
ULTRA FAST REINFORCEMENT LEARNING
DEMONSTRATED AT CERN AWAKE

S. Hirlaender∗, L. Lamminger, Paris Lodron University Salzburg, Austria
Z. Della Porta, V. Kain1, CERN, Geneva, Switzerland

Abstract
Reinforcement learning (RL) is a promising direction in

machine learning for the control and optimisation of particle
accelerators since it learns directly from experience without
needing a model a-priori. However, RL generally suffers
from low sample efficiency, and thus training from scratch
on the machine is often not an option. RL agents are usually
trained or pre-tuned on simulators and then transferred to the
real environment. In this work, we propose a model-based
RL approach based on Gaussian processes (GPs) to over-
come the sample efficiency limitation. Our RL agent was
able to learn to control the trajectory at the CERN AWAKE
(Advanced Wakefield Experiment) facility, a problem of 10
degrees of freedom, within a few interactions only. To date,
numerical optimises are used to restore or increase and sta-
bilise the performance of accelerators. A major drawback is
that they must explore the optimisation space each time they
are applied. Our RL approach learns as quickly as numerical
optimisers for one optimisation run, but can be used after-
wards as single-shot or few-shot controllers. Furthermore,
it can also handle safety and time-varying systems and can
be used for the online stabilisation of accelerator operation.
This approach opens a new avenue for the application of RL
in accelerator control and brings it into the realm of everyday
applications.

GENERAL PROBLEM DESCRIPTION
RL holds tremendous promise in controlling accelerators.

Still, everyday applications are rare. Several reasons can be
identified:

• Sample efficiency
• State space observability
• Safety constraints
• Non-stationarity

Several approaches have been applied to mitigate the sam-
pling efficiency problems [1, 2]. When the reward objective
has a horizon of one step, the RL problem is reduced to
optimising parameters to maximise the objective greedily.
Therefore, classical numerical optimisers can generally be
used, providing robust and fast results. A major drawback
is that they must learn the problem from scratch each time
they are used. In this paper, we present a model-based RL
method based on [3] that learns the control problem from
scratch as fast as optimisers. The approach successfully
solves three challenges of the four challenges, as demon-
strated in experiments. The test benchmark was the electron
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Figure 1: Illustration of a beam steering problem as in the
AWAKE electron line.

line of the AWAKE experiment at CERN, as described in
the following section.

PROBLEM DEFINITION - AWAKE
ELECTRON LINE TRAJECTORY

STEERING
The electron line of AWAKE (see Fig. 1) served in the

past as an excellent environment to test optimisation and
control algorithms, as also an accurate simulation of the
electron beam in the line is available. The trajectory steering
problem is episodic with the goal to minimise the distance
of an initial beam trajectory to a target trajectory as quickly
as possible. Ten dipole magnets can be changed to steer the
beam defining the actions a, and ten beam position monitors
measure the trajectory defining the state s. The reward 𝑟 is
the negative RMS value of the distance to the target trajec-
tory. If a threshold RMS (-1 mm in our case) is surpassed,
the episode ends successfully. If the beam hits the wall (any
state ≤ -1 cm or ≥ 1 cm), the episode is terminated unsuc-
cessfully. All episodes are initialised such that the RMS of
the distance to the target trajectory is between 0.7 cm and 0.8
cm, where all states and actions are normalised to [−1, 1].
This ensures that the task is not too easy and relatively close
to the boundaries to probe the safety settings.

METHOD
To address the problem, a model-based RL technique is

employed (see Fig. 2). The transition dynamics and reward
model are approximated using an uncertainty-aware data-
driven model based on GPs, which are known for high sam-
ple efficiency. No initial knowledge (except the init kernel
and scaling) is given, and the algorithm learns - following
the RL paradigm - to solve the problem through trial and er-
ror from scratch. After a few initialisation steps, the model
is trained, and an action sequence for 𝑇 time steps in the
future is optimised on the model. The first step is executed,
and afterwards, the new data is used to improve the model,
and again the optimal action sequence for 𝑇 time steps in
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Figure 2: The concept of model-based RL.
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Figure 3: Results on the real machine.

the future is searched. This procedure continues until a suf-
ficiently good model has been achieved. The approach is
close to methods used for model predictive control [4]. The
model has the following structure:

p𝑡+1(s𝑡, a𝑡) = 𝑓 (s𝑡, a𝑡) + 𝑡, (1)

where 𝑡 ∼ 𝒩(0, ) and p𝑡 ∶= (s𝑡+1, 𝑟𝑡). Our aim is to find a
policy 𝜋∗

𝑡 (s𝑡) ↦ a𝑡, which maximises the expected mean
reward, where the reward objective is:

𝜋∗
𝑡 = max 𝜋𝑡 lim

𝑇→∞
𝔼[

𝑇
∑
𝑡=0

1
𝑇𝑟𝑡] (2)

subject to s𝑡+1, 𝑟𝑡 ∼ p𝑡+1(s𝑡, a𝑡) (3)
a𝑡 = 𝜋𝑡(s𝑡) (4)
s0 ∼ 𝜌0 (given initial distribution). (5)

Via moment matching [5], it is possible to propagate the
expected states and the corresponding uncertainties in a
closed-form, which allows for efficient optimisation of Eq. 2
using the gradient and hessian information. Consequently,
closed forms are also available for the violation probability of
safety constraints on the states. To be able to use the episodic
training setting, as explained in the previous section, we do
not consider data when resetting an episode (which can be
interpreted as a perturbation of the system).

Transition and Reward Model
The transition model is captured via GPs. The state transi-

tions are important to model the uncertainty propagation in
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Figure 4: The policy evolution during the training highlight-
ing (red) the safety policy. Vertical green lines show the reset
of the episodes. All episodes were successfully finished.

order to estimate the risk of violating the safety constraints.
The reward model is trained on an external reward signal,
which is often demanded in real-world scenarios. If the re-
ward is formulated as a function of the states and actions,
the learning of a reward function is unnecessary. Hence,
the sample complexity can be improved (used in the non-
stationarity experiments).

The Reward Objective
Instead of solving Eq. 2, we solve the finite horizon prob-

lem in an iterative way, as explained previously. The reward
model yields the expected RMS and the uncertainty, which
can be used to find a trade-off between exploitation and ex-
ploration. Several experiments were conducted with varying
exploration, but in the presented results, only the upper con-
fidence bound of the estimated RMS was used. Since the
AWAKE benchmark can be solved with a short horizon, due
to the convexity of the reward w.r.t. the states and actions,
we use a horizon of length one.

Safety Constraints
The uncertainty of a potential violation is propagated an-

alytically and treated in a constrained optimisation up to
the second order using the ’trust-constr’ optimisation of
Scipy [6]. Additionally, the proposed steps are scaled in-
versely proportionally to the estimated risk of hitting the
boundaries as delivered by the model. In our tests, the initial
settings are relatively close to the boundary to challenge the
risk awareness of the algorithm. In all other experiments, the
Scipy ’L-BFGS’ optimiser up to the second order is used.

Time Varying Systems
Time-varying systems are partially observable Markov

decision processes [7], where one or several unobserved
parameters change the response of the system slowly in time,
like drifts of the magnets due to slow temperature changes.
To be able to learn to control the system in this considerably
harder case, we provide the time step as extra input to the
model to consider more recent data to be more important.
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Figure 5: Simulation without safety settings.

EXPERIMENTS AND RESULTS
Several experimental campaigns were carried out, includ-

ing a test on a real machine to verify the results directly.
In the following, we show the results of these studies. In
all experiments, five independent learning procedures are
averaged, and the standard deviation is shown as shaded
area. Five initial state-action-next-state reward transitions
are deterministically chosen in each case to homogenise the
experimental settings.

Sample Complexity on AWAKE
In Fig. 3, the results of the tests on the real machine are

shown. These results were obtained with the settings found
in the simulations. The algorithm did not violate the con-
straints within the experiment campaign without the safety
settings and learned to control the system within several
steps only.

Safety Constrains
Cases were simulated where safety could be critical and

compared to cases where risk was not considered. If the
probability that one of the predicted states exceeds a certain
threshold is higher than a certain threshold calculated by
the constrained optimization, the proposed action is reduced
inversely proportionally to this probability. This is done to
ensure safe actions, as shown in Fig. 4 for a test where the
reduction of unsafe states is indicated as a red-shaded area.
The horizontal red lines display the safety limits of the states.
With this setting, the safety constraints were not violated
(see Fig. 6), while without this setting, they are violated (see
Fig. 5).

Time Varying Systems
To model a non-stationary situation, we built a simulation

where the quadrupole strengths of the AWAKE environment
change sinusoidally with a frequency of 0.01 and an ampli-
tude of 0.5 per time step. The stationary approaches fail in
such a setting as shown in Fig. 7. It was, however, possible
to successfully handle such cases by switching to the time-
dependent setting and even considering safety, see Fig. 8.
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Figure 6: Simulation with safety settings.
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Figure 7: Non-stationary case fails using the stationary ap-
proach.

CONCLUSION
We have successfully overcome the challenges of sam-

pling efficiency, safety, and non-stationarity of RL by using
a model-based approach using Gaussian Processes. Studies
were performed on the AWAKE electron line in simulations,
as well as tests on the real machine to confirm the results.
More challenging problems require a longer planning hori-
zon, leading to various complications, such as increased
computation time of the optimisation step, which will be
examined in further studies. The results are promising and
pave the way for further applications of RL in the domain of
accelerator control.
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Figure 8: Non-stationary case with safety constraints and
time dependency of the GPs.
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