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“[...]when you have eliminated the impossible,
whatever remains, however improbable,

must be the truth[...]”
(Sherlock Holmes, The Sign of the Four, 1890)



Resumo
Nesta tese, discutimos aspectos mistura de neutrinos em supernovas passadas e futuras.
Mostramos nossa análise de dados sobre a emissão e mistura de neutrinos da supernova
SN1987A, rejeitando com limites superiores a 2σ a solução de hierarquia invertida de
massas para conversão de sabor. Também fornecemos uma extensa descrição dos efeitos
de descoerência quântica gerada por gravidade quântica ou outra física exótica equivalente
em supernovas para diferentes modelos. Além disso, examinamos a possível dependência
da energia pelos parâmetros de descoerência quântica (Γ “ Γ0pE{E0qn) com diferentes
leis de potência (n “ 0, 2, 5{2). Nossos resultados indicam que os detectores de geração
futura (DUNE, Hyper-K e JUNO) podem restringir significativamente os parâmetros de
descoerência quântica em diferentes cenários. Para uma supernova localizada a 10 kpc da
Terra, DUNE poderia potencialmente estabelecer limites de 3σ para Γ ď 6, 2 ˆ 10´14 eV
no cenário de hierarquia de massa normal, enquanto Hyper-K poderia impor um limite de
2σ em Γ ď 3, 6 ˆ 10´14 eV para a hierarquia de massa invertida com n “ 0 — supondo
que não haja troca de energia entre o subsistema de neutrinos e ambiente não padrão.
Esses limites se tornam ainda mais restritivos para uma supernova mais próxima da
Terra. Quando relaxamos a restrição de troca de energia, para uma supernova a 10 kpc,
DUNE pode estabelecer um limite de 3σ de Γ8 ď 4, 2 ˆ 10´28 eV para hierarquia normal,
enquanto Hyper-K poderia restringir Γ8 ď 1, 3 ˆ 10´27 eV para hierarquia invertida (n “ 0)
com 2σ, representando os limites mais restritivos reportados até o momento. Além disso,
examinamos o impacto da perda de neutrinos durante a propagação em uma futura
detecção de supernovas por efeitos de descoerência quântica, também estabelecendo limites
estatísticos para esse fenômeno.

Palavras-chave: Neutrinos. Descoerência quântica. Supernovas.



Abstract
In this thesis, we discuss aspects of past and future supernova-neutrino mixing. We show
our data analysis concerning SN1987A emission and mixing, rejecting with more than
2σ bounds on inverted hierarchy solution for flavor conversion. We also provided an
extensive framework to understand quantum decoherence effects in supernovas engendered
by quantum gravity or other equivalent exotic physics for different models. Additionally,
we examine the potential energy dependence of quantum decoherence parameters (Γ “

Γ0pE{E0qn) with different power laws (n “ 0, 2, 5{2). Our findings indicate that future-
generation detectors (DUNE, Hyper-K, and JUNO) can significantly constrain quantum
decoherence parameters under different scenarios. For a Supernova located 10 kpc away
from Earth, DUNE could potentially establish 3σ bounds of Γ ď 6.2 ˆ 10´14 eV in the
normal mass hierarchy scenario, while Hyper-K could impose a 2σ limit of Γ ď 3.6ˆ10´14 eV
for the inverted mass hierarchy with n “ 0 — assuming no energy exchange between
the neutrino subsystem and non-standard environment. These limits become even more
restrictive for a closer Supernova. When we relax the assumption of energy exchange, for
a 10 kpc supernova, DUNE can establish a 3σ limit of Γ8 ď 4.2 ˆ 10´28 eV for normal
hierarchy, while Hyper-K could constrain Γ8 ď 1.3 ˆ 10´27 eV for inverted hierarchy
(n “ 0) with 2σ, representing the most stringent bounds reported to date. Furthermore,
we examine the impact of neutrino loss during propagation for future Supernova detection,
also establishing statistical limits to this phenomenon.

Keywords: Neutrinos. Quantum decoherence. Supernovas.
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Introduction

In the last decades, the neutrino sector has revealed interesting and intriguing aspects
of our growing knowledge of particle physics. Particularly, in flavor physics, the neutrino
mixing models provide a framework where the flavor states do not have well-defined
mass, as well as energy states do not interact through Standard Model, allowing our
measurement of quantum effects in macroscopic scales, a discovery awarded with Nobel
prize. Despite advances in neutrino physics and many years of an active community, some
central questions are still to be answered, such as the origin of neutrino mass, CP violation
in neutrinos, and details of neutrino mixing models, relevant to characterizing any neutrino
flux across all sources.

Amongst the possible neutrino sources, with some of them briefly mentioned in
Chapter 1, in this thesis, we devote our attention to supernovas. In this extreme event
in astrophysics, neutrinos play a relevant role, carrying almost all gravitational binding
energy of the dying star as well as changing the dynamics and thermodynamics of the
explosion. This challenging neutrino environment is under intense research, and it is unique
for a number of reasons. The most prominent is the only place in the current Universe
with the existence of a dense neutrino gas, generating non-linear unsolved neutrino mixing
effects nowadays. If this event occurs in our galaxy, the neutrino flux crossing Earth can
be orders of magnitude higher than the solar neutrino flux. Finally, although we were
able to measure extra-terrestrial neutrinos in the past, we have never detected such a
well-characterized source, with high flux, and a large baseline as a galactic supernova.
The baseline of thousands of light-years shows to be a notable feature to be explored and
used in the investigation of many works such as neutrino decays [2], making supernovas
natural laboratories of particle physics. In this thesis, it is not the single characteristic of
a future galactic supernova detection we are interested in, but the distance from Earth
makes our analysis unique. The specific phenomenon we prospect here is the spontaneous
transition of pure neutrino states to mixed ones or quantum decoherence. This effect is
expected in different candidate theories of quantum gravity by the so-called quantum foam
[3, 4]. Although we inspire part of our analysis in works where quantum gravity is an
extensive subject, we remain agnostic, limiting ourselves to phenomenologically modeling
the neutrino propagation through open quantum systems formalism, which provides a
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robust framework to understand quantum decoherence effects, and we attempt to bring
this discussion to an eventual future supernova neutrino detection.

In spite of the fact that the main goal of this work is to provide a consistent and
testable solution to the quantum decoherence problem in a future supernova neutrino
detection, the path to cross in order to achieve this goal makes this thesis be divided
into two main parts: in the first one, we show a very brief scenario of neutrino physics
in Chapter 1. Then, we focus on the basics of neutrino mixing in vacuum and inside
matter in Chapters 2 and 3. In Chapter 4, we start our discussion on supernova neutrinos
and neutrino mixing in this environment, followed by an introduction to the supernova
SN1987A physics and our analysis of this astrophysical event in Chapter 5. Afterward, in
part two, we introduce the quantum decoherence formalism in addition to its effects on
neutrino propagation in Chapter 6. In Chapter 7 we apply the concepts developed in other
chapters to a possible future supernova detection, bounding quantum decoherence not
only the first time in this neutrino source but also finding the most stringent statistical
limits on quantum decoherence parameters up to date.
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Chapter 1

Brief status of neutrino physics

Since its proposal in the 1930s, its discovery in the 1950s, evidence of mixing amongst
flavors in the 1990s, and many other questions and answers made in this almost one
century of intense research, we should recognize that neutrino physics became fairly huge.
In this sense, this chapter has no intention at all to cover the entire neutrino physics, but
just gives a very brief historical status of the current scenario in which (part of) this topic
of particle physics is placed in the view of the author.

Firstly, it is worth mentioning that neutrinos are fermions with three different flavors:
νe, νµ and ντ , partners to their corresponding charged leptons e´, µ´ and τ´, interacting, as
far as we know, only through gravitational and weak interactions, and then, not electrically
or strongly charged, making interaction rates (or cross sections) very low compared to other
fundamental particles. We show some details on neutrino interaction with ordinary matter
in Chapter 3. They are also incredibly light, compared to other massive particles of the
Standard Model. However, probably, the most remarkable feature for the purposes of this
thesis is the propagation basis is not the same as the interaction basis, and consequently,
flavor state α can be written as a combination of energy states να “

ř

i Uαiνi, with
amplitudes Uαi being elements of the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix
[5], parameterized with three mixing angles θ12, θ13 and θ23 and a charge-parity (CP) phase
δCP. For a more complete description of neutrino properties, we refer to [6]. We start
the discussion about neutrino mixing in Chapter 2, and all other chapters, as well as
our results, will be focused on this neutrino feature. In the following, we discuss three
individual aspects of neutrino physics that are a focus of intense research and are also a
starting point to discuss this particle: neutrino mass, neutrino mixing parameters, and
some neutrino sources.

Neutrino mass: Currently, there is no concise, complete, and experimentally proven
mechanism to explain neutrino mass existence or nature. As nature, we mean that nowadays
we do not know if neutrinos are Dirac or Majorana particles. Consequently, the question
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Table 1 – Current global fitted parameters [1], used in all calculations in this thesis. The
normal neutrino mass hierarchy is considered in the fit of the parameters above.

Parameter Best Fit (1σ)
θ12poq 33.45`0.77

´0.75
θ13poq 8.62`0.12

´0.12
θ23poq 42.1`1.1

´0.9
∆m2

21 ˆ p105 eV´2
q 7.42`0.21

´0.20
∆m2

31 ˆ p103 eV´2
q 2.510`0.027

´0.027

of the neutrino as its antiparticle is still to be answered. Experimental efforts through
neutrinoless double-beta decay (0νββ), a decay expected only for Majorana neutrinos,
and then potentially define neutrino nature, are ongoing (see a review in [7]). From a
theoretical point of view, suggestions for the neutrino-mass mechanism through the so-
called seesaw models is a very active research subject and basically states that the most
general Lagrangian for neutrino masses would allow the existence of a large Majorana mass
compared to an also present Dirac mass term, making this unbalance in the diagonalized
neutrino mass matrix provide a very tiny effective mass. A review of the topic can be seen
in [8]. In the context of experimental ν-mass limits, the most promising limits are from
tritium β-decay experiments, with the best limits coming from the KATRIN experiment,
with mν ă 0.9 eV with 90% C.L [9]. Limits from cosmology are more stringent, however,
extremely model-dependent.

Neutrino mixing parameters: It is clear that a precision era of neutrino mixing
has arrived with recently decommissioned, in current operation, and future-generation
detectors, such as KamLAND [10], Daya Bay [11], Super-Kamiokande [12], NOvA [13],
T2K [14], Hyper-Kamiokande [15], DUNE [16], JUNO [17], and many others. We were able
to measure with good precision the three neutrino mixing angles, as well as the two mass-
squared differences ∆m2

21 and ∆m2
31 (the details of these quantities and their implications

will be clear in Chapter 2), and improvements from future generation experiments, are
expected. The same enhancement is valid for the δCP phase. However, it is a quantity
still not precisely measured nowadays, and more data is crucial to determine a non-null
CP phase. Table 1 shows the most recent global fitted mixing parameters, being the ones
assumed to obtain our results further in this work.

Grand-unified neutrino flux: Neutrino detection from natural and human-made
sources across a very large spectrum was a great achievement in the last decades. Neutrinos
from our Sun correspond to the most abundant flux that crosses Earth, with an energy
scale of few MeV. The solution to the solar neutrino problem was an extensive problem in
neutrino physics with the solution provided by the resonant matter effect and we discuss
it in Section 3.2 (see also [19] for a recent review). Neutrinos from nuclear reactors also
gained importance with precise experiments such as Daya Bay and KamLAND, with the
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Figure 1 – Neutrino flux from many sources. Dashed lines correspond to antineutrinos and
solid ones to neutrinos, with a possible fraction of antineutrinos for Supernovas,
atmospheric, the thermal flux of the Sun, DSNB, CNB, and extragalactic
neutrinos measured by IceCube. The bands represent the expected range of
flux. Data taken from [18].

former also able to detect geoneutrinos or neutrinos coming from inside the Earth’s crust
and mantle [20, 21]. Cosmic rays interacting with the Earth’s atmosphere also produce
a non-negligible high energy neutrino flux, being a source of background to dedicated
experiments [22]. One promising neutrino source is particle accelerators, with controlled
initial flux, where future experiments such as DUNE claim precise measurement of δCP.
Finally, ultra-high energy neutrinos could be detected through the IceCube experiment,
with neutrino energies beyond the PeV scales, and more than that, from outside the Milky
Way, which opened the extragalactic ultra-high energy neutrino astronomy era. Neutrinos
from the Big Bang, which constitute the Cosmic Neutrino Background (CNB), are expected
to be abundant, but with the lowest energy known. This is not a single diffuse neutrino
flux, since exploding stars from different galaxies provide a Diffuse Supernova Neutrino
Background (DSNB), expected to be detected in the near future. Galactic supernovas are
also an important neutrino laboratory and will be the focus of this work. Figure 1 shows
the neutrino spectrum across these sources. It is possible to see that supernovas have a
high flux and accessible detection energy for contemporaneous experiments.

To understand supernova neutrinos in order to explore their particular features
aligned with the purposes of this thesis, we need to describe the foundations of neutrino
mixing in the next chapters, starting with neutrino mixing in vacuum in the density matrix
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formalism in Chapter 2.
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Chapter 2

Neutrino mixing in vacuum

The neutrino mixing is already a widely accepted framework to describe how ν mass
degeneracy plays a role in neutrino flavor composition from many sources [6]. The idea
behind neutrino mixing is that the generation and the propagation basis are fundamentally
different: since neutrinos are created in a well-defined flavor basis in order to conserve
leptonic numbers in a quantum field theory interaction, it should propagate in a well-
defined mass basis, given the form of the equations of motion of quantum mechanics.
In the neutrino flavor basis, we define the three known states as νe, νµ, and ντ , while
for the charge current interaction, the charged partner lepton is part of the generation
process. However, these states are a mixing of a number of mass states, or ν1, ν2, and ν3.
To understand the implications of this related basis on neutrino propagation, we devote
this chapter to describing the most basic aspects of neutrino mixing. Firstly, we can define
a neutrino density matrix as

ρptq “
ÿ

j

wj |νjptqy xνjptq| , (2.1)

where wj is a statistical weight corresponding to a specific mass state and |νjptqy respects
the Schrödinger equation (in Schrödinger picture). The trace of this operator is one at any
time

Trrρptqs “
ÿ

i

xνi| ρptq |νiy “
ÿ

i

ÿ

j

wj xνjptq|νiy xνi|νjptqy “ 1 , (2.2)

and also ρ2ptq has the trace

Tr
“

ρ2
ptq

‰

“
ÿ

j

w2
j , (2.3)

which is equal to unity if the neutrino ensemble is pure. Hence, a probability to measure a
neutrino with state i after a time t is
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Pijptq “ Trrρip0qρjptqs “ xνi| ρjptq |νiy . (2.4)

In quantum mechanics, a way to calculate such probability is to evolve the density
matrix in time through the Liouville-von Neumann equation (in natural units, i.e. h̄ “ 1):

d

dt
ρptq “ ´irH, ρptqs. (2.5)

Let us use the example of a two-neutrino system in order to follow flavor evolution
after some propagation in vacuum.

2.1 Two-level system

Since in the mass basis the ν Hamiltonian is diagonal, we can write the two-level
system as

H “

˜

E1 0
0 E2

¸

, (2.6)

with Ei “
a

p2 ` m2
i , with i “ 1, 2. For all purposes studied in this thesis, mj ! p and

the energy can be expanded in Taylor series with m2
i {p2 Ñ 0, with p Ñ E, thus

Ei „ E `
m2

i

2E . (2.7)

It is possible to expand the Hamiltonian into SU(2) generators, the Pauli matrices
such that

H «

˜

E `
m2

1`m2
2

4E
0

0 E `
m2

1`m2
2

4E

¸

`

˜

´∆m2
21

4E
0

0 ∆m2
21

4E

¸

“

ˆ

E `
m2

1 ` m2
2

4E

˙

1 ´
∆m2

21
4E σ3 ,

(2.8)
or

H “ h01 ` h3σ3 ,

then obtaining h0 “ E `
m2

1`m2
2

4E
and h3 “ ´

∆m2
21

4E
, with h1 “ h2 “ 0.

Let us make the hypothesis that the neutrino is generated in the mass state ν1 and
we define

ρp0q “ ρ1 “ |ν1y xν1| “

˜

1 0
0 0

¸

. (2.9)
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Let us also suppose that we are interested in finding the probability that, after some
propagation, the neutrino arrives in a ν1 state. Using eq. (2.4), it is possible to get
P11 “ Trrρp0qρptqs “ Trrρ1ρ1s “ Trrρ1s “ 1. There would be no need for such analysis
since the ν Hamiltonian in (2.6) is diagonal in the mass basis.

However, it is well known that neutrinos are created in defined flavor states and
undefined mass states. In quantum mechanics, it implies that it is possible to write a flavor
state as a superposition of mass states, or

|ναy “
ÿ

i

Uαi |νiy , (2.10)

with α “ e, µ, τ and i “ 1, 2, 3 for active known neutrinos and Uαi are elements of the
rotation matrix

U “

˜

cos θ sin θ
´ sin θ cos θ ,

¸

(2.11)

that connects both bases. The same unitary transformation can be applied to the density
matrix:

ρα “ UρU : , (2.12)

where the subscript α denotes the flavor basis.

If the neutrino is created in a specific flavor state, e.g. νe, with an initial density
matrix in the flavor basis

ραp0q “ ρe “ |νey xνe| “

˜

1 0
0 0

¸

, (2.13)

and using the initial condition

ρp0q “ U :ραp0qU “

˜

cos2 θ sin θ cos θ
sin θ cos θ sin2 θ

¸

, (2.14)

it is possible to use (2.5), after expanding in SU(2) generators in order to find the coefficients
from an evolved density matrix such as

ρptq “

˜

ρ0ptq ` ρ3ptq ρ1ptq ´ iρ2ptq

ρ1ptq ` iρ2ptq ρ0ptq ´ ρ3ptq

¸

, (2.15)

to find the coefficients in (2.15)
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ρ0ptq “
1
2

ρ1ptq “
sin 2θ

2 cosωt

ρ2ptq “
sin 2θ

2 sinωt

ρ3ptq “
cos 2θ

2

, (2.16)

and finally the density matrix

ρptq “

˜

cos2 θ sin 2θ
2 e´iωt

sin 2θ
2 eiωt sin2 θ

¸

, (2.17)

where we short-handed ω “
∆m2

21
2E

and ω represents the oscillation frequency in vacuum. To
get the time-evolution in the flavor basis, we need to use again (2.12) to find the electron
neutrino survival probability

Pee “ Tr rραp0qραptqs “ sin4 θ ` cos4 θ ` sin θ cos θ sin 2θ cosωt

“ 1 ´ sin2 2θ sin2
ˆ

ωt

2

˙

, (2.18)

where we used the identities

sin x cosx “
1
2 sin 2x

sin4 x ` cos4 x “ cos2 2x ` 2 sin2 x cos2 x

cos 2x “ 1 ´ 2 sin2 x

. (2.19)

2.2 Three-level system

In a more realistic analysis, with the complete set of three active neutrinos, the
procedure is similar, despite the expansion of operators in SU(3)

ρ “ ρµλµ H “ hµλµ , (2.20)

where λµ are the generators of SU(3), the Gell-Mann matrices. As in a two-neutrino system,
in the mass basis the neutrino Hamiltonian is diagonal, but now it contains two oscillation
frequencies, given the two squared mass differences:

H “
1

2E

¨

˚

˝

0 0 0
0 ∆m2

21 0
0 0 ∆m2

31

˛

‹

‚

, (2.21)

and when applied in equation (2.5), no mass state evolve to any other. However, let us
again use the hypothesis of a created flavor state νe evolving in time. The initial density
matrix on the flavor basis would be
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ραp0q “

¨

˚

˝

1 0 0
0 0 0
0 0 0

˛

‹

‚

, (2.22)

that we rotated to the mass basis to a version of (2.11) for three neutrino families, but
now with three mixing angles and a phase [5]

U “

¨

˚

˝

c12c13 s12c13 s13e
´iδCP

´s12c23 ´ c12s13s23e
iδCP c12c23 ´ s12s13s23e

iδCP c13s23

s12s23 ´ c12s13c23e
iδCP ´c12s23 ´ s12s13c23e

iδCP c13c23

˛

‹

‚

, (2.23)

with cij “ cos θij that historically is referred as PMNS matrix [5]. Instead of the mixing
angles, for a more clear notation, we will generally refer to the elements of this matrix as
Uαi for α “ e, µ, τ representing the rows and i “ 1, 2, 3 the columns, then (2.23) becomes

ρp0q “

¨

˚

˝

|Ue1|2 Ue2U
‹
e1 Ue3U

‹
e1

Ue1U
‹
e2 |Ue2|2 Ue3U

‹
e2

Ue1U
‹
e3 Ue2U

‹
e3 |Ue3|2

˛

‹

‚

. (2.24)

To get the coefficients in (2.20), it is possible to solve the system of linear equations
resulting from the SU(3) expansion

A “

¨

˚

˝

a0 ` a3 `
?

3a8
3 a1 ´ ia2 a4 ´ ia5

a1 ` ia2 a0 ´ a3 `
?

3a8
3 a6 ´ ia7

a4 ` ia5 a6 ` ia7 a0 ´ 2
?

3a8
3

˛

‹

‚

, (2.25)

where A stands for ρ and H. However, we also can use the trace properties

TrrAλµs “ Tr
«

ÿ

ν

aνλνλµ

ff

“ k
ÿ

ν

aνδνµ “ kaµ , (2.26)

to get

aµ “
1
k

TrrAλµs (2.27)

where µ, ν runs from 0 to 8, k is 2 for µ ‰ 0 and 3 otherwise. With (2.27), it is straightfor-
ward to see that h1 “ h2 “ h4 “ h5 “ h6 “ h7 “ 0 and
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h0 “
1
6

ˆ

∆m2
21

2E ´
∆m2

31
2E

˙

h3 “ ´
1
4

∆m2
21

2E

h8 “
1

4
?

3

ˆ

∆m2
21

2E ´ 2∆m2
31

2E

˙

, (2.28)

for the mass basis Hamiltonian. On the other hand, using the same method, the density
matrix coefficients will be

ρ0 “
|Ue1|2

3 `
|Ue2|2

3 `
|Ue3|2

3
ρ1 “

Ue1U
‹
e2

2 `
Ue2U

‹
e1

2
ρ2 “ ´

iUe1U
‹
e2

2 `
iUe2U

‹
e1

2

ρ3 “
|Ue1|2

2 ´
|Ue2|2

2
ρ4 “

Ue1U
‹
e3

2 `
Ue3U

‹
e1

2

ρ5 “ ´
iUe1U

‹
e3

2 `
iUe3U

‹
e1

2
ρ6 “

Ue2U
‹
e3

2 `
Ue3U

‹
e2

2
ρ7 “ ´

iUe2U
‹
e3

2 `
iUe3U

‹
e2

2

ρ8 “

?
3|Ue1|2

6 `

?
3|Ue2|2

6 ´

?
3|Ue3|2

3

. (2.29)
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Figure 2 – Survival probability for electron neutrinos in vacuum as a function of a propa-
gated distance r for two and three flavors for various neutrino energies.

Of course, looking at (2.5), it is possible to deduce that h0 and ρ0 in the SU(3)
expansion do not play any role in the propagation since they are proportional to the
identity and such terms vanish in the commutator. The solution for ρptq becomes
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ρptq “

¨

˚

˝

|Ue1|2 Ue2U
‹
e1e

iω21t Ue3U
‹
e1e

iω31t

Ue1U
‹
e2e

´iω21t |Ue2|2 Ue3U
‹
e2e

´ipω21´ω31qt

Ue1U
‹
e3e

´iω31t Ue2U
‹
e3e

ipω21´ω31qt |Ue3|2

˛

‹

‚

, (2.30)

where we placed the oscillation frequency in vacuum as ωkl “ ∆m2
kl{2E, which can be

transformed back to the flavor basis with (2.12) to use (2.4) in order to calculate the
survival probability of electron neutrinos:

Peeptq “|Ue1|
4

` |Ue2|
4

` |Ue3|
4

` 2|Ue1|
2
|Ue2|

2 cosω21t ` 2|Ue1|
2
|Ue3|

2 cosω31t`

|Ue2|
2
|Ue3|

2 “

e´ipω21`ω31qt
` eipω21´ω31qt

‰

. (2.31)

The solutions of (2.18) and (2.31) are shown in Figure 2 for a propagation length r, where
natural units were used, then c “ 1 and x „ t for ultrarelativistic neutrinos (i.e. neutrino
speed is approximately c).
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Chapter 3

Neutrino mixing in matter

Neutrinos and antineutrinos only interact by the weak force through the bosons Z0

and W˘ with charged current interaction to charged leptons and neutral current with all
fermions of the standard model:

W´

α´

να

να

α´

Z0

f

να

f

να

,

Figure 3 – Feynman diagrams for charged (left) and neutral (right) current neutrino
interactions to charged leptons (α´) and fermions (f) respectively. Similar
diagrams could be placed for antineutrinos ν̄α, switching the signal of charged
particles in the charged current diagram (and consequently, the direction of
arrows).

implying a very suppressed (anti)neutrino cross-section. One situation where we should
care about these interactions and their exact strength is in experimental detection, where
many problems in neutrino physics need precise measurements, as shown in the history of
neutrino detection, with much effort spent on the subject.

However, in this chapter, we focus our attention on these interactions with matter,
with a higher length of propagation (astrophysical objects, such as Earth or stars) to see
the implications of neutrino mixing introduced in Chapter 2.
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3.1 Effective potential in matter

If a photon is emitted at the Sun’s core, it could spend thousands of years to get
out until vacuum, eventually reaching Earth, given its relatively high electromagnetic
cross-section. On the other hand, neutrinos, with weaker interactions, exit the Sun seconds
after being generated, which does not prevent neutrinos from interacting with the dense
stellar medium.

In the Sun, most stars, supernovas, and Earth, despite the essentially different
composition of these objects, basically are fulfilled with electrons, protons, and neutrons
(with residual species of other fundamental or composite particles, such as muons, in a
supernova environment). All neutrino species can interact with matter through neutral
current interactions, as represented in the Feynman diagram of Figure 4. This interaction
does not affect flavor transition and an eventual phase difference of energy eigenstates
could be eliminated by a phase shift.

Z0

p, n, e´

να

p, n, e´

να

Figure 4 – Feynman diagrams for neutral current with nucleons.

In addition, low-energy astrophysical neutrinos (up to „ 100 MeV), generated in
the Sun (and other stars) and Supernovas, can also interact through charged current to
electrons, with Feynman diagrams shown in Figure 5.

W´

e´

νe

νe

e´

W´

e´

ν̄e

e´

ν̄e

Figure 5 – Feynman diagrams for charged current of νe and ν̄e with electrons in matter.

Notice that all neutrino flavors are capable of interacting with matter through neutral
current, but only electron (anti)neutrinos can interact in the charged current channel1.
1 Note that other interactions of neutrinos to protons and neutrons are possible, such as the inverse
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This unbalance of (anti)electron neutrinos with more interaction channels than
other flavors leads to a modification in the framework described in Section 2, resulting
in an effect in neutrino mixing, first realized in mid of the 1970’s and 1980s named
Mikheyev–Smirnov–Wolfenstein (MSW).

To incorporate matter effects in neutrino propagation, a natural path would be to
find the corresponding effective potential in matter given by the diagrams in Figures 4
and 5 and include it into the ν Hamiltonian as an interaction part summed to the vacuum
Hamiltonian

Hf “ Hvac
f ` HI , (3.1)

where the subscript f means flavor basis, and

HI |ναy “ V |ναy (3.2)

with contributions of neutral and charged currents, or V “ VZ ` VW . However, as seen in
Section 3, neutrino mixing is an interference phenomenon, and only differences amongst
flavor states can be measured. Consequently, an effective interaction for the neutral current
does not affect the ν mixing since an interaction Hamiltonian would be proportional to
the identity in the flavor basis, but the same is not true for the charged current.

To calculate the effective contribution of the latter interaction, we need some field
theory using the diagrams in Figure 5, and the target value is

VW pxq “ xνepp1, s1q, epp2, s2q|HW |νepp1, s1q, epp2, s2qy . (3.3)

Considering electron neutrinos, if the propagation occurs in isotropic, non-magnetic
matter, the corresponding four-current is

jµ
“ ν̄epxqγµ

p1 ´ γ5
qepxq , (3.4)

leading to a Hamiltonian density

HW pxq “
GF
?

2
jµj

µ:. (3.5)

To proceed, we needed to consider the electron density distribution in the medium as well
as to average over their spins, or

HW pxq “
GF

2
?

2

ż

fpEe, T q
ÿ

s2

jµj
µ:dp2 , (3.6)

beta decay, but let us neglect these interactions by now to focus on matter effects in neutrino mixing.
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where fpEe, T q is the normalized Fermi-Dirac distribution and the subscript 2 refers to
the electron, as shown in eq. (3.3). To achieve (3.3), we can first use the second quantized
field definition

epxq “
ÿ

s2,p2

1
a

2V ωp2

“

as2pp2qus2pp2qe´ipx
` b:

s2pp2qvs2pp2qeipx
‰

ēpxq “
ÿ

s2,p2

1
a

2V ωp2

“

a:
s2pp2qūs2pp2qeipx

` bs2pp2qv̄s2pp2qe´ipx
‰

(3.7)

and

νepxq “
ÿ

s1,p1

1
a

2V ωp1

“

as1pp1qus1pp1qe´ipx
` b:

s1pp1qvs1pp1qeipx
‰

ν̄epxq “
ÿ

s1,p1

1
a

2V ωp1

“

a:
s1pp1qūs1pp1qeipx

` bs1pp1qv̄s1pp1qe´ipx
‰

, (3.8)

to check that

b:
si

ppiq |νepp1, s1q, epp2, s2qy “ 0
xνepp1, s1q, epp2, s2q| bsi

ppiq “ 0
(3.9)

in order to conserve the lepton number, since we do not expect any considerable fraction
of positrons in matter and we are treating only electron neutrinos in this problem (at the
end of the derivation it is shown how the antineutrino interaction leads to a similar result),
remaining only the first terms on the right-hand side in (3.7). We can insert the bracket
from (3.3) in the currents of (3.6) and also make the Fierz transformation to get

xνepp1, s1q, epp2, s2q| jµj
µ: |νepp1, s1q, epp2, s2qy “

xνepp1, s1q, epp2, s2q|
“

ēpxqγµ
p1 ´ γ5

qνepxq
‰

rν̄epxqγµp1 ´ γ5qepxqs |νepp1, s1q, epp2, s2qy

xνepp1, s1q, epp2, s2q|
“

ν̄epxqγµ
p1 ´ γ5

qνepxq
‰

rēpxqγµp1 ´ γ5qepxqs |νepp1, s1q, epp2, s2qy

(3.10)

and use the fields as defined in (3.7) and (3.8) in (3.10), obtaining
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1
4V 2Eνepp1qEepp2q

xνepp1, s1q, epp2, s2q|
ÿ

s1

“

a:
s1pp1qūs1pp1qeipxγµ

p1 ´ γ5
qas1pp1qus1pp1qe´ipx

‰

ˆ

ÿ

s2

“

a:
s2pp2qūs2pp2qeipxγµp1 ´ γ5qas2pp2qus2pp2qe´ipx

‰

|νepp1, s1q, epp2, s2qy “

1
4V 2Eνepp1qEepp2q

xνepp1, s1q, epp2, s2q|
ÿ

s1

a:
s1pp1qas1pp1q

“

ūs1pp1qγµ
p1 ´ γ5

qus1pp1q
‰

ˆ

ÿ

s2

a:
s2pp2qas2pp2q rūs2pp2qγµp1 ´ γ5qus2pp2qs |νepp1, s1q, epp2, s2qy

,

(3.11)

where a:
si

ppiqasi
ppiq is the number operator Nsi

ppiq, and we defined ωpi
in (3.7) as the

energies Eppiq. We identify that

nepp2q “
Ns2pp2q

V
(3.12)

is the electron number density in the medium and Ns1pp1q “ 1. We use Casimir’s trick in
order to obtain

ÿ

si

rūsi
ppiqγµp1 ´ γ5qusi

ppiqs “ Trrp{pi
` meqγµ

p1 ´ γ5
qs “ piαTrrγαγµ

p1 ´ γ5
qs “ 4pµ

i ,

(3.13)
that we can use for i “ 2 (and further for i “ 1, as we will see in the derivation). We showed
here the form of this procedure opening all quantum fields in terms of creation-annihilation
operators and spinors, which is not so common in the literature, but provides a reference
for a future interested reader. However, in order to simplify the calculations, let us recover
the neutrino quantum fields in the νepxq and ν̄epxq as in equation (3.10), leading to

xνepp1, s1q, epp2, s2q| 2nepp2qpµ
2

Eepp2q

“

ν̄epxqγµp1 ´ γ5
qνepxq

‰

|νepp1, s1q, epp2, s2qy (3.14)

that, when replaced in (3.6) becomes

HW pxq “
GF
?

2
xνepp1, s1q, epp2, s2q|

ż

fpEe, T q
nepp2qpµ

2
Eepp2q

dp2

“

ν̄epxqγµp1 ´ γ5
qνepxq

‰

|νepp1, s1q, epp2, s2qy .

(3.15)

This result can be simplified over the isotropic assumption of
ş

fpEe, T qp2dp2 “ 0, changing
pµ

2 Ñ p0
2 “ Eepp2q and γµ Ñ γ0, and also using

ş

fpEe, T qnepp2qdp2 “ ne, we obtain

HW pxq “
neGF

?
2

xνepp1, s1q, epp2, s2q|
“

ν̄epxqγ0p1 ´ γ5
qνepxq

‰

|νepp1, s1q, epp2, s2qy , (3.16)
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and we can use eq.(3.13) again, resulting in

HW pxq “
2neGF

Eνepp1q
?

2V
p0

1 xνepp1, s1q, epp2, s2q|νepp1, s1q, epp2, s2qy , (3.17)

where we consider normalized states as

xνepp1, s1q, epp2, s2q|νepp1, s1q, epp2, s2qy “ 1 . (3.18)

Finally, the effective potential can be calculated using (3.3), (3.17), and the fact that
HW “

ş

V
HW pxqdx to obtain

VW “

?
2GFne

V

ż

dx , (3.19)

that leads to

VW “
?

2GFne . (3.20)

Such potential and implications were first derived from [23, 24, 25] and can be seen in
less detail, but in a more complete picture in [26] and [27]. For electron antineutrinos, the
single difference from (3.19) concerns a minus signal in the result as

V ē
W “ ´

?
2GFne. (3.21)

The implications of the potential in (3.19) in the neutrino Hamiltonian are as strong
as higher the matter density and ν energy can be. However, we will see that the smoothness
of the density profile plays an important role in the final ν state, given the equation of
motion of quantum mechanics.

As shown in the last section, under a matter potential, the ν Hamiltonian in the
flavor basis becomes

Hf “
M
2E ` VW ptq , (3.22)

where M “ 2EUHU : “ 2EHvac
f , and H is the Hamiltonian in the mass basis in (2.6) (for

a two-level system). Note that VW ptq in matrix form is written as

VW ptq “

˜?
2GFneptq 0

0 0

¸

, (3.23)

with only the first line-column term non-null since this potential only affects νe in a
two-level system of νT

f “ pνe, ναq, where α takes the place of any active non-electron
neutrino flavor.
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Figure 6 – Survival probability for electron neutrinos (left) and antineutrinos (right) in
constant matter densities with Eν “ 10 MeV. Na is the Avogadro number and
ne is the electron number density (per volume) shown in the last section. The
densities 100 Na cm´3 and „ 1014Na cm´3 are typical of the Sun and Supernova
cores, although the density in these environments is variable.

In order to understand the effect of the potential in neutrino mixing, let us simplify
the effective potential to a constant one, or VW ptq Ñ VW “

?
2GFne and see the effect of

the additional constant matter potential in the neutrino propagation using the equation
of motion discussed in Chapter 2, which leads to Figure 6. It is possible to see that for
a very high matter density, no oscillation is expected for νe (red curve in Figure 6), i.e.
the matter potential suppresses the neutrino coherence, making the flavor Hamiltonian
approximately diagonal when high values of electron number density are achieved.

However, a constant matter density is an idealization since in realistic astrophysical
environments (stars, Earth, Supernovae), the electron number density is variable along
their layers, or Hf Ñ Hf ptq. Let us use our Sun as a study case to understand how this
fact changes the neutrino flux composition in compact astrophysical objects.

3.2 Neutrino mixing in our Sun

The solar neutrino problem is a long-term scientific endeavor related to the νe flux
disappearance in Earth detection, solved by the MSW hypothesis, i.e. using the framework
designed in this section. Solar models provide a consistent description of the interior of the
Sun, and a density profile such as given by Figure 7 is a robust prediction. As we can see,
the solar matter density is far from constant, and the neutrino Hamiltonian in the flavor
basis from generation to propagation until the Sun’s surface is not constant. Our intention
is still to solve the Liouville-von Neumann equation to determine the neutrino’s final state.

In this case, a solution for ραptq and consequently, Pαβptq can be obtained from the
proper time evolution operator defined as a time-ordered exponential as
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Figure 7 – Electron number density profile of Sun from the BS2005OP solar model taken
from [28].

Upt0, tq “ T
!

e
´i

şt
t0

dt1Hpt1q
)

“ 1 ` p´iq

ż t

t0

dt1Hpt1q ` p´iq2
ż t

t0

dt1

ż t1

t0

dt2Hpt1qHpt2q ` ¨ ¨ ¨

(3.24)
Instead of solving this Dyson series analytically, it is possible to divide the density profile
into small fragments with ∆t Ñ 0 in which the Hamiltonian is about constant in each step
of the propagation, and the time evolution operator becomes

Uipt0, tq “ e´iHf i
ptiq∆ti , (3.25)

where the index i corresponds to the fragment ∆ti, with Hf i being the instantaneous
Hamiltonian in the flavor basis at time ti (edge of ∆ti). Such matrix exponential can be
easily solved by diagonalizing the Hamiltonian, taking the exponential of the eigenvalues,
and using the proper transformation matrix Um as

Uipti´1, tiq “ Ume
´iHm∆tiU :

m (3.26)

with

Hm “

˜

λ1 0
0 λ2

¸

, (3.27)

and Um is a matrix composed of the eigenvectors of the diagonalization. This basis with
diagonalized flavor Hamiltonian is denoted as mass basis in matter, or effective mass basis.
Using this procedure and the recursive application of such operators as
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this value, which is a signal that, for the energy used, the ν closely but not
completely incoherent.

ραpti´1, tiq “ Upti´1, tiqραpti´1qU :
pti´1, tiq (3.28)

it is possible to solve problems with variable matter density. We will denote this method
as the slab approach from now on.

An important conceptual remark concerning the neutrino propagation in variable
matter density is that the adiabatic theorem, firstly formulated by Landau [29] and Zener
[30], could affect neutrino propagation [23, 31, 25]. In summary, it suggests that if an energy
state crosses the closest region of two eigenvalues from different eigenstates, a crossing
between states is possible if the changes in eigenvalues are fast enough. We introduce a
useful condition for the adiabaticity of the system [32]:

γ “

ˇ

ˇ

ˇ

ˇ

ˇ

9θm

λ2 ´ λ1

ˇ

ˇ

ˇ

ˇ

ˇ

! 1 , (3.29)

where θm is the mixing angle in matter, λ1 and λ2 are the eigenvalues of a two-level system,
and gamma is commonly denoted as adiabaticity parameter. The mixing angle in matter
can be associated with the diagonalization matrix Um, where its entries are cos θm and
sin θm. The condition in (3.29) (where we refer the derivation in [32] to the interested
reader) means that if γ ! 1, the system evolves adiabatically, or, more than that, if the
mixing angle in matter, and consequently, the matter density, changes slowly, transitions
of the kind νim Ñ νjm will be suppressed.

Now we have most of the tools in order to handle the solar neutrino problem, and
we will use the solar density profile shown in Figure 7, obtained from the solar model
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Figure 9 – Eigenvalues of the ν mass basis in matter. The dashed vertical line is the
median of the resonance region, with the highest conversion probability of mass
states in matter. However nowadays it is well established that this resonance
region is adiabatic in the Sun.

presented in [28]. We make the evolution of the density matrix as described previously to
get the survival probability of νe, or Pee and xPeey (average probability) along the Sun
radius. The results are shown in Figure 8. It is possible to see that xPeey Ñ |Ue2|2 when
neutrinos approach vacuum. Let us describe the dynamics of neutrino propagation: only νe

is created since there is not enough energy density to generate νµ and ντ in the Sun’s core;
then Pe2 « 1, or the electron neutrino is created as almost only neutrino in mass state 2
in matter, i.e. νe « ν2m; the neutrino conversion along the Sun is adiabatic, meaning that
Pm

ij “ 0 for i, j from 1 to 3, or no conversions amongst mass states in matter are expected,
then Pm

22 « 1; finally, when the neutrino is going out of matter layers, it crosses a resonance
region (inflection point of the sigmoid part oof the orange curve in Figure 8), reaches a
mean value of P2e « |Ue2|2. Summarizing these statements, we get Pee “ Pm

e2P
m
22P2e, which

is a simple but important method used for the results of this thesis.

Another way to view this phenomenon is by looking at the instantaneous eigenvalues
of Hm along propagation in the Sun in Figure 9. The center of the resonance region is
highlighted, and we conclude that the resonant conversion in matter happens closer to the
outer layers of the Sun, and higher energy neutrinos (in the Sun’s spectrum, i.e. Á 5 MeV)
are almost incoherent since the probability is averaged out.

Since the electron number density is smooth in the Sun, conversions of the type
νim Ñ νjm are not relevant; however, for astrophysical neutrinos crossing the Earth before
being detected, a density profile from very different matter layers is expected, and we will
discuss this possibility in the next section.
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Figure 11 – Probabilities of a neutrino ν1 (left) and ν2 (right) arriving at the Earth’s
surface (left blue dots), passing through the Earth, going out (right blue dots),
and being detected as νe or ν̄e after crossing the entire Earth’s diameter. The
solid (dashed) line is for a neutrino of 10 (50) MeV.

3.3 Neutrino mixing inside Earth: regeneration effect

The Earth’s matter can be divided into three main layers: crust, mantle, and core,
with more detailed geological models including sub-layers. To show the effects of neutrino
mixing inside the Earth, we use the so-called PREM (Preliminary Reference Earth Model)
[33], in order to have a density profile from Earth. In Figure 10, we show the profile of
Earth’s matter in terms of the charged current potential VW for neutrinos. We see the high
difference in the potential in the interface of mantle and core, differing from the smoothness
found in the Sun. Consequently, a neutrino crossing these rough interfaces would suffer
non-adiabatic effects in the propagation. Using the same procedure of Section 3.2, we can
make some predictions concerning the neutrino mixing after crossing Earth. To take a
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Figure 12 – Probabilities of a neutrino ν1 (left) and ν2 (right) crossing the entire Earth
diameter and being detected as νe at the exit point as a function of ω21{2 “

∆m2
21{4E.

convenient situation for the purposes of this thesis, we will let an incoherent (pure) neutrino
propagation state νi arrive at Earth from space and cross the entire Earth’s diameter. Note
that the convenience of this scenario comes from the fact that such states fit well with solar
and supernova neutrinos. Figure 11 shows the corresponding probability of this particular
case for νe and ν̄e. It is possible to see that Pie is constant before the neutrino crosses
through Earth’s matter, and this quantity has an oscillation pattern after passing Earth’s
surface, or the incoherent neutrino gains some coherence given fast changes in the electron
number density. This gain of coherence can be explained by the fact that when the neutrino
crosses different Earth layers, an amount of initial νi state is converted to νj , creating some
coherence. It is worth mentioning that the neutrino energy plays an important role in Earth
matter effects, as we can see in Figure 11, once for 10 MeV negligible effects are expected,
whereas for 50 MeV and beyond, the neutrino composition could be highly affected. To
compute this dependency, we can calculate the same probabilities as a function of energy,
but now fixing the detection point to the final Earth surface, which is a realistic point of
view. Figure 12 shows this dependency as a function of ω21. Recall that ω21 “ ω21pEq, and
the range of values of this parameter shown in Figure 12 corresponds to Eν „ 1.9 MeV
(ω21 “ 10´11 eV) and Eν „ 1.9 GeV (ω21 “ 10´14 eV), showing that only for significantly
higher neutrino energies (Eν Á 40 MeV) Earth matter effects would start to be more
relevant in the overall propagation.

By the end, if some detector is capable of measuring neutrinos that cross the Earth,
a common coordinate used to analyze the direction of the entrance is the zenith angle,
in which the values of θz “ 0o correspond to a neutrino that comes to a detector from
the sky in a perpendicular direction to Earth’s surface in the detector point (ν does
not cross Earth matter), θz “ 90o is the horizon direction (ν also does not cross Earth
matter), and θz “ 180o the neutrino arrives at a detector after crossing the entire Earth
diameter. Figures 11 and 12 correspond to θz “ 180o. We also could be interested in
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Figure 13 – Probabilities of a neutrino ν1 (left) and ν2 (right) crossing the Earth in different
zenith angles for a range of neutrino energies. Lines in color scale represent
|Ue1|2 (black) and |Ue2|2 (yellow).

checking the dependency of Pm
ie on the zenith angle. Figure 13 shows these probabilities

as a function of neutrino energy and zenith angle in the energy scale of the Sun and
supernovas. For the further achievements in this work, the remarkable result taken from
Figure 12 and Figure 13 is that with neutrino energies of À 20 MeV, regeneration effects
are approximately negligible.
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Chapter 4

Supernova neutrinos: an inevitable galac-
tic messenger

Stars with m Á 10 Md undergo different stages of nuclear fusion. The formation of
an iron core with „ 1 Md and external shells in an onion structure composed of elements
with lighter atomic masses are characteristic of the final stage of such stars. However, iron
is a very stable element, that consumes instead of producing energy in a fusion process
(iron peak). The result is a fast decrease of the pressure of degenerated electrons in the
stellar plasma and the balance of gravitational force and internal pressure reaches a turning
point to a collapse of external layers to the core. This event is denoted as a Core-Collapse
Supernova (SN) and its consequence is a massive explosion, with no parallel to other events
in astrophysics. Of course, large amounts of stellar matter and radiation are expelled and
heavier elements are produced in the process, but a remarkable result that we can highlight
is the production of neutrinos, with „ 99% of the gravitational binding energy of the
progenitor star emitted as ν’s, or „ 1053 erg, with the flux decreasing proportionally to the
distance L as L´2. In the Milky Way, the rate of core-collapse SNs is „ 1 per century [34],
and the next galactic SN is a promising event to test neutrino physics, stellar evolution,
and dynamics. The complete process involved in a core-collapse Supernova is out of the
scope of this thesis since it would require dedicated work on the subject.

However, we provide a timeline that summarizes the processes emphasizing the
neutrino emission [35]:

À 0 s Before the collapse, the central density and temperature of the progenitor star are
„ 1010 g cm´3 and 1 MeV. Because of the iron peak, nuclear fuel ends, and the core
contracts, then the temperature increases causing the following photo-dissociation

γ `
56Fe Ñ 13α ` 4n , (4.1)
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in which is a reaction that absorbs 124 MeV, reducing the degenerate electron
pressure. Electron Fermi energy is high, favoring the captures

e´
` N Ñ N˚

` νe , (4.2)

and
, e´

` p Ñ n ` νe (4.3)

of nuclei (N) and free protons (p). The reactions decrease the pressure, lowering
the Chandrasekhar mass to smaller values. At this point, electron pressure cannot
sustain the gravitational force and the star starts to collapse to its core. In the
initial phase of electron capture, νe propagates freely, until the core density reaches
„ 3 ˆ 1011 g cm´3, becoming opaque to neutrinos;

0 s After „ 1 s of spatial instability of the star, density reaches „ 1014 g cm´3 (which
is the approximate nuclear density) stopping the collapse in the core region given
by the pressure of the degenerated non-relativistic nucleons, producing a rebound
followed by a supersonic shock wave, that is weakened by the energy dissipated
in photo-dissociation of nuclei into nucleons. It leads to the production of a large
number of electron neutrinos in the process (4.3). This starting point is denoted as
bounce;

25 ms The shock wave reaches the density of „ 1011 g cm´3 a few milliseconds after the
bounce, becoming transparent to neutrinos, releasing a large amount of trapped
νe (and a lower amount of ν̄e, νµ, ντ , ν̄µ, and ν̄τ ) with a luminosity of Á 1051 erg
s´1. This phase is known in the literature as neutronization burst and it is a robust
prediction in core-collapse SN;

„ 0.5 s The neutrino energy deposition behind the weakened shock wave can lead to its
revival when matter keeps accreting to the core. This phase is known as accretion and
occurs in the „ 0.5 s after the bounce, followed by the supernova explosion with outer
layers expelled and the release of „ 20% of ν’s in energy. In the innermost region
of the SN core, neutrino density increases rapidly to very high values, with ν ´ ν

potential overcoming the neutrino-matter potential, and a non-isotropic neutrino gas
is formed in a region denoted as neutrinosphere. Neutrino propagation is treated as
a fluid in this region, until reaching a decoupling region where it propagates freely
(still interacting with matter in outer layers);

„ 10 s A formation of a proto-neutron star is induced and cools down emitting „ 80% of
ν’s (all flavors) in energy with a thermal flux. This phase is known as cooling. The
neutrinosphere is still active in this phase.
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Historically, we were capable of detecting neutrinos only once from a supernova. The
SN1987A was an important event in neutrino physics and it is discussed in Chapter 5, but
first, let us understand the standard supernova ν mixing in more detail since it is related
to the main topic of this thesis.

4.1 Neutrino-matter effects in supernovas

In Section 3, we discussed the MSW effect in the context of solar neutrinos, where a
2-level system was enough to describe a solution of the solar flavor composition. As we will
see, in the supernova framework, we need the 3-ν system to describe supernova matter
effects. We can rewrite (3.22), the flavor Hamiltonian for neutrinos propagating in matter
for a 3-level system as

Hf pxq “
1

2E

¨

˚

˝

m2
ee ` 2EVW pxq m2

eµ m2
eτ

m2
µe m2

µµ m2
µτ

m2
τe m2

τµ m2
ττ

˛

‹

‚

, (4.4)

where m2
αβ short-handed elements from M as m2

αβ “ m2
βα. If we provide a proper rotation

that diagonalizes the sector µτ as

Hf pxq “
1

2E

¨

˚

˝

m2
ee ` 2EVW pxq m2

eµ1 m2
eτ 1

m2
µ1e m2

µ1µ1 0
m2

τ 1e 0 m2
τ 1τ 1

˛

‹

‚

, (4.5)

the physics remains unchanged [36], and the Hamiltonian becomes approximately diagonal,
or Hf « 1

2E
p2EVW pxq,m2

µ1µ1 ,m2
τ 1τ 1q. It means that, in this picture, neutrinos are created

in incoherent states inside the supernovas, given the high matter density in the creation
region. It is worth mentioning that νµ, ντ , ν̄µ, and ν̄τ are indistinguishable in the detection
since the only possible detection channel for these flavors is the elastic scattering, in which
the flavor can not be determined. For this reason and the fact that their initial fluxes from
the SN are approximately equal, we set any non-electron neutrinos as νx (as widely used
in the literature).

As in Section 3, we again resort to diagonalizingHf to get eigenvalues and eigenvectors
from a proper unitary transformation in order to understand MSW effects inside the SN.
Figure 14 shows the eigenvalues of the flavor Hamiltonian. It is possible to see that
when we consider a 3-ν system, a new resonance region arises for higher densities (an
electron number density of „ 103 ne{Na cm´3 for a „ 10 MeV neutrino energy), allowing
transitions of the kind ν2m Ø ν3m. This density is not achievable in the Sun, but it is easily
realizable in a typical supernova. For this reason, this resonance is commonly denoted
as H (High-density resonance), whereas the “solar” resonance, inducing transitions of
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Figure 14 – Eigenvalues of Hf as a function of the electron number density ne for normal
mass hierarchy (NH). The neutrino energy Eν is taken to be 10 MeV in 2Eνλ.

ν1m Ø ν2m in densities about „ 50 ne{Na cm´3 is denoted as L (Low-density). Note
that the non-electron neutrinos are labeled as νµ1 and ντ 1 , highlighting that these are
not the conventional flavor states νµ and ντ , but a rotated basis where these two flavors
coincide to mass states in matter. It is not the case for νµ and ντ , since they are created
as a combination of ν1m and ν2m instead. It is also important to mention that Figure 14
corresponds to NH (least to most energetic state is ν1m Ñ ν2m Ñ ν3m), and a different
scenario is expected to IH (ν3m Ñ ν1m Ñ ν2m). In NH, the most energetic state in matter
is ν3m, then, it is associated with νe given the increase of effective energy of this flavor by
the charge current potential VW pxq. As we can note, in IH νe coincides to ν2m. The flavor
states in both hierarchies are generated in the following instantaneous energy states in
matter:

NH
νe “ ν3m ντ 1 “ ν2m νµ1 “ ν1m

ν̄τ 1 “ ν̄3m ν̄µ1 “ ν̄2m ν̄e “ ν̄1m

IH
νe “ ν2m νµ1 “ ν1m ντ 1 “ ν3m

ν̄µ1 “ ν̄2m ν̄τ 1 “ ν̄1m ν̄e “ ν̄3m

, (4.6)

where equal signs could be taken with a grain of salt, since a residual superposition of
energy states does exist, but for all purposes of neutrino mixing, they are completely
negligible.

As discussed in Chapter 3, in the MSW effect, the conversion of mass states in matter
νim is possible in the resonance regions (minimum distances in energy from eigenvalues of
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Figure 15 – Snapshot (at 27 ms after the core bounce) of simulated SN electron density
profile from a progenitor mass of 40 Md [40].

Figure 14). This probability (sometimes referred to as flipping or crossing) in a simplified
format is given by [37, 38]

PH,L “ e´
πγ
2 (4.7)

that decreases with the adiabaticity parameter γ, defined in eq.(3.29), and we explicitly
write as [30, 31]:

γ “
∆mij

2 sin θij

2E cos 2θijp1{neqdne{dr
. (4.8)

Note that γ depends on flavor conversion parameters, neutrino energy as well as the
density profile of the medium. More specifically, large variations in the electron number
density increase the probability of changing between energy levels. As it is widely discussed
in the literature, the L resonance is adiabatic, which makes PL „ 0 from now on [39].
The H resonance could be non-adiabatic in accretion or cooling when the shock wave
propagates along the resonance region, but for the neutronization burst, the complete
neutrino propagation is adiabatic.

Using Figure 14, we can calculate the probabilities of ν mass states at the surface of
the SN when the generated neutrino is νe. The electron neutrino in NH is created as ν3m,
then the probability of generation in this mass state in matter is Pm

e3 “ 1. The probability of
keeping the state ν3m in propagation is a measure of how unlikely the transition ν3m Ñ ν2m

would occur, which is 1 ´ PH (since PH is the flip probability related to this transition
in NH). Then the probability of obtaining the state ν3 becomes Pe3 “ Pm

e3P
m
33 “ 1 ´ PH.

For ν2m and ν1m we get Pe2 “ Pm
e3P

m
32 “ PH and Pe1 “ Pm

e3P
m
31 “ PHPL. Note that the L
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resonance is adiabatic, then Pe1 „ 0. Now it becomes easy to include a detection of νe at
Earth, writing the survival probability as

Pee “ Pe1P1e ` Pe2P2e ` Pe3P3e “ PHP2e ` p1 ´ PHqP3e , (4.9)

where P2e “ |Ue2|2 and P3e “ |Ue3|2. Following the same procedure for ν̄e we obtain

P̄ee “ P1e (4.10)

in NH. We also can work out the probabilities for IH, that differ from the above ones,
since each flavor is generated in other mass states in matter:

Pee “ P2e

P̄ee “ P̄HP1e ` p1 ´ P̄HqP3e

. (4.11)

For an adiabatic propagation PH “ PL “ 0 and the above probabilities become

NH
Pee “ |Ue3|

2

P̄ee “ |Ue1|
2

IH
Pee “ |Ue2|

2

P̄ee “ |Ue3|
2

. (4.12)

Of course, the same numerical calculation of Pee shown in Chapter 3 in the context
of solar neutrinos could be performed for SNs. Our knowledge of the solar density profile is
much more accurate than that of a typical SN; however, advanced supernova simulations
could in principle provide matter density profiles varying along the time of the explosion,
as shown in Figure 22 of [39]. Different working groups generate supernova simulations
with such information. In Figure 15, we show the electron number density of simulated SN
with a progenitor mass of 40 Md at 27 ms after core bounce, provided by the Garching
group [40, 41]. Using this simulated profile and the procedure described in Chapter 3, the
slab approach, it is possible to calculate Pee and P̄ee. These probabilities are shown in
Figure 16 for both neutrino hierarchies. Note that the conversion for this specific matter
density profile is adiabatic since asymptotically the probabilities go to |Uei|

2 values.

These two probabilities are special because they can completely parameterize the
neutrino flux at Earth. To show it, we can use the initial (ϕ0

να
) and final (ϕνα) neutrino

fluxes from a SN, where α “ e, x, in addition to the corresponding antineutrinos. Note
that we set again non-electron neutrino flavors as x. If the requirement of flux conservation
is achieved, the flux at Earth can be written as follows [36]:

ϕνe “ ϕ0
νe
Pee ` ϕ0

νx
p1 ´ Peeq

ϕν̄e “ ϕ0
ν̄e
P̄ee ` ϕ0

νx
p1 ´ P̄eeq

ϕνx “ ϕ0
νe

p1 ´ Peeq ` ϕ0
νx

p2 ` Pee ` P̄eeq ` ϕ0
ν̄e

p1 ´ P̄eeq

. (4.13)
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Figure 16 – Numerically solved survival probabilities of νe and ν̄e inside a supernova.
The density profile simulation used is shown in Figure 15. The left column
corresponds to NH and the right one the IH scenario.

In Figure 17, a snapshot of different flavors is shown in the instant of time t „ 27 ms
(end of neutronization burst), using initial fluxes ϕ0

νβ
from the simulated SN explosion

with progenitor mass of 40 Md used to calculate the survival probabilities above. It is
possible to see that both hierarchy scenarios provide a large difference from initial fluxes,
and more than this, with a precise measurement of νe, a future SN detection would
potentially determine the neutrino mass hierarchy. We will discuss more about these
modern simulations in Chapter 7.

This flavor conversion scheme establishes the current standard picture of supernova
neutrinos, and we will recall this construction when we start to discuss possible quantum
decoherence effects in supernova neutrinos in Chapter 7. Detailed studies beyond the
presented scenarios in this section have been carried out [42, 43], but they are dependent on
more precise SN simulations and further improvements in the knowledge of SN formation.
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Figure 17 – Initial neutrino flux (solid), and neutrino flux after conversion for NH (dashed)
and IH (dash-dot) at 30 ms for a simulation of a progenitor star with 40 Md

provided by the Garching group [40]. We take the assumption of adiabatic
conversion in the calculation.

4.2 Challenges in supernova neutrino mixing

Although the mechanism beyond the MSW effect is very well known, as shown
in Section 4.1, a complete solution for the supernova neutrino-mixing is far from being
accomplished nowadays. It is given by a number of distinct factors we briefly describe in a
random order of importance:

• Supernovae simulations: a number of research groups have been extensively
generating sophisticated simulations of supernova explosions. We refer here to recent
works such as [39, 44]. Despite the great advances in the topic, there is much to
be done in order to get a realistic scenario of a supernova explosion, such as the
inclusion of flavor conversion in neutrino evolution of the simulated neutrino path;

• Non-adiabatic MSW effect: considering this resonant effect led by neutrino
interaction to matter (discussed in Section 4.1), in accretion and cooling emission
phases, there is a possible non-adiabatic transition along Supernova layers, induced
by the ν-crossing of the shock-wave or turbulent regions [42]. Detailed simulations
should be needed to precisely understand how MSW effects would affect flavor
conversion in this regime. It is worth mentioning that in the neutronization burst
phase, the propagation is completely adiabatic;

• Collective effects: the large ν-luminosity induces a dense neutrino gas in the
supernova core, being one of the only places in the Universe with such an environment.
In addition to the conventional matter interactions, a non-isotropic neutrino potential
is induced in a very inner region denoted as neutrinosphere, and flavor conversion
could be highly affected by the presence of ν ´ ν potential in the equation of motion,
leading to a so-called collective effect, with the origin of the name given by the fact
that incoherent neutrinos start to oscillate collectively in equal frequency, given by
effects of forward neutrino scattering with other neutrinos [39, 45, 46]. The difficulty
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in solving the equation of motion is given by the non-linear nature of the ν ´ ν

potential, leading to a non-linear partial differential Boltzmann-like equation of
motion:

Btϱp,x,t ` vp ¨ ∇xϱp,x,t “ ´irΩp,x,t, ϱp,x,ts ` Cpϱp,x,tq , (4.14)

where ϱp,x,t is the matrix of densities1, vp is the neutrino velocity, Cpϱp,x,tq is a
collision term, and

Ωp “ Ωvac ` ΩMSW ` Ωνν , (4.15)

with Ωvac and ΩMSW corresponding to the vacuum and matter Hamiltonian respec-
tively, already discussed in previous chapters. The Ωνν term regards the ν ´ ν

potential and is given by

Ωνν “
?

2GF

ż

d3q
p2πq3 pϱq ´ ϱ̄qqp1 ´ vp ¨ vqq . (4.16)

Solving the equation above for approximate neutrino backgrounds leads to slow
flavor oscillation effects, where the neutrino can be converted in a timescale of
vacuum oscillation frequency ω “ ∆m2{2E – 6.1 km´1

{E pMeVq. In more realistic
scenarios in terms of neutrinos generated in a SN, also the so-called fast oscillations,
engendered by different decoupling regions of flavors in the neutrinosphere could
make the neutrino flavor composition even harder to be calculated since transitions
could be induced in timescales orders of magnitude lower than slow oscillations, and
instabilities of solutions of the equation of motion are expected [45]. The problem
becomes even more difficult when we take into account that it affects the supernova
simulations, and it is also dependent on the output of the simulations, making it a
recursive problem still unsolved at the time this thesis is been written. Due to the
high uncertainties surrounding the results for a realistic scenario involving collective
effects in SN emission, we will not address this issue here in any of our analyses. It
is also important to mention that we do not expect the neutronization burst to be
affected by collective effects, but it could completely change flavor conversion in the
accretion and cooling phases;

• Neutrino mass hierarchy: despite our precise measurements of the square dif-
ference of neutrino masses ∆m2

21 and ∆m2
31 from flavor conversion experiments, we

still do not know if m3 ą m2 ą m1 (normal hierarchy, or NH) or m2 ą m1 ą m3

(inverted hierarchy, or IH). It is known in the literature as neutrino mass hierarchy
(or ordering). As we saw in Section 4.1, the solution to the resonant matter effect is
highly dependent on the ν-hierarchy scenario.

Although the community has made efforts to be experimentally and theoretically
prepared for the next galactic SN, we were able to detect neutrinos from a neighboring
1 Field theory correspondent to quantum mechanical density matrix, defined as ϱp,x,t “ xa:

pptqap1 ptqy.
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galaxy in the past, the SN1987A, which provided valuable information from the dynamics
of a supernova neutrino emission, and we will discuss this important event in neutrino
physics and astrophysics along the next chapter.
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Chapter 5

SN1987A

In 1987, in the Large Magellanic Cloud, the progenitor star Sanduleak-69 202 with
M „ 20 Md became a supernova. At 50 kpc from Earth (outside the Milky Way), it was
the first detection of neutrinos created outside our solar system, inaugurating the era of
experimental neutrino astronomy.

Since it was outside our galaxy, the ν flux was limited at Earth, but even though,
three detectors were capable of observing a neutrino signal: Kamiokande II [47, 48],
IMB [49, 50] and Baksan [51]. Figure 18 shows the time and energy of the detected events.
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Figure 18 – SN1987A events. Ee refers to the positron energy detected.

To clarify the ideas concerning the data analysis of such important astrophysical
phenomena, in the next section, we show results from our publication in [52]. In the
sequence, in Section 5.2, we also discuss possible limits in neutrino flavor conversion using
SN1987A data in our publication in [53].
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5.1 Understanding and visualizing the statistical anal-
ysis of SN1987A neutrino data

As shown in Figure 18, the statistics of SN1987A measurements is very limited. To
extract any physics from a data analysis using those events requires more than a binned
statistical method, such as least squares. Therefore, as proposed in [52], we will describe
the maximum likelihood estimation using this data, fitting a simplified neutrino emission
model for that SN.

5.1.1 Modelling SN1987A event-by-event likelihood

Frequently, the likelihood treatment in particle physics involves the usage of the
Poisson distribution P pµ, nq, which fits well to phenomena that have a small probability
of occurring, but a large number of tries. Given a measured variable set x⃗, the Poisson
likelihood is given by:

L “

Nbins
ź

i“1

µpxiq
ni

ni!
eµpxiq , (5.1)

where ni can be a particular number of events that occurs in a xi ` δxi interval of our
variable, in a number N of intervals, or bins, and µpxiq is the expected value in the same
interval. It is convenient to write µpxiq as a distribution function on the variable xi, or
µpxiq “ Rpxiqδxi, with a given event rate Rpxiq “ dN

dxi
in an equally spaced bin of variable

δxi and a number of counts ni. Including it in equation (5.1), we obtain:

L “

Nbins
ź

i“1

rRpxiqδxsni

ni!
e´Rpxiqδx

“ e´
řNbins

j“1 Rpxjqδx
Nbins
ź

i“1

rRpxiqδxsni

ni!
. (5.2)

However, binning the data to use a single expected value of a set of points requires
assuming a given statistical distribution of such a bin, that generally is considered to be
Gaussian for a higher number of entries. If the low statistics scenario does not allow this
assumption, then it is possible to model the likelihood (5.2) to account for each event
apart. This can be made by taking the bin to an infinitesimal width δx Ñ dx and number
of counts ni Ñ 1, so we consider only infinitesimal bins with one event and drop the others,
then (5.2) becomes

L9e´
ş

Rpxqdx
Nobs
ź

i“1
Rpxiq , (5.3)
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that also has the change from the total number of bins Nbins to the total number of
observed events Nobs and the index i accounts for each individual event. The idea behind
maximum likelihood is to maximize the quantity in (5.3), or given the correspondence
L “ e´χ2{2, minimize the χ2px⃗q “ ´2 log Lpx⃗q with respect to a free set of parameters x⃗.
If we have a single event at x “ x̄, this expressions reduces to e´

ş

RpxqdxRpx̄q. For different
models with a normalized expected event rate

ş

Rpxqdx, the likelihood is maximized for
the model with the highest value of Rpxiq. Letting the normalization run freely, it is
maximized for

ş

Rpxqdx “ 1. It is straightforward to note that if we consider more than
one single event, this maximum occurs on the total number of events.

In a supernova detection, such as SN1987A, the variables x are the neutrino energy,
the detection time, and events scattering angle, i.e. R “ RpE, t, cos θq [54]:

RpE, t, cos θq “ np
dσpEν , cos θq

d cos θ
d2ϕν̄epEν , tq

dEνdt
ξpcos θqηpEeq

dEν

dEe

, (5.4)

with np being the number of free protons of each detector, σpEν , cos θq is the inverse
beta decay cross section [55], ϕν̄epEν , tq represents the electron antineutrino flux at Earth,
ξpcos θq is an angular bias of IMB detector and ηpEeq is an efficiency function taken from
[51] that fits the reported efficiency points from each collaboration.

Then eq. (5.3) becomes:

L “ e´
ş

RpE,t,cos θq dE dt d cos θ
Nobs
ź

i“1
RpEi, ti, cos θiq dE dt d cos θ , (5.5)

where R is a triple differential equation, R “ d3N
dE dt d cos θ

and N is the expected number of
events at the detector. A complete analysis, including other details such as background
and energy resolution, can be seen in [54, 56, 57, 58, 59, 60].

5.1.2 Single event distribution

The main ingredient to construct the likelihood is the theoretical triply differential
expected rate. However, since there is no way to convert the theoretical predictions into
some quantity to be compared with individual events, we can instead modify the events
to match the theoretical probability distribution. For instance, all SN1987A events are
published with uncertainty in energy, so the true information we can take from each
event is a probability distribution around some most probable results. Assuming such
distribution to be Gaussian, a specific event with measured energy Ēν ˘ σE, where σE is
the energy uncertainty, measured on time t̄ ˘ σt, with σt being the uncertainty in time, is
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Figure 19 – Theoretical cumulative event rate integrated over time (eq. 5.7) (blue) and
normally distributed data as proposed in (5.8) (red) changing along the relative
detection time since the first measured neutrino from SN1987A. The time
scale runs logarithmically in the first second and linearly afterward to better
show the data structure for early time events (see the animation here).

related to the following probability distribution:

d2P pEν , tq

dEν dt
“

1
σE

?
2π

exp
„ˆ

´
1
2

pEν ´ Ēνq2

σ2
E

˙ȷ

ˆ
1

σt

?
2π

exp
„ˆ

´
1
2

pt ´ t̄q2

σ2
t

˙ȷ , (5.6)

where P pEν , tq is the probability that the event had true energy between Eν and Eν `dEν ,
and was measured in the true time between t and t ` dt.

This result can be compared with the theoretical probability of inducing an event on
the detector:

d2N

dEν dt
“ A

d2ϕpEν , tq

dEν dt
σpEνq , (5.7)

where A is a normalization constant that takes into account the number of targets in the
detector and its efficiency. The neutrino interaction cross section is given by σpEνq, and
ϕpEν , tq is the neutrino flux. The specific parameterization of these two last functions will
be presented in the sequence. To properly visualize the data points being collected, we
can create an animation with the detected event probability integrated on time1. Since
the uncertainty on time is very small, the distribution converges to a δ-function, and such
1 The reader is invited to check the animations of this section in order to follow the discussion. The

links are in the description of each Figure.

https://github.com/santosmv/Animations-visualizing-SN1987A-data-analysis/blob/main/events_rate.png
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animation would advance in steps while the data gets collected:

ÿ

i

dPipEν , tq

dEν

“

ż t

t0

dt
ÿ

i

d2PipEν , tq

dEν dt

“
ÿ

i

1
σEi

?
2π

exp
„ˆ

´
1
2

pEν ´ Ēνiq
2

σ2
Ei

˙ȷ

θpt ´ tiq

. (5.8)

Such animation is presented in Figure 19 (red curve). Since what is presented is the
cumulative result after integrating on time, the final moment of this animation, when
integrated also on energy, provides all the 29 events detected by the three experiments.
The comparison with theoretical predictions can be made visually if we produce a similar
animation for the expected number of events, integrating eq. (5.7) on time, also presented
in Figure 19 (dashed curve). This method of a model-independent curve representing the
spectrum has already been fully discussed in [61, 62, 63], where references [62, 63] also
bring a comparative analysis to neutrino emission models2.

The parameterization of the electron antineutrino3 flux ϕpEν , tq in eq. (5.7) follows
the model of reference [54] and consists of a two-component emission (accretion + cooling)
with nine free parameters that come from the proposed flux ϕ “ ϕpt, E, cos θ, y⃗q, with
y⃗ “ pTc, Rc, τc, Ta,Ma, τaq, where Tc (Ta) is the initial antineutrino (positron) temperature
from the cooling (accretion) phase, Rc is the radius of the neutrinosphere, τc (τa) is the
characteristic time from the cooling (accretion) phase and Ma is the initial accreting mass.
In the following, we state the emission models used in this section with the initial accretion
and cooling fluxes:

• Accretion flux: physically, a flux of positrons in static neutron targets generating
neutrinos reasonably mimics the expected ν̄e generation process when the star mass
accretes to its core; then this situation can be given by:

ϕ0
a,ν̄e

pEν , tq “
8πc

phcq3 rNnptqσe`npEνqge`pEe`, Taqs , (5.9)

Nnptq “
Yn

mn

ˆ Ma ˆ
jkptq

1 ` t{0.5s ,

ge`pEe`, Taq “
E2

e`

1 ` exp rEe`{Tas
, (5.10)

where Nnptq is the neutron distribution as a function of the emission time, σe`npEνq

is the positron-neutron cross-section, and ge`pEe`, Taq is the thermal distribution of
2 While reference [62] compares the data curve to a Fermi-Dirac spectrum, [63] uses a neutrino fluence

9E2{T 4e´E{T , where E and T are energy and temperature of the electron antineutrino.
3 Since the detectors in 1987 were capable of measuring a single channel, the inverse beta decay

(ν̄e ` p Ñ e` ` n), only electron antineutrinos could be detected.
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positrons with energy Ee` in a temperature Ta. The number of neutrons is given by
the initial accreting mass Ma with a fraction of neutrons Yn, and its time behavior is
given by the factor jkptq “ exp

”

´ pt{τaq
k
ı

, with τa being the characteristic time of
the accretion phase and the parameter k “ 2 following the parameterization in [54];

• Cooling flux: this flux can be modeled by a black body emission of the recently
created proto-neutron star:

ϕ0
c,ν̄α

pEν , tq “
πc

phcq3 4πR2
c

E2
ν

1 ` exprEν{Tcptqs
, (5.11)

with the cooling temperature being a function of time

Tcptq “ Tc,ν̄α exp r´t{ p4τcqs . (5.12)

The parameters of the model above are estimated from an event-by-event maximum
likelihood, and the best-fit values of our analysis, used in Figure 19, are:

Tc “ 5.1 MeV, Rc “ 12 km, τc “ 4.3 s, (5.13)
Ta “ 1.7 MeV, Ma “ 1.2Md, τa “ 0.7 s . (5.14)

As described before, the maximization of the likelihood depends on two terms. The
term in the exponential factor is related to the number of events and drives the theoretical
parameters to those who provide the right expected number of events, i.e., the area under
the curves at the end of the animation in Figure 19. It is quite easy to grasp if the
theoretical model fits well the data in this aspect.

The second term assesses how close the theoretical curve is to the experimental one
at the data central points, both in energy and in time. Since the uncertainty in time
is negligible, we can visually compare the curves at the moment new data is collected,
providing a visual tool for this second ingredient of the statistical analysis. By performing
these two analyses in Figure 19, we can expect that, although not perfect, the theoretical
prediction would provide a reasonably good fit to the data.

It is useful now to analyze a set of theoretical parameters that do not fit well the
data. This is done in Figure 20, where we chose two sets of parameters that are excluded
at 90% C.L. according to our analysis. These parameters were chosen in a way not to
change the total number of predicted events, so we can focus on the energy spectrum
information. It is clear, again using a visual comparison, that this new set of parameters
produces a worse fit to the data, a fact that is confirmed by a full statistical analysis.

As was pointed out earlier, the two main neutrino observables that we are taking
into consideration are the neutrino energy and the time of detection. After discussing the
first in the above analysis, we will now focus on the second. The best way to do this is to
determine the limits in neutrino mass that can be achieved using this statistical method.
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Figure 20 – To visualize the effect of spectral distortion impact on event rate, we used two
sets of parameters for Ta and Ma (in green and in cyan) that are excluded at
90% C.L. according to our analysis. The green curve produces a distortion for
low-energy events, while the cyan produces a distortion that favors high-energy
events. Also on light grey we present the best-fit point of our analyses, shown
in Figure 18 (see the animation here).

5.1.3 Neutrino mass limits

An important remark is that the neutrino detection spread in time is an important
source of physical information, allowing us to probe both Supernova explosion mechanisms
and neutrino properties. One important neutrino property with effects seen in the time
spread of the distribution of events is its mass.

The first difficulty in this kind of analysis is that the data itself does not allow us
to correlate the time of arrival of the neutrino burst at the detectors with the unknown
time at which the neutrinos left the Supernova. The solution is to use the data itself
to establish, through statistical analysis, the match between the theoretically predicted
neutrino flux and the data, taking the time of arrival of the first neutrino event in each
detector as a marker. The time of the following events, ti are taken as relative ones to the
time of arrival of the first event, t1:

δi “ ti ´ t1

and t1 is left to vary freely to best match the theoretical prediction in a previously
established time scale.

This simple picture arises when we assume massless neutrinos. In this case, the
relative time between events is identical to the relative time between the emission of these
detected neutrinos on the production site since the time delay due to the travel between

https://github.com/santosmv/Animations-visualizing-SN1987A-data-analysis/blob/main/events_rate_worse_fit.png
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the supernova and the detectors does not depend on the neutrino properties. In Figure 19
a vanishing neutrino mass is assumed, and the time shown in the animation corresponds
to the time since the supernova offset.
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Figure 21 – Effect of neutrino mass delay on the SN1987A detected burst compared to
the standard flux for a 3σ excluded neutrino mass. The gray line corresponds
to the fitted theory in Figure 19 (see the animation here).

However, since the neutrinos have mass, neutrinos with different energies have
different velocities, which changes the described scenario. More energetic neutrinos travel
faster than less energetic neutrinos, meaning that the relative times between events do
not correspond to the relative times of the neutrino emission. The correction is done by a
simple kinematic analysis:

ti.d “ ti,p `
L

vi

“ ti,p `
L

c

d

1 ´
m2

p2
i

„ ti,p `
L

c

ˆ

1 ´
m2

2E2
i

˙

where L is the distance to the supernova, and m and E are the neutrino mass and event
energy. The sub-index p (d) refers to the time at production (detection). The emission time
of each event is then calculated from the relative times δi, and the kinematic corrections:

ti,d “ t1,d ` δi

ti,p “ δi `

ˆ

ti,p ´
L

c

m2

2E2
1

˙

`
L

c

m2

2E2
i

. (5.15)

For more details see [64, 65].

Instead of making the correction on the time of the production, presented here to
give proper credit to the authors that proposed and performed this analysis, we prefer to
correct the theoretical predictions by a continuous spread in time on the neutrino flux

https://github.com/santosmv/Animations-visualizing-SN1987A-data-analysis/blob/main/events_rate_mass_delay.png
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spectrum at the detector. So, instead of converting the time of the detected events to the
supernova emission, we adjust the theoretical prediction to the detector site. Clearly, both
choices are equivalent, but with this second procedure we can use the same data animation
presented in Figure 19, and adjust the theoretical curve by making the replacement:

t Ñ t ´
L

c

m2

2E2

in eq. (5.7).

An animation evidencing this model-independent limit is shown in Figure 21, where
we chose an exceeding neutrino mass of 30 eV, highly beyond astrophysical limits of
„ 5 eV [64, 65] in order to effectively visualize the delay caused by mass, with the same
astrophysical parameters used to produce Figure 19, and then with the same neutrino flux
at the source. However, due to the different time lags of neutrinos traveling to Earth with
different energies, the time history of the expected number of events changes significantly,
allowing us to place a limit on neutrino data analysis using proper statistical techniques.

The pedagogical view of the particular SN1987A data analysis in this section provided
a first step further to face possible problems to be investigated with SN1987A detection.
In the next section, we perform a very similar analysis to potentially impose limits on
neutrino mixing in this supernova.

5.2 SN1987A neutrino burst: limits on flavor conver-
sion

In the context of the SN1987A analysis elucidated in the last section, we could
be interested not only in how the data translate the SN-ν properties through emission
parameters but also in understanding if this data would possibly provide some limits
over expected ranges of parameters. It enables us to provide more accurate reporting
of our expectations and prevents outcomes based on simple statistical fluctuations that
best-fit values are susceptible to. In summary, every measurement should be aggregated
into more detailed studies of their uncertainties. Using the same maximum likelihood
estimation described in Section 5.1, in addition to a more sophisticated treatment of
detector efficiencies shown in detail in [53], we perform this uncertainty estimation in
Figure 22, which describes the allowed regions considering the cooling parameters Rc

(neutrinosphere radius) and Tc (initial cooling temperature) for 68% and 90% C.L. We also
compare our analysis to previous ones in the literature. The differences in the results are
related to updated oscillation parameters and different approaches to detector efficiencies
as well as in the statistical method.
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Figure 22 – Allowed regions for cooling temperature (Tc) and neutrinosphere radius (Rc)
with 68% and 90% C.L (blue). LL shorthand Loredo and Lamb from [64]
(orange) and Pagliaroli et. al refers to [54] (green).

The above discussion shows the possibility of bound SN-ν emission models, and one
could ask if limits on the neutrino flavor conversion could also be achieved using SN1987A
data. Any analysis should deal with scenarios that we better understand in neutrino
mixing, such as the resonant matter effect, or MSW (explained in Chapter 4). Of course,
amongst the possible flavor conversion scenarios, the MSW is the most robust prediction,
taken as the standard neutrino mixing scheme in SN-ν in most of the prospective works in
the literature. As already explained, this effect describes νe and ν̄e creation in incoherent
propagation states νim. At the resonance regions in supernova layers, the conversion of
mass states in matter of the type νim Ñ νjm could occur. In any case, these flavor states
are converted to νx in an amount proportional to the module square of entries of the
PMNS matrix, even in the adiabatic regime. Note that for adiabatic propagation, the
survival probabilities Pee and P̄ee are simply constants (see eq. 4.12). Using the statistical
analysis of the last section, an idea that appears is: could we treat P̄ee as a free parameter
and also marginalize it to check if SN1987A data would prefer some region of parameter
space? The answer to this question is yes if we consider the MSW as the single conversion
effect, with the assumption of adiabatic propagation.

Using the same emission model described in Section 5.1 and performing the maxi-
mum likelihood estimation, marginalizing over P̄ee, we can impose limits on this survival
probability. Figure 23 shows this marginalization. The remarkable feature of this result is
that adiabatic MSW in IH is rejected with more than 2σ of significance, favoring the NH
scenario as the correct solution of neutrino mass hierarchy. Note that different fixed initial
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Figure 23 – ∆χ2 for P̄ee using SN1987A data, considering the cooling + accretion model
for various initial temperature ratios (τ) of nux and ν̄e. The horizontal dashed
lines correspond to 1, 2 and 3σ of C.L. Vertical lines show the MSW adiabatic
solution for normal and inverted hierarchies.

temperature ratios τ “ Tx{Te were tested, with minor impacts on the results. More details
of this analysis are in reference [53].
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Chapter 6

On the issue of pure to mixed quantum
states

In the 1970s, Hawking established the so-called black hole thermodynamics and
stated the possibility of particle creation in black hole event horizons in his seminal papers
[66, 67]. Surprisingly, analyzing the implications of such effect, he shows, through an
analysis of the final stage of black hole evaporation, and based on expected fluctuations of
the space-time metric in candidate theories of quantum gravity, that pure quantum states
could be induced to mixed ones [68, 3]. Many authors discussed the subject over the next
decades [69, 70, 71, 72, 73, 74, 75], but the quantum gravity problem and its stochastic
nature remain unsolved nowadays.

One argument that prevailed in the community is the possible open nature of quantum
systems, immersed in this stochastic “foamy” quantum gravitational environment (even
in vacuum), and proposals to evolution equations concerning an extension of quantum
mechanics were done in mid-1984 [70, 69]. Curiously, years before such derivation, in
1976, proposals for a generalized equation of motion for open quantum systems were
rigorously detailed in the simultaneous works of Gorini, Kossakowski, Sudarshan [76] and
Lindblad [77], resulting in the known Gorini-Kossakowski-Sudarshan-Lindblad (GKSL)
master equation.

In order to test open quantum systems in particle physics, detailed analyses using
neutral kaon oscillation and neutron interferometry were performed [69, 78, 79], and the
first hints in the use of the macroscopic quantum oscillation length of neutrinos came
along in 2000 with the works of Lisi, Marrone and Montanino [80] and Benatti and
Floreanini [81], with also almost simultaneous works. Since then, many authors carried
out phenomenological discussions on the subject using neutrino mixing. An important
remark in our terminology here is that we will denote such effects as quantum decoherence
(QD) from now on, since it is a term mostly spread by the neutrino community, despite,
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as we will see, decoherence, or the damping in the neutrino oscillation probability, is not
the single effect of quantum decoherence.

It is worth emphasizing that in this thesis, we limit ourselves to phenomenological
discussions of the implications related to the subject of pure neutrino states being induced
into mixed ones. This is motivated by the fact that the microscopic details of quantum
gravity in quantum fields or quantum mechanics are simply not fully understood. Even
though, we will try to elucidate that a phenomenological approach to investigate open
quantum systems in neutrinos is a powerful tool to test, indirectly, if neutrinos could be
affected by this (or any other) exotic physics that extends quantum mechanics to be open
in nature.

6.1 Open quantum systems and the evolution equa-
tion

In Chapter 2, we introduced the neutrino oscillation in vacuum through the Liouville-
von Neumann evolution equation for the neutrino density matrix ρ. If the quantum system
is considered open, (2.5) no longer provides a reasonable formulation of the evolution
and additional statements should be formulated in order to accomplish a more general
equation of motion, which is the GKSL equation [76, 77]. The first one is that we model
the neutrino as in contact with a larger system, which is commonly associated with a
thermal bath, with an infinite number of degrees of freedom, we denote this larger system
as an environment. In this case, the total density matrix can be written as the product
ρ “ ρS b ρE, with the fundamental assumption of no correlations in the initial time in the
propagation, where ρS is the density matrix of the neutrino subsystem and ρE a reference
state of the environment. To get ρSptq, we need to trace out the total system over the
environment:

ρSptq “ TrErΛptqρs “ TrErUptqρS b ρEU
:
ptqs , (6.1)

with the derivation of an equation of motion for ρS is all about finding a family of time-
evolution operators {Λptq} that enable to have ρSptq “ ΛptqρS. This “super-operator” (in
the sense of operating in ordinary operators) is denoted as a dynamical map and {Λptq} is
a quantum dynamical semi-group with generator L, sometimes regarded as generalized
Liouville super-operator [82]. Using these concepts and removing the S index of the
neutrino density matrix, i.e. ρS Ñ ρ for simplicity of notation (still having in mind that the
neutrino concerns a subsystem), we can derive the GKSL equation for a N -level quantum
subsystem as [77]

dρ

dt
“ ´irH, ρs `

N2´1
ÿ

p“1

ˆ

VpρV
:

p ´
1
2tV :

p Vp, ρu

˙

, (6.2)
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where it is possible to see a Hamiltonian term, corresponding to the conventional evolution
in quantum mechanics and an additional term, with a new quantity Vp that we denote
as jump operators, with the non-Hamiltonian term (second term in the r.h.s) commonly
called dissipation part of the evolution. Writing (6.2) in a more compact way:

dρ

dt
“ ´irH, ρs ` Dpρq , (6.3)

with

Dpρq “

N2´1
ÿ

p“1

ˆ

VpρV
:

p ´
1
2tV :

p Vp, ρu

˙

“
1
2

N2´1
ÿ

p“1
prVp, ρV

:
p s ` rVpρ, V

:
p sq . (6.4)

A more complete derivation of this equation of motion can be found in Appendix A.

It is worth mentioning that we require an additional physical assumption for (6.4),
which is the increase of von Neumann entropy Spρq “ ´ Trpρ ln ρq at all times. It can
be fulfilled by making Vp “ V :

p and the derivation of this property can be found in [83].
Applying this assumption, eq. (6.4) is simplified to

Dpρq “
1
2

N2´1
ÿ

p“1
rrVp, ρs, Vps . (6.5)

Another important remark concerning the equation of motion arises from the question:
if the quantum system is modeled from a subsystem in contact with the corresponding
thermal bath, is some exchange of energy between both allowed in the propagation? The
answer is yes if the neutrino Hamiltonian does not commute with the jump operator, i.e.
rH,Vps ‰ 0 [70, 71].

There are a number of approaches to solving the equation (6.3). We adopt a simple
one, which is the expansion of all operators in the generators of SU(N), with N as the
number of levels of the system, i.e. for two neutrinos, N “ 2. We devote the rest of this
chapter to solving the equation of motion in (6.3) for two and three neutrino systems in
vacuum and see the implications of considering a dissipation effect in quantum mechanics.
In the next chapter, we can include in this framework the ν-matter interaction in order to
apply these achievements in the supernova environment.

6.2 Two-level system in vacuum

Our goal in this section is to solve the evolution equation for a 2-ν system, considering
a particular case of νe created and detected in vacuum. The quantity we are interested in
is the survival probability Pee as in previous chapters. Firstly, we can expand the operators
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in the neutrino mass basis with Pauli matrices as

H “ hµσµ “ h0 `

3
ÿ

i“1
hiσi

ρ “ ρµσµ “ ρ0 `

3
ÿ

j“1
ρjσj

Vp “ vpµσµ “ vp0 `

3
ÿ

k“1
vpkσk

, (6.6)

and make the substitution in eq. (6.2),

d

dt
ρµσµ “ ´i

3
ÿ

i,j“1
hiρjrσi, σjs `

1
2

3
ÿ

p,i,j,k“1
vpiρjvpkrrσi, σjs, σks

d

dt
ρµσµ “ 2

ÿ

i,j,k

ϵijkhiρjσk ´ 2
ÿ

p,i,j

pv2
piρjσj ´ vpivpjρjσiq

, (6.7)

where µ ranges from 0 to 3 and i, j from 1 to 3. It is straightforward to note that
equation (6.7) is a set of coupled equations with expanded coefficients of initial operators.
If we perform the above sum, we have

d

dt
ρµσµ “ 2 rph2ρ3 ´ h3ρ2qσ1 ` ph3ρ1 ´ h1ρ3qσ2 ` ph1ρ2 ´ h2ρ1qσ3s

´2
“

pv2
2ρ1 ` v2

3ρ1 ´ v1v2ρ2 ´ v1v3ρ3qσ1

`pv2
1ρ2 ` v2

3ρ2 ´ v1v2ρ1 ´ v2v3ρ3qσ2

`pv2
1ρ3 ` v2

2ρ3 ´ v1v3ρ1 ´ v2v3ρ2qσ3
‰

, (6.8)

where we simplified the sum over the p index as vµ “
ř3

p“1 vpµ with no loss of generality.
It is convenient to rewrite eq. (6.8) to use the coefficients of the density matrix in a vector
form pρqT “ pρ0, ρ1, ρ2, ρ3q, changing eq. (6.8) to

9ρ “ ´2Lρ , (6.9)

with

L “ Hµν ` Dµν (6.10)

being the Liouville super-operator. This vectorized form of the density matrix in the
equation of motion is referred to as Liouville space in the literature [84, 85]. Recall that
in the SU(2) expansion one simply could make Dpρq “ Dpρqµσ

µ “ Dµνρ
νσµ, to get the

dissipation part Dµν , that in matrix form is given by

Dµν “

¨

˚

˚

˚

˚

˝

0 0 0 0
0 v2

2 ` v2
3 ´v1v2 ´v1v3

0 ´v1v2 v2
1 ` v2

3 ´v2v3

0 ´v1v3 ´v2v3 v2
1 ` v2

2

˛

‹

‹

‹

‹

‚

, (6.11)
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as well as the Hamiltonian term is written as

Hµν “

¨

˚

˚

˚

˚

˝

0 0 0 0
0 0 h3 ´h2

0 ´h3 0 h1

0 h2 ´h1 0

˛

‹

‹

‹

‹

‚

. (6.12)

Note that (6.11) is a symmetric matrix whereas (6.12) is antisymmetric and both are
hermitian. Equation (6.11) can be parameterized as

Dµν “

¨

˚

˚

˚

˚

˝

0 0 0 0
0 a b c

0 b α β

0 c β γ

˛

‹

‹

‹

‹

‚

, (6.13)

with

a “ v2
2 ` v2

3

b “ ´v1v2

c “ ´v1v3

α “ v2
1 ` v2

3

β “ ´v2v3

γ “ v2
1 ` v2

2

, (6.14)

and in order to preserve a strong requirement of open quantum systems formalism, the
complete positivity of the density matrix, these parameters should respect the inequalities
[81]

2R ” α ` γ ´ a ě 0
2S ” a ` γ ´ α ě 0
2T ” a ` α ´ γ ě 0

RS ´ b2
ě 0

RT ´ c2
ě 0

ST ´ β2
ě 0

RST ´ 2bcβ ´ Rβ2
´ Sc2

´ Tb2
ě 0

, (6.15)

in order to make the evolution to positive density matrices at all times. A remark about
(6.13) is that we do not know its form from the first principles.

To understand the impact of the dissipation term in the neutrino evolution and
avoid managing with the nine additional parameters, we will solve the special case of the
following diagonal dissipation matrix

Dµν “

¨

˚

˚

˚

˚

˝

0 0 0 0
0 γ 0 0
0 0 γ 0
0 0 0 γ

˛

‹

‹

‹

‹

‚

. (6.16)
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The mass basis Hamiltonian in Liouville space is given by

Hµν “

¨

˚

˚

˚

˚

˝

0 0 0 0
0 0 ω

2 0
0 ´ω

2 0 0
0 0 0 0

˛

‹

‹

‹

‹

‚

, (6.17)

where we can recall that ω “
∆m2

21
2E

. The resulting set of coupled equations becomes

9ρ0ptq “ 0
9ρ1ptq “ ´2γρ1ptq ´ ωρ2ptq

9ρ2ptq “ ωρ1ptq ´ 2γρ2ptq

9ρ3ptq “ ´2γρ3ptq

, (6.18)

with the solution given by

ρ0ptq “ ρ0

ρ1ptq “ e´2γt
rρ1 cosωt ´ ρ2 sinωts

ρ2ptq “ e´2γt
rρ2 cosωt ` ρ1 sinωts

ρ3ptq “ ρ3e
´2γt

. (6.19)

To find the survival probability of a νe generated and detected in vacuum, we use the
initial density matrix in flavor basis ραp0q “ diagp1, 0q, and also recall the initial condition
found in (2.14)

ρp0q “ U :ραp0qU “

˜

cos2 θ sin 2θ
2

sin 2θ
2 sin2 θ

¸

,

where the density matrix on the mass basis becomes:

ρptq “

˜

1
2 ` e´2γt cos 2θ

2
e´2γt

2 sin 2θe´iωt

e´2γt

2 sin 2θeiωt 1
2 ´ e´2γt cos 2θ

2

¸

, (6.20)

and, consequently, the density matrix in the flavor basis with the transformation ραptq “

UρptqU :, to finally find the survival probability through Pee “ Tr rραp0qραptqs:

Peeptq “
1
2 ` e´2γt

„

1
2 ´ sin2 2θ sin2

ˆ

ωt

2

˙ȷ

. (6.21)

Equation (6.21) is consistent with our result for the expectation of the conventional
quantum mechanical νe oscillation, since when γ Ñ 0, we recover the Pee from (2.18).
Note that in (6.21), we have an exponential term multiplying a constant as well as the
oscillation term. So it is possible to infer that two effects are expected: one related to
damping in the oscillation pattern where a system initially created coherently would lose
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coherence along the propagation, and another one translating the average probability
to a specific value, and surprisingly it is not any value but the fraction of one over the
number of levels of the system, that is 1/2 for eq. (6.21). The latter is independent of the
coherence in the creation: it potentially affects even systems with diagonal Hamiltonians.
It is important to note that the relaxation effect appears only when we choose a Dµν in
which rH,Vps ‰ 0, i.e. some exchange of energy between the neutrino and environment
is allowed, otherwise only decoherence effects would be possible. Different works [86, 87]
provided a detailed description of such decoupled effects as decoherence and relaxation for
the damping and the equipartition of states (or maximal mixing) respectively. The former
effect will be important when we discuss the possible implications of this formalism in
supernova neutrinos.

Note that we used the neutrino mass basis as the starting point of the equation
of motion, and the literature also assumes the same procedure (see [81]). However, one
could ask why the dissipation term can not be defined on flavor basis. It is not a discussed
subject in the literature and we do not worry about this concept in this thesis for some
reasons: the statement of neutrino dissipating energy or losing coherence in a basis with
well-defined mass is a reasonable assumption; if we transform Vp operators to flavor basis,
the dissipation matrix Dµν would be affected by mixing angles, but the essential behavior
provided by dissipative effects would be similar. Despite these assertions, we admit that it
is a question to be better addressed in the literature in the future.

6.3 Three-level system in vacuum

For a three-neutrino system, we do a similar procedure of Section 6.2, but now
we expand the operators in SU(3) using the Gell-Mann matrices λµ. After imposing the
increase of von-Neumann entropy, the resulting dissipation matrix becomes

Dµν “ ´

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0 0 0 0 0 0 0 0 0
0 ´γ1 β12 β13 β14 β15 β16 β17 β18

0 β12 ´γ2 β23 β24 β25 β26 β27 β28

0 β13 β23 ´γ3 β34 β35 β36 β37 β38

0 β14 β24 β34 ´γ4 β45 β46 β47 β48

0 β15 β25 β35 β45 ´γ5 β56 β57 β58

0 β16 β26 β36 β46 β56 ´γ6 β67 β68

0 β17 β27 β37 β47 β57 β67 ´γ7 β78

0 β18 β28 β38 β48 β58 β68 β78 ´γ8

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

, (6.22)

where we show in Appendix B each parameter in terms of Vp expansion coefficients.
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Figure 24 – Survival probability for νe propagating in vacuum in a distance L with quantum
decoherence effects. The energy assumed was Eν “ 10 MeV and we took
Γ “ 10´13 eV. The neutrino is assumed to be ultra-relativistic, i.e. vν « c.

As we can see, the equation of motion has 64 parameters when the dissipation
part is considered. These parameters are also related to each other in order to guarantee
the complete positivity of the evolution, with inequalities found in [88]. Considering
all the above parameters is unmanageable and we also assume some simplification in
order to check the possible effects in the neutrino evolution. Then, we take (6.22) to
be diagonal, then βµν “ 0 for all µ, ν. We also let γµ “ Γ for all µ, resulting in Dµν “

diagp0,Γ,Γ,Γ,Γ,Γ,Γ,Γ,Γq.

We can write the Hamiltonian in Liouville space on mass basis for three neutrinos as

Hµν “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0 0 0 0 0 0 0 0 0
0 0 ´ω21

2 0 0 0 0 0 0
0 ω21

2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 ´ω31

2 0 0 0
0 0 0 0 ω31

2 0 0 0 0
0 0 0 0 0 0 0 ω21

2 ´ ω31
2 0

0 0 0 0 0 0 ´ω21
2 ` ω31

2 0 0
0 0 0 0 0 0 0 0 0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

, (6.23)
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with ωij “ ∆mij{2E. Recall that we are interested in solving the evolution equation in
(6.9), and L “ Hµν ` Dµν . Using similar procedures as in the last section we can find the
νe survival probability:

Pee “
1
3 ` Be´Γt

` e´Γt
rC cos pω21t ´ ω31tq ` F cosω21t ` G cosω31ts , (6.24)

with

B “
2
3pc4

12c
4
13 ´ c2

12c
4
13s

2
12 ´ c2

12c
2
13s

2
13 ` c4

13s
2
12 ´ c2

13s
2
12s

2
13 ` s4

13q

C “ 2c2
13s

2
12s

2
13

F “ 2c2
12c

4
13s

2
12

G “ 2c2
12c

2
13s

2
13

,

where cij and sij concern cos θij and sin θij respectively. As in the SU(2) solution, we can
note that the exponential term e´Γt multiplies the oscillation factors of (6.24), where we
expect a damping in the oscillation probability, and in our terminology it is an effect of
decoherence. The exponential multiplying the B constant is responsible for a relaxation of
the system to the maximal mixing expectation for three neutrinos, i.e. 1/3. In Figure 24
we show the survival probability for νe considering the solution in (6.24). We see the
combination of the damping in the oscillation (the amplitude decreases for larger distances),
as well as the asymptotic value of Pee asymmetrically goes to 1/3, given relaxation effects.
We used a value of Γ “ 10´13 eV. It is worth mentioning that we could use neutrino
experiments to test the behavior found in Figure 24. Actually, it is an effort already
done for many neutrino sources, experiments, and works and the resulting bounds lead
to excluding such a scenario with a certain confidence level (for this particular value of
Γ and in the scale of energy used in Figure 24). In the next chapter, we will apply this
formalism to the particular case of supernova neutrino emission and see its implications in
a future neutrino detection as well as address how a future SN would potentially restrict
these effects.

6.4 Three-level incoherent system

As discussed in Chapter 3 and Chapter 4, the neutrino coherence does not hold
when the medium of propagation is high-density matter, since the neutrino Hamiltonian
becomes approximately diagonal in this regime. In this section, we briefly show that even
in this situation, quantum decoherence could affect neutrino mixing. To evaluate this
effect, instead of using a matter potential to provide loss of coherence, we simply adopt
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Figure 25 – Survival probability for νe propagating in vacuum in a distance L for an
incoherent νe “ νi, with i “ 1, 2, 3. Each initial state is highlighted in the
legend. The energy assumed was Eν “ 10 MeV and we took Γ “ 10´13 eV.

the starting state to be incoherent in vacuum, i.e. να « νi. Let us take the example of an
initial electron neutrino created as any mass state. Let us also use the same format of the
dissipation matrix taken in the previous section, Dµν “ diagp0,Γ,Γ,Γ,Γ,Γ,Γ,Γ,Γq. The
neutrino Hamiltonian in the mass state is also eq. (6.23). Solving the equation of motion
(6.3), we get

Pee “
1
3 ` e´Γt

ˆ

c2
12c

2
13 ´

1
3

˙

νep0q “ ν1

Pee “
1
3 ` e´Γt

ˆ

s2
12c

2
13 ´

1
3

˙

νep0q “ ν2

Pee “
1
3 ` e´Γt

ˆ

s2
13 ´

1
3

˙

νep0q “ ν3

, (6.25)

where νep0q means electron neutrino state in initial time t0 “ 0, i.e. ρept “ 0q “ |νiy xνi|
for i “ 1, 2, 3. It is worth mentioning that no interference term is present, but even for
this incoherent initial neutrino state, quantum decoherence could impact neutrino mixing
with relaxation. We note that for Γ Ñ 0 the |Uei|

2 solution is recovered, which is the
expected solution for Pee considering an incoherent initial state. We also see that if Γ Ñ 8,
the maximal mixing 1/3 is reached. Figure 25 shows these probabilities as a function of
propagated distance where an ultra-relativistic limit is taken, or vν „ ct. Note that the
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same probability could be obtained using the factorization Pee “
ř

j PeiPijPje, which will
be crucial to the discussion in the next chapter. It is important to mention that QD effects
are not expected in incoherent neutrinos when rH,Vps “ 0, since in this regime, relaxation
effects are suppressed, and only decoherence would possibly occur1.

Note that despite the fanciful scenario explored in this section, it fits very well with
the situation of a neutrino created in a compact object with high-density matter and
is emitted to vacuum, which is the exact supernova scenario and approximately what
happens in stars, and it is an important issue that we address in SN context in Chapter 7.

1 The additional assumption rH, Vps “ 0 would mean D33 “ D88 “ 0 in addition to rescaling other
parameters.
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Chapter 7

Quantum decoherence in supernova
neutrinos

A large number of phenomenological studies designed to test if quantum decoherence
could affect neutrino measurements were performed in the past, and no results indicate a
strong signal of such an effect. However, neutrino detection data was able to impose strong
bounds on this phenomenon, with analyzes performed in atmospheric [80, 89], accelerator
[90, 91, 92, 93, 94, 88, 95, 96, 97], reactor [98, 97], solar [89, 99, 100], and ultra-high energy
extra-terrestrial [101] neutrinos with different approaches, for past, operating, and future
neutrino experiments. In this chapter, we include a new possible source to test quantum
decoherence effects as well as eventually bound this phenomenon: supernovas. Although
we do not claim the first worldwide work on the subject, since in 2010 the pre-print [102]
suggests some analysis of the topic, we provide here the first analysis as complete as
possible1 in supernova neutrinos, and most of our results can be found in [103].

In the next section, we show the convenient models to be discussed here, making some
choices concerning the already mentioned dissipation Dµν matrix. Although we do not
go into quantum gravity phenomenology, we guide our analysis through some definitions
presented in the literature, particularly, the terminology and interesting ideas that connect
possible quantum gravitational effects to open quantum systems formalism for neutrinos
shown in [104].

7.1 Selected Models

We devote this section to connecting possible quantum decoherence models to
different physical situations in a future SN detection. We decided to take only diagonal
versions of (6.22) for simplicity, then βµω “ 0 for all µ and ω.
1 As discussed in Chapter 4, many challenges are involved in a complete framework of SN-ν mixing.
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Figure 26 – Coherence length (Lcoh “ 1{γ) for values of n in a power law of decoherence
coefficients γ “ γ0pE{E0qn for a “natural” scale of quantum gravity, with
ξPlanck “ 1. The region in yellow corresponds to the solar system edge, while
the region in blue is the Milky Way diameter, and the dashed grey line is to
respect the observable universe.

As discussed before, in works such as [105, 99] it is shown that quantum decoherence
can give rise to two disentangled effects when the evolution occurs in vacuum: the pure
decoherence, where a coherent state becomes incoherent along propagation; and the
relaxation effect, responsible to lead the ensemble to a maximal mixing. As coherence on
SN neutrinos is suppressed due to matter effects on the mixing angle and long propagation
lengths2, we do not expect pure decoherence effects to play any role in the propagation,
being only (possibly) affected by relaxation.

Up to this date, and to the author’s best knowledge, there is no consistent theory in
which we can get the parameters of Dµν from quantum gravity, or even if the parameters
are constant. Different works [80, 106, 89, 104] suggested the possibility of a dependency
on energy as γi “ γ0i

pE{E0qn motivated by quantum space-time phenomenology, where E0

is an arbitrary energy scale. In this work, we chose E0 “ 10 MeV to match the energy scale
of supernova neutrinos. As for the energy dependence, we explore the scenarios with n “ 0
and n “ 2, given that most of the works check this power law exponents for γi, which
enables us to compare SN limits to other sources (and works), and n “ 5{2, well-motivated
2 If neutrinos are only affected by MSW effect, it is possible for νµ and ντ oscillate to each other.

It generally does not affect the analysis of flavor conversion, once they are indistinguishable in the
detection, and therefore generally denoted as νx. However, as we will see in Section 7.2, their creation
in coherent states changes one of the tested QD models here.
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by the natural Planck scale for the SN energy range of 0 ´ 100 MeV. By natural scale,
we refer to γ0i

“ ξPlanck{Mn´1
Planck with ξPlanck „ 1 [107, 104], making γ0i “ ξPlanckM

1
Planck,

ξPlanckM
´1
Planck, and ξPlanckM

´3{2
Planck for our choices of n “ 0, 2 and 5/2.

With dimensional analysis (which can be further justified when solving the evolution
equation), we expect that the effects of decoherence would show up for distances larger than
a coherence length, defined by Lcoh “ 1{γ. In Figure 26 we show the expected coherence
length for these values of n. We see that if this “natural” scale holds, n “ 0 and 2 would
be possibly ruled out by terrestrial and solar experiments, whereas for n “ 3, Lcoh is out
of the observable universe for the expected SN-ν energy scale. For the mentioned values of
n, we analyze the following models:

Mass State Coupling (MSC): The neutrino mass basis is coupled to the environ-
ment and the relaxation effect leads to maximal mixing. In 3-ν mixing, it means a 1/3
(equal) probability of detecting any state. In this model, we test two possible scenarios
related to energy conservation in the neutrino subsystem:

i) MSC{ϵ (rH, Vps “ 0): Here, the neutrino energy is conserved for any non-standard
mixing process in vacuum3. It means that Vp “ v3λ3 ` v8λ8, where λµ are Gell-Mann
matrices and vµ “

ř8
p“1 vpµ, with µ ranging from 0 to 8 in the SU(3) expansion of

Vp. To simplify the analysis, we choose a diagonal version of the dissipation term in
(6.22) with a single parameter Γ. Additionally, using complete positivity relations
[88], we can find the special case of Dµν “ diagp0,Γ,Γ, 0,Γ{4,Γ{4,Γ{4,Γ{4, 0q, with
Γ “ Γ0pE{E0qn. The transition probabilities amongst mass states in vacuum are null
in this case. However, if we look at the propagation inside the supernova layers, in
a diagonalized basis of the mass state in matter PmpSNq

ij , this probability could be
non-null for i ‰ j, i.e. transitions between νim and νjm are allowed and would change
proportionally to e´Γ. Therefore, the coherence length to be investigated is the SN
radius, and the matter effects in addition to quantum decoherence would induce a
maximal mixing inside the SN. In Figure 27 we show the transition probabilities of
mass state in matter basis calculated using the slab approach with a simulated SN
density profile from Garching group [40, 41], corresponding to a progenitor of 40 Md,
already shown in Figure 15. More details about our solution are in Appendix D. When
the neutrino is released to vacuum, it is no longer affected by quantum decoherence
until detection. Since the length traveled inside the Earth by the neutrino is much
smaller than LSN

coh, we do not take the quantum decoherence in Earth matter into
account in this specific case, albeit standard non-adiabatic MSW effect could play a
role. Note that this regime essentially depends on ν matter effects in the SN.

3 In our notation, the superscript symbol {ϵ accounts to no exchange of energy with the environment,
while ϵ has the opposite meaning.
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Figure 27 – Survival probabilities of mass state in matter basis inside the SN for the MSC{ϵ

model (no exchange of energy from neutrinos and environment in vacuum)
and n “ 0 (and then Γ “ Γ0). The SN matter density profile used is from a
Garching simulation of a 40 Md (LS180-s40.0) progenitor [40, 41], shown in
Figure 15. The procedure to find these solutions is in Appendix D.

ii) MSCϵ (rH,Vps ‰ 0): In this model, we relax the above assumption, allowing some
exchange of ν energy with the “non-standard” environment. We choose the most
general diagonal version of the dissipation term from (6.22):

Dµν “ diagp0, γ1, γ2, γ3, γ4, γ5, γ6, γ7, γ8q . (7.1)

In [104], this choice of Dµν is intrinsically related to mass state selected scenario to
be impacted by quantum gravitational effects. To quantify the effects of this model,
we solve (6.3) analytically to get the probabilities of interest in the mass basis in
vacuum4:

P11 “
1
3 `

1
2e

´γ3x
`

1
6e

´γ8x

P12 “
1
3 ´

1
2e

´γ3x
`

1
6e

´γ8x

P13 “
1
3 ´

1
3e

´γ8x

P33 “
1
3 `

2
3e

´γ8x

P22 “ P11

P23 “ P13
, (7.2)

4 The expected (adiabatic MSW) solution for the probabilities is a Kronecker delta, i.e. Pij “ δij .
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with x as the propagated distance. For other possible probabilities on this basis, we
use Pij “ Pji. It should be noted that on this basis the probabilities depend only on
γ3 and γ8. The reason is that when solving the set of differential equations 9ρ “ ´2Lρ,
the ones corresponding to γ3 and γ8, i.e. L3ν and L8ν are the only decoupled ones,
independent of Hamiltonian terms.

If we look at γi parameters in terms of vµ coefficients of the SU(3) expanded Vp we
find

γ3 “ v2
1 ` v2

2 `
v2

4
4 `

v2
5

4 `
v2

6
4 `

v2
7

4

γ8 “
3v2

4
4 `

3v2
5

4 `
3v2

6
4 `

3v2
7

4

. (7.3)

Equation (7.3) shows that γ3 and γ8 are not independent. In order to compare our
results to solar neutrinos [99], we can use the same notation to define:

Γ3 “ v2
1 ` v2

2

Γ8 “
3v2

4
4 `

3v2
5

4 `
3v2

6
4 `

3v2
7

4
, (7.4)

leading to γ3 “ Γ3 ` Γ8{3 and γ8 “ Γ8, resulting in pure (independent) relaxation
Γi parameters, that will be the ones effectively inducing the maximal admixture
in this scenario. The energy dependence is explicitly written as Γi “ Γ0ipE{E0qn

with i “ t3, 8u. Note that the effective distance of this particular case is the total
neutrino propagation, i.e. vacuum propagation is also affected and it can be split
into the regime in the SN and outside its surface until Earth, or L “ LSN ` LVac.
Similarly as in i), we solve the probabilities associated with possible transitions in
supernova layers only numerically. However, as we discuss in Section 7.2.1, given
that LVac " LSN, the approximation of L „ LVac is assumed in our calculations.

Neutrino Loss: As mentioned in [104], it is possible to have a scenario with neutrino
loss, where neutrinos are captured by effects of quantum gravity during propagation, and
re-emitted to a different direction, never reaching the detector at Earth. In this picture, the
authors made a choice of D00 ‰ 0. Looking at the most general form of Dpρq, it is possible
to say that this choice is completely out of open quantum systems formalism, i.e. naturally
Dpρq0µ “ 0 when the master equation (6.3) is assumed to describe the evolution of the
reduced quantum system, with trace-preserving all times. Even though, to explore such
an interesting physical situation, we test this non-unitary case that matches the choice
γi “ γ with i from 1 to 8, then Dµν “ diagpγ, γ, γ, γ, γ, γ, γ, γ, γq, with γ “ γ0pE{E0qn.
The solution of (6.3) gives:
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Pii “ e´γx

Pij “ 0
(7.5)

for any i, j from 1 to 3 with i ‰ j. Note that in this result, in contradiction to conventional
unitary models, one state does not go to another, i.e.

ř

i Pij ‰ 1, once neutrinos are lost
along the way.

In the solutions of the equation of motion shown above, we absorbed a factor of 2 in
the quantum decoherence parameters, i.e. 2γi Ñ γi, with no loss of generality, since what
matters in our results is the intensity of a deviation from a standard scenario.

It is important to mention that we tested a non-diagonal version of Dµν using complete
positivity relations and the asymptotic results were also the maximal mixing, with behavior
similar to that presented here. We report this non-diagonal model in Appendix C.

7.2 Methodology and simulation

To test the QD models discussed in the context of a future SN detection, we use the
neutrino flux coming from supernovae simulations from the Garching group [40]. For MSC{ϵ

described in item i) of MSC in Section 7.1, we exploit a 40 Md progenitor simulation
(LS180-s40.0) [41], since it has detailed matter density profiles, essential to explore such
scenario. For all other cases investigated (MSCϵ and ν-loss), we use simulations with
27 Md (LS220s27.0c) and 11.2 Md (LS220s11.2c) progenitor stars, detailed in [39].

To avoid the large uncertainties of collective effects, we only use the flux from the
neutronization burst phase (first 30 ms) in our analysis, in which effects induced by ν ´ ν

interaction are expected to not play a significant role. In Figure 28 we show the luminosity
of all flavors along the time window of this phase.

Next, we explain in more detail how to include non-standard physics of eqs. (7.2) and
(7.5) in SN neutrino evolution and our methods to use a future SN detection to impose
limits on QD parameters.

7.2.1 Factorization of the dynamics

This analysis only takes into account the MSW effect in the neutronization burst
through the standard matter effect on ν mixing in addition to quantum decoherence effects.
To combine QD effects and MSW along the ν generation, propagation, crossing through
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Figure 28 – Simulated ν luminosity for neutronization burst phase of the emission models
of 27 Md (solid) and 11.2 Md (dashed) progenitor stars from Garching group
[40, 39].

Earth, and detection, it is possible to factorize the flavor probabilities as

Pαβ “

3
ÿ

i,j,k“1
P

mpSNq

αi P
mpSNq

ij PjkP
mpEarthq

kβ P̄αβ “

3
ÿ

i,j,k“1
P̄

mpSNq

αi P̄
mpSNq

ij P̄jkP̄
mpEarthq

kβ ,

(7.6)
where Pαβ and P̄αβ are the transition probabilities from flavor α to β for neutrinos
and antineutrinos. The meaning of each term in (7.6) can be summarized as: PmpSNq

αi is
the probability of creating a να as a i state in matter νim; PmpSNq

ij is the probability of
converting νim Ñ νjm inside supernova layers; Pjk the probability of converting νj Ñ νk

during propagation in vacuum until Earth; and by the end, PmpEarthq

kβ is the probability of
detecting a νβ given a νk state considering (or not) Earth matter effects. Where, again, the
index m regards that the creation or propagation is in matter. It is worth remembering
that νe and ν̄e are created as a single mass eigenstate in matter. In this scenario, the sum
over i vanishes, since we have PmpSNq

ei “ δi3 and P̄
mpSNq

ei “ δi1 for NH, and P
mpSNq

ei “ δi2

and P̄mpSNq

ei “ δi3 for IH. As for νx, although it is created in a coherent superposition of the
other two mass eigenstates, the interference phase would be averaged out, and therefore
eq. (7.6) is valid. In the context of a SN flux conservation, the simplest flavor conversion
scheme could be described by just Pee and P̄ee, and in standard neutrino mixing, the
factorized probabilities in (7.6) become PmpSNq

ij “ δij , Pjk “ δjk and P̄mpSNq

ij “ δij , P̄jk “ δjk

for adiabatic evolution. Such a scenario can be changed by quantum decoherence, allowing
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for the conversion among mass eigenstates in vacuum and matter. The explicit solutions
for the equation (7.6) in NH and IH can be written as:

PNH
ee “

1
3 ` e´Γ8t

ˆ

s2
13 ´

1
3

˙

P IH
ee “

1
3 `

c2
12c

2
13

2

„

e´Γ8t

3 ´ epΓ3`Γ8{3qt

ȷ

`
c2

13s
2
12

2

„

e´Γ8t

3 ` epΓ3`Γ8{3qt

ȷ

´
s2

13
3 e´Γ8t

(7.7)

and

P̄NH
ee “

1
3 `

c2
12c

2
13

2

„

e´Γ8t

3 ` epΓ3`Γ8{3qt

ȷ

`
c2

13s
2
12

2

„

e´Γ8t

3 ´ epΓ3`Γ8{3qt

ȷ

´
s2

13
3 e´Γ8t

P̄ IH
ee “

1
3 ` e´Γ8t

ˆ

s2
13 ´

1
3

˙

.

(7.8)

One can also note in (7.2), (7.3), (7.4) and (7.6) that for the MSCϵ model, Pee is a
function of Γ3 and Γ8 in IH but only of Γ8 for NH. The P̄ee has the opposite dependency
and we can write:

P IH
ee “ P IH

ee pΓ3,Γ8q PNH
ee “ PNH

ee pΓ8q

P̄ IH
ee “ P̄ IH

ee pΓ3q P̄NH
ee “ P̄NH

ee pΓ3,Γ8q.

These remarks on the survival probabilities of νe and ν̄e are essential in our results, once
the flavor conversion of MSC can be described using uniquely Pee and P̄ee.

Particularly for the MSC{ϵ case, considering the propagation along supernova layers,
P

mpSNq

ij and P̄mpSNq

ij will be affected by QD, nevertheless Pjk “ δjk and P̄jk “ δjk, since with
no exchange of energy to the environment, quantum decoherence would not play any role
in the vacuum propagation. On the other hand, for MSCϵ, both SN matter and vacuum
would affect the neutrino mixing. However, as shown in Figure 48 in the Appendix D, it
would be needed a Γ3,8 Á 10´18 eV or even beyond to have significant changes over PmpSNq

ij .
As it will be clear in Section 7.3, this value is much higher than the possible sensitivity of
a future SN detection with only vacuum effects (given the large coherence length between
the SN and Earth), then we take PmpSNq

ij and P̄
mpSNq

ij as δij for MSCϵ from now on.

In order to put bounds on QD effects, we statistically analyze it in two scenarios:
without Earth matter effects in neutrino (antineutrino) propagation, or PmpEarthq

ke “ Pke

(P̄mpEarthq

ke “ P̄ke) in (7.6); and then we check how Earth matter effects would impact our
results.

Figure 29 shows both scenarios of Pee and P̄ee as a function of quantum decoherence
parameters for neutrinos and antineutrinos, where neutrino hierarchy plays a relevant role
in the considered scenarios. It is possible to see that Earth regeneration could enhance or
decrease the sensitivity of standard physics on QD parameters for very specific energies
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and zenith angles θz. However, as we will see later, regeneration becomes more relevant for
higher energies, generally at the end of the SN-ν simulated spectrum, limiting its impact
on SN flavor conversion.
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Figure 29 – Survival probability for electron neutrinos (left) and antineutrinos (right) as
a function of decoherence parameters for n “ 0 (energy independent) and a
10 kpc propagation, without (upper plots) and with (down plots) Earth matter
effects. Solid lines represent MSCϵ scenario (Γ8) with Γ3 “ 10´27 eV and the
dashed, the neutrino loss (γ). For the upper plots, quantum decoherence is
taken into account only in vacuum in between SN surface until detection at
Earth, with no regeneration considered. In the down ones, we set the zenith
angle of θz “ 180o and Eν “ 30 MeV.

It is worth mentioning that for the MSC model, asymptotically we expect more
sensitivity on Pee in NH than IH, since for IH the standard probability is about the
maximal admixture (1/3). In contrast, for P̄ee, both hierarchy scenarios are almost equally
sensitive to a maximal admixture scenario. In the case of ν-loss we see the opposite picture
for Pee, i.e. IH would be more impacted by an asymptotically null probability, and for P̄ee

NH would be highly affected, with low impact on IH.

As we will see later, the most general scheme of SN-ν fluxes at Earth can not be
parameterized with just Pee and P̄ee for the ν-loss scenario, given no conservation of total
flux. Therefore it is needed to work out Pαβ also for α, β “ µ, τ (not shown in Figures 29
for simplicity). We clarify it in the next section.
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7.2.2 Exploring a future SN-ν detection

Since the detection of SN1987A through neutrinos, a galactic SN is expected by
the community as a powerful natural ν laboratory, and the next generation of neutrino
detectors promises a precise measurement of a galactic SN, highly increasing our knowledge
of SN-ν flavor conversion, with different detector technologies and capabilities. Here, we
show the sensitivity of DUNE, HK, and JUNO on QD. These detectors have the following
properties:

a) DUNE will be a 40 kt Liquid-Argon TPC in the USA. We consider only the most
promising detection channel νe ` Ar Ñ e´ `K` [110] in our analysis, being sensitive
to electron neutrinos and consequently to most neutronization burst flux5. We set
an energy threshold to Eth “ 4.5 MeV and use the most conservative reconstruction
efficiency reported in [110].

b) Hyper-Kamiokande will be a water Cherenkov detector in Japan with a fiducial mass
of „ 374 kt with main detector channel as the inverse beta decay (IBD), sensible
to electron antineutrinos: ν̄e ` p Ñ e` ` n. It is also expected hundreds of events
from elastic scattering with electrons, with the advantage of sensitivity to all flavors:
ν ` e´ Ñ ν ` e´. We consider both channels in our analysis. We set a 60% overall
detector efficiency and Eth “ 3 MeV.

c) JUNO will be a liquid scintillator detector with a fiducial mass of 17 kt situated in
China [17]. Despite the interesting multi-channel detection technology reported by
the collaboration, we take into account only IBD events. We set an overall efficiency
of 50% and Eth “ 3 MeV in our analysis.

5 Actually, it depends on the neutrino mass hierarchy, once for MSW-NH the νe flux is highly suppressed.
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In order to compare the examined scenarios, we will consider only the energy
information, calculating the number of events in the j-th energy bin as

Nj “ nc
d

ż 8

0
dt

ż 8

0
dEν

d2ϕν

dtdEν

ηpEνq

ż Ef

Ei

dEdetRjpEdet, EνqσpEνq , (7.9)

where nc
d is the number of targets for each detector d, with c accounting for each specific

channel, ϕν is the neutrino flux, ηpEνq is the efficiency that can eventually depend on ν

energy, σ is the neutrino cross-section (with each channel shown in Figure 30), Rj is the
detector resolution, as a function of the true (Eν) and detected (Edet) particle energies.
We analyze the ν energy from the threshold of each detector up to 60 MeV. The ν mixing
is encoded in the flux ϕνβ

, that can be parameterized as (4.13), that we recall here:

ϕνe “ ϕ0
νe
Pee ` ϕ0

νx
p1 ´ Peeq

ϕν̄e “ ϕ0
ν̄e
P̄ee ` ϕ0

νx
p1 ´ P̄eeq

ϕνx “ ϕ0
νe

p1 ´ Peeq ` ϕ0
νx

p2 ` Pee ` P̄eeq ` ϕ0
ν̄e

p1 ´ P̄eeq

for the standard MSW (widely found in literature, see Chapter 4 or [111, 39] for a review),
where ϕ0

νβ
refers to initial SN neutrino fluxes and non-standard QD effects are hidden

in Pee and P̄ee. In the case of modern simulations, the fluxes are given by a specific
parameterization proposed in [112]:

ϕ0
νβ

pt, Eνq “

„

Eν

xEνyptq

ȷαptq

e´rαptq`1sEν{xEνyptq , (7.10)

where xEνyptq is the neutrino mean energy and αptq is denoted as a pinching parameter
and enables the distribution to fit better the high-energy tail of the distribution than a
conventional Fermi-Dirac spectrum [39]. Both parameters change with the time evolution
of the SN. Note that one should not confuse the pinching α with the index used in flavor
probabilities in previous equations. This pinching parameter is given by [112, 39]:

xE2
νyptq

xEνy2ptq
“

2 ` αptq

1 ` αptq
, (7.11)

where xEνyptq and xE2
νyptq are outputs of used simulations. Although the time dependency

of simulated parameters, in our analysis, we use only the time-integrated flux for simplicity,
i.e. we do not bin the spectrum of events in time as shown in equation (7.9). Note that
in contrast to Chapter 5, we propose a different flux to this analysis, and it is justified
by our purpose in this chapter: we are based on SN simulations, and the flux in (7.10)
reproduce better neutrinos from simulated SN explosions as well as represents a more
general parameterization as discussed in [39]. In Figure 31 it is shown the initial fluxes
ϕ0

νβ
(before flavor conversion) as a function of energy and time.

Using the fluxes described above as well as equation (7.9) the expected number
of events for the three detectors are calculated in the energy spectrum of simulated
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Figure 31 – Initial time-energy dependent flux for the simulation of the SN with 27 Md

progenitor for ν̄e (left), νe (middle), and νx (right), considering only the
neutronization burst phase. Level curves correspond to values that appear in
the color bars.

progenitors (11.2 Md and 27 Md) for both hierarchies and are compared to MSCϵ model,
and are reported in Figure 32. The results translate what is shown in Figure 29, weighted
by detector capabilities. Expected changes in the spectrum look more prominent when
NH is assumed as a standard solution for DUNE, with an increase of νe events for both
hierarchies. On the other hand, for HK and JUNO the MSCϵ effect results in a decrease of
events in IH and an increase in NH and it is not so clear which hierarchy would be more
sensible to the MSCϵ effect since the number of QD parameters for each one is different
for both Pee and P̄ee. For instance, for P̄NH

ee , fixing Γ3, an increase in Γ8 is weighted by
the factor 1/3 in the exponential terms, while P̄ IH

ee is more sensible to Γ8, since the same
change is multiplied by a factor 1, but it is also independent of Γ3.

Note that eq. (4.13) is valid for a conserved total flux, which does not remain in the
ν-loss scenario. To get around this issue we propose a more generalized form of (4.13)

ϕνe “ ϕ0
νe
Pee ` ϕ0

νx
pPµe ` Pτeq

ϕν̄e “ ϕ0
ν̄e
P̄ee ` ϕ0

νx
pP̄µe ` P̄τeq

ϕ1
νx

“ ϕ0
νe

pPeµ ` Peτ q ` ϕ0
νx

pPµµ ` Pµτ ` Pττ ` Pτµq

ϕ1
ν̄x

“ ϕ0
ν̄e

pP̄eµ ` P̄eτ q ` ϕ0
ν̄x

pP̄µµ ` P̄µτ ` P̄ττ ` P̄τµq

ϕνx “ ϕ1
νx

` ϕ1
ν̄x

, (7.12)

where each probability can be factorized as described in (7.6). For the ones where α “ µ, τ ,
since these flavors are generated in a superposition of mass states in matter, the νµ ´ ντ

mixing should be taken into account, where PmSN
αi and P̄mSN

αi would correspond to the
proper square module of elements from Uµτ mixing matrix6. In Figure 33 we show each
6 In the µ ´ τ sector, such probability is associated to θ23 mixing, being a sub-matrix of U23 in the

conventional PMNS decomposition. We also assume in this formula that any oscillation term is averaged
out.
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Figure 32 – Our calculated spectrum of events for DUNE, HK and JUNO for NH (solid
lines) and IH (dashed), with n “ 0 for a 10 kpc SN with 11.2 Md and 27 Md

progenitor mass simulations. Each column concerns a detector, while the rows
are related to progenitor masses. The size of bins is at least twice the resolution
at the specific energy and given a minimum threshold in the number of events
per bin established in our analysis. The bands are to respect the 40% of the
uncertainty of the flux over standard NH and IH, with details in the text. For
the QD parameters, we used the values Γ8 “ 10´27 eV and Γ3 “ 4Γ8.

probability Pαβ for a 10 kpc SN for the ν-loss scenario. In Figure 34 we show the expected
spectrum of events for the ν-loss model.
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Figure 33 – Probabilities with the impact of ν-loss with n “ 0 considering a 10 kpc SN
for NH (left) and IH (right).
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Figure 34 – Spectrum of events for DUNE, HK and JUNO for NH (solid lines) and IH
(dashed) compared to ν-loss model, with n “ 0 for a 10 kpc SN with 11.2 Md

and 27 Md progenitor mass simulations. For ν-loss we use different bin sizes
in order to achieve the requirement of a minimum number of events per bin
of „ 5. Given the lack of events in this scenario, we decided to use a single
bin for JUNO.

7.2.3 Role of Earth matter effects

Since a galactic SN detection can be impacted by Earth matter effects, we also
calculate Pee and P̄ee to each detector given the position of the SN in the sky. However, as
shown in Section 3.3, regeneration would start to be important beyond Eν Á 50 MeV or
even higher energies, which is close to the end of the expected spectrum for SN neutrinos.

In Figure 35 we see the QD effects (MSCϵ with n “ 0) combined with Earth matter
effects for a specific energy (similarly as shown in Figure 29, but for a wide range of θz

and the QD parameter). The asymptotic maximal mixing suppresses regeneration effects
beyond Γ8 „ 10´27 eV for a 10 kpc SN, being a leading effect. Since regeneration is a
second-order effect, we impose bounds on QD in the next section without considering
Earth matter effects, and by the end of Section 7.3.2, we show its impact on results.

7.3 Future limits on quantum decoherence

In order to impose bounds on QD using simulated data, we perform a binned χ2

through pull method [113] over QD parameters for MSC and ν-loss scenarios:

χ2
“

ÿ

d

m
ÿ

j“1

pN true
j,d ´ p1 ` aqN th

j,dq2

N th
j,d

`
a2

σ2
a

, (7.13)
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Figure 35 – Pee in IH (left) and P̄ee in NH (right) under Earth matter effects as a function
of QD parameter for Eν “ 30 MeV, considering a SN 10 kpc away from Earth
and n “ 0. It is possible to see that QD suppresses regeneration effects for
Γ8 Á 10´27 eV, where Γ3 “ 10´32 eV was set. The white line on the color bar
represents maximal mixing.

where m indicates the number of energy bins, d represents each detector, N true
j,d represents

events predicted by the MSW solution, and N th
j,d accounts the theoretical number of events

of the marginalized model in our analysis, i.e. MSW + quantum decoherence respectively
and the second term on the right-hand side takes our estimation in the flux uncertainties
of 40% into account [2].

We can note in Figure 33 that since all probabilities vanish for high values of γ,
N Ñ 0 for ν-loss. However in order to avoid a bias in our analysis, we marginalize over γ
only in a range where the requirement of at least „ 5 events per bin is achieved (we use
the same rule for MSC). We also take the size of the bins to be twice the detector energy
resolution. Using these requirements, JUNO allows a single bin for ν-loss, being a counting
experiment for this analysis. The bins scheme for DUNE and HK are also changed for
ν-loss compared to MSC in order to match the established minimum number of events per
bin in the tested range of γ.

Before imposing limits on MSC and ν-loss with eq. (7.13), we can treat Pee and P̄ee as
free parameters, which is a reasonable approximation to an adiabatic propagation at the SN,
since these probabilities are energy independent (see Section 5.2 or [53] for a more detailed
discussion in the context of SN1987A), we perform a marginalization with χ2pPee, P̄eeq in
eq. (7.13) to understand how far asymptotically QD scenarios are from the standard ν

mixing and also see how sensible a combined measurement (DUNE+HK+JUNO) could
be, using uniquely the neutronization burst. Figure 36 shows how a 10 kpc SN can
impose limits to Pee and P̄ee, with NH and IH concerning the true MSW model. The
black dot represents maximal mixing or the asymptotic limit of MSC, which is closer to
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Figure 36 – Limits on Pee and P̄ee for the 27 Md (solid) and 11.2 Md (dashed) progenitor
stars from simulations, considering only the neutronization burst. No quantum
decoherence effects are taken into account in this Figure. The distance from
Earth considered was 10 kpc. The probability is assumed to be a free parameter
as recently proposed in [53]. The assumption of a standard adiabatic MSW
conversion at the SN is taken into account (as all along the manuscript),
getting rid of the energy dependency on Pee and P̄ee. The black dot is the
maximal mixing scenario (1/3). Note that the 11.2 Md line for IH matches to
the 27 Md, showing that the sensitivity for simulated progenitors tested is
similar.

the IH solution (given by the corresponding best-fit value) than NH for Pee, but in an
intermediary point of hierarchies with respect to P̄ee. In the ν-loss scenario it is not so
clear from Figure 36 which hierarchy would lead to stronger constraints, given the presence
of other probabilities, such as the ones in Figure 33.

Using eq. (7.13) and the procedures described in Sections 7.1 and 7.2, we treat QD
parameters as free and perform a χ2 analysis in order to impose statistical bounds in this
effect using a future SN detection. Since nowadays the neutrino mass hierarchy is not
established, we include both scenarios in our analysis.

We test both MSW-NH versus the marginalized MSW-NH + QD and also the
MSW-IH versus the marginalized MSW-IH + QD in order to understand how restrictive
future detectors will be. The results will show that if QD plays any role in SN neutrinos,
both possible ν hierarchies could be affected.

7.3.1 MSC{ϵ

For the MSC{ϵ model, we calculate the
?

∆χ2 bounds over the parameter Γ, where
∆χ2 “ χ2 ´ χ2

min (since we are not including statistical and systematic uncertainties when
producing the “true” data, we always have χ2

min “ 0). The results for the 3 experiments
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are summarized in Figure 37, where the true scenario is NH and we marginalize over
NH+QD. Note that bounds reach different significant limits for each SN distance, with
lower distances being more restrictive.
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Figure 37 – Limits on Γ for various SN distances from Earth for DUNE (left), HK (middle),
and JUNO (right) for the 40 Md progenitor star simulation. The true scenario
taken into account was NH, and we marginalize the parameters over the
theoretical NH+QD (MSC{ϵ). No Earth matter effect was considered. Each
row means a different value of n in the parameterization Γ “ Γ0pE{E0qn.

Since the traveled distance is a fixed feature, the only aspect that the SN distance
from Earth contributes is the number of events detected. Following Figure 37, the best
performance in NH is for DUNE, with possible 3σ limits for a 10 kpc SN away from Earth
of:

Γ0 ď

$

’

&

’

%

6.2 ˆ 10´14 eV pn “ 0q

5.2 ˆ 10´14 eV pn “ 2q

1.4 ˆ 10´13 eV pn “ 5{2q

(7.14)

For a SN at a distance of 1 kpc, limits of Op10´16q eV can be reached. HK has also
a good performance and achieves 2σ bounds for a 10 kpc SN. JUNO is not capable of
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individually achieving reasonable bounds on QD for SN distances Á 1 kpc, but would
also have a strong signal for a galactic SN as close as 1 kpc away from Earth, which
can be attributed to the small fiducial mass compared to HK and a single IBD channel
considered in this work (with a significantly lower cross-section than νe-Ar for energies
above „ 15 MeV). Other channels, such as ν-p elastic scattering could possibly improve
the results, but given the detection challenges associated, it was decided to not include
them here.

The same analysis was also performed using IH as the true theory and marginalizing
over IH+QD. The results are shown in Figure 38. The best performance is clearly for HK
with 2σ bound of:

Γ0 ď

$

’

&

’

%

3.6 ˆ 10´14 eV pn “ 0q

8.0 ˆ 10´14 eV pn “ 2q

2.4 ˆ 10´13 eV pn “ 5{2q

(7.15)

for a 10 kpc SN from Earth. DUNE is not capable to impose strong bounds in an IH
scenario. JUNO performance is improved for distances À 1 kpc compared to NH. Results
are summarized in Table 2 in Appendix E.

A 20 kpc SN could not impose strong bounds for individual experiments. Distances
as far as 50 kpc (as Large Magellanic Cloud) were not investigated in this work, given
the lack of events per bin, in which a more refined unbinned statistical analysis would be
required, which is not strongly motivated by the fact that expected limits are below 2σ.

The bounds and sensitivity of each detector in a given hierarchy shown above could
be associated with the sensitivity to Pee and P̄ee shown in Figure 36. In NH (left plot),
limits over Pee are more restrictive than P̄ee with respect to maximal mixing represented
by the black dot. For IH (right plot), we have an opposite sensitivity, since Pee „ 1{3, while
for P̄ee there is a gap between the best fit and 1/3 probability, allowing limits with certain
significance to be imposed. Since DUNE is most sensitive to νe, via νe-Ar interaction,
it will be more sensitive to Pee and then more relevant in the NH scenario. As for HK
and JUNO, they are more sensitive to ν̄e and therefore to P̄ee, which reflects a better
performance in the IH scenario. In our calculations, the elastic scattering considered in
HK does not contribute much to the total χ2.

7.3.2 MSCϵ

The same procedure described in the section above was performed on the MSCϵ

model, with bounds over the parameter Γ8 (and free Γ3). Results are summarized in
Figure 39 for NH vs NH+QD. SN distance also plays an important role in this scenario
and results and their aspects are similar to MSC{ϵ described in the last section. DUNE
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Figure 38 – Same as Figure 37 but with IH as the true theory, marginalized over the
parameters of the IH+QD model.

has the best performance for the tested SN distances and even for a 10 kpc SN, bounds
with 3σ could be achieved for n “ 0, 2 and 5{2. Despite the stronger effects caused by
MSC for larger distances, the number of events decrease with L2, and stronger limits can
be imposed for a SN happening at shorter distances, reflecting that the larger number of
neutrinos arriving at the detector is a crucial aspect.

From Figure 39, taking the result of a 10 kpc SN (27 Md), DUNE would potentially
impose Γ8 ď 4.2 ˆ 10´28 eV for 2σ and Γ8 ď 1.7 ˆ 10´27 eV for 3σ with n “ 0, whereas
the HK bound is Γ8 ď 4.2 ˆ 10´27 eV for 2σ. Looking at limits from various works
[80, 90, 91, 92, 93, 94, 88, 95, 98, 89, 99, 96], to the best knowledge of the author, this is
an unprecedented level of sensitivity for testing quantum decoherence, orders of magnitude
more restrictive than any other work in the subject. Figure 40 shows bounds from works
with different sources and place the limits from this work for both hierarchy scenarios.

Note that for n “ 2 and 5/2 the bounds are over Γ08 in Γ8 “ Γ08pE{E0qn. For a 10
kpc SN (27Md), DUNE 3σ bounds reach:
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Figure 39 – Same as 37 but for MSCϵ with simulations of the 27 Md (solid) and 11.2 Md

(dashed) progenitor masses. The bounds are orders of magnitude more restric-
tive than for MSC{ϵ.

Γ08 ď

#

7.0 ˆ 10´28 eV pn “ 2q

6.2 ˆ 10´28 eV pn “ 5{2q
. (7.16)

HK is able to achieve 2σ bounds as restrictive as Γ08 ď 2.7 ˆ 10´28 eV and Γ08 ď

1.2 ˆ 10´28 eV for n “ 2 and 5/2 respectively. All mentioned results are summarized in
Table 3 in the Appendix E.

We also performed a combined fit for the three detectors using the same ν hierarchy
scheme shown in Figure 41, where a 3σ limit for a 10 kpc SN would reach:

Γ08 ď

$

’

&

’

%

6.2 ˆ 10´28 eV pn “ 0q

1.2 ˆ 10´28 eV pn “ 2q

0.72 ˆ 10´28 eV pn “ 5{2q

. (7.17)

Even a 4σ of maximal mixing is possible to be achieved for all values of n, but such
significance is achieved only by the 27 Md simulated progenitor. Although a combined
analysis reaches high significance, it should be taken with a grain of salt, since it is not
possible to be sure that experiments would be simultaneously in operation.
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SNs.

Using the same procedure as done in NH, we make the analysis assuming IH as the
true mixing and marginalizing over IH+QD. The results are shown in Figure 42. HK has
the strongest bounds on this scenario but does not reach 3σ for a 10 kpc SN, even though
the potential limits for 2σ are:

Γ08 À

$

’

&

’

%

1.3 ˆ 10´27 eV pn “ 0q

1.4 ˆ 10´28 eV pn “ 2q

4.9 ˆ 10´28 eV pn “ 5{2q

. (7.18)

DUNE has a very poor performance in this scenario for any distance Á 1 kpc. JUNO
sensitivity is similar to NH marginalization discussed above. In a combined fit in IH, shown
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in Figure 43, the following 3σ limits can be obtained:

Γ08 À

$

’

&

’

%

5.4 ˆ 10´27 eV pn “ 0q

3.5 ˆ 10´27 eV pn “ 2q

3.3 ˆ 10´27 eV pn “ 5{2q

. (7.19)
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Figure 41 – Combined fit for the true MSW-NH marginalizing over MSW-NH with QD
(MSCϵ) effects.
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Figure 42 – Same as Figure 39 but for IH versus IH + QD.

To check the impact of regeneration on the above results, we calculated the bounds
of a combined detection of DUNE, HK, and JUNO including this effect. We test different
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Figure 43 – Same as Figure 41 but now accounting the IH scenario.

θz, the zenith with respect to DUNE, with the assumption that the SN flux comes from
DUNE longitude. The results are in Figure 44. We can note in the left plot that the
impact of the Earth matter effect is small but enhances QD bounds for a 10 kpc detection
and limits could be stressed beyond 4σ. The right plot shows the situation where the
IH scenario is assumed to be true and NH+QD is marginalized. We will discuss such a
scenario in Section 7.4, but we also see that regeneration will not change significantly the
results.
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Figure 44 – Limits on MSCϵ with the impact of Earth matter effects for a SN 10 kpc from
Earth and the 27 Md simulation for different zenith angles θz (n “ 0). The
limits correspond to a combined detection of DUNE, HK, and JUNO, but θz

is to respect to DUNE, with SN beam in the direction of DUNE longitude.
The θz “ 320o means that regeneration effects at HK and JUNO are expected,
even if the SN beam does not cross Earth to reach DUNE.

7.3.3 Neutrino loss

Since in ν-loss the spectrum of events decreases asymptotically to zero, the bounds on
this scenario are expected to be as significant or even more than MSC for all experiments.
Since the calculated number of events for NH is low (mainly for DUNE and JUNO) and
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ν-loss would decrease it, not fulfilling our requirement of Á 5 events per bin, we perform
here only the IH (true) versus IH+QD. Figure 45 shows the

?
∆χ2 for each individual

detector. We see that high values of γ are strongly bounded, even for JUNO. For a SN from
10 kpc away from Earth, DUNE, HK and JUNO are capable of imposing γ ď 5.2ˆ10´28 eV,
γ ď 4.9 ˆ 10´28 eV and γ ď 5.9 ˆ 10´28 eV respectively with 3σ of significance (n “ 0).
Note that beyond 10 kpc the number of events per bin would be significantly small for a
ν-loss scenario and we do not consider it in this analysis.

HK is capable to achieve the best (3σ) bounds with γ0 ď 2.1 ˆ 10´29 eV and
γ0 ď 1.2 ˆ 10´29 eV for n “ 2 and 5{2 respectively, with a 10 kpc SN. Although not shown
in the plots, it is worth mentioning that HK would impose bounds on γ even for NH, given
the high statistics associated with this experiment, being the most sensitive one for the
ν-loss model. We detail the bounds and all mentioned results here in Table 4.
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Figure 45 – Limits on γ for various SN distances from Earth for all detectors in the ν-loss
scenario with true IH marginalized over the parameters of the IH+QD model.



Chapter 7. Quantum decoherence in supernova neutrinos 97

7.4 Neutrino mass hierarchy measurement

In a future supernova detection, the neutronization burst arises as a robust test of
neutrino mass hierarchy, with ν-Ar in DUNE capable to determine the correct scenario
with relatively high confidence. However, although the possible strong bounds are to be
imposed on quantum decoherence, if QD plays a significant role in ν mixing, the IH could
be mimicked by a NH with the impact of QD (particularly, in the MSC models). A similar
analysis was performed in the context of ν-decay in [2]. Therefore, the question that arises
is how much NH and IH are distinguishable if we compare both hierarchies superposing
the standard NH to QD. Figure 46 shows the statistical bounds of the scenario where
IH is taken as the true theory and NH+QD is marginalized in a combined detection for
n “ 0, 2, 5{2. The results show that the significance of hierarchy determination significantly
weakens for the tested SN distances and even a combined detection could not disentangle
the hierarchies if MSC plays an important role.
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Figure 46 – Statistically comparing the inverted hierarchy (IH) to normal hierarchy (NH)
with the impact of quantum decoherence for a combined detection using the
11.2 Md (dashed) and 27 Md (solid) simulations. No regeneration effects were
taken into account.

To check this statement we can compare the values of
?

∆χ2 for Γ8 Ñ 0 and Γ8 Ñ 8

in Figure 46. We can assume that
?

∆χ2|Γ8Ñ0 corresponds to the distinguishability of
hierarchies in a standard scenario since Γ8 is small enough to neglect QD effects. The plateau
in the limit of

?
∆χ2|Γ8Ñ8 shows how NH+QD would differ from IH in a future combined

detection, in which has lower values of
?

∆χ2, resulting in a less significant hierarchy
discrimination. Taking as a reference a SN distance of 10 kpc for the 27 Md simulation,
with a combined detection of DUNE, HK and JUNO, we have a

?
∆χ2|Γ8Ñ0 “ 6.89 going to

?
∆χ2|Γ8Ñ8 “ 3.13. For an individual detection with the same SN distance, DUNE would

change from
?

∆χ2|Γ8Ñ0 “ 5.70, which is statistically significant to determine the hierarchy,
to a mere

?
∆χ2|Γ8Ñ8 “ 0.37. HK also could be affect with a

?
∆χ2|Γ8Ñ0 “ 3.36 going

to
?

∆χ2|Γ8Ñ8 “ 2.65. JUNO can not distinguish the neutrino hierarchies significantly
at 10 kpc. It is important to mention that for 1 kpc and 5 kpc DUNE could be highly
affected by this hierarchy misidentification, but HK still would provide a distinction of



Chapter 7. Quantum decoherence in supernova neutrinos 98

Á 5σ even with QD effects. For SN distances ą 5 kpc, the neutrino hierarchies would be
hardly disentangled by the tested experiments if QD effects are significant. As far as we
tested, the ν-loss model did not lead to the same potential hierarchy misidentification
found in the MSC.
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Conclusions

In this thesis, we explored some prospects in supernova-neutrino mixing. It was
shown that SN1987A provided an empiric and important starting point in our limited
understanding of supernova neutrino emission. After more than 30 years of this astronomical
event, many works are still based on its data. We showed that even with an analysis
with low statistics, some information concerning the neutrino emission model could be
extracted with proper statistical tools in Chapter 5, resulting in the publication [52] and
the instructive animations are found here. Beyond that, neutrino mixing is also bounded
by this data, and we see that the IH scenario is unfavorable, which resulted in the paper
[53]. However, this limit should be taken carefully given the low statistics associated with
our analysis, and future accelerator experiments or SN detection will address this question
in the next decades. We also provided a detailed repository with the complete analysis
found here.

The issue of pure quantum states spontaneously becoming mixed given exotic physics,
or more specifically, quantum gravity, was also a topic investigated in this thesis, and in
the author’s opinion, where the main findings of this thesis were achieved. It was shown
that even an incoherent state could be affected by quantum decoherence (QD) through
relaxation.

We also have explored the capability of a future SN neutrino detection in imposing
limits in quantum decoherence scenarios. We limit ourselves to scenarios where the
decoherence matrix Dµν is diagonal in the neutrino vacuum mass basis. Among the
possible models to be investigated, we consider the ones we denoted as Mass State
Coupling (MSC), leading to maximal mixing of states, and the neutrino loss (ν-loss),
associated with the loss of neutrino flux along propagation. We also explored a possible
dependency of quantum decoherence parameters with energy in the form of γ “ γ0pE{E0qn.
Therefore, we explore the limits on the decoherence parameters for different n values. The
analysis considered DUNE, HK, and JUNO as possible detectors. For the neutrino flux
data, three progenitor stars were considered: a 40 Md (LS180-s40.0), 27 Md (LS220s27.0c)
and 11.2 Md (LS220s11.2c), using the SN simulation data from the Garching group
[40, 41, 39]. Only the neutronization burst was considered to get around the unsolved
problem of collective effects since they are expected not to play a significant role in this

https://github.com/santosmv/Animations-visualizing-SN1987A-data-analysis
https://github.com/GEFAN-Unicamp/SN1987A-2023analysis
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emission phase.

When considering the neutrino propagation inside the supernova, the relaxation
effect could affect the neutrino flavor conversion, even with the assumption of no exchange
of neutrino energy to the environment, or rH,Vps “ 0 (MSC{ϵ). We show that in this regime,
it is possible to get competitive limits to QD parameters. However, the required values for
the decoherence parameters need to be much larger than the ones in the scenario where
rH,Vps ‰ 0 (MSCϵ) (see Appendix D), which would provide the most restrictive bounds on
QD to date. For MSCϵ, we only consider the relaxation acting on neutrino propagation in
the vacuum from the SN up to the detectors at Earth, for which the propagation length is
orders of magnitude larger than the SN size and, therefore, more sensible to the relaxation
effects. We also explore the possible effects of Earth regeneration due to the neutrino
propagation inside the Earth, which has minor effects on the bounds for the relaxation
parameters, being the vacuum propagation the most relevant coherence length.

With all considerations, we show that the detectors used in the analysis are capable
of imposing the limits listed in Tables 2 and 3 for the MSC scenario, depending on the
distance being considered and the neutrino mass hierarchy. For the NH, the DUNE detector
is the most promising, while HK is the most sensible in the case of IH. The possible limits
on the decoherence parameters are orders of magnitude stronger than the ones imposed by
current terrestrial and solar experiments, as shown in Figure 40. For the ν-loss scenario,
the limits are shown in Table 4. Finally, we explored the possible degeneracy between the
standard scenarios of unknown mass hierarchy (NH and IH) without and with QD effects.
As we saw, the IH scenario could be easily mimicked by NH combined with QD-MSC
effects.

The findings associated with quantum decoherence resulted in the paper [103]. After
an invitation, some of our results were also implemented in the Python module SNEWPY,
developed by SNEWS collaboration.

https://github.com/SNEWS2/snewpy
https://snews.bnl.gov/
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Appendix A

Derivation of GKSL equation

We derive here the equation of motion for open quantum systems, the already
mentioned GKSL equation. Most of the general ideas of this detailed derivation are in
[82]. The consistent equation of motion in an open quantum system formalism has the
fundamental assumption of no correlations between neutrino subsystem S and environment
E in the initial time, then

ρ “ ρS b ρE. (A.1)

Thus, the Hilbert space of the combined system is HS`E “ HS b HE and the total
Hamiltonian

Hptq “ HS b 1E ` 1S b HE ` HIptq, (A.2)

where the HIptq is the Hamiltonian that describes the interaction neutrino-environment.
The reduced density matrix of the neutrino could be obtained by tracing over the environ-
ment

ρSptq “ TrErρptqs “ TrErUptqρS b ρEU
:
ptqs (A.3)

with t0 “ 0.

Considering the time evolution of ρSptq, we are interested in the transformation from
a density matrix into a density matrix by the action of some operator, such as

ρSptq “ ΛtρS , (A.4)

that could be considered a snapshot of a particular time t, justifying the lower index
(note that in the main text, we defined this operator as Λptq in (6.1) to simplify the ideas
to the reader). In order to get consistent properties of ρS, Λt should have hermiticity,
trace-preserving, and complete positivity, and is characterized as a dynamical map [82, 114].
In other words, to establish a general form of Λt we can write ρE “

ř

σ wσ |ψσy xψσ| in
(A.3)

ρSptq “
ÿ

α

xψα|Uptq
ÿ

β

|ψβy xψβ| ρS b
ÿ

σ

wσ |ψσy xψσ|U :
ptq |ψαy (A.5)
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“
ÿ

αβσ

wσδβσ xψα|Uptq |ψβy ρS xψσ|U :
ptq |ψαy

“
ÿ

αβ

wβ xψα|Uptq |ψβy ρS xψβ|U :
ptq |ψαy ,

where we used the definition of partial trace and completeness on the E basis. This leads
to a definition of

Wαβptq “
ÿ

αβ

?
wβ xψα|Uptq |ψβy (A.6)

in which

ρSptq “
ÿ

αβ

WαβptqρSW
:

αβptq (A.7)

and
ÿ

αβ

W :

αβptqWαβptq “
ÿ

αβ

wβ xψβ|U :
ptq |ψαy xψα|Uptq |ψβy

“
ÿ

β

wβ xψβ|U :
ptqUptq |ψβy “ 1S,

which is a significant result, because

TrSrΛtρSs “ TrS

«

ÿ

αβ

WαβptqρSW
:

αβptq

ff

“ TrS

«

ÿ

αβ

W :

αβptqWαβptqρS

ff

“ TrS rρSs “ 1,

(A.8)
once the trace one was preserved.

Our solution concern a fixed time, then one needs a family tΛt, t ě 0u, that generates
a quantum dynamical semigroup1, with Λ0 being the identity and the semigroup property
is given by [82]

ΛtΛu “ Λt`u, s, u ě 0. (A.9)

Once memory effects are not considered, it is possible to approximate the Markovian
evolution. Considering a linear map L to be the generator of the semigroup, with dynamics

dρSptq

dt
“ LρSptq (A.10)

and solution ρSptq “ ρSe
Lt, which enables to write the dynamical map as Λt “ eLt.

It is possible to find the most general form of L introducing an operator in the Liouville
space Fi (see details of quantum mechanics in Liouville space in [84]), with i “ 1, 2, ..., N2

for a correspondent finite Hilbert space with dim HS “ N . An orthonormal basis tBiu

in this space satisfies orthogonality pBi, Bjq “ δij and completeness A “
ř

i BipBi, Aq

conditions, where pA,Bq means scalar product. So
1 The inverse of the dynamical maps are not completely positive, thus they do not form a group.
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pFi, Fjq “ δij , (A.11)

and there is a conventional choice of an element to be proportional to the identity operator

FN2 “
1

?
N
1S , (A.12)

that allow us to use traceless operators in the basis TrS Fi “ 0, i “ 1, 2, ..., N2 ´ 1.
Therefore, considering the completeness relation for the Liouville space with the operator
defined in (A.6)

Wαβptq “

N2
ÿ

i“1
FipFi,Wαβptqq (A.13)

and

W :

αβptq “

N2
ÿ

j“1
pFj,Wαβptqq

:F :
j (A.14)

enabling to rewrite equation (A.7) as

ρSptq “ ΛtρS “
ÿ

αβ

N2
ÿ

i“1
FipFi,WαβptqqρS

N2
ÿ

j“1
pFj,Wαβptqq

:F :
j (A.15)

or in a more compact way:

ρSptq “

N2
ÿ

i,j“1
cijptqFiρSF

:
j (A.16)

where cijptq “ pFi,WαβptqqpFj,Wαβptqq: is a coefficient (matrix) positive and Hermitian.
Considering equation (A.10) to be written as the definition of derivative:

LρSptq “ lim
tÑ0

„

ΛtρS ´ ρS

t

ȷ

(A.17)

and applying (A.16) in (A.17), we have

LρSptq “ lim
tÑ0

«

řN2

i,j“1 cijptqFiρSF
:
j ´ ρS

t

ff

. (A.18)

The sum in (A.18) can be rewritten splitting the contributions of the identity element
for the i and j indices
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N2
ÿ

i,j“1
cijptqFiρSF

:
j “ cN2N2ptqFN2ρSF

:

N2 `

N2´1
ÿ

i“1
ciN2ptqFiρSF

:

N2

`

N2´1
ÿ

j“1
cN2jptqFN2ρSF

:
j `

N2´1
ÿ

i,j“1
cijptqFiρSF

:
j

that can be simplified using (A.12):

N2
ÿ

i,j“1
cijptqFiρSF

:
j “

1
N
cN2N2ptqρS `

1
?
N

N2´1
ÿ

i“1
ciN2ptqFiρS

`
1

?
N

N2´1
ÿ

j“1
cN2jptqρSF

:
j `

N2´1
ÿ

i,j“1
cijptqFiρSF

:
j .

Replacing this result in (A.18) gives

LρSptq “ lim
tÑ0

«

1
N

cN2N2ptqρS ´ NρS

t
`

1
?
N

N2´1
ÿ

i“1

ciN2ptqFiρS

t

`
1

?
N

N2´1
ÿ

j“1

cN2jptqρSF
:
j

t
`

N2´1
ÿ

i,j“1

cijptqFiρSF
:
j

t

ff (A.19)

that can be rewritten as

LρSptq “
1
N
aN2N2ptqρS `

1
?
N

N2´1
ÿ

i“1
aiN2ptqFiρS

`
1

?
N

N2´1
ÿ

j“1
aN2jptqρSF

:
j `

N2´1
ÿ

i,j“1
aijptqFiρSF

:
j

(A.20)

where

aN2N2ptq “ lim
tÑ0

cN2N2ptq ´ N

t

aiN2ptq “ lim
tÑ0

ciN2ptq

t

aN2jptq “ lim
tÑ0

cN2jptq

t

aijptq “ lim
tÑ0

cijptq

t
.

(A.21)

Another usual simplification with this formalism is introducing the quantity

F “
1

?
N

N2´1
ÿ

i“1
aiN2Fi (A.22)
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LρSptq “
1
N
aN2N2ptqρS ` FρS ` ρSF

:
`

N2´1
ÿ

i,j“1
aijptqFiρSF

:
j . (A.23)

Summing and subtracting F :ρS and ρSF will change (A.23) to

LρSptq “
1
2

#

„

1
N
aN2N2ptq ` F ` F :

ȷ

ρS ` ρS

„

1
N
aN2N2ptq ` F ` F :

ȷ

`
`

F ´ F :
˘

ρS ` ρS

`

F :
´ F

˘

+

`

N2´1
ÿ

i,j“1
aijptqFiρSF

:
j

(A.24)

where some terms were splitted into two parts (i.e FρS “ 1
2FρS ` 1

2FρS). It is possible to
introduce other two quantities in order to simplify (A.24)

A “
1

2N aN2N2ptq ` F ` F :

H “
´i

2 pF ´ F :
q

, (A.25)

leading to

LρSptq “ AρS ` ρSA ´ iHρS ` iρSH `

N2´1
ÿ

i,j“1
aijptqFiρSF

:
j

“ tA, ρSu ´ irH, ρSs `

N2´1
ÿ

i,j“1
aijptqFiρSF

:
j .

(A.26)

Once it is expected that the trace is not changing in time, or in other words, the
time evolution of the density operator is trace-preserving, therefore

TrSrLρSptqs “ 0

which leads to the right-hand side of (A.26) becomes

TrSpAρS ` ρSAq ´ iTrSpHρS ´ ρSHq ` TrS

«

N2´1
ÿ

i,j“1
aijptqFiρSF

:
j

ff

“

“ TrSpAρSq ` TrSpAρSq ´ iTrSpHρSq ´ TrSpHρSq ` TrS

«

N2´1
ÿ

i,j“1
aijptqF :

j FiρS

ff

“

“ 2 TrSpAρSq ` TrS

«

N2´1
ÿ

i,j“1
aijptqF :

j FiρS

ff

“ TrS

#«

2A `

N2´1
ÿ

i,j“1
aijptqF :

j Fi

ff

ρS

+

“ 0 ,
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TrS

#«

2A `

N2´1
ÿ

i,j“1
aijptqF :

j Fi

ff

ρS

+

“

«

2A `

N2´1
ÿ

i,j“1
aijptqF :

j Fi

ff

TrSpρSq “ 0

where it was used the cyclic property of traces. This result makes it possible to write

A “ ´
1
2

N2´1
ÿ

i,j“1
aijptqF :

j Fi (A.27)

then replacing (A.27) in (A.26)

dρSptq

dt
“ ´irH, ρSs `

N2´1
ÿ

i,j“1
aijptq

ˆ

FiρSF
:
j ´

1
2tF :

j Fi, ρSu

˙

(A.28)

which is the most general form of evolution equation for ρSptq proposed by Gorini,
Kossakowski and Sudarshan in 1976 [76]. Almost simultaneously, Lindblab proposed
another version of the equation [77], where the aijptq could be diagonalized by a unitary
transformation given by an operator u, such that uau: “ diagpγ1, γ2, ..., γN2´1q. Then, the
Fi operators could be written in a linear combination

Fi “

N2´1
ÿ

p“1
upiVp (A.29)

and replaced in (A.28), resulting

dρSptq

dt
“ ´irH, ρSs `

N2´1
ÿ

p“1
γpptq

ˆ

VpρSV
:

p ´
1
2V

:
p VpρS ´

1
2ρSV

:
p Vp

˙

(A.30)

or
dρSptq

dt
“ ´irH, ρSs `

N2´1
ÿ

p“1
γpptq

ˆ

VpρSV
:

p ´
1
2tV :

p Vp, ρSu

˙

(A.31)

that could be rewritten as

dρSptq

dt
“ ´irH, ρSs ` DpρSq, (A.32)

and we can embed the γpptq terms in Vp operators to rewrite the dissipation part DpρSq as

DpρSq “
1
2

N2´1
ÿ

p“1

`

rVp, ρSV
:

p s ` rVpρS, V
:

p s
˘

. (A.33)
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Appendix B

Parameters from Dµν in terms of Vp
coefficients for 3 neutrinos

The γi (diagonal) parameters of Dµν in terms of vµ “
ř8

p“1 vpµ of the Vp “ vpµλµ

expansion can be defined as

γ1 “ ´ v2
2 ´ v2

3 ´
v2

4
4 ´

v2
5

4 ´
v2

6
4 ´

v2
7

4

γ2 “ ´ v2
1 ´ v2

3 ´
v2

4
4 ´

v2
5

4 ´
v2

6
4 ´

v2
7

4

γ3 “ ´ v2
1 ´ v2

2 ´
v2

4
4 ´

v2
5

4 ´
v2

6
4 ´

v2
7

4

γ4 “ ´
v2

1
4 ´

v2
2

4 ´
v2

3
4 ´

?
3v3v8

2 ´ v2
5 ´

v2
6

4 ´
v2

7
4 ´

3v2
8

4

γ5 “ ´
v2

1
4 ´

v2
2

4 ´
v2

3
4 ´

?
3v3v8

2 ´ v2
4 ´

v2
6

4 ´
v2

7
4 ´

3v2
8

4

γ6 “ ´
v2

1
4 ´

v2
2

4 ´
v2

3
4 `

?
3v3v8

2 ´
v2

4
4 ´

v2
5

4 ´ v2
7 ´

3v2
8

4

γ7 “ ´
v2

1
4 ´

v2
2

4 ´
v2

3
4 `

?
3v3v8

2 ´
v2

4
4 ´

v2
5

4 ´ v2
6 ´

3v2
8

4

γ8 “ ´
3v2

4
4 ´

3v2
5

4 ´
3v2

6
4 ´

3v2
7

4

(B.1)

and βij (non-diagonal) terms reads
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β12 “v1v2

β13 “v1v3

β14 “
v1v4

4 ´
3v2v5

4 `
3v3v6

4 `

?
3v6v8

4

β15 “
v1v5

4 `
3v2v4

4 `
3v3v7

4 `

?
3v7v8

4

β16 “
v1v6

4 `
3v2v7

4 ´
3v3v4

4 `

?
3v4v8

4

β17 “
v1v7

4 ´
3v2v6

4 ´
3v3v5

4 `

?
3v5v8

4

β18 “ ´

?
3 pv4v6 ` v5v7q

2
β23 “v2v3

β24 “
3v1v5

4 `
v2v4

4 ´
3v3v7

4 ´

?
3v7v8

4

β25 “ ´
3v1v4

4 `
v2v5

4 `
3v3v6

4 `

?
3v6v8

4

β26 “ ´
3v1v7

4 `
v2v6

4 ´
3v3v5

4 `

?
3v5v8

4

β27 “
3v1v6

4 `
v2v7

4 `
3v3v4

4 ´

?
3v4v8

4

β28 “ ´

?
3 p´v4v7 ` v5v6q

2

β34 “ ´
3v1v6

4 `
3v2v7

4 `
v3v4

4 `

?
3v4v8

4

β35 “ ´
3v1v7

4 ´
3v2v6

4 `
v3v5

4 `

?
3v5v8

4

β36 “
3v1v4

4 `
3v2v5

4 `
v3v6

4 ´

?
3v6v8

4

β37 “
3v1v5

4 ´
3v2v4

4 `
v3v7

4 ´

?
3v7v8

4

β38 “ ´

?
3

`

v2
4 ` v2

5 ´ v2
6 ´ v2

7
˘

4
β45 “v4v5

β46 “ ´

?
3v1v8

2 `
v4v6

4 ´
3v5v7

4

β47 “

?
3v2v8

2 `
v4v7

4 `
3v5v6

4

β48 “

?
3v1v6

4 ´
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3v2v7

4 `

?
3v3v4

4 `
3v4v8

4

β56 “ ´

?
3v2v8

2 `
3v4v7

4 `
v5v6

4

β57 “ ´

?
3v1v8

2 ´
3v4v6

4 `
v5v7

4

β58 “

?
3v1v7

4 `

?
3v2v6

4 `

?
3v3v5

4 `
3v5v8

4
β67 “v6v7

β68 “

?
3v1v4

4 `

?
3v2v5

4 ´

?
3v3v6

4 `
3v6v8

4

β78 “

?
3v1v5

4 ´

?
3v2v4

4 ´

?
3v3v7

4 `
3v7v8

4

.

(B.2)

Note that βij “ βji, since Dµν is a symmetric matrix.
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Appendix C

Results from a non-diagonal model of
Dµν

In order to check how non-diagonal terms affect the conversion probabilities of mass
basis we propose a simplified model with two parameters Γ and β38:

Dµν “ ´

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0 0 0 0 0 0 0 0 0
0 Γ 0 0 0 0 0 0 0
0 0 Γ 0 0 0 0 0 0
0 0 0 Γ 0 0 0 0 ´β38

0 0 0 0 Γ 0 0 0 0
0 0 0 0 0 Γ 0 0 0
0 0 0 0 0 0 Γ 0 0
0 0 0 0 0 0 0 Γ 0
0 0 0 ´β38 0 0 0 0 Γ

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

. (C.1)

The probabilities resulting from such a dissipation matrix are:



Appendix C. Results from a non-diagonal model of Dµν 119

10−30 10−29 10−28 10−27 10−26 10−25

Γ (eV)

0.0

0.2

0.4

0.6

0.8

1.0

P
ij

P11

P13

Figure 47 – Probabilities for the mass state basis with the model of Dµν in eq. (C.1). We
set β38 “ 10´33 eV for a 10 MeV energy and n “ 0 for the parameters used.
Other probabilities in eq.(C.2) have very similar behaviour as shown here.

P11 “

`

2eΓt `
?

3eβ38t ` 2eβ38t ´
?

3e´β38t ` 2e´β38t
˘

e´Γt

6

P12 “

`

2eΓt ´ eβ38t ´ e´β38t
˘

e´Γt

6

P13 “

`

2eΓt ´
?

3eβ38t ´ eβ38t ´ e´β38t `
?

3e´β38t
˘

e´Γt

6

P21 “

`

2eΓt ´ eβ38t ´ e´β38t
˘

e´Γt

6

P22 “

`

2eΓt ´
?

3eβ38t ` 2eβ38t `
?

3e´β38t ` 2e´β38t
˘

e´Γt

6

P23 “

`

2eΓt ´ eβ38t `
?

3eβ38t ´
?

3e´β38t ´ e´β38t
˘

e´Γt

6

P31 “

`

2eΓt ´
?

3eβ38t ´ eβ38t ´ e´β38t `
?

3e´β38t
˘

e´Γt

6

P32 “

`

2eΓt ´ eβ38t `
?

3eβ38t ´
?

3e´β38t ´ e´β38t
˘

e´Γt

6

P33 “

`

eΓt ` eβ38t ` e´β38t
˘

e´Γt

3

. (C.2)

and P11 and P13 are shown in Figure 47. We see that the behaviour of probabilities in a
non-diagonal form of the dissipation matrix is very similar to diagonal versions, with an
asymptotic maximal mixing.
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Appendix D

Decoherence inside the SN and matter
effects

The neutrino Hamiltonian in flavor basis affected by the charged current potential
VW , i.e. Hf “ Hvac

f `VW , can be diagonalized to Hm by a unitary transformation provided
by Um as

ρf “ UmρmU
:
m Hf “ UmHmU

:
m, (D.1)

getting the most general form of (6.2) in the effective neutrino mass basis in matter

dρm

dt
“ ´irHm, ρms ´ rU :

m
9Um, ρms `

N2´1
ÿ

p

pVpmρmVpm ´
1
2tV 2

pm, ρmuq (D.2)

or following the notation in (6.9)

| 9ρmy “ ´2Lmptq |ρmy (D.3)

For all purposes of this work, the propagation is adiabatic, or 9Um “ 0 in (D.2).

We are interested in solving equation (D.3) in a variable matter density in order to
get transition probabilities PmpSNq

ij and P̄mpSNq

ij . It is straightforward to obtain |ρy in (6.9) ,
but in the case of |ρmy, Vpm and Hm are time-dependent and the solution is a time-ordered
exponential:

T
!

e
´2

şt
t0

dt1Lmpt1q
)

“ 1 ` p´2q

ż t

t0

dt1Lmpt1q ` p´2q
2

ż t

t0

dt1

ż t1

t0

dt2Lmpt1qLmpt2q ` ¨ ¨ ¨ .

(D.4)

Analytical solutions for specific cases in a variable matter density can be found in
[115, 89]. However, instead of using a cumbersome approximated approach, we analyze the
neutrino evolution into the SN making the limits in the integrals in (D.4) ∆t “ tn´tn´1 Ñ 0,
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allowing to solve (D.4) numerically through slab approach, i.e. we divided the SN matter
density profile into small parts, in which the neutrino Hamiltonian is approximately
constant, then we make the time evolution from each step to another until the neutrino
reach the vacuum. We use the simulated density profile in Figure 15 to perform this
calculation.
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Figure 48 – Solution for a survival probability of ν3 along a SN radius for the MSCϵ (solid
opaque line) and neutrino loss (dashed). The transparent line shows the same
probability but in vacuum. More details about these models are in the text.
As it will be clear in our results, even with enhancement of the conversion in
matter, values of Γ „ 10´19 eV are far higher than the sensitivity of a future
SN detection compared to coherence length in vacuum used in the MSCϵ

model.

In Figure 48 we compare the PmpSNq

33 to the same probability in mass basis in vacuum,
which is shown as an enhancement of the deviation from the standard expectation of
P

mpSNq

33 “ 1. In Figure 27 we show the numerical probabilities of MSC{ϵ for the mass state
in matter solved as described above.
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Appendix E

Quantum decoherence bounds

Table 2 – Constraints for each detector for MSC{ϵ scenario with 90% (2σ) C.L. in units of
Γ ˆ 10´15 (eV). For n ‰ 0 a representative energy of E0 “ 10 MeV was chosen
and QD parameters are in eV scale. Values are corresponding to the simulated
progenitor of 40 Md.

NH IH
Detector SN distance n “ 0 n “ 2 n “ 5{2 n “ 0 n “ 2 n “ 5{2
DUNE 1 kpc 0.89p1.1q 0.76p0.89q 0.65p0.87q 0.88p1.0q 2.5p8.8q 3.2p15q

5 kpc 5.4p7.0q 4.4p5.9q 6.3p8.7q

7 kpc 8.3p11q 7.0p9.4q 11p16q

10 kpc 14p20q 12p17q 22p35q

HK 1 kpc 0.96p1.1q 3.7p4.1q 5.0p5.8q 0.93p1.1q 3.9p4.3q 5.3p6.5q

5 kpc 4.3p5.7q 16p21q 33p47q 4.9p6.6q 18p23q 38p49q

7 kpc 7.1p11q 27p38q 53p87q 8.5p13q 28p38q 67p99q

10 kpc 16p51q 65p120q 150p400q 20p36q 52p80q 140p240q

JUNO 1 kpc 4.2p5.4q 15p19q 30p41q 7.2p8.9q 38p51q 100p180q
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Table 3 – Same as Table 2 but for MSCϵ scenario with 2σ(3σ) C.L. in units of Γ8 ˆ 10´28

(eV). The representative energy of E0 “ 10 MeV was taken for n ‰ 0 and QD
parameters are in eV scale. Values are corresponding to the simulated progenitor
of 27 Md.

NH IH
Detector SN distance n “ 0 n “ 2 n “ 5{2 n “ 0 n “ 2 n “ 5{2
DUNE 1 kpc 2.1p3.3q 0.43p0.67q 0.24p0.37q 490p700q 50p180q 33p110q

5 kpc 2.8p5.2q 0.58p1.1q 0.34p0.75q

7 kpc 3.2p7.1q 0.71p1.9q 0.46p1.4q

10 kpc 4.2p17q 1.1p7.0q 0.80p6.1q

HK 1 kpc 6.8p11q 0.81p1.1q 0.43p0.58q 9.2p14q 0.68p1.0q 0.36p0.54q

5 kpc 9.6p23q 0.92p1.9q 0.48p1.0q 10p18q 0.80p1.5q 0.44p0.82q

7 kpc 13 1.2 0.61p2.6q 11p25q 0.94p2.5q 0.51p1.4q

10 kpc 42 2.7 1.2 13 1.4 4.9
JUNO 1 kpc 51p100q 6.4p13q 4.0p7.8q 47p89q 5.6p11q 3.5p6.9q

Table 4 – Same as Tables 2 and 3 but for ν-loss scenario, with 3σ bounds over γ ˆ 10´29

(eV).

IH
Detector SN distance n “ 0 n “ 2 n “ 5{2
DUNE 1 kpc 500 4.6 2.1

5 kpc 100 3.3 1.6
7 kpc 74 3.2 1.5
10 kpc 52 3.1 1.5

HK 1 kpc 500 2.6 1.4
5 kpc 100 2.3 1.2
7 kpc 70 2.2 1.2
10 kpc 49 2.1 1.2

JUNO 1 kpc 500 150 110
5 kpc 100 32 24
7 kpc 78 24 18
10 kpc 59 19 14
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