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THE SECOND FUNDAMENTAL THEOREM OF
INVARIANT THEORY FOR THE ORTHOSYMPLECTIC
SUPERGROUP

G. I. LEHRER ® anxDp R. B. ZHANG

Abstract. The first fundamental theorem of invariant theory for the
orthosymplectic supergroup scheme OSp(m/|2n) states that there is a full func-
tor from the Brauer category with parameter m — 2n to the category of tensor
representations of OSp(m|2n). This has recently been proved using algebraic
supergeometry to relate the problem to the invariant theory of the general
linear supergroup. In this work, we use the same circle of ideas to prove the
second fundamental theorem for the orthosymplectic supergroup. Specifically,
we give a linear description of the kernel of the surjective homomorphism
from the Brauer algebra to endomorphisms of tensor space, which commute
with the orthosymplectic supergroup. The main result has a clear and succinct
formulation in terms of Brauer diagrams. Our proof includes, as special cases,
new proofs of the corresponding second fundamental theorems for the classical
orthogonal and symplectic groups, as well as their quantum analogues, which
are independent of the Capelli identities. The results of this paper have led to
the result that the map from the Brauer algebra B.(m — 2n) to endomorphisms
of V®" is an isomorphism if and only if r < (m + 1)(n + 1).
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81. Introduction

This paper is a sequel to [19] and [6], in which we proved the first
fundamental theorem (FFT) of invariant theory for the orthosymplectic
group superscheme G = OSp(m|2n, C). The FFT may be interpreted either
in terms of the group superscheme G = OSp(m/|2n,C) or in terms of the
points G(A) of G over the infinite dimensional Grassmann algebra A, which
form an actual group of matrices over A. In this work, we adopt the scheme-
theoretic point of view of [6]. The FFT provides a set of generators for the
invariants of G on V®", where V is the “natural” representation of G on
the superspace V' of superdimension (m|2n); this theorem is equivalent to
the statement that there is a surjection B,.(m — 2n) — Endg(V®"), where
B.(m — 2n) is the r-string Brauer algebra with parameter m — 2n. In this
paper, we give a linear description of all relations among these generators;
this is the second fundamental theorem (SFT) of invariant theory.

The thrust of the geometric approach we use is to reduce the questions
concerning OSp(m|2n, C) to similar questions concerning the action of
GL(m|2n, C) on a larger space. In this work, we show that this reduction
may be performed so as to throw light on the SET for OSp(m|2n, C) using
a combination of geometric and diagrammatic methods.
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In this section, we briefly recall the results of [6, 19] in a form convenient
for the present exposition.

1.1 Superalgebraic geometry

We refer to [6, Section 2] for the basic facts concerning superschemes.
We shall work in the category of superschemes over the complex field C.
Each such superscheme S gives rise to a functor on the category of (super)
commutative C-superalgebras

S: A~ S(A) :=Hom(Spec(A), 5),

which takes the superalgebra A to the set of A-points of S. This is the
functor of points associated with S with which we identify .S. We shall use
the term “function” on a superscheme S to mean a global section of the
structure sheaf O = Og of S.

If Wi is a finite dimensional complex superspace, one associates to it the
superscheme W = Spec(S(W¢)), whose corresponding functor of points W
takes a supercommutative superalgebra A to W(A) := (W ®@c A)g. In the
special case W = C (even), the corresponding superscheme is denoted as
Gg. When W has an extra structure, for example, if it is a C-algebra, the
scheme W will inherit that structure. Thus, G, is an additive group.

Given an action of an affine supergroup G over C on a (complex)
supervector space W, for any supercommutative superalgebra A, G(A) acts
on W Kc A.

DEFINITION 1.1. A vector w € W is said to be invariant under G if for
any A, w ® 1 is fixed by each element of G(A). Denote the space of invariants
by WC. This is a vector subspace of W.

Equivalently, in the language of Hopf algebras, if F/(G) is the coordinate
superalgebra of G (so G = Spec(F(G))), we have the coaction W — W ®
F(G) as well as the map w—w®1€W ® F(G). Then WY = Ker(W =
W ® F(G)).

If the functor of points associated with the fixed point space W is written

WE, then for any supercommutative superalgebra A, we have W& (A) =
(W ®c A)G(A))G.

1.2 Linear superalgebra and the group scheme GL(V)

See [19, Sections 2.1, 2.2]. We denote by V= (V)@ (V)1 a Z/2Z-
graded complex vector space of superdimension sdim V' = (m|2n) so that
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dim(V)g=m and dim(V'); = 2n. The supersymmetric algebra S(V*) is the
supercommutative super C-algebra defined in [19, Section 3.2], and the
scheme V corresponding to V' is V:= Spec(S(V*)). Its associated functor
of points is described above.

As a special case, we have the affine superscheme End(V') of endomor-
phisms of V', which is associated with the supervector space End(V') :=
Endc(V); it has the open subscheme GL(V) (see [6, 2.10]) whose asso-
ciated functor of points takes the supercommutative superalgebra A to
Aut4(V ®c A).

1.3 The orthosymplectic supergroup OSp(V)
Consider a nondegenerate even bilinear form

(1.1) B:=(—,-):VxV —C,

which is supersymmetric, that is, (u,v) = (=1 (v, u) for all u,ve V.
This implies that the form is symmetric on (V)g x (V)g, skew symmetric on
(V)1 x (V)1, and satisfies (Vg, Vi) =0 = (V4, V). Also, by nondegeneracy,
dim(V')1 = 2n must be even. We call this a nondegenerate supersymmetric

form on V. Let n= <Ién })n

size m xm and J, is a skew symmetric matrix of size 2n x 2n given

>, where I, is the identity matrix of

by J, =diag(o,...,0) with o= <(1) _01> Then there exists an ordered
homogeneous basis € = (ey, €2, . . ., emt2pn) of V such that
(1.2) (€q; €) =MNap, for all a, b.

As in [6, Example 2.6], the form (—, —) gives rise to a bilinear morphism

of functors
(1.3) B:VxV—G,,

which corresponds (cf. [6, Section 2.7]) to a quadratic form ¢ € S?(V)g,
which is related to B via

(1.4) q(z) = 1B(z, ) and

' B(z,y) =q(z +y) — q(z) — q(y).

DEFINITION 1.2. [6, 2.11] The orthosymplectic group superscheme G =
OSp(V) is defined as the subscheme of GL(V') which preserves the form

B(—, —) or, equivalently, which preserves the quadratic form g. Explicitly,
G:{QEGL(Vqug_lzq}.
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An A-point of the group scheme corresponding to OSp(V) is an auto-
morphism of V ®¢ A which fixes the A-bilinear form induced on V ®@¢ A by
B(—,—).

§2. Invariant theory for GL(V)

In this section, we state the two fundamental theorems of invariant theory
for the supergroup GL(m|f) in a form convenient for use in our context.

2.1 Symmetric group action

In this section, we take V' to be a C-superspace with sdim (V') = (m|f)
and, as above, write V for the corresponding (super) scheme whose associ-
ated functor of points is described above. Given any two Zo-graded C-vector
spaces, V, W, we may form the tensor product V ®c W and Homc(V, W).
These are Zo-graded in the usual way. Thus, GL(V') acts on the superspaces
Ve for r=1,2,.... We have a superpermutation 7:V@W — WV,
given by

(21) T(Q}@w) = (_1)[v][w]UJ®U,
for homogeneous v € V, w € W, and extended linearly. When V=W, 7€
Endgro)(V @ V) = (Endc(V @ V)LV,

Bearing in mind the definition of invariants in Definition 1.1, for any r,
we have a homomorphism of C-algebras

(2.2) @, : CSym, — End(V®")GLV),

in which the simple transpositions in Sym, are mapped to the endomor-
phisms 7 of (2.1), acting on the appropriate factors of the product.

Since our strategy for studying OSp(V') is to reduce to the case of GL(V'),
we next state the fundamental theorems for GL(V).

2.2 Invariant theory for GL(V): the FFT
The FFT for GL(V) may be stated as follows.

THEOREM 2.1. [4, Theorems 3.3 and 3.7] The map w, of (2.2) is sur-
jective for all r.

This theorem can be proved in similar manner to the classical case using
the superpolarisation result in Appendix A.

Now for any pair of complex vector spaces V, W, the canonical isomor-
phism

(2.3) Homc (V, W) = Home¢(V ®@c W*, C)
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of supervector spaces is GL(V)-equivariant. Hence, we have the following
reformulation of Theorem 2.1. First, observe that the element

(2.4) )\() : (1)1, vy Up, (251, ey ¢r) — ¢1(U1)¢2(02) s (;Sr(vr)

lies in (Hom(V® @ (V*)®, C))GL(V); that is, it is invariant according to
Definition 1.1.

Next, note that Sym, acts on Hom(V®" @ (V*)®5 C) via the map
A= 71(A) = Xo (w,(r71) x idy+yes) (for A € Hom(V®" @ (V*)®*,C) and

7 € Sym,.).
For m € Sym,, let 6 = m()\g) € Hom(V®" ® (V*)®", C). Thus, for homo-
ZEeNeous Vi, . . ., Up, P1, -+ - - , O,
(2.5) Or(v1, .-y vps b1,y ) = £ [ bilvr)-
i=1

COROLLARY 2.2. We have

(2.6)  Hom(VE" @ (v*)®s, )¢ = ifr#s
span {0 | ™ € Sym,.} ifr=s.

The first statement is trivial since the center of GL(V') is just C and
z € C acts on Hom(V®" @ (V*)®5 C) as multiplication by 2"~*. The second
statement is easily seen to be equivalent to Theorem 2.1.

2.3 Invariant theory for GL(V): the SFT

The SFT for GL(V') describes the kernel of the surjective homomorphism
w, of Theorem 2.1.

The following result is an easy consequence of [4, Theorem 3.20].

THEOREM 2.3. Let V' be a super C-vector space with sdim (V') =ml¢. If
r<(m+1)(+1), then the surjective (by Theorem 2.1) homomorphism

w, : CSym, — (EndC(V)@")GL(V)

of superalgebras is an isomorphism. If r > (m + 1)(¢ + 1), then the kernel of
w, is the (two-sided) ideal of ASym, generated by the Young symmetrizer
of the partition with m + 1 rows and £ + 1 columns.

The kernel is therefore generated by an idempotent which is explicitly
described as follows. Consider the (m + 1) x (¢ + 1) array of integers below,
which form a standard tableau.
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1 2 {+1
{+2 {43 20 4 2
ml+m+1|ml+m+2]|--- ml+m—+/4+1

Let R and C be the subgroups of Sym,, ;.. ¢4+1 (regarded as the subgroup
of Sym, which permutes the first (m + 1)(¢ + 1) numbers) which stabilize
the rows and columns of the array, respectively. Thus,

R=Sym{1,2,..., 04+ 1} x Sym{¢+2,0+3,...,20+2} x---
coox Sym{ml+m+1,ml+m+2,...,ml+m+ L+ 1},

while

C=Sym{1,0+2,....,m¢+m+1} x Sym{2,¢+3,...,ml+m+2} x---
oo x Sym{l+1,2042,...,ml+m+ L+ 1},

where Sym{ X} denotes the group of permutations of the finite set X.
Then in the group ring ASym,,,;\ .11 € ASym,., let e =e(m, £) be the
(even) element defined by

(2.7) e(m, 0) = (Z 77) (Z 5(a)a> =at(R)a™(C),

TER oeC

where ¢ is the sign character of Sym,, and for any subset H C Sym,., we
write a*(H) (resp. a~ (H)) for the element Y,y h (vesp. > cp e(h)h) of
CSym,..

It is known that (|R|!|C|')~te(m, £) is a primitive idempotent in the group
algebra CSym, oy ¢41- It is also well known that CSym, = P, I(u), where
p runs over the partitions of r, and I(u) is a simple ideal of CSym,. for each p.
In this notation, the ideal I(m, ¢) of CSym, which is generated by e(m, ¢) is
the sum of the I(x) over those partitions p that contain an (m + 1) x (£ + 1)
rectangle.

COROLLARY 2.4. If r<(m+1)({+1), then Ker(w,)=0. Otherwise,
Ker(w,) = I(m, () := @, I(1) over those partitions pi of r that contain a
rectangle of size (m+1) x (£ +1).
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2.4 The SFT for GL(V): second formulation

We shall now translate the FFT for GL(V) into the setting of Corol-
lary 2.2. This is easily achieved by noting the commutativity of the following
diagram (2.4):

oy

CSym,. End(V®)

x (z),r’,,,

Hom(VE" @ (V*)%, C)

Here, w, is as in (2.2), ¢, is a special case of the map in (2.3), and ¢ is the
map taking 7 € Sym,. to the 0 =m(X\g) of (2.5).

Since ¢,, is an isomorphism, it follows that Ker(w,)=Ker(d). The
following statement is therefore evident.

COROLLARY 2.5. If 6 (m € Sym, ) is as in (2.5), then for any elements
ar € C, ZﬂESym ar0r =0 if and only if ZﬂESym ar7 lies in the ideal
I(m, ¢) of CSym,. In particular, Ker(6) =0 if r < (m+1)(¢ +1).

§3. Invariant theory for the orthosymplectic supergroup

In this section, we take £ =2n and G to be the orthosymplectic group
scheme G = OSp(V) C GL(V) as in Definition 1.2. Clearly, G acts on V&,
and Endg(V®") =End(V®)% is a finite dimensional associative algebra
which contains End(V®)GL(V) One formulation of the FFT for OSp(V),
which is proved in [6, 19], describes this algebra. The most convenient
formulation of the FFT for OSp(V) is through the Brauer category.

3.1 The Brauer category and FFT for OSp(V)

Let B=B(m —2n) be the Brauer category over C with parameter
m — 2n (see [18]). This has objects N=1{0,1,2,3,...} and morphisms
Homp(s, t) := B, the linear span of all Brauer diagrams from s to t
(s,t € N). Recall that the category is generated by the four morphisms

depicted below:

These will be denoted, respectively, by I, X, A, and U, and they belong to
B, B3, BY, and BE, respectively.
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Let (eq), (¢f) (a=1,2,...,m+ 2n) be a pair of C-bases of V, which
are dual with respect to the form B in the sense that B(e}, ep) = 04 (the
Kronecker delta) for all a,b. The element co =), e, ®e; €V ®V is then
independent of the basis chosen and is G-invariant.

The FFT for OSp(V') may now be stated as follows (cf. [18, Theorem 4.8]).

THEOREM 3.1. Let V =C™?" and G =0Sp(V), and let Tg be the full
subcategory of G-modules with objects V" (r=0,1,2,...). Then there
is a full functor F:B(m —2n) — Tq, defined by F(r)=V®", F(I)=idy,
F(X)=7€End(V®V), and F(A)=B(—,—):v®V —=C, and F(U) =7
is the map defined by v(1) = cy.

REMARK 3.2. Recall that since —idy € OSp(V) and acts on V& as
(—1)", it follows that Homg(V®, V®) =0 if s#£¢ (mod 2) because any
element o € Homg (V®, V%) would satisfy o = —a since it commutes with
—idy.

Thus, to say that F' is full means that it induces surjections on
the respective Hom spaces, that is, it means that the maps Fy:B; —
Homg (V& V®$) are surjective for all ¢, s € N such that s = ¢ (mod 2). Since
the Hom spaces are (linearly) isomorphic for each ¢, s such that s+t =
2r (r € N constant), this surjectivity is equivalent to the corresponding
statement for any particular pair ¢, s with £ 4+ s = 2r; common choices are
s=t=r and t=2r, s=0, and we give those formulations now. Taking
s =t =r, we obtain the following statement.

THEOREM 3.3. [19, Theorem 5.4] Let B,.(m — 2n) be the Brauer algebra
on r strings with parameter m — 2n and generators s;,e; fori=1,...,r —
1 (see [19, Section 5.2]). Then there is a surjective homomorphism
B.(m — 2n) — Endg(V®") such that s; — w,(s;) and e; —; for all i,
where v; =idy ® - - - @ idy ®y R idy ® - - - ® idy, and v € Endg(V®?) takes

i—1 r—i—1
v@w to B(v,w)co, that is, y=F (U)o F(A).

To state the FFT for the case ¢t = 2r, s =0, recall that a typical diagram
in BY is of the form depicted in Figure 1.

The diagram D may be obtained from Dy, depicted in Figure 2, by
composition with a permutation.

Indeed, any permutation 7 : 2r — 2r may be thought of as a diagram like
the one depicted in Figure 3.

https://doi.org/10.1017/nmj.2019.25 Published online by Cambridge University Press


https://doi.org/10.1017/nmj.2019.25

INVARIANT THEORY OF THE ORTHOSYMPLECTIC SUPERGROUP 61

Figure 1.
Diagram D : 2r — 0.

Figure 2.
Diagram Dg : 2r — 0.

©(3) ©(2r) w(1) m(2r —1) w(2) w(4)

Figure 3.

Permutation 7 : 2r — 2r.

The right action of Syms, on diagrams 2r — 0 is then given in terms of
diagrams by composition of the diagrams in Figures 1 and 3. It is then clear
that any diagram D : 2r — 0 may be obtained from the diagram Dg depicted
in Figure 2 by composition with a permutation 7 € Sym,, (see Figure 4).

To identify the linear maps defined by the diagrams above, define kg :
Ve 5 C by

(3.1) Ho(’ul K- 'UQT) = B(vl, UQ)B(Ug, ’Ug) . B(’Ugr_l, 'UQT).
For each permutation 7 € Sym,,., define

(3.2) Fr(V1 @ - -+ @ vgy) = kg 0 war (1) (01 ® - - - ® vap).
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Figure 4.

Diagram D in Figure 1 as composition Domp.

It is then easily verified that given a diagram D € BY., if D = Dgy o (for
7 € Sym,, ), then although 7 is not uniquely defined by this property, kr
depends only on D. We therefore write k. = kp, and we have the following
formulation of the FFT.

THEOREM 3.4. Let V =C™2?" and G =OSp(V). Then for each integer
r, we have a surjective map K : Bgr — Homg(V®?" C) which takes the
diagram D in Figure 1 to kp.

DEFINITION 3.5. Define the subgroup C' C Syms,,. as the stabilizer of xg
in Syms,,. That is, C' := {7 € Sym,, | kx = Ko }.
The idempotent e(C) € CSym,, is defined by e(C) =|C|™* Y .

It is clear that |C|=2"r! so that [Sym,,/C|=[]\_,(2i — 1) =|BY,|.
§4. From invariants of OSp(V) to invariants of GL(V)

In this section, we recall the basic results of [6, 19] to describe diagra-
matically an explicit injective map from invariants of OSp(V') to invariants

of GL(V'), which will permit the use of the SFT for GL(V') to deduce our
result for OSp(V'). We use the language and formulation of [6].

REMARK 4.1. In particular, for any finite dimensional complex vector
space Ug, we will denote by U the corresponding affine superscheme.
Specifically, for vector spaces V¢, W, Hom(V, W) denotes the affine scheme
corresponding to Homc (Vc, We).

4.1 Extension of functions

We recall the setup of [6, Section 3]. In particular, we denote by @ the
scheme of quadratic forms on V and by ) the open dense subscheme of
nondegenerate forms. The nondegenerate quadratic form ¢ € ) is given,
and OSp(V) is its isotropy group under the transitive action of GL(V') on
Q, which is given by (g,¢) € GL(V) x Q+ ¢ o g7 L.
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Let us write E for the superscheme E =&nd(V). We then have the
epimorphism v : E — Q given by u(T) = q o T. Clearly, v~ 1(Q) = GL(V),
and we have the commutative square

GL(V) - FE
(4.1) L ug Ju
Q = @

1 1

where the embedding of GL(V') in E'is given by g — ¢~ and ug(g) =qo g~ ".
If f is any OSp(V)-invariant function on V", one defines a corresponding
GL(V)-invariant function F on V" x Q by

(42) Floy®@- @0y, ¢)=F(01® - @, 9(q)) := flg 01, ..., g 'vyp),

where ¢’ = g(q) =qo g~ ! (g € GL(V)) is an arbitrary form in Q. Note that
since g € GL(V) is determined up to right multiplication by x € OSp(V),
the definition in (4.2) depends only on ¢’ = g(q) and not on g since f is
OSp(V)-invariant. Moreover, the GL(V') invariance of F' is immediate from
the definition.

The following result is [6, Theorem 3.4].

THEOREM 4.2. Let f be a linear function on V®" which is OSp(V)-
invariant and let F be the corresponding GL(V)-invariant function on
Ve x Q defined in (4.2). Then there is a unique extension F of F from
VO x Q to V& x Q.

REMARK 4.3. For each (11 ®---®uv,,¢,9) €VE x Q x GL(V), it is
evident that

Fui® - ®uv,¢d o0g9)=F(gu ®- - ® gur, ).

Since V" x @ x GL(V) is schematically dense in V& x Q x E, it follows
that

(4.3) Fri® - ®@v,¢oT)=F(Tvy®---®Tv,, q)
for all (11 ®- - ®v,,¢,T)EVE xQ x E. In particular, F is GL(V)-
invariant.

Note that by Remark 3.2, if f in Theorem 4.2 is nonzero, it follows that
r is even, and we write r = 2d below.
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4.2 Construction of invariants of GL(V') from those of OSp(V)
In this section, we shall prove the following result. Notation is as in
Remark 4.1.

THEOREM 4.4. Maintain the notation and formalism of Sections 1 and 2.
Given a nondegenerate orthosymplectic form on V', there is a canonical
injective map

h: Hom(V®", €)%Y) —; Hom (V& x (v*)#r, €)Y

Proof. Suppose that L € Hom(V®" C)°5*(V) and L # 0. Then r = 2d is
even and L is an even linear function on V®2?¢ which satisfies L(gv; ® - - - ®
guad) = L(v1 ® - - - @ vaq) for v; € V and g € OSp(V). Using the construction
above as well as Theorem 4.2, we obtain a GL(V)-invariant function F';, on
V®2d % @, which satisfies (4.2) and (4.3). Moreover, by [6, 3.5(iii)], F'y is

homogeneous of degree d in ). A supervariant of the usual polarization
argument (cf. Proposition A.1) shows that there is, therefore, a unique

multilinear function Fr, on V®2¢ x @®d such that
Friom®@ - @u,d)=F(v1®--Qv,¢ ¢ @ --®q).

Now there is a well-known canonical isomorphism Q ~ S?(V*), where S?
denotes the symmetric square. Further, the canonical decomposition

VER V=53V ® AP (V)

is GL(V)-invariant, whence S?(V*) is canonically a quotient of (V*)®2 so
that functions on @@)d may be canonically lifted to (V*)22. It follows that
Fr, may be lifted to a GL(V)-invariant multilinear function, which we call
Hy, on V2 x (V*)%, Write h(L) = Hy. This map is canonical in the sense
that no choices are made after ¢ is specified.

The injectivity of h follows from the fact that

HL(“I@®Ur®q®®Q):FL(U1®®U7~,(]®®(])
=Fr(t1®--®uv,q)
:L(v1®...®vr)’

from which it is apparent that L is determined by Hj,. 0
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4.3 Diagrammatic interpretation

In this section, we identify the construction of the previous section with
the diagrammatic description in Theorems 3.3 and 3.4.

We begin with the passage from the function F7 to Hp in the proof

of Theorem 4.4. This depends on lifting multilinear functions from @d ~
(S2(V*)®d to ((V*)®2)®d ~ (V)82 Tt follows from the construction of

h(L), where L € (Hom(V®2¢, C))OSp(V), that the value Hy(v1 ® « -+ @ vgq ®
$1 @+ ,®poq) depends only on the image of (¢ ® - - - ® ¢oq) under the
projection (V*)®2¢ — §9(S§2(V/*)), which, by the polarization lemma A.1, is
spanned by elements of the form (¢ ® ¢ ® - - - ® ¢'), where ¢’ € Q ~ S?(V*).
Bearing in mind the above remarks, the following result is clear.

LEMMA 4.5. The canonical projection p : (V*)¥24 —s S4(S%(V*)) is real-
ized by the action of the idempotent woq(e(C)), where e(C) is given by
e(C)=|C|7' Y, cc 0 and C is defined in Definition 3.5. We have

Hi(v1 @+ ®uaa ® 1 @+, @Paq)
(4.4) =Fp(v1 @ -+ ® vag, w2a(e(C)) (1 @ - - - ® ¢aa)).

Moreover, since functions are, by definition, even sections of the structure
sheaf of the relevant scheme, we have

Fr(v1 ® - - ® vag, waa(e(C))(#1, - - -, P2a))
(4.5) = Fr(w2a(e(C))(v1 @ -+ - @ v24), $1 @ - -+ @ P2a)

so that

Hi(1 @+ ®@v2a ® 1 ® -+ @ paa)
(4.6) = Fr(@2q(e(0))(v1 ® - - ® v24), 1 @+ + + ® P2a).
There are actions of Sym,y,; on both Hom(V®%¢ C) and on Hom(V®24 x
(V)24 C) given (for 7€ Symy,) by composition with wyg(r~!) and
wog(m 1) x id(y7+)24, respectively. Evaluation at (1 ®- - ®ugg,qoT ®qo

T® - -®qoT) (with v; € V and T € End(V)) shows, taking into account
Proposition A.1, the following.

LEMMA 4.6. In the notation of Theorem 4.4, we have, for m € Sym,,; and
L € (Hom (v, €))%,

h(mL) =7h(L).
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This relation may be written as h(kg o wag(m)) = Ag 0 e(C) o (waq(m) X
id(V*)Zd).

LEMMA 4.7. Let ky = kg o wog(m~ 1) be as in (3.2). Then with \g as in
(2.4), we have

(4.7) h(kir) = Ag 0 e(C) o (waa(m) X id(y+)2a).

Proof. Tt follows from Lemma 4.5 and (4.6) that h(kg) = Agoe(C).
Hence, by Lemma 4.6, h(k;)=h(koo w(m™ 1)) = h(ko) o (waa(m™1) x
id(V*)Qd) =Xgoe(C)o (w2d(71’_1) X id(V*)w). 0

This last statement has an attractive interpretation in terms of diagrams.
In Proposition 4.8, it is understood that CSym,,; C ng, and if Zy4 is the
ideal of Bgfil consisting of the span of the nonmonic diagrams, then ng =
CSymy; @ Zo4. Thus, the map x takes Bgd into CSymsg,; C ng.

PROPOSITION 4.8. The following diagram is commutative.

Bgd (Hom(c(V®2d, (C)) OSp(V)

(4.8) . lh

5
ng s (Hom@(V®2d ® (V*)®2d7 C))GL(

V)

Here, k is the map defined in Theorem 3.4, § is defined on CSymy,; in
Section 2.4 and extended to ng by defining it as zero on Loy, h is the
injective map defined in Theorem 4.4, and x is defined as follows. For any
diagram D = Do omp € BY,;, x(D)=e(C)mp € CSymy, C B¢, where e(C)
is the idempotent defined in Definition 3.5.

Proposition 4.8 is a restatement of Lemma 4.7. In terms of diagrams, the
diagram D depicted in Figure 4 is taken to the element of ng depicted in
Figure 5.

§5. The SFT for OSp(V)

In this section, we continue with the notation above. V' is a complex
vector space with sdim (V) = (m|2n). If B(—, —) € Hom(V2, C) is the given
nondegenerate orthosymplectic form on V, G =O0Sp(V) is its isometry

group scheme, as explained in Section 2. The space (Hom(VQd, (C))OSP(V)
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Figure 5.
The element x (D) of B34.

of invariant multilinear maps has the universal scheme-theoretic meaning
explained in Definition 1.1.

The FFT for OSp(V) asserts that the map & in (4.8) (see Proposition 4.8)
is surjective. The SFT for OSp(V') describes the kernel of x.

5.1 The main theorem
The following theorem is the main result of this paper.

THEOREM 5.1. Let k be the map in the commutative diagram (4.8). Then
Ker(k) = Dy o I(m, n),

where I(m, n) is the ideal of CSyms, which is the sum of the two-sided ideals
corresponding to partitions which contain an (m+ 1) X (2n + 1) rectangle
and Dg is the diagram in Bgd depicted in Figure 3.

Proof. Since the map h in (4.8) is injective, it follows that Ker(x) =
Ker(6 o x). Hence, b € BY, lies in Ker(x) if and only if x(b) € Ker(d), and
by Corollary 2.5, Ker(d) = Zoq + I(m, n), where Zy; is the ideal generated
by the nonmonic diagrams in ng. Moreover, ¢ factors through ng /Toq =~
CSymyy, and the kernel of the restriction of 6 to CSymy, is I(m, n).

But we claim that x~*(I(m, n)) = Dg o I(m,n), for if x € I(m, n), then
by Proposition 4.8, x(Dg o x) =e(C)x € I(m, n), while conversely if Dy o
x € x Y(I(m,n)) for some x € CSymy,, then x(Dg o x) =e(C)x € I(m,n).
But then Dgox = Dgoe(C)x € DyoI(m,n), proving the assertion. The
theorem follows. [

A typical element of the kernel of x is shown in Figure 6.
The following statement concerns the range of values of d for which
Ker(r) # 0.
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0 with 6 € I(m,n).

Figure 6.
Elements of Ker(k).

COROLLARY 5.2. With notation as in Theorem 5.1, the kernel of k is
zero if 2d < (m + 1)(2n + 1). Further, Ker(k) #0 for d > (m +1)(2n+1).

Proof. The first assertion is immediate from Theorem 5.1. The second
follows from the fact that

I(m,n)= {U(m+1)(2n+1)(D o (I(m,n)® 1®(m+1)(2n+1)))7

where D :2(m 4+ 1)(2n + 1) — 0 is the diagram with arcs (7, 2(m + 1)(2n +
1)—i+1),i=1,...,(m+1)(2n+ 1) and U is the map described in the
first paragraph of Section 5.2. The argument of UM+ +1) on the right
side is therefore a nonzero element of Ker(k). [

Note that as the discussion of the classical orthogonal and symplectic
cases below shows, Corollary 5.2 is not optimal. Here is a nonclassical
example.

EXAMPLE 5.3. We take m =1 = n; thus, we are in the case of OSp(1]2).
In this case, the smallest value of d for which Ker(x) could be nonzero
is d=3 (2d=(m+1)(2n+1)=2x 3=6). However, a straightforward
calculation shows that in this case (i.e., d=3), we have DyI(1,2)=0 in
Bg. Thus, here Ker(k) =0 when 2d = (m + 1)(2n + 1). In fact, in this case,
one sees that Ker(x) =0 if and only if d < 3. For this, one must verify that
Ker(k) # 0 when d = 4, that is, that DoI(1,2) # 0 in BY.

REMARK 5.4. The available evidence seems to point to the statement
that the smallest value of d for which Ker(x) #0isd= (m +1)(n+1) (i.e.,
2d=(m+1)(2n+ 1) + m+ 1). This result has now been proved by Zhang
in [29, Theorem 5.11].

Note also that in [7], it is proved that & is injective for some small values
of d.
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Figure 7.
U(D) for D € BE.

5.2 Interpretation in the first formulation

Theorem 5.1 provides the SFT for OSp(V) in its second formulation;
that is, it describes the linear structure of Homge(V®2¢, C)OSP(V), It may
be useful to point out that it may be reinterpreted in terms of the Brauer
algebra action 7, : B, (m — 2n) — Endogyvy (V") (see [19, Corollary 5.7]).
For this, we note that in the Brauer category [19], for nonnegative integers
p, ¢ with p >0, there is an isomorphism U : B} — BZJ_F}. It is denoted by
U} in [18, Corollary 2.8] and is depicted in Figure 7.

One therefore has an isomorphism U? : B L Bg, and this leads to the
following extension of the diagram (4.2).

By(m —2n) —'— (End(V®4))0Sp(V)
ud T =3 l%
(5.1) BY, — (Homg (V®24, C))OSp(V)

x| [

CSym,, C B2 — (Homg (V@24 x (V*)®2d, C))GL(V) .

The top map 7 : Bg(m — 2n) — Endosp(y)(V®d) is precisely the map dis-
cussed in the paper [18]. Theorem 5.1 has the following evident consequence.

COROLLARY 5.5. The kernel of the surjective algebra homomorphism 1 :
By(m — 2n) := B¢ — Endg(V®9) is UY(Dol(m, n)).

REMARK 5.6. In [17] and [18], we showed that in the classical cases when
m = 0 or when n = 0, the kernel is actually generated by a single idempotent
in the associative algebra By(m — 2n), but we do not have a similar result
in the general case (cf. [29]).
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86. Application to the classical groups

In this final section, we shall show how our main theorem provides a new
proof of the SFT in the classical cases of the orthogonal and symplectic
groups over C (see, e.g., [9, 21]). We therefore take V' as above and apply
Theorem 5.1 in those respective cases.

6.1 The orthogonal case: G =O(m, C)

Here, we take V =1 to be purely even and the form B(—,—) to be
symmetric. To apply our result, observe that the ideal I(m,n) = I(m, 0) of
CSyms,, is spanned (over C) by elements of the form ra™ (m + 1)7’, where
7, ™ € Sym,,; and for £ such that 1 </ < 2d, o~ (¢) = > seSym,
¢ is the alternating character of Sym,; and Sym, C Sym,, is the subgroup
which permutes the first £ symbols.

Theorem 5.1 asserts that Ker (x : BY,;(C) — Homg(V®?, C)O5P(V)) is
spanned by the elements Dyma™ (m + 1)n’. The next lemma shows that if
d is small, the kernel is zero.

LEMMA 6.1. Ifd < m, then each element Doro™ (m + 1)7' of BY, is zero.

e(o)o, where

Proof. Let m € Symy,; and consider the diagram D = Dyr. If d < m, then
d<m+1, and it follows that at least one arc of D has both ends in
{1,2,...,m+ 1} (if each arc with an end in {1,2,...,m + 1} had an end
outside {1, 2,...,m+ 1}, we would have 2d > 2(m + 1)). Suppose this arc
is from 7 to j, where 1 <i < j <m + 1, and write (ij) for the transposition
in Symy,; which interchanges ¢ and j.

Then by the rules for multiplying Brauer diagrams, we have D(ij) = D,
whence Dym(ij)a™ (m + 1) = Dora™ (m + 1).

But by the alternating property of a~ (m + 1), we have (ij)a”(m+1) =
—a~(m+1), whence Dom(ij)a™(m + 1) =—Doma~ (m + 1). The lemma
follows. [

Figure 8 depicts an example of a linear combination of diagrams which
is zero by Lemma 6.1.

COROLLARY 6.2. If d<m, then Ker(k)=0, and r:BY,(C)—
Homc (V®2 C)°V) s an isomorphism.

Our main theorem now has the following interpretation in the present
case (cf. [18, Theorem 3.4]). Recall that diagrams D € B9, are in canonical
bijection with partitions of {1, ..., 2d} into pairs.

THEOREM 6.3. Let V=V53=C™ and G=0(m,C). If d<m, then
Ker(k) =0. Assume that d >m + 1.
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Figure 8.

Zero element in B3,.

Define a set of linear relations among the xkp as follows. Let S, S’ be
two disjoint subsets of {1,...,2d} as depicted in Figure 9 such that |S|=
1Sl =m+1, and for o € Sym({S}), let D(mw,n’; ) be the diagram in BY,
which pairs o(s;) with s}, where the s; € S, s, € S" are written in increasing
order, and the points in {1,...,2d}\ (SUS") are paired as they are in each
diagram occurring in Doma™ (m + 1)7’.

Then for each w, 7' € Symy,,

(61) Z 2’5(0)""7D(71',7r/,0) =0,

o€Sym,,, 41

and all relations among the kp are linear consequences of these relations.

Proof. The first statement is Corollary 6.2.

By Theorem 5.1, all relations among the xp are consequences of the
relations k(Dora™ (m + 1)7') =0, for m, 7’ € Symy,.

Now the argument of the proof of Lemma 6.1 shows that if two of the
points in the set S := {7~1(1),771(2),..., 7 (m + 1)} are paired by Dy
then Dora™ (m + 1)7’ =0 in Bgd, and so to obtain a nonzero element of the
kernel, we may assume that no two points in S are paired by Dy and, hence,
that the set S’ of points which are paired by Dy with a point of S is disjoint

from S.
In this case, the relation k(Doma™ (m + 1)7') =0 is easily seen to trans-
late into (6.1), and the result is now clear. [

6.2 The symplectic case

In this case, we take V =Vj. The form B(—,—) is then skew, and
G =Sp(2n, C). The ideal I(m,n)=1(0,n) is, in this case, spanned (over
C) by elements of the form ma™(2n + 1)7’, where 7, 7’ € Symy,; and for
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Figure 9.
The set S consists of e’s and S’ of x’s.

each integer ¢ with 1 </ <2d, a™(¢) = Z(J’GSymg o, where as above, Sym, C
Sym,,; is the subgroup which permutes the first £ symbols.

In this case, the analogue of Lemma 6.1 is the trivial observation that
there are no nonzero elements of the kernel unless 2d > 2n + 1, that is,
d>n+1.

Taking into account the fact that for a symplectic form (v, v) =0 for all
v € V, we obtain the following form of the main theorem for the symplectic
case.

THEOREM 6.4. Let V =V; =C?", and G =Sp(2n,C). If d<n, then
Ker(k) =0. Assume that d >n+ 1.

Define a set of linear relations among the kp as follows. Let S be a
subset of {1,...,2d} such that |S|=2n+ 1. For any diagram D € BY,; and
o € Sym({S}), let D(S, o) be the diagram D(S, 0) = Do, where ¢ is regarded
as an element of Symy,; C ng which fizes the points outside S.

Then

(6.2) > kpse =0,
oeSym({S})
and all relations among the kp are linear consequences of these relations.
This is clear from Theorem 5.1.

Acknowledgments. The authors are grateful to the referee, whose detailed
suggestions have significantly enhanced this paper.

Appendix A. Superpolarization

PROPOSITION A.1. Let Mc be a Z/2Z-graded complex vector space with
sdim (Mc¢) = (k|¢), let A be a supercommutative super C-algebra, and let
M = Mc ®c A, Z/2Z-graded in the usual way. Let B C Mg be a subset
satisfying the conditions

(i) AB= M; that is, B generates M as A-module.
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(ii) For any two distinct elements b,c € B, there are infinitely many
complex numbers A such that b+ Ac € B.

Let T"(M)=M @4 M ®4---®a M (r factors), and let S"(M) be the
supersymmetric part of T" (M) (cf. [19, Section 3]).

Then for each integer r >0, the space (S"(M))y is the Ag-span of the
elements {b@b®---®@b|be B}.

Proof. This will be by induction on r, the case r = 1 being trivial, since
by the condition (i), AgB = Mj so that Mj is the Ag-span of B (and Mj is
the Aj-span of B).

Now it follows from [19, Lemma 3.7] that S"(M) =™ (r)T" (M), where
at(r)= Zaesymr o, with Sym,. acting on 7" (M) in the usual way through
@, (see (2.2)). Denote by X(r) the Ag-spanof {b @b® ---®b|be B}. Then
by the last remark, it suffices to show that for any element m; @ ms ® - - - ®
my, € T"(M)g, we have

(A1) at(r)(mi@ma®---®@m,) € X(r).
We shall prove (A1) by induction on 7. Assume (A1) for a smaller number
of factors; we consider separately two cases.

Case 1: at least one of the factors m; lies in Mp. In this case, since for any
element o € Sym, we have a™(r)oc = a™(r), we may clearly assume that
m, € Mg. Then my @ me ® - - - @ my_1 € T""1(M)g, and by induction, we
have a™(r —1)(m1 @ ma @ -+ - @ my_1) € X(r — 1).

But from the coset decomposition of Sym, with respect to Sym,_;, we

have
r—1
ot (r) = (1 +> (i, r)) ot (r—1),
=1

where (i, j) denotes the transposition of ¢ and j in Sym, and Sym,_; is
the subgroup of Sym, which permutes {1,...,r — 1}. The last two obser-
vations imply that a™(r)(m1 @ me ® - - - @ m,) is a Ag-linear combination
of elements of the form

r—1
(A2) <1+Z(i,r)) bRbx- - ®bxc),
=1

where b, c € B.
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Now denote by s; ;(b, ¢) the sum of all tensors of the form --- ®b® - - - ®
c®---€T"(M), where all factors are either b or ¢, and there are i factors
equal to b and j factors equal to c. Then the element in (A2) is s1,—1(b, ¢),
and it will suffice to show that if b, c € B, then s; ;(b, c) € X(r) for all i, j
such that ¢ + j = r. To see this last point, suppose A € C is such that b + Ac €
B. Then X(r) > (b +Ac) @ (b+Ac) @+ @ (b+ Ae) =370 Msi i(b, c). By
taking r + 1 distinct values A for which this relation holds, we obtain, by
the invertibility of the van der Monde matrix, an equation for each element
sij(b,c) as a C-linear combination of the elements (b+ Ac) ® (b+ Ac) ®
-+ ® (b4 Xc) € X(r). Thus, s,—1,1(b, ¢) € X(r), and the proof in Case 1 is
complete.

Case 2: each factor m; € M. In this case, we must have r even. Since a™(r)
is linear in each variable m; and since M7 = A; B, we may assume that for
i=1,2,...,r, we have m; = \;b;, where \; € A7 and b; € B. Then

oz+(7“)()\1b1 &« - - )\rbT) = Z 0’()\11)1 Q- )\rbr)

ocE€Sym,.

= > e@Aom)ro@ ooy @ @ by
ocE€Sym,.

= > &0 Mda - Mb)@ - -+ @ by(ry
o€Sym,.

= )\1)\2 ce )\r()é+(r)(b1 & ®bq"),

where ¢ is the alternating character of Sym,.. But since r is even, A; - - - A\, €
Ap; finally, observe that by Case 1, a™(r)(by ® - - - ®@b,) € £(r), and the
proof is complete. [

COROLLARY A.2. Let F € S4(M*) be a function of degree d on the affine
superspace M. Then there exists a function F € Hom(M?, G,) such that
F(m)=F(m,...,m).

Proof. Take B = M(A)j in Proposition A.1. [
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