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Resumen

En esta tesis estudiamos la cancelacién de anomalias perturbativas en teoria M en una
variedad con frontera. Esto se hace para grupos de Lie clasicos y excepcionales. El
objetivo de este esfuerzo es determinar si existen M9-branas no supersimétricas como
soluciones de teorfa M. Con estos resultados esperamos contribuir a la exploracion del
paisaje no supersimétrico de la Teoria de Cuerdas. Ademds, existe un gran interés por
entender si dicha teoria es en realidad universal en el sentido que cualquier teoria de
gravedad cudntica aparentemente consistente debe ser parte de su conocido paisaje. En
esta direccién, también consideramos teorfas F'(R) de Hofava-Lifshitz bajo la lupa del
programa del Pantano.

En relacién con esto, es de nuestro conocimiento que en el pasado se mostré que el
polinomio de anomalia de una teoria de gauge supersimétrica acoplada a gravedad en una
variedad spin de dimensién diez, que consiste de un supermultiplete vectorial de F'g mas un
supermultiplete de gravedad, cancela el flujo de anomalia de los acoplamientos topolégicos
de teoria M a dicha frontera. Nos referimos a esta teoria en la frontera como una M9-brana
con teoria de volumen de mundo Fs. Nuestra tarea es investigar si pueden haber otras
soluciones novedosas de M9-branas con una teoria de volumen de mundo G. Este andlisis
depende de la descripcién de anomalias en términos de la teoria del indice de operadores
de Dirac definidos en doce dimensiones. Esto también requiere el célculo de indices o,
equivalentemente, de invariantes de Casimir para representaciones arbitrarias del algebra
de Lie de G. Con esto, expresamos caracteres en la representacion fundamental de cada
grupo G. Luego, resolvemos las restricciones para una busqueda de nuevas M9-branas, lo
que nos conduce a considerar materia en diferentes representaciones del grupo gauge G.
De esto se sigue que cualquier nueva solucidn que encontremos debe ser sin supersimetria.
Finalmente, consideramos las reglas de descomposicion de la representacion adjunta de Fg
en representaciones de sus subgrupos para dar una interpretacion de nuestros resultados.

Por otra parte, consideramos teorfas F'( ) de Hofava-Lifshitz y estudiamos su consis-
tencia con la conjetura de de Sitter del Pantano. Esto se hace considerando el hecho de
que los criterios del Pantano deben ser aplicables a cualquier teoria de gravedad cudntica
aparentemente consistente. Para esto, nos enfocamos en construir una teoria de gravedad
mads un campo escalar candnicamente acoplados. Esto se hace sin introducir ningtin con-
tenido de materia, solo usando la geometria del problema. Eventualmente, aplicamos la
conjetura de de Sitter al potencial obtenido y esto se traduce en desigualdades para los
pardmetros de la teoria en consideracion, para las cules discutimos su interpretacion.
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Abstract

This thesis studies the cancellation of perturbative anomalies in M-theory on a manifold
with a boundary. This is done for both classical and exceptional Lie groups G. This
endeavor aims to determine whether non-supersymmetric M9-brane solutions exist in M-
theory. We expect to contribute to the exploration of the non-supersymmetric String Theory
Landscape with our results. Furthermore, there is a great interest in understanding whether
String Theory is actually universal in the sense that any apparently consistent theory of
quantum gravity must be within the whole String Theory Landscape. In this direction, we
consider F'(R) theories of Hofava-Lifshitz under the scrutiny of the Swampland program.

To begin with, it has been shown in the past that the anomaly polynomial of a super-
symmetric gauge theory coupled to gravity on a ten-dimensional spin manifold, consisting
of an Ejg supervector multiplet plus a supergravity multiplet, can cancel the anomaly in-
flow of the topological couplings of M-theory to such a boundary. We will refer to this
as an M9-brane with Fs worldvolume theory. Our task is to investigate whether there can
be other new M9-brane solutions with a G worldvolume theory. This analysis relies on
the description of perturbative anomalies in terms of the index theory of Dirac operators
defined in twelve dimensions. This also requires the calculation of indices or equivalently
Casimir invariants of arbitrary representations of the Lie algebra of G. With this, we man-
age to express characters in the fundamental representation of any group GG. Subsequently,
we solve the constraints to search for new M9-branes which leads us to consider matter in
different representations of the gauge group GG. From this follows that any new solutions
are expected to be non-supersymmetric. Finally, we consider the branching rules of the
adjoint representation of Fg under its subgroups to give an interpretation of our findings.

On the other hand, we consider F(R) theories of Hotava-Lifshitz and study their
consistency with the de Sitter conjecture of the Swampland program. This is done by
considering the fact that the Swampland criteria should apply to any seemingly consis-
tent theory of quantum gravity. For this, we focus on constructing a theory of gravity
canonically coupled to a scalar field. This is done without introducing any matter content,
uniquely using the geometry of the problem. Eventually, we apply the de Sitter conjecture
to the obtained potential, which is translated into inequalities for the parameters of the
theory under consideration, and then we discuss their interpretation.

viii



Chapter 1

Introduction

String Theory born out of an endeavour to comprehend strong nuclear interactions within
the S-Matrix theory program (see [1] for a brief account of the early days of string theory),
and it has since evolved to become the leading approach in the quest for the unification
of all fundamental forces in nature.! Perhaps, the first impetus came from the necessity
of gravity for the well-definiteness of the theory, thus unification might sound reasonable.
Although, the first significant development was the realization that the five 10-dimensional
(10d) supersymmetric string theories were free of quantum inconsistencies (this will be
the main topic of this Thesis). By the same time of this discovery, a lot of effort was
dedicated to connect string theory to the real world via compactification of the six extra
dimensions, mainly on Calabi-Yau manifolds [3]. This program is still ongoing and gave
rise to the concept of the Landscape of string theory, basically all possible theories coming
from a string theory construction (for reviews on the phenomenological side of string
theory, see [4] for connections with the Standard Model, while for the cosmological side,
see e.g. [5,6]). Then, around the mid 1995s a second string theory revolution came
about.” This was built upon the recognition of a set of dualities playing a crucial role in the
comprehension of strong-weak coupling limits of string theory/M-theory [8]. This has been
a brief account of decades of intense work in string theory, thus it is not intended to provide
a historical overview and much less a complete review of the state of affairs. Instead, it
brings us to the actual and one of the most active research program in string theory,
that is, the Swampland program [9]. For reviews on this, see [10-12], also see [13—15].
The basic idea of this program is to determine whether the Landscape of Effective Field
Theories (EFTs) weakly coupled to Einstein gravity actually represent a set of candidate
theories that can be consistently completed in the UV regime, and whether these can be
realised through string theory constructions, which is actually the belief of the Swampland
community. This question has been translated into the endeavour of identifying a set
of principles known as Swampland Conjectures (SCs) mainly using the string theory
Landscape as a laboratory. Among the SCs, some have received significant support and
have been tested in various contexts. These include, forinstance: the No global symmetries
conjecture [16], the Weak Gravity conjecture [17], and the Distance conjecture [18]. More
recently, significant effort have been invested to the Emergence conjecture [19,20] and the
Species Scale conjecture [21-24]. Other conjectures are the Cobordism conjecture [25],

'In an attempt to draw connections between string theory and Loop Quantum Gravity, see [2] and references
therein.

2Around the same time, [7] came up with the insight that D-branes serve as sources for the various
gauge potentials in the string theory spectrum, a discovery that was also crucial for constructing the duality
framework.



Non-Susy Anti-de Sitter (AdS) conjecture [26], the de Sitter (dS) conjecture [26—28] (we
will spend some time testing this conjecture on F'( R) Horava-Lifshitz theories), and some
other criteria, but we refer the reader to the reviews mentioned before for those. The
important point to be mentioned is the fact that these conjectures are all interconnected,
hence this might lead to a few criteria allowing to rule out EFTs that, once we coupled to

gravity, cannot be UV completed, and we say that those theories are in the Swampland.

Maybe, a good way to summarize this ongoing effort is by the String Universality
principle [29] or String Lamppost principle [30] which is the statement that any EFT
coupled to gravity with a UV completion must be realized by string theory. This was tested
in 10d, with supersymmetry playing an important role in [31], for six dimensional theories
in [32], whereas ford = 7, 8,9 see [30]. It is important to remark that the converse in not
necessarily true. In fact, the reason behind the Swampland criteria is to draw a boundary
between the true Landscape and the Swampland. Therefore, from this follows that, if we
already have a consistent UV Quantum Gravity theory , not necessarily coming from a
string theory construction, the SCs must be applicable. In this sense, we apply the dS
conjecture to F' (}_%) Horava-Lifshitz (HL) theories [33] (see [34] and reference therein for
a review of HL theories) where a scalar field and a potential could be obtained in terms
of the curvature, and finally by making a conformal transformation from the Jordan to the
Einstein frame we get a model of gravity plus a scalar that we can bring to a canonically
coupled system taking some particular limits relating the constant parameters of the HL
theories under consideration. By testing this model under the dS conjecture we are able
to interpret it as a set of inequalities for the parameters of the HL theories, consistent
with the different regimes of the models we studied. On the other hand, without taking
the particular limit just mentioned, we cannot obtain a gravity plus scalar field system
canonically coupled. Even though, we propose that the dS conjecture is still applicable.
This case is more involved, but again we can test it very explicitly and translate it into a
set of inequalities for the parameters of the theory. Even more, we can connect our results
with the standard f(R) theories also analyzed in [33].

On the other hand, in the same spirit of the Swampland program, we studied string
theory/M-theory universality in 10d/11d by using perturbative anomaly cancellation re-
laxing the constraints of supersymmetry. This is in contrast to Refs. [30-32] already
mentioned where supersymmetry was crucial. However, we stress that anomaly cancella-
tion was instrumental for the conclusions reached in those references. In the following,
we will give an introduction to symmetries and anomalies to state and clarify terminology
used in the literature as well as to introduce the modern viewpoint of symmetries and
anomalies that will be used in the main subject of this thesis.

Let us start by saying that the best way we have to understand our real world is
by doing perturbative calculations, once we loose control of the usual expansions we
are used to in Quantum Field Theory (QFT), we get into trouble. The most relevant
example of this is Quantum Chromedynamics (QCD) where a full understanding of its
confining region is missing. In order to pursue this perturbative approach we usually
start by writing down a classical action principle S subject to well-established classical
symmetries like Lorentz invariance or Poincaré symmetry. In QFT this is usually done in
flat spacetimes M. However, in theories like General Relativity (GR), where the spacetime
can have a nontrivial topology, we require an improvement to invariance under general
coordinate transformations. Often, it happens that one formulation could be accompanied
with some hidden symmetries that in other but equivalent formulation are not manifest.
These classical symmetries could be global or spacetime-dependent symmetries but, before
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we go into that, let us stress here that they play an important role as a guiding principle
to put forward this program of understand our quantum world. In this sense, one of the
key observations was the realization that the classical symmetries we start with, could
be broken by quantum effects, and this has the name of an anomaly. At first glance this
should be disturbing, however, by now we are used to concepts such as the spontaneous
breakdown of a symmetry or the breakdown of a classical global or gauge symmetry by
radiative corrections. The main focus of this thesis is about gauge anomalies. But, we will
first describe global symmetries and their anomalies.

Let us emphasize the difference between a global symmetry of a theory 7 and a gauge
redundancy of our description of 7. A global symmetry is a symmetry that acts nontrivially
on observables, quantities that we already measure. In other words, a global symmetry
acts nontrivially on the Hilbert space H7 of 7. Let us focus on ordinary, continuous
internal global symmetries associated with a compact Lie group G for simplicity [35,36].
The main feature of a global symmetry in a Lagrangian description of 7 is a conserved
current J and a conserved charge () associated with a parameter e for Abelian or € for
a non-Abelian symmetry, where a account for the number of generators. () is conserved
in the sense that it commutes with the Hamiltonian, [(Q), H]| = 0, from which follows that
for a state |a) of H with energy &,, the state () |a) is also a state of H with energy &,.
In this sense one can rearrange the Hilbert space of states 77 into unitary irreducible
representations of the algebra of the charge or symmetry operators. In field theory”, the
space of charged objects under the symmetry consists of localized operators, defined on a
spacetime point and the symmetry operators are defined in d — 1 slices of the spacetime.
This description of global symmetries can as well be extended to discrete symmetries
where the notion of a symmetry operator is well defined. Even more, this notion of a global
symmetry can be extended from O-form ordinary fields to p-form fields* where, there is
also a conserved (d — p — 1)-current [37]. We can also define symmetry defects supported
ona (d—p—1) submanifold of the spacetime. The distinctive feature of this generalization
is the fact that the charged objects can now be extended on the spacetime, namely they are
supported on p-dimensional cycles of the spacetime manifold. Another characteristic of
global symmetries with p > 0 is that they have to be Abelian by topological arguments,
this means that symmetry operators necessarily commute in contrast to the ordinary ones.
With this we can move to the quantum theory and compute correlation functions as well
as study selection rules of a theory with this structure’ of symmetries. For more details,
one can consult some of the many reviews on this active field of research, some of them
with applications to different branches of physics are e.g [41-45]. For a different ongoing
debate on global symmetries when gravity is part of the game the reader may consult,
e.g. [46,47] and reference therein.

Often, one starts with a free field theory description regarded the first paragraph of this
introduction. However, this is usually not enough to get into a real system, it is needed to
introduce interactions. This can be done, for instance, by coupling a conserved current to
a external field keeping in mind the original symmetries of the theory. The basic example,
for our purposes, is to consider 7 as a massless, free fermion field theory with an internal
U(1) global symmetry. As we just described, we can introduce a external vector coupling

3In this brief account of symmetries, we will always assume Euclidean signature, then there is no subtleties
with symmetry operator along the time direction. Therefore, the words symmetry operator or symmetry
defect means the same thing.

4See Appendix A

31t should be emphasized that this concept of symmetries has received generalizations through various
directions, we address the reader to some of the reviews and reference therein for details e.g. [38—40].



to the free theory and ask for the symmetries of this new setting. We play the game of
finding conserved currents by Noether’s theorem for continuous symmetries. It turns out
that this came with a profound revelation. In the free field theory the global U (1) symmetry
comes with a variation schematically as follows

6S~/de(:c)/\*J, (1.1)

while, once we introduced the vector coupling, we find that the same procedure that leads
to (1.1) leaves the action S completely invariant as long as, again schematically

o, —D,=0,—1iA,, A,—>A,+0.,(x), €e:M—=>U(1), (1.2)

ViD= ey, (1.3)

the ordinary derivative is redefined as the covariant derivative and A, is the external vector
potential that coupled to J, € is a map from the spacetime to the group U(1), and the
massless Dirac action now becomes into (1.3). At this stage, A is a nondynamical vector
field. And the procedure just described is refereed to as the gauging of the U(1) global
symmetry. The same procedure can be extended to any Lie group G, continuous or discrete,
with the main difference that A becomes into a matrix-valued field taking values in the Lie
algebra of G, and the holonomy, respectively. We can study the quantum theory® of this
new setup. For the purpose of this work this is conveniently done under the approach of
the path-integral quantization in Euclidean signature as

Z[A] = /DEDw exp(—S[A,¥,¢]), (1.4)

where Z[A] is the partition function as a function of the external background field A, D)
is the integral measure weighted by the Dirac action coupled to the external potential.
More details of this will be reviewed in Chapter 3. Here, we briefly mention the Feynman
diagrammatic approach in order to explore quantum consequences.

The object containing tree-level corrections as well as loop corrections is the quantum
effective action, usually denoted as I', which can be defined as the Legendre transformed
of the generating functional 1 of connected diagrams. It turns out that for vector theories,
namely theories 7y which allow a mass term consistent with all the symmetries of Ty,
admit a regularization of loop or quantum corrections that is also consistent with all its
symmetries, for instance via Pauli-Villars regularization becoming " well defined. In the
process of obtaining final answers one does not break any symmetry. Therefore, vector
theories, such as Dirac theory, preserve classical symmetries in the quantum theory. See
Figure 1.1a for a one-loop Feynman diagram of a 4d theory. However, it was also noted
that for free, massless fermion theories there is also a chiral global symmetry

P — el Vit (1.5)

where 4.1 is the chirality operator, which for 4d is the usual 5 matrix, see Appendix B.
By Noether’s theorem there is also a classically conserved chiral current. This is such
that, instead of having only vector current couplings, one can have a situation such as that
shown in Figure 1.1b with one axial current insertion and two vector current insertions for

®For the quantization of the free Dirac fermion theory one can see a standard QFT book, e.g. [48]

4
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(a) Fermion triangle with three vector current (b) Fermion triangle with two vector current
insertions. insertions and one axial current.

Figure 1.1: Triangle one-loop Feynman diagrams with wavy lines describing vector bosons
for a 4d theory.

example, with fermions running throughout the loop, again for a 4d theory. It turns out
that for this particular loop, there is no way to regularize such that preserving the vector
currents one also preserves the axial current conservation. As a result, quantum effects
lead to the breakdown of the axial current in the presence of vector currents coupled to
gauge vector fields [49,50]. Consequently, what we have found is an obstruction to the
gauging of global symmetries in the presence of axial couplings. Although, this is no that
bad as it may sound since, it says that we are not allowed to gauge a global symmetry in
the presence of axial couplings. In fact, this is the ABJ anomaly, as it is known in honor to
Adler, Bell and Jackiw, whom were the first in computing it. This anomaly actually led to
the resolution of the ¥ decay problem. Even more, due to G. ’t Hooft [51] there is a more
powerful approach to the obstruction problem of gauging a global symmetry known as ’t
Hooft anomaly matching due to its behaviour under renormalization group flow relating
IR with UV physics, see [38] for a review and reference therein on this subject.

What we have described up to this point is quite general in the sense that it does not
depend on the dimension of the spacetime. Yet, what we have shown in Figure 1.1 are
the one-loop corrections of a 4d fermion theory. Nonetheless, this can be generalized
in various ways. First of all, this can be extended to theories with a non-Abelian G-
symmetry. Furthermore, it can be extended to an axial coupling with the insertion of
two energy-momentum tensors instead of two vector currents with fermions also running
through the triangle in Figure 1.1b and this is connected to chiral coupling in the presence
of gravity [52]. On the other hand, this can also be generalized to higher dimensions.
Generically, for a d = 2n — 2 dimensional theory, it was proved that anomalies of classical
symmetries are associated with one-loop diagrams with n vertices with chiral fermions
running in the loop. The important case for us is in 10d, where the potentially anomalous
one-loop diagrams are known as hexagon diagrams. It fact it was proved that only one-loop
corrections are important for the computation of anomalies due to axial couplings [53].
Other diagrams can contribute but they are determined by the n-point loop diagrams.
Thus, this is why we only emphasize those loop diagrams. In this situation, the effective
action I" becomes ill defined under gauge or diffeomorphism transformations. In fact, for
diffeomorphisms is equivalent to consider local Lorentz transformations of the frames (see
Appendix B) up to local counterterms. Hence, we will usually refers to diffeomorphisms
although, this can be formulated in terms of gauge Lorentz transformations for the purpose

5



Figure 1.2: Hexagon diagram with external gravitons represented by coiled lines with
chiral fermions running in the loop. The external lines can be replaced by gauge vector
couplings.

of anomalies.

We can also extend this analysis to genuine gauge theories,’ the gauge vector couplings
are to be considered dynamical fields. We have to include a kinetic term for this field into the
action S. In terms of Feynman diagrams we have to think about the propagator of this field
as well. In terms of the path integral we can integrate out this field. However, this comes
along with important subtleties since, gauge theories are characterized by a redundancy
or gauge equivalence, often called gauge symmetry. Though, strictly speaking is not
a symmetry in contrast to the global symmetries described above. In this sense, gauge
theories are properly described by the theory of fibre bundles, see Appendix B for an rough
introduction to this ideas and references for details. Properly, the gauge symmetry we are
talking about in physics contexts, is related to the fact that on a general topological space
M one cannot choose a global differentiable structure, correspondingly one cannot define
a global fibre structure. Instead, we cover M with coordinates charts and this requires
gluing consistency conditions over nonempty overlap of charts. For fibre bundles this is
translated into the fact that the gauge potential A has to be thought of as a connection on
the bundle subject to the gauge equivalence given by

A— A9 =g Ag+gldy, (1.6)
for a set of local gauge transformations
g:M— G, (1.7)

where G is the fibre of the bundle over M, whose transitions functions over patches also
take values in G. Note that this reduces to (1.2) for G the Abelian group U(1). This is the
best way we have to describe our real world, namely by means of introducing a redundancy
in our description. This redundancy always comes along with an much bigger Hilbert space
than the true Hilbert space, among the subtleties we already alluded. However, we can
use gauge symmetry to find the correct Hilbert space. Unlike global symmetries, gauge
symmetry is not a symmetry in the sense that this does not act on the physical Hilbert

7Since gravity can be formulated in a similar fashion as usual G-gauge theories by the orthonormal frame
bundle, always we say gauge theory we are, for the discussion of anomalies, also taking into account gravity.
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space transforming one state into another as global symmetries actually do. Instead, one
can introduce an equivalence relation [54,55] under gauge symmetry to identify states of
the bigger Hilbert space so that the physical space is constructed of equivalence classes
of sates under the gauge symmetry. As a consequence, gauge symmetry is essential to
the well-definiteness of a physical theory. The failure in preserving this redundancy is
translated into a disaster. For instance, locality is lost as we will see from non local terms
appearing in the presence of an anomaly given by the loops shown in the figures 1.1b
and 1.2. We also lose unitarity of the quantum theory due to negative norm states within
the unphysical Hilbert space. As we said, all becomes a complete chaos. The first example
one encounters where some of these features come up is U (1) Maxwell theory in the field
theory context. This is the reason why we must guarantee gauge invariance before we
move to the quantization of a gauge theory. Thus, the question in this context is how we
go over the chiral anomaly described above in the presence of dynamical gauge theory.

Perhaps, the simple way to see this is as follows [56]. Introduce chirality operators in
terms of the chiral matrix v, as

_ L+ Y

P:I: 92 )

(1.8)
where P, = Pp is a projection operator to the space of left-handed or positive chirality
fermions H, and P_ = P is the projector to the space of right-handed or negative
chirality fermions H_. From the hermitian properties of the chirality operator and the
anti-commutation relation obeyed by the gamma matrices and the chiral matrix, one can
show that for chiral fermions a mass term is forbidden. Consequently, for the Dirac
equation introduced before in (1.3) we can also show that the Dirac operator v#D,, = )
is such that

DMy — He, (1.9)

it maps the (infinite) positive chiral vector space into the negative chiral vector space and
vice versa. On the other hand, at the formal level, the chiral partition function Z[A] —
afeter integrating out chiral fermions — is proportional to det(i)P;). But, we already
saw that I) P; maps positive chirality fermions to negative chirality fermions. Unlike
linear operators or endomorphisms, there is no obvious way to define a determinant® of
such operators, hence we can suspect the presence of an anomaly from this observation.
Indeed, from this is also easy to see that the operator (i) P,)'(i]) Pp) has a well-defined
determinant |det (i) P;,)|?, up the a phase, that is, the anomaly. This phase ambiguity is
associated to one-loop Feynman diagrams with gauge vector or gravitational couplings
with chiral fermions running throughout the loop. And this is interpreted as the failure to
regulate these loops in the gauge invariant consistent way.

Another way to see the one-loop anomaly is by looking at the Jacobian of a chiral
transformation of the path-integral measure [61]. This computation has been done to a
grate amount of detail, for instance, in [56,62,63], we refer the reader to those reference.
The important point to stress is the fact that anomalies are UV effects, manifested itself
as a phase ambiguity in the chiral partition function, before integrating out gauge fields,

8In fact, in a more mathematical side this determinant is thought of as a section of a line bundle, known
as the determinant line bundle [57] whose base space is the parameter space of gauge and metric fields [58].
This formalizes the phase ambiguity of the chiral partition function into the holonomy of the determinant
line bundle [59] around a loop in the parameter space. Roughly, this holonomy is generally capture by the
eta invariant [60] evaluated on a closed (d + 1)-manifold perfectly matching with the bordism classification
of anomalies briefly mention in a moment. See also chapter 3.1.
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hence it is not necessary to deal with all the subtleties of gauge theory quantization, even
for gravity it is not clear how to sum up over different topologies in order to integrate out
gravity from the path integral. Hence, for the purpose of anomalies we can safely avoid
this discussion and focus only on the phase ambiguity. As we saw, anomalies are UV
effects, but they have been also interpreted as IR effects, which also makes possible to
compute anomalies in terms of the topological structure involved in the proper definition
of a gauge theory [64,65] and this will be the path we will follow in this thesis. For a
review on this trajectory, see [66]. Also, this mixing of the UV and IR for symmetries
and anomalies [51] make also possible to study anomalies of string theory by using its
different low-energy limits consisting of massless modes with well-understood low-energy
lagrangian descriptions, see e.g. [67-70]. The relevant loop diagrams are those such as that
shown in Figure 1.2 with pure gravitational coupling, or with pure gauge vector coupling,
or mixed gauge and gravitational [52,66].

Before we move to the second and main portion of this thesis, that is, string/M-theory
anomaly cancellation, let us briefly remark the modern characterization of anomalies in
Field Theory. First of all, we have shown that for chiral theories the determinant may
suffer from phase ambiguities capture by one-loop diagrams at the diagrammatic level
and, in the failure of the path-integral measure to be invariant under chiral transformations
by functional methods. At the perturbative level, anomalies are associated with linear
transformation that can be continuously deformed to the identity of the symmetry group
G. However, among the maps g : M — G there could be transformations that cannot
be smoothly deformed to the identity that can give rise to anomalies as well. In the field
theory context this was first discovered in [71] for an SU(2) gauge theory coupled to an
odd number of Weyl fermion doublets, transforming in the fundamental of SU(2), under
a nontrivial transformation classified by 4-th homotopy group of SU(2), see Chapter 3.
Eventually, this was also applied to string theory, notably in [72,73]. These anomalies
involving transformations considering the global structure of the symmetry group were
nicknamed global anomalies for obvious reasons. However, we will avoid this terminology
here and, instead we will call nonperturbative anomalies. Therefore, we have two sources
of anomalies in continuous gauge symmetries. This is in contrast to discrete gauge symme-
tries where only nonperturbative anomalies are relevant [74,75] for anomaly cancellation.
Consequently, we need systematic procedures to analyze these sources of anomalies to
guarantee a well-behaved quantum gauge theory.

One important step in this direction started with the observation that perturbative
anomalies are closely related to Index theory of Dirac operators [76—80]. Indeed, this
leads to a very precise description of perturbative anomalies in terms of a nonlocal func-
tional up to the fact that one can add local counterterms allowing to change from the
consistent to the covariant anomaly [81] without changing the essence of a phase ambi-
guity in the chiral partition function. Remarkably, this local functional can be computed
from a (d + 2) characteristic polynomial translating perturbative anomaly computations
into geometric and topological information [82,83]. On the other hand, we have to deal
with nonperturbative anomalies. These anomalies are more subtle, correspondingly led
to more sophisticated arguments in order to be detected, for instance the mapping tori
construction [71]. Another approach was proposed by [84] (see [85] for the motivation
on this approach, see also [86] for a proper treatment of the procedure) considering the
embedding’ of symmetry groups. Nonetheless, the main point is the fact that this pro-

9 As we said, for discrete symmetries does not make sense to talk about perturbative anomalies, however
we can study them by the embedding Z,, — U (1), see [74,75].



cedure mainly focus on (G-gauge theories where the symmetry elements were classified
by homotopy groups of GG without providing a systematic description of nonperturbative
anomalies in presence of (G-gauge theory as well as gravity, in contrast to the perturbative
case.'” Motivated by arguments in Condensed Matter Physics [94,95], it was conjectured
that anomalies of a field theory are classified by bordism theory. Roughly speaking (see
Appendix C for some of the concepts here), perturbative and nonperturbative anomalies
are capture by (d + 1) and (d + 2) bordism groups (for the first time using a bordism
argument in the study of anomalies, see [96]), respectively, and classes of these bordism
groups are detected by a field theory known as Invertible Field Theory (IFT) [97-99]. For
a review on this perspective, see [100]. For chiral fermions the IFT corresponds to the
Atiyah-Patodi-Singer n-invariant [101-103] and this provides a unified description of per-
turbative and nonperturbative anomalies for G-gauge theories as well as gravity, as we will
see in Chapter 3, see also Appendix C. Moreover, one of the first considerations involving
the eta invariant for anomalies can be found in [73,104] and for a reduced sample of recent
applications and computations of bordism groups, see [105—128].

The aim of this thesis is to study cancellation of perturbative anomalies. This is because
the first step in the assessment of anomalies corresponds to the perturbative side. Once
we have convince ourself that there is no perturbative anomalies, for instance by summing
up all the contributions of the anomalous degrees of freedom, as happens in the Standard
Model [55] or Type 1B [52] superstring; or by a more sophisticated perturbative anomaly
cancellation method such as the Green-Schwarz mechanism [ 129, 130], we can go through
the nonperturbative side. However, this side of the story of anomalies is out of the scope
of this thesis, we hope to return to this in future work (see the end of Chapter 3 for some
comments of this). We will consider the 11d low-energy limit of M-theory'' which has a
topological interaction [132], given schematically as follows'?

1
/EC’/\CAG—C/\Ig(R). (1.10)

This low-energy limit of M-theory is quantum mechanically well defined in the sense that
is free of anomalies'?. However, we wonder whether this topological coupling makes sense
on a manifold X with boundary, namely whether there can be boundary or edge modes
transforming in representations of a symmetry group G such that the anomalous boundary
contribution coming from (1.10) is cancelled with anomalies of the edge modes. In other
words, we are interested in the anomaly inflow [133] of (1.10) to the boundary (see [59,60,
134] for amodern discussion on inflow capturing nonperturbative effects of chiral fermions
and [135] for chiral p-forms, see also [55,136,137] for a discussion on the inflow on brane
couplings). This task was carried out by Horava and Witten in the mid-90s [138,139] for the
exceptional group Eg. They found that having boundary modes transforming in the adjoint
representation of Eg plus gravity modes coming from the 11d gravitino, the perturbative
anomaly of these modes compensate the anomaly of the topological coupling (1.10) on
a manifold with boundary, see [140] for a review. This result turned out to be consistent

10For a modern understanding of the method of Elitzur and Nair [84] see [87] and for applications of this
new understanding, see [88,89], for the homotopy application of this, see [90-93].

"'"This connection of an 11d with the 10d low-energy limits of string theory was established in [73] by
using the 11d supergravity of Cremmer-Julia-Scherk [131].

12For the definition of each term in equation (1.10), see Chapter 4.

13This theory is defined in an odd dimensional spacetime X, so this theory is free of perturbative anomalies.
However, it is possible to have nonperturbative anomalies, anomalies not seen by perturbative methods. We
will review this in Chapter 3 and we use it to review anomalies of M-theory in Chapter 4.
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with supersymmetry [68, 141, 142] adding to the string/M-theory duality frame [8]. We
will investigate whether a similar anomaly cancellation mechanism can occur for any Lie
group GG with chiral edge modes transforming in representations of G. The main difficulty
for arbitrary G is the computation of indices or equivalently Casimir invariants of Lie
algebra representations (see Appendix A). Particularly, for exceptional algebras we can
carry out the algorithm developed in Chapter 5 very explicitly due to some known result
about indices [143]. Also, the number of representations to be considered is of dimension
less than the adjoint of Fg due to chirality reasons, this will be clear from chapter 5. For
the classical Lie algebras, many of them are ruled out by dimensionality arguments. For
the relevant cases of the SU(n) algebra A,,_; we compute the indices at all orders, for the
anti-symmetric representations [2], [3], [4] an for the symmetric representations (2), (3),
of SU(n) such that with this information it is relatively easy to extend our results for the
exceptional case. For the classical algebras By, 1, C5, and D,,, we show that the only
relevant cases that might deserve some attention are for 2 < n < 6, see [144] for the
details of classical algebras.

One similar example of this in less dimensions, maybe more known, is the quantum
Hall effect, where in a two dimensional boundary lives edge modes transforming in a
complex representation which have an anomaly. This anomaly compensate the anomaly
of a 3d Chern-Coupling for the electromagnetic potential A, defined on a 3d manifold with
boundary. A set of lecture note on the quantum Hall effect can be found in [145], also
see [146].

An important feature of our search if the fact that any hope of find the appropriate
anomaly cancellation mechanism the bulk-boudary setup considered in this work has to
involve other representations than the adjoint of a symmetry group, thus if we are able
to find a solution, it has to be nonsupersymmetric since gauge boson can only be in the
adjoint representation of a group. Whether a possibly new solution is consistent under
other checks such as tachyon free solutions, or whether can be related to already known
solutions is another question. However, for the explicit examples we have worked out, we
are able to relate them to the known FEg case by studying the branching rules of the adjoint
representation of Fg under subgroups.

The remainder of this thesis is structured as follows. In Chapter 2 we briefly mention
the bosonic string, and with little more detail we review the quantization of the super-
symmetric string to see how its massless spectrum appears. We briefly mention one of
the known nonsupersymmetric string as well. We move to Chapter 3 where we review
anomalies of a gauge theory in the path-integral approach. We briefly review the mod-
ern viewpoint on anomalies as well as anomaly cancellation mechanisms. In chapter 4,
we review perturbative anomaly cancellation in the supersymmetric and one of the non-
supersymmetric strings as well as for M-theory in a useful way for Chapter 5. There, we
developed an algorithm to check whether there can be boundary modes solutions charged
under a gauge group G. This modes are related to M-theory on a manifold with bound-
ary by inflow so that the bulk-boundary system is free of perturbative anomalies. In an
unrelated chapter to anomalies we discuss F'(R) Hofava-Lifshitz theories under the dS
Swampland conjecture, it is done in Chapter 6. We conclude in Chapter 7.

In three Appendices we developed material for the rest of this work. Appendix A goes
through indices computations of representations of Lie groups. Appendix B we review
the geometrical structure of bundles, and briefly we introduce some of the characteristic
classes relevant for anomaly calculations. In Appendix C we give a short discussion of
the bordism classification of anomalies.
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Chapter 2

Review of superstring and M-theory

2.1 Bosonic string

In trying to learn string theory one starts studying a bosonic string. To do this, we use our
intuition from the analysis of the classical dynamics of a point particle. This is usually
done by embedding the point particle worldline into a flat space or sometimes one starts
more generally, in a spacetime with a nontrivial curvature, then the geodesic equations
of motion are to be found. In the case of a string, we write down a classical action in
terms of the square root of an infinitesimal area element, the Nambu-Goto action, usually
in a flat spacetime since, for the string, things become more involved in a background
curved spacetime. Nevertheless, we can go perturbatively through the effects of nontrivial
background spaces. Thus, we will stick to a flat background in this short discussion. Once
we have an action, as a next step one focuses on the symmetries of the classical theory by
including both global and gauge symmetries; Poincaré and parameterization invariance.
This is important because global symmetries lead to conserved quantities whereas, gauge
symmetries lead to redundancies which can facilitate the study of the quantum theory
through clever choices of gauge fixing. After this, we determine equations of motion and
try to solve them to learn useful things about the classical theory. Eventually, with this
information, we go to the quantization of the theory nonetheless, when we move to the
quantum theory we do not know how to quantize the bosonic string under this formulation
due to the presence of square roots independently of the quantization process we choose.

To overcome this problem, we can start again studying the point particle in a different
but equivalent formulation by introducing a kind of auxiliary field whose equation of
motion can be used to show the equivalence of both formulations of the point particle
classical dynamics. One important feature of this auxiliary field is the lack of a kinetic
term in the action such that this is not a dynamical field but in a particular gauge turns out
to be the mass-shell condition. In the case of the string, a similar idea goes over, allowing
us to write down an equivalent action through an auxiliary, non-dynamical field that turns
out to be the 2d worldsheet metric. This action is known as the string sigma model or
Polyakov action. Notably, this equivalent formulation has a new (gauge) symmetry in
addition to the symmetries already mentioned in the previous paragraph. It turns out that
this new symmetry, a Weyl symmetry of the worldsheet metric is basically the whole point
of the string worldsheet theory. Itisimportant to mention that Weyl and reparameterization
invariance symmetry allows us to gauge-fixed the classical theory in such a way that we
are left with a theory that can be viewed as a two-dimensional scalar-free field theory
from the perspective of the worldsheet along with simplified constraints coming from the
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equations of motion of the auxiliary field. This is illuminating because, in principle, we
know how to quantize a scalar-free field theory. However, we need to keep in mind the
gauge-fixing conditions and constraints (known as Virasoro constraints) coming from the
worldsheet metric once we move on to the quantum theory. If one is unable to preserve
gauge symmetries at the quantum level, this signals a sick theory, for example, unitarity
is completely lost. Therefore, it is an important point to guarantee that the classical
symmetries are also preserved at the quantum level and this has important consequences
for the bosonic string like fixing the dimensionality of the background spacetime to 26
dimensions.

There are various approaches to quantization but as a first step, we can go through the
different stages of canonical quantization starting with the promotion of classical variables
to operator-valued variables, and finally determine the Hilbert (more properly, the Fock
space) space of the open and closed string. This comes with important difficulties since it
is not direct to obtain the physical spectrum of the theory due to the appearance of negative
norm states as well as other ambiguities we are used to like regularization of infinities
and normal-ordering ambiguities. The Virasoro algebra constructed from generators of
Weyl symmetry, related to the constraint equations plays an important role in canonical
quantization to determine the true physical spectrum of the theory.

Another approach to quantization is light-cone gauge quantization which deals with the
negative norm states exploiting a sort of residual conformal symmetry giving an additional
gauge-fixing condition such that we manage to build the true mass spectrum of the bosonic
string through the classical solutions of the equations of motion and solving the Virasoro
constraints. Although, this way of quantization breaks the manifestly Lorentz invariance
of the classical theory, so once we get the quantum physical spectrum we must be sure
that Lorentz invariance is also in the quantum theory. We will not pursue any further
details in either canonical or light-cone quantization for the bosonic string. However, we
stress a couple of important points related to the mass spectrum of the bosonic theory for
subsequent discussions.

As we mentioned, there are certain symmetries at the classical level that could be
broken by quantum effects. Weyl symmetry in the bosonic string, for example, is broken
and one way to see this is by a central extension of the classical Virasoro algebra by a
central charge ¢ = d. Nonetheless, Weyl symmetry plays a key role in quantization, in
fact, due to its nature of being a gauge symmetry its quantum breakdown is a complete
disaster. Fortunately, in the canonical quantization for example, one can make sense of the
quantum theory provided that the dimension of spacetime d = 26, thus the consistency of
the free bosonic string fixes the dimension of spacetime. On the other hand, it is believed
that Lorentz symmetry is equally important in any relativistic theory, thus we need to make
serious efforts to maintain it at the quantum string level. If we look at the mass spectrum
of the open string in the light-cone gauge quantization, the first non-tachyonic, excited
particle state corresponds to

a [ |0,k), di=1,...d—2, (2.1

where a’ | is only a creation operator related to the vibration modes of the string, |0, k) the
vacuum of the string which is annihilated by any annihilation operator a’ with n > 0, and
k account for the momentum (of the center of mass of the string). State (2.1) is a vector
and, in principle, can perfectly furnish a vector representation but, the Lorentz group is
SO(d = 26), so it seems impossible to fit this into a representation of SO(d = 26); an
anomaly? However, if one studies more carefully representations on one-particle states
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one realizes that massive states furnish a representation for the little group SO(d — 1)
whereas massless states define a representation for the little group SO(d — 2). Therefore,
the first excited state of the bosonic string corresponds to a vector field whose quantum
can be associated with massless particles transforming in the fundamental representation
24 of the little group for the open string. The same reasoning applies to the closed string
up to the fact that the first excited state is

a i |0k), ij=1,...d—2, (2.2)

where ' | and a’ | are creation operators for independent left- and right-moving oscillation
of the closed bosonic string, |0, k) is again the vacuum as before. Now, to be consistent
with Lorentz symmetry, (2.2) corresponds to massless state transforming in a tensor rep-
resentation 24 ® 24. By standard tools in representation theory, we can decompose that
tensor product into a traceless symmetric tensor representation h;;, an anti-symmetric b;;,
and a scalar ¢ representation. The remarkable thing is that one of these states can be iden-
tified with the quantum of a gravitational field in a d-dimensional spacetime G,,,, namely
the graviton since its polarization states are exactly the same as the number of components
(d —2)(d —1)/2 of h;;. This also comes with a spacetime anti-symmetric field, or two-
form, known as the Neveu-Schwarz field, and a scalar ¢, the dilaton. In other words, we
can associate a spacetime massless field to each of the massless oscillation modes of the
bosonic string. We could continue analyzing the massive spectrum of the theory in the
same way as before only that consistency with Lorentz symmetry requires that these states
are accommodated into representations of SO(d — 1) instead of SO(d).

Unfortunately, the bosonic string comes with its own problems regarding the fact that
gravity is not enough in order to pursue a unified description of all the forces and particles
of our physical world, namely, there seems no obvious at all how to get gauge bosons or
fermions from the bosonic string spectrum, essential for the Standard Model of particle
physics. Moreover, we have avoided talking about a negative mass state in the bosonic
spectrum which implies the presence of an unstable state, namely the vacuum of the theory
is located in the maximum of a potential, and up to now it is not known if this will eventually
decay to some stable state. Last, a twenty-six-dimensional spacetime seems awkward at
first glance, particularly considering our everyday experience with a four-dimensional
world. It turns out that it is possible to address some of these problems if one is able
to write down a 2-dimensional supersymmetric version of the bosonic string action. Our
next task shall be to revise this with some detail, in particular, we focus on obtaining the
massless spectrum of the supersymmetric string for future discussion.

To anyone interested in more details on the bosonic string we refer to the huge amount
of literature available, among the books covering this material are [67-70,147—152]. There
are also a lot of lecture notes available on the web, a reduced sample is [153—157].

2.2 Supersymmetric string

Here, we will explore how the quantization of a superstring leads to supersymmetric
massless spectra as oscillation modes of the supersymmetric string. These modes can be
identified with the quantum of fields in the background spacetime. Finally, the dynamics
of these fields in the low-energy limit, essentially correspond to supergravity theories. Our
primary focus will be on the fermionic sector, as the main topic of this work is anomalies
instead of phenomenology, for these see e.g. [158—160] and reference therein. For a more
complete treatment of this section see e.g. [67-70, 148, 149]
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It is possible to write down a supersymmetric action for the superstring in a particular
gauge, the superconformal gauge, after we used the gauge redundancies — reparameteri-
zation invariance and super-Weyl symmetry in the supersymmetric case — to gauge-fixed
some of the degrees of freedom of a local supersymmetric theory coupled to gravity, re-
ducing the action to the so-called Neveu-Schwarz-Ramond superstring action [161, 162]

1

Ve

S:

/ﬁa@JW%X—Eﬁm, (2.3)

where X# = X*(r,0) refers to d bosonic fields (also known as wolrdsheet embedding
functions), * = ¢*(7, o) refers to d Majorana-Weyl doublets, and A - B = A*B,, is the
usual contraction in an Einstein sum which will constantly be used in this work, and o is
only a constant. This equation is incomplete without the equations of motions associated
with its global symmetries; translation invariance and global supersymmetry.

Very generally, from Noether’s theorem, we know that for any global symmetry, there
exists a conservation law, roughly given by

5s~/ﬁ%ﬁ@a, (2.4)

where €“ 1s an infinitesimal parameter associated with the symmetry transformations, J* is
some function of the fields. We have promoted the parameter to be spacetime dependent,
€* = €*(x), in equation (2.4). Still, it is clear that the variation vanishes if the parameter
is restricted to a global symmetry, independent of the coordinates, as it must be. Also,
note that if the equations of motion are satisfied for a field configuration under an arbitrary
variation, then from § .S = 0 follows that

9, =0, (2.5)

and this is the statement of classic current conservation. If we consider translation sym-
metries of the worldsheet coordinates o = €%(0) by doing them coordinate dependent
then we are dealing with diffeomorphisms of the worldsheet and for a theory coupled to
dynamical 2d gravity, before going to the equation (2.3) in our case of study, we find that
the conserved current corresponds to the stress-energy momentum tensor

05

T, ~
ab 5hab

=0. (2.6)
Equation (2.3) is also invariant under global supersymmetry transformation given by
XM =gl Y =pr0,XPe, 0P = —(0,X")ep, (2.7)

where € is the supersymmetry parameter corresponding to a Majorana spinor. By making
it dependent on the worldsheet coordinates we can compute its conserved current which,
up to a total derivative, is given by

J* = p’p™ 0, X" =0 (2.8)

Note that the constraint equations (2.6) and (2.8) are equal to zero. This is because, in the
general formulation of the superstring action coupled with dynamical gravity and consistent
with local supersymmetry, those equations correspond to the equations of motion of the
zweibein field e’ and to its superpartner x2 (a is a local Lorentz index, while « is a spinor
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index), respectively. In fact, from Weyl invariance, one can show that 7}, is traceless
and p,J* = 0 by using p,p°p® = 0. We need to keep in mind all these details to find
the classical solutions and more importantly when we turn the classical superstring into a
consistent quantum superstring.

Equation (2.3) looks so gorgeous if one thinks about a string moving through a flat
background at the same time it oscillates. This is the magic of gauge symmetries, but
we have to pay a price, all the gauge redundancies we have exploited must be preserved
at the quantum level. Moreover, we have global symmetries whose conservation laws
play arole in constraining the classical and more importantly the quantum solutions. This
discussion has been useful to appreciate the power of symmetries. Nonetheless, it is more
illuminating if we choose to work in light-cone worldsheet coordinates o= = (o' 4= 02)/2
such that equation (2.3) becomes into

1 1 ?
S = @ dQO' (&FX -0_X + 5 er . 3,w+ + 5 w, : aer) > (29)
where 0 = 6%, and ¢y with A = =+ are the chiral components of ¢)*. Thus, the equations

of motion are
0,0_X*(o) =0, 8_wi(a) =0, ot (o) =0, (2.10)

whose general solutions are given by X# (o) = X/ (¢7) + X} (07), a linear combination
of left- and right-movers, ¢)f = ¢ (c") and ¢}, = " (c~) are positives and negatives
chiral states corresponding to left- and right-moving modes; respectively. To determine
explicit solutions we must distinguish between a closed and an open string. The closed
string is topologically made by the identification o' ~ ¢! + 27 and its dynamics describe
a cylinder embedded into spacetime, thus solutions must be supplemented with

X% o) = X*(0, o + 27). (2.11)

Remarkably, when we consider fermions a new ingredient enters the game since fermions
are not representations of a rotation group SO(d). Instead, they furnish a representation
of its double cover, the Spin(d) group. In other words, an oriented structure on the circle,
identified with the closed string is not enough to define fermions and we need to lift
orientation to a spin structure. This thesis has to do with measuring possible obstructions
to define chiral fermions coupled to tangent and fiber bundles, the following chapters and
appendices go through the details of this statement. For now, it is enough to say that the
circle admits two different spin structures which in stringy settings are usually identified
with Ramond (or periodic) and Neveou-Schwarz (or anti-periodic) spin structures. As
both chirality modes 1)1 can be viewed as independent variables in the closed string, we
can impose both the periodic (R) and the anti-periodic (NS) spin structures independently
such that

Yr(a®, 0t) = £Yr(a®, 0 +271), Yp(0®,0') = £¢p(0°, 0" + 27), (2.12)

thus, depending on how fermions behave under the identification ! ~ o' + 27 we have
four different choices of spin or boundary conditions, namely R-R, R-NS, NS-R, NS-NS,
where this notation means that we impose periodic boundary conditions over left-modes
and right modes, periodic boundary conditions over left-modes and anti-periodic boundary
conditions over right-modes, and so on and so forth. The superstring is much richer than

15



the bosonic string and we have to figure out what each of these sectors corresponds to.
Additionally, by using this information we can determine the explicit solutions for the
bosonic and fermionic modes by ensuring that they obey the equations of motion as well
as the boundary conditions (2.11) and (2.12). On the other hand, we could also consider
open strings with appropriate boundary conditions in order to solve the classical theory,
then we can proceed to the quantization. However, we focus here only on the closed string.
For the purpose of this review, the quantization of the open string with Neuman boundary
conditions is not that different. For details and richness of open strings see e.g. [150,151]

We continue the discussion with the closed string. We give its classical solutions
without providing any proof but the interested reader can go into the details by looking
at the references at the beginning of this section. For the closed string, we have that the
bosonic solutions are

1 1 ! 1 A
Xp(0") = S + af) + 5a'p'o™ +iyf % Y —aret, (2.13)
ne€Z,n#0 n
1 1 ! 1 -
Xh(o™) = §(x“ —xf) + 50/;9“0* + i\/% Z Eaﬁ e (2.14)
n€Z,n#0

where z#, p# corresponds to the center of mass position and momentum of the string,
ok &M are right- and left-moving constant oscillation modes of the closed string, and ) is
only a constant. The general solution is given by the sum, X*(0) = X/ (%) + Xi(0o7).
Normalizations of the above equations are conventional and it is also important to note
that the reality conditions on X* (o) implies that (a)* = o, and (a#)* = a",,, where

(+-+)* means complex conjugation. Note that, if we define a n = 0 mode has to be real.
While, the fermionic solutions with periodic (R) boundary conditions are given by

/ - . ~
P=\5 e R, (2.15)

ne”

/
h=15 2 die R, (2.16)

ne”L

for left- and right-movers independently. With anti-periodic (NS) boundary conditions
fermionic solutions are given by

vi=4/% S e, NS, 2.17)

o —iro
wR:’/E > e . NS. (2.18)

where d*, d“g, b, Z~)¢,‘, are constant oscillation modes for the fermionic side. The bosonic
and fermionic solutions presented here correspond to classical solutions of the equations of
motion (2.10) subject to the boundary conditions already discussed for the closed string.
However, these need to be supplemented with constraint equations, the super-Virasoro
constraints associated with the energy-momentum tensor, which when expressed in terms
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of light-cone worldsheet coordinates take the following form

Tyy =0:X-0.X + %¢+ 04y =0, (2.19)

i
517@7 S0__=0. (2.20)
In addition, we have to include the constraints associated with supersymmetry, namely the
vanishing of the supercurrent. According to equation (2.8) we can express the supercurrent
constraints in light-cone coordinates as follows

‘]+ - ¢+ ' a+¢+ = 07 J_ = Q/}— . a—lb— = 07 (221)

T _=0_X-0_X+

where we have computed .J° and .J! and then we have appropriately combined them to get
those two independent constraints.

It should be noted that we have avoided writing down the energy-momentum tensor
explicitly in coordinates 0, a = 0, 1 of the worldsheet because what is really useful is the
form presented in equations (2.19) and (2.20), as we move to the quantum theory. To see
this, it is more common to express the energy-momentum tensor in terms of the so-called
super-Virasoro constraints, that is, in terms of generators of the super-Virasoro algebra
that arise by noting that we can average the independent components of the stress tensor
over the closed string as follows

1 27 ]
L, = / doTyy ™", (2.22)
0

2mal

and this can be separated into two parts, one bosonic and the other fermionic, L,, = LX +LY
given by

1
LY = 5 2 Gm - G (2.23)
meZ
L ;g T _ 1 P
L= mdndum Ry LY=3 3 rbecbu, NS, (2.24)
mez re1+Z

where we have used 9, X* = \/g Y onez o?ﬁe‘”w+ by defining aff = V2a/p* into equa-
tion (2.19) and similarly for the fermionic part we have used (2.17) and computed 0, 1),
to evaluate (2.22). In the same way, there is a set of constraints for the closed string
concerning right-movers, LX, LY® L¥NS which are basically given by equations (2.23)
and (2.24) with no tilde over the oscillation modes. From this, it follows that we can also
average the supercurrent along the closed string such that

Fn

1 27 - 1 27 o
= doJ e™ | G, = / doJ_ e . 2.25
V2! /o * V2ra! Jo ( )

By using this with the supercurrents given in (2.21) and results already computed, we
obtain for the left-movers

Fo=> dpm dpn R, G = @y bnsr NS. (2.26)

MEZ MEZL

We have similar expressions for the right movers for both the Ramond and Neveu-Schwarz
sectors. From equations (2.22) to (2.25) follows that the Virasoro operators L,,, L,, as well
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as the supercurrent operators F',,, ﬁn, Gy, CN}T must vanish in correspondence with the
energy-momentum and supercurrent constraints.

We have all the ingredients to move on to the quantum theory. The goal is to quantize
the superstring consistently with all the classical symmetries already discussed. At the
same time, we will determine the energy spectrum of the superstring, particularly the
massless spectrum.

As we already mentioned, a good way to start this adventure is by doing what we are
used to, canonical quantization. To begin with, promote all classical variables to operator-
valued fields. These fields must obey equal-time commutation or anti-commutation rela-
tions depending on their nature. More precisely, depending on the spin-statistics of our
variables we have to deal with [X*(T,0), P(7,0')], where X*(7,0) are the field solu-
tions given before and P*(, ') its conjugate momentum, and for fermionic fields we deal
with {#(1,0),9"(7,0")}. We can work out the commutator and after an easy but long
computation we can find that

[X*(7,0), P"(7,0")] = id(c — o), 2.27)

it is translated into commutation relations for the center of mass variables and the Fourier
modes, namely'

v
m

=nn"0n —m , (2.28)

[:L,M’p'/] = 2‘77'[“/7 [0457 & ] = [dﬁv dfn]

and other commutations relations are zero. Note that, if we define a, = «a,,/+/n and

al = a_,/\/n then, we find well-known commutation relations for a free harmonic
oscillator
an,al] = 6pm, |G, al,] = Onm. (2.29)

In other words, the oscillation modes of the string have to do with creation and annihilation
operators which is somehow expected because this is what happens when we quantize a
scalar free field theory. For fermionic fields, we do similar computations leading to the
following anticommutation relations for the fermionic Fourier modes

{dh, dy} =" 0, LDV} =000 s, (2.30)
{d~z’ CZZ%} = nwjdn,—m ) {Bﬁa EZ} = U“V(Sr,—s ) (2.31)

There is an important issue when we play this game of quantization related to ordering
ambiguities of the quantum operators essentially due to nontrivial (anti)commutation rela-
tions. If we look at the constraint equations we note that, for instance, L;\ is proportional
t0 ), c7Qn-Q_pOrtoy . a_,-a,and one choice or the other is different for a con-
stant contribution as we can see from (2.28). Fortunately, we are also used to this kind
of trouble. The way out is by choosing a prescription of quantization, such a scheme will
be the normal ordering prescription where any annihilation operator is moved to the right
of any creation operator. This is usually denoted by : O; : for normal-ordered operators

!To get these commutation relations we have made use of the Fourier relation

“+ o0
1 . /
(5(0’ _ O_/) — 5 2 e—zn(o—a )
m

n=—oo
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O;. However, we avoid using this notation by hoping that, it is clear from our discussion
what we are doing. Obviously, this is not for free and we need to introduce some normal-
ordering constant measuring the arbitrariness in our chosen prescription. We stress that
this problem will rear its head only for the super-Virasoro constraints L,—y, L,—o. We
need to keep in mind this to construct the physically sensible quantum Hilbert space of the
superstring.

For a moment, we look only at the bosonic string. As usual, we will choose the
vacuum state in such a way that any annihilation operator kills that state: a” |0,p) =
0, a*|0,p) = 0, n > 0 where, only for this time in what follows, we have explicitly
shown the momentum mode of the string p |0, p) = p |0, p), where p must be understood
as the momentum operator but, we avoid this notation from our discussion since is not
that important. By using the creation operators we construct the tower of states associated
with a_,, = al, a_, = al . For instance, consider a!, then for n > 0 we have

g, i, <) = (@l Ty @ @y @e o) (2.32)

and we interpret this as a multi-particle state which is allowed according to the statistical
properties of the creation operators. The reason why the two operators appear in (2.32)
is because of a condition known as the level-matching condition, we will see this more
explicitly in a moment.

On the other hand, following the statistical properties of fermions then, we find that
fermionic operators have only two possible occupation numbers since (d! - d,,)(d! - d,,) =
dl - d,, it follows that the eigenvalues of d] - d,, are basically 0 or 1.

If we try to go further with the canonical quantization procedure we find that some of
the states have a negative norm, thus the Hilbert space we have constructed is too big to
be physically sensible as we can see from the state a®' |0) and the inner product

0]aalT|0) = —1. (2.33)

These negative norm states are sometimes called ghosts but this is confusing because there
is another notion of ghosts in gauge theory quantization which is not physical as well, but
they are quite useful to properly quantize gauge theories. We will not use that terminology
here, although the problem we face here is not completely alien to that discussion since we
have not said anything about the super-Virasoro and super-current constraints which are
very useful to get rid of the negative norm states. Before continuing, let us first point out
that we have tried to make all the warnings as explicitly as possible in this discussion of the
quantum superstring since dealing with those warnings is the main task of any approach
to quantization.

In order to go any further, we note here that there is a more convenient way of quan-
tization known as covariant quantization with an extra warning. This is due to the fact
that it breaks the manifest Lorentz invariance but, of course, it has to be there at the end
of a hard day. In contrast, it has the advantage that we can throw all the negative norm
states away by noting that there remains a set of residual gauge symmetries when we
are working in worldsheet light-cone coordinates given by a combination of conformal
and diffeomorphisms transformations so that 0= — 6*(o*). This set of transformations
leaves the gauge-fixed worldsheet metric invariant. Therefore, if we are able to choose an
appropriate gauge-fixing condition, we may successfully get to the end of our day.

To start with, we introduce light-cone spacetime coordinates

Xizi(XOiXd-l), Xoi=1,---d—2, (2.34)

V2
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and by standard change of coordinates, we can find the new metric accordingly

Np— =n—g =—1, Nij = 0ij 5 (2.35)

thus, leading to ds* = —2dXTdX~ + 6;;dX"dX7. Be aware of this to raise and lower
indices, and finally note that a contraction X, Y* = —2XTY~ + X'V,
We can consider the expression for X, given by

[of 1 N .
X+(T, O') =t 4+ O/erT 4 % Z - (OéJrefma + &Jrefmcr"') . (2.36)

n n
neZ,n#0

The clever gauge we mentioned above related to the residual gauge symmetries consists
of gauging away the oscillator modes «;, &7, we set these modes to zero, leaving us with

Xt (r,0) =2 +aptr, (2.37)
and by looking at the super-Virasoro constraint equations we can determine that

1
a'pt

0. X~ = (0+X")2. (2.38)

Therefore, we have found that there is no o~ to be quantized because according to our
discussion, it is given by the transverse modes, only modes o, i = 1,---d — 2 are
physically relevant; they are the physical degrees of freedom.

A similar discussion goes through the fermion fields defining ¢* = (/° £ ¢?71)//2,
Y, i=1--- d— 2, then remembering that we have superconformal and supersymmetry
transformations to play with, we can project out the modes df = 0 = JTJ{ as well as
bl = 0 = b leaving us with the transverse modes d’, d',, b’ b.. The upshot of this
discussion is about the degrees of freedom we have to quantize, namely only transverse
modes. Thus, in principle, we are getting closer to the physical Hilbert space since we have
projected out negative norm states. It is left to apply the constraints. To do this, suppose
that |phy) is a physical state of the Hilbert space of the superstring, then we impose the
constraints discussed above, in the form of operator equations

(Lo—a) [phy) =0, (Lo—a)|phy) =0, L,|phy)=0= L,|phy), n>0, (2.39)

F,|phy) =0=F,|phy), n>0, G,|phy)=0=G,|phy), r>0,
(2.40)
where a is only the normal-ordering constant already mentioned. Note that it suffices to
impose these constraints for positive integers otherwise, it will be too strong.

There is a quick way to see what is going on with these constraints and the spectrum
of the superstring. However, we warn that it is not the most rigorous way to do it.

We will focus on L, LY, LUNS while LY, LE®, LN can be worked out in a
similar fashion. To avoid cluttering with the notation we go through the computations
separately, first in the Ramond (R) sector, and then to the Neveu-Schwarz (NS) sector.
Consequently, we set LY = Lo, L™ = L and L)' = LNS, and the same apply for
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tilde operators. Let us start with (2.23), we thus obtain that

1 1 L
Lo = 5 Z Ay - = a'p? + 5 Z al,an,
nez n#0, nez (2.41)

where we have defined N = Y . a’ of, and we have also used the commutations
relations (2.28) restricted to the transverse modes. Note that here is where the normal-
ordering ambiguity rears its head with a constant in terms of d, by now, the arbitrary
dimension of the background spacetime. In the case of the R sector we obtain

1
LY = 5 > nd_y - dy, (2.42)
ne”z
d—2

where we have defined Ng = 3 _ nd", d., also we have made similar arrangements as

n-n’

in (2.42) and used the anticommutation relation (2.30). For the NS we get
LS = rbt b — a2 dor (2.44)
—-r-r 2
T>% 7‘>%
d—2
= Nng — —— 2.4
NS 48 ) ( 5)

where we have defined Nys = 37,1 rb*  bi. The operators N we have defined can be
thought of as number operators for the different sectors. Next, from the constraints follow
that (Lo — Lo) |[phy) = 0 on any physical state and this is the level-matching condition
at the quantum level we mentioned above. In order to determine the energy spectrum of
the superstring we need one thing more, that is, the Hamiltonian. Roughly speaking, we
look at its definition average along the closed string, and that gives us H ~ Ly + Lg, and
this is known as the mass-shell condition. These conditions determine the mass spectrum
of the superstring. However, we have to be careful because left-moving and right-moving
fermions can be in two different sectors and this gives rise to sector mentioned before and
written from now as RR sector, the RNS sector, the NSR sector, and finally to the NSNS
sector. By analyzing the mass-shell condition and the level-matching condition we obtain

* The Ramond-Ramond sector:
Lo+ LE+Lo+LE=0—aM?>=N+Ng +N+Ng, (2.46)
Lo+ L —Lo—LE=0— N+Ng =N+Ng, (2.47)

where M is the mass of the corresponding state by using g ~ p and p* = M?. The
massless state corresponds to the ground state in this sector, namely «,, |0) = 0 and

2 An important but weird result that is very useful to regularize infinite sums is

1 1
Z”:—ﬁ’ ZT:ﬂ

n>0 1‘>%

21



d, |0) = 0, the same also follows for tilde operators. Note that the second equation
above seems to be a true level-matching condition for left- and right-movers, we
create the same number of each one by applying the creation operators.

On the other hand, note that the algebra of the Ramond oscillation zero modes dj) is
given by {dlj, dy} = n*”, so by setting d = I'*/+/2, we get the Clifford algebra’

{TH, TV} =2, (2.48)

thus, this means that acting with d5 on the Ramond vacuum is equivalent to acting
with gamma matrices. In other words, the Ramond vacuum corresponds to a repre-
sentation of the Clifford algebra whose dimension is 2% — 32, therefore, we have
found Dirac spinors of 32 components. However, the proper vacuum we have to
look at is the tensor product B

0) ® [0 (249)

and we know from the representation theory of the Lorentz group that the product
of two spinor representations can be decomposed into vector representation with a
bosonic behaviour. The upshot is that we obtain b~osons from the RR sector. Also,

note that by applying the creation operators d’,, d', we get fermions but its tensor
product will again correspond to bosons.

¢ The Ramond-Neveu-Schwarz sector

- - d-2
o/ M?* =N+ Ng + N + Nyg — ——— (2.50)

16
-~ - d—2
N+Np =N+ Nys - —= (2.51)

It seems we get into trouble, the lowest energy state that would have to correspond
to a solution of the RNS vacuum is a negative mass state, again we have found
a tachyon. For a moment, consider the first excited state which corresponds to
N =Ng = N =0and Nyg = % We find that the first excited state is massless
provided that the dimension of the background spacetime is d = 10, therefore
consistent with Lorentz invariance. This dimension is usually known as the critical
dimension of the superstring. However, one may worry whether this is consistent
with the other sectors. Surprisingly, the answer is yes. But, even worse, we associate
the oscillation modes of the string with the quantum states of fields in the background
spacetime. Thus, this suggests that the supersymmetry of the worldsheet must
somehow be translated into supersymmetry in the background spacetime. So, the
number of difficulties found in the construction of a consistent quantum superstring
is enormous, it is tempting to give up. We won’t do it. In fact, we can see what the
first excited state corresponds to by acting with b" /2 into the NS vacuum

0" 19 |0)ns - (2.52)

This is a vector with d — 2 polarizations, so consistency with Lorentz invariance
demands that this is a representation of the little group SO(8), we have a vector
boson in spacetime. However, the proper thing we need to examine is the tensor
product* N

0 @ [O)xs » (2.53)

3See Appendix B
“We still need to discuss how we are going to address the negative mass states.
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where the R vacuum is a spinor, and this does not change by acting with the vector-
like creation operators as we already discussed. In contrast, by acting with b°  any
number of times on the NS vacuum, we obtain tensor representations of the Lorentz
group. Therefore, we find that the RNS sector produces spacetime spinors.

¢ The Neveu-Schwarz-Ramond sector

- - d-2
O/MQZN—FNNS—FN—FNR—T, (254)

~ d—2
N+NNs:N+NR+T- (2.55)
We can apply a similar discussion to the NSR sector. In the end, the analysis boils
down to the statement that the NSR sector describes spacetime fermions.

¢ The Neveu-Schwarz-Neveu-Schwarz sector

~  ~ d—2
o/M2::N+NNS+N+NNS—T, (2.56)

N 4+ Nys = N + Nys . (2.57)

Note, the NSNS sector has a ground state with negative mass. However, if we
consider the first excited states corresponding to (" /25{ 1/2)([0)ys ® 0)ng)> We
obtain the first massless states, provided that d = 10, as we found before. Again,
using a similar reasoning as before, this has to be a tensor representation of the little
group SO(8) in order to be massless.

From the previous analysis, it is not clear how to obtain the normal ordering constant,
but it can be related to the critical dimension. Indeed, in each sector, it is given by

(2.58)

aR:ZiR:O

ans = aNs = - - (2.59)

N — -

Also, we have already pointed out other problems with the superstring energy spectrum
and these constants are one of them. For instance, we need to check if the number of
spacetime bosons is equal to the number of spacetime fermions, which, a priori, there
is no reason to believe will be the case. The quickest way to see this is by looking at
the RNS sector. Firstly, the NS vacuum corresponds to a scalar of negative mass, but if
we look at the R sector, there is no fermion state with similar characteristics of negative
mass. We can go further since the Ramond ground state corresponds to a massless Dirac
spinor of 32 components. On the other hand, the first excited massless vector boson of
the NS sector gives rise to 8 polarization states. This is a problem because, in principle,
any hope to have spacetime supersymmetry requires, among others, the same number of
bosons and fermions degrees of freedom. We can do similar observations for the NSR
sector. Additionally, we might reasonably wonder whether there is a kind of degeneracy
at each of the mass levels to be fixed. There is a way to deal with these problems, and that
way of solving each obstacle is known as the GSO projection [163, 164]. It turns out that
from the new viewpoint to symmetries and anomalies by the classification’ of anomalies
via invertible phases, it is possible to make a systematic study of the GSO projection at
the level of the worldsheet, see [165, 166].

’See Appendix C
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First of all, it projects out the negative mass states of the NS sector, implying that
the first excited state becomes into the ground state of the NS sector, corresponding to 8
vector boson degrees of freedom. On the other hand, in the R sector the first massless
state 1s a fermion with 32 complex components. However, it is possible to impose a reality
condition over spinors, a Majorana condition, thus we are left with 32 real components. In
addition, we have completely forgotten the supercurrent constraints. It turns out that one
of those constraints, I |phy) = 0, corresponds to a generalized Dirac equation, in fact, it
is known as the Dirac-Ramond equation. Nevertheless, for massless states, it is only the
Dirac equation I'*0), |phy) = 0. Therefore, this allows us to reduce the fermions degrees
of freedom to 16 real components. Finally, in even dimension, we can define a matrix
['y1 = [’y - - - I'g which must be thought of as the 10-dimensional version of the Dirac
matrix 75 in four dimensions. Consequently, a fermionic physical state satisfies a chirality
condition I'j; [phy) = =4 |phy). This is such that we can define a projection operator
P. = %(1 + I'y1) projecting out one chirality or the other reducing the fermions degrees
of freedom to 8, this is known as the Weyl condition. This turns out to be consistent
with the GSO projection, indeed, to construct the GSO projectors we need the chirality
matrix. In conclusion, we have projected out the negative mass states and the counting of
bosons and fermions matches. Even more surprisingly, this GSO projection still works
for massive states where a Weyl condition is in tension with massive fermions in the sense
that a massive Dirac operator does not commute with the chirality operator. However,
as we mentioned, a systematic study of the GSO projection comes from the theory of
superconductors in Condensed Matter Physics. We invite the interested reader to revise
the literature. We will not say more on this, instead, we will try to extract the massless
spectrum of the five supersymmetric strings, again, keeping in mind all the warnings we
have tried to make explicit in our discussion. The spectrum of the five superstrings turns
out to be spacetime supersymmetric but we will not try to prove that important feature of
these theories. We will be content to proceed by only verifying the match between bosons
and fermions.

The rough idea of the GSO projection operators goes as follows. One can define the
operators

Pys = (—1)" 212t P = Ty (= 1) Zn e (2.60)

One for the NS sector and the other for the R sector. The claim is that if a state in the NSNS
sector has an odd number of b’ . and odd number of Bi_r survive the projection, otherwise
we can safely throw it away. In other words, we keep states of positive Png parity. For
example, Png|0)yg = —]0)yg. thus this state is projected out and corresponds to the
annoying negative mass state. Whereas, the first excited state b /26{1 /2 |0)xg survives
the projection. On the other hand, in an R sector, involving the projection Pg we have two
possibilities depending on the chirality of the ground state, from which excited states are
built. Therefore, creation operators can build upon a Pr-positive ground states |0") or a
Pr-negative ground states |0"). For definiteness, we can choose left- and right-moving
states Pr-positive such that the massless spectrum is given by

09002105+ By [Oxs®I07)n [0 )a® b 1o [0+ By [B)s® bl 1720}

(2.61)
and this corresponds to one of the 10-dimensional superstring theories known as Type I1B.
This massless spectrum is described by N' = 2 supergravity in the low-energy limit, while
massive states are far enough from the massless level to be taken into account, and for
anomaly purposes we do not care about massive fields. However, they are important for
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the UV completion of the theory if string theory can be thought of as a consistent theory
of gravity, see. Roughly speaking, N/ = 2 corresponds to the number of supersymmetries
which is linked to the presence of two gravitinos in its massless spectrum. From its
construction, it has a spacetime chiral fermion spectrum. Each of these massless spectra
furnishes a representation of the SO(8) group. We will not go into the details of the
representation theory of this group but let us mention a couple of points. The first state
in (2.61) transforms in the tensor product representation 8, ® 8, each of one has a spinor
index, thus are representations of the double cover of SO(8), namely Spin(8), while objects
with vector indices transform in representations of SO(8). The second corresponds to
§V ® 8, the third to §S ® 8, and finally §V ® 8, which can be decomposed as follows

8,08, =1®2835,.
8, ® 8 = 8, @ 564,

~ (2.62)
8, ® 8, = 8, @® 564,
8,28, =1028035.
This amounts to the following field content
Bosons — {é, gun, Bun, C, Cuw, C]J\}NPQ} ) (2.63)

Fermions — {WY, W5 1, 1o}

A dilaton, a graviton, the Neveu-Schwarz or Kalb-Ramond field which is a 2-form coming
from the NSNS sector; a O-form, a 2-form and self-dual 4-form coming from the RR
sector; the RN'S and NSR sector give us two positive chirality gravitinos, which are spin-%
left-handed spinor with a spin and a vector index, and two right-handed spin—% spinor
fields, dilatinos. Thus, Type IIB is a chiral theory, thus anomalies like in four-dimensional
chiral fermions theories are potentially dangerous. However, we must mention that, in
contrast to the four-dimensional case, for the Type IIB theory, our concern will be with
parity-violating gravitational couplings since there is no gauge vector bosons.°

The other inequivalent possibility corresponds to choosing different chirality for the R
ground states such that the massless spectrum is given by

07)R®I07) g s bL1/010)xs@[0T) g s 107 )R@ D)0 [0)ng 5 DLy [0)ng®@ DLy )0 |O)ys

(2.64)
We can do a similar analysis to get the massless spectrum corresponding to a nonchiral
theory involving the representation 8 that describes one chirality, and the representation
8. describing the other chirality, as well as the vector representation 8,, leading to Type
ITA superstring. In the low-energy limit, this theory is described by N = 2 supergravity.
At least for this work, this theory will not play any role, we will not say more on this.

Up to this point, we have not said anything about open strings, in part because the clas-
sical and quantum analysis is not that different from the closed string. There are subtleties
with boundary terms, therefore, there is an issue with possible boundary conditions, apart
from that, the analysis does not change too much. The interesting case arises when we
allow mixing between Neumann and Dirichlet boundary conditions due to the possibility
of having open strings ending on extended objects, the well-known D-branes [7]. The
important point is that we can attach degrees of freedom to the ends of the open string,

SThis is not entirely true since Type IIB has a global S-duality symmetry given by SL»(C) has to be gauge
for reasons that we will not discuss here. But interested readers on this amazing subject should view [118].
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or charges, known as Chan-Paton factors. For oriented strings, these charges transform
under the fundamental representation of U(/N') on one end, and under the conjugate rep-
resentation on the other. At the level of the massless open string spectrum, this adds two
extra labels to the vector states o’ ; |0, a, b) transforming under the fundamental and anti-
fundamental and by representation theory arguments this can be associated to the massless
gauge bosons’ of U(N) since N ® N = 1 @ Adj. Keeping in mind this, we can go
through the detailed quantization of the open string, and obtain the full massless spectrum
as we did for the closed string. However, something interesting happens when we consider
unoriented strings. This refers to strings whose quantum spectrum is invariant under a kind
of worldsheet parity operation. One can realize this operation over the mode expansion of
the fields, determine how the oscillation modes behave, and then translate that information
to the quantum states. It turns out that the massless vector bosons we already mentioned,
now transform under the adjoint representation of either SO(N) or Sp(NV).

Therefore, we have obtained gauge bosons at the level of 10-dimensional strings,
which are absent in the discussion of the closed string. However, note the following. At
the level of the previous discussion, there seems to be no way to decide if the two groups
are consistent quantum mechanically, namely, there are chiral massless fermions in the
R sector of the open string which are the superpartners of the gauge bosons, as is also
required by supersymmetry, which couple to each other via a covariant derivative, as in
any gauge theory, and this gauge coupling could be parity-violating, thus it is fair to ask
if this is well defined for both, either, or neither of the two gauge groups above. We will
see more and check this later. By now, we continue observing that if an open string can
end somewhere, it seems reasonable to have a situation where the open string ends join
together to form a closed string. Actually, a consistent system of open superstrings requires
closed superstrings, but this requires introducing a kind of parity operation on the closed
string also, giving rise to a theory of closed unoriented superstring, such that it projects
out one of the gravitinos. As we saw, Type IIB or ITA contain two gravitinos, while the
open superstring massless spectrum contains only one of them, and this is the rationale
of this orientation operation also on closed strings. On the other hand, consistency of the
closed worldsheet parity operation with the chirality conventions we choose in the closed
massless superstring spectrum, already discussed, demands to focus on unoriented closed
Type 1IB superstring.

In the end, this discussion boils down to the A” = 1 Type I superstring theory with G
gauge bosons, that is, a massless spectrum given by a combination of a parity invariant
Type IIB closed superstring massless spectrum and a parity invariant open superstring
massless spectrum

Bosons — {®, gy, Avn, A%} (2.65)
Fermions — {¥" 4, A\?}, (2.66)

consisting of a scalar field, the dilaton; a 10-dimensional metric, the graviton; an anti-
symmetric potential, a 2-form; a gauge vector boson, a Lie-algebra valued 2-form; a spin
3/2 spinor field, a left-handed gravitino; a spin 1/2 fermion, a right-handed dilatino; and
a spin 1/2 spinor, a left-handed dilatino.

We stress again that at this point there is no way to decide the proper G-gauge group.
In fact, the choice of the appropriate gauge group G was accompanied by what is now

7A more precise description is given through vector bundles over the worldvolume D-brane and by
introducing an equivalence was realised that D-branes are classified by K-theory [167]. However, one often
thinks of D-branes as the sources for RR p-form fields [7].
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known as the first superstring revolution. It is a highly non-trivial result.

There are two more supersymmetric strings known as Heterotic closed superstrings
[168,169], but their construction is sophisticated machinery. Let us not explain it here, it
would take too much space to go through any detail of that construction. The important
point of those theories is about the massless content of states since these heterotic super-
strings allow for gauge bosons. These two supersymmetric heterotic strings have a chiral
spectrum and, in principle, one could have an arbitrary gauge group GG. However, consis-
tency with N = 1 supersymmetry, for example, requires that the gauge groups have to be
SO(32) or Eg x Eg. At the level of the worldsheet theory is not completely clear that this
has to be the case, but spacetime supersymmetry, as well as chiral anomaly cancellation, is
consistent only with those groups as we will see later. For future reference, we write down
the massless content of the heterotic strings where the index a can, in principle, transform
under any simple classical Lie gauge group

Bos'ons — {o, gun, Bun, A4y}, (2.67)

Fermions — {U" ¢, \“} .
The important point to note is the chiral massless content of fermions. In particular, the
super- Yang-Mills multiplet consists of gauginos of one chirality, not both. Therefore, these
theories are expected to suffer from quantum anomalies due to parity-violating gauge and
gravitational couplings. This concern also applies to Type I superstring.

2.3 Eleven-dimensional supergravity

There is one theory in eleven dimensions known as M-theory whose low-energy limit has
a very simple massless content consisting of a metric, a 3-form potential, and a Majorana
spin-3/2 spinor. The energy is described by 11-dimensional supergravity [131]. It not
entirely clear what M-theory is. However, itis extremely relevant in the framework of string
dualities [8]. It turns out that in testing the web of string dualities, eleven-dimensional
supergravity is not enough to describe the low-energy limit of M-theory. Indeed, this
perfectly matches with the fact that M-theory allows for M-brane solutions given by an
M?2-brane and its magnetic dual, an M5-brane. We will see how this requires refining the
eleven-dimensional supergravity to guarantee the quantum consistency of the low-energy
limit of M-theory from an anomaly point of view [132].

Throughout the discussion, it is noted that the low-energy description of the five super-
strings corresponds to 10-dimensional theories, concretely, to 10-dimensional supergravity
theories. This has given rise to an enormous amount of research in trying to make contact
with the four-dimensional world around us and serious efforts are still ongoing to reach
that goal. This is the subject of string phenomenology. The more recent subject of intense
research also connected to phenomenology is the Swampland program [9]. By now there is
also an increasing interest in understanding the nonsupersymmetric corner of string theory,
see [136] and reference therein. Also see [125] for a seek of nonsupersymmetric solutions
in string theory by using pure topological arguments via the cobordism conjecture [25].
In our case, we will use perturbative anomaly cancellation to explore this nonsupersym-
metric corner, then we will briefly mention the SO(16) x SO(16) nonsupersymmetric
string [66, 170] where perturbative anomaly cancellation played an important role in its
discovery.
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2.4 Non-supersymmetric strings

As we saw above the 10-dimensional superstrings are highly constrained by supersymme-
try. However, it turns out that there are known 10-dimensional nonsupersymmetric strings
that are tachyon free. They are listed below, but we will say a few words only of the
heterotic, which is somehow connected to our later work.

* The Sugimoto model [171]
* The Sagnotti model [172,173]
* The heterotic model [66, 170]

The heterotic model is obtained from the heterotic models already mentioned above,
SO(32) or Eg x Fg. For instance, one can use the Es model and define a kind of projection
operation in terms of the left and the right fermion operator (—1)z and (—1)% and the
lattice model defined in the construction of the Eg x FEjg theory. This projection operator
projects out any source of purely gravitational anomalies, particularly the gravitino. Then
we are left only with charged chiral fermions. As a result, this model is free of tachyon
instabilities. What is even more surprising is the fact that the perturbative anomaly of this
model is cancelled, rendering the theory anomaly free and tachyon free. We will check
anomaly cancellation later on in the text.

In the next chapter, we will review what we mean by an anomaly in a field theory and
we will present a new formulation of this concept in the case of gauge theories.
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Chapter 3

Symmetries and Anomalies

3.1 Anomalies: A modern takeaway

An anomaly in a symmetry of a physical system, particularly in a QFT with a lagrangian
formulation, can have several, but related meanings. Then, very generally, by an anomaly
we mean, a classical symmetry is violated by quantum effects. However, this is a bit
ambiguous. For example, there could be a global symmetry at the classical level which
is eventually gauged by coupling a classical conserved current to a background vector or
gauge field. As a consequence, we define a covariant derivative, and the theory is now
invariant under a local symmetry instead of a symmetry independent of the spacetime
coordinates. It is stressed that we consider the background vector field as a nondynamical
field. Next, we could move to the quantum theory and ask for the consistency of this new
setting. It turns out that, under certain situations, we can find obstructions in this process at
the quantum level, namely, there could be certain Fyenmann diagrams that can give rise to
anomalous effects. More precisely, if we want to regularize one-loop Feynman diagrams,
it is impossible to do it in a completely gauge invariant way (see Introduction 1). This
is what happens for chiral fermion theories, and more generally for any chiral theory as
we will see later. The chiral anomaly discovered by Adler [49], and separately by Bell
and Jackiw [50] is an example of this, which was an extremely important result to explain
an anomolous behaviour in decaying process'. More generally, this is actually related to
what is recently known as a ’t Hooft anomaly [51] in the literature. It is worth pointing out
that this does not represent a catastrophe, only means that the symmetry is not gaugeable.

You may think now, what if we decide to lift the background field to a dynamical one.
Let us discuss this point using path integral quantization of a chiral fermion system coupled
to a dynamical gauge field associated with some continuous symmetry group (G, mainly
because this work is about anomalies by looking at the behaviour of the partition function’
after we introduced a gauge coupling. This essentially means that we could integrate out
this field of the path integral. First, we integrate out fermions, leading to what is usually

! A couple of words about the statement that the word anomaly is overexploited. Up to the knowledge of the
author, Particle physicists used the word anomaly when they find or look at particle decaying processes and
find mismatches between theory and experiment which is not alien because that was happening when [49,50]
discovered the chiral anomaly, eventually accounting for 7° decay.

2Maybe, a more precise way to say this is by talking about the quantum effective action. Look at
equation (3.1)
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called the fermion path integral
Z[A] = /DA Det(i D) exp(—S[A]) = /DA exp(—Ser[A]) 3.1

where we have assumed a well-defined eigenvalue problem for the Dirac operator i D
as usual in Euclidean signature. Clearly, if this is plagued with anomalous Fyenmann
diagrams, it does not make any sense to try to compute (3.1) by integrating out the gauge
field A. In four dimensions, the anomalous diagrams correspond to one-loop triangle
diagrams, where one of the vertices may have a parity-violating gauge coupling and two-
vector coupling, for example. On the other hand, the quantization of a dynamical gauge
theory requires gauge invariance at any level, the fact that one can introduce an equivalence
relation or a redundancy in more physical terms, in the space of gauge fields is essential
to define the quantum theory. What is more, this redundancy has consequences for the
Hilbert space of the theory, so breaking down gauge invariance is absolutely dangerous
in contrast to the case when A is only a probe background field. We saw something of
this in Chapter 2. For example, unitarity is lost among other problems. Our discussion
here has been about the well-known gauge principle. This analysis is usually done in flat
spacetime in any advanced course of QFT with A a gauge field lifting the usual derivative
to a covariant derivative, hence leading to the fundamental property of gauge covariance.
However, we have to generalize this to any spacetime, consequently, global properties of
the nontrivial spacetime require that A has to be seen as a connection on a principal bundle
and this is the proper way we have to think about gauge theories. See Appendix B for an
introduction to these concepts and the notion of bundles.

As a consequence, real problems come about when we move to gauge theories since
there is no way to escape without assuring that our gauge theory is anomaly-free if we
intend to use it to describe our world, as actually happens. Things become even harder if
we consider gravity. Since this can also be formulated as a gauge theory, one may wonder
whether the coupling of gravity to a chiral theory could lead to anomalies [52]. Actually,
this notion of symmetries and anomalies goes further in the sense that to consistently define
a general theory 7 on a d-manifold M one needs to be able to assure all the data [100] in
order to guarantee that 7 is well defined, for example orientability of M/. However, all the
choices that are required could exhibit topological obstructions and one needs to deal with
these issues to properly quantize the theory 7 which, in the end, is the final goal. Some
of these data correspond to

* M must be (un)orientable and admit a (s)pin structure
* M must admit fiber bundles
* the absence of both perturbative and nonperturbative anomalies

To guarantee this is a highly nontrivial question. Fortunately, in the mathematical literature
there exist ways to measure the obstructions to assure the needed data, mainly in terms of
characteristic classes, see Appendix B.

The first point involves the tangent bundle structure of a manifold, more physically, the
background metric or spin connection if 7 refers to fermions. We need to figure out how the
topology of this tangent structure affects physics and that, basically, amounts to measuring
its nontriviality along the base M. The second point is related to the first one, involving
a continuous gauge symmetry group GG and a G-connection on a fiber G-bundle Fg. It is
remarkable that certain configurations of fields in the path-integral capture this information

30



and, even more, it can be translated into well-defined mathematical objects as we will see.
The third point has to do with the fact that the partition function Z7[A]* under a general
transformation, coordinate transformations or gauge transformations, could happen that
the fermion path integral

Zri]A) # Z7]A). (3.2)

However, 7 and 7 are equivalent theories by definition, hence physics must be indepen-
dent of choosing one theory or the other. It has been understood a long time ago that
the ambiguity in equation (3.2) manifests itself as a phase ambiguity and this is, roughly,
related to the third point as follows [58] (see also [59,60]). Let Q/G be the space of
gauge and/or spin connections Q, modulo an identification by gauge or diffeomorphism
transformations G, connected or not with the identity. Generally, a transformation will
be denoted as g. The space Q/G can be naturally viewed as the base space of a line
bundle, £ — Q/G. Note that the fermion path integral is a section of this bundle, hence
if the line bundle L is trivial, then Z7[A] is globally well defined, namely Z7[A] € C.
More generally, for nontrivial bundles, we could consider parallel transport along curves
among nearby patches (connection) or along closed curves A, = (1 — s)A + sA9, with
s € [0,1] (holonomy) in the base Q/G. Therefore, it is natural to ask for the connection
and holonomy on this line bundle £. It turns out that perturbative anomalies correspond-
ing to transformations g connected with the identity of G are related to the connection
and nonperturbative anomalies* associated with transformations disconnected from the
identity, to the holonomy. Consequently, the partition function is interpreted as a section
of this line bundle instead of a complex function. As we will see, there are well-defined
mathematical objects detecting both perturbative and nonperturbative anomalies.

This is the main topic of this thesis. We will review very quickly the formulation of
a gauge theory anomaly as is done in any Advance QFT book. It is again pointed out
that this will be done by focusing on the path integral formulation instead of a Feynmann
diagram discussion. Eventually, we will spend some time reformulating it in a more
modern fashion.

3.2 Old fashion

Let £(1)) be a lagrangian density, ¢ be the fields of a physical theory, for reviews on this
section see [56, 145], also [174,175]. Then, one can write down an action S and study the
classical dynamics of that system. We mainly focus on the symmetries. To begin with,
consider the following transformation in the fields §¢) = € T'(¢)) where € is an infinitesimal
constant parameter, particularly for a continuous symmetry. If this is a symmetry of £(¢))
then its variation d£(v) vanishes. In fact, it is allowed that the lagrangian varies up to a
boundary term but this does not modify the upcoming discussion. Then, recalling what
Noether theorem says, we can find a conserved current and a conserved charge by making
the parameter of the transformation spacetime dependent, then varying the lagrangian we

3Always we write, A refers to, the choice of manifold, structure, background fields, and all the data we
need to define 7

“Note that this way of looking at anomalies is perfectly useful to deal with anomalies on discrete symmetries
where does not make any sense to talk about perturbative anomalies. A discrete symmetry includes for
example the choice of orientation.

31



find’

6L =deAxJ, (3.3)

where J = J(1) is a functional of the fields, a current, and * is the Hodge star. This
corresponds to a change in the action given by 6S[¢)] = [de A =J. By considering an
on-shell field configuration, 6S[¢/| = 0 for an arbitrary variation 1), it follows the current
conservation law dx.J = 0, which is basically Noether’s theorem. There is also a conserved
charge given by Q[¥] = fz *.J , for a codimention one manifold >. Since our focus is
on fermions fields, we can see the four-dimensional free massless Dirac Lagrangian as an
example

L(Y) =i O (3.4)
where 1) and 1) can be considered as independent variables in Euclidean formulation. From
that, one can determine that is classically invariant under phase rotations ¢ — ¢*“¢) with
conserved 1-form current J = J,dz* with J, = 7,1, such that d * J = 0 by using the
equations of motion. In determining ./, we consider the parameter v = «(z) as spacetime
dependent.

Next, one could introduce a coupling between the current and a one-form A = A, dz*,
where A, is only a vector, to the Dirac Lagrangian as follows

qAN=J, 3.5)

where ¢ can be considered as a coupling constant. By doing this one immediately observes
that by considering the transformation ¢» — €**(®)¢ with a local phase rotation, the Dirac
Lagrangian with the coupling (3.5), preserves local invariance provided that A, transforms
nontrivially, A, — A, + d,«(z). This can more properly be stated with the reformulation
of the usual derivative in terms of the so-called covariant derivative D = d —iA. Thisis the
gauge principle we mentioned in the introduction to this chapter for abelian theories, that
is, the group of continuous transformations is abelian. This basically corresponds to the
coupling of fermions to the electromagnetic field and to one of the greatest achievements
of the last century. Obviously, when A is considered as a dynamical field, the story above
is not complete without the kinetic term of A given by

1

— FAxF, 3.6)

2q
where F' = dA is the field strength associated to the electromagnetic potential A. This
discussion can be generalized to non-Abelian groups as well, and these are known as
Yang-Mills theories. The main difference is that the field A is a Lie-algebra valued field
as well as F’ and the potential A is subject to the gauge equivalence given by

A= A=gtAg+ ¢ dg. (3.7)

We will not say more about these theories here, but we return to this later. However, we
point out that this is the most accurate way we have to describe the fundamental forces of
nature. This is the fundamental reason to spend a lot of time studying these theories.

On the other hand, continuing with Abelian theories, one might also consider parity
transformations by using the 75 matrix. This is a symmetry of (3.4) whose conserved
current is J4 = 1y 751, where the subscript A is for axial, under a transformation

SFor a brief introduction to differential forms and conventions see Appendix B
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U = €', The conservation law is 9, J% = 2ima)ys1» which must be zero because parity
is a symmetry only for massless fermions as in (3.4). We emphasize the symbol m for
mass in the axial current conservation because the absence of a mass term for fermions
is behind the issue of an anomaly as we will see. This is fine classically but, what if we
move to the quantum regime?

As a next step, we need to extend the previous analysis to the quantum level and the
strategy will be the Euclidean partition function®

Z[)] = /D¢exp (—S[w] +/dde¢> , (3.8)

where D) is the integration measure and J are sources for v). We now consider a transfor-
mation in the fields given by ) — ¢’ = ¢ +¢€(x)T' (), where € is an arbitrary parameter as
before, that depends upon the spacetime coordinates. In the corresponding new variables,
the partition function is

Z[) = / Dy exp (—SW] + / ddew’) : (3.9)

We have essentially made a change of variables thus, the partition function is unchanged
under this, namely, we are considering a different field configuration but infinitesimally re-
lated to the original one. Hence, under the above transformation, the measure of integration
may change as

Dy = D det M ~ [Dy](1+40A), (3.10)

where, we can think of §.4 as the infinitesimal version of the Jacobian associated with the
transformation 0, then, by using S[¢'] — S[¢] = §S[¢], we obtain

(=5 S[] +/JT(¢) LA =0, G.11)

where the angular brackets denote the functional average (O) = N [ Dy O exp(—S'[¢])
for O any operator of the theory. Equation (3.11) corresponds to a set of identities known
as Ward-Takahashi identities. It turns out that this can be transformed into a set of relations
among Green’s functions through the source J. However, the important observation for
us is the fact that the measure is not necessarily invariant under a redefinition of the field
variables. This is essentially the key observation to figure out if a classical symmetry
can be broken by quantum effects. To see this, set the source to zero, and then from the
previous discussion we know that §.5[¢)] is proportional to the classical current conservation
equation. However, at the quantum level, we obtain

(dxJ)=A, (3.12)

thus, the classical current conservation has been violated by purely quantum effects. More
generally we may work out identities among correlation functions by using the source J
as usual in QFT. However, it is reasonable to wonder whether local counterterms coming
from sources, for example, could be introduced in order to cancel the path-integral measure
contribution A. It turns out that this is not possible and what we will consider as genuine

6Since we shall focus mainly on chiral fermions theories, from now we suppress the subscript 7 of the
partition function stressed in the introduction.
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anomalies are terms that cannot be cancelled by any local counterterm.” In other words,
the anomaly is a purely topological contribution coming from the nontriviality of the
geometrical structure mentioned before and, as we will see, there are formal mathematical
expressions measuring this information in terms of Index of Dirac operators [176].

One specific example is the Abelian anomaly [49,50]. Consider massless fermions
coupled to a U(1) background gauge field A, as we did before, then we have to analyze
the partition function

Z[A] = /wa exp(—S[y, ¥]), (3.13)
Shp,v] = / d*zi Py, (3.14)

where ) = y*D,, with D, = 8, — iA,, the Dirac operator. The classical action has the
chiral U(1) symmetry

Y= e BN h— e BN (3.15)

where the parameter « is independent of the spacetime coordinates. Now consider a
spacetime-dependent parameter. Thus, if we repeat what we have just discussed and after
a careful computation,® one finds that the quantum conservation of the chiral current breaks

down by a term given by
A:LF/\F. (3.16)
472

There are various ways to compute this, for example, the Fujikawa’s method, or the
diagrammatic approach computing (0|7 J (x1)J" (x2)J*(x3)|0). Each of these methods
has its own advantages showing different ways to understand what is going on. But,
the conclusion is equivalent, a classical symmetry is not necessarily a symmetry in the
quantum realm. In other words, it is impossible to regularize in a completely gauge
invariant way contributions coming from certain loop diagrams. Even though, in 4d,
quantum field theorists are used to infinities, there is no doubt that regularization of those
infinities is a cumbersome procedure. Fortunately, there is an approach connecting with the
mathematical theory of indices of Dirac operators. Roughly, one can make the connection
as follows.

In Euclidean signature i) is a hermitian operator, then one can study an eigenvalue
problem

Do =M, (oulo) = / dhoe(@)p(e) = o (3.17)

where we have introduced a complete orthonormal basis { ¢y, } where ), are the eigenvalues
of iI). Now, employing the chirality operator, one can define two sets, the set of positive
n, and negative n_ chirality eigenvalues, since {7s,1/)} = 0. In computing the index one
observes that the nonzero eigenvalues come in pairs of opposite chirality and they cancel
each other from a certain regularized sum. For the zero modes, however, this distinction

"More precisely, the anomalous phase contribution — the anomaly — is independent of the scheme of
regularization we use to deal with the infinities associated to loops. However, we can manage to cancel it in
some cases with mild modification of our theory such as the Green-Schwarz method, as we will see later.
This is usually known as the anomaly cancellation conditions.

8This is a very long computation, besides we have to deal with infinities, as usual in QFT thus, we have
to introduce some scheme of regularization but the anomaly is always present.
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is not relevant. The index of the Dirac operator is defined as the difference between the
number of positive and negative chirality zero modes’

ny —n_ = Index(ilp) , (3.18)
and the anomaly in equation (3.16) its connected to the Index by
A = —2Index(ip) , (3.19)

and this is clearly connected with the statement of failure of quantum current conservation.
Additionally, the index of a Dirac operator is a very formal expression in Mathematics but,
there is indeed a well-understood procedure to connect this with the failure of invariance
of the effective action Z[A] under (infinitesimal) gauge transformations as well. We will
see more of this in the next subsection, as well as in the appendix B. But it is important
to say that this result has given a deep relationship between various areas of Mathematics
with deep consequences in Physics, perhaps, more notably in String Theory research.

There are various things to be mentioned from the previous discussion. Firstly, we
have gauged a global symmetry by coupling it to a fixed vector boson, but in trying to
preserve vector current conservation (and Bose symmetry), the axial current conservation
is destroyed by quantum effects. Hence, the gauging procedure is not allowed. However,
by looking at this phenomenon more carefully we can learn very important lessons as we
have already mentioned before. Also, we can extend this analysis to non-Abelian gauge
theories, where we find that the anomaly is now given by

1
A= 5 tr(FAF), (3.20)

where tr, is related to the trace of generators of the Lie algebra, and F' is now a matrix-
valued field strength taken values in the algebra, see Appendix A for more details.

A related observation here is about a gravitational anomaly. To couple fermions to
gravity we need to introduce a frame that permits us to lift the general group of coordinates
transformation to a subgroup containing spinor representations, see Appendix B for a brief
discussion on this. Once we have achieved this, by doing similar computations to what
we have done in the U(1) chiral anomaly, we obtain

Az%m@% (3.21)
where p; (R) is the first Pontrjagin class given in terms of the Riemann curvature two-form
R. From one-loop diagrams this is related to a triangle with the insertion an axial current
and the insertion of the stress-energy tensor on the vertices leading to the fact that it is not
possible to maintain current conservation at the same time we preserve the conservation
of the stress-energy tensor.

A second point is related to the fact that we could extend the fixed gauge boson to a
dynamical gauge field. Actually, we have to treat genuine gauge theories and consider
possible gauge anomalies. Nature demands to do so. Also, an important observation of
the previous discussion is that anomalies could only be expected in chiral theories, namely
gauge theories coupled to Weyl fermions. Theories that allow a mass term like those
constructed with Dirac fermions can always be regularized in a completely gauge invariant

9See Appendix B for the definition of Indices of Dirac operators and our conventions for these expressions.
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way by using Pauli-Villars regularization, for instance, preserving all the symmetries. In
fact, these theories are known as vector theories and are not part of our work.

A third point related to the previous paragraph that we need to discuss is the following
[134]. Assuming that a fermion ¢ is transforming in some complex representation (o (g))¢
of a symmetry group G, we may define the complex conjugate representation such that
w transforms as the complex conjugate ¢ under all the symmetries. The action of w is
the complex conjugate of i), from which follows that the partition function of ) & zp

corresponds to Zy Z; = |Z,|?. In fact, this is related to the fact that we can introduce

a mass term consistent with all the symmetries and Fermi statistic, habesB gbaazzﬁb, where
£ is an anti-symmetric bilinear form and h% is a symmetric bilinear form, thus from the
previous paragraph follows that | Z,|? is anomaly free. Correspondingly, we find that the
anomaly corresponds to a phase since |Z,| is well defined. This also leads us to conclude
that fermions in a real representation can at most suffer from an anomaly given by a sign
ambiguity.

Let us see now what the source of the anomaly is in a gauge theory for concreteness,
but the same kind of analysis applies to gravity, using the index description and the formal
machinery of bundles which is the proper framework to study gauge theories is complete
generality.

Let A be connection for a G-group in a principal G- bundle P; — M, where M is
the d dimensional spacetime manifold where the physical system is defined, and Py is a
fiber bundle with G a Lie group. Let us consider the fermion partition function Z|A] after
integrating out the chiral fermions. Thus, the traditional statement of an anomaly is the
lack of invariance under a gauge transformation given by a nonlocal phase factor involving
a (d + 1)-manifold X such that M is the boundary of X, so that

Z[A] # Z|A%) = Z[Alexp (—2m' /X AdH) ,

A=A =g tAg+gtdg, g:M—G,

(3.22)

where the phase A, is a (d + 1)-functional of the connection A. However, we note here
that g could be an element connected with the identity of GG or an element disconnected
from the identity component of (7, and this distinction is crucial in understanding that there
are two sources of anomaly. We focus first on infinitesimal transformations, which are
transformations connected with the identity of G. So, a gauge transformation is a function
g : M — G whose infinitesimal form implies that

§,A=Dv, 6,F=v,F], (3.23)

where D is the covariant derivative as before, v = v(x) is an infinitesimal parameter also
taking values in the Lie algebra of G. This allows us to determine the variation of the
partition function in terms of a certain (d + 1)-form [82, 177, 178] that will be determined
in a moment

Z[A+6,A] # Z[A], 6,A=dv+[A0], (3.24)
Z[A+ 6,A] = Z[Alexp (—2m’/ Agi (v, A)) (3.25)
X

These anomalies are called local or perturbative anomalies essentially because they can
be seen by perturbative methods [53]. On the other hand, some transformations cannot be
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deformed to the identity and are not visible at the perturbative level [71]. Therefore, they
are more subtle to be determined. This kind of anomaly is known as a global'” or non-
perturbative anomalies. The first example of this was the SU(2) nonperturbative anomaly
determined by Witten [71] by studying the fermion partition function of a chiral fermion
coupled to SU(2) gauge theory via a connection A,, valued in the fundamental represen-
tation under gauge transformations'' g classified by a homotopy group, m,(SU(2)) = Zs.
The Dirac action is written as usual

S[6, 3, A] = / P i (B, © 1) + A%(1# @ 0%)) Py,

(3.26)
= / d*z i P,

where P, = (1 +~°)/2 is a chiral projection operator over the space of left-handed Weyl
fermions.'> We have explicitly written that the ¢ field furnishes a representation of the
Clifford algebra as well as of the SU (2) algebra. This is such that its tensor product defines
a real representation, hence iI) can be seen as a real, anti-symmetric matrix. To determine
whether or not there is an anomaly in this theory is more subtle. The basic idea begins
by noting that the chiral Dirac operator is a real, anti-symmetric operator, and then it can
be put into a diagonal matrix of 2 x 2 blocks by orthogonal transformations. Each block
is composed of conjugate off-diagonal eigenvalues. Then, by studying the spectral flow
of these eigenvalues under the g transformation was determined that Z[AY] = —Z[A], so
the effective action is ill defined due to a sign ambiguity as expected for real fermions.
More generally, any gauge theory with an odd number of SU (2) doublets has an anomaly
determined by the so-called Mod 2 Index. This might be thought of as an index of the
SU(2) Dirac operator where the relevant part to be computed for the anomaly is the
Index(i/?) mod 2. This result suggested that one can study nonperturbative anomalies
of any (G-gauge theory by looking at the nontrivial homotopy groups of G. However,
this seems to miss something, namely, what happens if we couple our gauge theory to
gravity. Indeed, by studying a more subtle twisted structure defined by the tangent and
fiber bundle structure, Ref. [179] found a new SU (2) nonperturbative anomaly where the
spin structure is not required to consistently define fermions on an orientable manifold
M. Generally, one could ask whether there is any mathematical object like 74(G) that
captures information of the principal bundle as well as the tangent bundle. In addition to
these observations, the anomaly in the transformation g € [g] assumed that the spacetime
is topologically a 4-sphere but this is not always true, we would like to consider more
general spaces (see [111] for an illuminating discussion on this). It turns out that these
observations give rise to a new formulation of the story of anomalies.

In order to elaborate a bit more on the gravity side already mentioned in the previous
paragraph. One can consider diffeomorphism transformations of the fermion partition
function

daie Z[M], (3.27)

10Recall that to avoid confusion with the discussion of the previous subsection about global symmetries
we use the term nonpertubative instead of global.

"'The element g has to be thought of as a representative of homotopy class [g] € 74(SU(2)). Roughly
speaking, the equivalence relation between two representative elements g, g’ € [g] is defined by continuous
deformations of g into ¢’ underamap H : I x I — G suchthat H(s,0) = g(s) and H(s,1) = ¢/(s), where
s € I =[0,1]. Thus, we say that g ~ ¢’. whose equivalence class is denoted by [g].

12Recall that the breakdown of chirality is the signal of an anomaly, otherwise there is no anomaly.
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where we have written M instead of A to emphasize that we are going to consider dif-
feomorphisms of M. However, there is an equivalent formulation of this which leads to
determining gravitational anomalies in a closely related way as we did for G-gauge theo-
ries above [52,83]. This is achieved by introducing the orthonormal frame bundle as it is
explained in Appendix B. The upshot of this is that instead of studying diffeomorphism
transformations, we consider local Lorentz gauge transformations L and fermions couple
to gravity via a connection known as the spin connection [64,65]. This implies extend-
ing the covariant derivative to include this new piece so that the Dirac operator becomes
schematically into [) = v*D,, = e/oy* (0, +1A%T"+iw,, 030" ) where w,, o4 is the 1-form
spin connection which is anti-symmetric in the index o and 3, and 0®° = [y +]/8 are
the generators of Lorentz symmetry. The infinitesimal version of local Lorentz transfor-
mations under L5 = 0“3 +1*5, with ¥*5 = U 3(z) an infinitesimal spacetime dependent
parameter such that ¥,z anti-symmetric, corresponds to

(519(,0 = D??, 579R = [19, R] . (328)

Note the similarity with (3.23) when we look at gravity in the orthonormal tangent frame
formulation. This is essentially a gauge theory, correspondingly, preservation of local
frame rotations dye® = J9¢ 565 , under the action of the group of local Lorentz transformation
is fundamental to incorporate gravitational effects in a physical system. Besides, as we
said, the analysis of anomalies can be done in a similar fashion as we did only for G-gauge
theories.

On the other hand, for theories in odd dimensions, although there are not perturbative
anomalies, there is no reason to expect the absence of nonperturbative anomalies. One
example of this was first found in [ 180, 181] by Redlich and it is known as a "global" parity
anomaly for a doublet fermion (in the fundamental) of SU(2). Other important systems
are those with discrete symmetries [95, 106]. This is relevant for the Condensed Matter
side [146], for example, in the study of 3d superconductors and topological insulators with
time-reversal symmetry. This has been also useful in string theory [165,166]. A more
sophisticated example is M-theory in 11d where this theory can be formulated in a manifold
with a less known tangent structure known as Pin™ structure, due to a parity symmetry of
this theory [107, 182] (see also [183,184] for previous work on a spin manifold). With the
methods briefly discussed above it seems no obvious at all how to treat these examples.
Although we will not consider these more exotic cases in this work, we mention it as a
justification for a more systematic description of anomalies. We present a brief discussion
on this in the next subsection.

3.3 New fashion

As was described above the anomaly of a chiral fermion theory is the noninvariance of the
chiral partition function under gauge/diffeomorphism transformations. However, instead
of seeing this as a failure in preserving a gauge/diffeomorphism transformation, the new
viewpoint on anomalies consists in formulating our theory in a completely gauge invariant
fashion. Whereas, the anomalous phase'” is determined by a very special theory living in
a (d 4+ 1)-manifold X with boundary M, 9 X = M. This special theory is known as an
Invertible Field Theory (IFT) meaning that its Hilbert space is one-dimensional, therefore,
this is essentially a phase, the anomalous phase [185]. For chiral fermions, the idea is

13See Appendix C for a brief discussion on this matter.
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developed starting with massive fermions on X assuming that all the field theory data
needed to define the boundary theory that one is interested in extends to X. For, instance
if one wants a chiral fermion theory in the boundary M coupled to gravity is needed that
the spin structure of M, also extends to X [60] (see also [59]). The same is assumed if
the fermions are coupled to a connection of a principal G-bundle. This corresponds to the
data needed to properly define a field theory mentioned before in this chapter. Then, we
consider the familiar Dirac Lagrangian (note that this is also gauge invariant) [60]

L=VY(iDx —m)¥, (3.29)

where Dy = il) is the Dirac operator on the bulk manifold X coupled to a principal
bundle as well as gravity. Since X is a manifold with boundary, then we have to impose
certain boundary conditions. By imposing certain local boundary conditions it is possible
to have edge mode localized on the boundary M.'* The upshot of this analysis is that by
solving the equation of motion coming from (3.29) along with appropriate local boundary
conditions, in the large mass limit m — oo, we can obtain a boundary mode obeying the
following

(ast = D Wlox = (Yas1 — D =0, Dy =0, (3.30)

where 7,4, 1 must be thought of as a chirality operator constructed from the boundary gamma
matrices and the gamma matrix along the perpendicular direction to the boundary which
obeys the properties of a usual chirality operator, and D, 1 = 0 is the Dirac equation of a
chiral massless fermion mode on the boundary. Particularly, we have an anti-commutation
relation between the boundary Dirac operator and 744

Ya+1 Dy + Dar va11 =0, (3.31)

which is one of the basic properties satisfied by a chirality operator. The important point
to note is that the bulk theory on a closed manifold is clearly free of anomalies. However,
on a manifold with boundary, the situation has to be treated carefully. We will focus on the
partition function of this setup. It turns out that the Euclidean path integral is convenient
to prepare states. Thus, we can define a state |.X') by the bulk partition function belonging
to the boundary Hilbert space H(0.X ). We can think of the boundary condition imposed
before also defining a state on the boundary Hilbert space denoted by |L). Hence, we
would like to interpret the partition function of the boundary mode as given by

Zy ~ (LX) = Z(X,L). (3.32)

Note that the right-hand side of this expression is completely gauge invariant. Hence, this
would be a completely gauge invariant definition of the chiral partition function. However,
there are problems with this proposal. On the one hand, we assumed that all the structure
needed to define the theory 7y extends to the bulk X, and as we will emphasize later this is
a big assumption. On the other hand, the right-hand side has the problem that it depends on
what bulk we choose. Certainly, we could have chosen another bulk X" and, in principle,
we could do what we did using X. Thus, it is compulsory to measure that ambiguity. One
of the deep observations in describing this bulk-boundary setup is the fact that the Hilbert
space of certain bulk theories is almost trivially gapped in the sense that is one dimensional
in the large mass gap limit, in fact, in this limit the ground state can be completely isolated

14The subject of Dirac operators on a manifold with boundary is very subtle and we will not say anything
about it, see e.g. [186].
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Xclosed

Figure 3.1: A closed manifold under the gluing along a common boundary

and defined a projection operator in terms only of ground states Py = |Q2) (©2|. One
example on this kind of theory is (3.29). Therefore, with this observation and considering
the setup of Figure 3.1 we can compute the ratio

% = Z(Xclosed) ) (333)
where we have used (3.32), and Pgy. So the ambiguity in the choice of bulk is detected by
the partition function of the bulk theory, the IFT, evaluated on a closed (d + 1)-manifold
Xelosea Obtained by gluing X and X' along the common boundary M. We interpret this
as given the anomaly of the chiral theory on the boundary M, so the anomalous phase is a
partition function evaluated on a closed manifold X,s.q. This is an important and highly
non-trivial claim that captures the nontrivial information of the geometrical structure as
we will see. For chiral fermions, it was proven that the anomaly theory determining the
right-hand side of (3.33) is given by the Atiyah-Patodi-Singer (APS) n-invariant [59,60]

Z[Xclosed] = eXp(Qﬂ'in(Xclosed)) s (334)

by computing the regularized path integral of the bulk field W with a Pauli-Villars regulator
of mass m. Formally, this is given by

det(iD — m)

_— 3.35
det(iD + myg) ’ (3-39)

then, by taking m = m, and my — oo was found the anomaly theory of chiral fermions
in terms of the n-invariant. This a rather formal object defined by [101-103]

1 ) .
n=3 (Z sign();) + dimKer DX> , (3.36)

reg

where the \;’s correspond to the eigenvalues of the appropriate Dirac operator on the bulk
manifold X, and reg means we have to introduce some regularization scheme. What is
more, this general description is also valid to any dimension. Therefore, the well-defined
partition function of a chiral theory is said to be given by

Z[M] = Zboundary[M]Zbulk[X] ) (337)

where Zy,oundary|M] is given by the determinant of the chiral boundary Dirac operator (of
course, to get a finite number we have to regularize this quantity), while Zy,,[X ] gives us
the anomaly by evaluating the anomaly theory on a closed (d + 1)-manifold, for fermions
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this corresponds to the 7n-invariant. A similar analysis can be applied to chiral p-form
fields [187].

In summary, the quantum anomaly of a d-dimensional theory 7 is given by an invertible
field theory or, in the Condensed Matter language, by a symmetry protected topological
phase h defined on (d + 1) dimensions whose partition function evaluated on a closed
(d + 1)-manifold reproduces the anomalous phase as (see the short review of [188])

Z[X] = exp(2rh(X)) (3.38)

whereas, as X has boundary 7 appears as a boundary of the invertible topological phase.
Notice that it can be at most a phase when evaluated on a closed manifold X, since
it is natural to think the Hilbert space #(0X) = #(2) with a canonical isomorphism
H(2) ~ C suggesting also that Z[X]| can just be regarded as a complex number. See
Appendix C for more discussion on this matter.

For Weyl fermions the invertible phase is given by the APS n-invariant, and the anomaly
is given by evaluating this n-invariant on closed (d + 1)-manifolds [105, 118, 134] see
also [189]. Moreover, this gives a unified description of perturbative and nonperturbative
anomalies where the last is exclusively associated with the evaluation of the n-invariant
on closed manifolds. However, this can be done only for a handful of spaces, basically for
spaces known as Lens spaces in the Mathematical literature, see [189]. For this reason,
there are tricky methods to determine global anomalies with no explicit evaluation of the
n-invariant, see e.g. [87,105,179,190].

To see that the description of anomalies in terms of the 7-invariant also contains per-
turbative anomalies, notice the fact that if X jseq 1S itself a boundary we could have a
(d + 2)-manifold Y such that X = 9Y". It turns out that there is a generalized index theo-
rem, the APS index theorem [101-103] that allows us to connect this abstract discussion
to the perturbative anomalies. The APS index theorem states that for a manifold Y with
boundary X, the Index(Dy ) of a Dirac operator on Y is related to an index density'® Z; o
and the n-invariant of the Dirac operator on X as follows

IndeX(Dy) = / Id+2 + T](Dx) . (339)
Y
Note that one operator is defined on d + 1 dimensions and the other in d + 2 which means
that the field theory data on M must be extended to X as well as to Y. To find out whether
this is possible or not corresponds to an important question of this new reformulation of
anomalies. Yet, we leave this observation for a brief discussion on the Appendix C. For
the purpose of perturbative anomalies, from (3.38) with A = 7, and (3.39) follow that

Z[Y] = eXp (—27T1/ Id+2) 5 (340)
Y

where we have used the fact that the Index is an integer. It is worth mentioning that 7
may consist of different fermions species, hence the index density must include all the
contributions. We will discuss more on perturbative anomalies in the next section. With
this, we finish the discussion of the modern point of view on quantum anomalies. In the
next subsection, we will connect the formal expression Z; 5 to the anomalous phase Ay, 1
of the perturbative anomalies.

SThis density is given in terms of characteristic classes measuring the nontriviality of the geometrical
structure involved in the definition of 7, see Appendix B for the specific definition.
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3.4 Anomaly inflow

This is ahuge topic with many far-reaching consequences in different areas of physics [ 133].
However, we will restrict to the idea that if we put a (topological) theory on a manifold
with boundary, under a gauge/local Lorentz transformation, it could happen that this in-
duced an anomalous boundary term [175]. The observation of anomaly inflow is about
the possibility of having anomalous boundary degrees of freedom such that its anomaly
cancels precisely the anomaly of the bulk theory, this will be the subject of Chapter 5.
One of the most striking results of this idea is the Horava-Witten £ M-brane reviewed by
the end of Chapter 4. We also mention here that this idea has also been very powerful in
M-theory/String Theory in the presence of D-branes deducing whether or not these objects
support anomalous degrees of freedom [191-195].

A very important example of Anomaly Inflow is the Wess-Zumino descent procedure
[81-83], which allows us to obtain the true perturbative anomaly of a theory under gauge
and/or diffeomorphism transformations connected to the identity from the rather formal
mathematical object Z;,- already introduced in the definition of the index of a Dirac
operator, that is, the index density that captures information of the tangential and fiber
structure over a manifold. However, our theory 7 may consist of various fermions species
then, the perturbative anomaly of 7 is given by what we will call the anomaly polynomial
Pai2. Thisis determined by the index densities of the (d+ 2)-dimensional Dirac operators
involved in 7. Generically, the index density of a spin-1/2 Weyl fermion charged under
some representation o(g) = r of gauge group G (we need to be more specific depending
on the Dirac operator we are considering) is given by [76]

Index(D) = /

Tuva,  Taro(R.F) = [A(R)chr(F)] ’ (3.41)
Y d+2

where the A(R) is the A-roof or Dirac genus given in terms of traces of powers of the
Riemann curvature two-form R, i.e. tr R", and ch,(F) = tr,exp (i F ) is the Chern
character in terms of the field strength associated to a connection A with tr, a trace evaluated
in some representation r of the Lie algebra of G.'® The subscript |, o means that only terms
of order d + 2 are to be considered in that formal expression of the anomaly polynomial.
We have also made explicit in (3.41) the dependence in the curvature 2-form R, related
to the tangent bundle structure, and the field strength F', related to the principal bundle
structure. Notice that the anomaly polynomial is a closed form, and therefore locally exact
by Poincaré lemma. From this, the descent procedure tells us that

Tapo =L, 6ol = AV (3.42)

where [ c(l(—)i-)l is a polynomial in terms of the gauge and spin connection and its curvatures,

from which one can make the identification [c(i(—)i—)l = Ay, 1. It turns out that the variation of

I ﬁ’l with respect to infinitesimal local gauge and Lorentz transformation then d,, 5./ gjr)l =

Afilll = Agi1(v, 9, - -+ ), where the superscript (0) meaning no dependence on the gauge
parameters, while (1) means linear dependence on the gauge parameters, leading to

50T [M] = 6,9 / A= / 5,0, = / Aui(v,9, Aw)  (343)
X X X

16We always write tr when the trace is evaluated in the fundamental representation.
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where we focus only on the phase of the anomalous partition function denoted here as I,
the effective action, to avoid confusion with the chiral fermion partition function. It can

be also shown that .A((;le is a closed differential form, thus it is also locally exact
Ay = a1y, (3.44)

so that the d-dimensional anomaly can be expressed as
8,00 [M] = / A (3.45)
X

I 51) is the anomaly we would expect to see in the d-dimensional theory and, in this way,
we get what we introduced before as the anomalous phase in (3.22) from the rather
formal index density This anomaly is known as the consistent anomaly meaning that
Oy (05, 1) = 84, (0,,T) = 0,1 for [vy,v5] = v. This is known as the Wess-Zumino
consistency condition [196]. However, notice that we could modify .4 by the shift
I §0+)1 — 1 gjr)l + dxg, implying that A is not uniquely determined consequently, we could
add local counterterm to the anomalous phase since I'[A/] — T'[M] + [, . xa where we
have used Stokes’ theorem. These local counterterms do not cancel the anomaly only
allow us to redefine it [81].

One important observation of the previous discussion is the assumption that we can
go from a d-dimensional manifold up to a d + 2-dimensional manifold to compute the
perturbative anomaly. One could ask whether or not this is always allowed. It turns
out that this is the crucial observation to the new formulation of anomalies, namely the
obstruction to lift all the field theory data from d to d 4 2 dimensions, and this is described
by a mathematical theory known as bordism theory, see [100] for a review. We will briefly
elaborate on that point in the Appendix C. Although this is not that important for this
thesis, it is important for work in progress.

3.5 Green-Schwarz anomaly cancellation mechanism

In many of the relevant cases in M-theory/string theory, anomaly inflow is not enough to
cancel anomalies of chiral degrees of freedom. The extra key ingredient needed to cancel
anomalies, particularly perturbative anomalies, is the Green-Schwarz anomaly cancellation
method [129, 130] (see [197] for a nonperturbative formulation of the Green-Schwarz
method, also see [198, Appendix G] for a modern perspective on this). The basic idea of
this approach tells us that if we have an anomaly polynomial P, 2(R, F') determining the
anomaly of a chiral theory defined on a (d = 10)-manifold M as we discussed above, then
if we manage to factorize Py.2(R, F) in such way that

Pasa(R, F) = Wi(R, F) Py_3(R, F), (3.46)

then, it is possible to find a mechanism to cancel-31 a perturbative anomaly measure by
Par2(R, F). This is a very nontrivial result. As we can see from Appendix A, there are in
general many obstructions to achieving that factorization of the anomaly polynomial due
to non-trivial Casimir invariants relating higher order traces of the Lie algebra valued field
strength /' over arbitrary representations to traces over the fundamental representation.

Additionally, this procedure requires a topological coupling in the d-dimensional the-
ory, roughly, given by

- / By APy, (3.47)
M
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where Bs is a 2-form, and P; 5 = P, (R, F'). In Chapter 2 we saw that the massless
spectrum of the 10d superstring theories contains fields of this type, in principle, we could
introduce a coupling like (3.47). The question, instead, is whether this term makes any
sense in the perturbative formulation of the superstring requiring it. Suppose for now that it
is indeed an allowed term. As a consequence, that term (3.47) is such that it contributes an
anomaly, surprisingly, an anomaly that cancels the anomaly of the chiral fermions (3.46).
To see this, according to our previous discussion, there must be an anomaly theory h(X)
capturing the anomaly of the coupling (3.47) such that (3.47) appears as a boundary phase.
Since B is a 2-form potential, there is a field strength Hj associated to it, H3 ~ d Bs, then
we define the anomaly theory as follows

hH3(X):/ Hg/\Pd_g. (348)
X

such that M = 0 X. If we focus only on perturbative anomalies, we can assume that X
itself is the boundary of (d + 2)-manifold Y. In turns out that looking carefully at the
perturbation theory it was observed that the B5-field is actually noninvariant under gauge
and gravitational interactions, tree diagrams are exchanging B fields such that they also
contribute to the anomalous loops diagrams with chiral fermions running throughout the
loop [129,130] (see also [68,70]). Therefore, consistency of the d-dimensional theory
requires that the Bianchi identity of the H3-field has to be modified accordingly

dH3 == W4 y (349)

where H3 = dBy — O¢g(A) — O¢s(w) is given in terms of the B-field, as usual, but also
in terms of the Chern-Simons 3-form constructed from the gauge connection and the spin
connection, and W, = Wy(R, F') is a 4-form class in terms of gauge and gravitational
contributions. Even more remarkable is the fact that this procedure is consistent with
supersymmetry in a limited set of higher dimensional theories, indeed it is also required
by supersymmetry [141,142]. Therefore, at the perturbative level, we can see the anomaly
theory (3.48) as

hH3 (Y) == / W4 VAN Pd_2 y (350)
Y

and this becomes the d-dimensional theory free of perturbative anomalies because the total
perturbative anomaly trivializes

exp(2mi h) = exp (271 Afermions) €XP(27mi hpyy) = 1. (3.51)

However, notice that integration of (3.49) on a closed cocycle, the class W, must vanish.
We briefly mention in Appendix B that characteristic classes measure nontrivial informa-
tion of bundles. In the mathematical literature, it is well-established that a necessary and
sufficient condition for the existence of certain structures is measured by the computation
of characteristic classes [199]. For instance, the orientation of a real vector bundle over
some base manifold M, namely the fact that the transition functions take values in the
orthonormal group SO(d) obeying a cocycle condition all over the patches that cover the
base, can be measured by the first Stiefel-Whitney class w; (M) € H'(M,Z,), where
Hi(M, A) refers to the i-th cohomology group of M with coefficients into A where this
can be e.g A = R, Z,7/27, reals, integers and mod 2 integers, respectively. Therefore,
trivialization of w; (M) is said to be a necessary and sufficient condition for the existence
of orientation. On the other hand, trivialization of the second Stiefel-Whitney class wq (M)
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is associated with the existence of a spin structure. It turns out that trivialization of the
W) class is associated with a twisted string structure, and only string structure when the
principal bundle under consideration is a trivial bundle, see [136] and reference therein.
This requires that the tangent structure of the base manifold )M, where the theory 7 we are
interested in lives, has to admit a string instead of spin structure. Moreover, this lifting
is a consequence of the Green-Schwarz anomaly cancellation mechanism for perturbative
anomalies. After this, we are left with the question of nonperturbative anomalies once the
perturbative has been cancelled. See [136,200,201] for steps in this direction.

Nevertheless, we want to emphasize the following issue in this regard. As we already
saw, theories requiring the Green-Schwarz anomaly cancellation mechanism also demands
that the tangent structure must be lifted to a (twisted) string structure on the boundary.
One of the ten-dimensional superstring theories requiring the Green-Schwarz method
corresponds to the Eg x Eg. Additionally, this theory can be seen in the strong coupling
limit as a boundary solution of a d = 11-dimensional theory [138,139], i.e. (the low-
energy limit) of M-theory, as we will review later. However, the tangent structure of the
11d manifold where M -theory is defined does not require to be a string structure. Thus, the
bordism classification of anomalies as discussed in Appendix C does not seem to be enough
to deal with this setting in order to study its nonperturbative anomalies. Perhaps, this will
be seen more clearly in the next chapter. We also mention that the proper framework
to study this setup can be found in'” Ref. [198, Appendix G] where the correct bordism
groups to be computed seem to be relative bordism groups. However, this issue is beyond
the scope of this work, we hope to return to this soon.

In the next chapter, we study the cancellation of perturbative anomalies in the chiral
supersymmetric string theories, Type I1B, Type I, the heterotic strings, M-theory and one
of the SO(16) x SO(16) nonsupersymmetric string.

"The author thanks to A. Debray for correspondence on these matters.
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Chapter 4

Anomaly cancellation in superstring
and M-theory

Anomalies could be found in chiral theories, Weyl fermions' and (anti)self-dual scalar
fields. In 10d-dimensional superstring theories we saw that Type ITA is a nonchiral theory.
So, it is safe to leave this theory out of the anomaly analysis. However, Type IIB is chiral
with a spectrum only coupled to gravity thus, we need to be sure that any anomaly coming
from its chiral content of fields vanishes for each field or contributes an amount such
that cancels each other, then rendering the theory anomaly free. The cases of Type I and
the Heterotic strings are even more involved due to gauge degrees of freedom. Hence,
there can be gauge and gravitational anomalies for these theories at the perturbative level.
The aim here is to review the cancellation of anomalies in these supersymmetric theories.
We will also review the cancellation of anomalies for the matter content of the heterotic
nonsupersymmetric string SO(16) x SO(16) to see that the Green-Schwarz mechanism
also works in this case. This is standard material but, we will present it in a convenient
way for future reference

4.1 Supersymmetric strings

4.1.1 TypelIB

Type 1IB has a chiral spectrum of two left-handed gravitinos, two right-handed dilatinos,
and one self-dual 4-form. By using the index densities of a spin-1/2 chiral fermion (for
now, assume that the field content is of positive chirality), a spin-3/2, and a self-dual
4-form, given by (see Appendix B)

1112/2(3) = 967680<_31p? + 441 ps — 16273) )
J2(R) = S676a0 (220 P — 1620p1 pa + T9203) 4.1
IS5 (R) (—256 p; + 1664 py py — 7936 p3)

= 967680

we can solve a linear system of equation such that n%IfQ/ 4+ 3 2132/ ’ 4 nZi9 = 0, where
each n, account for the multiplicity of each *-specie. By solving this linear system, we

'Maybe subject to a reality condition as might happen in dimension d = 2 mod 8.
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find that the matter content is actually that of Type II1B, namely, the anomaly polynomial

Pa(R) = —2 D2 (B) o T3 (B)

> 5 T TaR), (4.2)

is so that it indeed vanishes, where the minus sign in front of 1112/ ? account for the chirality
convention we have chosen regarding the indices of the Dirac operators, the multiplication
by two account for the two species of each fermion and due to the Majorana or reality
condition obeyed for each of the fermion species, we have to divide by two, i.e.

— =2, my=2, na=1, (4.3)

giving us the spectrum of the Type I1B superstring. The quantum consistency of Type 1B
was established in [52]. In turn, this result inspired confidence in string theory and its low-
energy limits although, Type I11B was not favoured to achieve phenomenology. Therefore,
also in Ref. [52] studied the quantum consistency of Type I with the extra ingredient that
this theory has within its spectrum gauge degrees of freedom. However, these results
were a source of concern in the community because, in this case, the anomaly polynomial
did not directly vanish as it does in Type IIB. Yet, soon after, a method to cancel the
anomaly polynomial of Type I was proposed, rendering it an anomaly-free theory. This
is the Green-Schwarz method [129, 130], which was also eventually applied to heterotic
strings, rendering all the supersymmetric low-energy limits of string theory anomaly-free.
For our purposes, we will review this with some detail for the Es x Fg heterotic string.
Finally, we make some comments on the SO(32) theories and the nonsupersymmetric
SO(16) x SO(16).

4.1.2 FEg x Ejg heterotic string

We will move to the heterotic string where chiral-violating gauge couplings are also present
thus, becoming the anomaly analysis more involved. Particularly, we focus on the heterotic
Es x Eg superstring since, the SO(32) heterotic as well as the Type I superstring with
SO(32) gauge group have similar anomaly analysis. Yet, we comment on this by the end
of this analysis.

We will review here perturbative anomalies of g X FEjg heterotic string theory closely
following Refs. [138, 139]. This will be useful for subsequent work. The anomaly poly-
nomial of the 10d Eg X FEjg heterotic string consists of a pure gravitational contribution
IfQ/QH/ *(R) = ZG(R) coming from the left-handed spin-3/2 gravitino and the right-
handed spin-1/2 dilatino which is given explicitly by a twelve dimensional polynomial

I3 (R) = SA(R)(ch (R) — 4)

12 (4.4)
(128 pi — 832 p1p2 + 3968 p3) .

N —

~ 967680

There is another contribution coming from charged matter under some representation of
the symmetry group with gauge field in each factor of the product Fs x Ejg represented
by (248, 1) @ (1, 248). This corresponds to left-handed spin-1/2 gauginos charged under
the adjoint representation a of each Es. The index density can be written as (keep in mind
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that the matter content obeys a reality condition)

IEXES(R, y, Fy) = Tia(R, Fy) + Tha(R, F)

= LARch,() + chy(F) )

12

where one uses the fact that tr, F>" = tr, F 12" +tr, F22” since we can think of ' = ( 131 192 )

and the Chern character will be denoted as ch,, ,(F;) = chfgr with ¢ = 1, 2 for each factor.
With this and the information from Appendix B, we thus find that

1w 1 i 1 i
TEXES(R, F) ==chl) — —pich{) + ——(Tpy — 4ps)ch’)

2 48 11520
Ch(i) ) (4.6)
0,a
] 31p, — 44 16 ps) .
5 967680( p1 p1p2 + 16 p3)

The total anomaly polynomial is given by the sum of the index densities (pure gravitational)
(4.4) plus (gauge, gravity and gauge-gravity part) (4.6) as

2
P (R, F1, Fy) = TG™(R) + > T3 (R,F). 4.7

i=1

Note that we can define
1
P (R, F) = 51?;“(3) +I%(R, F), (4.8)

the anomaly polynomial of one Eg factor, then the total anomaly polynomial becomes into

2
P (R, Py, ) = ZPSS(R, F). (4.9)

=1

Therefore, we will focus only on PSS(R, F') of the total anomaly polynomial in what
follows. Eventually, we will join all the pieces to determine the whole anomaly polynomial
in the factorized way we are looking for.

By using tools developed in Appendix A we can show that the Chern characters involved
in P/ (R, F) with the matrix-valued field strength F in the adjoint representation a of E,
namely the representation a = 248 allows a factorization which will eventually help to find
an anomaly-cancellation mechanism; the Green-Schwarz method mentioned before [129,
130]. Besides, by noting that the group of rotations SO(16) C E, is a subgroup of FEg, it
follows that 248 — 120 + 128, i.e. the adjoint a = 248 decomposes into the adjoint and
spinorial representation of SO(16) under the embedding SO(16) C Eg. Thus, with this
observation, we can work out all the Chern characters so that we can write them down in
the fundamental representation 16 of SO(16) as follows

—_

chg oag = 21 (cha16)?,

[\CHGVE V]

chypas = = ( h2,16)2, (4.10)

chg 245 = 30 chg 16 ,

Ch0’248 =dima.
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Noting that for real representations chy ,(F') = —co (F'), the Chern character is minus the
second Chern class then, with equations (4.4) and (4.6) along with (4.10), we find that
the anomaly polynomial P (R, F) is given by

1 1 1 1
PE(R,F) = _%(2 216 + P1) (1(2 co6 + 1) + gpf - §p2> ) 4.11)

It should be stressed that the appealing form of (4.11) is possible since Fg gauge group has a
real representation of dimension 248 that allows the cancellation of a third-order Pontrjagin
class ps accompanied with a numerical coefficient proportional to (dim(a) — 248) times
ps. Any attempt of factorization is going to fail in the presence of this term. Another
obstruction comes from the sixth Chern character but, as we see from Appendix A a few
amount of Lie algebras admit a factorization so that

chg = x, chy chy + y, ch3 . (4.12)

It is clear from (4.10) that Es group allows such a factorization. All these facts ultimately
lead to (4.11). Now, we can determine the anomaly polynomial of the Eg x FEg heterotic
theory combining (4.11) for each of the components of Ljg, thus we get the total anomaly
polynomial

1 2
L el t ot

24 2
1 3

1 2 1 2 1 2 1
((0(2,}6)2 + (Cg,ie)Q - Cé,ie Cg,ie + 2 (C(,ie + Cg,i(a)pl + glﬁ - §p2 , (4.13)

where each of the superscript (¢), ¢ = 1,2 stands for each of the two Eg groups as stated
before. This has exactly the factorized form demanded by the Green-Schwarz method,
PLE*ES(R Fy, Fy) = Wi(R, F) Py(R, F) reviewed before, and this implies a Bianchi
identity for the field strength 3 given by

(1)

Pl (R, Fy, Fy) =

(2)

Cy16 T C216 T
L (4.14)
and the coupling in the effective action schematically given by
/32 N Ps(R, F), (4.15)

where B, is the 2-form potential which is not gauge invariant, but its lack of invariance
is what is needed to cancel perturbative anomalies in the g X Eg heterotic model, and
P;(R, I) is given by the bottom line in equation (4.13). It should be mentioned that this
analysis is consistent with supersymmetry for fermions in the adjoint representation of a
gauge group G [141,142], see also [68]. Finally, the cancellation of perturbative anomalies
is achieved because

exp(27i hrotal) = €XP (271 Aformions) €Xp(27mi hpyy) = 1. (4.16)

It is obviously left open the question of global anomaly cancellation in Eg x FEg heterotic
theory. It turns out that this was solved recently using Topological Modular Forms in [198,
200,201], see also [136,202] for string bordism computations and its anomaly.

Behind this computation there is a group theory normalization factor so that an SU(2) instanton is
normalized to one, see the next table for our normalization
SU(n) | SO(2n+1) | Sp(2n) | SO2n) | Es | Er | Es | Fu | Gy
(I 2 1 ] 2 Je6e]12]60] 6|2
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4.1.3 SO(32) string

Here we briefly elaborate on perturbative anomaly cancellation of the SO(32) Type I and
heterotic string. As we mention in Chapter 2, it is possible to have other superstrings with
groups Sp(N) or SO(N) though, we have to check perturbative anomaly cancellation in
order to check its quantum consistency. Those groups have a sixth-order trace that at first
sight does not have a factorization like (4.10). Nonetheless, something amazing happens
due to the following identities [68]

tr, FO = (N £ 32) tr F® 4+ 15 (tr F*)(tr F?),
tr, F* = (N £ 8) tr F* 4 3 (tr F?)?, (4.17)
tr, F? = (N £2)tr F?,

where the plus sign is for trace identities for Sp(/N) while the minus sign is for SO(32),
relating the traces in the adjoint representation to the fundamental of each group. We have
restricted to the adjoint representation for consistency with supersymmetry. Notice that
if we choose N = 32 then we can get rid of the sixth-order trace only for SO(32), so
a factorization may become available in that case. Hence, Sp(32) seems to be ruled out
by consistency with anomaly cancellation, namely in the presence of the six-order trace
and the restriction of only the adjoint representation we cannot apply the Green-Schwarz
method to cancel perturbative anomalies. Moreover, the adjoint representation of SO(32)
has dim a = 496 that is exactly what we also need to cancel the third Pontrjagin class®

dim(a) — 496

. 4.1
120060  1? (4.18)

We throw the two dangerous terms away due to important group theoretical properties
of SO(32) gauge group. This allows us to work out an anomaly polynomial for the
SO(32) gauge group with the kind of factorization we are looking for. Even more, this
is as well consistent with supersymmetry. We write down the anomaly polynomial for
completeness” [130]

3 1

1 co32 +p1 1
—_— X 203732 —4dcy32+ 5 Ca32p1 + —pf — 5 b2

SO

2 8 2
(4.19)

The Green-Schwarz coupling follows like in the previous case of Eg x FEs. With this,
we finish the anomaly analysis of the 10d superstring theories. We move to the anomaly
analysis on M-theory because these two things will be the main subject of Chapter 5.

4.2 M-theory

The low-energy limit of M-theory was originally considered as eleven-dimensional super-
gravity describing the classical dynamics of a supergravity multiplet, a graviton, a 3-form
potential in the bosonic sector plus the spin-3/2 left-handed gravitino in the fermionic
sector [131]. We will not write down explicitly the full action because it is not relevant to

3This term also appears for the Eg anomaly polynomial with a contribution proportional to (dim(a) —
248) p3, which clearly cancel for Es.

*To be precise, SO(32) has to be identified with its double cover Spin(32)/Zz due to the presence of
fermions.
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this thesis but, the full action can be found e.g. in [149]. Only the topological terms are
important and these are given in equation (4.20).

This 11d theory is related to the 10d superstrings as we mentioned in Chapter 2.
For instance, by compactifying this effective action on a circle S was found that this
corresponds to Type ITA supergravity, whereas compactification on the orbifold S*/Z,
led to By x Ejg supergravity in the zero-size radius limit of S'. Nonetheless, examining
1-loop effects in Type IIA [203,204], or by considering the existence of M2-brane/M5-
brane solutions of M-theory was revealed that the classical 11d supergravity description
of M-theory required modifications [132], see also [205]. These modifications involved
introducing an additional coupling to ensure the proper topological interaction terms for M-
theory. This corresponds to the already known Chern-Simons term of the 11d supergravity
and a new term similar to a Green-Schwarz-like interaction

2
Ses = — [ CAGAG, SGs:—27r/C/\18(R), (4.20)
6 X Y
where X is an eleven-dimensional manifold, C'is the 3-form potential with G its 4-form
field strength, and I3(R) is a characteristic class given in terms of Pontrjagin classes

1 1
Iy =~ {m — —p%] : (4.21)

8 4
With this at hand, we are going to check that M-theory is consistent quantum mechanically
[132]. To begin with, we should mention here that the most simple way how we think
about field strengths is by obeying a kind of Dirac flux quantization like in free Maxwell
theory (see [206] for a modern discussion of the duality symmetry of electromagnetism)
with the 2-form of the electromagnetic field F' as

F—>L/F€Z, (4.22)
27 S2

on a closed S? cycle. The proper way to see this is by considering the vector potential A
as a connection in a U(1) fiber bundle and the quantization is associated to its nontrivial
topology. Itis natural to generalize this for p-form potentials of any degree in p. Therefore,
we may state that a (p + 1)-form field strength obeys a flux quantization like f7 G for a
(p + 1)-cycles of a manifold X. It turns out that this expectation usually does not hold in
string/M-theory due to the nontrivial topology of the bundle structure involved, as we will
see for G. We will think about this as an obstruction measure in one dimension higher as
we just did for anomalies [187,207].

From our recent understanding of anomalies, we might represent the topological cou-
plings of M-theory on a one-dimension higher manifold without care about the unphysical
manifold Y since anomaly cancellation should guarantee that any result will be indepen-
dent of Y. The anomaly theory will be denoted as h¢,(Y). The M-theory topological
coupling lifted to Y is given schematically by

/G/\G/\G—/G/\Ig, (4.23)
Y Y

therefore, it should be true that its anomaly theory has to be such that exp(27i h¢e, (Y)) = 1
for anomaly-free eleven-dimensional topological terms. This is almost true up to a mod
2 ambiguity that is ultimately cancelled with a mod 2 ambiguity coming from the eleven-
dimensional real gravitino. To see this [132], we will use what is known as Es theory
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[183-185,208]. Let Pz, — Y be an Fg-bundle on Y. This is topologically characterized’
by an integer class cy(F') which is an element of H*(Y, Z) (co(F') can be thought of as the
pullback of a class ¢, in H*(BFEg, Z) via the classifying map, see Appendix B) where F' is
the curvature two-form of the Fg-bundle over Y. On the other hand, C' can be considered
as the source of an M2-brane, then it can be coupled to the M2-brane worldvolume. Such a
coupling is not necessarily well defined since there may be anomalous degrees of freedom
on the M2-brane worldvolume theory V. Again, by anomaly cancellation, we must take
the total partition function of the M2-brane coupled to C' as

Zarz = Zarp(W) 27PN 271 € (4.24)

where N is a one-dimension higher manifold with boundary so that 9 N = W, and W is
the worldvolume theory where the anomalous chiral degrees of freedom live and whose
anomaly is generally capture by an anomaly theory £, in this case given by the n-invariant
of the chiral modes in terms of the Dirac operator lifted to N and coupled to gravity
only.® From this, it follows that the quantization law of G is shifted by an anomaly in the
worldvolume theory, then [132, 187]

/G:E/)\ mod 7, (4.25)
N 2 /N

where ) is the canonical class of a spin manifold’ given by p; /2, one half the first Pontrjagin
class, which is the pullback of the generator in H*(BSpin, Z). This is also known as the
canonical class of a spin manifold. In other words, this tells us that the n-invariant captures
a pure gravitational anomaly of the chiral modes on the M2-brane worldvolume theory.

The key observation comes from the fact that if we choose the characteristic class
co(F) (for Eg this is an integer) so that

1
G = gA+eo(F), (4.26)

we find that for £g gauge theory with r = 248, the adjoint representation of Ejs, then

5[ (G rG - [m(R) - }lpﬂR)D Sl K TS UNCED

where [, P (R, F) is given in equation (4.11).

On the one hand, we also know that this is nothing more than the sum of indices of
the twelve-dimensional Dirac operators of the gravity multiplet and one Fs Yang-Mills
multiplet of the Eg x Ejg heterotic string. Therefore,

1 1
/ PER(R,F) = 5 IndeX(DgES) + ZIndeX(DgraV) , (4.28)
Y

3This is due to homotopy classification of bundles and the fact that topologically the Eg group is equivalent
to some spaces known as Eilenberg-MacLane spaces K (G, n) with G and arbitrary Abelian group, see [96]
for a thorough discussion on this issue.

There is a subtlety here because the tangent bundle of the eleven-dimensional M-theory T'X restricted
to the M2-brane worldvolume can be written as the direct sum T'X |,y = TW @& N, where N is the normal
bundle. Therefore, fermions can be coupled to the tangent bundle TVV as well to the normal bundle V.
Considering this, [193] solved an issue of M-theory raised in [191] for the magnetic dual M5-brane due to
the diffeomorphisms of the normal bundle. We leave this subtlety out of our discussion.

7See the discussion at the end of Chapter 3 where the trivialization of this class led to a string structure.
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where we have added an extra one-half in the last term on the right-hand side of equa-
tion (4.28) to the already one-half present accounting for the Majorana condition. This
is due to the same reason of the extra 1/2 in the gravitational part in the definition of
equation (4.8) in the discussion of Eg X Fg anomaly cancellation.

On the other hand, one can show that the 12-dimensional indices are even integers
essentially due to a kind of Kramers degeneracy [73]. Hence, it follows form (4.28) that
exp(2mihe, (Y)) = (—1)" with n € Z by using Eg gauge theory and our knowledge of
anomalies, where

he, = — / PES(R, F). (4.29)
Y

We have determined the mod 2 ambiguity of the topological term of M-theory. As an
aside, we note that equation (4.29) suggests a kind of anomaly inflow, namely the bulk
topological term of M-theory will make sense on a manifold with boundary provided
that in the boundary lives nontrivial boundary mode contributing an anomaly equal to the
anomaly of the bulk term but with minus sing as occurs in equation (4.29). This is the key
observation in the Hofava and Witten wall and the main topic of Chapter 5 although, the
order of events was not in this manner.

This anomaly has to be cancelled for the well-definiteness of M-theory. Thus, we are
left with the task of checking whether the eleven-dimensional gravitino contributes the
correct amount. We already know that a real fermion can at least contribute to anomalies
with a sign ambiguity. Thus, we might expect the correct answer. Indeed, it turns out
that the Majorana gravitino of the eleven-dimensional theory has a gravitational anomaly
given by

T (R) = JAR)(ch (R) - 2)|
12 (4.30)

(977 — 788 pipa + 3952 p3)

N | —

~ 967630

where integration of this index density is related to the Index (D) ®% +) of a 12d Dirac
operator coupled to the tangent bundle. Recall that this is related to the lift of the eleven-
dimensional Dirac operator we are interested in. So, this is properly constructed to account
for the anomaly of the 11d Dirac operator of the spin-3/2 gravitino field. This has a
sign ambiguity which is exactly what we need to cancel the ambiguity of the topological
couplings of M-theory. Therefore, M-theory is also an anomaly-free theory, namely

exp (27 hpotar) = €xp (271 hgravitino) €Xp(2mihey) = 1. 4.31)

What we have reviewed is based upon the analisys of Hofava and Witten. They observed
that M-theory on a manifold with boundary or equivalently compactified on an orbifold
S1 /7 leads to a configuration where the two ten-dimensional fixed planes associated to
the fixed points of the orbifold action must be such that on each of them lives an Eg vector
multiplet. This is required by the anomaly inflow from the M-theory bulk to the boundary,
as we already mentioned, and therefore this system is free of perturbative anomalies.
This is correlated with the fact that Fs X FEjg heterotic string at the strong coupling limit
determines an extra dimension in terms of the radious r of the circle S' or equivalently
the interval [ = 71 and the string coupling constant g,. It follows that when the size of the
interval goes to zero we recover the Fg x Fjg setup as shown pictorially on Figure 4.1 The
aim of this thesis is to thoroughly study a similar setting but generalize that construction
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EgXEg

Figure 4.1: This picture shows the strong coupling limit of g x Eg heterotic string which
corresponds to M-theory on a manifold with two boundary components M7, and Ny with
each vector multiplet on each boundary. Whereas the gravitational anomaly corresponds
to one-half on each component. These boundary components are associated with the fixed
point of the Z, action in the orbifold compactification of M-theory. In the zero-size radius
limit this configuration boils down to the low-energy limit of Eg x Eg heterotic string.

to any Lie group. In Chapter 5 we will particularly study a similar problem with the
exceptional groups G = Gy, F}, Eg, 7 and we will make some analysis for the classical
Lie groups, for more details see [144]. As we emphasized by the end of Chapter 3, this is
a meaningful question because, before any nonperturbative analysis of anomalies, this has
to be preceded by a thorough exploration of perturbative anomalies, which is our goal.

Before undertaking that project, we shall review how perturbative anomaly cancellation
works in the nonsupersymmetric SO(16) x SO(16) theory in the next section.

4.3 Nonsupersymmetric strings

4.3.1 SO(16) x SO(16) string

Anomaly cancellation for the first two nonsupersymmetric models mentioned earlier in
Chapter 2 depends on amore elaborated version of the Green-Schwarz method, but the main
idea is behind their cancellation of perturbative anomalies. We refer the interested reader
to the literature [171-173] and for an analysis of nonperturbative anomalies see [136].
For the case of the SO(16) x SO(16) we have to compute the anomaly polynomial

T15(R, F) = A(R)ch,(F) Y (4.32)
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for its chiral matter content consisting of a positive chirality Majorana-Weyl fermion
transforming in the fundamental of each SO(16) factor represented by (16,16), plus
negative chirality Majorana-Weyl fermions transforming in the spinor representation of
each factor (128,1) @ (1,128) [66, 170].

To check the cancellation of perturbative anomalies, we have to do a similar computa-
tion as in the case of Fg x Eg for the gauge part. Notice that there is no pure gravitational
contribution coming from fermions. We also have to use the factorized Chern characters
in the equation (4.10) to show that the anomaly polynomial is given by [55]

1 CS%G + Cgﬁ + D1
T4 2 8

1 2 1 2 1 2
((cHhe)? + (16)? + il 6 — 4(chhe + fle)) , 433)

)

73520(16)2(37 F, F2) =

. . __ : 16,16
where we have summed each of the index densities contributions coming from IfQ )

2

Igzg’l) and Ig’lzs) using equation (4.6) for the respective representations, and each of
the superscript (i), i = 1,2 differentiate between the group factors SO(16). The Green-
Schwarz method for anomaly cancellation is carried out as before using the B, field in the
gravity multiplet. This closes our presentation of anomaly cancellation in M-theory/string
theory. This has been done in a manner that one can easily keep track of the calculations
of Chapter 5.

As aresult, in the next chapter, we will carry out a search of chiral spectra containing
the superpartners of the gravity multiplet, a left-handed Majorana-Weyl gravitino, and a
right-handed Majorana-Wyel dilatino. In contrast to the supersymmetric heterotic theories,
we will allow matter restricted to be left-handed Majorana-Weyl fermions charged under
any representation of a gauge group. The aim is to arrange a given matter content for
anomaly cancellation by the Green-Schwarz method as we did in the Eg. Eventually, if
we achieve to find any content leading to factorization like in the Eg, we will be able to
connect this with the topological terms of M-theory.
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Chapter 5

Searching for new M-theory
Horava-Witten boundary walls

In this chapter, we will consider a similar setup as in the Hotfava-Witten wall. However,
we consider any Lie group instead of using the Eg gauge theory. Furthermore, we will
mostly focus on exceptional algebras. One of the greatest achievements of the result of
Horava-Witten was to hold anomaly cancellation as well as supersymmetry on its bulk-
boundary setup, namely the boundary modes are completely supersymmetric involving
a supergravity multiplet and a super Yang-Mills multiplet with charged matter in the
adjoint representation of Eg. We will relax this condition allowing matter in different
representations of a gauge group G. We write down a very general anomaly polynomial in
12 dimensions, then we set and solve the conditions needed to look for the more restricted
Green-Schwarz factorization of the anomaly polynomial in order to interpret any possible
solution as a nonsupersymmetric boundary condition of M -theory. This analysis is based
on Ref. [144]. This section relies heavily on the material developed in Appendix A, we
suggest going through that material first as well as we have done in previous Chapters.

5.1 Anomaly Theory

Instead of doing what has been done for Eg gauge theory, we take F', the curvature two-
form of a GG-bundle, as a matrix-valued form taking values in the Lie algebra of G, and
traces are evaluated in the different representations we are going to consider. In particular,
the notation F,, means that /" is a matrix-valued 2-form where the dimension of the matrix
generators 7% involved in the connection A = A“T}, is the dimension of the representation
r; used to represent each of the generator of the Lie algebra witha =1, --- ,dimG. Note
that we have only emphasized the Lie-algebra index, but remind you that there is also a
spacetime vector index. Using the anomaly polynomial of a spin-3/2 left-handed fermion,
a spin-1/2 right-handed fermion, and spin-1/2 left-handed fermions transforming under r;,
all obeying a Majorana-Weyl condition, we can write down the following general anomaly
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polynomial

1 1 1
PS(R,F,) = 5 > chgy, — =L > chyy, 11520(7p1 4ps) Y chy,,

ri ri ri

11
- 128 — 31 ho,. | 3
+2967680[< ZCO”) b1
(5.1)
T (44 Echo,ri —832) D1 P2

ri

1 (3968 —16 > cho,ri> p:»,] ,

ri

where we have made use of properties of the Chern characters (see e.g. [64]) to express
the sum ) ch,, := > ch,, (F) over representations of G, with n € Z representing
the degree of the Chern character, see also Appendix B. For clarity, we have established
PE(R, F,,) as the sum of the index densities involved

PG(R,F,) = ST (R) + S TH(RF,) 52)
ri

where the subscript r; in the field strength F' has been located in the Chern character. But,

the meaning is the same, namely that subscript is primarily concerned with traces over

generators of the Lie algebra taking values in a given representation.

Note that we have to deal with three terms to try to achieve the factorization we are
looking for. The first obstruction we will consider is in the pure gravitational part, that
is, ps. Hence, for the gauge part, we shall consider a general situation described by the
following arrangement of representations

()@ @)@ (r) @D (ra) D(r3) - D (r3)d--- (5.3)

J/ (& J/ N

-~ -~ -
Nry times Nry times Trg times

where r; has multiplicity n,,, ro has multiplicity n,, and so on and so forth. Thus, we
can show that ) cho,, = > n,dim(r;), where we use the fact that chy,, = dim(r;).
From this we set Z Ny, d1m(rz) — 248 = 0 to throw the p; Pontrjagin class away from
equation (5.1). On the other hand, we will use equations (A.1), (A.2) and (A.3) to rewrite
equation (5.1) as follows

1 1
PS(R,F,) = 3 Z e, Uy, chg + 20 Z ny,w,ch — @pl Z Ny, yr,chs
(5.4)
1 1 1
T — 4 zy,ch P
¥ Tigg (W = 4p2) 2 nezecho + 1o = ot

ri

where n,, s an integer introduced to account for the multiplicity of the representation r;,
and we have also used the fact that exceptional Lie algebras have no nontrivial fourth-order
Casimir invariants. Note that, we have written all the Chern characters in the fundamental
representation of the group GG. Constants u,, w,, y,, and z,, are the group theoretical pro-
portionality constants that allow us to rewrite (5.1) in the form of equation (5.4). Their
values depend on the specific representations for each G. Essentially, those constants are
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given in terms of indices or equivalently Casimir invariants, see Table A.1. Importantly,
we are left with chg,,, a sixth-order Chern character or equivalently a sixth-order trace,
and we find that these terms have nontrivial sixth-order Casimir invariants associated with
each representation for the group we are considering. However, notice that if we are able
to guarantee that

> neu, =0, (5.5)

then, this would allow us to kill the unfactorizable sixth-order Chern class. Correspond-
ingly, we have translated the problem of killing the main obstructions into a linear system
of equations

Ny +nr2r2 + = 248,

N Uy + N Uy, + 00 = 07

(5.6)

where this system corresponds to an underdetermined system that has more unknowns than
equations, therefore, it may have infinitely many solutions or may not have any solution
at all. Generically, the above system can be represented in matrix notation as

On=s, (5.7)

where O will be a matrix operator whose entries are given by the representations and
its sixth-order indices of the group representations of G under consideration, namely it
has known values. On the other hand, n will be the vector of unknowns that we wish
to find such that the vector s is the solution. To begin with this searching, let n”s =
(248, 0,0, - - - ) represent the corresponding solution for the F gauge theory that we already
review in Chapter 4. Additionally, it is well known that the Fs group has no nontrivial
sixth-order indices, leading to all the u,, entries being zero. Consequently, the most
straightforward solution is obtained. Now, suppose n represents another solution for an
arbitrary gauge group . Then n®s 4+ n¢ is also a solution, provided that O n“ = 0 for GG
being any other group. Therefore, we can regard the space of solutions as the kernel of the
operator O, where any linear combination of vectors in the kernel is also a solution. It is
important to note that, at this stage, our discussion imposes no restrictions on the number
of representations we could employ. In other words, the vector n¢ could have positive
and negative entries, meaning that chiral gauge content is built with positive and negative
chirality fermions. Therefore, (5.6) may involve infinitely many representations, which
may not contribute significantly to the search for nonsupersymmetric boundary conditions
of M-theory.

Therefore, in order to proceed further, we observe from the first equation in (5.6) that
restricting ourselves to a chiral spectrum, for concreteness, positive chirality, implies that
all representations involved in our search must have dimension less than 248, hence limiting
the number of representations to a finite set as we will see. This is in agreement with the
choice made in Chapter 4, regarding the chirality of the spectrum. Under this assumption,
we will apply the algorithm we have developed to any group G, in particular for exceptional
groups. This will guarantee to finding a finite set of solutions. Some comments regarding
classical Lie groups are in order. Generally, for these classical algebras, one has complex
representations, slightly changing the anomaly polynomial (5.1). Moreover, due to the
presence of fourth-order traces that are not present for exceptional algebras and A; and
A, the factorization we are pursuing will correspondingly modify the linear system of
equations (5.6). This adds more indices to be computed as well as more equations to be
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solved. Additionally, we should mention that for A,, algebras with n > 1 there can be
nontrivial third-order traces in contrast to other algebras. Therefore, the analysis is more
involved although, it can be carried out in a similar fashion as before [144].

As a result of the preceding discussion, we are left with the following anomaly poly-
nomial

1 1
Pis(R, F) =120 > newy,chi — 258l > nryrchi

1 (5.8)

1
(7P} — 4p2) Y nezechy + —pips — =—p},

* 192 256

1
11520

ri

where all the trace-identity constants can be computed following [209,210] as we did for
the explicit examples we analyzed in Appendix A. Obviously, all this examination is not
enough; it remains to determine whether (5.8) factorizes for a given solution n“. To that
end, let us apply our algorithm to as many groups as possible, fulfilling all the conditions
we have already discussed up to this point.

As we already said, we must consider the restriction on the charged spectrum to be
of positive chirality, as this limits the number of representations to be considered. Ad-
ditionally, it restricts the group representations we will analyze. For Eg equation (5.8)
straightforwardly reproduces what we already computed in Chapter 4. On the other hand,
we will see that the group GG, has various representations of dimension less than the adjoint
of Ejg, and remarkably, all are real representations. This, in turn, ensures that traces of odd
powers in the curvature field strength in Chern characters vanish, eliminating the need to
worry about those terms consistent with (5.8). This suggests that there might be various
solutions for the linear system of equations (5.6). If this is the case, we have to determine
whether the factorization we are seeking is allowed by the corresponding solutions. On the
other hand, we also analyze the group F}, which offers few representations of dimension
less than the adjoint representation 248 of Es to work with, thus limiting our findings in
this case. Similarly, F/s and F; also have a limited number of representations to work with.
All of these aspects will be explicitly explored shortly.

It is well worth mentioning that the Green-Schwarz anomaly factorization we are
looking for is certainly more restricted than the standard method [129, 130] schematically
W4 Ps. This was an important observation in [138, 139] where Py was still further fac-
torized. This factorization also noted by [204] ultimately leads to the connection with
M-theory on a manifold with boundary. Nevertheless, we should certainly expect to find
solutions obeying a standard factorization. It turns out that this is the case, as we will see
later. As a consequence, we have to ask whether these solutions have some place in the
string universality principle. in other words, it seems plausible to ask whether these theo-
ries could belong to the ten-dimensional nonsupersymmetric corner of the moduli space of
string theory. It turns out that an important ingredient of the worldsheet realization of the
low-energy limits of heterotic strings is a two-dimensional Superconformal Field Theory
(SCFT) with left- and right-central charges given by (c,cr) = (16,0). In Ref. [211]
was stated that there is no other nonsupersymmetric ten-dimensional heterotic strings than
the already known by classifying CFTs with central charge < 16. It seems reasonable to
explore these two directions. We hope to return to these observations in future work.
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5.2 Exceptional algebras

In this section, we explicitly apply the algorithm developed above. Let us begin with the
exceptional algebras where there are no fourth-order Casimir invariants, namely we can
express them in terms of products of second-order traces. After that, we proceed to study

classical Lie algebras.

5.2.1 G, group

We will start analyzing the group G5 for the list of representations shown in Table A.1
where are also shown the trace-index proportionality constants which are the inputs of
the algorithm developed before. We will first determine all possible solutions under the
restrictions imposed in the previous section. Then, we choose one of the solutions and
calculate all the ingredients needed to find out whether the anomaly polynomial can be

factorized to establish a connection with M-theory.

When we apply the algorithm described above we find the following set of solutions

{(n1 == 527 Ny = 26, Nig = ].),
(nl = 152,n14 = 3,027 = 2)7

(n1 = 6,71,7 = 13,%14 = 5,7127 = 3),

(n1 =102, n7 = 13,n14 = 2, n27 = 1),

(n1 =8,n14 = 1,np7 = 6,064 = 1),

(ny = 56,n14 = 6,027 = 4),

(n1 == 1,%14 == 3,n64 = 2,7177 = 1)}

Notice that the set of solutions is finite and limited to seven solutions solving the linear
system of equations subject to the constraints we discussed. We next have to check whether
or not these solutions lead to a factorized twelve-dimensional anomaly polynomial. To
this end, we present the details for one of the solutions and for the other, we collect our
results in two different tables for reasons that will become clear later. We take the solution

given by

(n1 = 1,n14 = 3,n6s = 2,077 = 1),

5.9

where the corresponding group theoretical constants are collected in Table 5.1. Next, we

r Ur Wy Yr Zr
1 - - - - ny = 1
15 )
64 —208 75 38 32 Ngs = 2
315 121
Sondo(r) =248 | donu, =0 | Y new, =240 | Y nyy, = 144 | > nez, = 120

Table 5.1: Multiplets of representations solving the constraints to factorize (5.8) and the

indices of traces for Gs.

60



need to plug the results in the last row of Table 5.1 into equation (5.8). By doing that, we
find that the anomaly polynomial associated with the solution (5.9) is given by

1 1 1 1
Pg%&ﬁﬁz—5?8@3+m)<ﬂ8@3+pﬁ2+gp3—§pa, (5.10)

where the second Chern class ¢, 7 has been written in the fundamental of G,. As aresult of
this analysis, we have found that the matter content in (5.9) along with a pure gravitational
contribution lead to an anomaly polynomial that can be related to the anomaly of the the
topological interactions of M -theory, since

hC3 = _/ PI%Z(R7 F)a (511)
Y

provided that the 4-form field strength G4 of theory is chosen as G = %L p1 + 2cy7 as
we did for the Eg gauge theory. Therefore, this suggests that we have found a new
boundary condition of M-theory with gauge group (Go. Before we discuss whether this
is a new solution we summarize the anomaly polynomials for the G5 solutions in two
tables. Table 5.2 shows the anomaly polynomial of the different solutions of G5 with the
property that the corresponding anomaly polynomial factorizes in the manner demanded
by a connection with M-theory. We also provide in that table the corresponding value of the
4-form field strength to establish such a connection. In Table 5.3 we provide the anomaly

G, gauge group

(ny =52,n7 =26,n14 = 1)
1 1 1 1 1 1
Pe,(R, F) = —%(202,7 +p1) (1(202,7 +p1)2+§p§—§pz) G= ZP1+§C2,7
(ny = 6,n7 = 13,014 = 5,n07 = 3)
Po, (R, F) = 1@ + p1) %4 - f+12 L G=1p+
G\ 11, = 9% Co7 T D1 1 Co7 T D1 8]71 2]92 = 4P1 Co7
(nl =8,n14 = 1,m27 = 6,64 = 1)
1 1 1 1 1 3
Pa,(R, F) = —%(60277 +p1) (1(602,7 +p1)2+§p%—§p2) G= Zp1+562’7
(nl = 1,n14 = 3,n64 = 2,077 = 1)
P, (R, F) 1(8 +p1) 1(8 + )2+12 L G L +2
= | ——(8¢ —(8¢ —py — — = - c
Go \ L1, 9% 2,7 T D1 1 2,7 T P1 3 P B D2 1 b1 2.7

Table 5.2: Combination of representations and its multiplicity solving the linear system
of equations (5.6) related to branching rules of Eg along with the anomaly polynomial
associated with each solution. On the third column, it is given the corresponding 4-form
of the theory.
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polynomials for the rest of the solutions we found for (G;. Notice that those anomaly
polynomials do not factorize as we would expect to establish a relation with M-theory.
However, there are two solutions that interestingly have an anomaly polynomial with the
minimal factorization required by the Green-Schwarz method although, this is not enough
for our aim in this thesis. As we mentioned before, it would be interesting to further study
those solutions.

We do have to figure out whether or not the solutions of Table 5.2 are new boundary
walls of M-theory on a manifold with boundary. We make the following observations
to address this question. We will focus on the branching rules [212] of the Fg group
involving the group G5. Through [212] the branching Ey D Gy x Fj, it is found that
248 — (14,1) @ (7,26) @ (1,52) which clearly explains the first spectrum just found
in Table 5.2. By looking, for instance, at the following chain Fs O E; ® SU(2) and

G5 gauge group

(n1 = 152,’1114 = 3, No7 = 2)

1 2 13
Pa,(R, F) = —ﬁ@ a7 + 1) (5(10 ez +p)’+ gp% - 4192)

(N1 = 56,114 = 6,197 = 4)

1
Pe, (R, F) = —e3 (160 ¢37 + 112¢57p1 + 28 Ca7p; — 16 o7 po — 4p1p2 + 35)

(nl = 102, ny = 13, Nig = 2,7127 = 1)

1

P, (R, F) = 768

2 7
(2¢o7+p1) (5(6 Co7 +p1)2 + gp% - 4P2)

Table 5.3: Combinations of representations solving (5.6) which are not directly related to
branching rules of Fg with its respective anomaly polynomial. Consequently, we saw that
the anomaly polynomials do not factorize as we would naively expect.

E; 5 SU(2) x G4, we can determine the second spectrum since

248 — (1,3) @ (56,2) @ (133,1),
1-(1,1), 512)
56 — (4,7) @ (2,14),
133 = (5,7) @ (3,27) @ (3,1) @ (1, 14),

which produces the combination of representations in the spectrum of the second row in
Table 5.2.
The third solution is obtained through the branching Es D Fs®SU(3) and Eg O G5 by
looking at the branching of the adjoint representation of Eg under this chain of embeddings.
Whereas the last row in Table 5.2 can be found if we look at the set of embeddings

Gy — SO(14) = SO(16) — Ex. (5.13)
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After a careful study of all the branching rules of the Es group, we find that all of them lead
to one of the solutions shown in Table 5.2, maybe leading to the same solution more than
twice but no other than those there. Whereas, solutions in Table 5.3, we were not able to
trace back to Fg branching rules. Under these observations, it follows that the factorized
anomaly polynomials in Table 5.2 inherit the structure of the Eg anomaly polynomial
reviewed in Chapter 4 and can be shown properly if we look carefully at the branchings
just discussed, as we did using SO(16) in the analysis of Fg gauge theory in the previous
Chapter. It turns out that Table 5.3 cannot be traced back to branching rules, hence the
anomaly polynomials do not factorize as we are looking for. In other words, these cases
do not inherit any structure from the underlying Es gauge theory.

We will make the same analysis for the other exceptional groups by applying the same
algorithm as before.

5.2.2 F, group

We continue our discussion with F. In this case, we have only three representations
available to apply our algorithm. The solution we have determined is provided in Table 5.4.
This solution can be spelled out by one of the branchings we have already mentioned for
G, namely Egy D Go x Fj. Therefore, this does not constitute anything new. We should
once more emphasize that the restriction of considering only one chirality limits the results
we obtain. Ultimately, perturbative anomalies arise from having a chiral spectrum. Once
again, the identity with M-theory is established with the four-form provided in Table 5.4.

F; gauge group

(TL]_ = 147”26 = 7, Mgy — 1)

1 /2 1/2 2 1 1 1
Pr, (R, F) | —— (—02,26+p1> (- <—02,26+p1) +—p%——p2> G=-p+—c

96 \ 3 4\ 3 8 2 4 6

2,26

Table 5.4: The spectrum for £ is unique and directly related with Eg. The corresponding
anomaly polynomial in the fundamental of F}, is also provided. Additionally, the M-theory
four-form is given with the proper coefficients.

5.2.3 Eg group

Next, we discuss Fg gauge theory. Firstly, it turns out that the fundamental representation
of the Fg group is complex, so we can consider its complex conjugate representation and
then apply our algorithm. On the other hand, the number of representations is limited, we
do not expect anything new. In fact, what we have determined is given in Table 5.5 and it
is related to the branching Fs D Eg x SU(3).

Note that the anomaly polynomial of F} is the same as in this case. This is expected
since 27 — 26 ¢ 1 under Eg D Fj.
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Eg gauge group

(nl - 87”27 - 37nf = 37“78 == 1)

1 /2 1 1 1

1/2 S|

2,26

Table 5.5: Combinations of representations of Ejg with its respective anomaly polynomial
directly related to Es.

5.2.4 FE; group

The final group is E; for which we have only two nontrivial representations to apply the
algorithm thus the spectrum we found is the expected coming from the branching under
E7 X SU(Q) C Eg.

E; gauge group

(n1 = 3,m56 = 2,n133 = 1)

1 /1 1/1 S| 1 1 1
Prs(R, F) | —— (—02,27+p1> <— <—02,27+p1) +—p%——p2> G=-p1+—

96 \ 3 4\ 3 8 2 4 12

C2.26

Table 5.6: Solution of Eg with its respective anomaly polynomials connected with Ejg.

We have arrived at the conclusion that the unique exceptional gauge group providing
a boundary solution of M-theory is the Eg group. The other cases providing a factorized
anomaly polynomial only acquire the structure of the L case. In other words, there in
no nonsupersymmetric heterotic branes with exotic matter than the s M9-branes found
by Hotava and Witten [138, 139] using exceptional groups with charged chiral matter.
Furthermore, we have found solutions for (G5 that factorize as in the standard Green-
Schwarz method and other solutions that do not factorize at all.

In the next section, we deal with classical Lie algebras. W will rule out many of them
by dimensionality reasons and by using their indices. Eventually, we are left with a limited
number of groups that it is well worth analyzing but the details can be found in [144]. The
reason is that the main challenge in those cases is the computation of a large number of
indices for a considerable number of representations. However, the algorithm to search
for new M9-branes in M-theory with exotic matter in representations of a classical Lie
group is the same as the one we worked out at the beginning of this Chapter.

5.3 Classical Lie groups

Here, we focus on the classical Lie algebras. Due to our chirality assumption, we can
rule out many of the higher-order groups and deal only with algebras of certain rank n as
we will see. Regarding this point, it is more convenient to rewrite Eq. (5.1) in terms of
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traces of powers of R and F' curvatures due to the presence of many more group-theoretic
coefficients of the different combinations of fundamental traces appearing in the expansion
of a trace of an arbitrary representation.

The classical algebras A, B,, C,, D, for n > 2 have nontrivial quartic Casimir
invariants in general, which implies that there can be fourth-order Chern characters such
that the four-order traces can be decomposed as follow

tr, F* = x, tr F* + y, (tr F?)? (5.14)

for an arbitrary representation r of the corresponding algebra in terms of the fundamental
representation. This new situation contributes to the anomaly polynomial as follows

%pl anerZCm (5.15)

where x,, is directly related to the coefficients in (5.14) and n,, accounts for the multiplicity
of r;. Also, in general, we have the following sixth-order trace identity

tr, FO = u, tr F® + v, (tr F4)(tr F?) + w, (tr F?)? + a, (tr F?)? (5.16)

where the last term on the right-hand side of (5.16) is nonvanishing only for the algebra
A, (n > 2). Also, it can easily be shown that the term tr, F3 has a nonvanishing third-order
Casimir invariant only for representations r which are complex. Usually, this coefficient
is known as the anomaly coefficient in the physics literature, see e.g. [62].

More precisely, we can work out a general anomaly polynomial in terms of explicit
traces. We will first focus on the pure gauge and mixed gauge-gravitational anomaly. By
using the explicit trace identities for the Chern character and Pontrjgin classes, we obtain

— anlurztrF an Vrztl”F4 tr F? — Z”nwrz trF2 anlarl trF3

ri ri ri

5 5
+ g tr R? anixritr F*+ 3 tr R? aniyri (tr F%)?

ri

- — trR2 Z:n“zrltrF2

1
I —tr R? Z,: Ny, Ze tr F2

(5.17)

up to some overall constant' that is not relevant for the analysis of the coefficients appearing
on each trace tr /™" or products of them. These coefficients can be conveniently represented
in a vector

(Weys Vs W,y e,y Xrys Vesy Zr; ) - (5.18)

Notice that some of these coefficients are not important for the factorization problem we
are dealing with. In principle, we can get rid of some of them such that we leave with the
vector which has to be zero, i.e.

an’i(urmvrmariaxri) = 07 (519)

'In order to throw the third Pontrjagin class ps away from the anomaly polynomial already avoiding any
possibility of factorization, we fix n,idim( r;) — 248 = 0, which implies that the pure gravitational part
reduces to

H
(tr R?)3 + 15 —trR*tr R*
64 16 ’
in terms of explicit traces. Also taking into account the overall constant of 1440 alluded in the text.
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supplemented with the condition )} n,,dim(r;) — 248 = 0. Note also that the anomaly
coefficient a,, vanishes for the algebras B,,, C,,, and D,,. We should also emphasize that
finding a set of solutions satisfying these two conditions does not guarantee a factorized
anomaly polynomial as we are looking for.

5.3.1 Algebras B,,C,, and D,,

Firstly, we will discuss B, (n > 3), C,, (n > 2), and D,, (n > 4) algebras. We do in
this way because for A, (n > 2) there is third-order invariants [213]. Secondly, A,
is special since it does have neither four-order nor sixth-order Casimir invariants, thus it
seems that there could be a chance to search for an arrangement of representations such
that the anomaly polynomial could factorize. We return to these cases in a moment.

D,, : The first observation we make is that for D,,, n > 11 we have only the trivial and
the fundamental representation to play the same game we have been already playing to
cancel terms representing an obstruction to the factorization we want. Therefore, the term
tre ['* = x¢ tr F'*, where x¢ could be normalized to be one, will appear in the anomaly
polynomial already avoiding a factorization since there is no way to cancel it. In addition,
there is no obvious way to get rid of tr, F® = u, tr F'%. which is in principle nontrivial
as well. We have the same situation for algebras C,,, n > 12 and B,,, n > 12. Note that
for the purpose of looking for boundary conditions of M-theory SO(32) was discarded as
was pointed out in [138] basically by this reason and by supersymmetry.

For4 < n < 11 the representations we have at our disposal are basically the fundamen-
tal, the adjoint, and the symmetric representations which have positive group-theoretical
constant x, thus the anomaly polynomial comes with a nontrivial four-order trace avoiding
a sort of M-theory identity. For the adjoint and the symmetric representations of B,, and
D,, algebras, we can compute the indices, so that [68,214]

tr, F* = (2n — 8) tr F* 4 3 (tr F?)?, (5.20)
treym F = (2n + 8) tr F* + 3 (tr F?)%. (5.21)

On the other hand, for 4 < n < 8the spin representation, among others, enters the analysis
and it is also known that the four-order trace is related to the fundamental via [68,214]

2n—9

tr F* +3 - 2055 (tr F%)? (5.22)

Atrg, F* = —20%57)
Notice that, SO(16) is directly connected to Eg via the branching rule through the adjoint
and the spin representations where the proportionality constants of tr F'* are such that
they vanish for 120 + 128. In this way, the low dimensional cases could deserve more
attention where we will have fourth-order and sixth-order Casimir invariants. For instance,
Ref. [215] has computed quartic Casimir operators of SO(9), SO(7), SO(5) and SO(10)
and SO(8) that could be investigated and according to their results there could be negative
eigenvalues for the Casimir operators. Nevertheless, by looking at the branchings of Fg
only the groups SO(7), SO(14), and SO(16) are expected to lead to similar results as the
preceding sections. Therefore, this is a more direct way to rule out possible solutions with
the B,,, D,, algebras. Something similar happens for C,, algebra.

5.3.2 Algebra A,

Finally, we look at the algebra A, 4, i.e. SU(n) for which algebras of rank n > 15
are already ruled out by the dimensionality of representations. For algebras n < 14
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the number of representations increases as we go down in the rank. But, looking at the
branching rules [212] of Eg there is a couple of examples that deserve some attention.
Otherwise, we do not expect to find anything new. However, for a thorough analysis, we
just realized that using material developed in [214], we can just compute the indices for
representations [2], [3], [4], where the notation [£] means that

P 5.23
as well as for the symmetric representations
1 1
(2)==-n(n+1), @B)=-nn+1)(n+2). (5.24)

2 6

As we said, the Chern character obeys very useful properties under direct sum and tensor
product of representations that follow from its definition (see Appendix B), namely

chy, e, (F) = chy, (F) + chy, (F) (5.25)
chy, @r, (F) = chy, (F) chy, (F) . (5.26)

These properties of the Chern character are particularly useful for representations of SU (n)
since this will allow us to evaluate Chern characters of symmetric and anti-symmetric
representations. Using the following identities [214]

> "t chy, (F) = det (1 +t exp (;)) , (5.27)
T
m=0
o0 F —1
D " chy (F) = det (1 —t exp (i2—>) , (5.28)
T
m=0

where [m] and (m) denote (anti)-symmetrized representations where the Chern character
is evaluated. These are irreducible representations for SU (n) using as reference represen-
tation its fundamental vector representation. For instance, the [m] can be thought of as an
element of the exterior algebra A(V') = &,,A™ (V') (another way to think about this is by
symmetrization by Young tableaux). Therefore, the right-hand side of (5.27) and (5.28)
is valued in the fundamental of SU(n). This allows us to determine the corresponding
Chern characters as follows

det ( 1+t exp iE = ﬁexp — (_t)kch(k F) (5.29)
27 Pt k ’ ’
F\\' S tk
det (1 —t exp O%)) = kl_[lexp [Ech(k F)] : (5.30)

where ch(F) = tr(i£) denotes the Chern character evaluated in the fundamental or

or
defining representation. With this, one can show that

chy(F) = %chz(F) - %ch(QF) , (5.31)

chy(F) = %ch3(F) — %ch(QF) ch(F) + %ch(SF) : (5.32)

chy(F) = ich‘*(F) - idﬁ(F) ch(2F) + %ChQ(QF) + %ch(F) ch(3F) — ich(élF) :
(5.33)
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From this, one can obtain basic trace identities with the corresponding index coefficients
(up to some normalization) plus the product of basic traces as well as the dimension
of the representation [m]. In fact, we have computed the indices for the representations
2], [3], [4], (2) and (3) for the classical Lie algebra A,,_;, which are useful for our purposes.
They are given by

I([2) =n — 281

IJ([3]) = %(n2 —(1+2"n+2-3"1

Ii((2)) = n+ 28" (5.34)
I,((3)) = %(nQ +(1+2"n+2-3"1

L([4]) = 2(n® — 32" + )2 +2(3- 262 4 3% 4 1)n — 6 45°1),

6

and for each of the representations, we have obtained the following trace identities

trp o F® = (n F 25t FO + 15t F* ¢ F? — 10 (trF®)?, (5.35)
trp @ F* = (n F 23)te F* + 3 (trF%)?, (5.36)
trp, ) F? = (n F 2)trF?, (5.37)

where the upper sign is for the antisymmetric [2] and the lower sign is for the symmetric
(2) representations. Whereas, for the representations [3] and (3), we have determined that

1
tr[g},(g)FG = 5(712 T 65n + 486)trF° + 15(n F 10)tr F* tr 2

+10(n F 8)(trF?)? + 15(trF?)*,  (5.38)

1
trp ) Ft = §(n2 F 170 4 54)tr F* 4 3(n F 4)(tr F?)?, (5.39)

1
tris, ) F° = 5(n2 T 5n + 6)tr ™. (5.40)

Finally, for the representation [4], we find that

1 . .15
trg F¢ = 6(713 — 99n? + 15561 — 6144)trF'® + 7(n? — 21n + 92)tr F* tr

+5(n* — 17n + 68)(tr F?)* + 15(n — 6)(trF?)*, (5.41)

1 3
tryy F* = g(n?) —27n® + 188n — 384)tr F* + §(n? —9n +20)(trF?)?,  (5.42)

1
tryy F? = 6(n3 — 9n® + 260 — 24)trF>. (5.43)

However, for algebras with n < 9 there are more representations that the already worked
out. Fortunately for us, properties of the Chern character come to the rescue since we
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can use the fact that the tensor product of representations is the direct sum of, in general,
reducible representations, namely

r X ro = @ﬂ% r (544)
under which

chy, (F) chy, (F) =) nch,, (F). (5.45)

Thus, by computing the tensor product of two known characters for representations r; and
ro we can compute the character of an unknown representation by subtracting what we
already know from the right-hand side of (5.45).

Consider the next simple example. Let 16® 16 be the tensor product of the fundamental
representation of SU(16) which can be decomposed as follows

16 ® 16 = 120 @ 136, (5.46)

By using (5.45) andand (5.34) for the representation [2] = 120 we find that

20
3!

24
4

32
5!

%tr(F)6 + -
(5.47)
where - - - represents higher-order traces and products of lower ones. Note also the agree-
ment with equations in (5.34) for the representation [3] = 136. Note also that for lower
order SU(n) algebras one has to re-express higher-order traces in terms of lower-order
ones. To see how to do this one can look at Ref. [214].
It is also useful to know the trace identities for the adjoint representation of SU(n)
given by (up to sixth order)

18
chizep)(F) = 136 + —tr(F)* +

3
5 tr(F)° +

tr(F)* + =tr(F)° +

try % = 2ntr F® 4 30 (tr F*)(tr %) — 20(tr F?)?,
tr, F* = 2ntr F* 4 6 (tr F?)?, (5.48)
tr, F?2 = 2ntr F?,
As we said, the main challenge is the computation of indices, knowing that, the next step
is the application of our algorithm for an anomaly polynomial, with some extra subtleties,

as we did for the exceptional algebras. For the details, see [144] as well as for the remaining
cases of the algebras B,,,C,,, and D,,.
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Chapter 6

The dS conjecture and Horava-Lifshitz
theories

6.1 Anti de Sitter Conjecture

One of the most challenging tasks in string theory has been the construction of a 4d de
Sitter (dS) space, in contrast to well-understood Anti-de Sitter (AdS) solutions [216].
There are two prominent dS solutions, one is known as KKLT [217] and the other is
the Large Volume Scenario (LVS) [218,219]. This search for a solution with a potential
whose minima is a positive value plays a role in trying to explain the actual stage of
our cosmological universe being connected to a cosmological constant responsible for its
accelerated expansion. However, this fact of having such a few number of dS solutions
makes it plausible to ask whether string theory may host (metastable) dS vacua within its
Landscape of solutions. Indeed, this observation has led to the Swampland community
to propose a lower bound on the derivative of potentials (more generally the gradient),
establishing that [27]
Vs

7 >c, 6.1

the scalar potential of an EFT coupled to gravity must satisfy a bound on its derivatives
with respect to scalar fields, where c is a constant of order one. This was mainly based on
observations on string theory constructions. Nevertheless, by more careful considerations
of the entropy of dS space and the Distance conjecture, the above proposal was refined to
the statement that [26, 28] the scalar potential of a theory coupled to gravity must satisfy

either
\4

7 >c, (6.2)
or v
<= (63)

where cand ¢ are constants of order one. Often, string theory EFT constructions come with
more than one scalar, so the left-hand side must be changed by the minimum eigenvalue
of the Hessian of the potential.

In principle, we could apply these general statements to a theory coupled with gravity,
hence this chapter aims to test these conjectures firstly with standard f(R) theories and

secondly with F'(R) Hofa-Lifshitz (HL) theories [33]. We found it interesting to test
the dS conjectures on these models since, if this conjecture is ultimately true, it will be
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fundamental to rule out apparently consistent quantum theories of gravity. Otherwise, we
have to find them a place in the Landscape of string theory.

6.1.1 Standard f(R) theories

To start with, let us consider standard f(R) theories [220], which are a generalization of
General Relativity (GR), in the frame known as the Jordan frame

Szé/#mcwm% (6.4)

where f(R) is some well-behaved function of the curvature scalar R without any matter
component. Under a Taylor expansion of the f function around a small curvature, GR cor-
responds to the linear order in the expansion. Notice that we could consider the following
equivalent action [221,222]

1
s=3 [ dav=glr-0), (6.5)

where ¢ = % = fg is just an auxiliary field and U = Ry — f(R). By considering a
conformal transformation as follows g, = ¢*g,,, with p = % In fr, we can obtain GR
plus a canonically coupled scalar field whose action is now described in the Einstein frame

by

g - %ﬂw%u(é%ﬂb - V(Qb) ) (6.6)

S:/d4x\/—_§i

where ¢ is a scalar field in terms of the curvature

3
¢ = \/;hlfRa (6.7)

Rfr—f

Vi(g) = BT (6.8)
We emphasize that the scalar field we are looking at is in terms of the Riemann curvature,
we have not included any matter coupling. However, it is expected that the dS conjecture
also applies to this kind of system because what we obtained in (6.4) is GR plus a scalar
field along with a potential. Hence, we will consider this system under the dS Swampland
conjecture, and after studying this problem, we will find that we can restrict the parameters
of the theory, and correspondingly its solutions. In addition, following the dS conjecture
(6.2) we will restrict the derivative of the potential to positive regions, and then we impose
that

with a potential given by

Rfr—f>0, (6.9)

and from (6.7), we also note that fgr > 0. Under these considerations, we can apply the
dS conjectures to the potential (6.8). From (6.2) we get the following

12f — Rfr| > \/gC(RfR - ), (6.10)

and (6.3) leads to )
J&+ frr(Rfr —4Ff) ~
—cC. A1
San(Rin—1) ¢ ©1D
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One could consider an arbitrary function f(R) in the above equation. However, if look
for a setup where the conjecture (6.2) applies with no dependence on the curvature R and
thus, valid for any curvature R, it is proposed that

2f — Rfr| _

Rfr—f
where A is any constant that should be positive in order to achieve (6.9). Let us remark
that this is an ansatz and therefore it is not the only way to reach (6.10), but it is the only

way to fulfil it independently of R. For the case of 2f > R f, this allows us to determine
that

A, (6.12)

f(R) = BR*, (6.13)
A+2

where v = 475 with 1 < a < 2. To avoid problematic issues with this f([2) function, itis
imposed that fr > 0 and fgr > 0[221]. Both conditions are consistent with 3 > 0. With
this, we can substitute this form of the f(R) into the first statement of the dS conjecture,

and we get the following inequality for the o parameter

2—|—\/§c
o< —Y 2 (6.14)
1—1-\/%0

By using the fact that ¢ is an order one constant, this leads to a < 1.45. Therefore, we
have found that f(R) = BR'™%%5, which is saying that we should not be far from standard
GR. Nevertheless, this does not exactly correspond to GR plus a scalar field. Scenarios
such as this with f(R) = R'*¢, where € is a small number were considered in [223]. It has
been found that the conjectures were compatible with the region of € of phenomenological
interest. Importantly, the ansatz (6.12) and consistency with the dS conjecture have led to
a function that could be within a region of phenomenological applications.

By considering the case 2f < R fgr, we obtain the same form but in this case o = A—j
and thus > 2. This form can also fulfil the two conditions fz > 0 and fzrr > 0 for
B > 0. However, in this range of values «, the first dS conjecture can not be achieved.

On the other hand, substituting the form (6.13) into (6.3) we obtain that the second
statement of the dS conjecture corresponds to

(a — 2)2 /
s < (6.15)

hS

which is independent of R but cannot be satisfied for any value of «. Therefore, we have
found that a power law f function is not compatible with the second statement of the dS
conjecture. Recall that the refined dS conjecture is an either statement, therefore there is
not a contradiction.

In the following, we shall consider the F'(R) Hofava-Lifshitz theories and the appli-
cation of the dS conjectures to find out what kind of conclusions we can draw from that
analysis.

6.1.2 F(R) Horava-Lifshitz theories

Hortava-Lifshitz theories have a natural formulation in terms of the ADM decomposition
of spacetime where the metric is written in the general form

ds® = —N2dt* + g (da’ + N'dt)(da’ + N'dt) (6.16)
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where N is the lapse function, N* the shift functions and gl(]) the three-metric. We point

out that the Friedmann-Lemaitre-Robertson-Walker (FLRW) metric has this form with
vanishing shift functions and it is always possible to choose the lapse function to be equal
to one. In this formulation, the Hotava-Lifshitz action [224-228] describing gravity can
be expressed in terms of an extrinsic curvature denoted as K;; 1 , a parameter \ or coupling

constant, and a potential term for gravity denoted as £(ng ). This term is generally

written in terms of the scalar curvature R® of the three metric 9(3)

ij and seven constants
accompanying higher spatial derivative terms written in terms of the Ricci scalar of the
spatial three-metric. In our investigation, we will consider an FLRW universe and for that
case, the specific form of the potential does not matter, it always vanishes thus, for our
purpose we can ignore it. In the ADM formulation, it is natural to ask for a Hamiltonian
constraint. For HL theories this constraint can have a global nature determined by the
time-dependent lapse function. We say that in this case, we are in the projectable version
of the theory. Other versions appear when the lapse function may also depend on the
spatial variables. The upshot is that the equation of motion can be modified by a boundary
term due to the global nature of the Hamiltonian constraint, implying that in one version of
the theory may or may not be and this is important later. For now, however, we emphasize
that this theory has also been generalize to an F(R) theory whose general form is

Sr@m) = /d4~’17\/ gONF(R), (6.17)

where now R can be understood as a generalization of R which includes the new terms of
spatial derivatives which are proposed to have the form [229,230]

R = KVEK;; — AK* + 24V ,,(n*V,n” — n7V,n?) + L(g.)) (6.18)

where p is a constant. The term containing p is usually omitted in the standard f(R)
theory since it turns out to be a total derivative term. However, it is necessary for these
theories. As we can see for the above definitions, the limit A — 1, g — 1 of this theory
will lead to the standard f(R) theory used in the previous section. It is also pointed out
that this general theory has been used along with the FLRW metric resulting in interesting
cosmological scenarios, see e.g. [229-231].

As we said, we will also consider a flat FLRW metric which can be expressed as

ds* = —dt* + a*(t) [(dz")* + (d2®)* + (dz®)?] (6.19)

from which follows that (6.18) can be rewritten as
_ 9 d
R=(3—-9\+18u)H* + 6,115 (H), (6.20)

where H = 1 ‘fl“ is the Hubble parameter. On the other hand, considering only gravity, the

first equation of motion obtained through the Hamiltonian constraint is [229]

F(R)—6|(1—=3\+3u)H?+uH| F'(R)+6 HdngR) — % =0, (6.21)

where H = 4L 7 = 9L and where C' # 0 is an integration constant in the projectable

version of the theory, while the non-projectable version of the theory C' = 0 and this is the
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only difference between both versions that will be relevant for us. While, variation with

respect to gS’), its equation of motion yields [229]

dF'(R) d’F'(R)
2
i TP

F(R)—2(1 =3 \+3u)(H+3H*)F'(R)+2(3\—1)H =0. (6.22)
This set of equations looks more involved than the standard f(R) case, nonetheless, in the
limit y4, A — 1 this theory can be recovered. In addition, this set of equations will play an
important role in subsequent discussions.

Before, let us consider the F'(R) action (6.17) which can be rewritten as in the f(R)
case but now in terms of the three-metric as

S = % / d*z\/g®N [RF'(R) - U], (6.23)

with U = RF'(R) — F(R). Now, by performing a conformal transformation in the three-

(3) ~(3)

metric, g;;" = e*‘ggi , and choosing N = 1 and N as we already did for FLRW, we can

obtain an action in the Einstein frame as [230,232]

2 2 2
3 9)\ 9,u 2 3 (3) —
°-_2z W 9 6.24
+(4 4+2>¢ L(e %g;;") —2V(9)|, (6.24)
with .
-2 = - RF' — F
=3 InF'(R), V(¢)= —5F (6.25)
Notice that if we choose 1 = A — %, then
_ 9 — 33N —1
b= ad= ?alnF’(R), o= % (6.26)

Hence, this allows us to recast (6.24) into the following form

5 +5 = V(9)]. (6.27)

S = / diz\/50) [K”Kij —AKE - L(ePg) &
Thus, in the Einstein frame, we have obtained an action of gravity plus a canonically
coupled scalar field, so this system can be tested with the dS conjecture and this is done
momentarily. We might also consider the general case given by (6.24) although, this is
not in the canonically normalized way we would wish. Thus, the dS conjectures, which
is our concern, could not be applicable. However, we note that we also get a potential for
that general case, which is in principle what we need to test the conjectures, Therefore, it
is proposed that that case can also be analyzed. Even though, the details are not presented
here, they can be consulted in [33].
Hence, we are already in the position to apply the dS conjecture (6.2) to the limiting
case we have obtained by choosing ;1 = A — %, from which we find that

Vol _ 3 _ |F]

= 6.28
V " %memr_r~ (6.28)
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and as before, we work in the positive region of the potential. On the other hand, the
second dS conjecture takes the general form given by
| 9 (F)?—-F"F
Voo _ 9 (') <. (6.29)
V 4o F"(RF' — F)

We may proceed as in the standard f(R) case, noting that the conjectures could be made
independent of R by considering a power law function. But, rather than that, we will
use the equations of motion for the F(R) theory in the Jordan frame for our choice of
n=A— % as well as an ansatz for the scale factor or equivalently for the Hubble parameter
of cosmological interest, and then we construct the F'(R). Finally, we will check if this
function can fulfill the conjectures at the same time that leads to cosmological interesting

solutions.

Non-projectable case

Let us start with the non-projectable case, that is, C' = 0. The simplest ansatz of cosmolog-
ical interest one could consider is a constant Hubble parameter. However, for the limiting
case in which we are working, this choice leads to a vanishing F’ function. Therefore, we
instead propose to study an accelerated expanding universe in the form of a power law
with the time parameter, that is

a(t) =1t", (6.30)

where n is a constant that will be considered positive. Thus the Hubble parameter is
H = n/t. With this ansatz using (6.20) we obtain that R is related to the time variable as
— BA=1)nEBn-2
p— (8= DnlEn =2) (6.31)
12
We also note from (6.26) that we must always have 3\ > 1 so that the scalar field is properly
defined. We will generally be interested in values of . that describe accelerating expanding
universes and therefore from the above equation we further note that considering positive
values for R we obtain the condition 3n — 2 > (. Therefore, 2 grows inversely with time,
so the behaviour is similar to what we could expect of the curvature.

After we choose the limiting or reduced case, ;1 = A\ — %, equations (6.21) and (6.22)
can be combined into the following second-order differential equation in time derivative
(we also used the non-projectable condition)

d2

tQ@F’(E) —3nF'(R)=0, (6.32)

which can be solved, giving us the following solution

F'(R) = cit™ + cot™ (6.33)

where c; and ¢, are integration constants and
1
o= [1 +V1+12n| . (6.34)

Using (6.31) we can find the form of F' as a function of R, we obtain

F(R) = — + 2R, (6.35)



where we have defined the positive constants

1 -1 3
m:%q:z [\/1+12n—3] >0, @:1—0‘7:Z \/1—1-1271—1—3] >3
(6.36)
The last inequality follows from the condition 3n — 2 > 0 in both cases and we have also
defined

=C — 1)n{on — Bt 2 = = : :
A= [(3N=DnBn—2)]71 A4 B~ Dm0 (6.37)

This general solution contains two terms of powers of R and thus we expect that it can
fulfill the dS conjecture for any of the terms taken independently. The condition to have a
non-negative potential for the scalar field in the Einstein frame in this case takes the form

_ A 1 — 1
RF’—F:%(qu—) + AR (1——) > 0. (6.38)
R By p
Moreover, from (6.36) we obtain that

1 V1+12n +1 1 V1+12n —1
1+4—= >0, 1—-—=—+——>0
B V1+12n+3

= — 6.39
By V1+12n-3 (6.39)
Thus, the condition (6.38) can be easily fulfilled by taking positive values for the integration
constants ¢; and ¢,. In this case, we obtain

A Ay
— + 277 (6.40)
B.RT B

[Fl =1~

Since there is a minus sign in the first term the ¥’ function cannot have a definite sign for all
values of R, and thus we cannot fulfill the dS conjecture for all values of R if we consider
both terms at the same time as we anticipated. Thus let us consider each term separately.

Considering first the positive power factor on F'(R), namely ¢; = 0 and ¢ > 0, then
the dS conjecture (6.2) gives rise to

1 1 16
— <A< =+ . 6.41
3 3 (V1+12n—1)2 (©4D)

In the other case, if we consider the negative power factor on F(R) by choosing ¢; > 0
and ¢y = 0 the conjecture leads to

1 1 16
— <A< =+ ) 6.42
3 3 A(V1+12n+1)2 e

These two cases are consistent with the positive-region condition for the potential as can
be checked from RF’' — F > 0. Thus, the dS conjecture leads in both cases to an inequality
for the HL parameter \. Further, note that in the limit n — oo, we get that A = 1/3. Thus
in order to satisfy the conjecture independently of R and in order to have a fast expansion,
we obtain that A\ must be bigger but close to 1/3 and thus away from its IR limit value
A = 1. Also, in both cases the first dS conjecture leads to a region of validity for the

A parameter and since neither 5, nor S_ in (6.35) depend on A, the form of the F'(R)
function is not constrained by the conjecture, it only depends on n, and thus we have the

76



0.5 1.0 15

Figure 6.1: Profile of the scale factor in the Jordan frame (red curve) and in the Einstein
frame for negative power of the curvature in F' (blue curve) and with positive power (black
curve).

freedom to choose any positive values of interest for these terms. This is in contrast to the
standard f(R) case.

On the other hand, we can apply (6.3), the second statement of the dS conjecture.
In both cases, either ¢; = 0 or ¢ = 0, we obtain that it is never satisfied. Thus, the
F(R) function we have constructed is not compatible with the second statement of the dS
conjecture. Therefore, we conclude that for the power-law expansion, we have considered
the first statement of dS conjectures can be fulfilled for each term on the solution of F'
independently of R, leading to an inequality for the HL parameter A which is in agreement
with the difficulties of achieving this scenario in GR, namely it leads us to the opposite of
the infrared limit, that is, to the UV limit A — 1/3.

One can also consider the behaviour of the scale factor, and therefore of the corre-
sponding expansion of the universe for the profiles of the curvature found before, namely
for the negative or positive power of R. By the conformal transformation relating both
frames, the Jordan and Einstein frame, we find that the scale factor can be expressed as

1/3
a(t) = 7 [t (VIFI) g3 (1=VITR) . (6.43)

where each term can be studied separately. The behaviour of this is shown in Figure 6.1
for n = 2 where it shows that for ¢ > 1 the expansion is faster for negative power of the
curvature in [ than for negative power, even faster than what we see in the Jordan frame.
For t < 1 this is flipped as we can see from the Figure 6.1.

Projectable case

We can consider the projectable case which is characterized by a nonvanishing constant
C. Instead of (6.32), thus, the equation we are led is

2
%F’(R) My e —3Y (6.44)

by using also the power-law scale factor in the temporal coordinate. By a similar analysis
as before, we obtain a set of inequalities by using the first statement of the dS conjecture
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given by [33]

1 16
A< -+ , 6.45
3 2(V1+12n—1)2 (645)
1 4
A< =4+ 77— 6.46
= 3+c2(3n—2)2 (6.46)

From this, one can deduce that the most restricted condition is (6.46) for most of the
range of values of n. while for n < (2 4 1/2)/2 it is most restricted (6.46). Thus, the dS
conjecture is satisfied for (6.46) for most of the values of n for every value of the curvature.
On the other hand, one could also check the second statement of the conjecture. In the
end, we find that it cannot be analyzed for all values of the curvature in general. It is
also possible to study the behaviour of the scale factor and in this case, one finds that the
constant C' increases the scale factor, making the expansion faster.
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Chapter 7

Conclusions

In this thesis we have mainly focus on the cancellation of perturbative anomalies associated
to infinitesimal local gauge transformations, connected with the identity of a gauge group.
In particular, we have considered the topological terms of M-theory on a manifold with
boundary. In this setup, these terms are ill defined given a contribution on the boundary.
The question we have answered is whether there can be nontrivial boundary modes such
that they contribute an anomaly proportional to the bulk anomaly. By doing this we
have reproduced the Es M9-brane worlvolume theory of Hofava and Witten. We have
also explicitly determined that any M9-brane of M-theory with a G worldvolume theory,
with G = G, F);, Eg, and Er, exceptional groups, inherits the restricted Green-Schwarz
anomaly polynomial factorization from Fs. Otherwise, the anomaly polynomial associated
to the nontrivial edge modes does not factorize as we were searching for an M9-brane
interpretation. We consider this as a nontrivial result because this firmly establishes that
there is no other M-theory boundary solutions than the already known FEjg brane. Some
preliminary results seems to suggest that this is also the case for classical Lie algebras.
For this aim, we have to extend the computation of indices for the relevant representations
to be considered subject to the assumed chirality condition in this work. This indices are
usually found for a limited amount of groups and for traces of fourth-order only. In this
thesis, we have computed explicitly the indices for the representations [2], [3], [4] and for
(2) and (3) at all orders for the Lie algebra A,_; (Lie algebra of SU(n) group). This is
the main challenge for the searching of new M9-branes solutions.

We remark that the kinematic restrictions we have studied are very general in the sense
that they do not rely upon any constraint imposed by supersymmetry. Nevertheless, the
algorithm we have developed contains as a solution the supersymmetric case. The unique
fundamental assumption of our search is a chiral matter content whose anomaly polynomial
allows a Green-Schwarz factorization. This is highly restrictive, butitis the unique and best
mechanism we have to cancel anomalies in string theory/M-theory. Indeed, this method
is so fundamental that have been extended to non-perturbative anomaly cancellation [197]
(see also [198]). However, as we discussed in Chapter 3 perturbative anomaly cancellation
is not the unique kinematic restriction coming from the study of anomalies. In addition, we
have to consider nonperturbative (or global) anomalies associated to the global structure
of the diffeomorphism group (or Lorentz) as well as the G gauge group. In this direction,
another important result of a our work is that we have limited that more difficult task of
nonperturbative anomalies to the Eg gauge group only. That is, for that task it seems that
we have to compute eleven-dimensional relative bordism groups [198] for a boundary
structure (; = string x Fg and a bulk structure (; = spin (or a more general structure,
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denoted as m® [182, 185] due to the flux quatization condition obeyed by the 4-form (),
namely €261/¢2(pt) which is a highly nontrivial aim, out of the scope of this thesis (but see
the discussion at the end of Chapter 3).

Furthermore, on the one hand, it is well worth to mention that we have found anomaly
polynomials for the group G5 that did not factorize as in the restricted Green-Schwarz
mechanism we considered in Chapter 5. However, some of the solutions in Table 5.3
obey the standard Green-Schwarz method of anomaly cancellation as we reviewed in
Chapter 3 which is sufficient for the quantum consistency of a theory under perturba-
tive anomalies. This might suggest new nonsupersymmetric anomaly-free theories in
ten dimensions. On the other hand, in Ref. [89] was established that the list of non-
supersymmetric ten-dimensional heterotic supergravities was already completed from the
1980s [66,170,233,234]. This was donde by considering the worldsheet realization of
heterotic strings via a chiral (0,1) fermionic QFT with central charge equal to 16 (the
supersymmetric cases are related to bosonic chiral QFT with central charge equal to 16).
This approach is indeed more powerful than that developed here because it does not care
about the smoothness of the background, where this is a crucial ingredient to use the index
description of anomalies. Therefore, this apparently consistent theories with perturbative
anomaly cancellation that we have found must be ruled out somehow. One possibility is by
considering nonperturbative anomalies. This requires the calculation of the string bordism
group 5""¢( BG,) to determine whether or not there is an anomaly encoded in this group,
see [136]. Other possibility could be a more sophisticated dynamical argument. We hope
to make progress in either of this directions in the future.

On the other hand, we want to add that our presentation of the anomaly polynomials
associated with the anomalous degrees of freedom we considered along the whole text has
been in terms of characteristic classes. Although, this is not usual in the physics literature,
itis convenient to appreciate the structure encoded in a characteristic class as we discuss in
Chapter 3. Itis more common to work with the trace representation of the classes in terms of
linear combinations of tr(F')™ and tr(R)™ by means of its representation in cohomology by
a characteristic polynomial in the curvatures. We present here the characteristic polynomial
for the Chern class which is heavily used in the text in case the reader wishes to recover
what is usually found in standard textbooks, for example [68,70]. In a compact way, that
characteristic polynomial is given by

3 s’ = det (1 n l—s) , (7.1)
- 2T

where s is only a parameter. By a Taylor expansion of the determinant, we can find that

, tr F tr, F? — (tr, F)? ,
Expanding this to the appropriate order you can plug this into the anomaly polynomials in
the main text as well as what we have given for the Pontrjagin' classes in equation (B.27)

'For completeness, one can determine the set of equations given in (B.27) using (define % — R)

; R
§ .rJ:dt 1 -
jp],s e<+27rs)
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one can recover usual presentations of anomaly polynomials. This cohomology represen-
tation of characteristic classes is known as Chern-Weil theory. We hope that this serve as a
motivation to learn this and other mathematical tools heavily used in our modern viewpoint
of anomalies as well as other branches of Mathematical Physics.

In an unrelated chapter to symmetries and anomalies, we have presented the results
of applying the de Sitter (dS) conjectures to F'(R) theories of Hofava-Lifshitz in a back-
ground with FLRW metric. We basically focus on the case where by doing a conformal
transformation from the Jordan frame to the Einstein frame, we obtain a theory of gravity
plus a canonically coupled scalar field. This is done by appropriately choosing the param-
eters of the theory. Although, the more general case can also be studied [33]. We should
mention that this field comes from geometrical information instead of introducing some
explicit matter field. Also, by this manipulation we get a potential for this theory, thus we
can apply the dS conjecture to this setting. Before, we solve the equations of motion of
the F(R) theory in the Jordan frame using a power-law ansatz for the Hubble parameter
instead of arbitrarily choosing some particular form. With this, we find /' functions as
power-law in terms of the curvature 1. In the end, by applying the dS conjectures we are
able to determine a set of inequalities for the parameters of the theory suggesting that in
the limit of a increasingly faster expansion, the parameter that controls the UV description
of the Horava-Lifshitz theory has to approach to the respective UV-value, A — 1/3. This
is presented for the non-projectable and projectable version of the theory. On the other
hand, we also present the behaviour of the scale factor in the Einstein frame by doing a
conformal transformation. This has been depicted in Figuere 6.1 where is shown the profile
of the expansion. To sum up, we have found that the (first statement) of the dS conjecture
is consistent with a power-law F' functions and the UV behaviour of this theories. The
second statement of the dS conjecture is applied, but this is never fulfilled.

81



Appendix A

Group theory representation

A.1 Needed of Representation Theory of Lie Groups

In this appendix, we review what we need from group theory. In particular, we will
spend some time on the representation theory of groups and how to measure the algebraic
properties of the representation space. This plays an important role in studying anomalies
of a theory where the physical content is in a given representation.

The anomaly polynomial density [A(R)ch,(F)]|onse involves traces of matrices in
some representation r of a continuous symmetry group G, a classical or exceptional Lie
group for our purposes. In order to find mechanisms to cancel anomalies encoded in the
anomaly polynomial one needs to deal with higher-order traces of the generators of the Lie
algebras £(G) represented in some representation. It is important to study if these traces
admit some kind of factorization. For a ten-dimensional system, we encounter sixth-order
traces of the matrix-valued two-form field strength F'. Thus, if we look for a factorization
mechanism we have to explore group theory identities relating traces of different orders.
To this end, we are going to review the material developed in [209,210]. Another useful
reference for the computation of indices is [214].

Let r be an arbitrary irreducible representation and f be an irreducible reference repre-
sentation of a Lie algebra £(G) and for simplicity we will focus here on exceptional Lie
algebras. Therefore, we need to determine the coefficients in the trace identities relating
higher-order traces in an arbitrary representation to traces in the reference representation
and products of lower ones as follows

tr, % = u, tr F® 4 v, (tr F*)(tr F?) + w, (tr F?)3 (A.1)
tr, F* = x, tr F* +y, (tr F?)?, (A2)
tr, F2 = 7, tr F2, (A.3)

which are related to eigenvalues of Casimir invariants of r and correspondingly to 2n"
(modified) order index, which are defined as

lon(r) = Y (w,w)™, (A.4)

weA(r)

where A(r) is the weight system of the representation r and the sum is over all the weights
w, (-, -) stands for a nondegenerate, symmetric bilinear product.
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It turns out that for r and f it is satisfied the relation

14
tr, F? = ;E;;trf F?,
; o) (A5)
2 2
= 7f tr F y
((f)
where in the second equality we have used Eq. (A.3) for the reference representation so that
the second-order trace in the representation r can be written in the reference representation
with coefficient given by
l5(r)
Zy = Zf . (A.6)
((f)
Note that if the reference representation is restricted to be the fundamental or defining repre-
sentation then z¢ = 1 and the second-order index can be normalized so that ¢5(r) /lo(f) = 1
for r = f. In fact, the second-order index is related to the second-order Casimir invariant
as follows (up to some normalization). The second-order index is given by

dimr

20 I5(r), (A7)

~ dima
where I5(r) is the second-order Casimir invariant. For the coefficients of fourth-order
traces in the representation r one has a relation given by

tr, F* — k(r) tr, (F%)?  (r) with k(r) = 3 dima 1/5(a)
tre F4 — k() tre (F2)2 £4(F)° ~ 2+dima \dimr  64y(r) )’
(A.8)
where £,(r) is the modified fourth-order index given in terms of the fourth- and second-

order index as defined in Eq. (A.4) and the rank 7 of the algebra, i.e.

) =) - (D (L) 1)

(A9)

It was determined that /,(r) is more fundamental since it is related to genuine fourth-
order Casimir invariants .J, in the sense that if £4(r) vanishes then any other fourth-order
Casimir invariant is given by the square of second-order Casimir invariant. There are no
independent fourth-order Casimir invariants. This happens for exceptional and the A,_; -
algebras [210] leading to the fact that for this algebras

tr, F* = k(r) tr, (F?)?,

=22 Kk(r) (tr [?)?, (A-10)

so that y, = z?k(r) given a way to compute other coefficient in Eq. (A.2). For any other
algebra, it is found from Eq. (A.8) that

X, = %Xf, (A.11)
_ U (r) 2 04 (r) 2
Yr = E4(f) yf + k(r> Zr Z4(f) k(f) Zf ’ (Alz)

meaning that for other algebras than the exceptional ones and the A,—; 2, we have to
compute modified indices or equivalently modified Casimir invariants.
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To go to sixth-order trace identities firstly set

B 1 dima 1/4y(a) 14,
S0 = § T dma [dimr 30,(r) 307,

0= [(dm) Lima )

(a)

: >] (A.13)
)
)

r
2
+ 2 ( (a)) (A.14)
C5(r)

So far we have been quite general writing down formulas to determine the index coefficients
in Egs. (A.1), (A.2) and (A.3) in the sense that they apply to any Lie algebra (up to some
exceptions), the reference representation can also be considered arbitrary. In the following
to avoid writing down many long equations we will restrict the reference representation
to be the fundamental [209]. Therefore, from the sixth-order trace identity of [209] we
have a relation where /4(r) is again related to modified sixth-order Casimir invariants.
Two special cases are the A; and FEjg algebras since there are no fundamental sixth- and
fourth-order Casimir invariants thus, we can show that their proportionality coefficients
reduce to

4+ dima dimr 2dimr fy(r

15T(r)
tr, FO = ——~ (tr, F?)? A.15
' 2+dima(r ) ( )
15T(r) 5 2\3
-\ F Al
2 dl aZI’ (tr ) ? ( 6)

where T(r) is defined in equation (A.14). From the above equation, we can extract the
w, coefficient in terms of the second-order index. However, this is not the case for other
exceptional algebras meaning that they have genuine sixth-order Casimir invariants but
not four-order, i.e. they satisfy the identity tr, F'* — K(r) (tr, F?)? = 0. Thus, we find out
that the only relevant coefficients are

u = m , (A.17)
B 15 3 l(r)
W= S (zr -7 T(f)) : (A.18)
where - 5 A
Tolrs) = bo(rs) — — ) (P2 E4) ) o (A.19)

2 + dimr; r2
After using the material reviewed above we get the following group-theoretical constant
u,, w,, y, and z, for exceptional algebras
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G r u w y z
1
7 1 — - 1
4
15 5
14 —26 — - 4
4 2
15 27
27 39 — — 9
4 4
64 —208 75 38 32
Go
315 121
7 494 —_— — 44
4 2
1275 385
e —1235 —_— — 55
4 4
292
182 3666 2925 663 156
4 2
189 —456 735 270 144
1
26 1 — — 1
F 12
5 5
9 _ = =
i ! 36 12 ¥
1
27 1 — — 1
B 12
5 1
78 —6 — = 4
36 2
1
56 1 — — 1
E, 24
133 2 > ! 3
288 6

Table A.1: Representations less than 248 for exceptional algebras with the coefficients or
group-theoretical constant for higher-order traces.
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Appendix B

Bundles, connections and characteristic
classes

This appendix reviews the main idea of gauge theories from a more mathematical point of
view since this offers a more convenient way to calculate anomalies of theories coupled to
gauge bosons and gravity. We will start by introducing the language of differential geome-
try, particularly differential forms. For a more complete account see, for example [64,65].

B.1 Tangent and fiber bundle structures

Let us describe how the essence of bundles comes up without being fully mathematically
precise and much less, complete in our presentation. To do this, consider the following
picture that already appears in Nakahara’s book but here extended to three open sets U;, Uj,
and Uy, in the open covering {U;} of M, including the coordinate parameterization of a
point p € U; N U; N Uy, in the bottom of the figure. In the upper part, we show the local
trivializations associated with the maps ¢, ; : 7 YU;) — U; x F where F is called the
fiber (if F' is itself a manifold) and is the same at each point of p € M. The whole of
that picture defines a bundle with base manifold M (bottom), with fiber F' (upper) and
total space £ (whole), this information is denoted as 7 : £ — M, with 7 a projection
map and is called a fiber bundle. That image shows a local description, but the aim of
introducing the open sets above is that we can move through the entire space provided that
some compatibility constraints are satisfied along the whole of M or F depending on what
we are interested in.

First, we will consider the base manifold and its differentiable structure. Through the
notion of directional derivative along a curve passing through p, it is not that difficult to
show that partial derivatives define a basis for the tangent space 7,,M defined by all the
vectors tangent to the point p € M. This can be done with the coordinate parameterization
via 2 (p) using the chart Uy, or y”(p) using the chart U; and these two parameterizations
may be connected by the following relation between one base {32} = {9, } and the other

o oy 0
oxr  OxH Oyr’

(B.1)

9y”
Ozt
transformations G L(d, R), can be interpreted as coordinate transformations changing from

where the coefficients € (p) = » belonging to the structure group of general linear
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one basis to the other, namely for V' € T,,M, then

o yi T a TV v
V_Vax“—vﬁy’” V¥ =e,
Thus, if we are able to guarantee this coordinate reparameterization along the entire space
M by gluing together different charts (U;, ¢;), then this allows us to have globally well-
defined differentiable objects on M. In the picture, this is captured in the transition
function ¥, (p) : wx(U; NUL) — ;(U; N U) with 1,,(p) = ¢ 0 ¢, ' demanding that
they are infinitely differentiable. More general objects are (r, s)-tensors, which can be
thought of as multilinear maps with r upper indices entries and s lower indices entries
and correspond to globally defined objects. One distinguished (0, 2)-tensor is the metric g
which is symmetric in the two indices. The metric allows us to introduce a basis {e, } via
the coordinate transformation e, = e#(p)0d, also introducing a notion of orthonormality
such that at each point

(p)VH. (B.2)

et eg Guv = 0ap (B.3)

and even more, a notion of orientability by requiring det e# > 0. We have lifted the
structure group from G L(d, R) to SO(d) locally. This is a huge step which is not always
achievable globally. We will say some words on this later.

We describe very briefly another set of distinguished tensors. A differential form,
which is a completely anti-symmetric tensor, also known as a p-form such that

Wheopp = Wipa ] 5 (B.4)

whose complete anti-symmetry is encoded in the wedge product operation, then a p-form

will be expressed as

1
wp = awm...updx“l A Ndxhr (B.5)

where the p! normalization is usual and avoids overcounting and dz** A - - - A dz*» might
be thought as a certain basis of a group. Roughly, if one dz*" jumps through an even
number of dz#™i A --- A\ dx'™i there is no change in sign, while for jumping through an
odd number there is a minus sign. The precise way to define this is via the symmetric
group S,. From this property of p-forms, it follows that

wy A1 = (—1)Pny A wy, . (B.6)

It is possible to define differentiation over p-forms via a map that lifts by one the degree
of a p-form

1 0wy, ...

dw, = — 2282 go? N dat A -+ A datr (B.7)

pl  Ox¥
given us a (p + 1)-form, from which follows that (dw),, uy...pspsr = (P 4+ 1)Op; W gy i1]-
It is also possible to define the integration of p-forms over a p-dimensional (sub)manifold.
If one assume that there is a p + 1-dimensional manifold with boundary 0 %, there is a
generalization of Stoke’s theorem by

/ wp:/dwp, (B.8)
[ ¥

and this is one of the most beautiful results of the theory of p-forms. In fact, that piece of
information about vector calculus that one needs to learn to appreciate electromagnetism
is beautifully encoded in this theory of differential forms.
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To define a well-defined volume form, also known as top form, we need the metric
vol(M) = \/gdz' - - - dx?, (B.9)

this is the integration measure. This is sometimes associated with the Levi-Civita density
since this becomes the Levi-Civita anti-symmetric symbol €, ...,, into a tensor, invariant
under general coordinates transformations.

There is one more operation that is possible to be defined only for manifolds with
metric, it is called the Hodge star. It can also be thought of as a map, where a p-form is
mapped to a (d — p)-form defined as

k(dxtt N Ndatr) = %e”l"'w%ﬂ_.yddw”p“ A ANdxt (B.10)
_p !

and we choose the convention that €; .. 4 = 1. Note that vol(M) = 1 is a compact
expression for the volume form. This will allow us to write expressions in a compact way
in the main text. Finally, note that *(xw) = (—1)P®P)w. As an example of this notation
consider the action of a real scalar field

1/ d(;ﬁ/\*dgﬁ:l/ ddx\/gguvaﬂ¢ay¢' (Bll)
2 M 2 M

Other actions, like a Yang-Mills action, can be worked out with this rough description of
differential p-form theory.
To set conventions, we take y-matrices to satisfy

{7 = 29", (B.12)

where ¢g"” is the Euclidean metric already introduced. In even dimension d = 2n we define
the chirality operator to be

Yo =1yt (B.13)

This prepares the stage for a more general description of the tangent space in terms of
the tangent bundle which is basically the collection of all the tangent spaces at each point
p € M. We already mentioned this notion of a bundle but here, we focus on the local
information and then how to extend this to the total space. Above, we introduced this
notion of a local trivialization by the diffeomorphism ¢; pl : 7 Y(U;) — U; x F, which
means that some subset 7! (U;) is mapped onto product U; x F. Correspondingly, if we
look at the triple intersection, the three maps must somehow be related. There must be a
transition function such that ¢;;(p) = ¢;, o ¢, : F — F which takes values in a group
G, the structure group, acting on the fibres coordinates such that

oe(p, fr) = di0, tinfr),  fi = tief- (B.14)

To do this along the entire total space, it is required the following consistency conditions
on the transition functions ¢;; following the same procedure above

ty=1t;, pel;ul;, (B.15)
tijtjktkizl, pEUZ-UUjUUk.

88



The third condition is known as the cocycle condition. These conditions are sufficient and
enough to define abundle 7 : £ — M. One example is the tangent bundle 7 : T"M — M,
where T, M is the fiber at p, V# are the fibre coordinates such that the local trivialization

¢i(p, {V*}) = 6;(p, {V" = el(p)V"}) (B.16)

with transitions functions taking values in the group GL(d, R). The same analysis can be
done for the frame bundle with base {e, } where ¢;(p, {V*}) = ¢;(p, (VB =eB(p)Ve}),
with transition function taking values in the structure group. These two bundles are known
as vector bundles because the fibres are vector spaces. Another example is a spin tangential
structure which means that the transition #;; now takes values in Spin(d), the double cover
of SO(d). We need to be very careful because the SO(d)-valued transition functions t;;
can lift to j:f,-j, which means that fij fjk t = +1. A spin structure is only possible if
we can choose the set of transition functions such that #;; #;; #;; = 1. This is important
because to have fermions in a curve manifold the spin structure is essential.

We need the notion of a principal bundle. These are bundles where the fibre is the
group GG viewed as a manifold, i.e. there is a smooth map ¢ : G x G — G, and the
transition function takes values on GG. The consistency conditions are basically the same
as before. There is also a base manifold M such that 7 : P — M denotes the principal
G-bundle over M, for short sometimes we denote it as Pg only. By looking at a local
trivialization ¢; '(u) = (p, g;), for u € 7=1(U;). Here, it is important the notion of left
and right action, although they are equivalent we need to choose one to work with; the
right action, for instance

ua = ¢i(p, gia) , (B.17)

from which follows that

ua = ¢;(p, gia) = ¢;(p, tjigia) = ¢;(p, g;a), (B.18)

where by using the compatibility conditions, the local trivialization is independent of the
chosen right action. The same can be shown for the left action. One can also show that
the action of GG on the fiber at p is transitive and free.

Another important concept in fibre bundles is a map known as a (local) section s :
M — E defined by the property that m o s = id),. For instance, in a trivial bundle, this
means M > p+— (p,o(p) = f) € M x F,witho : M — F. In anontrivial bundle, this
is not always true globally. In a principal bundle, there is a way to define a local section
by the canonical local trivialization s; = ¢;(p, ) such that

si(p) = ¢j(p, tji(p)e) = s;(p)tsi(p) - (B.19)

This is an object that transforms non-trivially under the structure group. For principal
bundles, charged fields can be thought of as sections of the associated bundle P,. This is
a vector bundle constructed from Py and a o-representation of GG over a vector space V'
defined by

Fe=FaxV/((p-g,v) ~ (p,o(g) - v)) (B.20)

where v € V, and ~ means identification of the points (p- ¢g) and (p,o(g) - v) of Pg x V.

For the purpose of anomalies, there is a more convenient way to describe principal
bundles, see [235,236] for introductory material on algebraic topology. This is convenient
for various reasons, for instance for the classification of isomorphism classes of bundles.
Let us introduce this convenient description known as universal bundle construction. We
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consider the following fibration G — EG — BG where BG is the classifying space
of G given by the quotient EG /G by a free G-action, E'G is a contractible space. The
important point is that this defines G-bundle over FG. For any space M we can define
isomorphism classes of bundles P — M over M by homotopy classes of maps, for a
specific representative in a homotopy class f : M — BG such that P; = f*(EG), where
f* is the pullback map. We say that isomorphism classes of bundles are equivalent to
homotopy classes of maps [M, BG]. This construction allows us to determine charac-
teristic classes of bundles as the pullback of generators of the cohomology ring' of the
classifying space H*(BG,Z) to the cohomology of the base manifold H*(M,Z) due to
naturality of characteristic classes under pullbacks. In few words, characteristic classes
essentially measure the nontriviality of a bundle and are constructed to classify bundles up
to isomorphism which is usually more convenient than the homotopy classes of maps.

An important observation is to ask how we transport objects (vectors, tensors, fermions,
and so on) along a curve. This led to the introduction of connections. For example,
for tensors, there exists an extremely important connection known as the Levi-Civita
connection V which is compatible with the tensor metric Vg = 0. With this, it is
possible to construct a covariant derivative in terms of Christoffel indices compatible with
the GL(d,R) tangent structure. For studying fermions on a curve space this is not that
useful. We need to move to the frame bundle basically because there are no fermion
representations in GL(d, R). We need to lift the tangent structure to a spin structure as we
already explained. This introduces a connection to parallel transport fermions, known as
the spin connection, which allows coupled fermions to gravity. The same can be done for
principal bundles, now the connection is a matrix-valued 1-form potential A taking values
in the Lie algebra of G. This is basically the gauge vector boson Aj, where p is a vector
index, a a Lie algebra index. This permits us to define the usual covariant derivative of
Dirac action.

It is important to keep in mind that any mathematical object we introduce is always
locally, in a particular chart. Then, we need to try to extend the local information through
different patches as we show in the figure. By doing that task with the connection we find
that a connection on one chart is gauge equivalent to another connection provided that

AV =g Ag+gt.dyg (B.21)
g:U —G. (B.22)

Roughly speaking, if the chart (U;, A) and the chart (U;, A?), with 1-form connections A
and AY different only by the transformation (B.21), then we consider it a gauge equivalent
and gluing process can be carried out. This is behind the principle of gauge redundancy
(also described as gauge symmetry but, strictly speaking, this is not quite right) of gauge
theories, like U(1) Maxwell theory or the successful Standard Model of Particle Physics’
but it is important to remark that the gauge vector boson in this physics language must be
thought of properly as connections on principal bundles.

An important feature of connections is the fact that permit us to define gauge invariant
objects in the sense that they are not subject to any gauge equivalence and are globally
well defined. We will mainly consider the spin connection rather than the Levi-Civita
connection because this is more natural to see gravity as a gauge theory where the gauge

"Here we have considered cohomology of spaces with coefficients in the integers. Coefficients like e.g.
R, Z,, reals, mod 2 integers are also possible

ZFor this case particle physics theorists for many decades looked only at some specific patch without much
worry about the global topology of the fiber bundle Pg with connection A.
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tr;i(p)

Jr fi

Rd

or(p) =

vi(p) =1{y"(p)}

Figure B.1: In the bottom of this picture we show a set of three nonempty intersecting
charts such that any structure must be subject to certain consistency conditions to carry out
this covering process through an entire space. The top part shows the attachment of the
bundle structure to the base space on the bottom. This structure must as well be subject to
gluing consistency conditions on three nonempty charts. It turns out that this is a necessary
and sufficient condition to properly define any structure over a topological space.
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group is SO(d), and also to have access to spinor representations, as we said. As can be
seen from (B.3) by the transformation e® — L%g(p) €”, the L(p)’s transformations are
local (depends on the coordinates) elements of SO(d) since L*L7 50,3 = 65. The spin
connection is a 1-form connection w = w®g ,dz* satisfying an anti-symmetry property
Wap = —Wgq. The tensor valued Riemann curvature 2-form R is defined in terms of the
spin connection by

R = dws + wsw’, (B.23)

this is an anti-symmetric matrix, so this can be brought to the following form by an
appropriate orthogonal transformation

0 — W1 0 — Wy
R—)(wl 0)@.”@(1071 0 >€B (B.24)

From this information, we can define a characteristic polynomial through det(/ + R)
which we denote by p(R) such that (for a mathematical treatment of characteristic classes,
see [199])

p(R) = (1 +wi) = 1+ pi(R) + pa(R) + - pa(R) (B.25)
where each p, := p,(R) is known as an s-th Pontrjagin class, a 4s-form, defined as
po(R)= Y wi--owi (B.26)
11 < <is

We write down a few of them explicitly in terms of traces of the 2-form R because, for
the purpose of anomalies, it is usual to express the anomaly polynomial in these terms.
Nonetheless, we will stick to the notation in terms of the characteristic polynomials. The
4, 8 and 12-form are given by

1
P1 = —§tr R2,
Py = % [(tr 1-22)2 — 2tr R4] , (B.27)
ps = —% [(tr R?)® — 6 (tr R?) (tr RY) + 8tr RG} :

where we have introduced a normalization such that R — R/2w. With this Pontrjagin
classes, we can define the so-called A-roof or Dirac genus as

~

1 1
AR)=1—— — (Tp?—4p,) —
(7) 2P T 5760 TP 4P2) ~ Gameso

This polynomial plays an important role in the determination of the gravitational contri-
bution to anomalies from chiral fields coupled to gravity.

From the 1-form connection A = A, dz*, where we define A, = AZT“ with the T°
the generators of the Lie algebra of G represented in specific representations. With this,
we can define the curvature 2-form or field strength F’, also a matrix-valued form by

F=dA+ANA, (B.29)

(31p% —44py py+ 16 ps) +--- (B.28)

containing information on the gauge bundle. This can be used to define the Chern character,
another polynomial in terms of F' by

ch,(iF) = tryexp(iF), (B.30)
= chg(iF) + chy (iF) + - - + chy (iF) (B.31)
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with the 2k-form

chy(iF) = %trr (iF)" (B.32)

where r denotes the specific representation we are working with, in order to evaluate the
trace tr over the corresponding generators, and we have normalized i — iF'/27 (usually
we will omit to write the imaginary number but we must keep it in mind). This defines the
k-th Chern character. These are the essential objects in the study of anomalies.

B.2 Anomaly polynomials

There is a very precise way to determine the anomaly polynomial of a theory involving all
the anomalous chiral degrees of freedom through the Atiyah-Singer index theorem [76].
For a spin-1/2 Weyl fermion (namely, for spin-1/2 section of the associated bundle F,)
coupled to a matrix-valued G-connection A transforming in the representation r, the index
density is given by (see [52,83] for a physicist-friendly treatment of this)

T, (D5 ®F) = A(T M) ch,(F)

2

(B.33)

2n

For a spin-3 /2 fermion that couples to the tangent bundle via a vector index and couples to
the frame bundle via the spin index, it has been determined its anomaly also via an index
density given

Is (DS ™) — A(TM) (ch(TM) — 1) (B.34)
2 2n
We find it very useful to define the following general formula
A 24+ k — 2
A(TM) (chy(TM) — ) =20 — b+ ===,
1
+ =mes [(240 — 7k + 14n) p; — 4(240 — k + 2n) ps]
(B.35)
+ 567680 (504 4 31k — 62n) pi — 4(504 + 11k — 22n) p; ps + 16(504 + k — 2n) ps]+- - -

where k£ = 1 describes the anomaly of the gravitino in (B.34). For general k, we observe
the following. The anomaly of neutral spin-1/2 fermions is given by

7, (D) = £A(TM) (B.36)
as follows from (B.33). Therefore, in combination, the index density given the anomaly
of a gravitino and £k neutral fermions can be combined into (B.35).

Another important polynomial is the Hirzebruch polynomial L(R) which describes the
anomaly polynomial of a self-dual tensor field as

1
T = —-L(R) (B.37)
8
11 1, ,
= —— - — —(ps — — 2 — 1664
Y p1+ 360 (p1 — Tp2) 967680< 56 py 664 p1 pa + 7936 p3) +

(B.38)
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Appendix C

Bordism theory

C.1 Anomalies and bordisms

In order to detect anomalies of a fermion or any theory 7 in the main text we assumed
that all the structure, tangential plus principal or any other structure denoted here as (,
on a d-dimensional manifold, extends to a d + 1-manifold X. Afterward, we focus on a
manifold such that X = 0Y where Y is a d+ 2 manifold with the structure ¢ also extended
to Y. Each of these steps may or may not be possible, namely, there may exist manifolds
X which cannot be realized as boundaries of other manifolds Y. It is important to have a
way to know when this is possible. The mathematical theory accounted for this is known
as bordism theory [237] for the classical reference and [238] for a set of recent lecture
notes.

Consider the set of all closed d + 1-dimensional manifolds Cy4, ;. Consider X and X’
as two elements in C4, 1. Then, one can introduce the following equivalence relation. We
say that X and X" are equivalent if there exists a d+ 2 manifold Y suchthat Y = X X,
where X refers to the manifold X with reversed structure. For instance, if X is orientable
then X has a reversed orientation. This equivalence relation is reflexive, transitive, and
symmetric, it defines an equivalence class. Therefore, we can refine our set into Cy11/ ~,
the set of equivalence classes of closed manifolds connected by a d 4+ 2-manifold. We can
furthermore endow C,, 1/ ~ with an abelian structure by means of the disjoint union where
the identity is denoted by [@], the inverse by [X] such that [ X] 4 [X'] = [X LI X] satisfies
the axioms of an abelian structure. We say that X and X’ are bordant if they belong to
the same class [X]. The abelian group of bordism classes will be denoted as Q +1(pt).
The class label by & means that there exists X such that X ~ &, which consequently
means that 0 W = X. This is almost exactly what we assumed to evaluate perturbative
anomalies in the main part of this work. From this discussion we can appreciate that
does not make much sense to look for cancellation of nonperturbative anomalies if we
are already unable to cancel the perturbative ones. It is also clear from this discussion
that perturbative anomalies are evaluated on closed (d + 2)-manifolds. This suggests that
we need to look at the bordism group Qg +»(pt). The group equivalence classes of closed
(d 4 2)-manifolds with ( structure.

Nevertheless, up to this point, we have only looked at manifolds that are bordant to &,
it might happen that [X] € QS +1(pt) corresponds to a nontrivial class in bordism, hence
there is no way to detect this classes with (3.40). Assume that we have already cancelled
the anomalies discussed in the previous paragraph. Hence, the next step is to think in an
object that detects nontrivial classes in Qg +1(pt). For the case of fermions is already known
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that the Atiyah-Patodi-Singer (APS) n-invariant is the appropriate topological invariant to
evaluate nonperturbative anomalies [59, 60, 134], namely

Z(Xclosed) = eXp(27Ti77(Xclosed>> 5 (Cl)

where X joscq must be thought of as a representative of the class [ X] alluded before. Behind
this, we are assuming that 7 is actually a bordism invariant, which is indeed true provided
that perturbative anomalies cancel. To see this, suppose that X jseq, X € [X], are in the
same class, then

exp(27ri77(X Llyclosed)) = exp(27in(0Y)) = exp (—27ri / Id+2> , (C.2)
Y

where we have used the APS index theorem and the fact that Index is always an integer
by definition. Therefore, o
exp(ZWin(X U Xclosed)) =1. (C.3)

It turns out that the 7)-invariant under disjoint or gluing operation behaves as the sum of
the individual pieces and n(X = —n(X), hence

exp(27in(X)) = exp(27in(Xcosed)) - (C.4)

This is the reason why we are allowed to evaluate the n-invariant in a convenient generator
of the class [X].
Notice that, the n-invariant is a group homomorphism

n: Q% (pt) = R/Z (C.5)

where we can think of R/Z =~ U(1), and Q5,,(pt) is the set of bordant manifolds with
(-structure. Thus, the n-invariant could be thought of as belonging to the group of homo-
morphisms

n € Hom(Qg,, (pt), U(1)). (C.6)

Classification of this problem for invertible field theories has been conjectured [95] to be
equivalent to the classification of anomalies of a d-dimensional theory that appears as the
boundary of such invertible phases, see [98, 185] treatment of this conjecture, while for a
friendly treatment, see [110,188]. As we said in the Introduction 1, this approach has been
pushed forward in many places, go there for a sample of reference. Also, the canonical
reference to compute bordism groups is [239].

This seems to offer arigorous and complete classification of anomalies in chiral fermion
theories, though it requires the computation of abstract mathematical objects.
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