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Abstract

Identification of malicious attacks in network traffic is one of many important big data problems that have been approached
from different directions, including machine learning. In this paper, it is used as an example for investigating the applicability
of quantum machine learning to such problems. Particular focus is kept on the NISQ era, in which available computer sizes
are typically fairly small. Instead of applying typical cutting and knitting techniques with their associated overhead cost, we
use the trainable output layer inherent in many hybrid QML approaches to re-combine the results from a collection of smaller
QVCs executed on different machines. It is compared to classical and established quantum approaches on four real-world

datasets.

Keywords Quantum machine learning - Quantum variational circuits - Cyber-attack detection -
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1 Introduction

Within today’s interconnected world, an abundance of net-
work flow data exists and is continued to be created every
second. A great challenge is to detect malicious packages
within the network traffic to prevent cyberattacks (Oliveira
et al. 2021). This big data problem (Wang and Jones 2021)
has been studied with classical machine learning (ML). In
this paper, however, we investigate whether and how such
problems can be approached with quantum machine learn-
ing (QML).
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The release of IBM’s quantum hardware to the public
in 2016 boosted the research in quantum computing (QC),
and a journey to explore possible applications of QC in the
future began. The main research areas of QC are cryptogra-
phy, simulation (mainly of physical processes), optimization,
and ML. While the first three concerns speeding up compu-
tations, the direct benefit of fusing QC and ML to QML is
not fully understood (Schuld and Killoran 2022). However,
research indicates that QML models can achieve the same
results as their classical counterparts while utilizing smaller
models, meaning less trainable parameters (Chen et al. 2020;
Griol-Barres et al. 2021).

Within QML, multiple algorithms have been developed
and successfully applied, including quantum support vec-
tor machines (Rebentrost et al. 2014; Havlicek et al. 2019)
and quantum reinforcement learning (Dong et al. 2008; Chen
etal. 2020; Meyer et al. 2022). This work focuses on quantum
variational circuits (QVC), otherwise known as parame-
terized quantum circuits (PQC), which are either used to
implement a quantum counterpart to classical neural net-
works (NN) or to combine them with NN to quantum-hybrid
models. They have already shown great success in differ-
ent applications (Azevedo et al. 2022; Mari et al. 2020).
However, due to the limited size and quality of quantum com-
puters available, the considered problems are usually small
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in nature. Thus, the question remains how they can be scaled
to big data scenarios.

One approach to reduce the computational complexity,
by which we mean the number of qubits and operations
involved, is cutting the quantum circuit into smaller sub-
circuits (Dunjko et al. 2018; Peng et al. 2020). These circuits
can be evaluated in parallel to reduce the problem to multi-
ple smaller quantum computers instead of one larger system.
Furthermore, performing multiple computations in parallel
can be beneficial in terms of runtime. However, circuit cut-
ting comes with a computational overhead, since it requires
recomputing multiple circuits and inserting the results into
other computations.

In this work, we introduce the idea of stacking multiple
QVC in one model to overcome the limitations of current
machines. Although our approach shares conceptual similar-
ities with circuit cutting and knitting, it relies solely on ideas
from QVC and classical machine learning. Furthermore, no
additional classical computations are required, and it can eas-
ily be run in parallel on multiple quantum processors.

To show the potential benefits of this approach, we focus
on the classification of network traffic data. We are thus
addressing the issue of applying QVC and the new stacked
QVCs to big data settings. Additionally, we compare the
novel idea with established approaches and also compare
the results to a classical DNN model, which is motivated by
the work of Dutta et al. (2020).

For our experiments, we focus on the [oT-23 (Garcia et al.
2020) dataset that contains labeled network flow data from
different IoT environments. Since LSTMs are still difficult to
implement as a quantum model, we use a simplified version
of the model by Dutta et al., which only uses a deep neu-
ral network (DNN). Our results show, that using this kind
of approach, large models can be split efficiently across dif-
ferent quantum computers without a significant decrease in
prediction quality.

2 Related work

The realm of cybersecurity starts to attract researchers from
QML. Gong et al. compare VQCs against DNN, support
vector machines, K-nearest neighbors, Naive Bayes, and
decision trees on the KDD Cup99 dataset, which focuses
on network intrusion. They find that their VQC approach
achieves overall the highest precision, recall, and F1 score
and the lowest false negative rate compared to all other
approaches. Furthermore, they test their model, which was
trained with TensorFlow quantum (TFQ), with 100 randomly
sampled data points on IBM quantum computers. Using
the erroneous quantum hardware, they measure a prediction
error of 11.96%, compared to the TFQ simulator. Thus, their
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approach suffers from the system noise of the quantum com-
puter (Gong et al. 2022).

A different approach to cyber-attack detection was taken
in Islam et al. (2022). The authors studied the controller
area network (CAN) attack dataset for in-vehicle cyber-
attack detection. They specifically focused on amplitude shift
attacks, where the amplitude of a feature is shifted by a ran-
dom value. Within their work, they encode the CAN data as
an 13 x 13 image, which is used for further processing. The
authors compare an LSTM, pure QVC, and a hybrid QVC.
For the hybrid QVC, they used a convolutional neural net-
work (CNN) for feature extraction. The extracted features are
then used in the QVC. Their results show that the quantum-
hybrid approach outperformed the other two models with an
evaluation accuracy of 93.97%, which is about 6% more than
the LSTM and more than 30% better than the pure quantum
model.

The following three articles study QVC approaches in the
realm of Botnet DGA attack detection. In Suryotrisongko
and Musashi (2022a), different architectures of hybrid QVC
models are compared to a classical NN on a dataset with
more than 1 million domain names. For the comparisons,
the same classical architecture is used in both cases, while
in the quantum-hybrid model, a QVC layer is added before
the output layer. Due to prolonged runtime of the quantum
models, the authors sub-sampled the dataset with 100, 1000,
and 10,000 samples and trained the models on the smaller
datasets. The results show that both quantum and classical
models achieve similar accuracy, while the quantum mod-
els’ performance depends greatly on the choice of the initial
random seed value. Furthermore, the authors compare the
different QVC models using the noise models of IBM quan-
tum computers.

The research is continued in Suryotrisongko and Musashi
(2022b) where they compare different combinations of fea-
ture encoding, variational forms, and optimizers for QVC
model training on the same dataset as in Suryotrisongko and
Musashi (2022a). In total, 192 experiments are performed,
and the results compared. They conclude that the TwoLo-
cal variational model and the RawFeatureVector encoding
achieve on average the best results. However, their QVC
model only used one layer and two qubits, which is very
small and not very expressive (Schuld et al. 2021). Simi-
lar to the previous paper, the authors evaluate a collection
of models using noise models from IBM quantum com-
puters. The results show that the selection of encoding
strategy and variational form has a large influence on the
results of the model, similar to model selection in classical
NNE.

The last paper concerns Botnet DGA detection by a robust
hybrid QVC model, which is trained using adversarial train-
ing (Suryotrisongko et al. 2022). The same dataset as in the
previous papers is used. To show the vulnerability of QVC



Quantum Machine Intelligence (2025) 7:53

Page3of23 53

models against adversarial attacks, first, a baseline QVC
model is trained, and adversarial attacks using the fast gradi-
ent sign method (FGSM), projected gradient descent (PGD),
and basic iterative method (BIM) are performed, showing
declining prediction accuracy in the adversarial example
attack scenarios. Using adversarial training, the prediction
accuracy was improved, revealing that adversarial training
can be used in QVC models to reduce the effect of adversar-
ial example attacks. For all experiments, quantum simulators
with noise models of different IBM quantum computers were
used.

The literature review shows that cybersecurity is a promis-
ing research field for QML, since QVC approaches exhibit
similar or improved performance compared to classical mod-
els. Furthermore, it highlights that the models’ performance
depends on the model selection, as seen in Suryotrisongko
and Musashi (2022b). On a practical basis, it can be observed
that training QVCs on real quantum hardware is not feasible
due to long runtimes and noise. Using simulators, however,
does not remedy the runtime issue. Both approaches have
severe limitations on the number of qubits used and thus
restrict the size of datasets used. Thus, utilizing smaller mod-
elsin parallel can help to reduce the runtime and allow solving
larger datasets.

3 Methods

Before we present the experiments and results, we will first
provide the background of QVC in light of classical ML.
Furthermore, we will introduce the concept of vertical layers
in QVC to improve the impressibility of QML models. An
introduction to the basic elements of QC can be found, for
example, in Schuld and Petruccione (2021).

3.1 ML perspective on quantum variational circuits

Following the usual supervised learning setting for a predic-
tion problem, we have a labeled dataset D = {x;, y; }INZ | with
x;i € R",y; e Nand N € N samples. The goal is to find a

function f*: R” — N that minimizes

N

> 1 9 (1)
i=1

the distance between the observed data and the prediction
given by y; = f*(x;), where the difference is measured by a
loss function/ : N x N — . The specific choice of the loss
function depends on the problem at hand. For example, the
binary-cross-entropy [(y, ¥) = —ylog(y) — (1 — y) log(1 —
y) is the de facto standard choice for a binary classification
problem.

To determine a function that minimizes the loss, we use
a model fp, which is a function parameterized by a vector
6 € R? and f* = fp+ is obtained by solving

N
0* = arg;nin Zl(yi, Jo(xi)). @)

i=1

In the classical setting, the model is usually a NN or linear
model.
In the QML setting, the model is given by

fow) =[O0 . OMUEB0] 3)
where {M; }?:] is a set of observables and U (x, 6) a param-
eterized unitary, called QVC. The common definition for the
QVCis U(x,0) = Ugne(x)U (01) . .. Ugnc(x)U (64), which
is a composition of a data encoding and a trainable quantum
circuit that are repeated for several times. Each block of data
encoding and trainable circuit is called a layer, as an analogy
to hidden layers in NN. Finding a U (x, 6) that can solve the
problem at hand is a challenging task and can be compared
to defining the structure of a NN (Elsken et al. 2019; Pham
et al. 2018). To answer this question, multiple works have
been performed on possible architectures for data encoding
and trainable circuits (Suzuki et al. 2020; Sim et al. 2019;
Hubregtsen et al. 2021). The circuit used in this work can be
found in Fig. 1.

The training process of QVCs follows the classical
gradient-based approach. The gradient of a QVC with respect

(¢(x)) U(02)
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[} Rz | {Ry (0200 H
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Fig.1 The quantum variational circuit use in this work depicted with two horizontal layers on three qubits
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to a parameter can be computed using the parameter-shift
rule (Mitarai et al. 2018). The gradient of 6; is given by

3o fo () = fo_ ()

20; 2 @
where 6;+ denotes a shift of the i-th parameter by +7-. Thus,
evaluating the QVC twice with a shift in the respective param-
eter results in the exact gradient. The above holds in the case
of Pauli-Gates. A general version of the parameter-shift rule
can be found in Wierichs et al. (2022).

This already suffices to train a QVC. The training process
is depicted in Fig. 2. However, usually two more steps are
integrated into the QVC. The first is a feature transformation,
before the features are encoded into the QVC, and the second
is a post-processing step of the measured expectation values.
The former improves the training by decoupling the feature
dimension of the dataset and the number of qubits in the
QVC, while the latter helps to better utilize the measured
expectation values for the final prediction.

For the feature encoding, a transformation ¢ (-) is applied
to the raw input values to extract only relevant features for
the QVC. A common approach is to use an encoding for ¢,
which results in a quantum-hybrid model. Some examples
can be found in Suzuki et al. (2020); Schuld and Killoran
(2019); Havlicek et al. (2019). The benefit of the feature
transformation can easily be seen in the case of an angle
embedding (Schuld and Petruccione 2021), where each fea-
ture is encoded by a rotation on a specific qubit. Thus, the
number of qubits scales with the number of features and high-
dimensional datasets become intractable to compute with
today’s quantum hardware or simulators. A simple and yet
powerful choice for ¢ is a single fully connected NN layer,
which will be later used within the experiments.

The final step is post-processing the measured results from
the QVC to the final prediction. If more than one observ-
able was measured in Eq. 3, but only one value is needed
or vice versa, a final transformation ¥ (-) is needed. Another
case where ¥ is required is when the output needs to be
transformed into the correct range, e.g., applying the sig-
moid function for binary classification. Similar to the feature

encoding, a fully connected NN layer can be used if the
output from the QVC does not match the size of the final
value (Schuld et al. 2020).

3.2 Vertical layers in QVC

The above sets the background and notation for QVCs. Next,
we will introduce the idea to split the QVC part of the hybrid
architecture into a collection of smaller QVCs, which we
call vertical layers. Using parallel computations in QC is not
a new idea (Niu and Todri-Sanial 2022). It is already used
to speed up computations by either splitting the computation
into smaller problems, which can be computed in parallel Niu
etal.2022; Schade et al. 2022; Barrattet al. 2021), or comput-
ing multiple problems in parallel (Resch et al. 2021; Mineh
and Montanaro 2022).

The idea is to align more than on QVC vertically in the
model. The new model is then given by

Jo(x) =¥ (fp1(P1(x)), ..., for (m(x))), &)

which are m independent QVCs with their feature transfor-
mation ¢; and a shared final transformation that combines all
results into one prediction. The idea of the model is shown
in Fig. 4. An analogy to this can be found in classical NNs,
where multiple layers can be used in parallel. To not confuse
the layers of a single QVC with the parallel layers of the full
model, we will call the VQC layers horizontal layers.

Using layers in parallel provides multiple benefits. Instead
of one large model with many qubits, parallel layers allow
using multiple smaller QVCs that can be computed indepen-
dently. Thus, already medium-sized hardware can compute
larger models, and when using a simulator, only smaller
quantum systems need to be computed, which will accel-
erate the process, without deteriorating the results. However,
if a large quantum processor is available, the whole model
can as well be computed on one chip. An updated version of
the training process can be seen in Fig. 3.

Importantly, the classical encoding and output layers
remain the same. Thus, no additional operations need to

Use ¢ to encode

Z as param- Update 0 § = measurement
éte[;, of U, & post processing
enc
Target value y Compute 9’571/6-3?) ‘

Fig.2 Schematic representation of the interaction between quantum and classical computer for the hybrid training of quantum variational circuits
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Fig.3 Schematic representation of the interaction between quantum and classical computer for the hybrid training of quantum variational circuits
with vertical layers. In the above representation, 3 vertical layers with 3, 3, and 2 qubits each are used

be performed compared to the established setting. The intu-
ition behind vertical layers is to compute independent feature
transformations with each QVC and use the new features
for the final predictions. In particular, each sub-circuit only
needs to be evaluated once. If we were to use cutting and knit-
ting for the same purpose, the number of sub-circuits would
increase linearly in the number of cuts, while the number of
evaluations would increase exponentially.

4 Experiments

To analyze the effect of vertical layers on prediction accuracy
and circuit size, we first computed baseline models without
vertical layers. For the models with vertical layers, we used
the hyperparameter optimization framework Optuna (Akiba
etal. 2019) to identify the model architecture that achieves the
best accuracy. Furthermore, we repeated the baseline model
computation without a classical encoding layer for the feature
encoding to analyze the effect of the encoding layer.

4.1 Baseline models

We computed the baseline by training a classical QVC with-
out vertical layers with the numbers of qubits ranging from

1 to 11 (the number of features in the dataset). Furthermore,
the number of layers ranges from 1 to max(#qubits, 7). This
results in a total of 56 training runs. Each training was per-
formed for 10 epochs to limit the runtime to a reasonable
amount. To counter the short training, we repeated the 56
training runs with four different learning rates (LR) 1073,
107,107, and 2 x 1071

We did not optimize the hyperparameters of the models to
achieve the highest performance, since the aim of the exper-
iments is to compare the different approaches with similar
configurations. We repeated the training with different learn-
ing rates to ensure that the results were not biased due to a
flawed hyperparameter choice.

The full results are shown in Tables 10 to 13 in the
appendix. Here, we focus on the models with the best
performance, where the performance is measured by the
accuracy, precision, recall, and F1 score from the evalua-
tion of the model. The configuration and results of the six
best-performing models from the experiments are shown in
Table 1.

To achieve a fair comparison, we used Optuna to find a
classical model with maximum performance. The optimiza-
tion was again performed with the same learning rates. Each
optimization was performed for 200 trials, and the DNN con-
figuration space consists of 1 to 5 hidden layers with 2 to 45

b) <)

1 —2 13

Fig. 4 Schematic representation of a model with vertical layers. a Visualizes the concept of the vertical layers, b centralized computation of the
QVCs on one processor, ¢ distributing the single QVC to different quantum computers

@ Springer



53 Page6of23 Quantum Machine Intelligence (2025) 7:53

Table 1 Surr?mary of the 6 Qubits Layers Parameters LR Accuracy Precision Recall Fl1

best-performing quantum

models and the best classical Classical model 2,077 0.100  0.9931 0.9931 09932 0.9929

model from the optimization

with Optuna 9 6 217 0.100 0.9893 0.9892 0.9895 0.9893
7 5 155 0.200 0.9884 0.9888 0.9880 0.9884
8 3 145 0.200 0.9879 0.9876 0.9881 0.9879
11 5 243 0.200 0.9868 0.9872 0.9864 0.9868
10 6 241 0.100 0.9868 0.9865 0.9871 0.9868
7 7 183 0.100 0.9863 0.9863 0.9861 0.9862

units and sigmoid activation function. Similar to the quantum
models, the classical DNN was trained with the four differ-
ent learning rates, which resulted in four optimal models.
Overall, the best model achieved an accuracy of 0.9931 and
with two hidden layers with 40 and 38 units. The model was
trained with a learning rate of 10!, All models, quantum or
classical, used ADAM (Kingma and Ba 2014) for optimiza-
tion.

4.2 Quantum models with vertical layers

Next, the optimized QVC with vertical layers was trained. To
determine the best-performing model, we again used Optuna.
The model can have up to 5 vertical layers, each using up
to 7 qubits, and between 2 and 4 horizontal layers. To test
whether vertical layers boost the performance of the classi-
cal QVC, we limited each QVC in the model to suboptimal
sizes. Similar to the baseline experiments, we performed the
optimization four times with the learning rate set to 1073,
10_2, 107!, or2 x 10~!. For each learning rate, we allowed
Optuna to perform 90 optimization steps.

The best model for each learning rate is shown in Table 2.

4.3 Feature reduction

The previous results have shown that using vertical layers is
an effective method to reduce the QVCs’ size. Usually, this
is achieved using feature reduction techniques as a prepro-
cessing step during the data preparation. A common method
for feature reduction is the PCA, as used in Wu et al. (2021);

Chen et al. (2021). To test whether vertical layers can be
an alternative to feature reduction techniques, we repeat the
experiments from the baseline models with a reduced feature
set.

For feature reduction, we decided to use an adapted ver-
sion of the Minimum Redundancy Maximum Relevance (Jo
et al. 2019) algorithm. We rely solely on the maximum
relevance, measured by Spearman’s correlation coefficient
between each feature and the label. If the absolute value of
the correlation coefficient is below a certain threshold, the
feature is removed from the dataset. For the experiments,
we used a threshold of 0.01, which resulted in a reduction
of 3 features. Compared to the PCA, the results are easy to
interpret, and the features that have been removed from the
dataset are “duration,” “obytes,” and “iipbytes.”

Furthermore, duplicates in the dataset have been removed,
and the dataset was balanced by undersampling the major-
ity class. This resulted in a smaller dataset. To counter the
reduced training samples, the batch size was changed to 420
to train for the same number of batches in each epoch as in
the previous experiments.

With the reduced dataset, we performed the same experi-
ments as in Sect.4.1. However, we omitted the training with
the learning rate of 10~ since the previous results have indi-
cated that this learning rate is too small to provide competitive
performance. The full results are listed in Tables 14 to 16.
The best 6 performing quantum models are listed in Table 3.
Additionally, the best classical model is listed as a reference.
This model was obtained from Optuna with a learning rate
of 10~ It uses two hidden layers with 23 and 40 units.

Table2 Summary of the

. LR Qubits Layers Parameters Accuracy Precision Recall Fl
best-performing quantum
models using vertical layer from 509 764 323 295 0.9882 0.9881 09881 09881
the optimization with Optuna
0.100 7,5.3.1 3423 293 0.9889 0.9888 0.9888 0.9889
0.010 754 434 311 0.9873 0.9872 0.9872 0.9872
0.001 7,753 4323 419 0.9642 0.9638 0.9616 0.9686
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Table 3 Surr?mary of the 6 Qubits Layers Parameters LR Accuracy Precision Recall F1

best-performing quantum

models and the best classical Classical model 1,208 010  0.9937 0.9937 0.9935 0.9940

model from the optimization

with Optuna for the reduced 7 148 0.20 0.9874 0.9880 0.9867 0.9873

dataset 5 3 76 0.20 0.9866 0.9868 0.9864 0.9866
5 5 96 0.10 0.9856 0.9856 0.9855 0.9855
6 4 103 0.20 0.9854 0.9863 0.9846 0.9853
5 5 96 0.20 0.9829 0.9835 0.9823 0.9828
7 6 148 0.10 0.9828 0.9839 0.9818 0.9827

5 Discussion

The results from Table 1 indicate that the classical model out-
performed the quantum models. However, the difference is
less than 0.4% between the classical model and the quantum
model with 9 qubits and 6 layers. Therefore, the classical and
the quantum models show about the same performance. It is
interesting to note that all best-performing quantum models
have been trained with a learning rate of 10~! or 2 x 1071,
while the classical model achieved the best performance with
a learning rate of 107!,

The classical model needs around 6 times more trainable
parameters compared to the quantum models. This is not a
new result. However, it confirms already known results (Chen
et al. 2020; Griol-Barres et al. 2021) and, thus, validates the
results of our experiments. It is likely that the quantum mod-
els can be trained with an increased learning rate, since they
have fewer parameters to adjust.

Turning to the models with vertical layers, the models
with learning rate 10~! and 2 x 10~! show similar perfor-
mance and almost the same number of trainable parameters,
although they have different architectures. Interestingly, the
models show slightly reduced performance compared to the
baseline models. Although, the difference is only around
0.04%. This is much less than the difference between the
classical model and the baseline.

The models with vertical layers need more trainable
parameters compared to the baseline. On average, the use
of vertical layers increases the number of parameters by 130.
However, this is only true if the absolute model sizes are
compared. If only the largest QVC of each model is used for
comparison and omitting the classical layers, the model size
is halved on average. Thus, using vertical layers effectively
reduces the size of each sub-model. This is a potential benefit
of models with vertical layers for big data applications in the
NISQ era since multiple smaller models can be run in parallel
on different quantum computers. Thus, larger datasets can be
processed with less demand on the computational resources
of the quantum hardware.

Albeit the potential benefits, the vertical layers resulted in
a slightly reduced performance. We assume that the perfor-

mance of the models with vertical layers could be improved
by using more horizontal layers. Due to excessive runtime,
we limited the horizontal layers to 4 during the optimization.
However, the baseline results indicate that additional layers
could improve the results.

Finally, comparing the results from the reduced dataset
in Table 3 to both the baseline and the models with ver-
tical layers, we observe that it shows a slight decrease in
performance. The difference is about 0.19% to the baseline
model and 0.15% to the model with vertical layers. Thus,
vertical layers are a competitive technique to reduce the com-
putational requirements of the QVC, without preprocessing
the data. Furthermore, if comparing the size of the largest
QVC in the vertical layers and the best QVC from the
reduced dataset, they use the same number of qubits. How-
ever, the model for the reduced dataset uses 3 additional hori-
zontal layers and thus is twice the size of the vertical layer
model.

To ensure that the reduced performance on the smaller
dataset is not due to loss of information, we can compare
the results of the classical models. Here, the model on the
reduced dataset shows improved performance, compared to
the classical baseline model. This indicates that the reduced
dataset still contains all information needed to solve the pre-
diction problem.

We also performed additional experiments on three other
datasets to evaluate if the above results also generalize to
other datasets. For a report on datasets, results, and an initial
discussion, see Appendix A.

Through comparison of the results, a more complex pic-
ture of the situation can be observed. Before discussing some
of the differences, it should be noted that experimental set-
tings were chosen based on the requirements of the IoT-23
dataset and left unchanged for better comparison, as it was
the main object of investigation in this paper. Thus, it should
not be surprising that results are a slightly worse. By adjust-
ing the settings for each dataset, it is likely and plausible
that better results can be achieved for each. This can be seen
in particular, when comparing dataset and batch sizes: Per
epoch, there are more than 1000 gradient updates for the
10T-23, while all others only have 5 or 6.
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Overall, it can be seen that no general statement about
sizes of QVCs and number of vertical layers can be made
across different datasets. Thus, individual tuning will still
need to be performed. Nevertheless, the same tendencies can
be observed, showing that QVCs can be an alternative to clas-
sical neural networks at little loss in performance. Likewise,
in particular, in cases of small available hardware, splitting
QVCs into smaller vertical layers proofs to be a good option.

6 Conclusion

To summarize, we argued that QVCs are a promising
approach to QML. However, the limited computational
power of current quantum hardware is a challenge for QVC
in big data scenarios like network flow prediction. To reduce
the computational demand on the hardware, we proposed a
novel approach, which stacks multiple smaller QVC verti-
cally to a larger model.

We discussed the new approach in light of ensemble learn-
ing, parallel layers in a deep learning architecture, and cutting
and knitting of quantum circuits. While ensemble learning
combines different machine learning models to a single new
model, we argue that vertical layers have more commonal-
ities with parallel layers in classical NN. When changing
the perspective from classical machine learning language to
quantum computing, vertical layers follow a similar approach
to circuit cutting and knitting. It turns a monolithic model into
smaller subsystems that can be computed with fewer com-
putational resources. Our approach achieves the same while
omitting the additional complexity incurred by circuit knit-
ting.

Within our experiments, we have first shown that QVC
without vertical layers can solve the task of cyber-attack
detection from network flow data and achieves a similar per-
formance to a classical NN. However, the QVC needs a larger
number of qubits, which limits this approach to datasets with
asmaller number of features per data point. Nevertheless, one
characteristic of big data is that usually numerous features are
present. By computing the optimal QVC with vertical lay-
ers, we have shown that with smaller models (fewer qubits
and horizontal layers), similar performance can be reached.
With the current approach of scaling quantum hardware to
utilize multiple smaller processes in parallel, we argue that
computing multiple smaller models in parallel will provide
a performance boost compared to large monolithic QVC.

To further validate our claim, we compared the QVC with
vertical layers to feature reduction, a different method to
decrease the computational requirements of machine learn-
ing models. Our results indicate that the classical QVC with
only horizontal layers does not achieve the same performance
on the reduced data compared to the full dataset. Thus, intro-
ducing vertical layers achieves the same objective, reducing
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the computational requirements, without deteriorating the
performance.

The present paper has a clear focus on the [oT-23 dataset.
While we also provide some comparative results for other
datasets, more work is needed to validate the results in a
more general setting. In summary, this work provides a start-
ing point for exploring a new approach for resource-efficient
QML big data settings, by utilizing multiple smaller models
instead of following the current trend of monolithic models.
We assume that using smaller quantum processor and mod-
els will also help to reduce errors during computation, since
smaller models involve fewer gates and thus use shallow cir-
cuits.

Appendix A. Further experiments

To illustrate the working of vertical layers better, we con-
ducted the same experiments on three additional datasets with
a similar number of attributes. The additional experiments
should help to determine whether the improved performance
of the vertical layers from Sect.4.2 generalizes to other
datasets.

For each of the three datasets, the following adjustments
are implemented: Observations are removed to achieve an
approximate balance of 50%, ensuring that the number of
observations is nearly equal across categories. The datasets
are partitioned into training and test sets with an approximate
ratio of 65 to 35%, while ensuring that the number of data
points in both sets corresponds to a multiple of the batch size.
Additionally, both datasets (train and test) are balanced or
nearly balanced at 50%. In addition, feature transformations,
as detailed for each dataset below, are being applied to obtain
about the same number of features as in the [oT-23 dataset.

A.1  Experiments

We performed the experiments with the same setting as in
Sects.4.1 and 4.2. Detailed results and dataset descriptions
are provided in the following sections.

A.1.1  Heart disease

The heart disease datasets (Janosi et al. 1989) contain 13 fea-
tures to predict if a patient has a heart disease or not. Three
categorical features are removed as they contain three or
four categories, which would lead to an excessive increase in
dimensionality when applying one-hot encoding, leading to
10 features. The 192 training points are divided into batches
of size 32. The results for the best classical DNN and the sim-
ple CQVs are given in Table 4. The results from the Optuna
experiments for the QVCs with vertical layers are provided
in Table 5.
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Table 4 Summary of the 6 Qubits Layers Parameters LR Accuracy Precision Recall Fl1

best-performing quantum

models and the best classical Classical model 217 0.200 0.854 0.855 0.854 0.856

model from the optimization

with Optuna for the heart 6 1 79 0.200 0.75 0.748 0.748 0.749

disease dataset 10 3 171 0.200 0.740 0.737 0.737 0.739
7 4 134 0.100 0.740 0.735 0.734 0.744
3 1 40 0.010 0.729 0.726 0.725 0.729
8 2 121 0.100 0.719 0.718 0.725 0.730
9 1 118 0.200 0.719 0.719 0.722 0.723

Table 5 Summary of the LR Qubits Layers Parameters Accuracy Precision Recall F1

best-performing quantum

models using vertical layer from 100 67117 = 42344 389 0.781 0.786 0.781 0.785

the optimization with Optuna

for the Heart disease dataset 0.200 3,6,4,2 3,334 260 0.771 0.777 0.771 0.775
0.010 5 2 76 0.719 0.719 0.718 0.72
0.001 5 3 86 0.708 0.707 0.707 0.707

A.1.2 Breast cancer A.13  Adult

The breast cancer datasets (Wolberg et al. 1993) contain 30
features derived during clinical examinations of potential
breast cancer material. The three-dimensional representation
of each feature is transformed into a single dimension using
linear discriminant analysis, thereby reducing the dataset’s
dimensionality to one-third of its original size. The features
are used to predict if the sample is cancerous or not. Table 6
shows the results for the best classical DNN and the simple
CQVs trained on 320 samples in batches of 64 and evaluated
on 192 samples. The best results from the Optuna experi-
ments for the QVCs with vertical layers are listed in Table 7.

The adult dataset (Becker and Kohavi (1996)) is based on
census data to predict if a person’s income exceeds $ 50,000
per year. The prediction is based on 14 features in 1280
training samples, which are split into batches of size 256.
Seven non-informative features are eliminated to reduce the
dimensionality of the Adult dataset, and one-hot encoding is
applied to the “relationship” feature leading to 12 features.
The results for the best classical DNN and the simple CQV's
are given in Table 8. The results from the experiments for the
QVCs with vertical layers are given in 9.

Table 6 Summary of the 6

. Qubits Layers Parameters LR Accuracy Precision Recall Fl1
best-performing quantum
models and the best classical Classical model 1,227 0.01 0.979 0.983 0.978 0.975
model from the optimization
with Optuna for the breast 4 4 77 0.200 0.969 0.975 0.967 0.963
cancer dataset 7 4 134 0.200 0.964 0.962 0.958 0.968
2 1 27 0.100 0.953 0.951 0.947 0.957
10 6 231 0.100 0.953 0.951 0.947 0.957
1 40 0.200 0.953 0.951 0.947 0.957
1 92 0.100 0.953 0.952 0.949 0.954
Table 7 Summary of the LR Qubits Layers Parameters Accuracy Precision Recall F1
best-performing quantum
models using vertical layer from () 5y 463 433 230 0.953 0.957 0.951 0.947
the optimization with Optuna
for the breast cancer dataset 0.100 7,6,6 322 300 0.958 0.964 0.957 0.952
0.010 7 2 106 0.896 0.914 0.889 0.879
0.001 73 43 185 0.885 0.881 0.883 0.884
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Table 8 Surr?mary of the 6 Qubits Layers Parameters LR Accuracy Precision Recall Fl1
best-performing quantum
models and the best classical Classical model 5,359 0.01 0.818 0.825 0.817 0.818
model from the optimization
with Optuna for the adult dataset 4 2 69 0.100 0.786 0.784 0.786 08
11 1 166 0.200 0.788 0.787 0.788 0.79
8 1 121 0.100 0.786 0.786 0.786 0.787
10 2 171 0.100 0.773 0.773 0.773 0.774
11 3 210 0.200 0.766 0.766 0.766 0.766
9 2 154 0.100 0.764 0.764 0.764 0.764
Table 9 Summary of the LR Qubits Layers Parameters Accuracy Precision Recall F1
best-performing quantum
g)mdelt% ”S,m%, Vem?ta}i gyter from 100 722 442 224 0.771 0.771 0.771 0.771
e optimization with Optuna
for the adult dataset 0.200 3,75 443 306 0.762 0.768 0.76 0.762
0.010 5,6 33 210 0.734 0.754 0.729 0.734
0.001 4,2 4.4 127 0.639 0.639 0.639 0.639

A.2 Discussion

Across the datasets, we can observe that the pure QVCs show
performance differences from 0.01 up to 0.104 to their clas-
sical counterparts. Unsurprisingly, given the small number of
training steps, the larger learning rates again deliver mostly
the best results.

For the adult and breast cancer datasets, we can observe
that again the gap between the approach with vertical layers
and those without is about the same as the gap from classical
to the best QVC-based model. For the heart disease dataset,
we can observe that the best vertical layer-based approach is
indeed better than the best single QVC approach. However,
we can also observe that this requires a significant increase
in vertical and horizontal layers. Nevertheless, a correspond-
ingly sized model with a single vertical layer would have been
significantly too large to simulate. Thus, this demonstrates
the advantage of multiple smaller layers.

Overall, the number of parameters shows the expected
behavior, in that the models with vertical layers have more
parameters than those with a single layer, which in turn
use fewer parameters than the classical models. The only
exception again is the heart disease dataset, which uses a sur-
prisingly small classical model. However, since that is also
the smallest dataset, some of these deviating results might be
explained by variance in the result given the small number
of training steps.
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Appendix B Full experimental results

B.1 Experiments on the full network anomaly
dataset

The full results for the full IoT-23 dataset can be found in
Tables 10, 11, 12, and 13.

Table 10 Full experimental results for with learning rate 103

Qubits Layers Accuracy Precision Recall F1

1 1 0.8895 0.8915 0.8869 0.8884
2 1 0.8886 0.8904 0.8862 0.8876
2 2 0.8899 0.8922 0.8873 0.8888
3 1 0.8891 0.8910 0.8866 0.8881
3 2 0.8930 0.8961 0.8900 0.8918
3 3 0.8925 0.8955 0.8896 0.8913
4 1 0.8886 0.8903 0.8862 0.8875
4 2 0.8926 0.8956 0.8896 0.8914
4 3 0.8992 0.9034 0.8959 0.8980
4 4 0.9301 0.9409 0.9253 0.9289
5 1 0.8884 0.8901 0.8860 0.8873
5 2 0.8934 0.8965 0.8904 0.8922
5 3 0.9199 0.9295 0.9152 0.9185
5 4 0.9289 0.9412 0.9238 0.9276
5 5 0.9015 0.9077 0.8976 0.9001
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Table 10 continued Table 11 Full experimental results for with learning rate 102

Qubits Layers Accuracy Precision Recall Fl1 Qubits Layers Accuracy Precision Recall F1

6 1 0.8888 0.8906 0.8804 0.8878 1 1 0.8972 0.9015 0.8938 0.8959
6 2 0.8945 0.8979 0.8915 0.8933 2 1 0.9097 0.9199 0.9048 0.9080
6 3 0.8946 0.8981 0.8915 0.8934 2 2 0.9130 0.9256 0.9076 09112
6 4 0.9034 0.9090 0.8997 0.9021 3 1 0.9108 0.9213 0.9058 0.9092
6 5 0.9007 0.9058 0.8971 0.8994 3 2 0.9235 0.9257 0.9214 0.9228
6 6 0.9363 0.9422 0.9328 0.9354 3 3 0.9584 0.9605 0.9566 0.9580
7 1 0.8886 0.8904 0.8862 0.8876 4 1 0.9246 0.9359 0.9197 0.9232
7 2 0.9013 0.9062 0.8978 0.9000 4 2 0.9591 0.9639 0.9563 0.9587
7 3 0.9189 0.9288 0.9142 0.9174 4 3 0.9692 0.9725 0.9671 0.9689
7 4 0.9205 0.9309 0.9157 0.9191 4 4 0.9643 0.9668 0.9624 0.9639
7 5 0.9225 0.9262 0.9196 0.9216 5 1 0.9274 0.9401 0.9221 0.9259
7 6 0.9435 0.9478 0.9407 0.9429 5 2 0.9582 0.9600 0.9566 0.9579
7 7 0.9209 0.9307 0.9162 0.9195 5 3 0.9660 0.9690 0.9639 0.9657
8 1 0.8888 0.8904 0.8864 0.8878 5 4 0.9774 0.9796 0.9758 0.9772
8 2 0.9049 0.9110 0.9010 0.9035 5 5 0.9756 0.9769 0.9744 0.9754
8 3 0.9217 0.9326 0.9168 0.9202 6 1 0.9287 0.9411 0.9236 0.9273
8 4 0.9200 0.9289 0.9155 0.9187 6 2 0.9504 0.9509 0.9496 0.9501
8 5 0.9238 0.9375 0.9183 0.9222 6 3 0.9648 0.9669 0.9631 0.9645
8 6 0.9577 0.9633 0.9546 0.9572 6 4 0.9692 0.9691 0.9690 0.9690
8 7 0.9508 0.9578 0.9472 0.9501 6 5 0.9765 0.9776 0.9755 0.9764
9 1 0.8873 0.8887 0.8851 0.8863 6 6 0.9775 0.9777 0.9770 0.9773
9 2 0.8969 0.9013 0.8935 0.8956 7 1 0.9274 0.9385 0.9225 0.9260
9 3 0.9289 0.9412 0.9237 0.9275 7 2 0.9515 0.9529 0.9500 0.9511
9 4 0.9319 0.9399 0.9279 0.9309 7 3 0.9593 0.9608 0.9579 0.9590
9 5 0.9564 0.9621 0.9533 0.9559 7 4 0.9766 0.9783 0.9752 0.9764
9 6 0.9225 0.9344 0.9174 0.9210 7 5 0.9779 0.9793 0.9767 0.9777
9 7 0.9242 0.9269 0.9218 0.9235 7 6 0.9804 0.9813 0.9795 0.9803
10 1 0.8880 0.8895 0.8858 0.8870 7 7 0.9791 0.9797 0.9784 0.9789
10 2 0.9187 0.9288 0.9139 0.9172 8 1 0.9287 0.9405 0.9237 0.9273
10 3 0.9129 0.9213 0.9084 09114 8 2 0.9638 0.9655 0.9623 0.9635
10 4 0.9452 0.9503 0.9422 0.9446 8 3 0.9590 0.9596 0.9581 0.9588
10 5 0.9576 0.9580 0.9568 0.9573 8 4 0.9799 0.9818 0.9785 0.9797
10 6 0.9237 0.9375 0.9182 0.9221 8 5 0.9742 0.9746 0.9737 0.9741
10 7 0.9272 0.9329 0.9238 0.9263 8 6 0.9806 0.9819 0.9795 0.9805
11 1 0.8881 0.8896 0.8859 0.8872 8 7 0.9815 0.9825 0.9805 0.9813
11 2 0.9232 0.9347 0.9182 0.9218 9 1 0.9277 0.9391 0.9228 0.9264
11 3 0.9242 0.9369 0.9189 0.9227 9 2 0.9671 0.9703 0.9649 0.9668
11 4 0.9255 0.9387 0.9201 0.9240 9 3 0.9663 0.9674 0.9653 0.9661
11 5 0.9242 0.9281 0.9213 0.9233 9 4 0.9737 0.9739 0.9733 0.9736
11 6 0.9640 0.9669 0.9619 0.9636 9 5 0.9778 0.9784 0.9771 0.9777
11 7 0.9597 0.9617 0.9581 0.9594 9 6 0.9770 0.9777 0.9762 0.9768
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Table 11 continued Table 12 continued
Qubits Layers Accuracy Precision Recall Fl1 Qubits Layers Accuracy Precision Recall Fl1
9 7 0.9835 0.9841 0.9829 0.9834 7 6 0.9826 0.9824 0.9826 0.9825
10 1 0.9313 0.9417 0.9266 0.9301 7 7 0.9863 0.9863 0.9861 0.9862
10 2 0.9580 0.9594 0.9566 0.9577 8 1 0.9677 0.9714 0.9655 0.9674
10 3 0.9647 0.9661 0.9635 0.9645 8 2 0.9857 0.9855 0.9859 0.9857
10 4 0.9707 0.9710 0.9701 0.9705 8 3 0.9802 0.9808 0.9796 0.9801
10 5 0.9802 0.9811 0.9794 0.9801 8 4 0.9857 0.9859 0.9854 0.9856
10 6 0.9810 0.9822 0.9800 0.9809 8 5 0.9843 0.9844 0.9841 0.9842
10 7 0.9815 0.9812 0.9817 0.9814 8 6 0.9836 0.9832 0.9840 0.9835
11 1 0.9276 0.9392 0.9226 0.9263 8 7 0.9806 0.9801 0.9812 0.9806
11 2 0.9667 0.9706 0.9643 0.9663 9 1 0.9659 0.9690 0.9638 0.9656
11 3 0.9745 0.9762 0.9732 0.9743 9 2 0.9808 0.9809 0.9805 0.9807
11 4 0.9808 0.9822 0.9797 0.9807 9 3 0.9816 0.9812 0.9818 0.9815
11 5 0.9800 0.9810 0.9791 0.9799 9 4 0.9837 0.9840 0.9834 0.9837
11 6 0.9808 0.9819 0.9798 0.9806 9 5 0.9785 0.9780 0.9788 0.9784
11 7 0.9832 0.9838 0.9826 0.9831 9 6 0.9893 0.9892 0.9895 0.9893

9 7 0.9837 0.9842 0.9832 0.9836

. . . 10 1 0.9632 0.9677 0.9605 0.9628

Table 12 Full experimental results for with learning rate 10~!

10 2 0.9607 0.9631 0.9589 0.9604
Qubits Layers Accuracy Precision Recall F1 10 3 0.9844 0.9844 0.9843 0.9844
1 1 0.9056 0.9148 0.9008 0.9039 10 4 0.9797 0.9794 0.9799 0.9796
2 1 0.9130 0.9265 0.9073 09111 10 5 0.9823 0.9822 0.9822 0.9822
2 2 0.9546 0.9608 0.9514 0.9541 10 6 0.9868 0.9865 0.9871 0.9868
3 1 0.9435 0.9479 0.9406 0.9428 10 7 0.9797 0.9810 0.9786 0.9796
3 2 0.9093 0.9273 0.9027 0.9070 11 1 0.9686 0.9719 0.9665 0.9683
3 3 0.9701 0.9706 0.9694 0.9699 11 2 0.9674 0.9698 0.9656 0.9671
4 1 0.9351 0.9450 0.9305 0.9339 11 3 0.9825 0.9831 0.9818 0.9824
4 2 0.9641 0.9656 09627 09638 11 4 0.9798 0.9793 0.9805  0.9798
4 3 0.9806 0.9808 09802 09805 !l 5 0.9846 0.9847 0.9844  0.9845
4 4 0.9831 0.9830 0.9829 0.9830 11 6 0.9842 0.9844 0.9838 0.9841
5 1 0.9698 0.9703 0.9691 0.9696 11 7 0.9826 0.9821 0.9831 0.9825
5 2 0.9666 0.9688 0.9648 0.9663
5 3 0.9776 0.9775 0.9774 0.9775 Table 13 Full experimental results for with learning rate 2 % 10~
5 4 0.9802 0.9800 0.9803 0.9801 - —
5 5 0.9810 09819 0.9802 0.9309 Qubits Layers Accuracy Precision Recall F1
6 1 0.9505 0.9557 0.9475 0.9499 1 1 0.9044 09119 0.9001 0.9029
6 2 0.9813 0.9815 0.9810 0.9812 2 1 0.9126 0.9271 0.9067 0.9106
6 3 0.9709 0.9729 0.9693 0.9706 2 2 0.9659 0.9653 0.9669 0.9658
6 4 0.9843 0.9846 0.9839 0.9842 3 1 0.9552 0.9577 0.9532 0.9548
6 5 0.9788 0.9785 0.9790 0.9787 3 2 0.9790 0.9788 0.9790 0.9789
6 6 0.9769 0.9763 0.9776 0.9768 3 3 0.9731 0.9733 0.9727 0.9730
7 1 0.9643 0.9687 0.9617 0.9639 4 1 0.9565 0.9585 0.9548 0.9561
7 2 0.9787 0.9786 0.9786 0.9786 4 2 0.9651 0.9693 0.9626 0.9648
7 3 0.9757 0.9759 0.9753 0.9756 4 3 0.9745 0.9753 0.9736 0.9743
7 4 0.9800 0.9797 0.9802 0.9799 4 4 0.9823 0.9822 0.9822 0.9822
7 5 0.9856 0.9855 0.9855 0.9855 5 1 0.9389 0.9468 0.9349 0.9380
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Table 13 continued B.2 Results on the reduced network anomaly
Qubits Layers Accuracy Precision Recall Fl1 dataset
5 2 0.9812 0.9808 09817 09812 The full results for the reduced I0T-23 dataset can be found
5 3 0.9841 0.9838 0.9843 0.9840 in Tables 14, 15, and 16.
5 4 0.9799 0.9799 0.9797 0.9798
5 5 0.9651 0.9664 0.9639 0.9649 Table 14 Full experimental results for with learning rate 102
6 1 0.9545 0.9597 0.9515 0.9539 Qubits Layers Accuracy Precision Recall F1
6 2 0.9760 0.9771 0.9750 0.9758

1 1 0.9031 0.9093 0.8991 0.9017
6 3 0.9759 0.9764 0.9752 0.9757

2 1 0.9229 0.9321 0.9184 0.9216
6 4 0.9760 0.9776 0.9747 0.9758

2 2 0.8899 0.9024 0.8842 0.8876
6 5 0.9855 0.9852 0.9857 0.9854

3 1 0.9234 0.9332 0.9187 0.9220
6 6 0.9835 0.9831 0.9840 0.9835

3 2 0.9627 0.9674 0.9601 0.9623
7 1 0.9489 0.9554 0.9455 0.9482

3 3 0.9628 0.9675 0.9602 0.9624
7 2 0.9790 0.9785 0.9794 0.9789

4 1 0.9198 0.9279 0.9156 0.9185
7 3 0.9794 0.9794 0.9792 0.9793

4 2 0.9627 0.9667 0.9602 0.9623
7 4 0.9861 0.9862 0.9860 0.9861

4 3 0.9643 0.9687 0.9618 0.9639
7 5 0.9884 0.9888 0.9880 0.9884

4 4 0.9611 0.9625 0.9597 0.9608
7 6 0.9771 0.9787 0.9758 0.9769

5 1 0.9176 0.9254 0.9134 0.9163
7 7 0.9846 0.9844 0.9848 0.9846

5 2 0.9578 0.9593 0.9564 0.9575
8 1 0.9308 0.9424 0.9259 0.9295

5 3 0.9607 0.9620 0.9593 0.9604
8 2 0.9804 0.9801 0.9806 0.9803

5 4 0.9708 0.9712 0.9701 0.9706
8 3 0.9879 0.9876 0.9881 0.9879

5 5 0.9782 0.9792 0.9772 0.9780
8 4 0.9680 0.9699 0.9664 0.9677

6 1 0.9170 0.9248 0.9128 0.9157
8 5 0.9731 0.9749 0.9716 0.9728
X 6 0.9842 0.9843 0.9840 0.9841 6 2 0.9582 0.9589 0.9573 0.9579
X ; 0'9807 0'9814 0.9800 Ov9806 6 3 0.9604 0.9609 0.9596 0.9601
9 | 0'9600 0'9620 0.9584 0'9597 6 4 0.9772 0.9778 0.9766 0.9771
0 ) 0'9805 0'981 | 0.9798 0'9804 6 5 0.9788 0.9794 0.9781 0.9787
0 3 0'9858 0'9855 0.9860 0'9858 6 6 0.9704 0.9702 0.9704 0.9703
0 A 0'9721 0'9743 0'9704 0.9718 7 1 0.9166 0.9242 0.9124 0.9153
9 5 0'9739 0.9760 0'9723 0'9737 7 2 0.9614 0.9625 0.9601 0.9611
0 P 0'9797 0.9796 0'9797 0'9797 7 3 0.9737 0.9741 0.9731 0.9735

’ ' ’ ' 7 4 0.9741 0.9753 0.9730 0.9739

9 7 0.9843 0.9838 0.9847 0.9842

7 5 0.9800 0.9808 0.9791 0.9799
10 1 0.9676 0.9709 0.9655 0.9673

7 6 0.9803 0.9812 0.9795 0.9802
10 2 0.9537 0.9601 0.9504 0.9531

7 7 0.9825 0.9823 0.9826 0.9824
10 3 0.9802 0.9800 0.9802 0.9801
10 4 0.9825 0.9821 0.9828 0.9824
10 5 0.9799 0.9800 0.9797 0.9798
10 6 0.9768 0.9772 0.9762 0.9767
10 7 0.9826 0.9840 0.9814 0.9825 Table 15 Full experimental results for with learning rate 10~
11 1 0.9393 0.9486 0.9350 0.9383 - —

Qubits Layers Accuracy Precision Recall F1
11 2 0.9839 0.9835 0.9842 0.9838
11 3 0.9563 0.9617 0.9533 0.9558 1 1 0.8769 0.8767 0.8785 0.8767
11 4 0.9762 0.9777 0.9750 0.9760 2 1 0.9066 0.9255 0.8998 0.9041
11 5 0.9868 0.9872 0.9864 0.9868 2 2 0.9412 0.9411 0.9408 0.9409
11 6 0.9838 0.9835 0.9840 0.9838 3 1 0.9629 0.9623 0.9642 0.9628
11 7 0.9862 0.9866 0.9857 0.9861 3 2 0.9693 0.9710 0.9678 0.9690

3 3 0.9750 0.9745 0.9753 0.9749
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Table 15 continued Table 16 continued

Qubits Layers Accuracy Precision Recall Fl1 Qubits Layers Accuracy Precision Recall Fl1

4 1 0.9448 0.9464 0.9431 0.9443 6 5 0.9810 0.9806 0.9812 0.9809

4 2 0.9735 0.9732 0.9737 0.9734 6 6 0.9791 0.9806 0.9778 0.9789

4 3 0.96838 0.9685 0.9688 0.9687 7 1 0.9654 0.9674 0.9638 0.9652

4 4 0.9825 0.9837 0.9816 0.9824 7 2 0.9826 0.9823 0.9830 0.9826

5 1 0.9623 0.9666 0.9598 0.9619 7 3 0.9754 0.9756 0.9750 0.9753

5 2 0.9646 0.9650 0.9639 0.9644 7 4 0.9679 0.9680 0.9675 0.9677

5 3 0.9797 0.9793 0.9799 0.9796 7 5 0.9799 0.9794 0.9805 0.9798

5 4 0.9779 0.9790 0.9769 0.9778 7 6 0.9874 0.9880 0.9867 0.9873

5 5 0.9856 0.9856 0.9855 0.9855 7 7 0.9824 0.9831 0.9816 0.9823

6 1 0.9681 0.9710 0.9661 0.9678

6 2 0.9713 0.9720 0.9705 0.9711

6 3 0-9765 09763 09764 09764 g 3 Experiments on the heart disease dataset

6 4 0.9751 0.9757 0.9744 0.9750

6 > 0.9735 0.9742 0.9726 - 0.9733 The full results for the heart disease dataset can be found in

6 6 0.9755 0.9762 0.9748 0.9754 Tables 17, 18, 19, and 20.

7 1 0.9758 0.9781 0.9741 0.9756

7 2 0.9715 0.9715 0.9713 0.9714

7 3 0.9818 0.9835 0.9805 0.9817 Table 17 Full experimental results for the heart disease dataset with

7 4 0.9791 0.9807 0.9778 0.9790 learning rate 10~

7 5 0.9827 0.9828 0.9824  0.9826 Qubits Layers Accuracy  Precision Recall F1

7 6 0.9828 0.9839 0.9818 0.9827

7 7 0.9807 0.9814 0.9799 0.9805 1 1 0.6354 0.6335 0.6333 0.6337
2 1 0.4792 0.4755 0.4758 0.4756
2 2 0.4688 0.3873 0.4935 0.4826

Table 16 Full experimental results for with learning rate 2 % 107! 3 1 0.6875 0.6874 0.6889 0.6882

Qubits  Layers  Accuracy  Precision  Recall F1 3 2 0.4896 0.4383 0.5105  0.5188
3 3 0.5104 0.4748 0.4961 0.4951

1 1 0.8667 0.8685 0.8696 0.8667 4 ] 0.6354 0.6236 0.6268 0.6380

2 1 0.9066 0.9255 0.8998 0.9041 4 ) 03542 03471 03490 03463

2 2 0.9408 0.9413 0.9398 0.9405 4 3 0.4896 04212 0.4699 0.4509

3 1 0.9570 0.9567 0.9587 0.9569 4 4 05104 0.4634 05301 0.5491

3 2 0.9736 0.9731 0.9743 0.9736 5 ] 04583 04574 04627 04621

3 3 0.9789 0.9803 0.9777 0.9787 5 ) 04583 03806 0.4824 04567

4 1 0.8810 0.8945 0.8877 0.8808 5 3 04688 0.4659 04752 04741

4 2 0.9644 0.9638 0.9651 0.9643 5 4 04792 04503 0.4954 04937

4 3 0.9432 0.9443 0.9461 0.9431 5 s 04271 04164 04203 0.4170

4 4 0.9773 0.9769 0.9778 0.9773 6 | 0.5000 04535 04837 04777

5 1 0.9537 0.9536 0.9556 0.9536 6 ) 03958 03956 03961 03964

5 2 0.9558 0.9589 0.9536 0.9554 6 3 0.4896 0.4639 0.5052 0.5069

5 3 0.9866 0.9868 0.9864 0.9866 6 4 04271 04164 04203 04170

5 4 0.9819 0.9815 0.9824 0.9819 6 s 03958 03862 0.4052 03954

5 5 0.9829 0.9835 0.9823 0.9828 6 6 05833 05767 0.5778 0.5803

6 ! 09539 0.9538 0.9558 0.9538 7 1 0.5938 0.5862 0.5876 0.5912

6 2 0.9678 0.9713 0.9655 0.9674 7 ) 04792 04141 0.4601 04375

6 3 0.9799 0.9795 0.9802 0.9798 7 3 05313 03835 05026 05163

6 4 0.9854 0.9863 0.9846 0.9853 7 4 05417 04921 0.5242 0.5352
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Table 17 continued Table 18 continued
Qubits Layers Accuracy Precision Recall Fl1 Qubits Layers Accuracy Precision Recall Fl1
7 5 0.5313 0.5225 05248 05259 5 1 0.5521 0.4397 0.5261  0.5852
7 6 0.4583 0.4497 04680 04646 5 2 0.5000 0.4773 05150 05194
7 7 0.5000 0.4945 04954 04953 5 3 0.5833 0.5743 0.5765  0.5804
8 1 0.4375 0.4253 04484 04412 5 4 0.5938 0.5934 0.5941  0.5938
8 2 0.4375 0.3672 04601 04152 5 5 0.5729 0.5300 05562  0.5792
8 3 0.3958 0.3827 03882 03825 6 1 0.4792 0.4444 04654 04573
8 4 0.6146 0.6135 06137 06135 6 2 0.4167 0.3902 04052 03921
8 5 0.5417 0.4759 05216 05369 6 3 0.4167 0.3705 04013 03724
8 6 0.5208 0.5206 05242 05244 6 4 0.5313 0.5121 0.5209  0.5234
8 7 0.5104 0.4982 0.5026  0.5028 6 5 0.5000 0.4459 04824 04743
9 1 0.6563 0.6553 0.6556  0.6552 6 6 0.5313 0.4910 0.5157  0.5208
9 2 0.5313 0.4684 0.5549  0.6250 7 1 0.6771 0.6711 0.6882  0.7109
9 3 0.5104 0.3379 04804 02606 7 2 0.6146 0.5911 0.6020  0.6229
9 4 0.4583 0.4386 04719 04654 7 3 0.5208 0.4690 0.5033  0.5048
9 5 0.4896 0.4212 04699 04509 7 4 0.4688 0.4516 04595  0.4559
9 6 0.5938 0.5934 0.5941  0.5938 7 5 0.5313 0.4910 0.5157  0.5208
9 7 0.5313 0.4971 05170 05214 7 6 0.5417 0.4565 0.5190  0.5403
10 1 0.6563 0.6562 0.6595  0.6600 7 7 0.5729 0.5418 0.5588  0.5742
10 2 0.4896 0.3287 04608 02554 8 1 0.6875 0.6761 0.6784  0.6970
10 3 0.5729 0.5555 0.5627 05703 8 2 0.5625 0.4706 0.5386  0.5947
10 4 0.5833 0.5714 05752  0.5808 8 3 0.5417 0.4921 0.5242  0.5352
10 5 0.4271 0.4240 04333 04306 8 4 0.6250 0.6042 06131  0.6336
10 6 0.5313 0.5308 0.5353  0.5357 8 5 0.5417 0.4991 0.5255  0.5348
10 7 0.4688 0.4659 04752 04741 8 6 0.6771 0.6609 0.6660  0.6924
11 1 0.4063 0.3701 04229 03913 8 7 0.4792 0.4709 04732 04723
11 2 0.5313 0.5161 0.5444 05536 9 1 0.5938 0.5862 0.6046  0.6172
11 3 0.5417 0.5399 0.5477  0.5493 9 2 0.4375 0.4313 04458 04417
11 4 0.5833 0.5152 05621 06173 9 3 0.5104 0.4136 04869  0.4702
11 5 0.4375 0.4000 04235 04058 9 4 0.5729 0.5515 0.5614 05712
11 6 0.5729 0.5649 0.5667 05694 9 5 0.6771 0.6609 0.6660  0.6924
11 7 0.5729 0.5672 05680  0.5696 9 6 0.5833 0.5382 0.5660  0.5962
9 7 0.5729 0.5157 0.5536  0.5876
Table 18 Full experimental results for the heart disease dataset with 10 1 0.6042 0.5547 0.5856 0.6343
learning rate 102 10 2 0.3438 0.2874 03627 02756
Qubits Layers Accuracy Precision Recall F1 10 3 0.4479 0.4474 0.4477 0.4479
10 4 0.5729 0.5725 05732 0.5729
1 1 0.5521 0.4397 0.5261 05852 o 5 0.4792 0.3407 04523 0.3242
2 1 0.5938 0.5530 0.5771  0.6087 ¢ 6 0.5208 0.3934 04941 04783
2 2 0.4688 0.4471 04582 04531 o 7 0.5833 0.4592 0.5556  0.7802
3 1 0.7292 0.7262 0.7255 07295 4 1 0.4063 0.3984 0.4007  0.3982
3 2 0.5625 0.5623 0.5660  0.5665 2 0.5313 0.3992 0.5039  0.5167
3 3 0.5104 0.5078 0.5078 05079 4 3 0.5208 0.5104 05137 05144
4 1 0.3854 0.3848 0.3850 03854 4 0.6563 0.6544 0.6542  0.6547
4 2 0.4688 0.3191 0.5000  0.2344 4 5 0.5208 0.4763 0.5046  0.5063
4 3 0.4271 0.4265 04268 04271 4 6 0.5938 0.5589 0.5784  0.6042
4 4 0.5521 0.5071 0.5353 05498 7 0.6146 0.5697 0.5967  0.6461
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Table 19 Full experimental results for the heart disease dataset with

learning rate 10~!

Table 20 Full experimental results for the heart disease dataset with

learning rate 2 % 10~}

Qubits Layers Accuracy Precision Recall F1 Qubits Layers Accuracy Precision Recall F1

1 1 0.5313 0.3469 0.5000 0.2656 1 1 0.5313 0.3469 0.5000 0.2656
2 1 0.6458 0.6457 0.6497 0.6507 2 1 0.6458 0.6457 0.6497 0.6507
2 2 0.5313 0.3469 0.5000 0.2656 2 2 0.5313 0.3469 0.5000 0.2656
3 1 0.7083 0.7072 0.7072 0.7072 3 1 0.7083 0.7072 0.7072 0.7072
3 2 0.6042 0.5674 0.5882 0.6206 3 2 0.6042 0.5674 0.5882 0.6206
3 3 0.6771 0.6574 0.6647 0.6985 3 3 0.6771 0.6574 0.6647 0.6985
4 1 0.4479 0.4464 0.4464 0.4465 4 1 0.4479 0.4464 0.4464 0.4465
4 2 0.7188 0.7073 0.7092 0.7344 4 2 0.7188 0.7073 0.7092 0.7344
4 3 0.6458 0.6329 0.6366 0.6508 4 3 0.6458 0.6329 0.6366 0.6508
4 4 0.5729 0.5649 0.5667 0.5694 4 4 0.5729 0.5649 0.5667 0.5694
5 1 0.6250 0.6042 0.6131 0.6336 5 1 0.6250 0.6042 0.6131 0.6336
5 2 0.6667 0.6661 0.6667 0.6661 5 2 0.6667 0.6661 0.6667 0.6661
5 3 0.6875 0.6825 0.6824 0.6883 5 3 0.6875 0.6825 0.6824 0.6883
5 4 0.7083 0.7000 0.7007 0.7157 5 4 0.7083 0.7000 0.7007 0.7157
5 5 0.6250 0.6209 0.6209 0.6231 5 5 0.6250 0.6209 0.6209 0.6231
6 1 0.5729 0.5591 0.5863 0.6040 6 1 0.5729 0.5591 0.5863 0.6040
6 2 0.6250 0.6113 0.6157 0.6277 6 2 0.6250 0.6113 0.6157 0.6277
6 3 0.4792 0.3824 0.4562 0.4069 6 3 0.4792 0.3824 0.4562 0.4069
6 4 0.6771 0.6768 0.6778 0.6771 6 4 0.6771 0.6768 0.6778 0.6771
6 5 0.6563 0.6562 0.6595 0.6600 6 5 0.6563 0.6562 0.6595 0.6600
6 6 0.5729 0.5649 0.5667 0.5694 6 6 0.5729 0.5649 0.5667 0.5694
7 1 0.5521 0.4834 0.5314 0.5563 7 1 0.5521 0.4834 0.5314 0.5563
7 2 0.7188 0.7187 0.7209 0.7204 7 2 0.7188 0.7187 0.7209 0.7204
7 3 0.6667 0.6630 0.6627 0.6656 7 3 0.6667 0.6630 0.6627 0.6656
7 4 0.7396 0.7347 0.7340 0.7436 7 4 0.7396 0.7347 0.7340 0.7436
7 5 0.5729 0.5232 0.5549 0.5829 7 5 0.5729 0.5232 0.5549 0.5829
7 6 0.5833 0.5714 0.5752 0.5808 7 6 0.5833 0.5714 0.5752 0.5808
7 7 0.5833 0.5832 0.5843 0.5840 7 7 0.5833 0.5832 0.5843 0.5840
8 1 0.5625 0.5383 0.5503 0.5594 8 1 0.5625 0.5383 0.5503 0.5594
8 2 0.7188 0.7180 0.7248 0.7304 8 2 0.7188 0.7180 0.7248 0.7304
8 3 0.6250 0.6248 0.6288 0.6297 8 3 0.6250 0.6248 0.6288 0.6297
8 4 0.5729 0.5591 0.5641 0.5697 8 4 0.5729 0.5591 0.5641 0.5697
8 5 0.5938 0.5934 0.5941 0.5938 8 5 0.5938 0.5934 0.5941 0.5938
8 6 0.6146 0.6145 0.6176 0.6180 8 6 0.6146 0.6145 0.6176 0.6180
8 7 0.6250 0.6235 0.6235 0.6235 8 7 0.6250 0.6235 0.6235 0.6235
9 1 0.5833 0.5788 0.5922 0.5991 9 1 0.5833 0.5788 0.5922 0.5991
9 2 0.6250 0.6113 0.6392 0.6715 9 2 0.6250 0.6113 0.6392 0.6715
9 3 0.6771 0.6742 0.6739 0.6759 9 3 0.6771 0.6742 0.6739 0.6759
9 4 0.7188 0.7135 0.7131 0.7219 9 4 0.7188 0.7135 0.7131 0.7219
9 5 0.6250 0.6224 0.6222 0.6231 9 5 0.6250 0.6224 0.6222 0.6231
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B.4 Experiments on the breast cancer dataset Table 21 continued

Qubits Layers Accuracy Precision Recall F1
The full results for the breast cancer dataset can be found in
Tables 21, 22, 23, and 24. 6 0.6094 0.5514 0.5652 0.5912

7 0.5313 0.5211 0.5214 0.5212

Jable 21 Full i | Its for the b d " 10 1 0.0573 0.0571 0.0616 0.0564
1:ameing rateuloejgperlmenta results for the breast cancer dataset witl 10 ) 05573 0.4056 0.4866 0.4548

10 3 0.2292 0.2292 0.2357 0.2357
Qubits Layers Accuracy Precision Recall F1 10 4 0.6094 0.4599 0.5366 0.6647
1 1 0.7135 0.6586 0.6652 0.7693 10 5 0.3698 0.3332 0.3402 0.3290
2 1 0.1927 0.1829 0.1795 0.1875 10 6 0.5729 0.3857 0.4946 0.4570
2 2 0.3490 0.3146 0.3973 0.3396 10 7 0.5521 0.5104 0.5179 0.5210
3 1 04115 0.3977 0.3973 0.3983 11 1 0.1615 0.1513 0.1848 0.1401
3 2 0.1719 0.1713 0.1723 0.1772 11 2 0.2500 0.2471 0.2679 0.2533
3 3 0.6615 0.5882 0.6080 0.6939 11 3 0.5729 0.4050 0.4982 0.4912
4 1 09115 0.9094 09116 0.9076 11 4 0.3802 0.3764 0.4045 0.3963
4 2 0.4219 0.3041 0.5045 0.7094 11 5 0.4323 0.4322 0.4420 0.4425
4 3 0.0781 0.0781 0.0813 0.0797 11 6 0.5677 0.4992 0.5205 0.5297
4 4 0.3958 0.3956 0.4036 0.4048 11 7 0.6823 0.6440 0.6455 0.6861
5 1 0.0781 0.0779 0.0830 0.0781
5 2 0.1510 0.1364 0.1777 0.1167 Table 22 Full experimental results for the breast cancer dataset with
5 3 0.5729 0.3642 0.4911 0.2895 learning rate 1072
5 4 0.3958 0.3845 0.4304 0.4163 Qubits Layers Accuracy Precision Recall F1
5 5 0.7031 0.7018 0.7116 0.7059
6 1 0.4063 0.3968 0.3964 0.3986 1 1 0.5885 0.4552 0.5205 0.5618
6 ) 09167 0.9120 0.9036 0.9288 2 1 0.4427 0.3485 0.3902 0.3351
6 3 0.3906 0.3886 0.4116 0.4067 2 2 0.5833 0.3684 0.5000 0.2917
6 4 0.4375 0.4063 0.4107 0.4051 3 1 0.0625 0.0621 0.0607 0.0661
6 5 0.4219 0.3742 0.3866 0.3705 3 2 0.5833 0.3684 0.5000 0.2917
6 6 0.5938 0.5667 0.5679 0.5742 3 3 0.5833 0.3684 0.5000 0.2917
7 1 0.4844 0.4706 0.4705 0.4706 4 1 0.5260 0.3544 0.4527 0.3178
7 ) 0.5677 0.3621 0.4866 0.2884 4 2 0.2396 0.2366 0.2357 0.2426
7 3 0.3021 03018 0.3071 0.3095 4 3 0.5573 0.3579 0.4777 0.2861
7 4 0.5104 0.4905 0.4911 0.4908 4 4 0.6042 0.4210 0.5250 0.7979
7 5 0.3229 0.3203 0.3429 0.3330 5 1 0.5833 0.3684 0.5000 0.2917
7 6 0.6771 0.6679 0.6679 0.6679 5 2 0.2083 0.1827 0.1839 0.1815
7 7 0.4948 0.4421 0.4563 0.4468 5 3 0.5938 0.4425 0.5214 0.5889
8 1 0.1615 0.1587 0.1759 0.1578 5 4 0.5781 0.4335 0.5080 0.5271
8 2 04115 03120 0.4884 0.4197 5 5 0.6198 0.4743 0.5473 0.7130
8 3 0.5729 0.5729 0.5911 0.5918 6 1 0.0990 0.0983 0.0973 0.1033
8 4 0.4531 0.4530 0.4688 0.4684 6 2 0.6198 0.4743 0.5473 0.7130
8 5 0.7500 0.7209 07161 0.7727 6 3 0.6198 0.4662 0.5455 0.7477
] 6 0.6927 0.6607 0.6598 0.6944 6 4 0.5052 0.4104 0.4509 0.4199
8 7 0.5938 0.4976 0.5357 0.5697 6 5 0.5885 0.3820 0.5063 0.7932
9 1 0.2500 0.2493 0.2625 0.2563 6 6 0.5729 0.3642 0.4911 0.2895
9 5 0.1979 0.1971 0.1982 02034 7 1 0.1146 0.1084 0.1036 0.1146
9 3 0.2917 0.2401 0.2554 02280 7 2 0.7500 0.7064 0.7054 0.8144
9 4 0.6823 0.6135 06295 07324 ' 3 0.8750 0.8634 0.8500 09118
9 5 05156 0.4651 0.4777 0.4729 7 4 0.5208 0.4690 0.4821 0.4780
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Table 22 continued Table 23 continued
Qubits Layers Accuracy Precision Recall Fl1 Qubits Layers Accuracy Precision Recall Fl1
7 5 0.4323 0.3094 03723 02708 5 1 0.9167 0.9133 0.9089  0.9196
7 6 0.8333 0.8212 08125  0.8474 5 2 0.9167 0.9143 09143 09143
7 7 0.6875 0.5944 06250  0.8256 5 3 0.8698 0.8607 0.8509  0.8869
8 1 0.0677 0.0677 00688 00702 5 4 0.8854 0.8802 0.8750  0.8889
8 2 0.6302 0.4808 05563  0.8060 5 5 0.9271 0.9238 09179  0.9333
8 3 0.8906 0.8816 08688 09211 6 1 0.6146 0.6104 06143 06113
8 4 0.5990 0.4369 05241 06311 6 2 0.4063 0.3764 03804 03745
8 5 0.6198 0.4662 0.5455 07477 6 3 0.5729 0.5682 0.6071  0.6212
8 6 0.6406 0.5175 05723 07441 6 4 0.9167 0.9151 09196 09125
8 7 0.6198 0.4743 05473 07130 6 5 0.9063 0.9005 0.8911  0.9214
9 1 0.5521 0.3557 04732 02849 6 6 0.7708 0.7699 07821  0.7748
9 2 0.5885 0.3820 0.5063 07932 7 1 0.9323 0.9300 09277 09327
9 3 0.5990 0.4082 05188 07963 7 2 0.9271 0.9247 09232 0.9265
9 4 0.5781 0.3663 04955 02906 7 3 0.8229 0.8165 0.8143  0.8194
9 5 0.5990 0.4082 05188 07963 7 4 0.9063 0.9020 0.8964 09111
9 6 0.5885 0.3820 0.5063 07932 7 5 0.8594 0.8577 0.8652  0.8560
9 7 0.5833 0.3684 0.5000 02917 7 6 0.8958 0.8929 0.8929  0.8929
10 1 0.5573 0.3579 04777 02861 7 7 0.9063 0.9011 0.8929 09175
10 2 0.5625 0.3600 04821 02872 8 1 0.9479 0.9458 09411 09526
10 3 0.6979 0.6856 0.6839  0.6887 8 2 0.8125 0.8064 0.8054  0.8077
10 4 0.6302 0.5169 05652  0.6777 8 3 0.9375 0.9355 09339 0.9372
10 5 0.5885 0.4032 0.5098  0.5941 8 4 0.8906 0.8864 0.8830  0.8911
10 6 0.6563 0.5351 0.5875  0.8146 8 5 0.9479 0.9462 0.9446  0.9480
10 7 0.7969 0.7668 07580  0.8609 8 6 0.9063 0.9015 0.8946  0.9141
11 1 0.1250 0.1172 0.1125  0.1231 8 7 0.9063 0.9028 0.9000  0.9065
11 2 0.5469 0.3638 04705 03397 9 1 0.9323 0.9309 09348  0.9284
11 3 0.5833 0.3684 0.5000 02917 9 2 0.8854 0.8812 0.8786  0.8848
11 4 0.8125 0.7856 07750 08784 9 3 0.9115 0.9091 0.9098  0.9084
11 5 0.6927 0.6556 0.6563  0.6998 9 4 0.9167 0.9140 09125 09157
11 6 0.6354 0.4921 05625 08077 9 5 0.9271 0.9238 09179  0.9333
11 7 0.5885 0.3820 05063 07932 9 6 0.8958 0.8906 0.8839  0.9028
9 7 0.8802 0.8726 0.8634  0.8944
Table 23 Full experimental results for the breast cancer dataset with 10 1 0.5010 0.8996 0.9063 0.8971
learning rate 10~ 10 2 0.9271 0.9238 09179  0.9333
Qubits Layers Accuracy Precision Recall F1 10 3 0.8802 0.8751 0.8705 0.8822
10 4 0.9167 0.9125 0.9054  0.9253
1 1 0.5833 0.3634 0.5000 02917 ¢ 5 0.8698 0.8591 0.8473  0.8966
2 1 0.9531 0.9513 0.9473 09568 ¢ 6 0.9531 0.9513 09473 0.9568
2 2 0.5833 0.4365 0.5125 05449 g 7 0.9010 0.8972 0.8938  0.9021
3 1 0.9531 0.9515 0.9491 09544 4 1 0.7708 0.7581 07536  0.7694
3 2 0.4427 0.3485 0.5205  0.6421 4 2 0.9167 0.9120 0.9036  0.9288
3 3 0.7396 0.7190 0.7143 07424 4 3 0.9323 0.9291 09223 0.9405
4 1 0.8594 0.8496 0.8402 08750 4 0.9063 0.9005 0.8911 09214
4 2 0.8854 0.8784 08696  0.8983 5 0.8802 0.8756 0.8723  0.8802
4 3 0.8229 0.8100 08018 0.8355 6 0.8906 0.8854 0.8795  0.8958
4 4 0.8281 0.8199 08152 0.8287 7 0.9219 0.9198 0.9205 09191
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Table 24 Full experimental results for the breast cancer dataset with Table 24 continued
learning rate 2 * 1071 N .

Qubits Layers Accuracy Precision Recall F1
Qubits Layers Accuracy Precision Recall F1

10 5 0.9219 0.9192 09170  0.9219
1 1 0.5833 0.3684 05000 02917 q 6 0.9479 0.9462 09446 0.9480
2 1 05156 05150 05241 05236 1o 7 0.9010 0.8958 0.8884 09100
2 2 0.5938 0.4057 05143 06702 1y 1 0.9427 0.9405 09366  0.9458
3 1 0.9427 0.9402 09348 09485 g 2 09115 0.9076 09027 09153
3 2 0.8125 0.8104 08179  0.80% 1y 3 0.8906 0.8843 0.8759  0.9021
3 3 0.8854 0.8817 08804 08833 g 4 0.9531 0.9515 0.9491  0.9544
4 1 0.7969 0.7881 07848 07938 3 5 0.9271 0.9244 09214 09283
4 2 0.5417 0.5186 05196 05206 13 6 0.9323 0.9305 09313 0.9298
4 3 0.9167 0.9143 09143 09143 4 7 0.9323 0.9297 09259  0.9349
4 4 0.9688 0.9746 0.9675  0.9625
5 1 0.9323 0.9297 0.9259  0.9349
> 2 04115 0.4095 04330 04295 g5 Experiments on the adult dataset
5 3 0.9219 0.9198 0.9205  0.9191
5 4 0.9375 0.9352 0.9321 0.9392 The full results for the adult dataset can be found in
5 5 0.8125 0.7951 0.7857 0.8361 Tables 25, 26, 27, and 28.
6 1 0.9375 0.9355 0.9339  0.9372
6 2 0.7240 0.6993 0.6955  0.7277
6 3 0.8698 0.8615 0.8527 0.8828 Table 25 Full experimental results for the adult dataset with learning
6 4 0.9167 0.9153 09214 o912 el0”’
6 5 0.9219 0.9185 0.9134 0.9264 Qubits Layers Accuracy Precision Recall F1
6 6 09115 0.9084 0.9063 09111 1 1 0.6471 0.6329 0.6471  0.6740
7 1 0.9531 0.9513 09473 09568 2 1 0.3854 0.3811 0.3854  0.3821
7 2 0.9271 0.9244 09214 09283 2 2 0.5599 0.5077 0.5599  0.6040
7 3 0.8177 0.8128 08134 08123 3 1 0.4258 0.3966 0.4258  0.4080
7 4 0.9635 0.9621 09580 09677 3 2 0.3828 0.3717 0.3828  0.3739
7 5 09219 09189 09152 09239 3 3 0.6367 0.6336 0.6367  0.6416
7 6 0.9219 0.91381 09116 09293 4 1 0.4570 0.4301 0.4570  0.4470
7 7 0.8958 0.8936 0.8964 08915 4 2 0.5130 0.4281 05130  0.5321
8 1 0.9323 0.9291 09223 09405 4 3 0.4635 0.3328 0.4635  0.3312
8 2 0.9167 0.9140 09125 09157 4 4 04141 0.4130 04141 0.4135
8 3 09167 09125 09054 09253 5 1 0.4596 0.4596 0.4596  0.4596
8 4 0.9427 0.9410 09402 09418 5 2 0.5143 0.3644 0.5143  0.7536
8 5 0.9375 0.9344 09268 09478 5 3 0.3190 0.3005 03190  0.2976
8 6 0.9375 0.9355 09339 09372 5 4 0.4635 0.4324 0.4635 04533
8 7 09115 0.9080 0.9045 09130 5 5 0.4453 0.4083 0.4453 04271
9 1 0.9427 0.9407 09384 09436 ¢ 1 0.2682 0.2682 02682  0.2682
9 2 0.9479 0.9458 0.9411 0.9526 6 2 0.4857 0.3335 0.4857 0.3346
9 3 0.9167 09133 09089 09196 ¢ 3 0.3424 0.3412 0.3424  0.3413
9 4 0.9323 0.9302 09295 09311 ¢ 4 0.5208 0.5115 0.5208  0.5226
9 5 0.9271 0.9255 09286 09233 ¢ 5 0.5885 0.5611 0.5885  0.6181
9 6 0.9427 0.9412 09420 09404 ¢ 6 0.5964 0.5844 0.5964  0.6088
9 7 0.9167 0.9125 09054 09253 7 1 0.4492 0.4153 0.4492  0.4339
10 1 0.9427 0.9402 0.9348 0.9485 7 2 0.4922 0.4895 0.4922 0.4920
10 2 0.9271 0.9250 0.9250 0.9250 7 3 0.2760 0.2760 0.2760 0.2760
10 3 0.9063 0.9036 0.9036 0.9036 7 4 0.3451 0.3451 0.3451 0.3451
10 4 0.9375 0.9350 0.9304  0.9416
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Table 25 continued Table 26 continued
Qubits Layers Accuracy Precision Recall Fl1 Qubits Layers Accuracy Precision Recall Fl1
7 5 0.4388 0.4359 0.4388 0.4375 5 1 0.3372 0.3180 0.3372 0.3165
7 6 0.5339 0.5290 0.5339 0.5353 5 2 0.2904 0.2898 0.2904 0.2897
7 7 0.5924 0.5893 0.5924 0.5954 5 3 0.4961 0.4935 0.4961 0.4960
8 1 0.2474 0.2414 0.2474 0.2392 5 4 0.7188 0.7157 0.7188 0.7287
8 2 0.4089 0.3834 0.4089 0.3908 5 5 0.5911 0.5893 0.5911 0.5928
8 3 0.4375 0.4371 0.4375 0.4373 6 1 0.4531 0.3928 0.4531 0.4222
8 4 0.6549 0.6538 0.6549 0.6571 6 2 0.7005 0.6999 0.7005 0.7021
8 5 0.4753 0.4736 0.4753 0.4749 6 3 0.6107 0.6008 0.6107 0.6229
8 6 0.5690 0.5657 0.5690 0.5712 6 4 0.5924 0.5858 0.5924 0.5987
8 7 0.4987 0.4817 0.4987 0.4985 6 5 0.6289 0.6289 0.6289 0.6289
9 1 0.3477 0.3371 0.3477 0.3373 6 6 0.6901 0.6852 0.6901 0.7028
9 2 0.4935 0.4030 0.4935 0.4835 7 1 0.4258 0.3619 0.4258 0.3762
9 3 0.3281 0.2952 0.3281 0.2886 7 2 0.3190 0.3106 0.3190 0.3097
9 4 0.3841 0.3832 0.3841 0.3834 7 3 0.7083 0.7060 0.7083 0.7151
9 5 0.3984 0.3839 0.3984 0.3878 7 4 0.6836 0.6834 0.6836 0.6840
9 6 0.5117 0.5115 0.5117 0.5117 7 5 0.6107 0.6106 0.6107 0.6108
9 7 0.6797 0.6774 0.6797 0.6848 7 6 0.5729 0.5728 0.5729 0.5730
10 1 0.4909 0.4843 0.4909 0.4904 7 7 0.5951 0.5933 0.5951 0.5968
10 2 0.5013 0.3362 0.5013 0.7503 8 1 0.4987 0.3328 0.4987 0.2497
10 3 0.4844 0.3587 0.4844 0.4277 8 2 0.5872 0.5630 0.5872 0.6122
10 4 0.5443 0.4721 0.5443 0.5977 8 3 0.5182 0.5158 0.5182 0.5186
10 5 0.5208 0.4991 0.5208 0.5252 8 4 0.6289 0.6231 0.6289 0.6373
10 6 0.4844 0.4222 0.4844 0.4726 8 5 0.5924 0.5899 0.5924 0.5948
10 7 0.4701 0.4679 0.4701 0.4696 8 6 0.6497 0.6497 0.6497 0.6499
11 1 0.4010 0.3966 0.4010 0.3980 8 7 0.6797 0.6797 0.6797 0.6797
11 2 0.3346 0.3008 0.3346 0.2949 9 1 0.6615 0.6603 0.6615 0.6636
11 3 0.5000 0.3333 0.5000 0.2500 9 2 0.5247 0.3919 0.5247 0.6964
11 4 0.6094 0.5926 0.6094 0.6310 9 3 0.6146 0.5593 0.6146 0.7300
11 5 0.5026 0.4313 0.5026 0.5052 9 4 0.6419 0.6413 0.6419 0.6429
11 6 0.4909 0.4148 0.4909 0.4810 9 5 0.5781 0.5679 0.5781 0.5863
11 7 0.6146 0.6135 0.6146 0.6158 9 6 0.6745 0.6738 0.6745 0.6759
9 7 0.5326 0.5214 0.5326 0.5359
Table 26 Full experimental results for the adult dataset with learning 10 1 0.5104 0.4622 05104 05162
rate 1072 10 2 0.5742 0.5571 0.5742 0.5878
Qubits Layers Accuracy Precision Recall F1 10 3 05013 0.4094 0.5013 0.5035
10 4 0.6211 0.6063 0.6211 0.6426
! ! 0.4219 0.3722 0.4219 0.3857 10 5 0.6367 0.6366 0.6367 0.6368
2 ! 0.5990 0.5978 0.5990 0.6002 10 6 0.7305 0.7304 0.7305 0.7308
2 2 0.3060 0.2871 0.3060 0.2830 10 7 0.6849 0.6830 0.6849 0.6895
3 ! 0.3008 0.2805 0.3008 0.2754 11 1 0.5339 0.4624 0.5339 0.5723
3 2 0.4154 0.3905 0.4154 0.3989 11 2 0.7409 0.7393 0.7409 0.7467
3 3 0.4909 0.3782 0.4909 0.4668 11 3 0.4896 0.4440 0.4896 0.4845
4 ! 0.5091 0.4565 0.5091 0.5149 11 4 0.4688 0.4516 0.4688 0.4643
4 2 0.5078 0.4273 0.5078 05179 11 5 0.5833 0.5824 0.5833 0.5841
4 3 0.5794 0.5639 0.5794 0.5926 11 6 0.5521 0.5515 0.5521 0.5524
4 4 0.6432 0.6393 0.6432 0.6494 11 7 0.6628 0.6592 0.6628 0.6700
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Table 27 Full experimental results for the adult dataset with learning Table 27 continued
rate 1071 Qubits Layers Accuracy Precision Recall F1
Qubits Layers Accuracy Precision Recall F1

10 4 0.6615 0.6567 0.6615  0.6708
! ! 0.6120 0.5867 0.6120  0.6483 5 0.6836 0.6780 0.6836  0.6972
2 ! 0.5404 0.4401 05404 06423 4 6 0.7135 0.7128 07135 07157
2 2 0.4961 0.4698 04961 04951 4, 7 0.7318 0.7306 07318  0.7358
3 ! 0.5143 0.3879 05143 05823 1 0.5846 0.5787 05846  0.5897
3 2 0.5729 0.5384 05729 06040 4, 2 05938 0.5905 05938  0.5968
3 3 0.5247 0.5242 05247 05248 3 0.6888 0.6866 0.6888  0.6944
4 ! 0.4766 0.3249 04766 02690 4 0.6445 0.6442 0.6445  0.6451
4 2 0.7865 0.7840 07865 0.8001 4, 5 0.7083 0.7067 07083 07132
4 3 0.4909 0.4476 04909 04867 4, 6 0.7174 0.7174 07174 07175
4 4 0.6927 0.6848 06927 07143 7 0.6836 0.6834 0.6836  0.6840
5 1 0.7539 0.7538 07539 0.7544
5 2 0.6940 0.6830 0.6940  0.7252 A ‘ . .
5 3 07214 0.7213 07214 07216 'rl':tlzlz >2k8101i1?11 experimental results for the adult dataset with learning
5 4 05977 0.5856 05977 06105 :

Qubits Layers Accuracy Precision Recall F1
5 5 0.7435 0.7435 07435 07436
6 1 0.7435 0.7386 07435 07632 | I 0.5000 03333 05000  0.2500
6 2 0.6641 0.6559 06641 06812 2 1 0.5378 0.4854 05378 05637
6 3 0.6615 0.6505 06615 06846 2 2 05169 0.4964 05169 05202
6 4 0.7370 0.7359 07370 07407 3 1 04570 03758 04570 04104
6 5 0.6745 0.6734 06745 06768 3 2 0.5169 03857 05169 06165
6 6 0.6549 0.6407 06549 06842 3 3 0.6276 0.6274 0.6276  0.6278
7 1 0.7201 0.7134 07201 07426 4 1 0.6862 0.6843 0.6862  0.6907
7 2 05378 05272 05378 05415 4 2 0.6081 0.6041 0.6081  0.6126
7 3 0.7435 0.7388 07435 07624 4 3 0.6237 0.6077 06237  0.6478
7 4 0.6354 0.6281 06354 06470 4 4 0.6432 0.6406 06432  0.6476
7 5 0.7435 0.7434 07435 07439 5 1 0.7201 0.7199 07201 0.7206
7 6 0.6250 0.6243 06250 06259 5 2 0.5768 0.5678 0.5768  0.5838
7 7 0.7044 0.7039 07044 07058 5 3 0.6693 0.6658 06693  0.6766
8 1 0.7865 0.7864 07865 07870 5 4 0.6849 0.6830 0.6849  0.6895
8 2 05352 05138 05352 05427 5 5 0.6810 0.6810 06810 0.6810
8 3 07122 0.7052 07122 07348 6 1 0.6732 0.6693 06732 0.6817
8 4 0.7344 0.7343 07344 07345 6 2 0.6445 0.6443 0.6445  0.6450
8 5 07122 07119 07122 07131 6 3 0.7331 0.7319 07331 07373
8 6 0.7005 0.7002 07005 07013 6 4 0.6953 0.6947 06953  0.6969
8 7 0.6302 0.6279 06302 06335 6 5 0.7135 0.7132 07135 07147
9 1 0.7409 0.7387 07409 07494 6 6 0.6315 0.6312 06315  0.6319
9 2 0.7643 0.7643 07643 07644 7 1 0.7201 0.7109 07201 07521
9 3 0.7005 0.7005 07005 07006 7 2 0.7318 0.7315 07318 07327
9 4 0.7135 0.7094 07135 07265 7 3 0.6172 0.6126 06172 06231
9 5 0.6667 0.6661 06667 06678 7 4 0.6758 0.6745 06758  0.6787
9 6 0.7148 0.7130 07148 07204 7 5 0.7279 0.7252 07279 0.7369
9 7 0.7266 0.7266 07266 07266 7 6 0.5807 0.5791 05807 05820
10 1 0.7617 0.7616 07617 07622 7 7 0.6745 0.6713 0.6745  0.6816
10 2 0.7734 0.7733 07734 07743 8 I 0.7240 0.7227 07240 07281
10 3 0.7266 0.7264 07266 07272 8 2 0.6354 0.6253 0.6354  0.6518
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Table 28 continued

Qubits Layers Accuracy Precision Recall F1

8 3 0.6979 0.6979 0.6979 0.6980
8 4 0.5990 0.5745 0.5990 0.6285
8 5 0.6719 0.6558 0.6719 0.7114
8 6 0.7214 0.7213 0.7214 0.7215
8 7 0.5924 0.5856 0.5924 0.5990
9 1 0.7109 0.7013 0.7109 0.7422
9 2 0.6823 0.6735 0.6823 0.7043
9 3 0.7409 0.7400 0.7409 0.7442
9 4 0.6875 0.6871 0.6875 0.6885
9 5 0.7122 0.7106 0.7122 0.7170
9 6 0.6667 0.6664 0.6667 0.6672
9 7 0.5872 0.5864 0.5872 0.5880
10 1 0.7188 0.7008 0.7188 0.7877
10 2 0.7526 0.7519 0.7526 0.7554
10 3 0.7214 0.7213 0.7214 0.7215
10 4 0.7044 0.7044 0.7044 0.7045
10 5 0.6888 0.6811 0.6888 0.7089
10 6 0.6484 0.6481 0.6484 0.6489
10 7 0.7201 0.7200 0.7201 0.7203
11 1 0.7878 0.7874 0.7878 0.7899
11 2 0.6198 0.6121 0.6198 0.6301
11 3 0.7656 0.7656 0.7656 0.7657
11 4 0.7474 0.7466 0.7474 0.7507
11 5 0.6849 0.6805 0.6849 0.6956
11 6 0.7240 0.7234 0.7240 0.7259
11 7 0.6979 0.6972 0.6979 0.6999
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