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THE SECOND FUNDAMENTAL THEOREM OF
INVARIANT THEORY FOR THE ORTHOSYMPLECTIC

SUPERGROUP

G. I. LEHRER and R. B. ZHANG

Abstract. The first fundamental theorem of invariant theory for the

orthosymplectic supergroup scheme OSp(m|2n) states that there is a full func-

tor from the Brauer category with parameter m− 2n to the category of tensor

representations of OSp(m|2n). This has recently been proved using algebraic

supergeometry to relate the problem to the invariant theory of the general

linear supergroup. In this work, we use the same circle of ideas to prove the

second fundamental theorem for the orthosymplectic supergroup. Specifically,

we give a linear description of the kernel of the surjective homomorphism

from the Brauer algebra to endomorphisms of tensor space, which commute

with the orthosymplectic supergroup. The main result has a clear and succinct

formulation in terms of Brauer diagrams. Our proof includes, as special cases,

new proofs of the corresponding second fundamental theorems for the classical

orthogonal and symplectic groups, as well as their quantum analogues, which

are independent of the Capelli identities. The results of this paper have led to

the result that the map from the Brauer algebra Br(m− 2n) to endomorphisms

of V ⊗r is an isomorphism if and only if r < (m+ 1)(n+ 1).
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§1. Introduction

This paper is a sequel to [19] and [6], in which we proved the first

fundamental theorem (FFT) of invariant theory for the orthosymplectic

group superscheme G= OSp(m|2n, C). The FFT may be interpreted either

in terms of the group superscheme G= OSp(m|2n, C) or in terms of the

points G(Λ) of G over the infinite dimensional Grassmann algebra Λ, which

form an actual group of matrices over Λ. In this work, we adopt the scheme-

theoretic point of view of [6]. The FFT provides a set of generators for the

invariants of G on V ⊗r, where V is the “natural” representation of G on

the superspace V of superdimension (m|2n); this theorem is equivalent to

the statement that there is a surjection Br(m− 2n)−→ EndG(V ⊗r), where

Br(m− 2n) is the r-string Brauer algebra with parameter m− 2n. In this

paper, we give a linear description of all relations among these generators;

this is the second fundamental theorem (SFT) of invariant theory.

The thrust of the geometric approach we use is to reduce the questions

concerning OSp(m|2n, C) to similar questions concerning the action of

GL(m|2n, C) on a larger space. In this work, we show that this reduction

may be performed so as to throw light on the SFT for OSp(m|2n, C) using

a combination of geometric and diagrammatic methods.
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54 G. I. LEHRER AND R. B. ZHANG

In this section, we briefly recall the results of [6, 19] in a form convenient

for the present exposition.

1.1 Superalgebraic geometry

We refer to [6, Section 2] for the basic facts concerning superschemes.

We shall work in the category of superschemes over the complex field C.

Each such superscheme S gives rise to a functor on the category of (super)

commutative C-superalgebras

S :A 7→ S(A) := Hom(Spec(A), S),

which takes the superalgebra A to the set of A-points of S. This is the

functor of points associated with S with which we identify S. We shall use

the term “function” on a superscheme S to mean a global section of the

structure sheaf O =OS of S.

If WC is a finite dimensional complex superspace, one associates to it the

superscheme W = Spec(S(W ∗C)), whose corresponding functor of points W
takes a supercommutative superalgebra A to W(A) := (W ⊗C A)0̄. In the

special case WC = C (even), the corresponding superscheme is denoted as

Ga. When WC has an extra structure, for example, if it is a C-algebra, the

scheme W will inherit that structure. Thus, Ga is an additive group.

Given an action of an affine supergroup G over C on a (complex)

supervector space W , for any supercommutative superalgebra A, G(A) acts

on W ⊗C A.

Definition 1.1. A vector w ∈W is said to be invariant under G if for

any A, w ⊗ 1 is fixed by each element of G(A). Denote the space of invariants

by WG. This is a vector subspace of W .

Equivalently, in the language of Hopf algebras, if F (G) is the coordinate

superalgebra of G (so G= Spec(F (G))), we have the coaction W →W ⊗
F (G) as well as the map w 7→ w ⊗ 1 ∈W ⊗ F (G). Then WG = Ker(W ⇒
W ⊗ F (G)).

If the functor of points associated with the fixed point spaceWG is written

WG, then for any supercommutative superalgebra A, we have WG(A) =(
(W ⊗C A)G(A)

)
0̄
.

1.2 Linear superalgebra and the group scheme GL(V )

See [19, Sections 2.1, 2.2]. We denote by V = (V )0̄ ⊕ (V )1̄ a Z/2Z-

graded complex vector space of superdimension sdim V = (m|2n) so that
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dim(V )0̄ =m and dim(V )1̄ = 2n. The supersymmetric algebra S(V ∗) is the

supercommutative super C-algebra defined in [19, Section 3.2], and the

scheme V corresponding to V is V := Spec(S(V ∗)). Its associated functor

of points is described above.

As a special case, we have the affine superscheme End(V ) of endomor-

phisms of V , which is associated with the supervector space End(V ) :=

EndC(V ); it has the open subscheme GL(V ) (see [6, 2.10]) whose asso-

ciated functor of points takes the supercommutative superalgebra A to

AutA(V ⊗C A).

1.3 The orthosymplectic supergroup OSp(V )

Consider a nondegenerate even bilinear form

B := (−,−) : V × V −→ C,(1.1)

which is supersymmetric, that is, (u, v) = (−1)[u][v](v, u) for all u, v ∈ V .

This implies that the form is symmetric on (V )0̄ × (V )0̄, skew symmetric on

(V )1̄ × (V )1̄, and satisfies (V0̄, V1̄) = 0 = (V1̄, V0̄). Also, by nondegeneracy,

dim(V )1̄ = 2n must be even. We call this a nondegenerate supersymmetric

form on V . Let η =

(
Im 0
0 Jn

)
, where Im is the identity matrix of

size m×m and Jn is a skew symmetric matrix of size 2n× 2n given

by Jn = diag(σ, . . . , σ) with σ =

(
0 −1
1 0

)
. Then there exists an ordered

homogeneous basis E = (e1, e2, . . . , em+2n) of V such that

(ea, eb) = ηab, for all a, b.(1.2)

As in [6, Example 2.6], the form (−,−) gives rise to a bilinear morphism

of functors

B : V × V →Ga,(1.3)

which corresponds (cf. [6, Section 2.7]) to a quadratic form q ∈ S2(V )0̄,

which is related to B via

q(x) = 1
2B(x, x) and

B(x, y) = q(x+ y)− q(x)− q(y).
(1.4)

Definition 1.2. [6, 2.11] The orthosymplectic group superscheme G=

OSp(V ) is defined as the subscheme of GL(V ) which preserves the form

B(−,−) or, equivalently, which preserves the quadratic form q. Explicitly,

G= {g ∈GL(V ) | q ◦ g−1 = q}.
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An A-point of the group scheme corresponding to OSp(V ) is an auto-

morphism of V ⊗C A which fixes the A-bilinear form induced on V ⊗C A by

B(−,−).

§2. Invariant theory for GL(V )

In this section, we state the two fundamental theorems of invariant theory

for the supergroup GL(m|`) in a form convenient for use in our context.

2.1 Symmetric group action

In this section, we take V to be a C-superspace with sdim (V ) = (m|`)
and, as above, write V for the corresponding (super) scheme whose associ-

ated functor of points is described above. Given any two Z2-graded C-vector

spaces, V, W , we may form the tensor product V ⊗C W and HomC(V, W ).

These are Z2-graded in the usual way. Thus, GL(V ) acts on the superspaces

V ⊗r for r = 1, 2, . . .. We have a superpermutation τ : V ⊗W −→W ⊗ V ,

given by

τ(v ⊗ w) = (−1)[v][w]w ⊗ v,(2.1)

for homogeneous v ∈ V, w ∈W , and extended linearly. When V =W , τ ∈
EndGL(V )(V ⊗ V ) = (EndC(V ⊗ V ))GL(V ).

Bearing in mind the definition of invariants in Definition 1.1, for any r,

we have a homomorphism of C-algebras

$r : CSymr −→ End(V ⊗r)GL(V ),(2.2)

in which the simple transpositions in Symr are mapped to the endomor-

phisms τ of (2.1), acting on the appropriate factors of the product.

Since our strategy for studying OSp(V ) is to reduce to the case of GL(V ),

we next state the fundamental theorems for GL(V ).

2.2 Invariant theory for GL(V ): the FFT

The FFT for GL(V ) may be stated as follows.

Theorem 2.1. [4, Theorems 3.3 and 3.7] The map $r of (2.2) is sur-

jective for all r.

This theorem can be proved in similar manner to the classical case using

the superpolarisation result in Appendix A.

Now for any pair of complex vector spaces V, W , the canonical isomor-

phism

HomC(V, W )
∼−→HomC(V ⊗C W

∗, C)(2.3)
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of supervector spaces is GL(V )-equivariant. Hence, we have the following

reformulation of Theorem 2.1. First, observe that the element

λ0 : (v1, . . . , vr, φ1, . . . , φr) 7→ φ1(v1)φ2(v2) · · · φr(vr)(2.4)

lies in (Hom(V ⊗r ⊗ (V ∗)⊗r, C))GL(V ); that is, it is invariant according to

Definition 1.1.

Next, note that Symr acts on Hom(V ⊗r ⊗ (V ∗)⊗s, C) via the map

λ 7→ π(λ) := λ ◦ ($r(π
−1)× id(V ∗)⊗s) (for λ ∈Hom(V ⊗r ⊗ (V ∗)⊗s, C) and

π ∈ Symr).

For π ∈ Symr, let δπ = π(λ0) ∈Hom(V ⊗r ⊗ (V ∗)⊗r, C). Thus, for homo-

geneous v1, . . . , vr, φ1, . . . , φr,

δπ(v1, . . . , vr, φ1, . . . , φr) =±
r∏
i=1

φi(vπ(i)).(2.5)

Corollary 2.2. We have

Hom(V ⊗r ⊗ (V ∗)⊗s, C)
GL(V )

=

{
0 if r 6= s

span {δπ | π ∈ Symr} if r = s.
(2.6)

The first statement is trivial since the center of GL(V ) is just C and

z ∈ C acts on Hom(V ⊗r ⊗ (V ∗)⊗s, C) as multiplication by zr−s. The second

statement is easily seen to be equivalent to Theorem 2.1.

2.3 Invariant theory for GL(V ): the SFT

The SFT for GL(V ) describes the kernel of the surjective homomorphism

$r of Theorem 2.1.

The following result is an easy consequence of [4, Theorem 3.20].

Theorem 2.3. Let V be a super C-vector space with sdim (V ) =m|`. If

r < (m+ 1)(`+ 1), then the surjective (by Theorem 2.1) homomorphism

$r : CSymr −→
(
EndC(V )⊗r

)GL(V )

of superalgebras is an isomorphism. If r > (m+ 1)(`+ 1), then the kernel of

$r is the (two-sided) ideal of ASymr generated by the Young symmetrizer

of the partition with m+ 1 rows and `+ 1 columns.

The kernel is therefore generated by an idempotent which is explicitly

described as follows. Consider the (m+ 1)× (`+ 1) array of integers below,

which form a standard tableau.
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Let R and C be the subgroups of Symm`+m+`+1 (regarded as the subgroup

of Symr which permutes the first (m+ 1)(`+ 1) numbers) which stabilize

the rows and columns of the array, respectively. Thus,

R = Sym{1, 2, . . . , `+ 1} × Sym{`+ 2, `+ 3, . . . , 2`+ 2} × · · ·

· · · × Sym{m`+m+ 1, m`+m+ 2, . . . , m`+m+ `+ 1},

while

C = Sym{1, `+ 2, . . . , m`+m+ 1} × Sym{2, `+ 3, . . . , m`+m+ 2} × · · ·

· · · × Sym{`+ 1, 2`+ 2, . . . , m`+m+ `+ 1},

where Sym{X} denotes the group of permutations of the finite set X.

Then in the group ring ASymm`+m+`+1 ⊆ASymr, let e= e(m, `) be the

(even) element defined by

e(m, `) =

(∑
π∈R

π

)(∑
σ∈C

ε(σ)σ

)
= α+(R)α−(C),(2.7)

where ε is the sign character of Symr, and for any subset H ⊆ Symr, we

write α+(H) (resp. α−(H)) for the element
∑

h∈H h (resp.
∑

h∈H ε(h)h) of

CSymr.

It is known that (|R|!|C|!)−1e(m, `) is a primitive idempotent in the group

algebra CSymm`+m+`+1. It is also well known that CSymr =
⊕

µ I(µ), where

µ runs over the partitions of r, and I(µ) is a simple ideal of CSymr for each µ.

In this notation, the ideal I(m, `) of CSymr which is generated by e(m, `) is

the sum of the I(µ) over those partitions µ that contain an (m+ 1)× (`+ 1)

rectangle.

Corollary 2.4. If r < (m+ 1)(`+ 1), then Ker($r) = 0. Otherwise,

Ker($r) = I(m, `) :=
⊕

µ I(µ) over those partitions µ of r that contain a

rectangle of size (m+ 1)× (`+ 1).
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2.4 The SFT for GL(V ): second formulation

We shall now translate the FFT for GL(V ) into the setting of Corol-

lary 2.2. This is easily achieved by noting the commutativity of the following

diagram (2.4):

CSymr

δ ((

$r // End(V ⊗r)

∼

φr,ruu

Hom(V ⊗r ⊗ (V ∗)⊗r, C)

Here, $r is as in (2.2), φr,r is a special case of the map in (2.3), and δ is the

map taking π ∈ Symr to the δπ = π(λ0) of (2.5).

Since φr,r is an isomorphism, it follows that Ker($r) = Ker(δ). The

following statement is therefore evident.

Corollary 2.5. If δπ (π ∈ Symr) is as in (2.5), then for any elements

aπ ∈ C,
∑

π∈Symr
aπδπ = 0 if and only if

∑
π∈Symr

aππ lies in the ideal

I(m, `) of CSymr. In particular, Ker(δ) = 0 if r < (m+ 1)(`+ 1).

§3. Invariant theory for the orthosymplectic supergroup

In this section, we take `= 2n and G to be the orthosymplectic group

scheme G= OSp(V )⊆GL(V ) as in Definition 1.2. Clearly, G acts on V ⊗r,

and EndG(V ⊗r) = End(V ⊗r)G is a finite dimensional associative algebra

which contains End(V ⊗r)GL(V ). One formulation of the FFT for OSp(V ),

which is proved in [6, 19], describes this algebra. The most convenient

formulation of the FFT for OSp(V ) is through the Brauer category.

3.1 The Brauer category and FFT for OSp(V )

Let B = B(m− 2n) be the Brauer category over C with parameter

m− 2n (see [18]). This has objects N = {0, 1, 2, 3, . . .} and morphisms

HomB(s, t) := Bts, the linear span of all Brauer diagrams from s to t

(s, t ∈ N). Recall that the category is generated by the four morphisms

depicted below:

, �
�
�
�

A
A
A
A

, , .

These will be denoted, respectively, by I, X, A, and U , and they belong to

B1
1, B2

2, B0
2, and B2

0, respectively.
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Let (ea), (e
∗
a) (a= 1, 2, . . . , m+ 2n) be a pair of C-bases of V , which

are dual with respect to the form B in the sense that B(e∗a, eb) = δab (the

Kronecker delta) for all a, b. The element c0 =
∑

a ea ⊗ e∗a ∈ V ⊗ V is then

independent of the basis chosen and is G-invariant.

The FFT for OSp(V ) may now be stated as follows (cf. [18, Theorem 4.8]).

Theorem 3.1. Let V = Cm|2n and G= OSp(V ), and let TG be the full

subcategory of G-modules with objects V ⊗r (r = 0, 1, 2, . . .). Then there

is a full functor F : B(m− 2n)→TG, defined by F (r) = V ⊗r, F (I) = idV ,

F (X) = τ ∈ End(V ⊗ V ), and F (A) =B(−,−) : v ⊗ V → C, and F (U) = γ

is the map defined by γ(1) = c0.

Remark 3.2. Recall that since −idV ∈OSp(V ) and acts on V ⊗r as

(−1)r, it follows that HomG(V ⊗t, V ⊗s) = 0 if s 6≡ t (mod 2) because any

element α ∈HomG(V ⊗t, V ⊗s) would satisfy α=−α since it commutes with

−idV .

Thus, to say that F is full means that it induces surjections on

the respective Hom spaces, that is, it means that the maps F st : Bst −→
HomG(V ⊗t, V ⊗s) are surjective for all t, s ∈ N such that s≡ t (mod 2). Since

the Hom spaces are (linearly) isomorphic for each t, s such that s+ t=

2r (r ∈ N constant), this surjectivity is equivalent to the corresponding

statement for any particular pair t, s with t+ s= 2r; common choices are

s= t= r and t= 2r, s= 0, and we give those formulations now. Taking

s= t= r, we obtain the following statement.

Theorem 3.3. [19, Theorem 5.4] Let Br(m− 2n) be the Brauer algebra

on r strings with parameter m− 2n and generators si, ei for i= 1, . . . , r −
1 (see [19, Section 5.2]). Then there is a surjective homomorphism

Br(m− 2n)−→ EndG(V ⊗r) such that si 7→$r(si) and ei 7→ γi for all i,

where γi = idV ⊗ · · · ⊗ idV︸ ︷︷ ︸
i−1

⊗γ ⊗ idV ⊗ · · · ⊗ idV︸ ︷︷ ︸
r−i−1

, and γ ∈ EndG(V ⊗2) takes

v ⊗ w to B(v, w)c0, that is, γ = F (U) ◦ F (A).

To state the FFT for the case t= 2r, s= 0, recall that a typical diagram

in B0
2r is of the form depicted in Figure 1.

The diagram D may be obtained from D0, depicted in Figure 2, by

composition with a permutation.

Indeed, any permutation π : 2r→ 2r may be thought of as a diagram like

the one depicted in Figure 3.
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Figure 1.

Diagram D : 2r −→ 0.

Figure 2.

Diagram D0 : 2r→ 0.

Figure 3.

Permutation π : 2r→ 2r.

The right action of Sym2r on diagrams 2r→ 0 is then given in terms of

diagrams by composition of the diagrams in Figures 1 and 3. It is then clear

that any diagram D : 2r→ 0 may be obtained from the diagram D0 depicted

in Figure 2 by composition with a permutation π ∈ Sym2r (see Figure 4).

To identify the linear maps defined by the diagrams above, define κ0 :

V ⊗2r −→ C by

κ0(v1 ⊗ · · · ⊗ v2r) =B(v1, v2)B(v3, v3) . . . B(v2r−1, v2r).(3.1)

For each permutation π ∈ Sym2r, define

κπ(v1 ⊗ · · · ⊗ v2r) = κ0 ◦$2r(π
−1)(v1 ⊗ · · · ⊗ v2r).(3.2)
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Figure 4.

Diagram D in Figure 1 as composition D0πD.

It is then easily verified that given a diagram D ∈ B0
2r, if D =D0 ◦ π (for

π ∈ Sym2r), then although π is not uniquely defined by this property, κπ
depends only on D. We therefore write κπ = κD, and we have the following

formulation of the FFT.

Theorem 3.4. Let V = Cm|2n and G= OSp(V ). Then for each integer

r, we have a surjective map κ : B0
2r −→HomG(V ⊗2r, C) which takes the

diagram D in Figure 1 to κD.

Definition 3.5. Define the subgroup C ⊆ Sym2r as the stabilizer of κ0

in Sym2r. That is, C := {π ∈ Sym2r | κπ = κ0}.
The idempotent e(C) ∈ CSym2r is defined by e(C) = |C|−1

∑
π∈C π.

It is clear that |C|= 2rr! so that |Sym2r/C|=
∏r
i=1(2i− 1) = |B0

2r|.

§4. From invariants of OSp(V ) to invariants of GL(V )

In this section, we recall the basic results of [6, 19] to describe diagra-

matically an explicit injective map from invariants of OSp(V ) to invariants

of GL(V ), which will permit the use of the SFT for GL(V ) to deduce our

result for OSp(V ). We use the language and formulation of [6].

Remark 4.1. In particular, for any finite dimensional complex vector

space UC, we will denote by U the corresponding affine superscheme.

Specifically, for vector spaces VC, WC, Hom(V, W ) denotes the affine scheme

corresponding to HomC(VC, WC).

4.1 Extension of functions

We recall the setup of [6, Section 3]. In particular, we denote by Q the

scheme of quadratic forms on V and by Q the open dense subscheme of

nondegenerate forms. The nondegenerate quadratic form q ∈Q is given,

and OSp(V ) is its isotropy group under the transitive action of GL(V ) on

Q, which is given by (g, q′) ∈GL(V )×Q 7→ q′ ◦ g−1.
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Let us write E for the superscheme E = End(V ). We then have the

epimorphism u : E −→Q given by u(T ) = q ◦ T . Clearly, u−1(Q) = GL(V ),

and we have the commutative square

(4.1)

GL(V ) ↪→ E
↓ u0 ↓ u
Q ↪→ Q,

where the embedding of GL(V ) in E is given by g 7→ g−1 and u0(g) = q ◦ g−1.

If f is any OSp(V )-invariant function on V ⊗r, one defines a corresponding

GL(V )-invariant function F on V ⊗r ×Q by

F (v1 ⊗ · · · ⊗ vr, q′) = F (v1 ⊗ · · · ⊗ vr, g(q)) := f(g−1v1, . . . , g
−1vr),(4.2)

where q′ = g(q) = q ◦ g−1 (g ∈GL(V )) is an arbitrary form in Q. Note that

since g ∈GL(V ) is determined up to right multiplication by x ∈OSp(V ),

the definition in (4.2) depends only on q′ = g(q) and not on g since f is

OSp(V )-invariant. Moreover, the GL(V ) invariance of F is immediate from

the definition.

The following result is [6, Theorem 3.4].

Theorem 4.2. Let f be a linear function on V ⊗r which is OSp(V )-

invariant and let F be the corresponding GL(V )-invariant function on

V ⊗r ×Q defined in (4.2). Then there is a unique extension F of F from

V ⊗r ×Q to V ⊗r ×Q.

Remark 4.3. For each (v1 ⊗ · · · ⊗ vr, q′, g) ∈ V ⊗r ×Q×GL(V ), it is

evident that

F (v1 ⊗ · · · ⊗ vr, q′ ◦ g) = F (gv1 ⊗ · · · ⊗ gvr, q′).

Since V ⊗r ×Q×GL(V ) is schematically dense in V ⊗r ×Q× E, it follows

that

F (v1 ⊗ · · · ⊗ vr, q′ ◦ T ) = F (Tv1 ⊗ · · · ⊗ Tvr, q′)(4.3)

for all (v1 ⊗ · · · ⊗ vr, q′, T ) ∈ V ⊗r ×Q× E. In particular, F is GL(V )-

invariant.

Note that by Remark 3.2, if f in Theorem 4.2 is nonzero, it follows that

r is even, and we write r = 2d below.
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4.2 Construction of invariants of GL(V ) from those of OSp(V )

In this section, we shall prove the following result. Notation is as in

Remark 4.1.

Theorem 4.4. Maintain the notation and formalism of Sections 1 and 2.

Given a nondegenerate orthosymplectic form on V , there is a canonical

injective map

h : Hom(V ⊗r, C)OSp(V ) −→Hom
(
V ⊗r × (V ∗)⊗r, C

)GL(V )
.

Proof. Suppose that L ∈Hom(V ⊗r, C)OSp(V ) and L 6= 0. Then r = 2d is

even and L is an even linear function on V ⊗2d which satisfies L(gv1 ⊗ · · · ⊗
gv2d) = L(v1 ⊗ · · · ⊗ v2d) for vi ∈ V and g ∈OSp(V ). Using the construction

above as well as Theorem 4.2, we obtain a GL(V )-invariant function F ′L on

V ⊗2d ×Q, which satisfies (4.2) and (4.3). Moreover, by [6, 3.5(iii)], F ′L is

homogeneous of degree d in Q. A supervariant of the usual polarization

argument (cf. Proposition A.1) shows that there is, therefore, a unique

multilinear function FL on V ⊗2d ×Q⊗d such that

F ′L(v1 ⊗ · · · ⊗ vr, q′) = FL(v1 ⊗ · · · ⊗ vr, q′ ⊗ q′ ⊗ · · · ⊗ q′).

Now there is a well-known canonical isomorphism Q' S2(V ∗), where S2

denotes the symmetric square. Further, the canonical decomposition

V ∗ ⊗ V ∗ = S2(V ∗)⊕ ∧2(V ∗)

is GL(V )-invariant, whence S2(V ∗) is canonically a quotient of (V ∗)⊗2 so

that functions on Q
⊗d

may be canonically lifted to (V ∗)2d. It follows that

FL may be lifted to a GL(V )-invariant multilinear function, which we call

HL, on V 2d × (V ∗)2d. Write h(L) =HL. This map is canonical in the sense

that no choices are made after q is specified.

The injectivity of h follows from the fact that

HL(v1 ⊗ · · · ⊗ vr ⊗ q ⊗ · · · ⊗ q) = FL(v1 ⊗ · · · ⊗ vr, q ⊗ · · · ⊗ q)

= F ′L(v1 ⊗ · · · ⊗ vr, q)

= L(v1 ⊗ · · · ⊗ vr),

from which it is apparent that L is determined by HL.
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4.3 Diagrammatic interpretation

In this section, we identify the construction of the previous section with

the diagrammatic description in Theorems 3.3 and 3.4.

We begin with the passage from the function FL to HL in the proof

of Theorem 4.4. This depends on lifting multilinear functions from Q
d '

(S2(V ∗))⊗d to ((V ∗)⊗2)⊗d ' (V ∗)⊗2d. It follows from the construction of

h(L), where L ∈
(
Hom(V ⊗2d, C)

)OSp(V )
, that the value HL(v1 ⊗ · · · ⊗ v2d ⊗

φ1 ⊗ · · · ,⊗φ2d) depends only on the image of (φ1 ⊗ · · · ⊗ φ2d) under the

projection (V ∗)⊗2d→ Sd(S2(V ∗)), which, by the polarization lemma A.1, is

spanned by elements of the form (q′ ⊗ q′ ⊗ · · · ⊗ q′), where q′ ∈Q' S2(V ∗).

Bearing in mind the above remarks, the following result is clear.

Lemma 4.5. The canonical projection p : (V ∗)⊗2d −→ Sd(S2(V ∗)) is real-

ized by the action of the idempotent $2d(e(C)), where e(C) is given by

e(C) = |C|−1
∑

σ∈C σ and C is defined in Definition 3.5. We have

HL(v1 ⊗ · · · ⊗ v2d ⊗ φ1 ⊗ · · · ,⊗φ2d)

= FL(v1 ⊗ · · · ⊗ v2d, $2d(e(C))(φ1 ⊗ · · · ⊗ φ2d)).(4.4)

Moreover, since functions are, by definition, even sections of the structure

sheaf of the relevant scheme, we have

FL(v1 ⊗ · · · ⊗ v2d, $2d(e(C))(φ1, . . . , φ2d))

= FL($2d(e(C))(v1 ⊗ · · · ⊗ v2d), φ1 ⊗ · · · ⊗ φ2d)(4.5)

so that

HL(v1 ⊗ · · · ⊗ v2d ⊗ φ1 ⊗ · · · ⊗ φ2d)

= FL($2d(e(C))(v1 ⊗ · · · ⊗ v2d), φ1 ⊗ · · · ⊗ φ2d).(4.6)

There are actions of Sym2d on both Hom(V ⊗2d, C) and on Hom(V ⊗2d ×
(V ∗)2d, C) given (for π ∈ Sym2d) by composition with $2d(π

−1) and

$2d(π
−1)× id(V ∗)2d , respectively. Evaluation at (v1 ⊗ · · · ⊗ v2d, q ◦ T ⊗ q ◦

T ⊗ · · · ⊗ q ◦ T ) (with vi ∈ V and T ∈ End(V )) shows, taking into account

Proposition A.1, the following.

Lemma 4.6. In the notation of Theorem 4.4, we have, for π ∈ Sym2d and

L ∈
(
Hom(V 2d, C)

)OSp(V )
,

h(πL) = πh(L).
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This relation may be written as h(κ0 ◦$2d(π)) = λ0 ◦ e(C) ◦ ($2d(π)×
id(V ∗)2d).

Lemma 4.7. Let κπ = κ0 ◦$2d(π
−1) be as in (3.2). Then with λ0 as in

(2.4), we have

h(κπ) = λ0 ◦ e(C) ◦ ($2d(π)× id(V ∗)2d).(4.7)

Proof. It follows from Lemma 4.5 and (4.6) that h(κ0) = λ0 ◦ e(C).

Hence, by Lemma 4.6, h(κπ) = h(κ0 ◦$2d(π
−1)) = h(κ0) ◦ ($2d(π

−1)×
id(V ∗)2d) = λ0 ◦ e(C) ◦ ($2d(π

−1)× id(V ∗)2d).

This last statement has an attractive interpretation in terms of diagrams.

In Proposition 4.8, it is understood that CSym2d ⊂ B2d
2d, and if I2d is the

ideal of B2d
2d consisting of the span of the nonmonic diagrams, then B2d

2d =

CSym2d ⊕ I2d. Thus, the map χ takes B0
2d into CSym2d ⊂ B2d

2d.

Proposition 4.8. The following diagram is commutative.

(4.8)

B0
2d

χ

��

κ // //
(
HomC(V ⊗2d, C)

)OSp(V )

h
��

B2d
2d

δ // //
(
HomC(V ⊗2d ⊗ (V ∗)⊗2d, C)

)GL(V )

Here, κ is the map defined in Theorem 3.4, δ is defined on CSym2d in

Section 2.4 and extended to B2d
2d by defining it as zero on I2d, h is the

injective map defined in Theorem 4.4, and χ is defined as follows. For any

diagram D =D0 ◦ πD ∈ B0
2d, χ(D) = e(C)πD ∈ CSym2d ⊆ B2d

2d, where e(C)

is the idempotent defined in Definition 3.5.

Proposition 4.8 is a restatement of Lemma 4.7. In terms of diagrams, the

diagram D depicted in Figure 4 is taken to the element of B2d
2d depicted in

Figure 5.

§5. The SFT for OSp(V )

In this section, we continue with the notation above. V is a complex

vector space with sdim (V ) = (m|2n). If B(−,−) ∈Hom(V 2, C) is the given

nondegenerate orthosymplectic form on V , G= OSp(V ) is its isometry

group scheme, as explained in Section 2. The space
(
Hom(V 2d, C)

)OSp(V )
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Figure 5.

The element χ(D) of B2d
2d.

of invariant multilinear maps has the universal scheme-theoretic meaning

explained in Definition 1.1.

The FFT for OSp(V ) asserts that the map κ in (4.8) (see Proposition 4.8)

is surjective. The SFT for OSp(V ) describes the kernel of κ.

5.1 The main theorem

The following theorem is the main result of this paper.

Theorem 5.1. Let κ be the map in the commutative diagram (4.8). Then

Ker(κ) =D0 ◦ I(m, n),

where I(m, n) is the ideal of CSym2d which is the sum of the two-sided ideals

corresponding to partitions which contain an (m+ 1)× (2n+ 1) rectangle

and D0 is the diagram in B0
2d depicted in Figure 3.

Proof. Since the map h in (4.8) is injective, it follows that Ker(κ) =

Ker(δ ◦ χ). Hence, b ∈ B0
2d lies in Ker(κ) if and only if χ(b) ∈Ker(δ), and

by Corollary 2.5, Ker(δ) = I2d + I(m, n), where I2d is the ideal generated

by the nonmonic diagrams in B2d
2d. Moreover, δ factors through B2d

2d/I2d '
CSym2d, and the kernel of the restriction of δ to CSym2d is I(m, n).

But we claim that χ−1(I(m, n)) =D0 ◦ I(m, n), for if x ∈ I(m, n), then

by Proposition 4.8, χ(D0 ◦ x) = e(C)x ∈ I(m, n), while conversely if D0 ◦
x ∈ χ−1(I(m, n)) for some x ∈ CSym2d, then χ(D0 ◦ x) = e(C)x ∈ I(m, n).

But then D0 ◦ x=D0 ◦ e(C)x ∈D0 ◦ I(m, n), proving the assertion. The

theorem follows.

A typical element of the kernel of κ is shown in Figure 6.

The following statement concerns the range of values of d for which

Ker(κ) 6= 0.
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Figure 6.

Elements of Ker(κ).

Corollary 5.2. With notation as in Theorem 5.1, the kernel of κ is

zero if 2d < (m+ 1)(2n+ 1). Further, Ker(κ) 6= 0 for d> (m+ 1)(2n+ 1).

Proof. The first assertion is immediate from Theorem 5.1. The second

follows from the fact that

I(m, n) = U(m+1)(2n+1)(D ◦ (I(m, n)⊗ 1⊗(m+1)(2n+1))),

where D : 2(m+ 1)(2n+ 1)→ 0 is the diagram with arcs (i, 2(m+ 1)(2n+

1)− i+ 1), i= 1, . . . , (m+ 1)(2n+ 1) and U is the map described in the

first paragraph of Section 5.2. The argument of U(m+1)(2n+1) on the right

side is therefore a nonzero element of Ker(κ).

Note that as the discussion of the classical orthogonal and symplectic

cases below shows, Corollary 5.2 is not optimal. Here is a nonclassical

example.

Example 5.3. We take m= 1 = n; thus, we are in the case of OSp(1|2).

In this case, the smallest value of d for which Ker(κ) could be nonzero

is d= 3 (2d= (m+ 1)(2n+ 1) = 2× 3 = 6). However, a straightforward

calculation shows that in this case (i.e., d= 3), we have D0I(1, 2) = 0 in

B0
6 . Thus, here Ker(κ) = 0 when 2d= (m+ 1)(2n+ 1). In fact, in this case,

one sees that Ker(κ) = 0 if and only if d6 3. For this, one must verify that

Ker(κ) 6= 0 when d= 4, that is, that D0I(1, 2) 6= 0 in B0
8 .

Remark 5.4. The available evidence seems to point to the statement

that the smallest value of d for which Ker(κ) 6= 0 is d= (m+ 1)(n+ 1) (i.e.,

2d= (m+ 1)(2n+ 1) +m+ 1). This result has now been proved by Zhang

in [29, Theorem 5.11].

Note also that in [7], it is proved that κ is injective for some small values

of d.

https://doi.org/10.1017/nmj.2019.25 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2019.25


INVARIANT THEORY OF THE ORTHOSYMPLECTIC SUPERGROUP 69

Figure 7.

U(D) for D ∈ Bq
p.

5.2 Interpretation in the first formulation

Theorem 5.1 provides the SFT for OSp(V ) in its second formulation;

that is, it describes the linear structure of HomC(V ⊗2d, C)OSp(V ). It may

be useful to point out that it may be reinterpreted in terms of the Brauer

algebra action ηr : Br(m− 2n)−→ EndOSp(V )(V
⊗r) (see [19, Corollary 5.7]).

For this, we note that in the Brauer category [19], for nonnegative integers

p, q with p > 0, there is an isomorphism U : Bqp
∼−→Bq+1

p−1. It is denoted by

U1
p−1 in [18, Corollary 2.8] and is depicted in Figure 7.

One therefore has an isomorphism Ud : B0
2d −→Bdd, and this leads to the

following extension of the diagram (4.2).

(5.1)

Bd(m− 2n)
η−−−−→ (EndC(V ⊗d))OSp(V )

Ud

x∼= y∼=
B0

2d
κ−−−−→ (HomC(V ⊗2d, C))OSp(V )

χ

y yh
CSym2d ⊆ B2d

2d −−−−→
δ

(
HomC(V ⊗2d × (V ∗)⊗2d, C)

)GL(V )
.

The top map η : Bd(m− 2n)→ EndOSp(V )(V
⊗d) is precisely the map dis-

cussed in the paper [18]. Theorem 5.1 has the following evident consequence.

Corollary 5.5. The kernel of the surjective algebra homomorphism η :

Bd(m− 2n) := Bdd→ EndG(V ⊗d) is Ud(D0I(m, n)).

Remark 5.6. In [17] and [18], we showed that in the classical cases when

m= 0 or when n= 0, the kernel is actually generated by a single idempotent

in the associative algebra Bd(m− 2n), but we do not have a similar result

in the general case (cf. [29]).
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§6. Application to the classical groups

In this final section, we shall show how our main theorem provides a new

proof of the SFT in the classical cases of the orthogonal and symplectic

groups over C (see, e.g., [9, 21]). We therefore take V as above and apply

Theorem 5.1 in those respective cases.

6.1 The orthogonal case: G=O(m, C)

Here, we take V = V0̄ to be purely even and the form B(−,−) to be

symmetric. To apply our result, observe that the ideal I(m, n) = I(m, 0) of

CSym2d is spanned (over C) by elements of the form πα−(m+ 1)π′, where

π, π′ ∈ Sym2d and for ` such that 16 `6 2d, α−(`) =
∑

σ∈Sym`
ε(σ)σ, where

ε is the alternating character of Sym2d and Sym` ⊆ Sym2d is the subgroup

which permutes the first ` symbols.

Theorem 5.1 asserts that Ker
(
κ : B0

2d(C)−→HomC(V ⊗2d, C)OSp(V )
)

is

spanned by the elements D0πα
−(m+ 1)π′. The next lemma shows that if

d is small, the kernel is zero.

Lemma 6.1. If d6m, then each element D0πα
−(m+ 1)π′ of B0

2d is zero.

Proof. Let π ∈ Sym2d and consider the diagram D =D0π. If d6m, then

d <m+ 1, and it follows that at least one arc of D has both ends in

{1, 2, . . . , m+ 1} (if each arc with an end in {1, 2, . . . , m+ 1} had an end

outside {1, 2, . . . , m+ 1}, we would have 2d> 2(m+ 1)). Suppose this arc

is from i to j, where 16 i < j 6m+ 1, and write (ij) for the transposition

in Sym2d which interchanges i and j.

Then by the rules for multiplying Brauer diagrams, we have D(ij) =D,

whence D0π(ij)α−(m+ 1) =D0πα
−(m+ 1).

But by the alternating property of α−(m+ 1), we have (ij)α−(m+ 1) =

−α−(m+ 1), whence D0π(ij)α−(m+ 1) =−D0πα
−(m+ 1). The lemma

follows.

Figure 8 depicts an example of a linear combination of diagrams which

is zero by Lemma 6.1.

Corollary 6.2. If d6m, then Ker(κ) = 0, and κ : B0
2d(C)−→

HomC(V ⊗2d, C)O(V ) is an isomorphism.

Our main theorem now has the following interpretation in the present

case (cf. [18, Theorem 3.4]). Recall that diagrams D ∈ B0
2d are in canonical

bijection with partitions of {1, . . . , 2d} into pairs.

Theorem 6.3. Let V = V0̄ = Cm and G=O(m, C). If d6m, then

Ker(κ) = 0. Assume that d>m+ 1.
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Figure 8.

Zero element in B0
2d.

Define a set of linear relations among the κD as follows. Let S, S′ be

two disjoint subsets of {1, . . . , 2d} as depicted in Figure 9 such that |S|=
|S′|=m+ 1, and for σ ∈ Sym({S}), let D(π, π′; σ) be the diagram in B0

2d

which pairs σ(si) with s′i, where the si ∈ S, s′i ∈ S′ are written in increasing

order, and the points in {1, . . . , 2d} \ (S ∪ S′) are paired as they are in each

diagram occurring in D0πα
−(m+ 1)π′.

Then for each π, π′ ∈ Sym2d,∑
σ∈Symm+1

ε(σ)κD(π,π′,σ) = 0,(6.1)

and all relations among the κD are linear consequences of these relations.

Proof. The first statement is Corollary 6.2.

By Theorem 5.1, all relations among the κD are consequences of the

relations κ(D0πα
−(m+ 1)π′) = 0, for π, π′ ∈ Sym2d.

Now the argument of the proof of Lemma 6.1 shows that if two of the

points in the set S := {π−1(1), π−1(2), . . . , π−1(m+ 1)} are paired by D0

then D0πα
−(m+ 1)π′ = 0 in B0

2d, and so to obtain a nonzero element of the

kernel, we may assume that no two points in S are paired by D0 and, hence,

that the set S′ of points which are paired by D0 with a point of S is disjoint

from S.

In this case, the relation κ(D0πα
−(m+ 1)π′) = 0 is easily seen to trans-

late into (6.1), and the result is now clear.

6.2 The symplectic case

In this case, we take V = V1̄. The form B(−,−) is then skew, and

G= Sp(2n, C). The ideal I(m, n) = I(0, n) is, in this case, spanned (over

C) by elements of the form πα+(2n+ 1)π′, where π, π′ ∈ Sym2d and for
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Figure 9.

The set S consists of •’s and S′ of ×’s.

each integer ` with 16 `6 2d, α+(`) =
∑

σ∈Sym`
σ, where as above, Sym` ⊆

Sym2d is the subgroup which permutes the first ` symbols.

In this case, the analogue of Lemma 6.1 is the trivial observation that

there are no nonzero elements of the kernel unless 2d> 2n+ 1, that is,

d> n+ 1.

Taking into account the fact that for a symplectic form (v, v) = 0 for all

v ∈ V , we obtain the following form of the main theorem for the symplectic

case.

Theorem 6.4. Let V = V1̄ = C2n, and G= Sp(2n, C). If d6 n, then

Ker(κ) = 0. Assume that d> n+ 1.

Define a set of linear relations among the κD as follows. Let S be a

subset of {1, . . . , 2d} such that |S|= 2n+ 1. For any diagram D ∈ B0
2d and

σ ∈ Sym({S}), let D(S, σ) be the diagram D(S, σ) =Dσ, where σ is regarded

as an element of Sym2d ⊂ B2d
2d which fixes the points outside S.

Then ∑
σ∈Sym({S})

κD(S,σ) = 0,(6.2)

and all relations among the κD are linear consequences of these relations.

This is clear from Theorem 5.1.

Acknowledgments. The authors are grateful to the referee, whose detailed

suggestions have significantly enhanced this paper.

Appendix A. Superpolarization

Proposition A.1. Let MC be a Z/2Z-graded complex vector space with

sdim (MC) = (k|`), let A be a supercommutative super C-algebra, and let

M =MC ⊗C A, Z/2Z-graded in the usual way. Let B ⊆M0̄ be a subset

satisfying the conditions

(i) AB =M ; that is, B generates M as A-module.
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(ii) For any two distinct elements b, c ∈B, there are infinitely many

complex numbers λ such that b+ λc ∈B.

Let T r(M) =M ⊗AM ⊗A · · · ⊗AM (r factors), and let Sr(M) be the

supersymmetric part of T r(M) (cf. [19, Section 3]).

Then for each integer r > 0, the space (Sr(M))0̄ is the A0̄-span of the

elements {b⊗ b⊗ · · · ⊗ b | b ∈B}.

Proof. This will be by induction on r, the case r = 1 being trivial, since

by the condition (i), A0̄B =M0̄ so that M0̄ is the A0̄-span of B (and M1̄ is

the A1̄-span of B).

Now it follows from [19, Lemma 3.7] that Sr(M) = α+(r)T r(M), where

α+(r) =
∑

σ∈Symr
σ, with Symr acting on T r(M) in the usual way through

$r (see (2.2)). Denote by Σ(r) the A0̄-span of {b⊗ b⊗ · · · ⊗ b | b ∈B}. Then

by the last remark, it suffices to show that for any element m1 ⊗m2 ⊗ · · · ⊗
mr ∈ T r(M)0̄, we have

α+(r)(m1 ⊗m2 ⊗ · · · ⊗mr) ∈ Σ(r).(A1)

We shall prove (A1) by induction on r. Assume (A1) for a smaller number

of factors; we consider separately two cases.

Case 1: at least one of the factors mi lies in M0̄. In this case, since for any

element σ ∈ Symr we have α+(r)σ = α+(r), we may clearly assume that

mr ∈M0̄. Then m1 ⊗m2 ⊗ · · · ⊗mr−1 ∈ T r−1(M)0̄, and by induction, we

have α+(r − 1)(m1 ⊗m2 ⊗ · · · ⊗mr−1) ∈ Σ(r − 1).

But from the coset decomposition of Symr with respect to Symr−1, we

have

α+(r) =

(
1 +

r−1∑
i=1

(i, r)

)
α+(r − 1),

where (i, j) denotes the transposition of i and j in Symr and Symr−1 is

the subgroup of Symr which permutes {1, . . . , r − 1}. The last two obser-

vations imply that α+(r)(m1 ⊗m2 ⊗ · · · ⊗mr) is a A0̄-linear combination

of elements of the form(
1 +

r−1∑
i=1

(i, r)

)
(b⊗ b⊗ · · · ⊗ b⊗ c),(A2)

where b, c ∈B.
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Now denote by si,j(b, c) the sum of all tensors of the form · · · ⊗ b⊗ · · · ⊗
c⊗ · · · ∈ T r(M), where all factors are either b or c, and there are i factors

equal to b and j factors equal to c. Then the element in (A2) is s1,r−1(b, c),

and it will suffice to show that if b, c ∈B, then si,j(b, c) ∈ Σ(r) for all i, j

such that i+ j = r. To see this last point, suppose λ ∈ C is such that b+ λc ∈
B. Then Σ(r) 3 (b+ λc)⊗ (b+ λc)⊗ · · · ⊗ (b+ λc) =

∑r
j=0 λ

jsi,j(b, c). By

taking r + 1 distinct values λ for which this relation holds, we obtain, by

the invertibility of the van der Monde matrix, an equation for each element

si,j(b, c) as a C-linear combination of the elements (b+ λc)⊗ (b+ λc)⊗
· · · ⊗ (b+ λc) ∈ Σ(r). Thus, sr−1,1(b, c) ∈ Σ(r), and the proof in Case 1 is

complete.

Case 2: each factor mi ∈M1̄. In this case, we must have r even. Since α+(r)

is linear in each variable mi and since M1̄ =A1̄B, we may assume that for

i= 1, 2, . . . , r, we have mi = λibi, where λi ∈A1̄ and bi ∈B. Then

α+(r)(λ1b1 ⊗ · · · λrbr) =
∑

σ∈Symr

σ(λ1b1 ⊗ · · · λrbr)

=
∑

σ∈Symr

ε(σ)λσ(1)λσ(2) · · · λσ(r)bσ(1) ⊗ · · · ⊗ bσ(r)

=
∑

σ∈Symr

ε(σ)2λ1λ2 · · · λrbσ(1) ⊗ · · · ⊗ bσ(r)

= λ1λ2 · · · λrα+(r)(b1 ⊗ · · · ⊗ br),

where ε is the alternating character of Symr. But since r is even, λ1 · · · λr ∈
A0̄; finally, observe that by Case 1, α+(r)(b1 ⊗ · · · ⊗ br) ∈ Σ(r), and the

proof is complete.

Corollary A.2. Let F ∈ Sd(M∗) be a function of degree d on the affine

superspace M . Then there exists a function F̃ ∈Hom(Md,Ga) such that

F (m) = F̃ (m, . . . , m).

Proof. Take B =M(A)0̄ in Proposition A.1.
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