum hardware or simulators. A simple and yet
powerful choice for φ is a single fully connected NN layer,
which will be later used within the experiments.

The final step is post-processing themeasured results from
the QVC to the final prediction. If more than one observ-
able was measured in Eq. 3, but only one value is needed
or vice versa, a final transformation ψ(·) is needed. Another
case where ψ is required is when the output needs to be
transformed into the correct range, e.g., applying the sig-
moid function for binary classification. Similar to the feature

encoding, a fully connected NN layer can be used if the
output from the QVC does not match the size of the final
value (Schuld et al. 2020).

3.2 Vertical layers in QVC

The above sets the background and notation for QVCs. Next,
we will introduce the idea to split the QVC part of the hybrid
architecture into a collection of smaller QVCs, which we
call vertical layers. Using parallel computations in QC is not
a new idea (Niu and Todri-Sanial 2022). It is already used
to speed up computations by either splitting the computation
into smaller problems,which can be computed in parallel Niu
et al. 2022; Schade et al. 2022;Barratt et al. 2021), or comput-
ing multiple problems in parallel (Resch et al. 2021; Mineh
and Montanaro 2022).

The idea is to align more than on QVC vertically in the
model. The new model is then given by

fθ (x) = ψ( fθ1(φ1(x)), . . . , fθm (φm(x))), (5)

which are m independent QVCs with their feature transfor-
mation φi and a shared final transformation that combines all
results into one prediction. The idea of the model is shown
in Fig. 4. An analogy to this can be found in classical NNs,
where multiple layers can be used in parallel. To not confuse
the layers of a single QVC with the parallel layers of the full
model, we will call the VQC layers horizontal layers.

Using layers in parallel providesmultiple benefits. Instead
of one large model with many qubits, parallel layers allow
using multiple smaller QVCs that can be computed indepen-
dently. Thus, already medium-sized hardware can compute
larger models, and when using a simulator, only smaller
quantum systems need to be computed, which will accel-
erate the process, without deteriorating the results. However,
if a large quantum processor is available, the whole model
can as well be computed on one chip. An updated version of
the training process can be seen in Fig. 3.

Importantly, the classical encoding and output layers
remain the same. Thus, no additional operations need to

Fig. 2 Schematic representation of the interaction between quantum and classical computer for the hybrid training of quantum variational circuits
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Fig. 3 Schematic representation of the interaction between quantum and classical computer for the hybrid training of quantum variational circuits
with vertical layers. In the above representation, 3 vertical layers with 3, 3, and 2 qubits each are used

be performed compared to the established setting. The intu-
ition behind vertical layers is to compute independent feature
transformations with each QVC and use the new features
for the final predictions. In particular, each sub-circuit only
needs to be evaluated once. If wewere to use cutting and knit-
ting for the same purpose, the number of sub-circuits would
increase linearly in the number of cuts, while the number of
evaluations would increase exponentially.

4 Experiments

To analyze the effect of vertical layers on prediction accuracy
and circuit size, we first computed baseline models without
vertical layers. For the models with vertical layers, we used
the hyperparameter optimization framework Optuna (Akiba
et al. 2019) to identify themodel architecture that achieves the
best accuracy. Furthermore, we repeated the baseline model
computationwithout a classical encoding layer for the feature
encoding to analyze the effect of the encoding layer.

4.1 Baselinemodels

We computed the baseline by training a classical QVC with-
out vertical layers with the numbers of qubits ranging from

1 to 11 (the number of features in the dataset). Furthermore,
the number of layers ranges from 1 to max(#qubits, 7). This
results in a total of 56 training runs. Each training was per-
formed for 10 epochs to limit the runtime to a reasonable
amount. To counter the short training, we repeated the 56
training runs with four different learning rates (LR) 10−3,
10−2, 10−1, and 2 × 10−1.

We did not optimize the hyperparameters of the models to
achieve the highest performance, since the aim of the exper-
iments is to compare the different approaches with similar
configurations. We repeated the training with different learn-
ing rates to ensure that the results were not biased due to a
flawed hyperparameter choice.

The full results are shown in Tables 10 to 13 in the
appendix. Here, we focus on the models with the best
performance, where the performance is measured by the
accuracy, precision, recall, and F1 score from the evalua-
tion of the model. The configuration and results of the six
best-performing models from the experiments are shown in
Table 1.

To achieve a fair comparison, we used Optuna to find a
classical model with maximum performance. The optimiza-
tion was again performed with the same learning rates. Each
optimization was performed for 200 trials, and the DNN con-
figuration space consists of 1 to 5 hidden layers with 2 to 45

Fig. 4 Schematic representation of a model with vertical layers. a Visualizes the concept of the vertical layers, b centralized computation of the
QVCs on one processor, c distributing the single QVC to different quantum computers
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Table 1 Summary of the 6
best-performing quantum
models and the best classical
model from the optimization
with Optuna

Qubits Layers Parameters LR Accuracy Precision Recall F1

Classical model 2,077 0.100 0.9931 0.9931 0.9932 0.9929

9 6 217 0.100 0.9893 0.9892 0.9895 0.9893

7 5 155 0.200 0.9884 0.9888 0.9880 0.9884

8 3 145 0.200 0.9879 0.9876 0.9881 0.9879

11 5 243 0.200 0.9868 0.9872 0.9864 0.9868

10 6 241 0.100 0.9868 0.9865 0.9871 0.9868

7 7 183 0.100 0.9863 0.9863 0.9861 0.9862

units and sigmoid activation function. Similar to the quantum
models, the classical DNN was trained with the four differ-
ent learning rates, which resulted in four optimal models.
Overall, the best model achieved an accuracy of 0.9931 and
with two hidden layers with 40 and 38 units. The model was
trained with a learning rate of 10−1. All models, quantum or
classical, used ADAM (Kingma and Ba 2014) for optimiza-
tion.

4.2 Quantummodels with vertical layers

Next, the optimized QVCwith vertical layers was trained. To
determine the best-performingmodel, we again usedOptuna.
The model can have up to 5 vertical layers, each using up
to 7 qubits, and between 2 and 4 horizontal layers. To test
whether vertical layers boost the performance of the classi-
cal QVC, we limited each QVC in the model to suboptimal
sizes. Similar to the baseline experiments, we performed the
optimization four times with the learning rate set to 10−3,
10−2, 10−1, or 2× 10−1. For each learning rate, we allowed
Optuna to perform 90 optimization steps.

The best model for each learning rate is shown in Table 2.

4.3 Feature reduction

The previous results have shown that using vertical layers is
an effective method to reduce the QVCs’ size. Usually, this
is achieved using feature reduction techniques as a prepro-
cessing step during the data preparation. A common method
for feature reduction is the PCA, as used in Wu et al. (2021);

Chen et al. (2021). To test whether vertical layers can be
an alternative to feature reduction techniques, we repeat the
experiments from the baseline models with a reduced feature
set.

For feature reduction, we decided to use an adapted ver-
sion of the Minimum Redundancy Maximum Relevance (Jo
et al. 2019) algorithm. We rely solely on the maximum
relevance, measured by Spearman’s correlation coefficient
between each feature and the label. If the absolute value of
the correlation coefficient is below a certain threshold, the
feature is removed from the dataset. For the experiments,
we used a threshold of 0.01, which resulted in a reduction
of 3 features. Compared to the PCA, the results are easy to
interpret, and the features that have been removed from the
dataset are “duration,” “obytes,” and “iipbytes.”

Furthermore, duplicates in the dataset have been removed,
and the dataset was balanced by undersampling the major-
ity class. This resulted in a smaller dataset. To counter the
reduced training samples, the batch size was changed to 420
to train for the same number of batches in each epoch as in
the previous experiments.

With the reduced dataset, we performed the same experi-
ments as in Sect. 4.1. However, we omitted the training with
the learning rate of 10−3 since the previous results have indi-
cated that this learning rate is too small to provide competitive
performance. The full results are listed in Tables 14 to 16.
The best 6 performing quantum models are listed in Table 3.
Additionally, the best classical model is listed as a reference.
This model was obtained from Optuna with a learning rate
of 10−1. It uses two hidden layers with 23 and 40 units.

Table 2 Summary of the
best-performing quantum
models using vertical layer from
the optimization with Optuna

LR Qubits Layers Parameters Accuracy Precision Recall F1

0.200 7,6,4 3,2,3 295 0.9882 0.9881 0.9881 0.9881

0.100 7,5,3,1 3,4,2,3 293 0.9889 0.9888 0.9888 0.9889

0.010 7,5,4 4,3,4 311 0.9873 0.9872 0.9872 0.9872

0.001 7,7,5,3 4,3,2,3 419 0.9642 0.9638 0.9616 0.9686
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Table 3 Summary of the 6
best-performing quantum
models and the best classical
model from the optimization
with Optuna for the reduced
dataset

Qubits Layers Parameters LR Accuracy Precision Recall F1

Classical model 1,208 0.10 0.9937 0.9937 0.9935 0.9940

7 6 148 0.20 0.9874 0.9880 0.9867 0.9873

5 3 76 0.20 0.9866 0.9868 0.9864 0.9866

5 5 96 0.10 0.9856 0.9856 0.9855 0.9855

6 4 103 0.20 0.9854 0.9863 0.9846 0.9853

5 5 96 0.20 0.9829 0.9835 0.9823 0.9828

7 6 148 0.10 0.9828 0.9839 0.9818 0.9827

5 Discussion

The results fromTable 1 indicate that the classical model out-
performed the quantum models. However, the difference is
less than 0.4% between the classical model and the quantum
model with 9 qubits and 6 layers. Therefore, the classical and
the quantum models show about the same performance. It is
interesting to note that all best-performing quantum models
have been trained with a learning rate of 10−1 or 2 × 10−1,
while the classical model achieved the best performancewith
a learning rate of 10−1.

The classical model needs around 6 times more trainable
parameters compared to the quantum models. This is not a
new result. However, it confirms already known results (Chen
et al. 2020; Griol-Barres et al. 2021) and, thus, validates the
results of our experiments. It is likely that the quantum mod-
els can be trained with an increased learning rate, since they
have fewer parameters to adjust.

Turning to the models with vertical layers, the models
with learning rate 10−1 and 2 × 10−1 show similar perfor-
mance and almost the same number of trainable parameters,
although they have different architectures. Interestingly, the
models show slightly reduced performance compared to the
baseline models. Although, the difference is only around
0.04%. This is much less than the difference between the
classical model and the baseline.

The models with vertical layers need more trainable
parameters compared to the baseline. On average, the use
of vertical layers increases the number of parameters by 130.
However, this is only true if the absolute model sizes are
compared. If only the largest QVC of each model is used for
comparison and omitting the classical layers, the model size
is halved on average. Thus, using vertical layers effectively
reduces the size of each sub-model. This is a potential benefit
of models with vertical layers for big data applications in the
NISQ era sincemultiple smallermodels can be run in parallel
on different quantum computers. Thus, larger datasets can be
processed with less demand on the computational resources
of the quantum hardware.

Albeit the potential benefits, the vertical layers resulted in
a slightly reduced performance. We assume that the perfor-

mance of the models with vertical layers could be improved
by using more horizontal layers. Due to excessive runtime,
we limited the horizontal layers to 4 during the optimization.
However, the baseline results indicate that additional layers
could improve the results.

Finally, comparing the results from the reduced dataset
in Table 3 to both the baseline and the models with ver-
tical layers, we observe that it shows a slight decrease in
performance. The difference is about 0.19% to the baseline
model and 0.15% to the model with vertical layers. Thus,
vertical layers are a competitive technique to reduce the com-
putational requirements of the QVC, without preprocessing
the data. Furthermore, if comparing the size of the largest
QVC in the vertical layers and the best QVC from the
reduced dataset, they use the same number of qubits. How-
ever, themodel for the reduced dataset uses 3 additional hori-
zontal layers and thus is twice the size of the vertical layer
model.

To ensure that the reduced performance on the smaller
dataset is not due to loss of information, we can compare
the results of the classical models. Here, the model on the
reduced dataset shows improved performance, compared to
the classical baseline model. This indicates that the reduced
dataset still contains all information needed to solve the pre-
diction problem.

We also performed additional experiments on three other
datasets to evaluate if the above results also generalize to
other datasets. For a report on datasets, results, and an initial
discussion, see Appendix A.

Through comparison of the results, a more complex pic-
ture of the situation can be observed. Before discussing some
of the differences, it should be noted that experimental set-
tings were chosen based on the requirements of the IoT-23
dataset and left unchanged for better comparison, as it was
the main object of investigation in this paper. Thus, it should
not be surprising that results are a slightly worse. By adjust-
ing the settings for each dataset, it is likely and plausible
that better results can be achieved for each. This can be seen
in particular, when comparing dataset and batch sizes: Per
epoch, there are more than 1000 gradient updates for the
IoT-23, while all others only have 5 or 6.
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Overall, it can be seen that no general statement about
sizes of QVCs and number of vertical layers can be made
across different datasets. Thus, individual tuning will still
need to be performed. Nevertheless, the same tendencies can
be observed, showing that QVCs can be an alternative to clas-
sical neural networks at little loss in performance. Likewise,
in particular, in cases of small available hardware, splitting
QVCs into smaller vertical layers proofs to be a good option.

6 Conclusion

To summarize, we argued that QVCs are a promising
approach to QML. However, the limited computational
power of current quantum hardware is a challenge for QVC
in big data scenarios like network flow prediction. To reduce
the computational demand on the hardware, we proposed a
novel approach, which stacks multiple smaller QVC verti-
cally to a larger model.

We discussed the new approach in light of ensemble learn-
ing, parallel layers in a deep learning architecture, and cutting
and knitting of quantum circuits. While ensemble learning
combines different machine learning models to a single new
model, we argue that vertical layers have more commonal-
ities with parallel layers in classical NN. When changing
the perspective from classical machine learning language to
quantumcomputing, vertical layers followa similar approach
to circuit cutting and knitting. It turns amonolithicmodel into
smaller subsystems that can be computed with fewer com-
putational resources. Our approach achieves the same while
omitting the additional complexity incurred by circuit knit-
ting.

Within our experiments, we have first shown that QVC
without vertical layers can solve the task of cyber-attack
detection from network flow data and achieves a similar per-
formance to a classical NN.However, theQVCneeds a larger
number of qubits, which limits this approach to datasets with
a smaller number of features per data point. Nevertheless, one
characteristic of big data is that usually numerous features are
present. By computing the optimal QVC with vertical lay-
ers, we have shown that with smaller models (fewer qubits
and horizontal layers), similar performance can be reached.
With the current approach of scaling quantum hardware to
utilize multiple smaller processes in parallel, we argue that
computing multiple smaller models in parallel will provide
a performance boost compared to large monolithic QVC.

To further validate our claim, we compared the QVCwith
vertical layers to feature reduction, a different method to
decrease the computational requirements of machine learn-
ing models. Our results indicate that the classical QVC with
only horizontal layers does not achieve the sameperformance
on the reduced data compared to the full dataset. Thus, intro-
ducing vertical layers achieves the same objective, reducing

the computational requirements, without deteriorating the
performance.

The present paper has a clear focus on the IoT-23 dataset.
While we also provide some comparative results for other
datasets, more work is needed to validate the results in a
more general setting. In summary, this work provides a start-
ing point for exploring a new approach for resource-efficient
QML big data settings, by utilizing multiple smaller models
instead of following the current trend of monolithic models.
We assume that using smaller quantum processor and mod-
els will also help to reduce errors during computation, since
smaller models involve fewer gates and thus use shallow cir-
cuits.

Appendix A. Further experiments

To illustrate the working of vertical layers better, we con-
ducted the sameexperiments on three additional datasetswith
a similar number of attributes. The additional experiments
should help to determine whether the improved performance
of the vertical layers from Sect. 4.2 generalizes to other
datasets.

For each of the three datasets, the following adjustments
are implemented: Observations are removed to achieve an
approximate balance of 50%, ensuring that the number of
observations is nearly equal across categories. The datasets
are partitioned into training and test sets with an approximate
ratio of 65 to 35%, while ensuring that the number of data
points in both sets corresponds to amultiple of the batch size.
Additionally, both datasets (train and test) are balanced or
nearly balanced at 50%. In addition, feature transformations,
as detailed for each dataset below, are being applied to obtain
about the same number of features as in the IoT-23 dataset.

A.1 Experiments

We performed the experiments with the same setting as in
Sects. 4.1 and 4.2. Detailed results and dataset descriptions
are provided in the following sections.

A.1.1 Heart disease

The heart disease datasets (Janosi et al. 1989) contain 13 fea-
tures to predict if a patient has a heart disease or not. Three
categorical features are removed as they contain three or
four categories, which would lead to an excessive increase in
dimensionality when applying one-hot encoding, leading to
10 features. The 192 training points are divided into batches
of size 32. The results for the best classical DNN and the sim-
ple CQVs are given in Table 4. The results from the Optuna
experiments for the QVCs with vertical layers are provided
in Table 5.
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Table 4 Summary of the 6
best-performing quantum
models and the best classical
model from the optimization
with Optuna for the heart
disease dataset

Qubits Layers Parameters LR Accuracy Precision Recall F1

Classical model 217 0.200 0.854 0.855 0.854 0.856

6 1 79 0.200 0.75 0.748 0.748 0.749

10 3 171 0.200 0.740 0.737 0.737 0.739

7 4 134 0.100 0.740 0.735 0.734 0.744

3 1 40 0.010 0.729 0.726 0.725 0.729

8 2 121 0.100 0.719 0.718 0.725 0.730

9 1 118 0.200 0.719 0.719 0.722 0.723

Table 5 Summary of the
best-performing quantum
models using vertical layer from
the optimization with Optuna
for the Heart disease dataset

LR Qubits Layers Parameters Accuracy Precision Recall F1

0.100 6,7,1,1,7 4,2,3,4,4 389 0.781 0.786 0.781 0.785

0.200 3,6,4,2 3,3,3,4 260 0.771 0.777 0.771 0.775

0.010 5 2 76 0.719 0.719 0.718 0.72

0.001 5 3 86 0.708 0.707 0.707 0.707

A.1.2 Breast cancer

The breast cancer datasets (Wolberg et al. 1993) contain 30
features derived during clinical examinations of potential
breast cancer material. The three-dimensional representation
of each feature is transformed into a single dimension using
linear discriminant analysis, thereby reducing the dataset’s
dimensionality to one-third of its original size. The features
are used to predict if the sample is cancerous or not. Table 6
shows the results for the best classical DNN and the simple
CQVs trained on 320 samples in batches of 64 and evaluated
on 192 samples. The best results from the Optuna experi-
ments for the QVCs with vertical layers are listed in Table 7.

A.1.3 Adult

The adult dataset (Becker and Kohavi (1996)) is based on
census data to predict if a person’s income exceeds $ 50,000
per year. The prediction is based on 14 features in 1280
training samples, which are split into batches of size 256.
Seven non-informative features are eliminated to reduce the
dimensionality of the Adult dataset, and one-hot encoding is
applied to the “relationship” feature leading to 12 features.
The results for the best classical DNN and the simple CQVs
are given in Table 8. The results from the experiments for the
QVCs with vertical layers are given in 9.

Table 6 Summary of the 6
best-performing quantum
models and the best classical
model from the optimization
with Optuna for the breast
cancer dataset

Qubits Layers Parameters LR Accuracy Precision Recall F1

Classical model 1,227 0.01 0.979 0.983 0.978 0.975

4 4 77 0.200 0.969 0.975 0.967 0.963

7 4 134 0.200 0.964 0.962 0.958 0.968

2 1 27 0.100 0.953 0.951 0.947 0.957

10 6 231 0.100 0.953 0.951 0.947 0.957

7 1 40 0.200 0.953 0.951 0.947 0.957

3 1 92 0.100 0.953 0.952 0.949 0.954

Table 7 Summary of the
best-performing quantum
models using vertical layer from
the optimization with Optuna
for the breast cancer dataset

LR Qubits Layers Parameters Accuracy Precision Recall F1

0.200 4,6,3 4,3,3 230 0.953 0.957 0.951 0.947

0.100 7,6,6 3,2,2 300 0.958 0.964 0.957 0.952

0.010 7 2 106 0.896 0.914 0.889 0.879

0.001 7,3 4,3 185 0.885 0.881 0.883 0.884
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Table 8 Summary of the 6
best-performing quantum
models and the best classical
model from the optimization
with Optuna for the adult dataset

Qubits Layers Parameters LR Accuracy Precision Recall F1

Classical model 5,359 0.01 0.818 0.825 0.817 0.818

4 2 69 0.100 0.786 0.784 0.786 0.8

11 1 166 0.200 0.788 0.787 0.788 0.79

8 1 121 0.100 0.786 0.786 0.786 0.787

10 2 171 0.100 0.773 0.773 0.773 0.774

11 3 210 0.200 0.766 0.766 0.766 0.766

9 2 154 0.100 0.764 0.764 0.764 0.764

Table 9 Summary of the
best-performing quantum
models using vertical layer from
the optimization with Optuna
for the adult dataset

LR Qubits Layers Parameters Accuracy Precision Recall F1

0.100 7,2,2 4,4,2 224 0.771 0.771 0.771 0.771

0.200 3,7,5 4,4,3 306 0.762 0.768 0.76 0.762

0.010 5,6 3,3 210 0.734 0.754 0.729 0.734

0.001 4,2 4,4 127 0.639 0.639 0.639 0.639

A.2 Discussion

Across the datasets, we can observe that the pure QVCs show
performance differences from 0.01 up to 0.104 to their clas-
sical counterparts. Unsurprisingly, given the small number of
training steps, the larger learning rates again deliver mostly
the best results.

For the adult and breast cancer datasets, we can observe
that again the gap between the approach with vertical layers
and those without is about the same as the gap from classical
to the best QVC-based model. For the heart disease dataset,
we can observe that the best vertical layer-based approach is
indeed better than the best single QVC approach. However,
we can also observe that this requires a significant increase
in vertical and horizontal layers. Nevertheless, a correspond-
ingly sizedmodelwith a single vertical layerwould have been
significantly too large to simulate. Thus, this demonstrates
the advantage of multiple smaller layers.

Overall, the number of parameters shows the expected
behavior, in that the models with vertical layers have more
parameters than those with a single layer, which in turn
use fewer parameters than the classical models. The only
exception again is the heart disease dataset, which uses a sur-
prisingly small classical model. However, since that is also
the smallest dataset, some of these deviating results might be
explained by variance in the result given the small number
of training steps.

Appendix B Full experimental results

B.1 Experiments on the full network anomaly
dataset

The full results for the full IoT-23 dataset can be found in
Tables 10, 11, 12, and 13.

Table 10 Full experimental results for with learning rate 10−3

Qubits Layers Accuracy Precision Recall F1

1 1 0.8895 0.8915 0.8869 0.8884

2 1 0.8886 0.8904 0.8862 0.8876

2 2 0.8899 0.8922 0.8873 0.8888

3 1 0.8891 0.8910 0.8866 0.8881

3 2 0.8930 0.8961 0.8900 0.8918

3 3 0.8925 0.8955 0.8896 0.8913

4 1 0.8886 0.8903 0.8862 0.8875

4 2 0.8926 0.8956 0.8896 0.8914

4 3 0.8992 0.9034 0.8959 0.8980

4 4 0.9301 0.9409 0.9253 0.9289

5 1 0.8884 0.8901 0.8860 0.8873

5 2 0.8934 0.8965 0.8904 0.8922

5 3 0.9199 0.9295 0.9152 0.9185

5 4 0.9289 0.9412 0.9238 0.9276

5 5 0.9015 0.9077 0.8976 0.9001
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Table 10 continued

Qubits Layers Accuracy Precision Recall F1

6 1 0.8888 0.8906 0.8864 0.8878

6 2 0.8945 0.8979 0.8915 0.8933

6 3 0.8946 0.8981 0.8915 0.8934

6 4 0.9034 0.9090 0.8997 0.9021

6 5 0.9007 0.9058 0.8971 0.8994

6 6 0.9363 0.9422 0.9328 0.9354

7 1 0.8886 0.8904 0.8862 0.8876

7 2 0.9013 0.9062 0.8978 0.9000

7 3 0.9189 0.9288 0.9142 0.9174

7 4 0.9205 0.9309 0.9157 0.9191

7 5 0.9225 0.9262 0.9196 0.9216

7 6 0.9435 0.9478 0.9407 0.9429

7 7 0.9209 0.9307 0.9162 0.9195

8 1 0.8888 0.8904 0.8864 0.8878

8 2 0.9049 0.9110 0.9010 0.9035

8 3 0.9217 0.9326 0.9168 0.9202

8 4 0.9200 0.9289 0.9155 0.9187

8 5 0.9238 0.9375 0.9183 0.9222

8 6 0.9577 0.9633 0.9546 0.9572

8 7 0.9508 0.9578 0.9472 0.9501

9 1 0.8873 0.8887 0.8851 0.8863

9 2 0.8969 0.9013 0.8935 0.8956

9 3 0.9289 0.9412 0.9237 0.9275

9 4 0.9319 0.9399 0.9279 0.9309

9 5 0.9564 0.9621 0.9533 0.9559

9 6 0.9225 0.9344 0.9174 0.9210

9 7 0.9242 0.9269 0.9218 0.9235

10 1 0.8880 0.8895 0.8858 0.8870

10 2 0.9187 0.9288 0.9139 0.9172

10 3 0.9129 0.9213 0.9084 0.9114

10 4 0.9452 0.9503 0.9422 0.9446

10 5 0.9576 0.9580 0.9568 0.9573

10 6 0.9237 0.9375 0.9182 0.9221

10 7 0.9272 0.9329 0.9238 0.9263

11 1 0.8881 0.8896 0.8859 0.8872

11 2 0.9232 0.9347 0.9182 0.9218

11 3 0.9242 0.9369 0.9189 0.9227

11 4 0.9255 0.9387 0.9201 0.9240

11 5 0.9242 0.9281 0.9213 0.9233

11 6 0.9640 0.9669 0.9619 0.9636

11 7 0.9597 0.9617 0.9581 0.9594

Table 11 Full experimental results for with learning rate 10−2

Qubits Layers Accuracy Precision Recall F1

1 1 0.8972 0.9015 0.8938 0.8959

2 1 0.9097 0.9199 0.9048 0.9080

2 2 0.9130 0.9256 0.9076 0.9112

3 1 0.9108 0.9213 0.9058 0.9092

3 2 0.9235 0.9257 0.9214 0.9228

3 3 0.9584 0.9605 0.9566 0.9580

4 1 0.9246 0.9359 0.9197 0.9232

4 2 0.9591 0.9639 0.9563 0.9587

4 3 0.9692 0.9725 0.9671 0.9689

4 4 0.9643 0.9668 0.9624 0.9639

5 1 0.9274 0.9401 0.9221 0.9259

5 2 0.9582 0.9600 0.9566 0.9579

5 3 0.9660 0.9690 0.9639 0.9657

5 4 0.9774 0.9796 0.9758 0.9772

5 5 0.9756 0.9769 0.9744 0.9754

6 1 0.9287 0.9411 0.9236 0.9273

6 2 0.9504 0.9509 0.9496 0.9501

6 3 0.9648 0.9669 0.9631 0.9645

6 4 0.9692 0.9691 0.9690 0.9690

6 5 0.9765 0.9776 0.9755 0.9764

6 6 0.9775 0.9777 0.9770 0.9773

7 1 0.9274 0.9385 0.9225 0.9260

7 2 0.9515 0.9529 0.9500 0.9511

7 3 0.9593 0.9608 0.9579 0.9590

7 4 0.9766 0.9783 0.9752 0.9764

7 5 0.9779 0.9793 0.9767 0.9777

7 6 0.9804 0.9813 0.9795 0.9803

7 7 0.9791 0.9797 0.9784 0.9789

8 1 0.9287 0.9405 0.9237 0.9273

8 2 0.9638 0.9655 0.9623 0.9635

8 3 0.9590 0.9596 0.9581 0.9588

8 4 0.9799 0.9818 0.9785 0.9797

8 5 0.9742 0.9746 0.9737 0.9741

8 6 0.9806 0.9819 0.9795 0.9805

8 7 0.9815 0.9825 0.9805 0.9813

9 1 0.9277 0.9391 0.9228 0.9264

9 2 0.9671 0.9703 0.9649 0.9668

9 3 0.9663 0.9674 0.9653 0.9661

9 4 0.9737 0.9739 0.9733 0.9736

9 5 0.9778 0.9784 0.9771 0.9777

9 6 0.9770 0.9777 0.9762 0.9768
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Table 11 continued

Qubits Layers Accuracy Precision Recall F1

9 7 0.9835 0.9841 0.9829 0.9834

10 1 0.9313 0.9417 0.9266 0.9301

10 2 0.9580 0.9594 0.9566 0.9577

10 3 0.9647 0.9661 0.9635 0.9645

10 4 0.9707 0.9710 0.9701 0.9705

10 5 0.9802 0.9811 0.9794 0.9801

10 6 0.9810 0.9822 0.9800 0.9809

10 7 0.9815 0.9812 0.9817 0.9814

11 1 0.9276 0.9392 0.9226 0.9263

11 2 0.9667 0.9706 0.9643 0.9663

11 3 0.9745 0.9762 0.9732 0.9743

11 4 0.9808 0.9822 0.9797 0.9807

11 5 0.9800 0.9810 0.9791 0.9799

11 6 0.9808 0.9819 0.9798 0.9806

11 7 0.9832 0.9838 0.9826 0.9831

Table 12 Full experimental results for with learning rate 10−1

Qubits Layers Accuracy Precision Recall F1

1 1 0.9056 0.9148 0.9008 0.9039

2 1 0.9130 0.9265 0.9073 0.9111

2 2 0.9546 0.9608 0.9514 0.9541

3 1 0.9435 0.9479 0.9406 0.9428

3 2 0.9093 0.9273 0.9027 0.9070

3 3 0.9701 0.9706 0.9694 0.9699

4 1 0.9351 0.9450 0.9305 0.9339

4 2 0.9641 0.9656 0.9627 0.9638

4 3 0.9806 0.9808 0.9802 0.9805

4 4 0.9831 0.9830 0.9829 0.9830

5 1 0.9698 0.9703 0.9691 0.9696

5 2 0.9666 0.9688 0.9648 0.9663

5 3 0.9776 0.9775 0.9774 0.9775

5 4 0.9802 0.9800 0.9803 0.9801

5 5 0.9810 0.9819 0.9802 0.9809

6 1 0.9505 0.9557 0.9475 0.9499

6 2 0.9813 0.9815 0.9810 0.9812

6 3 0.9709 0.9729 0.9693 0.9706

6 4 0.9843 0.9846 0.9839 0.9842

6 5 0.9788 0.9785 0.9790 0.9787

6 6 0.9769 0.9763 0.9776 0.9768

7 1 0.9643 0.9687 0.9617 0.9639

7 2 0.9787 0.9786 0.9786 0.9786

7 3 0.9757 0.9759 0.9753 0.9756

7 4 0.9800 0.9797 0.9802 0.9799

7 5 0.9856 0.9855 0.9855 0.9855

Table 12 continued

Qubits Layers Accuracy Precision Recall F1

7 6 0.9826 0.9824 0.9826 0.9825

7 7 0.9863 0.9863 0.9861 0.9862

8 1 0.9677 0.9714 0.9655 0.9674

8 2 0.9857 0.9855 0.9859 0.9857

8 3 0.9802 0.9808 0.9796 0.9801

8 4 0.9857 0.9859 0.9854 0.9856

8 5 0.9843 0.9844 0.9841 0.9842

8 6 0.9836 0.9832 0.9840 0.9835

8 7 0.9806 0.9801 0.9812 0.9806

9 1 0.9659 0.9690 0.9638 0.9656

9 2 0.9808 0.9809 0.9805 0.9807

9 3 0.9816 0.9812 0.9818 0.9815

9 4 0.9837 0.9840 0.9834 0.9837

9 5 0.9785 0.9780 0.9788 0.9784

9 6 0.9893 0.9892 0.9895 0.9893

9 7 0.9837 0.9842 0.9832 0.9836

10 1 0.9632 0.9677 0.9605 0.9628

10 2 0.9607 0.9631 0.9589 0.9604

10 3 0.9844 0.9844 0.9843 0.9844

10 4 0.9797 0.9794 0.9799 0.9796

10 5 0.9823 0.9822 0.9822 0.9822

10 6 0.9868 0.9865 0.9871 0.9868

10 7 0.9797 0.9810 0.9786 0.9796

11 1 0.9686 0.9719 0.9665 0.9683

11 2 0.9674 0.9698 0.9656 0.9671

11 3 0.9825 0.9831 0.9818 0.9824

11 4 0.9798 0.9793 0.9805 0.9798

11 5 0.9846 0.9847 0.9844 0.9845

11 6 0.9842 0.9844 0.9838 0.9841

11 7 0.9826 0.9821 0.9831 0.9825

Table 13 Full experimental results for with learning rate 2 ∗ 10−1

Qubits Layers Accuracy Precision Recall F1

1 1 0.9044 0.9119 0.9001 0.9029

2 1 0.9126 0.9271 0.9067 0.9106

2 2 0.9659 0.9653 0.9669 0.9658

3 1 0.9552 0.9577 0.9532 0.9548

3 2 0.9790 0.9788 0.9790 0.9789

3 3 0.9731 0.9733 0.9727 0.9730

4 1 0.9565 0.9585 0.9548 0.9561

4 2 0.9651 0.9693 0.9626 0.9648

4 3 0.9745 0.9753 0.9736 0.9743

4 4 0.9823 0.9822 0.9822 0.9822

5 1 0.9389 0.9468 0.9349 0.9380
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Table 13 continued

Qubits Layers Accuracy Precision Recall F1

5 2 0.9812 0.9808 0.9817 0.9812

5 3 0.9841 0.9838 0.9843 0.9840

5 4 0.9799 0.9799 0.9797 0.9798

5 5 0.9651 0.9664 0.9639 0.9649

6 1 0.9545 0.9597 0.9515 0.9539

6 2 0.9760 0.9771 0.9750 0.9758

6 3 0.9759 0.9764 0.9752 0.9757

6 4 0.9760 0.9776 0.9747 0.9758

6 5 0.9855 0.9852 0.9857 0.9854

6 6 0.9835 0.9831 0.9840 0.9835

7 1 0.9489 0.9554 0.9455 0.9482

7 2 0.9790 0.9785 0.9794 0.9789

7 3 0.9794 0.9794 0.9792 0.9793

7 4 0.9861 0.9862 0.9860 0.9861

7 5 0.9884 0.9888 0.9880 0.9884

7 6 0.9771 0.9787 0.9758 0.9769

7 7 0.9846 0.9844 0.9848 0.9846

8 1 0.9308 0.9424 0.9259 0.9295

8 2 0.9804 0.9801 0.9806 0.9803

8 3 0.9879 0.9876 0.9881 0.9879

8 4 0.9680 0.9699 0.9664 0.9677

8 5 0.9731 0.9749 0.9716 0.9728

8 6 0.9842 0.9843 0.9840 0.9841

8 7 0.9807 0.9814 0.9800 0.9806

9 1 0.9600 0.9620 0.9584 0.9597

9 2 0.9805 0.9811 0.9798 0.9804

9 3 0.9858 0.9855 0.9860 0.9858

9 4 0.9721 0.9743 0.9704 0.9718

9 5 0.9739 0.9760 0.9723 0.9737

9 6 0.9797 0.9796 0.9797 0.9797

9 7 0.9843 0.9838 0.9847 0.9842

10 1 0.9676 0.9709 0.9655 0.9673

10 2 0.9537 0.9601 0.9504 0.9531

10 3 0.9802 0.9800 0.9802 0.9801

10 4 0.9825 0.9821 0.9828 0.9824

10 5 0.9799 0.9800 0.9797 0.9798

10 6 0.9768 0.9772 0.9762 0.9767

10 7 0.9826 0.9840 0.9814 0.9825

11 1 0.9393 0.9486 0.9350 0.9383

11 2 0.9839 0.9835 0.9842 0.9838

11 3 0.9563 0.9617 0.9533 0.9558

11 4 0.9762 0.9777 0.9750 0.9760

11 5 0.9868 0.9872 0.9864 0.9868

11 6 0.9838 0.9835 0.9840 0.9838

11 7 0.9862 0.9866 0.9857 0.9861

B.2 Results on the reduced network anomaly
dataset

The full results for the reduced IoT-23 dataset can be found
in Tables 14, 15, and 16.

Table 14 Full experimental results for with learning rate 10−2

Qubits Layers Accuracy Precision Recall F1

1 1 0.9031 0.9093 0.8991 0.9017

2 1 0.9229 0.9321 0.9184 0.9216

2 2 0.8899 0.9024 0.8842 0.8876

3 1 0.9234 0.9332 0.9187 0.9220

3 2 0.9627 0.9674 0.9601 0.9623

3 3 0.9628 0.9675 0.9602 0.9624

4 1 0.9198 0.9279 0.9156 0.9185

4 2 0.9627 0.9667 0.9602 0.9623

4 3 0.9643 0.9687 0.9618 0.9639

4 4 0.9611 0.9625 0.9597 0.9608

5 1 0.9176 0.9254 0.9134 0.9163

5 2 0.9578 0.9593 0.9564 0.9575

5 3 0.9607 0.9620 0.9593 0.9604

5 4 0.9708 0.9712 0.9701 0.9706

5 5 0.9782 0.9792 0.9772 0.9780

6 1 0.9170 0.9248 0.9128 0.9157

6 2 0.9582 0.9589 0.9573 0.9579

6 3 0.9604 0.9609 0.9596 0.9601

6 4 0.9772 0.9778 0.9766 0.9771

6 5 0.9788 0.9794 0.9781 0.9787

6 6 0.9704 0.9702 0.9704 0.9703

7 1 0.9166 0.9242 0.9124 0.9153

7 2 0.9614 0.9625 0.9601 0.9611

7 3 0.9737 0.9741 0.9731 0.9735

7 4 0.9741 0.9753 0.9730 0.9739

7 5 0.9800 0.9808 0.9791 0.9799

7 6 0.9803 0.9812 0.9795 0.9802

7 7 0.9825 0.9823 0.9826 0.9824

Table 15 Full experimental results for with learning rate 10−1

Qubits Layers Accuracy Precision Recall F1

1 1 0.8769 0.8767 0.8785 0.8767

2 1 0.9066 0.9255 0.8998 0.9041

2 2 0.9412 0.9411 0.9408 0.9409

3 1 0.9629 0.9623 0.9642 0.9628

3 2 0.9693 0.9710 0.9678 0.9690

3 3 0.9750 0.9745 0.9753 0.9749
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Table 15 continued

Qubits Layers Accuracy Precision Recall F1

4 1 0.9448 0.9464 0.9431 0.9443

4 2 0.9735 0.9732 0.9737 0.9734

4 3 0.9688 0.9685 0.9688 0.9687

4 4 0.9825 0.9837 0.9816 0.9824

5 1 0.9623 0.9666 0.9598 0.9619

5 2 0.9646 0.9650 0.9639 0.9644

5 3 0.9797 0.9793 0.9799 0.9796

5 4 0.9779 0.9790 0.9769 0.9778

5 5 0.9856 0.9856 0.9855 0.9855

6 1 0.9681 0.9710 0.9661 0.9678

6 2 0.9713 0.9720 0.9705 0.9711

6 3 0.9765 0.9763 0.9764 0.9764

6 4 0.9751 0.9757 0.9744 0.9750

6 5 0.9735 0.9742 0.9726 0.9733

6 6 0.9755 0.9762 0.9748 0.9754

7 1 0.9758 0.9781 0.9741 0.9756

7 2 0.9715 0.9715 0.9713 0.9714

7 3 0.9818 0.9835 0.9805 0.9817

7 4 0.9791 0.9807 0.9778 0.9790

7 5 0.9827 0.9828 0.9824 0.9826

7 6 0.9828 0.9839 0.9818 0.9827

7 7 0.9807 0.9814 0.9799 0.9805

Table 16 Full experimental results for with learning rate 2 ∗ 10−1

Qubits Layers Accuracy Precision Recall F1

1 1 0.8667 0.8685 0.8696 0.8667

2 1 0.9066 0.9255 0.8998 0.9041

2 2 0.9408 0.9413 0.9398 0.9405

3 1 0.9570 0.9567 0.9587 0.9569

3 2 0.9736 0.9731 0.9743 0.9736

3 3 0.9789 0.9803 0.9777 0.9787

4 1 0.8810 0.8945 0.8877 0.8808

4 2 0.9644 0.9638 0.9651 0.9643

4 3 0.9432 0.9443 0.9461 0.9431

4 4 0.9773 0.9769 0.9778 0.9773

5 1 0.9537 0.9536 0.9556 0.9536

5 2 0.9558 0.9589 0.9536 0.9554

5 3 0.9866 0.9868 0.9864 0.9866

5 4 0.9819 0.9815 0.9824 0.9819

5 5 0.9829 0.9835 0.9823 0.9828

6 1 0.9539 0.9538 0.9558 0.9538

6 2 0.9678 0.9713 0.9655 0.9674

6 3 0.9799 0.9795 0.9802 0.9798

6 4 0.9854 0.9863 0.9846 0.9853

Table 16 continued

Qubits Layers Accuracy Precision Recall F1

6 5 0.9810 0.9806 0.9812 0.9809

6 6 0.9791 0.9806 0.9778 0.9789

7 1 0.9654 0.9674 0.9638 0.9652

7 2 0.9826 0.9823 0.9830 0.9826

7 3 0.9754 0.9756 0.9750 0.9753

7 4 0.9679 0.9680 0.9675 0.9677

7 5 0.9799 0.9794 0.9805 0.9798

7 6 0.9874 0.9880 0.9867 0.9873

7 7 0.9824 0.9831 0.9816 0.9823

B.3 Experiments on the heart disease dataset

The full results for the heart disease dataset can be found in
Tables 17, 18, 19, and 20.

Table 17 Full experimental results for the heart disease dataset with
learning rate 10−3

Qubits Layers Accuracy Precision Recall F1

1 1 0.6354 0.6335 0.6333 0.6337

2 1 0.4792 0.4755 0.4758 0.4756

2 2 0.4688 0.3873 0.4935 0.4826

3 1 0.6875 0.6874 0.6889 0.6882

3 2 0.4896 0.4383 0.5105 0.5188

3 3 0.5104 0.4748 0.4961 0.4951

4 1 0.6354 0.6236 0.6268 0.6380

4 2 0.3542 0.3471 0.3490 0.3463

4 3 0.4896 0.4212 0.4699 0.4509

4 4 0.5104 0.4684 0.5301 0.5491

5 1 0.4583 0.4574 0.4627 0.4621

5 2 0.4583 0.3806 0.4824 0.4567

5 3 0.4688 0.4659 0.4752 0.4741

5 4 0.4792 0.4503 0.4954 0.4937

5 5 0.4271 0.4164 0.4203 0.4170

6 1 0.5000 0.4535 0.4837 0.4777

6 2 0.3958 0.3956 0.3961 0.3964

6 3 0.4896 0.4639 0.5052 0.5069

6 4 0.4271 0.4164 0.4203 0.4170

6 5 0.3958 0.3862 0.4052 0.3954

6 6 0.5833 0.5767 0.5778 0.5803

7 1 0.5938 0.5862 0.5876 0.5912

7 2 0.4792 0.4141 0.4601 0.4375

7 3 0.5313 0.3835 0.5026 0.5163

7 4 0.5417 0.4921 0.5242 0.5352
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Table 17 continued

Qubits Layers Accuracy Precision Recall F1

7 5 0.5313 0.5225 0.5248 0.5259

7 6 0.4583 0.4497 0.4680 0.4646

7 7 0.5000 0.4945 0.4954 0.4953

8 1 0.4375 0.4253 0.4484 0.4412

8 2 0.4375 0.3672 0.4601 0.4152

8 3 0.3958 0.3827 0.3882 0.3825

8 4 0.6146 0.6135 0.6137 0.6135

8 5 0.5417 0.4759 0.5216 0.5369

8 6 0.5208 0.5206 0.5242 0.5244

8 7 0.5104 0.4982 0.5026 0.5028

9 1 0.6563 0.6553 0.6556 0.6552

9 2 0.5313 0.4684 0.5549 0.6250

9 3 0.5104 0.3379 0.4804 0.2606

9 4 0.4583 0.4386 0.4719 0.4654

9 5 0.4896 0.4212 0.4699 0.4509

9 6 0.5938 0.5934 0.5941 0.5938

9 7 0.5313 0.4971 0.5170 0.5214

10 1 0.6563 0.6562 0.6595 0.6600

10 2 0.4896 0.3287 0.4608 0.2554

10 3 0.5729 0.5555 0.5627 0.5703

10 4 0.5833 0.5714 0.5752 0.5808

10 5 0.4271 0.4240 0.4333 0.4306

10 6 0.5313 0.5308 0.5353 0.5357

10 7 0.4688 0.4659 0.4752 0.4741

11 1 0.4063 0.3701 0.4229 0.3913

11 2 0.5313 0.5161 0.5444 0.5536

11 3 0.5417 0.5399 0.5477 0.5493

11 4 0.5833 0.5152 0.5621 0.6173

11 5 0.4375 0.4000 0.4235 0.4058

11 6 0.5729 0.5649 0.5667 0.5694

11 7 0.5729 0.5672 0.5680 0.5696

Table 18 Full experimental results for the heart disease dataset with
learning rate 10−2

Qubits Layers Accuracy Precision Recall F1

1 1 0.5521 0.4397 0.5261 0.5852

2 1 0.5938 0.5530 0.5771 0.6087

2 2 0.4688 0.4471 0.4582 0.4531

3 1 0.7292 0.7262 0.7255 0.7295

3 2 0.5625 0.5623 0.5660 0.5665

3 3 0.5104 0.5078 0.5078 0.5079

4 1 0.3854 0.3848 0.3850 0.3854

4 2 0.4688 0.3191 0.5000 0.2344

4 3 0.4271 0.4265 0.4268 0.4271

4 4 0.5521 0.5071 0.5353 0.5498

Table 18 continued

Qubits Layers Accuracy Precision Recall F1

5 1 0.5521 0.4397 0.5261 0.5852

5 2 0.5000 0.4773 0.5150 0.5194

5 3 0.5833 0.5743 0.5765 0.5804

5 4 0.5938 0.5934 0.5941 0.5938

5 5 0.5729 0.5300 0.5562 0.5792

6 1 0.4792 0.4444 0.4654 0.4573

6 2 0.4167 0.3902 0.4052 0.3921

6 3 0.4167 0.3705 0.4013 0.3724

6 4 0.5313 0.5121 0.5209 0.5234

6 5 0.5000 0.4459 0.4824 0.4743

6 6 0.5313 0.4910 0.5157 0.5208

7 1 0.6771 0.6711 0.6882 0.7109

7 2 0.6146 0.5911 0.6020 0.6229

7 3 0.5208 0.4690 0.5033 0.5048

7 4 0.4688 0.4516 0.4595 0.4559

7 5 0.5313 0.4910 0.5157 0.5208

7 6 0.5417 0.4565 0.5190 0.5403

7 7 0.5729 0.5418 0.5588 0.5742

8 1 0.6875 0.6761 0.6784 0.6970

8 2 0.5625 0.4706 0.5386 0.5947

8 3 0.5417 0.4921 0.5242 0.5352

8 4 0.6250 0.6042 0.6131 0.6336

8 5 0.5417 0.4991 0.5255 0.5348

8 6 0.6771 0.6609 0.6660 0.6924

8 7 0.4792 0.4709 0.4732 0.4723

9 1 0.5938 0.5862 0.6046 0.6172

9 2 0.4375 0.4313 0.4458 0.4417

9 3 0.5104 0.4136 0.4869 0.4702

9 4 0.5729 0.5515 0.5614 0.5712

9 5 0.6771 0.6609 0.6660 0.6924

9 6 0.5833 0.5382 0.5660 0.5962

9 7 0.5729 0.5157 0.5536 0.5876

10 1 0.6042 0.5547 0.5856 0.6343

10 2 0.3438 0.2874 0.3627 0.2756

10 3 0.4479 0.4474 0.4477 0.4479

10 4 0.5729 0.5725 0.5732 0.5729

10 5 0.4792 0.3407 0.4523 0.3242

10 6 0.5208 0.3934 0.4941 0.4783

10 7 0.5833 0.4592 0.5556 0.7802

11 1 0.4063 0.3984 0.4007 0.3982

11 2 0.5313 0.3992 0.5039 0.5167

11 3 0.5208 0.5104 0.5137 0.5144

11 4 0.6563 0.6544 0.6542 0.6547

11 5 0.5208 0.4763 0.5046 0.5063

11 6 0.5938 0.5589 0.5784 0.6042

11 7 0.6146 0.5697 0.5967 0.6461
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Table 19 Full experimental results for the heart disease dataset with
learning rate 10−1

Qubits Layers Accuracy Precision Recall F1

1 1 0.5313 0.3469 0.5000 0.2656

2 1 0.6458 0.6457 0.6497 0.6507

2 2 0.5313 0.3469 0.5000 0.2656

3 1 0.7083 0.7072 0.7072 0.7072

3 2 0.6042 0.5674 0.5882 0.6206

3 3 0.6771 0.6574 0.6647 0.6985

4 1 0.4479 0.4464 0.4464 0.4465

4 2 0.7188 0.7073 0.7092 0.7344

4 3 0.6458 0.6329 0.6366 0.6508

4 4 0.5729 0.5649 0.5667 0.5694

5 1 0.6250 0.6042 0.6131 0.6336

5 2 0.6667 0.6661 0.6667 0.6661

5 3 0.6875 0.6825 0.6824 0.6883

5 4 0.7083 0.7000 0.7007 0.7157

5 5 0.6250 0.6209 0.6209 0.6231

6 1 0.5729 0.5591 0.5863 0.6040

6 2 0.6250 0.6113 0.6157 0.6277

6 3 0.4792 0.3824 0.4562 0.4069

6 4 0.6771 0.6768 0.6778 0.6771

6 5 0.6563 0.6562 0.6595 0.6600

6 6 0.5729 0.5649 0.5667 0.5694

7 1 0.5521 0.4834 0.5314 0.5563

7 2 0.7188 0.7187 0.7209 0.7204

7 3 0.6667 0.6630 0.6627 0.6656

7 4 0.7396 0.7347 0.7340 0.7436

7 5 0.5729 0.5232 0.5549 0.5829

7 6 0.5833 0.5714 0.5752 0.5808

7 7 0.5833 0.5832 0.5843 0.5840

8 1 0.5625 0.5383 0.5503 0.5594

8 2 0.7188 0.7180 0.7248 0.7304

8 3 0.6250 0.6248 0.6288 0.6297

8 4 0.5729 0.5591 0.5641 0.5697

8 5 0.5938 0.5934 0.5941 0.5938

8 6 0.6146 0.6145 0.6176 0.6180

8 7 0.6250 0.6235 0.6235 0.6235

9 1 0.5833 0.5788 0.5922 0.5991

9 2 0.6250 0.6113 0.6392 0.6715

9 3 0.6771 0.6742 0.6739 0.6759

9 4 0.7188 0.7135 0.7131 0.7219

9 5 0.6250 0.6224 0.6222 0.6231

Table 20 Full experimental results for the heart disease dataset with
learning rate 2 ∗ 10−1

Qubits Layers Accuracy Precision Recall F1

1 1 0.5313 0.3469 0.5000 0.2656

2 1 0.6458 0.6457 0.6497 0.6507

2 2 0.5313 0.3469 0.5000 0.2656

3 1 0.7083 0.7072 0.7072 0.7072

3 2 0.6042 0.5674 0.5882 0.6206

3 3 0.6771 0.6574 0.6647 0.6985

4 1 0.4479 0.4464 0.4464 0.4465

4 2 0.7188 0.7073 0.7092 0.7344

4 3 0.6458 0.6329 0.6366 0.6508

4 4 0.5729 0.5649 0.5667 0.5694

5 1 0.6250 0.6042 0.6131 0.6336

5 2 0.6667 0.6661 0.6667 0.6661

5 3 0.6875 0.6825 0.6824 0.6883

5 4 0.7083 0.7000 0.7007 0.7157

5 5 0.6250 0.6209 0.6209 0.6231

6 1 0.5729 0.5591 0.5863 0.6040

6 2 0.6250 0.6113 0.6157 0.6277

6 3 0.4792 0.3824 0.4562 0.4069

6 4 0.6771 0.6768 0.6778 0.6771

6 5 0.6563 0.6562 0.6595 0.6600

6 6 0.5729 0.5649 0.5667 0.5694

7 1 0.5521 0.4834 0.5314 0.5563

7 2 0.7188 0.7187 0.7209 0.7204

7 3 0.6667 0.6630 0.6627 0.6656

7 4 0.7396 0.7347 0.7340 0.7436

7 5 0.5729 0.5232 0.5549 0.5829

7 6 0.5833 0.5714 0.5752 0.5808

7 7 0.5833 0.5832 0.5843 0.5840

8 1 0.5625 0.5383 0.5503 0.5594

8 2 0.7188 0.7180 0.7248 0.7304

8 3 0.6250 0.6248 0.6288 0.6297

8 4 0.5729 0.5591 0.5641 0.5697

8 5 0.5938 0.5934 0.5941 0.5938

8 6 0.6146 0.6145 0.6176 0.6180

8 7 0.6250 0.6235 0.6235 0.6235

9 1 0.5833 0.5788 0.5922 0.5991

9 2 0.6250 0.6113 0.6392 0.6715

9 3 0.6771 0.6742 0.6739 0.6759

9 4 0.7188 0.7135 0.7131 0.7219

9 5 0.6250 0.6224 0.6222 0.6231
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B.4 Experiments on the breast cancer dataset

The full results for the breast cancer dataset can be found in
Tables 21, 22, 23, and 24.

Table 21 Full experimental results for the breast cancer dataset with
learning rate 10−3

Qubits Layers Accuracy Precision Recall F1

1 1 0.7135 0.6586 0.6652 0.7693

2 1 0.1927 0.1829 0.1795 0.1875

2 2 0.3490 0.3146 0.3973 0.3396

3 1 0.4115 0.3977 0.3973 0.3983

3 2 0.1719 0.1713 0.1723 0.1772

3 3 0.6615 0.5882 0.6080 0.6939

4 1 0.9115 0.9094 0.9116 0.9076

4 2 0.4219 0.3041 0.5045 0.7094

4 3 0.0781 0.0781 0.0813 0.0797

4 4 0.3958 0.3956 0.4036 0.4048

5 1 0.0781 0.0779 0.0830 0.0781

5 2 0.1510 0.1364 0.1777 0.1167

5 3 0.5729 0.3642 0.4911 0.2895

5 4 0.3958 0.3845 0.4304 0.4163

5 5 0.7031 0.7018 0.7116 0.7059

6 1 0.4063 0.3968 0.3964 0.3986

6 2 0.9167 0.9120 0.9036 0.9288

6 3 0.3906 0.3886 0.4116 0.4067

6 4 0.4375 0.4063 0.4107 0.4051

6 5 0.4219 0.3742 0.3866 0.3705

6 6 0.5938 0.5667 0.5679 0.5742

7 1 0.4844 0.4706 0.4705 0.4706

7 2 0.5677 0.3621 0.4866 0.2884

7 3 0.3021 0.3018 0.3071 0.3095

7 4 0.5104 0.4905 0.4911 0.4908

7 5 0.3229 0.3203 0.3429 0.3330

7 6 0.6771 0.6679 0.6679 0.6679

7 7 0.4948 0.4421 0.4563 0.4468

8 1 0.1615 0.1587 0.1759 0.1578

8 2 0.4115 0.3120 0.4884 0.4197

8 3 0.5729 0.5729 0.5911 0.5918

8 4 0.4531 0.4530 0.4688 0.4684

8 5 0.7500 0.7209 0.7161 0.7727

8 6 0.6927 0.6607 0.6598 0.6944

8 7 0.5938 0.4976 0.5357 0.5697

9 1 0.2500 0.2493 0.2625 0.2563

9 2 0.1979 0.1971 0.1982 0.2034

9 3 0.2917 0.2401 0.2554 0.2280

9 4 0.6823 0.6135 0.6295 0.7324

9 5 0.5156 0.4651 0.4777 0.4729

Table 21 continued

Qubits Layers Accuracy Precision Recall F1

9 6 0.6094 0.5514 0.5652 0.5912

9 7 0.5313 0.5211 0.5214 0.5212

10 1 0.0573 0.0571 0.0616 0.0564

10 2 0.5573 0.4056 0.4866 0.4548

10 3 0.2292 0.2292 0.2357 0.2357

10 4 0.6094 0.4599 0.5366 0.6647

10 5 0.3698 0.3332 0.3402 0.3290

10 6 0.5729 0.3857 0.4946 0.4570

10 7 0.5521 0.5104 0.5179 0.5210

11 1 0.1615 0.1513 0.1848 0.1401

11 2 0.2500 0.2471 0.2679 0.2533

11 3 0.5729 0.4050 0.4982 0.4912

11 4 0.3802 0.3764 0.4045 0.3963

11 5 0.4323 0.4322 0.4420 0.4425

11 6 0.5677 0.4992 0.5205 0.5297

11 7 0.6823 0.6440 0.6455 0.6861

Table 22 Full experimental results for the breast cancer dataset with
learning rate 10−2

Qubits Layers Accuracy Precision Recall F1

1 1 0.5885 0.4552 0.5205 0.5618

2 1 0.4427 0.3485 0.3902 0.3351

2 2 0.5833 0.3684 0.5000 0.2917

3 1 0.0625 0.0621 0.0607 0.0661

3 2 0.5833 0.3684 0.5000 0.2917

3 3 0.5833 0.3684 0.5000 0.2917

4 1 0.5260 0.3544 0.4527 0.3178

4 2 0.2396 0.2366 0.2357 0.2426

4 3 0.5573 0.3579 0.4777 0.2861

4 4 0.6042 0.4210 0.5250 0.7979

5 1 0.5833 0.3684 0.5000 0.2917

5 2 0.2083 0.1827 0.1839 0.1815

5 3 0.5938 0.4425 0.5214 0.5889

5 4 0.5781 0.4335 0.5080 0.5271

5 5 0.6198 0.4743 0.5473 0.7130

6 1 0.0990 0.0983 0.0973 0.1033

6 2 0.6198 0.4743 0.5473 0.7130

6 3 0.6198 0.4662 0.5455 0.7477

6 4 0.5052 0.4104 0.4509 0.4199

6 5 0.5885 0.3820 0.5063 0.7932

6 6 0.5729 0.3642 0.4911 0.2895

7 1 0.1146 0.1084 0.1036 0.1146

7 2 0.7500 0.7064 0.7054 0.8144

7 3 0.8750 0.8634 0.8500 0.9118

7 4 0.5208 0.4690 0.4821 0.4780
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Table 22 continued

Qubits Layers Accuracy Precision Recall F1

7 5 0.4323 0.3094 0.3723 0.2708

7 6 0.8333 0.8212 0.8125 0.8474

7 7 0.6875 0.5944 0.6250 0.8256

8 1 0.0677 0.0677 0.0688 0.0702

8 2 0.6302 0.4808 0.5563 0.8060

8 3 0.8906 0.8816 0.8688 0.9211

8 4 0.5990 0.4369 0.5241 0.6311

8 5 0.6198 0.4662 0.5455 0.7477

8 6 0.6406 0.5175 0.5723 0.7441

8 7 0.6198 0.4743 0.5473 0.7130

9 1 0.5521 0.3557 0.4732 0.2849

9 2 0.5885 0.3820 0.5063 0.7932

9 3 0.5990 0.4082 0.5188 0.7963

9 4 0.5781 0.3663 0.4955 0.2906

9 5 0.5990 0.4082 0.5188 0.7963

9 6 0.5885 0.3820 0.5063 0.7932

9 7 0.5833 0.3684 0.5000 0.2917

10 1 0.5573 0.3579 0.4777 0.2861

10 2 0.5625 0.3600 0.4821 0.2872

10 3 0.6979 0.6856 0.6839 0.6887

10 4 0.6302 0.5169 0.5652 0.6777

10 5 0.5885 0.4032 0.5098 0.5941

10 6 0.6563 0.5351 0.5875 0.8146

10 7 0.7969 0.7668 0.7580 0.8609

11 1 0.1250 0.1172 0.1125 0.1231

11 2 0.5469 0.3638 0.4705 0.3397

11 3 0.5833 0.3684 0.5000 0.2917

11 4 0.8125 0.7856 0.7750 0.8784

11 5 0.6927 0.6556 0.6563 0.6998

11 6 0.6354 0.4921 0.5625 0.8077

11 7 0.5885 0.3820 0.5063 0.7932

Table 23 Full experimental results for the breast cancer dataset with
learning rate 10−1

Qubits Layers Accuracy Precision Recall F1

1 1 0.5833 0.3684 0.5000 0.2917

2 1 0.9531 0.9513 0.9473 0.9568

2 2 0.5833 0.4365 0.5125 0.5449

3 1 0.9531 0.9515 0.9491 0.9544

3 2 0.4427 0.3485 0.5205 0.6421

3 3 0.7396 0.7190 0.7143 0.7424

4 1 0.8594 0.8496 0.8402 0.8750

4 2 0.8854 0.8784 0.8696 0.8983

4 3 0.8229 0.8100 0.8018 0.8355

4 4 0.8281 0.8199 0.8152 0.8287

Table 23 continued

Qubits Layers Accuracy Precision Recall F1

5 1 0.9167 0.9133 0.9089 0.9196

5 2 0.9167 0.9143 0.9143 0.9143

5 3 0.8698 0.8607 0.8509 0.8869

5 4 0.8854 0.8802 0.8750 0.8889

5 5 0.9271 0.9238 0.9179 0.9333

6 1 0.6146 0.6104 0.6143 0.6113

6 2 0.4063 0.3764 0.3804 0.3745

6 3 0.5729 0.5682 0.6071 0.6212

6 4 0.9167 0.9151 0.9196 0.9125

6 5 0.9063 0.9005 0.8911 0.9214

6 6 0.7708 0.7699 0.7821 0.7748

7 1 0.9323 0.9300 0.9277 0.9327

7 2 0.9271 0.9247 0.9232 0.9265

7 3 0.8229 0.8165 0.8143 0.8194

7 4 0.9063 0.9020 0.8964 0.9111

7 5 0.8594 0.8577 0.8652 0.8560

7 6 0.8958 0.8929 0.8929 0.8929

7 7 0.9063 0.9011 0.8929 0.9175

8 1 0.9479 0.9458 0.9411 0.9526

8 2 0.8125 0.8064 0.8054 0.8077

8 3 0.9375 0.9355 0.9339 0.9372

8 4 0.8906 0.8864 0.8830 0.8911

8 5 0.9479 0.9462 0.9446 0.9480

8 6 0.9063 0.9015 0.8946 0.9141

8 7 0.9063 0.9028 0.9000 0.9065

9 1 0.9323 0.9309 0.9348 0.9284

9 2 0.8854 0.8812 0.8786 0.8848

9 3 0.9115 0.9091 0.9098 0.9084

9 4 0.9167 0.9140 0.9125 0.9157

9 5 0.9271 0.9238 0.9179 0.9333

9 6 0.8958 0.8906 0.8839 0.9028

9 7 0.8802 0.8726 0.8634 0.8944

10 1 0.9010 0.8996 0.9063 0.8971

10 2 0.9271 0.9238 0.9179 0.9333

10 3 0.8802 0.8751 0.8705 0.8822

10 4 0.9167 0.9125 0.9054 0.9253

10 5 0.8698 0.8591 0.8473 0.8966

10 6 0.9531 0.9513 0.9473 0.9568

10 7 0.9010 0.8972 0.8938 0.9021

11 1 0.7708 0.7581 0.7536 0.7694

11 2 0.9167 0.9120 0.9036 0.9288

11 3 0.9323 0.9291 0.9223 0.9405

11 4 0.9063 0.9005 0.8911 0.9214

11 5 0.8802 0.8756 0.8723 0.8802

11 6 0.8906 0.8854 0.8795 0.8958

11 7 0.9219 0.9198 0.9205 0.9191
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Table 24 Full experimental results for the breast cancer dataset with
learning rate 2 ∗ 10−1

Qubits Layers Accuracy Precision Recall F1

1 1 0.5833 0.3684 0.5000 0.2917

2 1 0.5156 0.5150 0.5241 0.5236

2 2 0.5938 0.4057 0.5143 0.6702

3 1 0.9427 0.9402 0.9348 0.9485

3 2 0.8125 0.8104 0.8179 0.8096

3 3 0.8854 0.8817 0.8804 0.8833

4 1 0.7969 0.7881 0.7848 0.7938

4 2 0.5417 0.5186 0.5196 0.5206

4 3 0.9167 0.9143 0.9143 0.9143

4 4 0.9688 0.9746 0.9675 0.9625

5 1 0.9323 0.9297 0.9259 0.9349

5 2 0.4115 0.4095 0.4330 0.4293

5 3 0.9219 0.9198 0.9205 0.9191

5 4 0.9375 0.9352 0.9321 0.9392

5 5 0.8125 0.7951 0.7857 0.8361

6 1 0.9375 0.9355 0.9339 0.9372

6 2 0.7240 0.6993 0.6955 0.7277

6 3 0.8698 0.8615 0.8527 0.8828

6 4 0.9167 0.9153 0.9214 0.9126

6 5 0.9219 0.9185 0.9134 0.9264

6 6 0.9115 0.9084 0.9063 0.9111

7 1 0.9531 0.9513 0.9473 0.9568

7 2 0.9271 0.9244 0.9214 0.9283

7 3 0.8177 0.8128 0.8134 0.8123

7 4 0.9635 0.9621 0.9580 0.9677

7 5 0.9219 0.9189 0.9152 0.9239

7 6 0.9219 0.9181 0.9116 0.9293

7 7 0.8958 0.8936 0.8964 0.8915

8 1 0.9323 0.9291 0.9223 0.9405

8 2 0.9167 0.9140 0.9125 0.9157

8 3 0.9167 0.9125 0.9054 0.9253

8 4 0.9427 0.9410 0.9402 0.9418

8 5 0.9375 0.9344 0.9268 0.9478

8 6 0.9375 0.9355 0.9339 0.9372

8 7 0.9115 0.9080 0.9045 0.9130

9 1 0.9427 0.9407 0.9384 0.9436

9 2 0.9479 0.9458 0.9411 0.9526

9 3 0.9167 0.9133 0.9089 0.9196

9 4 0.9323 0.9302 0.9295 0.9311

9 5 0.9271 0.9255 0.9286 0.9233

9 6 0.9427 0.9412 0.9420 0.9404

9 7 0.9167 0.9125 0.9054 0.9253

10 1 0.9427 0.9402 0.9348 0.9485

10 2 0.9271 0.9250 0.9250 0.9250

10 3 0.9063 0.9036 0.9036 0.9036

10 4 0.9375 0.9350 0.9304 0.9416

Table 24 continued

Qubits Layers Accuracy Precision Recall F1

10 5 0.9219 0.9192 0.9170 0.9219

10 6 0.9479 0.9462 0.9446 0.9480

10 7 0.9010 0.8958 0.8884 0.9100

11 1 0.9427 0.9405 0.9366 0.9458

11 2 0.9115 0.9076 0.9027 0.9153

11 3 0.8906 0.8843 0.8759 0.9021

11 4 0.9531 0.9515 0.9491 0.9544

11 5 0.9271 0.9244 0.9214 0.9283

11 6 0.9323 0.9305 0.9313 0.9298

11 7 0.9323 0.9297 0.9259 0.9349

B.5 Experiments on the adult dataset

The full results for the adult dataset can be found in
Tables 25, 26, 27, and 28.

Table 25 Full experimental results for the adult dataset with learning
rate 10−3

Qubits Layers Accuracy Precision Recall F1

1 1 0.6471 0.6329 0.6471 0.6740

2 1 0.3854 0.3811 0.3854 0.3821

2 2 0.5599 0.5077 0.5599 0.6040

3 1 0.4258 0.3966 0.4258 0.4080

3 2 0.3828 0.3717 0.3828 0.3739

3 3 0.6367 0.6336 0.6367 0.6416

4 1 0.4570 0.4301 0.4570 0.4470

4 2 0.5130 0.4281 0.5130 0.5321

4 3 0.4635 0.3328 0.4635 0.3312

4 4 0.4141 0.4130 0.4141 0.4135

5 1 0.4596 0.4596 0.4596 0.4596

5 2 0.5143 0.3644 0.5143 0.7536

5 3 0.3190 0.3005 0.3190 0.2976

5 4 0.4635 0.4324 0.4635 0.4533

5 5 0.4453 0.4083 0.4453 0.4271

6 1 0.2682 0.2682 0.2682 0.2682

6 2 0.4857 0.3335 0.4857 0.3346

6 3 0.3424 0.3412 0.3424 0.3413

6 4 0.5208 0.5115 0.5208 0.5226

6 5 0.5885 0.5611 0.5885 0.6181

6 6 0.5964 0.5844 0.5964 0.6088

7 1 0.4492 0.4153 0.4492 0.4339

7 2 0.4922 0.4895 0.4922 0.4920

7 3 0.2760 0.2760 0.2760 0.2760

7 4 0.3451 0.3451 0.3451 0.3451
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Table 25 continued

Qubits Layers Accuracy Precision Recall F1

7 5 0.4388 0.4359 0.4388 0.4375

7 6 0.5339 0.5290 0.5339 0.5353

7 7 0.5924 0.5893 0.5924 0.5954

8 1 0.2474 0.2414 0.2474 0.2392

8 2 0.4089 0.3834 0.4089 0.3908

8 3 0.4375 0.4371 0.4375 0.4373

8 4 0.6549 0.6538 0.6549 0.6571

8 5 0.4753 0.4736 0.4753 0.4749

8 6 0.5690 0.5657 0.5690 0.5712

8 7 0.4987 0.4817 0.4987 0.4985

9 1 0.3477 0.3371 0.3477 0.3373

9 2 0.4935 0.4030 0.4935 0.4835

9 3 0.3281 0.2952 0.3281 0.2886

9 4 0.3841 0.3832 0.3841 0.3834

9 5 0.3984 0.3839 0.3984 0.3878

9 6 0.5117 0.5115 0.5117 0.5117

9 7 0.6797 0.6774 0.6797 0.6848

10 1 0.4909 0.4843 0.4909 0.4904

10 2 0.5013 0.3362 0.5013 0.7503

10 3 0.4844 0.3587 0.4844 0.4277

10 4 0.5443 0.4721 0.5443 0.5977

10 5 0.5208 0.4991 0.5208 0.5252

10 6 0.4844 0.4222 0.4844 0.4726

10 7 0.4701 0.4679 0.4701 0.4696

11 1 0.4010 0.3966 0.4010 0.3980

11 2 0.3346 0.3008 0.3346 0.2949

11 3 0.5000 0.3333 0.5000 0.2500

11 4 0.6094 0.5926 0.6094 0.6310

11 5 0.5026 0.4313 0.5026 0.5052

11 6 0.4909 0.4148 0.4909 0.4810

11 7 0.6146 0.6135 0.6146 0.6158

Table 26 Full experimental results for the adult dataset with learning
rate 10−2

Qubits Layers Accuracy Precision Recall F1

1 1 0.4219 0.3722 0.4219 0.3857

2 1 0.5990 0.5978 0.5990 0.6002

2 2 0.3060 0.2871 0.3060 0.2830

3 1 0.3008 0.2805 0.3008 0.2754

3 2 0.4154 0.3905 0.4154 0.3989

3 3 0.4909 0.3782 0.4909 0.4668

4 1 0.5091 0.4565 0.5091 0.5149

4 2 0.5078 0.4273 0.5078 0.5179

4 3 0.5794 0.5639 0.5794 0.5926

4 4 0.6432 0.6395 0.6432 0.6494

Table 26 continued

Qubits Layers Accuracy Precision Recall F1

5 1 0.3372 0.3180 0.3372 0.3165

5 2 0.2904 0.2898 0.2904 0.2897

5 3 0.4961 0.4935 0.4961 0.4960

5 4 0.7188 0.7157 0.7188 0.7287

5 5 0.5911 0.5893 0.5911 0.5928

6 1 0.4531 0.3928 0.4531 0.4222

6 2 0.7005 0.6999 0.7005 0.7021

6 3 0.6107 0.6008 0.6107 0.6229

6 4 0.5924 0.5858 0.5924 0.5987

6 5 0.6289 0.6289 0.6289 0.6289

6 6 0.6901 0.6852 0.6901 0.7028

7 1 0.4258 0.3619 0.4258 0.3762

7 2 0.3190 0.3106 0.3190 0.3097

7 3 0.7083 0.7060 0.7083 0.7151

7 4 0.6836 0.6834 0.6836 0.6840

7 5 0.6107 0.6106 0.6107 0.6108

7 6 0.5729 0.5728 0.5729 0.5730

7 7 0.5951 0.5933 0.5951 0.5968

8 1 0.4987 0.3328 0.4987 0.2497

8 2 0.5872 0.5630 0.5872 0.6122

8 3 0.5182 0.5158 0.5182 0.5186

8 4 0.6289 0.6231 0.6289 0.6373

8 5 0.5924 0.5899 0.5924 0.5948

8 6 0.6497 0.6497 0.6497 0.6499

8 7 0.6797 0.6797 0.6797 0.6797

9 1 0.6615 0.6603 0.6615 0.6636

9 2 0.5247 0.3919 0.5247 0.6964

9 3 0.6146 0.5593 0.6146 0.7300

9 4 0.6419 0.6413 0.6419 0.6429

9 5 0.5781 0.5679 0.5781 0.5863

9 6 0.6745 0.6738 0.6745 0.6759

9 7 0.5326 0.5214 0.5326 0.5359

10 1 0.5104 0.4622 0.5104 0.5162

10 2 0.5742 0.5571 0.5742 0.5878

10 3 0.5013 0.4094 0.5013 0.5035

10 4 0.6211 0.6063 0.6211 0.6426

10 5 0.6367 0.6366 0.6367 0.6368

10 6 0.7305 0.7304 0.7305 0.7308

10 7 0.6849 0.6830 0.6849 0.6895

11 1 0.5339 0.4624 0.5339 0.5723

11 2 0.7409 0.7393 0.7409 0.7467

11 3 0.4896 0.4440 0.4896 0.4845

11 4 0.4688 0.4516 0.4688 0.4643

11 5 0.5833 0.5824 0.5833 0.5841

11 6 0.5521 0.5515 0.5521 0.5524

11 7 0.6628 0.6592 0.6628 0.6700
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Table 27 Full experimental results for the adult dataset with learning
rate 10−1

Qubits Layers Accuracy Precision Recall F1

1 1 0.6120 0.5867 0.6120 0.6483

2 1 0.5404 0.4401 0.5404 0.6423

2 2 0.4961 0.4698 0.4961 0.4951

3 1 0.5143 0.3879 0.5143 0.5823

3 2 0.5729 0.5384 0.5729 0.6040

3 3 0.5247 0.5242 0.5247 0.5248

4 1 0.4766 0.3249 0.4766 0.2690

4 2 0.7865 0.7840 0.7865 0.8001

4 3 0.4909 0.4476 0.4909 0.4867

4 4 0.6927 0.6848 0.6927 0.7143

5 1 0.7539 0.7538 0.7539 0.7544

5 2 0.6940 0.6830 0.6940 0.7252

5 3 0.7214 0.7213 0.7214 0.7216

5 4 0.5977 0.5856 0.5977 0.6105

5 5 0.7435 0.7435 0.7435 0.7436

6 1 0.7435 0.7386 0.7435 0.7632

6 2 0.6641 0.6559 0.6641 0.6812

6 3 0.6615 0.6505 0.6615 0.6846

6 4 0.7370 0.7359 0.7370 0.7407

6 5 0.6745 0.6734 0.6745 0.6768

6 6 0.6549 0.6407 0.6549 0.6842

7 1 0.7201 0.7134 0.7201 0.7426

7 2 0.5378 0.5272 0.5378 0.5415

7 3 0.7435 0.7388 0.7435 0.7624

7 4 0.6354 0.6281 0.6354 0.6470

7 5 0.7435 0.7434 0.7435 0.7439

7 6 0.6250 0.6243 0.6250 0.6259

7 7 0.7044 0.7039 0.7044 0.7058

8 1 0.7865 0.7864 0.7865 0.7870

8 2 0.5352 0.5138 0.5352 0.5427

8 3 0.7122 0.7052 0.7122 0.7348

8 4 0.7344 0.7343 0.7344 0.7345

8 5 0.7122 0.7119 0.7122 0.7131

8 6 0.7005 0.7002 0.7005 0.7013

8 7 0.6302 0.6279 0.6302 0.6335

9 1 0.7409 0.7387 0.7409 0.7494

9 2 0.7643 0.7643 0.7643 0.7644

9 3 0.7005 0.7005 0.7005 0.7006

9 4 0.7135 0.7094 0.7135 0.7265

9 5 0.6667 0.6661 0.6667 0.6678

9 6 0.7148 0.7130 0.7148 0.7204

9 7 0.7266 0.7266 0.7266 0.7266

10 1 0.7617 0.7616 0.7617 0.7622

10 2 0.7734 0.7733 0.7734 0.7743

10 3 0.7266 0.7264 0.7266 0.7272

Table 27 continued

Qubits Layers Accuracy Precision Recall F1

10 4 0.6615 0.6567 0.6615 0.6708

10 5 0.6836 0.6780 0.6836 0.6972

10 6 0.7135 0.7128 0.7135 0.7157

10 7 0.7318 0.7306 0.7318 0.7358

11 1 0.5846 0.5787 0.5846 0.5897

11 2 0.5938 0.5905 0.5938 0.5968

11 3 0.6888 0.6866 0.6888 0.6944

11 4 0.6445 0.6442 0.6445 0.6451

11 5 0.7083 0.7067 0.7083 0.7132

11 6 0.7174 0.7174 0.7174 0.7175

11 7 0.6836 0.6834 0.6836 0.6840

Table 28 Full experimental results for the adult dataset with learning
rate 2 ∗ 10−1

Qubits Layers Accuracy Precision Recall F1

1 1 0.5000 0.3333 0.5000 0.2500

2 1 0.5378 0.4854 0.5378 0.5637

2 2 0.5169 0.4964 0.5169 0.5202

3 1 0.4570 0.3758 0.4570 0.4104

3 2 0.5169 0.3857 0.5169 0.6165

3 3 0.6276 0.6274 0.6276 0.6278

4 1 0.6862 0.6843 0.6862 0.6907

4 2 0.6081 0.6041 0.6081 0.6126

4 3 0.6237 0.6077 0.6237 0.6478

4 4 0.6432 0.6406 0.6432 0.6476

5 1 0.7201 0.7199 0.7201 0.7206

5 2 0.5768 0.5678 0.5768 0.5838

5 3 0.6693 0.6658 0.6693 0.6766

5 4 0.6849 0.6830 0.6849 0.6895

5 5 0.6810 0.6810 0.6810 0.6810

6 1 0.6732 0.6693 0.6732 0.6817

6 2 0.6445 0.6443 0.6445 0.6450

6 3 0.7331 0.7319 0.7331 0.7373

6 4 0.6953 0.6947 0.6953 0.6969

6 5 0.7135 0.7132 0.7135 0.7147

6 6 0.6315 0.6312 0.6315 0.6319

7 1 0.7201 0.7109 0.7201 0.7521

7 2 0.7318 0.7315 0.7318 0.7327

7 3 0.6172 0.6126 0.6172 0.6231

7 4 0.6758 0.6745 0.6758 0.6787

7 5 0.7279 0.7252 0.7279 0.7369

7 6 0.5807 0.5791 0.5807 0.5820

7 7 0.6745 0.6713 0.6745 0.6816

8 1 0.7240 0.7227 0.7240 0.7281

8 2 0.6354 0.6253 0.6354 0.6518
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Table 28 continued

Qubits Layers Accuracy Precision Recall F1

8 3 0.6979 0.6979 0.6979 0.6980

8 4 0.5990 0.5745 0.5990 0.6285

8 5 0.6719 0.6558 0.6719 0.7114

8 6 0.7214 0.7213 0.7214 0.7215

8 7 0.5924 0.5856 0.5924 0.5990

9 1 0.7109 0.7013 0.7109 0.7422

9 2 0.6823 0.6735 0.6823 0.7043

9 3 0.7409 0.7400 0.7409 0.7442

9 4 0.6875 0.6871 0.6875 0.6885

9 5 0.7122 0.7106 0.7122 0.7170

9 6 0.6667 0.6664 0.6667 0.6672

9 7 0.5872 0.5864 0.5872 0.5880

10 1 0.7188 0.7008 0.7188 0.7877

10 2 0.7526 0.7519 0.7526 0.7554

10 3 0.7214 0.7213 0.7214 0.7215

10 4 0.7044 0.7044 0.7044 0.7045

10 5 0.6888 0.6811 0.6888 0.7089

10 6 0.6484 0.6481 0.6484 0.6489

10 7 0.7201 0.7200 0.7201 0.7203

11 1 0.7878 0.7874 0.7878 0.7899

11 2 0.6198 0.6121 0.6198 0.6301

11 3 0.7656 0.7656 0.7656 0.7657

11 4 0.7474 0.7466 0.7474 0.7507

11 5 0.6849 0.6805 0.6849 0.6956

11 6 0.7240 0.7234 0.7240 0.7259

11 7 0.6979 0.6972 0.6979 0.6999
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