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Abstract

The Extra Low Energy Antiproton (ELENA) ring is a new upgrade to the an-

timatter facility at CERN. By further decelerating beams from the Antiproton

Decelerator from energies of 5.3 MeV down to 100 keV, it will allow for increased

antiproton trapping efficiencies by a factor of 10–100 for experiments. In order to

guarantee the best possible beam quality from ELENA and for other next gen-

eration ultra-low energy antiproton and ion facilities, unique diagnostic solutions

must be developed.

Two new algorithms have been developed for use with a scraper system to

determine the transverse beam emittance within ELENA and machines facing

similar diagnostic related challenges. These new methods improve the state of the

art of beam scraping techniques for low energy ion and antiproton facilities. The

algorithms are capable of accurately reconstructing the emittance in a region of

non-zero dispersion. Additionally, an algorithm which combines scraping results

from opposing directions is capable of the same task for non-Gaussian beams,

which are expected due to more efficient electron cooling towards the core of the

beam.

The new scraping algorithms have been tested through simulations and er-

ror tolerances have been established for a range of effects. They also have been

shown to be capable of accurately estimating other beam quantities, such as the

momentum-dependant closed orbit, and a quantity which indicates the magnitude

of a correlation between the emittance of particles and their momentum offset.

Using the two scan algorithm, analysis of data taken during ELENA commis-

sioning showed decreases of 28 (±2) % and 81 (±10) % in vertical and horizontal

emittances respectively, during 6.7 s seconds of electron cooling along the inter-

mediate energy plateau at 650 keV. At the extraction plateau of beam energy

100 keV, the vertical and horizontal emittances were reduced by 79 (±2) % and

78 (±10) %, respectively, when comparing with and without 3.9 seconds of elec-

tron cooling after deceleration. In both cases, non-Gaussian beam profiles were
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observed. The emittance-momentum offset correlation coefficient showed a signif-

icant change towards a positive correlation during electron cooling.

To further determine and optimise beam quality at the experiments, a real-

istic 3D simulation of the electrostatic transport line from ELENA to the AL-

PHA experiment has been developed in the GEANT4 based beam transport code

G4Beamline. Employing the use of realistic elements which include fringe fields

and field maps from finite methods simulations, the transport lines have been op-

tically tuned to the experimental handover point. Realistic beam distributions

based on scraper measurements and profile measurements taken along an existing

transport line from ELENA have been tracked to the target and error tolerances

have been established. The development of the simulations has resulted in a com-

prehensive toolkit for simulating beam transport with electrostatic elements and

laid the groundwork for further optimisation using machine learning methods.

ii



Acknowledgements

First and foremost I would like to thank my supervisor Prof. Dr. Carsten

Welsch for giving me the opportunity to carry out this exciting and interesting

work, and for encouraging my professional and personal development. I would

also like to extend my deepest gratitude to my supervisor Dr. Javier Resta-
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Chapter 1

Introduction

1.1 Introduction

For hundreds of thousands of years humans have sought to understand the world

in which we find ourselves. It is widely regarded that this fervent pursuit of

knowledge has been fuelled by the evolutionary battle to simply survive. Yet, to

this day this lingering trait from our long and dark past manifests itself in one of

the most important and profound human qualities – curiosity. Over millennia we

have slowly pushed back the gloomy mists of the unknown, finding ourselves in an

inconceivably vast and ancient universe, still wondering how it all began.

Modern cosmology tells us the universe burst into existence with a colossal

growth rate from a singularity 13.8 billion years ago. After 10−37 seconds of rapid

expansion and cooling, a phase change led to a period of extreme exponential

growth known as cosmic inflation. Following this process the universe began to

reheat, reaching temperatures high enough for the production of a quark-gluon

plasma and the so called elementary particles we see around and within us today.

It is in this state that it is believed particle and anti-particle pairs were being

continuously created and destroyed through annihilation, resulting in a universe

consisting of equal parts matter and anti-matter.

A sudden reaction causing an asymmetry between these two matter types, hy-

pothetically known as baryogensis, is believed to have led to modern observations

of matter dominance in the observable universe over antimatter – by a ratio of
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2 Chapter 1 Introduction

30,000,000:1. This hypothesised symmetry breaking between matter and antimat-

ter is arguably one of the biggest motivating factors for the antimatter experiments

carried out today.

The purpose of this chapter is to provide context for the work presented in this

thesis. An overview of the history of antimatter research is given with particular

focus on the accelerators that have enabled such progress. Current antimatter

experiments running today are introduced after which the Extra Low Energy An-

tiproton ring (ELENA) is presented. Finally, the goals of the project are presented

with an overview of the contents of this thesis.

1.2 A Brief History of Antimatter Research

1.2.1 The Early Days

It took only four years after Dirac first predicted antimatter in 1928 [1] for the

discovery of the first antiparticle, the positron, e+. This discovery was made by

Anderson whilst photographing cosmic ray tracks in a cloud chamber [2], con-

firming Dirac’s suppositions. It took some 23 years and great leaps in particle

accelerator technology before the first antiproton, p, was observed in 1955 using

the 6.2 GeV weakly focusing synchrotron named the Bevatron at Lawrence Berke-

ley National Laboratory, U.S. [3]. A year later the existance of the antineutron was

confirmed using the same machine [4]. The successful pursuit of the constituents

of the anti-atom had ushered in the age of accelerator physics, and with it, the

field of high energy physics was expanding well beyond the confines of cosmic rays

and cloud chambers.

Not long later in 1965 the first antinuclei, antideuterons, were produced from

proton-beryllium collisions with the Proton Syncrotron (PS) at the European Or-

ganization for Nuclear Research (CERN) in Switzerland [5] and with the Alter-

nating Gradient Synchrotron (AGS) at Brookhaven National Laboratory in New

York [6]. These exciting achievements led to enthusiastic support from across the

physics community to construct a purpose built storage ring for the production of

high quality antiproton beams.
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1.2.2 The AA era: SppS and LEAR

The Super Proton-Antiproton Synchrotron (SppS) was a yearly modification of

the Super Proton Synchrotron (SPS) to allow for proton-antiproton (beam-beam)

collision experiments with a centre of mass energy of 630 GeV, between the years of

1981 and 1991 [7]. Using a spectrometer, 2.7 GeV antiprotons were selected from

the antiproton showers produced by directing 25 GeV protons from the PS onto a

fixed iridium target. Proton-proton collisions over the kinetic energy threshold of

5.6 GeV allow for the production of antiprotons through the simple mechanism:

p + p→ p + p + p + p. (1.1)

The resultant antiproton beams were then injected into the Antiproton Ac-

cumulator (AA) where they were subject to stochastic cooling to reduce their

transverse phase space and extremely large longitudinal momementum spreads

[8]. A qualitative description of stochastic cooling is given in the following chap-

ter. Through the use of RF to stack beams within the machine, the AA was

capable of accumulating around 6×1011 antiprotons over a period of 24 hours.

Beams could then be injected into the SppS where they were eventually led to the

discovery of the W± and Z0 bosons in 1983 [9].

In the same year the Low Energy Antiproton Ring (LEAR) began operation

at CERN [10], a dedicated machine for antiproton physics with intense low energy

beams. Beams also taken from the AA were injected into to LEAR for deceleration

down to energies of around 5.3 MeV. LEAR employed the use of electron cooling

to regulate the longitudinal and transverse phase space growth of the beam during

deceleration [11,12]. An additional upgrade to this facility came in 1986 when the

Antiproton Collector (AC) was built around the AA providing a ten-fold increase

in the production rate of antiprotons [13]. Over the next few years numerous

experiments were performed including the investigation of interactions of matter

and antimatter through proton-antiproton collisions [14,15].

Finally the goal to combine antiprotons with positrons to create antihydrogen,

H0, was achieved by the PS210 collaboration at LEAR in 1995 [16], and again
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two years later by the E862 collaboration with the Tevatron at Fermilab, US

[17]. At LEAR, antihydrogen was created by antiprotons interacting with heavy

atomic nuclei, xenon clusters, and binding with the positrons created from an

electron positron pair generated through these interactions. Although this was a

ground-breaking achievement, only 9 antihydrogen atoms were detected, quickly

annihilating downstream from the target and providing little opportunity for fur-

ther study. A new approach was needed, and in 1996 LEAR was shut down to be

re-purposed as the currently operting Low Energy Ion Ring (LEIR), which began

commissioning in 2005 [18]. The AC was shut down in 1997 to be re-purposed into

the also currently operating Antiproton Decelerator (AD) which finished commis-

sioning in 2000 [19,20].

1.2.3 The Antiproton Decelerator

The 188m circumference AD was vital in bringing in the next era of antimatter re-

search. Accepting beams of around 4×107 antiprotons at 2.8 GeV, generated from

the PS in a similar manner to those for the AA, the AD is capable of decelerating

to energies of 5.3 MeV. The beam is brought down in energy in three stages, in

between which it uses a combination of electron cooling and stochastic cooling to

counteract undesirable beam blow up (adiabatic expansion) during deceleration.

A single cycle of the AD takes around 100 seconds after which beam is distributed

to the experiments operating within the ring itself. Figure 1.2 below shows the

latest planned layout, for reference. As opposed to the stacking methods used in

the AA and AC, the AD transfers the beam directly to experiments which are

then responsible for capturing, storing and stacking their own antiprotons.

The first experiment to operate at the AD was ATHENA [21] whose goal was to

trap and perform laser spectroscopy on antihydrogen. Trapping was successfully

achieved in 2002 resulting in headline articles in newspapers across the world [22].

Around 50,000 antihydrogen atoms were produced at extremely low energies by

mixing positrons and antiprotons in cryogenically cooled penning traps. In order

to trap antiprotons the 5.3 MeV beam from the AD was passed through a degrader

foil which allowed them to lose energy via interaction with electrons. Over 99%
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of antiprotons from the beam are lost during this process through annihilation or

through large scattering angles resulting in an extremely low capturing efficiency.

ATHENA was eventually reformed by some of its members into the Antihydrogen

Laser Physics Apparatus (ALPHA) experiment, which began in 2008 to pursue

its goal of spectroscopy on antihydrogen [23–25].

1.3 Current Antimatter Experiments

Currently there are five existing major antimatter experiments operating at the

AD. ATRAP are the longest running experiment and also succeeded in trapping

cold antihydrogen atoms shortly after ATHENA [26]. Due to limited space in the

experimental area the two antiproton traps used by ATRAP are actually situated

above one of the beam transport lines, requiring vertical deflectors. At the end of

the same beamline is Atomic Spectroscopy and Collisions Using Slow Antiprotons

(ASACUSA), which achieved antihydrogen beams in 2002 [26].

ASACUSA primarily aims to investigate investiagte the combined symmetry of

charge conjugation, parity transformation and time reversal (CPT) symmetry be-

tween matter and antimatter by both measuring the antiproton-to-electron mass

ratio through laser spectroscopy of antiprotonic helium [27] and by measuring

the ground-state hyperfine structure of the antihydrogen atom using antihydrogen

beams [28, 29]. ASACUSA uses a radio-frequency quadrupole (RFQ) decelera-

tor to bring antiproton energies down to between around 10 keV and 120 keV

[30]. RFQs are typically used in linear accelerators to bunch, focus and accelerate

beams through the use of four electrodes, however the function here is reversed for

deceleration. As well as being costly in its requirement of beam time for tuning,

the resultant beam blow up from deceleration causes large beam losses and less

than 3% goes on to be used in the experiment.

The ALPHA experiment also seeks to probe CPT invariance, albeit with dif-

ferent methods, and has been successfully trapping antihydrogen since 2010 [31],

achieving confinement for 1000 seconds a year later [32] (as well as ATRAP the

same year [33]). Much more recently the ALPHA experiment measured the 1S-

2S transition of antihydrogen in 2016 [34] and the 1S-2P transition [35] in 2017.
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Both measurements showed consistency with CPT invariance with the 2016 mea-

surements reaching a precision of 2×10−10. ALPHA also measured the hyperfine

structure of antihydrogen in 2017 [36]. Currently ATRAP and ALPHA employ the

use of degrader foils to obtain the low energy antiprotons required, and similarly

to for ATHENA, passage of the beam through these foils causes beam losses of

over 99%.

Other experiments at the AD include Antihydrogen Experiment: Gravity, In-

terferometry, Spectroscopy (AEGIS) which aims to perform direct measurements

of the Earth’s gravitational acceleration on antihydrogen [37] and the Baryon An-

tibaryon Symmetry Experiment (BASE) which succeeded in measuring the mag-

netic moment of the antiproton to a precision of the order of 10−9 in 2017 [38].

BASE is a unique user of the AD in that it is capable of storing tens of antiprotons

within its reservoir trap for months at a time. A sixth new experiment, Gravita-

tional Behaviour of Anti-Hydrogen at Rest (GBAR), is currently commissioning

[39]. GBAR will attempt to measure the gravitational interaction of antimatter by

ionising trapped antihydrogen ions (e+e+p) and measuring their annihilation posi-

tions. Additionally the Antiproton Cell Experiment (ACE) has demonstrated the

antiproton’s effectiveness in cancer therapy treatment, showing an increase in cell

killing capability by a factor of four over proton beams of the same energy [40,41].

1.4 Extra Low Energy Antiproton Ring (ELENA)

From the vast array of ground-breaking research and monumental measurements

achieved using AD beams it is clear to see why the facility has recently received its

latest upgrade, the Extra Low Energy Antiproton ring (ELENA) [42–44]. ELENA

is a 30.4 m magnetic syncrotron ring designed for the purpose of delivering high

quality 100 keV antiproton beams to the experiments. ELENA commissioning

came to an end at the start of CERN’s second long shutdown (LS2) in November

2018.

ELENA is situated inside the circumference of the AD and receives 5.3 MeV

antiprotons through a magnetic transport line. The antiprotons are decelerated

in two stages allowing for an intermediate energy plateau where electron cooling
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Figure 1.1: Example of a typical ELENA cycle. The y-axis does not have
units due to it being representational based on the strengths of the bending

dipoles, which are proportional to beam energy.

may be performed, as seen in Fig. 1.1. Electron cooling is also applied prior to

extraction to achieve the highest quality beams of nominal intensity ≈ 1.8 × 107

[45]. ELENA’s electron cooler is based on a design used by the S-LSR cooler ring

at Kyoto University [46,47].

With these extremely low energy 100 keV beams the experiments will be able

to increase trapping efficiencies by the order of 10-100, for example by significantly

decreasing the usage of degrader foils. The improved availability of trapped an-

tiprotons will allow experiments to greatly improve measurement statistics and

achieve their goals in a much shorter time frame. Currently AD beam time is

divided by experiments in 8 hour shifts whereas ELENA will be capable of dis-

tributing four bunches amongst four experiments per AD shot, allowing for almost

continuous beam time [48].

A series of electrostatic transport lines will carry the 100 keV antiprotons to

the experimental areas. Figure 1.2 shows the ELENA ring situated within the

AD and its network of beam transport lines. There are two main extraction

points from ELENA, one, which is under construction during LS2, will lead to the

original experimental area and a second which is already capable supplying beam

to GBAR. It should be pointed out that in Fig. 1.2 the position of AEGIS is a

proposed move from the empty space next to ATRAP.

ELENA also has a dedicated hydrogen ion, H−, source which is used for com-

missioning when antiprotons are not available, for example to set up the magnetic
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Figure 1.2: Planned layout of the AD hall. The AD is seen around the edges
of the diagram.

system and measure beam optics. It has also been used to assist in the commis-

sioning of the beam transport line to GBAR and is foreseen to be used similarly

for the remaining transport lines.

To ensure the best possible beam quality during deceleration and distribution,

diagnostics are essential. To monitor the closed orbit of the beam the ring is

equipped with 20 stainless steel pickup beam position monitors (BPMs) which

are mounted within dipoles and quadrupoles. The BPMs are also responsible for

longitudinal Schottky measurements which may be performed on a bunching beam

after summing signals and correcting for time-of-flight [49].

Two Gas Electron Multiplier (GEM) montiors (with two more to be added

later) and a luminescent screen monitor (Beam Television, BTV) are installed

along the beam transport line from the AD to ELENA. GEM montiors were pre-

viously effectively used along the AD beam distribution lines and so where chosen
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Ejection kicker
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Figure 1.3: Layout of the ELENA ring.

for use here [50]. The BTV is a destructive device giving precise beam profile

measurements by using a CCD camera to detect the photons generated when the

beam interacts with a scintillating screen. The BTV is situated between the in-

jection septum and the orbit correction kicker and is vital in checking incoming

beam quality, particularly during commissioning.

Along the electrostatic transport lines micro-wire grid BPMs based on those

used by ASACUSA are periodically placed to allow for online position measure-

ments [42,51,52]. These BPMs, also known as secondary emission monitors (SEM),

comprise of two micro-wire cathode arrays, arranged horizontally and vertically

and held at ground potential. The wires are around 5-20 µm in diameter, spaced

transversally 0.5–1.5 mm and made from gold coated tungsten. The arrays are

sandwiched between 3 anode arrays with 2 mm longitudinal gaps. As a beam

passes the cathode wires a small fraction of the antiprotons strikes them resulting

in the emission of secondary electrons. The secondary electrons are then collected
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by the anode arrays which are biased at around 100 V and a resultant position

signal may be extracted from the induced amplified current within the cathode

wire arrays.

For beam profile and emittance measurements within ELENA, a scraper sys-

tem is used. Its position in section 5 of the ring is shown in Fig. 1.3. By measuring

the secondary shower generated whilst intercepting the beam with an aluminium

scraper blade, information on the transverse phase space may be obtained. Chal-

lenges relating to non-zero dispersion and non-Gaussian beam profiles have led

to the development of novel emittance measurement algorithms for use with the

scraper system which were recently published [53]. These techniques form the ba-

sis of a large part of this work and the scraper hardware as well as the challenges

presented are well described in Section 3.3.

1.5 Project Goals and Overview

The primary goal of this project is the characterisation and optimisation of beam

quality for extra low energy antiproton beams. The project is split into two main

sections. The bulk of the work focuses on the development, testing and imple-

mentation of a novel emittance measurement technique within ELENA using the

scraper blade system. Secondly, beam quality to the experiments is investigated

using detailed and realistic simulations of the electrostatic transport lines.

Chapter 2 introduces the underlying theoretical concepts used for this work. In

Chapter 3 emittance measurement techniques are introduced along with a detailed

explanation of the scraper system in ELENA. Chapter 4 presents the underlying

theory of the new scraper algorithms. The algorithms are tested using simulations

in Chapter 5, followed by analysis of scraper data taken from ELENA in Chapter

6. Chapter 7 presents the transfer lines simulation, complete with expected beam

quality and a discussion of optimisation techniques. Finally Chapter 8 gives a

summary and outlook.

The work presented here is done in the context of the ELENA ring, but is

generally of interest for future low energy ion and antimatter facilities. For ex-

ample, the Facility for Low-energy Antiproton and Ion Research (FLAIR) is a
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future addition to the Facility for Antiproton and Ion Research (FAIR) [54, 55].

FAIR is currently under construction at the GSI Helmholtz Centre for Heavy Ion

Research in Darmstadt with FLAIR proposed as a phase 2 upgrade [56]. The use

of scraper blades to characterise beams is not limited to such low energy machines

and so the techniques may be adapted for use outside of the field of low energy

antimatter and ion research. Furthermore, techniques for simulating the transport

of extra low energy antiprotons and ions using electrostatic elements may also be

built upon and adapted for future experimental, commercial and medical facilities

in the future.





Chapter 2

Beam Dynamics

2.1 Introduction

Beam dynamics is the underpinning theory behind effective particle accelerator

operation. The purpose of this chapter is to set up the theoretical framework

for the development of the scraper algorithm and beam transport lines studies.

Additionally, emittance growth due to deceleration and space charge effects is

introduced, with a description of the effects expected in ELENA. The electron

cooler and related simulation results are presented for context for the scraping

algorithm.

2.2 Transverse Beam Dynamics

2.2.1 Co-ordinate System

We may consider two co-ordinate systems when describing a beam traversing a

particle accelerator or transport line. In both systems the transverse plane is

described by the horizontal co-ordinate x and the vertical position co-ordinate y.

In all accelerators there is a single ideal path taken by a hypothetical perfectly

centred particle with the design momentum and no initial divergence known as the

reference particle. The path it traces out through the machine is called the closed

orbit in the case of a ring (since it ends exactly where it began) or the reference

orbit for a linear machine. This path defines x = 0 and y = 0 along the machine.

13
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If we are in a frame of reference which travels with the reference particle, we

may define a co-moving system x, y, z where the z component describes a particle’s

longitudinal offset from the reference particle. When considering a beam’s position

around a ring or along a transport line we may use x, y, s where s defines a distance

along or around the machine from some arbitrary point, s = 0. Typically s = 0

will be at the injection point or the start of a beam transfer line and follows the

path of the reference particle. The systems are represented in Fig 2.1. It should

be noted that z is a curvilinear co-ordinate and is always parallel to the reference

particle’s closed orbit.

x

y

z s

Figure 2.1: Simple representation of the co-ordinate systems used.

A particle may be described at any single point along s by a set of 6 phase

space co-ordinates:

(x, x′, y, y′, z, δ), (2.1)

where x′ = dx
ds

, y′ = dy
ds

and δ = pi−p0
p0

, with pi as the momentum of the particle and

p0 as the design momentum. δ is known as the (longitudinal) momentum offset.

2.2.2 Optical Elements

Modern particle accelerators typically use a series of magnetic or electrostatic

dipoles and quadrupoles, commonly referred to as optical ‘elements’ which make

up the electromagnetic architecture of the machine, called a ‘lattice’. They are

used to steer and focus a beam by exploiting the Lorentz force:

~F =
d~p

dt
= q ~E + q~v × ~B (2.2)
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where q is the charge on the particle moving with velocity ~v, ~E and ~B are the

electric and magnetic fields, respectively and ~F is the force experienced by the

particle, equal to the rate of change of momentum, ~p. For example, the bending

effect of a constant vertical magnetic field, B0 on a particle may be described by:

ρB0 =
p

q
(2.3)

where ρ is the bending radius and p is the longitudinal momentum of the particle.

The quantity ρB0 is called the magnetic rigidity and this relationship with the

momentum of particles determines the field strength and length of bending dipole

magnets to achieve the desired deflection angle.

As a beam traverses a lattice its horizontal and vertical widths are focused

and controlled by quadrupoles. A quadrupole is designed such that it has zero

field at the central axis (x, y = 0) and applies some correcting kick to off-axis

particles. This can only be done in one plane at a time, having the opposite effect

in the other plane. A quadrupole whose polarity kicks off-axis horizontal particles

towards x = 0 is conventionally known as a focusing quadrupole and when focusing

vertically is called a defocusing quadrupole. A magnetic quadrupole’s normalised

focusing strength, k, may be given by:

k =
GMq

p
, (2.4)

where GM is the magnetic field gradient, dBy
dx

. It is standard practice for a lattice to

keep a beam focused in both planes by use of focusing and defocusing quadrupoles

in an alternating arrangement, known as a FODO lattice.

2.2.3 Emittance

For a particle with no momentum offset, δ = 0, its transverse motions around the

closed orbit of an accelerator are given by Hill’s equations [57]:

x′′(s) +Kx(s)x(s) = 0, (2.5)

y′′(s) +Ky(s)x(s) = 0 (2.6)
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where Kx(s) = ( 1
ρ2(s)
− k(s)) and Ky(s) = k(s), describe the focusing properties

around the lattice. Since for a circular machine the lattice is a closed loop, the

coefficients satisfy the periodicity conditions Kx,y(s) = Kx,y(s+C) where C is the

circumference of the machine. Looking for a solution for the horizontal equation

we may arrive at:

x =
√
εxβx(s) cos(ψ(s)− ψ0). (2.7)

Here we define some very important quantities. ψ(s) is the phase advance with

ψ0 being its initial condition. εx is the horizontal emittance of the particle and is a

constant around the machine. βx is known as the beta function and varies around

the ring as a result of the focusing properties of the elements. The derivative of

the equation Eq. 2.7, may be written:

x′ = −
√

εx
βx(s)

(
αx(s) cos(ψ(s)− ψ0) + sin(ψ(s)− ψ0)

)
, (2.8)

where we have defined αx(s) = −β′x(s)/2, which is another parameter of the lattice.

Finally, we may combine the results for x and x′ to arrive at an expression for

the horizontal emittance:

εx = γx(s)x
2 + 2αx(s)xx

′ + βx(s)x
′2 (2.9)

where γx(s) = 1+α2(s)
βx(s)

, the final of the three lattice parameters (αx(s), βx(s), γx(s))

known as the Twiss parameters. The vertical emittance and Twiss parameters may

be derived similarly. Throughout this work the beta function is used frequently

and so we drop the (s) notation simply writing βx and βy for brevity.

Plotting Eq. 2.9 gives an ellipse which a particle will trace out in phase space

when measured many times at a given position s around the lattice. The ellipse

will be centred around the closed orbit of the beam (x0 or y0) and has the prop-

erties shown in Fig. 2.2. As a particle moves through the machine the ellipse will

change shape yet the area πεx,y will remain constant. The idea that emittance is

conserved around the machine is known as Liouville’s theorem and applies only

for a closed system, not considering collective effects or acceleration forces, which

will be described later [58].
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Figure 2.2: Properties of the horizontal phase space ellipse.

2.2.4 Dispersion and Momentum Spread

The horizontal Hill’s equation must be modified when considering a particle with

some small momentum deviation δ << 1. An on axis yet off momentum particle

will have some modified divergence x′ after a sector bend due to its exit angle

being slightly different from the design angle for the reference momentum p0. We

must then rewrite Eq. 2.5 as [57]:

x′′(s) +Kx(s)x(s) =
δ

ρ(s)
, (2.10)

to account for this effect. The orbit of the particle is now adjusted and so we

redefine the original on-momentum co-ordinate as the betatron position, xβ, which

traces out the phase space ellipse as described. It is possible then to define a new

closed orbit around which a hypothetical particle of δ = 1 would follow, D(s).

Note: in reality particles with δ = 1 would be immediately lost in the machine.

D(s) is known as the dispersion around the machine and is a property of the

lattice. A particle with some small δ would then have a position:

x(s) = xβ(s) +Dx(s)δ, (2.11)
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at some point s along the machine. The dispersive term Dxδ (again dropping (s)

notation due to frequent use) causes a shift in the horizontal position of the ellipse

traced out by xβ as seen in Fig. 2.3. The quantity xβ(s) +Dxδ may be thought of

as the momentum-dependant closed orbit of a particle.

Figure 2.3: Horizontal phase space ellipses traced out by ten particles over
many turns at fixed s in a region with Dx 6= 0. Particles in the left plot have
zero momentum offset and in the right plot a range of positive and negative

momentum offsets. Both sets of particles have the same emittances.

2.2.5 Statistical Emittance

In an accelerator a beam is made up of a number of particles all with different

emittances and momentum offsets. Typically it is the case that the distribution of

these two quantities can be approximated by Gaussian distributions. The overall

emittance of a beam must be defined by how much of the beam distribution is being

considered. For example, the phase space area of the 95% emittance contains 95%

of the particles in the distribution. Here the RMS (root mean square) definition is

used where we consider the area containing one standard deviation of the beam’s

particles. We may compute the statistical RMS emittance of a distribution of

particles using:

εx =
√
〈x2〉〈x′2〉 − 〈xx′〉2 (2.12)

where 〈...〉 denotes the weighted averages and are the second order moments of the

beam. Units of emittance are typically given in mm mrad. The momentum spread

of the beam, σδ, is defined as the RMS width of the momentum offset distribution
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and in unitless as is δ. In the case of a Gaussian beam the emittance at any point

along s may be estimated from the RMS beam widths σx,y with:

εx =
σ2
x

βx
− σ2

δD
2
x

βx
(2.13)

εy =
σ2
y

βy
(2.14)

where in the horizontal plane dispersive effects are accounted for by the second

term. From these equations it is clear to see that the RMS beam width varies as

a function of βx,y. An example of this relation is given in Fig. 2.4 where a beam

of εx,y = 1 mm mrad and σδ = 0 is being tracked through a FODO quadrupole

arrangement.

Figure 2.4: Example of the relationship between βx,y and σx,y.

As particles orbit a circular machine they undergo transverse oscillations around

the reference particle known as betatron oscillations. The number of oscillations

per turn, or phase advance, in each plane are known as the horizontal and vertical

tunes of the lattice which may be calculated by:

Qx,y =
1

2π

∮
C

1

βx,y(s)
ds (2.15)
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where the integral is taken around the circumference of the ring, C [59]. Careful

considerations must be made when adjusting the optics of a machine to avoid

resonant tunes which lead to self-amplifying instabilities and result in beam losses.

2.3 Beam Cooling

2.3.1 Sources of Emittance Growth in ELENA

The beam in ELENA is decelerated from the injection energy of 5.3 MeV to an

extraction energy of 100 keV in two stages to allow for an intermediate cooling

plateau at 650 keV. The adiabatic blow up of the beam is an emittance increase

inversely proportional to the change in momentum of the beam. The increase

factor due to this effect, fa, may be estimated using:

fa =
βγ,1γl,1
βγ,2γl,2

=
p1

p2

, (2.16)

where βγ = v
c

and γl is the Lorentz factor [60]. Subscripts 1 and 2 refer to before

and after deceleration respectively whilst p describes the momentum of the beam.

This gives emittance increase factors of 2.86 and 2.56 along the first and second

deceleration ramps, respectively. A direct deceleration from 5.3 MeV to 100 keV

would result in fa = 7.3, likely resulting in beam losses and further emphasising

the necessity for the intermediate cooling plateau to counteract emittance blow

up mid way.

At the low energy region in which ELENA operates, dispersive effects become

significant. The effect of rest gas scattering, whereby the beam interacts with

residual particles in the beamline through multiple Coulomb scattering, was in-

vestigated and found to be negligible due to ELENA’s nominal operating vacuum

of 3 × 10−12 Torr [61]. However, a more considerable factor contributing to the

necessity of electron cooling for low energy beams is intra-beam scattering (IBS).

IBS is a diffusion effect arising from the interaction of particles with each

other in the beam through multiple small angle Coulomb scattering. IBS is well

explained in literature with models developed by Piwinski [62, 63], Martini [64]
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and later by Bjorken and Mtingwa [65]. Beam growth rates due to this effect may

be approximated by:
1

τx,y,p
∝

r2
pcλ

32π
√
πβ3

γγ
4
l εxεyσδ

, (2.17)

where for coasting beams λ = N/C and for bunched beams λ = Nb/(2
√
πσs). N

is the total particles in the beam and Nb in each bunch whilst σs gives the bunch

length. C gives the circumference of the ring, c the speed of light in vacuum and

rp is the classical proton radius. The inverse dependence on γ4
l highlights the

significance of this effect for low energy machines where γl approaches 1 and so

understanding the magnitude of this effect is most crucial at an energy of 100 keV.
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Figure 2.5: Rate of increase of emittance and longitudinal momentum spread
due to the effects of IBS in a BETACOOL simulation of ELENA at 100 keV [53].

Using the code BETACOOL [66], IBS simulations were performed for the

ELENA ring. BETACOOL is a multi-particle tracking code capable of simulating

various space charge effects in the presence of electron cooling using Monte-Carlo

methods. Here no electron cooling was used in order to obtain growth rates due

to IBS based on Martini’s model, which is an extension of the Piwinski model

for strongly focusing machines and accounts for variations in beta functions and

dispersion around the ring. The simulation was performed for a 100 keV beam

with initial εx,y = 1 mm mrad, σδ = 5×10−4 and nominal intensity of 2.5×107 rep-

resented by 104 macroparticles. Figure 2.5 shows the evolution of the beam over
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half a second. Whilst there is some small increase in momentum spread over this

time, the emittance has grown by 20% indicating that even along energy plateaus

the beam is growing significantly in phase space. The electron cooler will reduce

the beam size until it finds an equilibrium with resistive IBS effects.

2.3.2 Stochastic Cooling

Stochastic cooling was invented by Simon van der Meer in 1972 [67], who then went

on to win a Nobel Prize for the idea. It is used in the AD in but not in ELENA.

The basic principle of stochastic cooling is well described in literature [68, 69] so

here a simple qualitative explanation is given. Considering a hypothetical scenario

with a single particle travelling in the machine, we may measure its horizontal

displacement with a non-invasive pickup. The pickup may transmit the signal

through an amplifier to a kicker further along the ring, delayed such that the

resultant kick takes place upon arrival of the particle. If the system is configured

to account for the horizontal oscillations of the particle then the resultant kick can

be such that the horizontal oscillation amplitude of the particle is reduced.

A more realistic scenario would involve replacing the particle with a longitudi-

nal or transverse phase space sample of a coasting beam and applying kicks in the

appropriate plane. Careful planning can negate unwanted statistical effects, and

the entire beam may be cooled over many turns. Whilst it is true that emittance

is conserved around a ring in the absence of external effects, stochastic cooling

may be thought of as a trick to move the empty space between particles towards

the outer region of the beam.

2.3.3 Electron Cooling

Electron cooling was invented by Gersch Budker in 1967 at the Budker Institute of

Nuclear Physics, Novosibirsk [70]. It has been used successfully in LEAR [11, 12]

and the AD [19, 20] to reduce and maintain the emittance of low energy antipro-

ton beams and so is employed in ELENA. Electron cooling is applied for a coast-

ing beam at the intermediate plateau and along the extraction plateau for both
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a coasting beam and during rebunching to control the longitudinal momentum

spread.

Figure 2.6: Working concept of an electron cooler.

Figure 2.6 gives a schematic representation of how electron cooling works. The

ion (antiproton) beam passes through a parallel intense electron beam with similar

velocity and Coulomb interactions of the ions with individual electrons takes place.

The electrons are then collected at the other end of the cooler whilst the ions travel

the ring and enter the cooler again, continuing the processes. The cooling effect is

akin to the theory of ideal gasses, in the particle frame the electron beam may be

thought of as a cold electron gas which interacts with the hot ion gas resulting in

a net decrease in the ion gas temperature. In terms of beam dynamics, the result

of this interaction results in a gradual reduction in the transverse emittance and

momentum spread of the beam.

The cooling rate due to electron cooling depends on many factors as given in

this approximation [42]:

1

τ
=

1

k

q2

A
ηcLcrerp

j

e

1

β4
γγ

5Θ3
(2.18)
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where k = 0.16 is a constant depending on the distributions of ions and electrons,

q is the charge of the ions, A the mass number, ηc is the fraction of the ring over

which cooling takes place (in ELENA 0.7 m over 30.4 m, ηc = 0.023), Lc ≈ 10 is the

Coulomb logarithm and depends on the electron temperature (Te), re = 2.8×10−15

m is the classical electron radius, rp = 1.54 × 10−18 m is the classical proton

radius, j is the current density of the electron beam and Θ is the RMS angular

spread between the electron beam and the ion beam which is given by ion and

electron transverse temperatures and misalignments. The electron cooler, pictured

in Fig 2.7, is optimised by varying the parameters nc, j, Θ and Te. Table 2.1 shows

the nominal electron cooler parameters for ELENA.

Figure 2.7: Picture of the electron cooler during installation in ELENA [71].

Studies into the long-term beam evolution were carried out to determine cooling

rates and the equilibrium values of the emittance and momentum spread [60, 61].

Non-Gaussian beam profiles had previously been observed in the AD due to more

efficient cooling at the core of the beam. The magnitude of this effect is dependent

on the radial intensity of the electron beam which is non-uniform and tends to have

a higher density around x, y = 0. In BETACOOL simulations for ELENA the same

effect was observed. Figure 2.8 shows the results of one such simulation where the

beam is well approximated by a bi-Gaussian distribution.
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Figure 2.8: Expected bi-Gaussian beam distribution based on BETACOOL
simulations.

Table 2.1: Nominal electron cooler parameters for ELENA.

Intermediate plateau Ejection Plateau
Electron beam energy (eV) 355 55
Electron current (mA) 5 2
Electron beam density (m−3) 1.38×1012 1.41×1012

Bgun(G) 1000
Bdrift (G) 100
Expansion factor 10
Cathode radius (mm) 8
Electron beam radius (mm) 25
Twiss parameters (m) βx=2.103, βy=2.186, Dx=1.498
Flange-to-flange length (mm) 2330
Drift solenoid length (mm) 1000
Effective length (mm) 700

2.4 Summary

In this chapter important concepts such as emittance, beta functions, momentum

spread, and dispersion have been introduced. Beam effects more specific to low

energy storage rings such as ELENA have also been introduced. It has been

shown that bi-Gaussian transverse beam distributions are expected in ELENA,

based on BETACOOL simulations in the presence of IBS and electron cooling. In

combination with non-zero dispersion around the ELENA ring, these non-Gaussian
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beams pose a challenge for accurately measuring the emittance of the beam within

the machine using the scraper system. In the following chapter diagnostic devices

for measuring the emittance of a beam are introduced, including an introduction

to beam scraping and details of the ELENA scraper system.



Chapter 3

Emittance Measurements

3.1 Introduction

The main purpose of this chapter is to provide context for the new scraping anal-

ysis algorithms which have been derived for meeting the challenges presented by

the conditions in ELENA. Various techniques for emittance measurement are in-

troduced, along with an explanation of the general concept of beam scraping. The

specific hardware used in the ELENA scraping system will be described to pro-

vide some background for the algorithms. Additionally, the scraping challenges

presented by ELENA will be discussed in detail to provide the context and moti-

vation for the development of these new methods.

3.2 Emittance Measurement Techniques

In order to control and optimise beam quality it’s essential to monitor the beam

emittance in all accelerators, linear and circular and in some cases along transport

lines. Here we focus on transverse emittance (εx, εy) measurements since it is

the primary goal of the scraper to measure these quantities. Longitudinal emit-

tance measurements are typically performed separately using different techniques.

Because the transverse emittance and phase space density of a beam cannot be

measured directly, they have to be inferred from other data such as beam profile

measurements.

27
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Since the applications and hence energy range of particle accelerators is so

broad, many different techniques for measuring the emittance under various cir-

cumstances have been developed over the years. Unfortunately, there is no tech-

nique to fit all machine types and the pros and cons of each method must be

weighed up for every case. For the wider context of this particular study, we

briefly explore some commonly used techniques. Other methods such as the Alli-

son scanner [72] are well described in the literature.

3.2.1 Slit Plate and Pepper-pot Methods

A beam may be split into so-called ‘beamlets’ by propagation through a plate cov-

ered in slits or a grid of holes (pepper-pot) with fixed apertures [73–75]. Detection

and intensity measurements of the beamlets on a monitor (e.g. phosphor screen)

further downstream provides information on the beam distribution. Because of the

known aperture positions and widths, the angular distribution of the beamlets, x′,

may be reconstructed at the screen using a simple calculation, e.g:

x′ =
(x1 − x2)

L
, (3.1)

where x1 is the horizontal position of the hole or slit the beamlet passed through,

x2 is the beamlet’s horizontal position on the screen and L is the distance between

the plate and the screen. Knowing these values for all beamlets allows one to

reconstruct the angular distribution for the entire beam at the position of the grid

or pepper-pot plate. The main difference between the slit and grid methods is

that the grid can provide information on both the x and y planes simultaneously

by simply summing intensities in each plane.

Using these methods the angular distribution and hence emittance of the entire

beam may be reconstructed, however because of varying amount of beam losses

based on the geometry of the plates, values for the real, slit and pepper-pot emit-

tances are always different. Slit and pepper-pot methods are only suitable for use

along linear machines or transport lines since the equipment must be placed in the

beam’s path before a measurement can be made. A pepper-pot monitor is limited
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Figure 3.1: Representation of the pepper-pot method. Only one beamlet is
shown for simplicity.

also by the spot resolution of the screen being used. The screen resolution is less

significant with increasing L, and so a compromise must be made with available

space.

Additionally to the schemes described above, more advanced and complex vari-

ations of these methods have been developed. For example, using two pairs of slits

separated along the beamline allows the user to define the position of a beam-

let and scan over an area [76, 77]. The entire phase space can be systematically

scanned whilst measuring only the resultant intensity for discrete steps in (x, x′)

or (y, y′), creating a phase space map. Step size depends on the resolution of the

intensity monitor.

3.2.2 Wire and Laser Wire Scanners

Similarly to a scraping device, a wire scanner system [78, 79] works by moving

a thin wire quickly and transversally through a circulating beam and creating

and measuring the intensity of a shower of secondaries proportional to the beam

intensity. By scanning perpendicularly to the wire’s length and comparing the

secondary shower intensity with the wire’s position, a beam profile in the plane of

scanning motion can be obtained. Alternatively, the charge deposited on the wire

may be used in place of the shower intensity.
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Wire scanners are useful because they are only semi-invasive as the remaining

particles in the beam may continue to circulate the machine. The beam however,

will typically experience an increase in emittance due to scattering increasing

the angular spread of the beam. Wire scanners may be used typically for mid

to high energy range (i.e. >100 MeV) accelerators since at lower energies and

intensities less intense secondary showers become difficult to detect. The emittance

increase associated with wire scanners is also greater at lower energies [80]. As

with many methods presented here, including scraping, wire scanners are also time

dependent as they do not sample the beam instantly. This may also lead to errors

in measurement.

Laser

Electron Beam

Gamma Detectors

Scattered Photons

Mirror

Bending Magnet

Figure 3.2: Diagram illustrating a laser wire scanner system with detectors in
the adjacent configuration. The beam would be bent into and out of the page

with the bending magnet.

Laser wire scanners [81,82] work on the same basic principle as standard wire

scanners, however the material wire is replaced with a narrowly focused laser beam,

around one wavelength in diameter. As a result, laser wire scanners are considered

non-destructive. The laser beam may be split from its source and used to scan

either horizontally or vertically across the aperture with the use of mirrors. A

signal is produced when particles interact with the laser through inverse Compton

scattering, sending photons in the direction of beam propagation. The beam may

then be bent away from this path allowing for the scattered photons to be detected

and measured as an intensity signal. Alternatively, the particle beam may continue

on its path and adjacent detectors may measure some flux of photons, as seen in
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Fig. 3.2. As an alternative to laser movement, the beam may be moved through a

stationary laser beam using a bending magnet.

The Compton differential cross-section, which gives a measure of the likelihood

of interaction, is inversely proportional to the square of the rest mass of the par-

ticle. This means that inverse Compton scattering is suppressed for more massive

particles, such as the proton. As a result, too few photons arrive at the detectors

when scanning beams of more massive particles, and so the technique is saved for

electron and positron beams.

3.2.3 Triple Measurement Matrix Methods

This technique is particularly useful for linacs and transport lines as it gives the

emittance from a single shot. It is still being commonly used and developed with

the event of linac dependent laser-plasma wakefield accelerators and X-ray free

electron lasers [83,84].

It is possible to calculate the horizontal transverse emittance as εx =
√
detσ0

x,

where σ0
x is the 2×2 beam matrix [85] defined as:

σ0
x =

σ0
x,11 σ0

x,12

σ0
x,21 σ0

x,22

 =

 〈x2〉 − 〈x〉2 〈xx′〉 − 〈x〉〈x′〉

〈x′x〉 − 〈x′〉〈x〉 〈x′2〉 − 〈x′〉2

 , (3.2)

for the beam at z0. Here for simplicity we describe in terms of the horizontal plane

x, however the methods may be applied for the vertical plane, y, too. It is not

possible to directly measure all of the quantities within the matrix in one instant,

however the first term σ0
x,11 may be calculated simply from the beam width at

z0. Using this knowledge we may take several measurements of the first terms at

different positions along z to infer the other matrix terms at z0.

A similar matrix σ1
x may describe the beam at a different position along the

beamline, z1. Additionally we may consider a transfer matrix R capable of trans-

forming σ0
x to σ1

x:

R =

R11 R12

R21 R22

 , (3.3)
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so that:

σ1
x = R σ0

x RT . (3.4)

Assuming that there is no transverse position offset of the beam, or that the

offset is static and we redefine our co-ordinates around it, we may say that σx,12 =

σx,21. With this assumption we may then use Eq. 3.4 to express σ1
x,11 in terms of

the matrix σ0
x:

σ1
x,11 = R2

11σ
0
11 + 2R11R12σ

0
12 +R2

12σ
0
22. (3.5)

We may use this equation, or combine measurements from several variants of

it to calculate all elements within the target matrix, σ0
x. For example, the beam

width may be calculated at two additional z positions downstream from z0 with

only drift spaces between, leading to a pair of equations which may be solved for

σ0
12 and σ0

22;

σ1
x,11 = σ0

11 + 2L1σ
0
12 + L2

1σ
0
22, (3.6)

σ2
x,11 = σ0

11 + 2L2σ
0
12 + L2

2σ
0
22, (3.7)

where the transfer matrix R has been replaced with a drift matrix in each case;

Rd =

1 Li

0 1

 (3.8)

where Li is a drift length for the ith position measurement.

Whilst the drift method is suitably straightforward to introduce the concept,

a more commonly used application of triple matrix analysis would be as fol-

lows. Instead of changing the transfer matrix by having different drift lengths,

a quadrupole may be placed downstream from z0. Different quadrupole strengths

give different transfer matrices. Measurements of the beam waist at a fixed po-

sition downstream for different quadrupole strengths provides a set of equations,

similar to those above, from which the emittance at z0 can be extracted. Addi-

tionally, setting z0 to a position where the beam is at a waist gives σ0
12 ≈ 0 and

simplifies the calculation further [86].
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3.2.4 Optical Transition Radiation

Optical Transition Radiation (OTR) measurements work on the principle that

particles passing a boundary between two media of differing dielectric constants

emit optical radiation. It is possible to exploit this by placing a sheet of material

in the beam’s path and measuring the radiation generated as the beam passes from

vacuum to the material, and again as it leaves the material. By rotating the sheet

45° around x or y, OTR may be generated centred around 90° from the beam’s

direction as particles enter the sheet, and also around the beam’s direction upon

re-entering vacuum, Fig 3.1. Because it is a surface phenomenon, very thin sheets

may be used resulting in minimal impact and scattering of the beam, especially

when compared with scintillating screens.

Beam

Detectors
Mirror

Metal Sheet

OTR

Mirror

Lens
Lens

Figure 3.3: An example equipment layout when measuring OTR for beam
diagnostics.

The radiation generated by OTR is in the form of two cones offset at equal

angles from the line of reflection of the beam’s path with the material. Detailed

analysis of the radiation allows reconstruction of the RMS beam size. The clarity

of the signal received is proportional to the Lorentz factor, γl, of the beam and so

the technique is best applied to lepton or high energy hadron beams.

An extension this technique is known as OTR interferometry, or OTRI [87–89]

and may be used to measure the emittance of the beam. An OTRI experimental

set up would be similar to Fig. 3.3 with a second thin metal sheet with the same

orientation slightly downstream from the first. The intention is that the second
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new sheet also creates upward propagating OTR whilst reflecting upwards the for-

ward propagating radiation from the first sheet. The two signals would interfere

and a resultant interference pattern would be detected by the detector above. The

characteristics of the interference pattern, such as spacing and visibility provide

extra information on the beam, particularly the x and y angular spread, or diver-

gence. This allows one to gain insight into the transverse phase space of the beam

and careful analysis of the interference pattern allows for the reconstruction of the

emittance of the beam. OTR and OTRI are typically used in linear machines and

transport lines due to repeated loss and beam degradation as it passes through

the thin metal sheet many times in a circular machine.

3.2.5 Beam Scraping

Beam scraping allows one to probe the transverse phase space of the beam by

either moving a scraper blade transversally into the path of the beam, or creating

a local orbit bump using steering magnets to progressively shift the beam into a

fixed position blade. An example of the latter is the BEAMSCOPE used on the

PS Booster at CERN [90]. Since this approach is less conventional and the new

algorithms were developed for the moving blade scheme, we focus here on that

approach [91].

The movement of the scraper blades is slow in comparison to the beam’s rev-

olution frequency to ensure all particles with a maximum amplitude equal to, or

greater than, the scraper’s position are eliminated. As the beam is intercepted,

the intensity of the subsequently generated secondary particle shower is measured

as a function of the position of the scraper blade. By taking the intensity of this

particle shower as an indicator for the intensity of the beam along the correspond-

ing scraper position, the transverse phase space density for the direction of the

scraper’s movement can be obtained. An example of the resultant distribution

may be seen in Fig. 3.4. The emittance and other useful information may then be

inferred through analysis, for example; by estimating the 95% beam width as in

the AD system (Section 5.4), or by making a fit to the data assuming a Gaussian

beam profile.
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Figure 3.4: An example of a distribution that may be obtained via beam
scraping. Beam intensity is represented by green dots. The scraper blade is
coming from positive x. The data has been converted to a probability distribu-

tion function (PDF), f(xs), shown as a blue line.

Because of their high dynamic range, beam scrapers are able to investigate

beam halos and low intensity long tails. They have been used to do so in various

high energy machines such as the Tevatron, the Large Electron-Positron collider

(LEP) and, more recently, the Large Hadron Collider (LHC) [92–94]. Additionally,

scrapers may be held stationary at various aperture sizes in order to act as a more

conventional collimator.

Although scraping destroys the beam being measured, it has the advantages

of being simple to use and is suitable for low energy and low intensity machines.

For these reasons it was chosen as the primary emittance and transverse profile

diagnostic for the Antiproton Decelerator (AD) at CERN [95, 96]. After many

years successful usage in the AD, a scraper system was also chosen for use in the

ELENA ring [42].
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3.3 About the Scraper System in ELENA

The main hardware comprising the scraping system in ELENA consists of two

scraper blade windows at right angles to each other, each attached to a motorised

arm, four Micro Channel Plate detectors (MCPs), two scintillator detectors, the

stainless steel vacuum tank, and the associated support structures.

Figure 3.5: CAD model of the horizontal scraper window and movement
system.

3.3.1 Scraper Arm

The scraping component which intercepts the beam is made from an aluminium

plate with a 66 x 66 mm window in the centre as seen in Fig. 3.5. The window

configuration allows one scraper arm to scrape from both sides, with the beam

passing through the centre of the window at the start of scraping. During runs

when scraping does not occur the aluminium window may be fully retracted to

entirely clear the beamline aperture.

An actuation system is used to control scraper movement. The arms are guided

by two linear ball bushings and powered by a brushless DC motor. In a similar

manner to systems used for the LHC collimators two constant force springs ensure

auto retraction of the blades in case of motor failure [97].
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3.3.2 MCPs

The four MCPs are installed around the two scraper blades as seen in Fig. 3.6.

Two are positioned upstream of the scraper blades and two downstream to ensure

sufficient secondary detection regardless of the directions of both the primary

beam and secondary showers. The MCPs are present to detect the secondary

electrons generated when the primary beams of either H− or protons interact with

the scraper blades. Since the secondary electrons will not escape the vacuum

chamber, the MCPs must be installed within its walls and so only the readout

plates are visible from the outside.

Figure 3.6: Positions of the MCP detectors in the scraper’s vacuum tank.
The scintillating detectors (scintillating surface in yellow) are also displayed on

either side of the protective casing covering the actuation system.

The MCP’s front face is made from a highly resistive material containing an

array of micrometer (≈10 µm) diameter scale tubes, microchannels, all offset by

a small angle from normal to the surface. The plate is held at a high voltage,

typically around 2.5 kV for ELENA, to allow the tubes to act as continuous-

dynode electron multipliers.

Electrons enter the microchannels and due to the angle offset, they will impact

the tube walls. When this happens more electrons are generated through secondary

emission. The electron multiplication process continues along the tube until the

electrons exit the opposite end and are collected on an anode, as a now amplified

signal of the original electron. Because the electrons have cascaded, there are

many of them but at low energy. Hence the anode is held at high positive voltage,
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around 3 kV for the ELENA MCPs, specifically. The amplified signal is recorded

as a function of time and correlated with the scraper position readout, giving

beam density as a function of position. Diagrams illustrating the equipment and

processes are displayed in Fig. 3.7.

Figure 3.7: The diagrams on the left display a typical MCP front face and
illustrate the cascading effect. On the right-hand side, a schematic diagram
shows how the device is integrated into the scraper system, including the read-

out. Image courtesy of Pierre Grandemange.

3.3.3 Scintillating Detectors

The concept and operation of scintillators for the detection of particles is well

known. Typically a piece of scintillating material will serve as the detecting sur-

face. As ionizing particles are incident their energy is absorbed and re-emitted

as photons. The scintillating material is connected to an electronic light sensor,

in ELENA it is a photomultiplier tube (PMT). The amplified signal is then read

out from the PMT, and is proportional to the number of particles incident on the

scintillating surface. The process is represented schematically Fig. 3.8.

In the case of ELENA the scintillating detectors are primarily used to detect the

secondary pions generated from proton-antiproton annihilation within the scraper

blade or on the beam-pipe walls. For this purpose, two circular shaped scintillating

detectors were mounted on paddle shaped arms and placed both upstream and
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downstream of the scraper vacuum tank to ensure forward- and back- scattered

showers may be detected. The original design positions are displayed in Fig. 3.6.

During the design stage, GEANT4 tests were carried out to determine the

flux of secondary particles. The results showed that for the planned scintillator

positions and at the end of scraping, within the beam core, the count rate would

be over 1 MHz. At this rate there would be a possibility of saturating the PMTs

so the diameter of the circular scintillating surfaces was reduced from the nominal

100 mm to 80 mm. The signal was still shown to be sufficient after installation

and testing so the exact positioning of the scintillators could then be adjusted for

the mechanical convenience of other equipment. The upstream scintillator was

adjusted from its design position to underneath the actuator system’s protective

casing. The readout end of the PMT can be seen highlighted by a white circle in

Fig. 3.8 to give an indication of its current position.

Figure 3.8: A photograph taken in May 2018 showing the full scraper as-
sembly, with a white circle highlighting the position adjusted scintillator. On
the right a schematic diagram (courtesy of Pierre Grandemange) illustrates the

detection process in the context of the scraper.
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3.3.4 Scraper Position

The scraper is positioned in Section 5 of the ELENA lattice. Table 3.1 shows the

optics at the scraper’s position for the various configurations considered. In the

original design it was positioned closer to the centre of the section, with transverse

beta function and dispersion listed as configuration C1 in the table. The ratio of

the horizontal beta function against horizontal dispersion gives a measure of the

impact longitudinal momentum spread will have on the scraped beam profile. For

example, in configuration C1 the ratio is relatively low, with lower βx giving hor-

izontally thin beams and higher Dx allowing the momentum spread to contribute

more to the horizontal displacement, i.e. smearing, of particles.

Table 3.1: Optics parameters at the position of the scraper for 4 differ-
ent configurations of the machine. C1: Original layout. C2: Original layout
quadrupoles with adjusted for tune. C3: Predicted optics at new scraper posi-

tion. C4: Values measured in the machine.

Configuration C1 C2 C3 C4
βy (m) 2.92 3.00 2.70 2.97
βx (m) 0.664 0.688 3.48 3.21
Dx (m) 1.18 1.292 0.87 1.38
βx/Dx 0.492 0.533 4 2.33
s (m) 22.56 22.56 23.44 23.44

During the simulation process, the optics of the machine were adjusted to

give the machine a more stable tune and the resultant configuration is listed as

configuration C2 in the table. A discussion of the adjustment may be found in

the simulations chapter, Section 5.3.1. The section also contains plots showing the

simulated optics of the ring for configurations C1 and C2.

To reduce the impact of the momentum spread, the design scraper position

was moved 88 cm upstream to a region with values calculated and listed as C3

in the table. The scraper was installed in this position, as seen in Fig. 3.9. The

new ratio allows the beam to be wider at the scraper whilst the distribution is less

affected by the momentum spread.



Chapter 3 Emittance Measurements 41

Figure 3.9: A photograph showing the scraper positioned in section 5 of the
ELENA ring. November 2017.

As well as the change in position, the configuration of the optics has changed

several times during commissioning to account for various factors, such as ad-

justments in the injection line optics and further tune adjustments. The most

recent available lattice parameters at the position of the scraper were estimated

based on the strengths of optical lattice elements around the ring. Figure 3.10

shows a screenshot taken in the ELENA control room during commissioning with

a plot of the calculated optics. The scraper parameters are listed in Table 3.1 as

C4. For the scraper simulations presented later, both configurations C2 and C4

were used, primarily to allow for comparisons between high and low βx/Dx ratios.

Further details and discussion of this may be found in the simulations chapter,

Section 5.3.1.

3.3.5 Longitudinal Momentum Spread Measurement

The longitudinal momentum spread may be measured using the set of 20 BPMs

installed around the ELENA ring. The signals detected for a coasting beam may

be summed around the ring, making corrections for time of flight between pickups

and allowing for the data to be analysed as a single Schottky pickup measurement.

The signal may then undergo a fast Fourier transform (FFT) resulting in a spectral

density distribution, with Schottky peaks at harmonic frequencies. Averaging to

account for the 20 BPMs, an estimate for the longitudinal momentum spread may
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be made by measuring the RMS of a frequency peak in the data, ∆fh, of known

harmonic number, h:

σδ = −1

η

∆fh
fh

(3.9)

where η is the frequency dispersion or phase slip factor and fh is the centre fre-

quency of the peak [98]. In ELENA the system will be able to measure up to

h = 111, and where possible a higher harmonic will be selected to allow for more

frequent measurements, since the required acquisition time is inversely propor-

tional to h [99].

3.4 Challenges Presented for ELENA

Scraping systems and other similar emittance diagnostic devices are typically

placed in regions of zero dispersion to simplify measurements. As explained in

Section 2.2.4, the phase space distribution of a beam is affected by the longitu-

dinal momentum spread proportionally to the dispersion at any given location in

the machine. In the AD, for example, the scraper system is placed in a dispersion

free region and hence the impact of large momentum spreads on the measurement

is zero or negligible. In ELENA there is no region with zero dispersion so this

effect is unavoidable.

The impact of the effect on the transverse phase space depends on a combina-

tion of the ratio of transverse beta function with dispersion at the position of the

scraper and the longitudinal momentum spread of the beam. If the dispersion is

large and beta small, with a higher momentum spread, the transverse phase space

could be significantly affected. This could be to such a degree that an uncorrected

measurement of the RMS beam width could translate to an incorrect emittance

value by several factors. This is explored in Section 5.4 when using the basic AD

algorithm.

During machine operation the beam will undergo intra-beam scattering (IBS).

Since the growth rates introduced by IBS are inversely proportional to the fourth
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power of the Lorentz factor, γ4
l , they are much more significant for lower energy ma-

chines such as the AD or ELENA. Depending on growth rates and scraper speed,

the beam may experience a change in emittance during the scraping process. This

possibility is something to be considered when designing the system. Addition-

ally, corresponding scraper measurements for the two scan algorithm should be

performed at the exact same time during the cycle to minimise the impact of IBS

growth on the emittance values. It may be possible to measure the magnitude and

rate of this effect by scraping at different times during the cycle and comparing

emittance values.

In order to counter the diffusion effects mentioned above, an electron cooler will

be employed in ELENA. As shown in Section 2.3.3, the effects of the electron cooler

are expected to give the beam a non-Gaussian beam distribution. Simulations

show that the beam could be described as a bi-Gaussian distribution, however

depending on the electron cooler field distribution and perhaps due to unforeseen

effects, the beam profile could take any shape. Using Gas Electron Multiplier

(GEM) beam profile monitors [100, 101], beams in the AD have been shown to

take on non-Gaussian transverse beam distributions, particularly with dense cores

and long tails. This is attributed to the beam cooling process which, in the AD,

is a mixture of stochastic and electron cooling.

These non-Gaussian beam distributions will cause problems for the scraping

process in ELENA as typically the algorithms are based on the assumption of

Gaussian beams. Similarly to the dispersion consideration, the impact of this

effect when using the Gaussian AD method is investigated in Section 5.4. It is

expected that the beam will appear more non-Gaussian than the AD beam due

to its relatively low energy. A-priori estimates of a function which best describes

the beam distribution would have to be made, or an algorithm developed to re-

construct the emittance for arbitrary beam distributions. Another complication

due to electron cooling may arise from a transversally non-uniform field seen by

the electrons. Electrons at higher amplitude could take larger velocities which

could lead to an emittance-momentum offset correlation and further pollute the

shape of the beam distribution. The magnitude of this property of the electron
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beam is uncertain and may later be indirectly measured through observations of

the antiproton beam.

An additional source of error could arise from the transmission of antiprotons

through the scraper blade itself. Since the horizontal speed of the scraper blade

will be very low most particles will come into contact with the very tip of the

blade. There is a possibility that in this region antiprotons may scatter from

the side of the scraper blade and continue circulating in the machine causing an

incorrect measurement of the phase space density. Although the impact of this

effect is minor, the possibility may be investigated using simulations.

Several sources of error have been described in this section. The impact of

some is known more precisely than others but there is enough information to de-

termine that standard scraping algorithms will not be sufficient. The main two

factors that are expected to have the biggest impact are non-zero dispersion and

non-Gaussian beam profiles. Separately these problems may be dealt with using

slightly modified traditional methods however in combination the beam quickly

becomes complicated and difficult to diagnose. Assuming that some of the ad-

ditional potential complications have a significant impact on the scraping profile

too, it is of utmost importance that these main two effects be dealt with effectively

first. In the next chapter two new algorithms are introduced, one for scraping a

Gaussian beam in a region on non-zero dispersion, and the second to perform the

same task for non-Gaussian beams.
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Algorithms

4.1 Introduction

The purpose of this chapter is to introduce the new emittance reconstruction

algorithms developed for ELENA [53]. The focus is on the derivation of the algo-

rithms from theory including introducing some additional quantities that may be

estimated using them.

An algorithm for accurately reconstructing the transverse emittance and es-

timating with great accuracy the longitudinal momentum spread of a Gaussian

beam in a dispersive region has been developed. In addition to this, an algorithm

capable of reconstructing the emittance and other useful quantities of a beam of

arbitrary profile shape, also in a dispersive region will be introduced. Although

developed for the specific case of ELENA, the algorithms are presented for use in

other storage rings which might include similar conditions and challenges.

4.2 New Algorithms

Due to the numerous different definitions for emittance, it should be clearly stated

that these algorithms are for the purpose of determining the RMS geometric trans-

verse emittance. It is introduced in Section 2.2.5, but for convenience and clarity,

47



48 Chapter 4 Algorithms

here it may be defined statistically as:

εrms = 〈J〉 ≡ 1

2
〈A2〉, (4.1)

where A is the amplitude of the particles in phase space, and J is the action

variable, (γx2 + 2αxx′ + βx′2)/2.

4.2.1 Basis of Derivations

To establish the theory necessary to develop scraping algorithms suitable for the

challenges presented in Section 3.4, we begin by considering a scraper blade moving

slowly into the beam from the +x direction as seen in Fig 4.1. Considering the

revolution frequency of the beam, we may assume the scraper blades travel into the

beam at a low enough velocity that particles with a maximum amplitude, Amax,

equal to scraper’s position, xs, are lost immediately. This leads to the condition

that the beam intensity is equal to the fraction of the beam within the aperture

defined by the scraper’s position.

A phase space plot of the traces of three particles in a region with positive

dispersion1, D, can be seen in Fig 4.1. The particles have different emittances but

all have the same maximum oscillation amplitude, equal to xs. Assuming they all

have the same closed orbit, x0, we see how the dispersion shifts the phase space

ellipses in x based on their momentum offsets, and why this would complicate the

scraper measurement process.

We begin by considering a beam in normalised phase space:

Xβ =
xβ√
β
, X ′β = x′β

√
β +

xβα√
β
, (4.2)

where Xβ and xβ are the normalised and non-normalised particle betatron posi-

tions respectively, X ′β and x′β are the normalised and non-normalised divergence

angles respectively, and β and α are the Twiss parameters in the corresponding

transverse plane. Combining these quantities gives the normalised amplitude in

phase space, which may also be described in terms of the action variable, J :

1Here D represents non-zero dispersion in the plane being considered, without the x subscript
for generality.
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Figure 4.1: Representation of the phase space traces of three particles passing
a scraper. The ellipses represent particles with negative momentum offset (blue),

zero momentum offset (black) and with positive momentum offset (red).

A =
√
X2
β +X ′2β ≡

√
2J =

√
x2
βγ + 2xβx′βα + x′2β β, (4.3)

where γ = (1 + α2)/β.

If the scraper is located within a dispersive region, and the beam has a relative

momentum offset, δ = ∆p/p, the total position and angle may be described in

terms of the betatron and dispersive contributions:

x = x0 + xβ +Dδ (4.4)

x′ = x′0 + x′β +D′δ (4.5)

where D′ = dD/ds, x0 and x′0 are the contributions due to the closed orbit offset.

Particles whose momentum dependent closed orbits are greater than the posi-

tion of the scraper, x0 + δD ≥ xs, are lost at the scraper. Hence, the momentum

spread acceptance of a beam is given by:

δmax =
(xs − x0)

D
. (4.6)

When δ < δmax the transverse acceptance of the beam is given by the difference

between the scraper position and the momentum dependent closed orbit, xs−(x0+

Dδ). This effect can be seen in Fig 4.1 where particles with a lower and higher
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momentum offset than on momentum particles have larger and smaller transverse

acceptances, respectively. Therefore, if a horizontal scraper blade is coming from

the positive x-axis and in a determined measurement stage it is at position xs, the

condition for a particle to stay in the machine is:

x0 + δD + β1/2A < xs, (4.7)

We may summarise the above in terms of the maximum oscillation amplitude

as a function of the momentum offset:

Amax =

 xs−x0−Dδ√
β

for δ ≤ δmax,

0 otherwise.
(4.8)

For clarity, these limits are represented in longitudinal and transverse phase

space in Fig. 4.2.

Figure 4.2: Representation of acceptance for particles in the presence of a
scraper blade. Image courtesy of Christian Carli.

Generally, a beam may be characterised as a distribution density:

ρ(δ, A) = ρp(δ)ρT (δ, A) (4.9)

where ρp(δ) is the synchrotron amplitude distribution as a function of the relative

momentum offset, and ρT (δ, A) is the transverse amplitude distribution, which

depends on both A and δ as described above.
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The phase space density may be normalised as follows:

∫ +∞

−∞
ρp(δ) dδ = 1, (4.10)∫ +∞

0

2πAρT (δ, A) dA = 1. (4.11)

For the scraper measurement a coasting beam with no coupling between the two

transverse planes is assumed. The measurements will typically take place between

deceleration ramps, and in order to see and account for longitudinal momentum

spread effects they must be carried out with the RF systems off.

The remaining fraction of the beam with dispersion D > 0 may be calculated

using the acceptance limits described in Eq. 4.8:

F+(xs) =
N+(xs)

N0

=

∫ δmax

−∞
ρp(δ) dδ

∫ Amax

0

2π A ρT(δ, A) dA, (4.12)

where N+(xs) is the number of particles left in the machine when the scraper is

at xs and N0 is the number of particles in the machine before scraping. Similarly,

if the scraper is coming from the negative x-axis, we obtain:

F−(xs) =
N−(xs)

N0

=

∫ +∞

δmax

ρp(δ) dδ

∫ −Amax
0

2π A ρT(δ, A) dA. (4.13)

The integrals above give the cumulative distribution functions (CDFs) of the

beam loss. Taking the derivatives of these quantities gives the corresponding

probability density functions (PDFs) projected along xs:

f± = ±dF±(xs)

dxs
. (4.14)

To do this we begin by making the substitution:

n(δ, xs) =

 ρp(δ)
∫ Amax

0
2πAρT(δ, A) dA for δ ≤ δmax,

0 for δ > δmax,

which gives:

F+ =

∫ δmax

−∞
n(δ, xs) dδ. (4.15)
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The density probability function f+ defined as the derivative of F+ with respect

to xs becomes:

f+(xs) =

∫ xs−x0
D

−∞
ρp(δ)2π

xs −Dδ − x0

β
× ρT

(
δ,
xs −Dδ − x0√

β

)
dδ. (4.16)

Similarly we may calculate the function for a scraper moving into the beam from

the negative x direction:

f−(xs) =

∫ +∞

xs−x0
D

ρp(δ)2π
Dδ + x0 − xs

β
× ρT

(
δ,
Dδ + x0 − xs√

β

)
dδ. (4.17)

An example of a CDF and its corresponding PDF for a Gaussian distribution

are shown in Fig. 4.3.

Figure 4.3: Example of a CDF and PDF for a Gaussian distribution.

4.3 Gaussian Case Algorithm

We may calculate F± and f± for the specific case that the beam passing the

scraper in a dispersive region has a Gaussian distribution. This would be useful

to test the validity of our simulations since Gaussian is the most simple beam

profile to generate and evaluate, and the method only requires scraping once per

measurement. Additionally, this approach gives an estimation for the longitudinal

momentum spread of the beam, which is not possible once we also begin consider-

ing non-Gaussian beam distributions. In practice in ELENA, if the beam could be

approximated as Gaussian this method could be useful as a quick check of beam

quality and to provide a rough estimation of the longitudinal momentum spread.

We may begin by describing the beam as a combination of densities (Eq. 4.9):
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ρp(δ) =
1√

2πσδ
e
− δ2

2σ2
δ and ρT(δ, A) =

1

2πεrms

e−
A2

2εrms , (4.18)

where A is defined in Eq. 4.3, and the mean momentum offset is equal to zero, i.e.

〈δ〉 = 0. Substituting the densities, Eq. 4.18 into Eqs. 4.12 and 4.13, and solving

the corresponding integrals, one obtains expressions for the Gaussian case CDFs:

F±(xs) =
1

2

[
1± erf

(
A0√

2εrms|d|

)]

− 1

2
√

1 + d2
e
− A2

0
2(1+d2)εrms

[
1± erf

(
A0√

2εrms|d|
√

1 + d2

)]
, (4.19)

where d = Dσδ/
√
βεrms, A0 = (xs−x0)/

√
β and erf(x) = 2√

π

∫ x
0
e−t

2
dt is the error

function. Note that the absolute value |d| in the argument of the error function

arises from the fact that changing the sign of the dispersion does not alter the

result since zero mean momentum offset allows one to exchange particles with

positive and negative momentum offset. Figure 4.4 shows an example of how the

expression changes for different values of d due to different momentum spreads.

This function forms the basis of the Gaussian only algorithm and may be

used by performing a fit to the cumulative losses in the scraper data, taking the

emittance as a variable. Additionally, d may be taken as a second variable during

fitting to allow for an estimation of the momentum spread, and the term x0 may

also be estimated simultaneously.

By differentiating these functions with respect to xs, as in Eq. 4.14, we may

obtain the corresponding PDFs:

f±(xs) =
d√

2πβεrms(1 + d2)
e
− A2

0
2εrmsd2

± A0e
− A2

0
2(1+d2)εrms

2(1 + d2)3/2
√
βεrms

[
1± erf

(
A0√

2εrms|d|
√

1 + d2

)]
. (4.20)
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Figure 4.4: Effect of longitudinal momentum spread on the CDF obtained
from scraping.

4.4 General Case Algorithm

In the case that a Gaussian approximation is not possible and the scraper blades

remain in a position of non-zero dispersion, we must develop a method for RMS

emittance reconstruction regardless of the beam distribution.

4.4.1 Algorithm Derivation

We begin by expressing the second moment of (xs−xr) in terms of density functions

f±(xs), Eqs. 4.16 and 4.17, where xr has been introduced as an estimate for the

central orbit, x0. Considering the cases of scraper blades coming from the positive

and negative x directions simultaneously:

〈(xs − xr)2〉± =

∫ +∞

−∞
(xs − xr)2f±(xs) dxs, (4.21)

where 〈...〉 denotes the expectation value of the quantity in the parenthesis.
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Using the following;

∫ +∞

−∞
x2
sf±(xs) dxs = x̄2

± + σ±
2, (4.22)∫ +∞

−∞
xsf±(xs) dxs = x̄±, (4.23)∫ +∞

−∞
f±(xs) dxs = 1, (4.24)

where x̄± is the mean value of the measured distribution and σ2
± is the variance,

we me rewrite this quantity as:

〈(xs − xr)2〉± = x̄2
± + σ2

± − 2x̄±xr + x2
r. (4.25)

Simultaneously we may expand the left hand side and use the substitution

xs± = x0 + δD ±
√
βA to obtain:

〈(xs − xr)2〉± = 〈((x0 − xr) + δD ±
√
βA)2〉±

= (x0 − xr)2 + 2(x0 − xr)〈δ〉D ± 2(x0 − xr)
√
β〈A〉

+〈δ2〉D2 ± 2D
√
β〈δA〉+ β〈A2〉. (4.26)

Considering the definitions δ̄ = 〈δ〉, Ā = 〈A〉, σ2
δ = 〈(δ − δ̄)2〉, the statistical

definition of the geometric transverse emittance shown in Eq. 4.1, and the usual

normalisations of phase space density, Eqs. 4.10 & 4.11, we may rewrite Eq. 4.26:

〈(xs − xr)2〉± = (x0 − xr)2 +D2(δ̄2 + σδ
2) + 2βεrms + 2(x0 − xr)Dδ̄

±2(x0 − xr)
√
βĀ± 2D

√
β〈δA〉. (4.27)

These expressions allow us to put 〈(xs−xr)2〉± in terms of the RMS transverse

emittance εrms and the dispersive contribution Dσδ. However, the additional terms

〈A〉 and 〈Aδ〉 make the evaluation difficult even for a known closed orbit centre

x0. We can perform a combination of measurements from both the positive and

negative xs-axis in order to solve this problem. Summing terms for positive and
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negative scraper scans in Eqs. 4.25 and 4.27 we may write:

〈(xs − xr)2〉+

+〈(xs − xr)2〉− = 2(x0 − xr)2 + 2D2(δ̄2 + σδ
2) + 4βεrms + 4(x0 − xr)Dδ̄

= x̄2
+ + x̄2

− + σ+
2 + σ−

2 − 2xr(x̄+ + x̄−) + 2x2
r. (4.28)

Further transformation yields:

2 (x0 +Dδ̄ − xr)2 + 2D2σ2
δ + 4βεrms =

2 (
x̄+ + x̄−

2
− xr)2 +

1

2
(x̄+ − x̄−)2 + σ+

2 + σ−
2. (4.29)

Given that the momentum depended closed orbit is equal to the mean particle

position,

x0 +Dδ̄ =
(x̄+ + x̄−)

2
, (4.30)

we may rearrange equation Eq. 4.29 for the emittance:

εrms =
1

4β

[
σ2

+ + σ2
− +

(x̄+ − x̄−)2

2

]
− D2σ2

δ

2β
, (4.31)

which contains only values that can be obtained from the scraper data or otherwise

measured and estimated. This equation forms the basis of the algorithm.

The contribution from longitudinal momentum spread in Eq. 4.31 can clearly

be seen as the rightmost dispersive dependent term, and may be set to zero when

scraping in the vertical plane, where typically D = 0.

Calculating the emittance using this result requires two separate scraper scans

from opposing directions, e.g. positive and negative x. In this case the machine

must cycle twice, so beam stability between shots is very important. The impact

of beam stability, as well as other challenges and sources of error, are investigated

in the following chapter.
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4.4.2 Additional Quantities

Because we perform scraping from both sides it is possible to extract further

information on the beam by comparing the difference in the two results. For

example, Eq. 4.30 may be used to obtain an estimate for the mean amplitude of

the particles.

Performing a subtraction, as opposed to the addition in Eq. 4.28, we find:

〈(xs − xr)2〉+

−〈(xs − xr)2〉− = 4(x0 − xr)
√
βĀ+ 4D

√
β〈δA〉 (4.32)

= x̄2
+ − x̄2

− + σ+
2 − σ−2 − 2xr(x̄+ − x̄−), (4.33)

which may be rearranged to make it possible to compare the coefficients of xr,

4(x0 +Dδ̄)
√
βĀ+ 4D

√
β〈(δ − δ̄)A〉 − 4xr

√
βĀ

= x̄2
+ − x̄2

− + σ+
2 − σ−2 − 2xr(x̄+ − x̄−), (4.34)

leading to an estimation for the mean amplitude using measurable quantities:

Ā =
x̄+ − x̄−

2
√
β

. (4.35)

We may use this result combined with Eq. 4.30 to further rearrange Eq. 4.34

allowing us to measure a quantity which would describe the magnitude of the cor-

relation between momentum spread and the maximum amplitude of the particles:

〈(δ − δ̄)A〉 =
σ2

+ − σ2
−

4D
√
β

. (4.36)

This quantity will be referred to as the emittance-momentum spread correlation

coefficient since it will later allow us to investigate such a correlation brought about

by the effects of the electron cooler.
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4.4.3 Data Analysis

Assuming that the signal received from the detectors is given as cumulative loses

and transformed to F±(xs), as for the AD and ELENA scintillators, then differ-

entiation must be performed to obtain the beam size variance, σ2
±, and the mean

x position of the intercepted particles, x̄±, required by the algorithm. Since the

algorithm is designed for non-Gaussian beams, it is unlikely that an expression

for the data will be known and hence symbolic differentiation will not be possible.

Two alternate methods are available for consideration: spline interpolation and

simplified numerical approximations.

Comparisons of the methods may be found in Section 5.6.1. Here we present

the simplified numerical method, which was found to be a sufficient approximation

for these purposes, assuming a data acquisition rate of 400 Hz.

We may begin by assuming a set of CDF values, i.e. the tabulated function

F±(xs), with corresponding scraper positions, xs, for every data point, i. Using

finite difference approximations it is possible to get estimations for the tabulated

PDF, f±(xs), for all points, i:

fi,± =
F±,i − F±,i+1

|x±,i − x±,i+1|
. (4.37)

The following integral may be approximated by a midpoint Riemann sum:

∫ +∞

−∞
f±(xs) dxs ≈

n∑
i=1

(fi,±(|x±,i − x±,i+1|)), (4.38)

where n is the number of entries in the data set, into which we may substitute

Eq. 4.37 to provide a simple expression for use in the algorithm:

∫ +∞

−∞
f±(xs) dxs ≈

n∑
i=1

(F±,i − F±,i+1). (4.39)

This result may then be used to obtain an approximation for the distribution

variance:

σ2
± =

∫ +∞

−∞
f±(xs)(xs − x̄±)2 dxs ≈

n∑
i=1

(F±,i − F±,i+1)(x±,i,mid − x̄±)2, (4.40)
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where x±,i,mid is the midpoint between x±,i and x±,i+1, and the value x̄± is obtained

using similar approximations for Eq. 4.23:

x̄± ≈
n∑
i=1

(F±,i − F±,i+1)x±,i,mid. (4.41)

It would also be possible to use trapezoidal Riemann sums in order to increase

the accuracy of the algorithm, however with the relatively small step sizes used

between measurement points it is not necessary to do so here.

4.5 Summary

The two new scraper algorithms have been introduced. One is capable of scraping

a Gaussian beam in a region of non-zero dispersion, and the other under the

same conditions but for an arbitrary beam profile distribution. The arbitrary

distribution method requires two scraper measurements from opposing directions.

In the next chapter, the algorithms are verified through the use of simulations.

Additionally, several sources of error, some of which were discussed in Section 3.4,

are investigated through simulations and error tolerances are established.





Chapter 5

Scraper Simulations

5.1 Introduction

The primary goal of this chapter is to use simulations to test the emittance recon-

struction algorithms derived in the previous chapter. The various methods used

in performing the simulations are presented in detail such that the results may be

reproduced by the reader.

The effects of systematic errors on the accuracy of the non-Gaussian algorithm

are investigated, and the use of the algorithm to determine additional quantities

such as the emittance-momentum spread correlation is performed. The chapter

begins with an investigation into the transmission of particles through and out the

side of the aluminium scraper blade, to ensure later assumptions in simulations

are adequate.

5.2 Transmission Through Scraper Blade

An investigation into the stopping power of the scraper blade was performed.

Particle physics Monte Carlo simulation package FLUKA [102, 103] was used to

track particles incident on the scraper blade.

In an unpublished CERN note regarding the material choice for an AD scraper

blade renovation (2016), an investigation is performed using GEANT4 for the

several different beam energy plateaus in the AD cycle. The report includes results

61
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for the lowest energy case, 5.3 MeV, which is the injection energy for ELENA. This

energy plateau will form the basis of these studies since it is the most pessimistic

case in terms of scraper blade transmission.

In the report, 10,000 antiprotons are incident on a wide bulk block of mate-

rial, to allow no particles to escape the edges. For 10,000 cases at 5.3 MeV in

GEANT4 the mean penetration depth for the antiprotons into a block of alu-

minium, the ELENA scraper blade material, was given as 0.22 mm. All other

materials tested, with the exception of titanium, had smaller penetration depths

at this energy. To benchmark simulations, the first FLUKA simulation investi-

gated the penetration depth of 5,000 antiprotons into a bulk block of aluminium.

Fig. 5.1 shows the results, where a clear agreement with the GEANT4 simulation

result can be seen. Analysis of the data gives a value for the mean as 0.22 mm

which further confirms the GEANT4 and FLUKA packages used are in agreement.

The standard deviation of this value is 8.40 µm, leading to the assumption that no

antiprotons will make it entirely through the bulk of the 1 mm aluminium scraper

blade for any ELENA energy.

Figure 5.1: Penetration depth for antiprotons in aluminium, as simulated in
FLUKA.

5.2.1 Side Scattered Particles

The next stage was to investigate the likelihood that antiprotons would enter the

bulk of the scraper blade but escape the edge and continue in the machine or
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annihilate downstream and hence not be detected. The simulations were carried

out using a very simple geometrical configuration with positive z defined as the

direction of beam propagation. The scraper element is a rectangular (10 mm x 10

mm) sheet of aluminium, with a thickness of 1 mm in the z direction. It is placed

such that its front face is at z=0 mm, and offset into positive x to align its edge

with x = 0 mm.

Non-divergent rectangular antiproton beams were chosen to determine the sig-

nificance of a particle’s x position at impact on the likelihood and nature of trans-

mission through the scraper. The beams were run from z = -50 mm and were also

aligned such that their edge was at x = 0 mm and they extended into positive x,

like the scraper blade. Behind the scraper is a large cuboid detector, positioned

such that all transmitted particles would be incident on its front face.

A beam of 5,000 particles and energy 100 keV was run to determine the trans-

mission at lowest possible energy. To allow for maximum transmission (i.e. highest

possible particle density at the edge of the scraper blade), the horizontal beam size

was chosen to represent the smallest possible scraper movement during one revo-

lution of the beam:

∆xs =
vs
f

(5.1)

where vs is the nominal velocity of the scraper, 40 mm/s, and f is the revolution

frequency of the beam, in Hertz, calculated from its energy.

For 100 keV, ∆xs = 277.7 nm. Of 5,000 antiprotons incident within this range,

zero were detected behind the scraper blade leading to the conclusion it is more

than adequate at such low energies.

For the highest energy case of 5.3 MeV, ∆xs = 38.3 nm. Of 5,000 particles

incident within this range from the edge of the blade, 69.88% were detected behind

the scraper blade, a significant difference from the low energy configuration. As

expected, no particles were transmitted directly through the scraper blade, only

scattered out the side. This can be seen in Fig. 5.2.

Although the majority of particles incident in this thin slice passed out of the

side of the scraper blade, it is likely that they would leave the scraper with low

energy, be scattered at such an angle that they would not continue in the machine,
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or be annihilated in a region close to the detectors and still show as a signal on

the detectors. To determine the likelihood that side scattering would cause a

problem for the scraping process, the energy and divergence, x′, of the particles

were studied.

Figure 5.3 shows the energy distribution of the particles. The centre of the

Figure 5.2: FLUKA plot showing the relative density of particle tracks
through the scraper blade. The scaling of the axes, to fit in the width of both
the beam and the scraper blade, gives the impression of large angle scattering.

Figure 5.3: Energy distribution of side scattered particles at 5.3 MeV on
impact.
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peak lies at 5.143 MeV, and no particles with an energy greater than 5.21 MeV

were detected. The peak at 5.143 MeV corresponds to a momentum spread of

3.29% which is around 100 times greater than the nominal momentum spread for

the machine.

The divergence of the scattered particles is displayed in Fig. 5.4, showing a

peak lying at −6.7 × 10−3, with the majority of particles having an even greater

angle. For comparison, an optically matched particle with emittance 1 mm mrad

at the position of the scraper has a maximum divergence of around ±1.5× 10−3.

Because of the sudden change in angle, scattered particles would be unmatched to

the lattice, and if surviving around the machine, would undergo filamentation to

a larger perceived emittance. Considering the unlikely case that a particle would

scatter to this divergence and remain matched to the lattice, its minimum possible

emittance would be 19.8 mm mrad. This, combined with the loss in energy leads

to the conclusion that almost all scattered particles would instantly or very quickly

become unstable and be lost in the machine or contact the bulk of the scraper in

the next several turns.

Figure 5.4: Divergence of side scattered antiprotons from the scraper blade.

Additionally, because of betatron oscillations, particles are not always incident

on the scraper blade when it first moves to their maximum amplitude. It may

take many revolutions before a particle is at, or close to, its maximum oscillation

amplitude at the position of the scraper, and intercepted. To account for this, the
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simulation was run for a beam extending 40 µm in x, a distance that corresponds

to ≈1,000 turns of the beam. It can be seen in Fig. 5.5 that the likelihood of

side scattering is reduced to negligible levels for 1,000 turns. Given that the

desired position accuracy of the scraper is 0.1 mm, which corresponds to around

2600 turns, side scattering effects for antiprotons at any ELENA energy may be

deemed negligible.

Figure 5.5: Number of antiprotons transmitted through the scraper blade as
a percentage of the total antiprotons incident in 0.1 µm slices along x.

5.3 Simulating the Scraping Process

5.3.1 Tracking Methods

MAD-X (Methodical Accelerator Design) [104] is a multi-purpose code developed,

used and maintained primarily by CERN. It is used for the study and design of

the charged particle optics that make up modern linear and circular accelerators

and beam transport lines, and is the successor to MAD-8. MAD-X allows the user

to define a series of accelerator elements and an input beam and will calculate

useful quantities such as the Twiss parameters at each location or the tune and

chromaticity, to name a few.
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MAD-X also contains the symplectic integrator PTC (Polymorphic Tracking

Code) library developed by E. Forest [105], which was the primary tool used for

these simulations. PTC allows the user to track individual particles and beam

distributions through all of the accelerator elements that make up the lattice de-

fined in MAD-X. The user may specify the number of steps and integration type

allowing the flexibility to find a balance between accuracy and processing power

dependent simulation time.

The lattice was constructed according to the Technical Design Report specifi-

cations [42] and updated as adjustments were made during the construction phase

of the ring. In order to ensure a stable beam, the tune of the lattice was adjusted

using MAD-X’s matching module on the three families of quadrupoles. The tune

was moved away from systematic resonances at Qx = 2.3 and Qy = 1.5, the lattice

in Fig. 5.6, to Qx = 2.35 and Qy = 1.44, as seen in Fig. 5.7. The tune adjustment

made a small difference in the βx/Dx ratio.

A general overview of the lattice may be found in Section 1.4 and the optics

calculated by MAD-X and used in these simulations are presented in Fig. 5.8.

The figure also highlights the position of the scraper, which is represented by

Figure 5.6: The lattice before tune adjustment. Blue lines and numbers
highlight the βx, Dx and distance from injection, s, of the scraper blade.
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Figure 5.7: The tunes used in the ELENA MAD-X simulations. The black
x represents the previous tune value, whilst the magenta asterisk marks the

updated values.

a vertical blue line. These are the optics presented in Chapter 3, Table 3.1 as

configuration C2. Before the majority of the MAD-X simulations were run, the

state of the lattice was frozen to allow for consistency in the simulations. With

these parameters, the effect of the dispersion on the beam is more pronounced,

providing better (more pessimistic) conditions for testing the performance of the

algorithms and showing their versatility for use in future machines.

Configuration C4 in the same table gives the expected values of βx and Dx

based on the most recent measured optics in ELENA. The configuration includes

a small move upstream of the scraper resulting in a higher βx/Dx ratio. Further

simulations and analysis were also performed with these optics to allow for analysis

and estimations of errors in the specific case of ELENA, and to investigate how

the ratio affects different aspects of the scraping process. For clarity and ease of

reference, C2 and C4 are presented in Table 5.1.

Distributions of 10,000 macro-particles were generated using a Python script

(described in Section 5.3.2) and tracked around the ring at an energy of 100 keV

using PTC. Since the particles of a beam are tracked individually, collective effects

such as IBS and rest gas scattering were not included directly in the simulation,
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Table 5.1: Horizontal optics parameters used by the simulations. C2 is based
on the original design and C4 is the most recent measured values.

Configuration C2 C4
βy (m) 3.00 2.97
βx (m) 0.688 3.21
Dx (m) 1.292 1.38
βx/Dx 0.533 2.33
s (m) 22.56 23.44

Figure 5.8: The optics calculated by MAD-X for the lattice used in the scraper
simulations, corresponding to configuration C2.

however some injected beams contained characteristics related to these phenomena

such as the bi-Gaussian distributions.

A quadrupole with zero length, zero strength and a rectangular aperture was

defined to act as a collimator element. It was introduced to the lattice to simulate

the scraper blade and will hence be referred to as the scraper. The scraper has

a square aperture 100 mm in diameter, larger than the actual diameter of the

scraper blades at 66 mm. The discrepancy is of no consequence since the beam

in these simulations does not stray far from the closed orbit, or reach a transverse

beam size close to 33 mm.
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A Python script was used to control, automate and save the output from the

simulations, as MAD-X was executed many times over the course of a simulation,

each time adjusting the scraper position. The scraper was moved into the beam

in steps of 0.1 mm. For a beam with energy 100 keV this corresponds to a scraper

movement every 360 turns. The scraper blade was moved in these discrete steps

to allow simulations to run faster and 0.1 mm was chosen based on the predicted

scraper position resolution. An investigation into the impact of the step size on

the reconstructed emittance values was performed and can be found with the

simulation results in Section 5.6.3.1.

To scrape from positive x, the collimator was centred vertically at y = 0 mm.

The horizontal position was calculated such that xcol + rcol > Amax by around

1 mm, where rcol is the scraper radius, xcol is the position of the centre of the

collimator and Amax is maximum amplitude of the largest emittance particle in

the distribution. This allowed for only several hundred beam revolutions before

scraper interception to cut down total simulation run time. In some cases, for

example when testing with a poorly matched beam, more time was given to allow

the beam to stabilise after filamentation.

After each 360 revolution MAD-X simulation, a copy of the output beam was

saved for imaging and analysis, and the distribution was automatically reformatted

to be injected into the following simulation. The process was repeated until the

scraper reached the designated amplitude. The beam distributions at each step

could be imaged and shown in rapid succession to create an animation of the

destruction of the beam, in real and phase space. This was useful for debugging

the codes and for observing how the scraping process changed under different

conditions. Figure 5.9 shows the horizontal phase space of beam at four stages

during scraping.

5.3.2 Beam Generation

5.3.2.1 Gaussian Beams

For the beam generation process we first assume a Gaussian beam, and then later

adapt the code for other distributions. For these simulations we use five input



Chapter 5 Scraper Simulations 71

Figure 5.9: Horizontal phase space plots of a beam of 10,000 macroparticles
for different stages of the scraping process.

co-ordinates to describe a particle’s position in the beam:

(x, x′, y, y′, δ) (5.2)

where δ is the longitudinal momentum offset of the particle. Considering only the

horizontal transverse co-ordinates, we begin with the equation for an ellipse in the

x− x′ plane:

A2β = x2
β + (αxβ + βx′β)2 (5.3)

Make a transformation to normalise for a constant radius in order to simplify beam

generation:

Xβ = xβ (5.4)

X ′β = αxβ + βx′β (5.5)
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Figure 5.10: Phase space ellipses for a particle in standard and normalised
phase space.

In normalised phase space the radius, r, of the circle traced out by a particle

is given by r = Xβ,max = xβ,max =
√
εβ. It can be seen from Fig. 5.10 that

X ′β,max =
√
εβ also, due to the constant radius. Using these relations, we may

then begin generating N values of Xβ and X ′β, where N is the total number of

macroparticles to be used in the simulation. This may be done using the random

Gaussian number function available in most modern scientific codes [106]:

Xβ,n = G[0,
√
εβ]1, (5.6)

X ′β,n = G[0,
√
εβ]2, (5.7)

where the subscript n refers to the nth macroparticle, and G[µ, σ]i represents a ran-

dom value picked from a Gaussian shaped probability distribution, with a mean, µ,

and a standard deviation, σ, and where i denotes separate callings of the function

per particle.

For input into the simulation it is necessary to transform back to x and x′.

There is a dependence of x′β on xβ hence it is important to generate the values

simultaneously for each particle. Using Eqs. 5.4 & 5.5 and the values previously
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generated for each particle we may use:

xβ,n = Xβ,n, (5.8)

x′β,n =
X ′β,n − αxβ,n

β
, (5.9)

to obtain the horizontal phase space co-ordinates for N particles in a Gaussian

beam.

Additionally a longitudinal momentum spread may be introduced. Using the

same methods and notation as in Eqs. 5.4 & 5.5, we obtain N longitudinal mo-

mentum offsets, δ:

δn = G[0, σδ]3, (5.10)

where σδ is the desired RMS momentum spread of the beam. This value is only

generated once per particle and is used for both the x and y co-ordinates. These

values will be accepted by MAD-X, however the effect of the momentum spread

on the transverse positions of the macroparticles must also be accounted for.

Multiplying the values for longitudinal momentum offset by the dispersive

terms at injection, Dx,y & D′x,y, and using the process described above to obtain

co-ordinates for the vertical y − y′ plane, we finally arrive at:

xn = xβ,n + δnDx, (5.11)

yn = yβ,n + δnDy, (5.12)

x′n = x′β,n + δnD
′
x, (5.13)

y′n = y′β,n + δnD
′
y, (5.14)

for N macroparticles. In the MAD-X simulations, N was taken as 10,000 as a

compromise between statistical significance and simulation running time. It is

also worth mentioning that when working in MAD-X for low energy (not highly

relativistic) machines one should divide input Dx,y & D′x,y by relativistic βrel to

counteract assumptions made by the program [107]. Calculated values of disper-

sion by MAD-X and PTC must also be multiplied by βrel for the same reasons.
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5.3.2.2 Bi-Gaussian Beams

The generation of a bi-Gaussian beam was based on the beam dynamics investi-

gations presented in Section 2.3.3. Bi-Gaussian beams were simply generated as

a combination of two Gaussian beams of different properties, with N/2 particles

each.

From BETACOOL simulations, a scaling factor, ninc, between the RMS width

of the two Gaussian distributions, σ1 and σ2, was obtained, σ2 = σ1ninc. Using

σ2 = εβ we may express the relation between the two Gaussian beams in terms of

the emittance of each:

ε2 = ε1n
2
inc. (5.15)

Assuming we have an equal number of particles in each Gaussian beam, N1 =

N2, we may write an expression for the resultant emittance when the two distri-

butions are combined, εout:

εout =
N1ε1 +N2ε2
N1 +N2

=
ε1 + ε2

2
. (5.16)

Substituting Eq. 5.15 into Eq. 5.16 and rearranging for ε1 we arrive at:

ε1 =
2εout

1 + n2
inc

(5.17)

which in combination with Eq. 5.15 allows us to easily calculate the two values of

emittance from the desired values of ninc and εout.

The Gaussian beam generation process described above was used to generate

two separate beams each with N/2 macroparticles, using ε1 and ε2 as input values.

The beams were combined to form the bi-Gaussian beams used in these simula-

tions. In these simulations a bi-Gaussian beam has ninc = 3.25 based on the result

from the study presented in Section 2.3.3.

5.3.3 Transverse Phase Space Scraper Simulations

To check how the two scan algorithm performs on different beam distributions,

various Twiss parameters and with different sources of error, an analysis program



Chapter 5 Scraper Simulations 75

was written in Python. The purpose of the program is to analytically simulate the

scraping process without having to track around the ELENA lattice thousands of

times per particle thus speeding up the process. The program was used to support

and build upon data gathered from MAD-X simulations.

First a beam is generated using the methods in Section 5.3.2 with the desired

Twiss parameters at the scraper, as opposed to at ELENA injection for the MAD-

X beams. From the phase space co-ordinates of each particle given in Eqs. 5.8 &

5.9, the emittance of the particle is calculated using:

εx = γx2 + 2αxxx
′ + βxx

′2 (5.18)

and similarly for y. Using this emittance and the longitudinal momentum offset

given by Eq. 5.10, the maximum and minimum particle amplitudes are calculated

and saved for each particle:

xmax = δDx + x0 +
√
βxεx (5.19)

xmin = δDx + x0 −
√
βxεx (5.20)

and again similarly for y. Assuming the beam is well optically matched to the

machine, it may be scraped using these values. Assigning a finite step size to

the scraper blade, the program sequentially removes all particles with a maximum

amplitude greater than the current scraper blade position when scraping from

positive x. The number of scraped particles is saved. When scraping from negative

x, the minimum (most negative) amplitude is used. The data may then be saved

for analysis, once the scraper blade has moved through the desired distance.

The program does not track the particles around the machine since it assumes

that all particles are scraped at their maximum (or minimum) amplitude, and

that the beam is optically matched to the machine. Whilst this is a simplification

of the MAD-X simulations, benchmarking confirmed it returned the same results

with the same accuracy for well matched beams of the same parameters. The code

allows for much higher statistical data to be collected over a much shorter time

scale than with the MAD-X approach and was particularly useful when considering
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systematic errors. The program is also capable of quickly changing the Twiss

parameters at the scraper, and producing plots of the beam distributions, CDFs

and PDFs quickly. It includes a section for algorithm analysis of the scraping data

and so is self contained and hence may be used for parameter scans of beam input,

Twiss and algorithm properties.

5.4 AD Code Comparison

The scraper system in the AD works using a more basic method for determining

the emittance of the beams. The system assumes a Gaussian beam in a dispersion

free region. In contrast with the algorithms developed for ELENA which calculate

the RMS emittance, the AD algorithm calculates the 95% emittance. This choice

of which emittance to use is preferential, here the 95% technique was chosen due

to the simplicity of the calculation.

Figure 5.11: A screenshot of the CDF displayed within the AD analysis GUI.

The algorithm begins by aligning the scraper time and position with the scin-

tillator time data in order to make the standard intensity versus scraper position

comparison. Once the beam has been scraped and the data aligned, a CDF is

produced. The algorithm then makes an estimate for the intensity on the scintil-

lators at 100%, 0% and then with a linear fit of the intensities, 95% of the beam’s

intensity. Using these values, a parabola of around 16 points is fit to the core

(rising edge of CDF), xcent, and outer edge of the beam (CDF plateau), xouter, to

determine the corresponding scraper positions. The process is the same in the ver-

tical, y, plane but for brevity the process is described in terms of x. The parabolas
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Table 5.2: Results from the AD scraper algorithm.

Input βx/Dx = 0.533 βx/Dx = 2.33
εRMS,in σδ (×10−4) ninc ε95%,out Difference (%) ε95%,out Difference (%)

1 0 1 6.28 4.816 6.12 2.15
1.5 0 1 9.34 3.93 8.95 0.414
3 0 1 17.11 4.81 17.36 3.42
1 3 1 10.88 81.6 7.98 33.2
1 10 1 59.23 888 20.25 237
1 0 3.25 8.52 42.2 8.26 37.9
1 3 3.25 14.19 137 10.67 78.1

can be seen in the algorithm’s GUI display and an example is shown in Fig. 5.11.

Horizontal lines mark the calculated intensities with vertical lines showing their

corresponding positions. The 95% position is found by iterating through the in-

tensity data and finding the nearest point to the computed intensity value from

the linear fit.

Using these three values of the positions at the different intensities, the accep-

tance AAD and 95% emittance, ε95%, are computed using the beta function, βx, at

the scraper:

AAD =
(xcent − xouter)2

βx
, (5.21)

ε95% =
(xcent − x95%)2

βx
, (5.22)

and similarly for the vertical, y, plane.

To test how the algorithm performs in the conditions presented in ELENA,

and to demonstrate the need for the new algorithms, ELENA simulation data was

run through this algorithm. A range of beams were run to investigate the impact

of different effects for the two different βx/Dx ratios at the scraper, and the results

may be seen in Table 5.2.

The input beams were generated based on εRMS values so that the input is

consistent with tests of the new algorithms. Additionally, a beam may have various

distributions and momentum spreads but the same RMS emittance. This gives a

measure of the beam quality as opposed to being only proportional to the width

of the beam, as with the 95% emittance. If a beam is Gaussian, with no dispersive
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effects, then it is possible to compare the RMS and 95% emittances using:

εRMS =
ε95%

−2 ln 0.05
. (5.23)

The table displays the 95% emittances output by the algorithm directly and

percentage errors calculated using Eq. 5.23 to compare the results with the RMS

input. This approach is justifiable as for the trials in the top three rows where

only emittance is being adjusted the equation is correct. In all other cases where

the equation is an approximation because of complicating factors such as non-

Gaussian beams or momentum spread, the RMS emittance is held constant and

so relative comparisons in the algorithm’s output may be made.

For the top 3 rows we can see that the algorithm returns accurate values,

within the 10% accuracy limit set for the new ELENA algorithms. The beams are

Gaussian with no momentum spread. In the next two rows the momentum spread

of the beam has been increased. As a result, the transverse width of the beam has

increased despite the RMS emittance remaining the same. This is reflected in the

results where we see a huge increase in the output 95% emittance, particularly for

the low βx/Dx case. This translates to an extreme percentage difference from the

top row case with the same RMS emittance.

A trial with no momentum spread but a bi-Gaussian beam was performed.

Again this led to an increase in the transverse beam width, and is reflected in

the results. The final trial was for the expected beam quality in ELENA, with

nominal momentum spread and the value of ninc used in the majority of simulations

presented here. The result returned by the algorithm is again much different for

a Gaussian beam with no momentum spread and same RMS emittance.

The comparisons here highlight how the AD algorithm provides little more than

a scaled measurement of the beam width. Whilst this is useful, it does not account

for the overall mean beam quality. Because of the additional complicating factors

presented by ELENA, analysis of the beam would need to be more sophisticated.

As demonstrated in the table, beams may have several different properties, but the

same RMS emittance. The new algorithms seek to measure this RMS emittance

and to return additional quantities which help to further characterise the beam. It
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will of course also be possible to simply perform a measurement of the 95% beam

width if desired.

5.5 Gaussian Only Algorithm Results

5.5.1 Scraping Results Analysis

Figure 5.12: Intensity data for beams of varying parameters overlaid with the
Gaussian algorithm fit.

To check the simulations were working properly, the single scrape Gaussian

algorithm was applied first. Since the algorithm incorporates well established

scraping techniques it is a better candidate for benchmarking and testing the

simulations.

The first simulations were performed for the most simple input. Gaussian

beams with emittances of 1 µm and 1.6 µm, with no momentum spread, σδ =

0, were scraped. The scraper blade moved from positive x and the resultant

distribution was saved as F+(xs). The top two plots in Fig. 5.12 show the resultant
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cumulative probability curves obtained, overlaid by the fit from the algorithm,

Eq. 4.19, using MATLAB’s custom equation fitting tool and taking both εx and

σδ as free parameters. The numerical results from the algorithm are also included

and it can be seen for both emittances, there is good agreement with the input

values, well within the target accuracy of 10%. The estimations for momentum

spread are small enough that they could be considered negligible and are a good

estimation for an input value of zero. The error on the results could be attributed

to statistical fluctuations and/or the discreet scraper steps of 0.1 mm.

The Gaussian beam was run again, with non-zero values of momentum spread.

The results may also be seen in Fig. 5.12, where again the algorithm agrees with the

input values to a satisfactory level. The estimations for longitudinal momentum

spread are within 10% of the respective input values. This is more accurate than

the expected accuracy of the Schottky diagnostic device (≈ 20%) and hence this

method could be used to determine the momentum spread in combination with

such a device, in the circumstances that the beam may appear Gaussian enough.

An investigation into the accuracy of this method for momentum spread estimation

of non-Gaussian beams can be found later in this section. In addition to the

potential sources of error mentioned above, taking the momentum spread as a

free parameter as opposed to knowing its exact value also contributes to the small

inaccuracy in reconstructed emittance value.

5.5.2 Momentum Spread Estimation

The Python analysis code was used to generate beam scraping profiles with ninc

starting at 1, a Gaussian beam, up to ninc ≈ 3, around the expected value after

electron cooling in ELENA. The output scraping data was then analysed by the

Gaussian reconstruction algorithm taking emittance and momentum spread as free

parameters. To minimise statistical fluctuations, this was done 4 times for each

value of ninc and the mean and standard deviation in the results were calculated.

The process was carried out using the same values of βx and Dx as for the previous

simulations, C2, which give dispersive effects more impact on the beam quality.
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It was also then repeated for values which are closer to the expected values in the

scraper’s current position in ELENA, C4, which minimise the impact of Dx.

In Fig. 5.13, it can be seen that as ninc increases, the error in the reconstructed

emittance value also increases as expected. Using the gradient from a very simpli-

fied linear fit to compare the results it can be seen that the larger βx/Dx ratio has

little to no impact on the effectiveness of the algorithm. The error quickly grows

above 10% for values of ninc around 1.7 in both cases. It would not be recom-

mended that the algorithm be used for emittance reconstruction in the presence of

electron cooling. However, if the beam is injected and operators can ascertain how

Gaussian it is, based on for example profiles measured by the BTV screen along

the injection line, the algorithm could still be used for emittance reconstruction

in ELENA.

Figure 5.13: Error on reconstructed emittance values from the Gaussian fit
algorithm based on increasingly bi-Gaussian beams. The plot on the left shows
the results for the simulation standard values of βx = 0.688 m and Dx = 1.29 m.
The plot on the right has βx = 3.21 m and Dx = 1.38 m, closer to the expected

values at the new scraper position.

The same analysis for the reconstructed momentum spread values can be seen

in Fig. 5.14. Here the difference between the two cases of differing Twiss parame-

ters can be seen much more clearly, the gradient of the approximate line fit is more

than 2.5 times greater for the higher βx/Dx ratio case, C4. This result could be

expected since a higher βx/Dx ratio gives the scraper profile less of a momentum

spread related tail at the core of the beam, and hence this momentum spread re-

lated characteristic of the distribution does not influence the fitting algorithm as
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much. It would be recommended that a local adjustment of Twiss parameters to

reduce the βx/Dx ratio should be applied if using this algorithm for the purpose of

acquiring the momentum spread of the beam. Additionally, the algorithm should

not be used for this purpose if the profile shows strong bi-Gaussian effects after

electron cooling.

A second set of simulations were performed with the same conditions, but

only taking the momentum spread as an unknown value. The emittance could be

accurately calculated from the two scan method instead. The results showed that

even inputting the exactly correct emittance into the algorithm does not improve

the momentum spread estimation performance with respect to increasing ninc for

either case.

Figure 5.14: Reconstructed momentum spread values based on increasingly
bi-Gaussian beams. Left plot: βx = 0.688 m and Dx = 1.29 m. Right plot:

βx = 3.21 m and Dx = 1.38 m.

5.6 General Case Algorithm Results

5.6.1 Spline and Reimann Sums

The next stage of simulations dealt with the general case algorithm. As described

in the previous chapter, two methods for handling the data were considered: spline

fitting and differentiation by approximate numerical methods (e.g. Riemann sums
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for differentiation). To determine the most suitable method, the same scraper dis-

tribution was analysed using both. For the spline fitting test, MATLAB’s piece-

wise polymorphic spline interpolant [108] was used and the Riemann based method

(Section 4.4.3) was compared with it.

The input beam had εx = 1.2 mm mrad, and for the spline and Riemann sum

methods, the algorithm returned 1.935 mm mrad and 1.941 mm mrad, respectively.

Figure 5.15 shows the resultant PDFs, f(xs), produced by each method, and it is

clear to see why the output values are in such good agreement.

Figure 5.15: Reconstructed PDFs for both methods of processing the raw
scraper data.

Since the Riemann sum method is much less computationally complex but is

just as accurate, it is suggested that this is the most appropriate approach for the

algorithms and is the one used in all analysis here. The spline method may need

to be employed for a data acquisition rate of� 400 Hz, or for much smaller beams

than are practically considered in this study.

5.6.2 Ideal Conditions Results

Matched beams were run in MAD-X and were scraped once from positive x then

again from negative x. Scraping simulations were not performed for the y-plane

since zero dispersion is equivalent to scraping in x with zero momentum spread.
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The results of the first tests are displayed in Fig. 5.16. Initially, the most

simple case was tested, plots a) and b) display the results for a well matched

Gaussian beam with zero momentum spread. The transverse emittances, εx, εy

for beam generation were set as 1 mm mrad each. The horizontal emittance of

the resultant distribution was calculated to be 0.9987 mm mrad. The closed orbit

of the beam can easily be seen to be at x = 0, where both sets of scraping data

drop to F (xs) = 0, at the core of the beam. The output emittance value from the

algorithm was 0.9930 mm mrad which equates to a 0.57% error. Similarly to the

Gaussian algorithm tests, this error could be contributed to statistical functions.

Figures c) and d) show the resultant distributions for a beam with the same

input parameters, but for a bi-Gaussian distribution, with ninc = 3.25. For a

matched input beam with a calculated horizontal emittance obtained from the

macroparticle distribution of 1.004 mm mrad, the algorithm returned εx = 1.012

mm mrad, a negligible difference of 0.83%. This confirms that the algorithm works

for arbitrary beam distributions, and that it would also work for bi-Gaussian beams

when scraping in the vertical plane because Dy = 0.

The simulations were then run for beams with non-zero momentum spread.

Figures e) and f) show an example of the resultant distributions for beams with

non-zero momentum spread. The dispersive effect can be seen where the CDFs

do not drop to zero at the closed orbit of the beam, where instead they cross

each other, and the distribution appears to continue on the other side of the beam

core. The reason for this is clearly illustrated in Fig. 2.3 in the beam dynamics

chapter, where two sets of particles were run with and without momentum spread,

and their phase space ellipses plotted. The dispersive effect shifts the ellipses in

x based on the sign and magnitude of their momentum spread, and hence the

beam appears to be ‘smeared’ during scraping. A comparison of plots e) and f)

with those above them shows how significantly the dispersion can affect the result.

Considering that all beams in the top six plots have the same emittance, it is clear

why the double scan algorithm is needed for non-Gaussian beams.

A range of distributions were scanned, holding the momentum spread constant

whilst adjusting the emittance and vice versa. The momentum spread was held
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Figure 5.16: CDFs, F (xs) left plots, and their corresponding PDFs, f(xs)
right plots, generated when scraping beams from both positive and negative
x. a) and b), and c) and d) correspond to Gaussian and bi-Gaussian beams
respectively. Both sets have εx = 1 mm mrad and no momentum spread. e)
and f) have εx = 1 mm mrad and σδ = 1× 10−3. g) and h) have an emittance-

momentum spread correlation and are discussed in Section 5.6.4.
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Table 5.3: Reconstructed emittances and errors for bi-Gaussian beams with
σδ = 3× 10−4.

εx,in (mm mrad) εx,out (mm mrad) εx Error (%)
0.4 0.4042 1.05
0.6 0.6060 1.01
0.8 0.8095 1.19
1.0 1.0127 1.27
1.2 1.2164 1.37
2 2.0343 1.72
4 4.0815 2.04
6 6.1385 2.31
8 8.1561 1.95
10 10.192 1.92

Table 5.4: Reconstructed emittances for beams with input εx= 1 mm mrad
and various momentum spreads.

Gaussian
σδ(×10−4) εx,out (mm mrad) εx Error (%)

1 0.9937 0.634
3 0.9945 0.546
5 0.9960 0.401
10 1.0045 0.450

Bi-Gaussian
σδ(×10−4) εx,out (mm mrad) εx Error (%)

1 1.0120 1.20
3 1.0127 1.27
5 1.0143 1.43
10 1.0132 1.32

at the nominal value, σδ = 3× 10−4, whilst the horizontal emittance was scanned

from 0.4 mm mrad to 10 mm mrad. The results are presented in Table 5.3, and

it can be seen that the highest error is 2.31%. For beams up to 10 mm mrad the

algorithm is well within the desired accuracy limit (10%), and for beams much

greater than 10 mm mrad the emittance wouldn’t need to be known to such an

exact value.

Table 5.4 shows the results when running the algorithm on beams of differing

momentum spreads. An increase in the error observed for bi-Gaussian beams

compared with Gaussian beams may be observed. However, the error on the

reconstructed emittance values remains very low even up to pessimistic input

parameters for both types of beam distribution.
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The results from the MAD-X simulations for bi-Gaussian beams appear to

show that the algorithm tends to overestimate the emittance, and that this ef-

fect may possibly scale with the magnitude of the momentum offset. To investi-

gate this with high statistics, beam scraping distributions for 100,000 particles in

each scraper direction were generated for a range of momentum spreads using the

Python scraping code. For each momentum spread, 10 sets of distributions were

generated and analysed by the two scan algorithm.

Figure 5.17: Python script simulations for 100,000 macroparticle beams with
increasing momentum spread. 10 simulations were performed for each momen-

tum spread value.

The results are presented in Fig. 5.17. The average of the emittance of the 20

input beams (10 for positive and negative scraping directions each) used at each

momentum spread value are shown with the average of the 10 results from the

algorithm. An increase of generated beam emittance with momentum spread can

be seen from the gradients of the data fits, but is statistically insignificant. There

does appear to be a small but noticeable overestimation by the algorithm for all but

one data point. Whilst this effect is small enough to be ignored for the purposes

of testing the algorithm, it is attributed to the scraper position resolution, which
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is investigated in Section 5.6.3.1. No significant trend of an overestimation of the

emittance with increasing momentum spread is observed.

So far the simulations have shown that the two scan algorithm works well

for beams with a range of emittances and momentum spreads up to pessimistic

values. These results, however, make the assumption that there are no systematic

errors, for example, an incorrect momentum spread estimation. The next section

investigates how such errors may affect the accuracy of the reconstructed emittance

values.

5.6.3 Sources of Errors

5.6.3.1 Scraper Blade Position Resolution

It is expected that the resolution of the scraper blade arm position will be around

0.1 mm. In the simulations presented here, the beams are scraped in 0.1 mm steps

and analysed with the same resolution. To investigate how the scraper position

resolution may affect the accuracy of the algorithm, Python simulations were run

with varying scraper step size. The beams used were bi-Gaussian with ninc = 3.25,

with nominal momentum spread, σδ = 3× 10−4, and with lattice parameters C2,

βx/Dx = 0.533. The scraper step size is more significant for a thinner beam, hence

testing with the low beta case and εx = 1 mm mrad.

Figure 5.18 shows the results when running 20 simulations of 10,000 particles

each per scraper step size, and taking the mean value. As expected a clear trend

can be seen where the reconstructed emittance values become more inaccurate

with the scraper step size. The plot also reveals that decreased scraper position

resolution leads to an overestimation of the emittance, rather than a random error

in either direction.

To determine the impact of the effect in the region around the resolution being

used for the simulations and in practice, 10 beams of 100,000 particles each were

run for each scraper step size, between 0.01 mm and 0.2 mm. The results may be

observed in Fig. 5.19. A polynomial fit to the data shows that there may be a slight

overestimation for 0.1 mm which could explain the small discrepancies observed

with earlier results. Taking into account the scale of the error bars and the scale of
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Figure 5.18: Effect of simulation scraper step size on reconstructed emittance
values for an input beam of εx = 1 mm mrad.

the y-axis, the overestimation may be deemed negligible for the purposes of these

simulations, and also in practice.

Figure 5.19: Effect of scraper step size on algorithm results.
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5.6.3.2 Momentum Spread Estimation

The two scan algorithm requires an estimation for the longitudinal momentum

spread in order to calculate the emittance. In ELENA, this value is measured

using Schottky diagnostics on a coasting beam. It is expected that the method

could be inaccurate by up to 20%. To investigate how this has an impact on

the resultant emittance, the algorithm was run with varying degrees of incorrect

momentum spread.

An estimation for the errors was derived from Eq. 4.31,

∆εrms
εrms

=
−1

2β
D2σδ

2

(
2

(
∆σδ
σδ

)
+

(
∆σδ
σδ

)2)
1

εrms
, (5.24)

and is displayed alongside MAD-X simulation results in Fig. 5.20.

Figure 5.20: Error in reconstructed emittance based on inaccuracies in mo-
mentum spread estimation. Theoretical estimations are represented by dashed

lines. Left plot σδ = 1×10−3, right plot σδ = 3×10−4.

The plots show that the derived equation is in good agreement with simulation

results. It should be noted that there are small statistical errors resulting in the

simulation lines not crossing the origin exactly.

For a pessimistic momentum spread of (σδ = 1× 10−3), and the smaller βx/Dx

ratio at the scraper, the algorithm is very sensitive to estimation errors. Perform-

ing the same analysis for the nominal momentum spread (σδ = 3 × 10−4) shows

that in fact the algorithm will return the emittance within the defined error value

of 1 mm mrad for a momentum spread inaccuracy of up to ±20%. It may be ex-

pected that the higher the momentum spread is, the more likely the reconstructed
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emittance will be affected by a percentage error, since the error is quantitatively

larger for higher momentum spreads, i.e. 10% of 1 × 10−3 is larger than 10% of

3× 10−4. A similar argument may be made when observing the percentage error

on resultant emittances based on their input values.

After confirming its suitability with simulations, dispersion and beta values

predicted at the new position of the scraper, C4, were used in the equation to

determine the impact of the error when using this algorithm for the specific case

of ELENA. The results for a beam with 1 mm mrad and the nominal momen-

tum spread predict emittance inaccuracies of −1.175% and 0.961% for momentum

spread input errors of 20% and −20%, respectively, indicating this source of error

will not be a significant problem for the current ELENA lattice configuration. In

fact, for an input error of -100% (corresponding to σδ = 0) the error estimation

equation, Eq. 5.24, levels off at an emittance error of 2.67%. To create an error of

-10%, the RMS momentum spread must be overestimated by 118%.

It is also worth mentioning that an error on the dispersion would take the

same form as Eq. 5.24. The errors due to a dispersion mismatch can therefore be

calculated in the same manner as above and the same percentage tolerances apply

for both βx/Dx ratios presented. When calculating the error on measurements,

contributions from both momentum spread and dispersion should be considered.

5.6.3.3 Closed Orbit Offset

Another source of error may be found in a non-zero closed orbit offset, x0. The

algorithm calculates the area of the two PDFs determined by scraping, but more

importantly here takes into account their relative position. Since a closed orbit

offset consistent between two scraper scans would see no change in the relative PDF

positions, the algorithm returned values with the same accuracy as for x0 = 0, as

expected.

A complication may arise however if the closed orbit changes between scraper

scans. This effect is also analogous to an inaccurate measurement of the relative

distance between the two scraper blades, so the effects could be investigated in

parallel. Beams were run first being scraped from +x side with x0 = 0, and when
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scraping from the opposite side the closed orbit was shifted by increasing amounts.

The results may be seen in Fig. 5.21. Equation 4.31 was again rearranged to find

an expression for the predicted impact of this error and plotted with the simulation

data:
∆εrms
εrms

=
−1

8βεrms
(2(x̄+ − x̄−)∆x̄− − (∆x̄−)2). (5.25)

Figure 5.21: Error in reconstructed emittance as a result of a closed orbit
offset between scraper scans. Input beams of were bi-Gaussian with εx = 1 mm
mrad and σδ = 3× 10−4. Theoretical estimations are plotted as dashed lines.

The plot shows that again the theoretical and simulated results are in agree-

ment. A closed orbit offset or relative scraper blade position uncertainty of more

than 0.1 mm would result in reconstruction errors higher than desired for beams

of around 1 mm mrad for the pessimistic case, C2. The equation was used with

the expected Twiss values at the scraper in ELENA, C4, and it was found that

the closed orbit difference or blade uncertainty should be no more than 0.315 mm

for that particular configuration.

5.6.3.4 Beta Function and Dispersion Inaccuracy

The algorithm relies on an estimation of the beta function at the position of the

scraper blade. Similarly to the momentum spread estimation investigation, the

simulation and algorithm were run with varying degrees of error in the input value

of βx, and for different input emittances. Again, a theoretical relation was derived
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from Eq. 4.31 and was plotted with the data in Fig. 5.22:

∆εrms
εrms

=

(
1 +

∆β

β

)−1

− 1. (5.26)

The simulation data and theoretical prediction are in excellent agreement. It

can be seen in the plot that the error has no dependence on the emittance of

the input beam, as expected from Eq. 5.26. The error is also independent of

the magnitude of βx and so we may assert that for any Twiss parameters at the

scraper, using the simulation-benchmarked equation, the error tolerances for 10%

emittance reconstruction error are: −9.091% ≤ ∆βx ≤ 11.111%.

Figure 5.22: Errors in reconstructed emittance for varying degrees of error in
βx,y estimation at the scraper. Input beams of were bi-Gaussian with εx = 1
mm mrad and σδ = 3 × 10−4. Theoretical estimations are plotted as dashed

lines.

5.6.3.5 Scraper Blade Tilt

It is possible that a tilt misalignment in the scraper blades may cause an error in

the scraper measurement. Because the scraper blades are attached to each other

via the window configuration, both scraper blades were tilted through the same

angle during these simulations. Both the x and y planes were considered for this

error and so longitudinal momentum spread was set to zero to allow for a better

comparison of the two planes. Tilt testing in x was performed with and without
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the momentum spread and it was confirmed that there was negligible impact on

the magnitude of the error.

Figure 5.23: Effect on the reconstructed emittance due to tilt errors on the x
and y scraper blades for a bi-Gaussian beam with εx = 1 mm mrad and σδ = 0.

The results of the simulations can be seen in Fig. 5.23. A trend was observed

for both planes and simple polynomial fits were made in order to ascertain error

tolerances. No theoretical estimation was made as the complex nature of consid-

ering four dimensions in phase space, as opposed to two previously, was deemed

unnecessary for this application.

It can be seen that the vertical scraping was much more tolerant to a tilt

misalignment. This is because the beta functions used were βx,y = 0.688, 3.001 m,

and a wider beam distribution is less affected by the error. The effects of this error

may be considered negligible for the ELENA scraper since the tilt misalignment

thresholds are much greater than what may be expected in practice, even for the

most pessimistic case. Comparing the ratios of beta, βx
βy

= 0.23, and the 10%

emittance reconstruction tolerance, 1.95◦

10.3◦
= 0.19, suggests the error could decrease

linearly with β.

5.6.4 Momentum-Emittance Correlation

As particle beams are decelerated they undergo adiabatic-like growth in transverse

phase space. Additionally, due to the low energy of the beam, space charge effects
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Figure 5.24: Distribution of momentum offsets for particles in a beam made to
approximate the emittance-momentum spread effects of electron cooling. The
difference in mean momentum between the core and tails is ∆δ = 0.04%, with
an average δ = 0. The σδ of the core and tails is equal and adjusted such that

the entire distribution has σδ = 3× 10−4.

such as IBS contribute to the growth in emittance. To counteract these effects

it is necessary for electron cooling to be applied between deceleration ramps, at

the energy plateaus of 0.65 MeV and 0.1 MeV. It is expected that the velocity

distribution of the electron beam, ve− , will be parabolic in shape, centred on

x, y = 0. As a result, it is likely that a correlation between higher emittance

particles and a larger momentum offset will occur.

To investigate how the effects of an emittance-momentum offset correlation

impacts the performance of the algorithm, beams were generated to approximate

this effect. Bi-Gaussian beams with the same parameters as used previously were

given a different mean δ at their core and tails. Figure 5.24 shows an example

of the momentum distribution of one such beam. The momentum spread offsets

were calculated such that their mean values have a defined separation, ∆δ, which

may be adjusted to investigate how the strength of the correlation effects the

performance of the algorithm.

The beam generation process also ensured that the entire beams have a nominal

RMS momentum spread of σδ,beam = 3× 10−4, whilst the mean momentum offset

of the entire beam is zero, to provide consistency with previous simulations. This
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was done using:

σδ,C,T =
√
σ2
δ,beam −∆δ2 (5.27)

δC = −1

2
∆δ (5.28)

δT =
1

2
∆δ (5.29)

where σδ,C,T is the RMS momentum spread of the core and tails, δC indicates the

mean momentum offset of the core and δT the tails.

Figure 5.25: Effect of the emittance-momentum spread correlation on the
accuracy of the algorithm.

The characteristic asymmetric CDF and PDF shapes generated by scraping

such a distribution can be seen in Fig 5.16, g) & h). There is a shift of the core to

negative x and the tails to positive x which may be observed in the distributions.

It is clear to see this when scraping from positive x, and particularly so for the

CDF, f+, (h).

The impact of the emittance-momentum spread correlation on the reconstructed



Chapter 5 Scraper Simulations 97

emittance values can be seen in Fig. 5.25. Each point represents the mean recon-

structed emittance from 20 simulations with that particular ∆δ. Statistical fluc-

tuations are observed, however no significant trend of increasing error may be ob-

served. The algorithm was tested up to momentum spreads differences above which

the beam appears to be unphysical using this approximation (∆δ >> σδ,beam), and

hence the impact of the effect on the accuracy of the algorithm may be deemed

negligible.

5.7 Extra Beam Information

5.7.1 Emittance-Momentum Spread Correlation Coefficient

We may compute an emittance-momentum spread correlation coefficient which

gives an indication of the strength of this effect. The term will henceforth be

referred to as simply the “correlation coefficient”, and is described by:

〈(δp − δ̄p)A〉 =

∑2
i=1(Ni

√
εrms,iπ

2
(δ̄i − δ̄beam)2)∑2

i=1Ni

, (5.30)

where the subscripts i = 1, 2 refer to the core and tails of the beam. It is also

possible to split the beam into more than two parts in order to simulate a more

continuous correlation effect, however here two parts are adequate for showing the

algorithm works. The correlation coefficient may be reconstructed using known

quantities and those obtained for the algorithm:

〈(δp − δ̄p)A〉 =
σ2

+ − σ2
−

4D
√
β

. (5.31)

Figure 5.26 shows the output from the algorithm after simulations and a plot of

the analytically computed function. There is an excellent agreement between the

two which confirms the algorithm may be used to further characterise the beam.

In fact, measurements of this quantity may be used to provide insights into the

effects of the electron cooler.
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Figure 5.26: Algorithm estimates for the correlation coefficient compared with
the analytical predictions.

One possible way to investigate the electron cooler would be to use simulation

tools, such as BETACOOL, to obtain the resultant beam distributions for different

ve− profiles in the electron cooler. The correlation coefficient could be computed

for various cases and results could then be compared with measurements of the

real beam over different time periods.

5.7.2 Closed Orbit

One of the useful expressions to come out of the derivation of the algorithm gives

the magnitude of the momentum-dependent closed orbit:

x0 +Dδ̄ =
(x̄+ + x̄−)

2
. (5.32)

To test the accuracy of this algorithm, two sets of simulations were run using

the Python script, with the pessimistic βx/Dx ratio C2, and bi-Gaussian distribu-

tions with the usual σδ and ninc. Firstly, the average momentum offset, δ̄, was held

at zero whilst the closed orbit, x0, was increased incrementally. For each value of

x0, 10 simulations of 10,000 particles were run. The quantity on the right-hand

side of Eq. 5.32 was calculated from the algorithm, and the difference between this
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value and the input value were calculated and averaged over all simulations. The

results are shown in Fig. 5.27 and confirm that the algorithm will estimate the

closed orbit offset with very high accuracy.

Figure 5.27: Accuracy of the algorithm when estimating the closed orbit
offset.

Secondly, the closed orbit offset was held at zero whilst adjusting the mean

momentum offset of the beams. The offset was adjusted such that it would give a

transverse shift of the same order as the range for the closed orbit offset trials. The

quantity returned by Eq. 5.32 was divided by Dx at the scraper, and the difference

from the input δ̄ was found and averaged over the simulations. The results are

shown in Fig. 5.28 and again show that the accuracy reconstructs the transverse

offset extremely well.

Further testing was performed to ensure that the algorithm correctly calculates

the transverse offset when a combination of both imperfections is present. As

expected, the returned quantities were around the same level of high accuracy as

with the individual tests.

5.8 Summary

In this chapter, simulations have been performed to test the effectiveness of the

scraping algorithms. First, an investigation into errors arising from transmission
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Figure 5.28: Difference in values of input and calculated momentum offset
values.

through the scraper blade using FLUKA was performed and found the 1 mm

thick aluminium blades to be suitable. The methods for tracking and scraping

the beam in MAD-X were presented including a description of beam generation

for bi-Gaussian beams. Similar simulation methods using a custom Python script

were also presented.

The code currently used for the AD scraper was tested on results from MAD-

X scraper simulations in ELENA for beams of varying degrees of a bi-Gaussian

nature and momentum spread. The tests were performed for two different βx/Dx

ratios and found that in both cases the AD algorithm is not suitable for use within

ELENA.

The Gaussian only fitting algorithm was shown to work for Gaussian beams

with various momentum spreads. When considering its use for bi-Gaussian beams

it was found that the algorithm could reconstruct the emittance to within a 10%

error for values of around ninc = 1.7. This means the algorithm could provide

a rough estimate for the emittance in the case only one direction measurement

is available and beams appear to the operators to be approximately Gaussian.

Similarly, the algorithm was used to estimate the momentum spread of a beam at

various values of ninc showing larger errors for a higher βx/Dx ratio. Again this

method could be used as a rough estimate for the momentum spread if the beam
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does not appear to be strongly non-Gaussian.

For the two scan arbitrary beam profile method, a comparison of spline fitting

and Reimann sums for treating data was performed and showed that computa-

tionally less expensive Reimann sums were just as suitable for differentiating the

data. The algorithm was shown to work to well within the desired error tolerance

of 10% in all cases in the absence of errors i.e. for a non-Gaussian beam with

momentum spread in a dispersive region, and an emittance-momentum offset cor-

relation. Error tolerances for the algorithm were determined for a range of errors

and none were found to cause any significant problems. Finally, the algorithm was

shown to accurately reconstruct an emittance-momentum offset correlation for a

range of values and to accurately estimate the closed orbit of the beam.

This chapter has shown through the use of simulations that both algorithms

work well under the conditions they were developed for and has investigated error

tolerances. In the next chapter, the algorithms are put to use on data taken from

ELENA at the end of the commissioning run in 2018.





Chapter 6

Measurements

6.1 Introduction

Numerous scraper measurement campaigns were made during ELENA commis-

sioning in 2018, which were then analysed using a combination of the two new

scraping algorithms. A total of 18 individual scraper measurements are used for

analysis here. These were taken in all four scraper directions at three differ-

ent times during the ELENA cycle, along the intermediate and ejection cooling

plateaus.

In this chapter, the details of the data acquisition process are presented, fol-

lowed by an explanation of how the collected data is treated and then analysis of

the measurements. The chapter concludes with a discussion of all results, including

summary tables containing all measured and reconstructed quantities.

6.2 Collecting Data

The user interface to control the scraping system is presented in Fig. 6.1 [109]. In

the top right, a plot shows the ELENA deceleration cycle. The operator may set

the scraper movement start time by adjusting the vertical slider or by entering a

time lag in ms, here it is set to 6400 ms, corresponding to the start of the first

cooling plateau for this particular cycle.

103
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Figure 6.1: The ELENA scraper GUI.

The scraper blade start point is at a fixed value, corresponding to ±33 mm

depending on the direction of the scraper blade. The user may set the end point

by adjusting the value in the top left of the GUI currently set to 47.6 mm. This

value corresponds to the total extension of the scraper blade arm and is corrected

and displayed in terms of the centre orbit position below the “Measure” button.

Typically the default setting is to scrape from ± 33 mm to ∓ 7 mm, however

to effectively scrape the entire beam it is suggested to move the scraper to ∓ 27

mm. As a fail-safe precaution, the system causes the scraper blade arms to fully

retract and become inoperable if they are extended too far and have a danger of

contacting the opposing side of the vacuum chamber, so caution is required when

scraping beyond this value.

The GUI allows the operator to adjust the voltages on the MCPs allowing to

compensate for sensitivity to signal and similarly scintillator acquisition parame-

ters may also be adjusted. The operator may select a scraper blade by clicking

on one of the four buttons in the top left, and then prime it to scrape the beam
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during the next cycle by clicking the “Measure” button. The scraper blade will

then perform the action at the designated time in the cycle.

The bottom left quarter of the GUI panel displays the data from the most

recent measurement, with the option to select which detectors to plot. The top

plot shows the cumulative beam losses as a function of time, and the bottom plot

shows the signal as a function of the scraper position. The display is useful for

gaining a quick insight into the beam quality and position. To the right of this,

calculations for the beam edges, centre and emittance similar to those performed

for the AD scraper are displayed.

Once the beam has been scraped, the raw data from the detectors and scraper

system combined with general information such as time, beam type and settings,

are saved in a single file containing previous measurements in JSON (JavaScript

Object Notation, [110]) format. The data may then be accessed using the same

GUI at a later date. Selected variables useful for analysis in the JSON files are

displayed in Table 6.1.

Table 6.1: Selected contents of JSON scraper file.

Parameter Name Example Notes
particule ‘PBAR’ Particle type
startScraperDelay 6800 Measurement start time (ms)
scraperDirection ‘Ext’ Possibilities: ‘Int’, ‘Ext’, ‘Top’, ‘Bot’.
scraperY 1×1499 double Array of scraper positions (mm)
scraprXms 1×1499 double Corresponding array of scraper times (ms)
scintY 2×749 double Array of scintillator signal intensities (arb.)
scintXms 1×749 double Corresponding array of scintillator times (ms)
mcpsY 4×3099 double Array of MCP signal intensities (arb.)
mcpsXms 1×3099 double Corresponding array of MCP times (ms)

6.3 Data Processing and Analysis

The mathematical theory for calculating the emittance of the beam based on

two scraper measurements is explained in Section 4.4.1, however the process of

converting raw data to an emittance measurement requires several careful steps.
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Here the process is explained in detail, with a particular focus on the practical

considerations made when dealing with real-world measurements.

6.3.1 Scraper and Detector Correlation

Once the raw data is acquired the scraper position must be correlated with the

intensity signals from the detectors. The analysis process beings by taking the

maximum and minimum position values of the scraper to determine the start

and end points of movement. As the scraper does not instantly accelerate to its

maximum velocity, a threshold of 2 mm is set. Data points between 2 mm from

the start and end positions of the scraper’s movement are selected.

Figure 6.2: Scraper positions as a function of time, with highlighted fit points
and corresponding linear fits.

A linear fit of these data points gives an equation to describe the scraper’s po-

sition as a function of time. The fit points, fit and raw data can be seen in Fig. 6.2,

for two separate scraper measurements in opposite directions. Figure 6.3 shows

the scraper velocities obtained through simple finite difference differentiation. The

fit points are highlighted and emphasise why the 2 mm threshold is necessary to

negate scraper acceleration and deceleration. This plot may be monitored when

using different scraper speeds in order to adjust the threshold if necessary.
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The scraper velocity may be extracted from the gradient of the line fit and com-

pared with the velocity setting at the time of the measurement. In the examples

when scraping horizontally, shown in Figs. 6.2 & 6.3, the velocity was calculated

to be -99.032 mm/s and 99.656 mm/s for a 100 mm/s input. Discrepancies are

typically of this magnitude and are inconsequential since only the real (measured)

velocity has an impact on the analysis, and is used.

Figure 6.3: Calculated scraper blade velocity when scraping horizontally in
opposite directions.

Figure 6.4 shows the velocities calculated for two vertical scraper movements.

When compared with the horizontal data larger fluctuations are observed for both

vertical directions. This could be due to the weight of the scraper blade acting

along the same axis as the actuation system. Despite the noise, the averaged veloc-

ities are within ±1.2 mm/s of the 100 mm/s setting. In fact, the small deviation in

average velocity could also be described by the geometry of the scraper arm; when

scraping from the top (dropping arm down) the average velocity is consistently

greater than the input velocity, and from below (pulling arm up) is consistently

smaller. Figure 6.5 displays the velocities calculated for several measurements in
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each direction at different times in the ELENA cycle. Consistencies in the direc-

tion and magnitude of the velocity offset and size of errors due to noise can clearly

be seen for each direction.

Figure 6.4: Calculated scraper blade velocity when scraping vertically in op-
posite directions.

Table 6.2 summarises the data taking the mean of all scraper velocities in each

direction. Errors are propagated from 95% confidence intervals from the linear

polynomial fit to the scraper position and time. Larger errors on the vertical

scraping directions are consistent with the discussion above.

Table 6.2: Scraper velocities

Ext Int Top Bot
Calculated Speed (mm/s) 99.073 99.655 101.194 99.000
Error (mm/s) 0.017 0.016 0.036 0.023
Standard Deviation (mm/s) 0.045 0.013 0.064 0.036
Number of Measurements 9 7 12 8

Detector signal times are input into the linear polynomial resulting in an array

of scraper positions associated with the array of detector intensities. These data

sets then form the basis of the analysis. Figure 6.6 shows raw scintillator signals as
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Figure 6.5: Scraper speed calculations for several measurements in each di-
rection.

a function of time, and the same signals as a function of scraper position after the

process described above. The plots show signal from both scintillators taken from

two separate shots, scraping from opposite directions. Mirroring of the scintillator

data when scraping from positive x can be seen as expected. Observing that signals

drop to zero at the same point (or slightly overlapping if considering dispersive

effects) in the position plot is a good check to ensure the conversion process has

worked correctly, and should correspond to the position of the core of the beam.

Figure 6.6: Scintillator signals as a function of time (left) and position (right).
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6.3.2 Emittance Calculations

Figure 6.7 is a visual representation of the calculation process to aid with an under-

standing of the structure of the analysis program. The emittance reconstruction

equation for the two scrape reconstruction method (Eq. 4.31) is shown with a

green border.

6.3.2.1 Quantities Obtained Through Scraper Measurements

Now that the detector signals can be transformed into terms of scraper position

the data may be mathematically analysed to reconstruct the emittance. The first

step is to determine which quantity to reconstruct and for when, i.e. horizontal or

vertical emittance and how far along the cycle. The analysis program can load two

scraper measurements from opposing directions, in the same transverse plane, and

both taken at a specific time. After transforming detector data in terms of scraper

position, it is useful to plot the signals from all or several detectors, depending on

particle type. This allows one to determine which signals appear clearest for this

measurement and to determine a single detector for use in the analysis program.

It is necessary to apply cuts to the data to ensure that noise detected before or

after the measurement is not incorrectly included as large amplitude particles in

the calculations. Typically for these measurements data was clipped within ±25

mm.

Scintillator and MCP data is given as signal intensity at a specific time and

is not cumulative. The intensities for scintillators and MCPs have arbitrary units

due to their sensitivity settings being adjustable. Although intensities on the

same detector may be compared under different conditions to indicate relative

beam intensities (and would give a rough estimate at best), the arbitrary units

of the detectors are not relevant to the analysis process. Working with a single

measurement direction at a time, the first analysis step is to convert the detector

data to a cumulative signal by a simple summing function. All values in the

cumulative signal array are then divided by the total sum in order to normalise

and give a cumulative distribution function (CDF), F (xs). (Here xs indicates
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Raw detector data as 
function of  scraper position

Convert to CDF
and normalise

CDF PDF

Optical elements strengths Schottky measurements

Calculate optics around ring

Measure

Infer and at scraper

Figure 6.7: Schematic diagram of the emittance calculation process. Three
inputs are highlighted in blue, their associated calculation schemes are separated
by dashed orange borders and the emittance equation is highlighted in green.

horizontal transverse measurements, however, vertical analysis is identical when

replacing all x with y.)

The CDF may then be converted to a probability density function (PDF),

f(xs), by differentiation through the finite difference approximations. Although
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the resultant PDF has the same distribution as the raw data, the new scaling

of the PDF is crucial for the algorithm. From here the algorithm follows the

mathematical steps laid out in Section 4.4.3 to arrive at values for the beam

variance σ2 and x̄ for this particular scraper direction. This process is repeated

for the scraper measurement in the opposite direction resulting in σ2
± and x̄± for

each direction (+ or −) which may then be inserted directly into the emittance

reconstruction equation.

6.3.2.2 Quantities Obtained Without Scraping

Referring back to the two scan equation (Eq. 4.31) or Fig. 6.7, we see other quan-

tities which may not be determined through scraper measurements. The beta

function, β, and the dispersion, D, both for the appropriate transverse plane, are

estimated at the position of the scraper. To do this the optics around the ring are

calculated using the strength settings of the elements at the time of the scraper

measurement. The values may then be read from the resultant plot or data table

and input into the equation.

The final value to obtain is the RMS longitudinal momentum spread, σδ. As

discussed earlier, the value must be calculated from Schottky data taken at the

same time in the cycle as the scraper measurement. The equation presented in

Section 3.3.5 is shown again here for convenience:

σδ = −1

η

∆fh
fh

(6.1)

where fh is the centre frequency of the peak in the Schottky data, ∆fh is the RMS

width of the peak, h is the harmonic number and η is the frequency dispersion or

phase slip factor.

Here the raw Schottky data is taken from a single transverse pickup and a

spectral density distribution is acquired from a spectrum analyser. The system

summing over all pickups will be implemented during LS2. Figure 6.8 shows an

example of such data, taken during the intermediate cooling plateau and scanning

around the 10th harmonic, h = 10, with respect to the revolution frequency of

f0 = 371 kHz.
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Figure 6.8: Spectral density distribution for Schotty measurements along the
intermediate cooling plateau.

Rebunching may be observed to the far right side of the figure where the signal

appears to be saturated. Only when the beam is coasting, a coherent signal useful

for analysis may be observed which may be seen to the left of the rebunching

signal. On the far left of the plot a more convoluted signal may be seen, where the

beam is debunched and cooled. This data may also be used to obtain an estimate

for the momentum spread at these times but with larger uncertainties than for the

clear signal at the centre of the plot.

To begin the analysis, a “slice” of the data corresponding to a specific time is

selected, represented in the plot between two vertical white lines. A measurement

of the RMS width of the signal gives ∆fh for this particular time whilst the centre

point of the peak gives fh. Figure 6.9 shows the intensity of the raw signal at

this particular time. The signal distinguished from noise by an orange highlight

is used for the RMS and centre point calculations.

The phase slip factor, η, may be estimated from an accurate simulation of the

lattice, similarly to the estimates for the β functions and dispersion, D. A MAD-X

simulation of the ELENA optics corresponding to those during measurements gave

η = −0.7304 for the intermediate cooling plateau energy, which is the value used
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Figure 6.9: Raw data “slice” of Schotty measurements.

in the calculations performed here. The RMS longitudinal momentum spread may

then be calculated from Eq. 6.1 for all points with Schottky data during coasting

beam. As with scraping from several directions, it is assumed that the cycle and

beam are set up and behave in the same manner for each measurement, so it is

recommended that the Schottky data be taken the cycle before, in between or the

cycle after scraper measurements to ensure a most accurate estimate.

6.4 Error Calculations

The effect of errors and error tolerances on the reconstructed emittance were cov-

ered in detail in the previous chapter. Here the actual magnitudes of errors are

considered for application to these results. It was determined that all sources of

error were within accuracy tolerance limits so the main sources of error considered

here are the most significant sources in the emittance reconstruction equation: βx,y

function estimates, when scraping horizontally the error on σδ and Dx and finally

horizontal and vertical closed orbit fluctuations between shots, ∆x0, ∆y0.

To determine an error value for Dx and the βx,y functions a MAD-X simulation

of the optics was created. A parameter scan was performed by adjusting the
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strengths of the three families of quadrupoles by the same percentage. This was

done to both simulate a systematic error in the estimation of magnetic fields based

on current, and to assume a pessimistic case in a random error scenario i.e. errors

don’t cancel. The optics at the scraper, βx,y and Dx specifically, were recorded.

Figure 6.10: Quadrupole scan results on optics at the scraper.

Figure 6.10 shows the results from the parameter scan. It is clear that βy and

the dispersion, Dx, are not significantly affected by magnet strength uncertain-

ties. The horizontal βx, however, appears to be relatively sensitive to incorrect

estimations of quadrupole field strengths. Fitting to the results and making a

conservative estimate of ±5% error on quadrupole field measurements, errors in

βx of 6.81% and -4.31% were determined. Similarly, errors for βy and Dx were

calculated. The results are summarised in Table 6.3.

Table 6.3: Uncertainties in optics at the scraper.

βx βy Dx

Assumed Value (m) 3.21 2.97 1.38
+5% Field Uncertainty Error (%) 6.81 -0.84 -0.92
-5% Field Uncertainty Error (%) -4.31 0.68 0.85
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For the momentum spread estimates, σδ, methodical errors associated with

integration techniques were recorded when measuring the RMS widths, ∆fh and

centre points, fh of the Schottky signals from raw data. An error on the phase

slip factor, η, was estimated at 5% based on the method used to attain it from

a MAD-X simulation of the optics. These errors were then propagated through

Eq. 6.1. The magnitudes of the resultant errors are presented with the measured

values in the following section and are around 10%.

To account for errors on the dispersion-dependent closed orbit offset (hence-

forth referred to as just the closed orbit), ∆x0, ∆y0, repeat measurements were

examined. Due to limited beam time only two repeat measurements were made

and so it was assumed that those repeat measurements show typical per-shot fluc-

tuations in beam position. Repeat measurements were made once for the vertical

plane, in the “Top” direction, and once in the horizontal plane in the “Ext” di-

rection. The repeat measurements were not made immediately after each other

and in fact, were separated by around half an hour and 8 - 10 other measurements

each.

Figure 6.11: Repeat measurements for the vertical (left) and horizontal (right)
scraper directions. The times the measurements were taken is shown in the

legend to highlight consistency over time (hh:mm:ss).

Figure 6.11 shows plots of the data for both directions, as well as the single

corresponding measurement in the opposite direction. Visually it is apparent that

the scraping profiles and positions do not change in a significant manner for ei-

ther horizontal or vertical measurements. The mean value of the PDFs, x̄, was
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calculated from the measurements and compared between repeat measurements.

Table 6.4 shows the results of these calculations. Because these are the only these

Table 6.4: Mean position of all particles for two scraper measurements in the
same directions.

Top Ext
Run 1 (mm) -7.46 1.94
Run 2 (mm) -7.43 1.98
Difference (mm) 0.03 0.04

two repeat measurements, the differences were used as guide values and so the

errors on vertical and horizontal closed orbit offsets were set at 0.03 mm and 0.04

mm, respectively. The errors are propagated through the two scan emittance equa-

tion, affecting x̄± and σ±, and combined with other sources of error determined

above. The errors are around 10% of the maximum tolerance value calculated in

Chapter 5 (0.315 mm).

All sources of error were combined to determine an error on the measured

emittance. It is clear from this analysis that, as expected, the errors on horizontal

measurements are much more significant than vertical due to a combination of

larger βx errors, uncertainties in momentum spread and a slightly larger ∆x0.

6.5 Results

All measurements were made during energy plateaus (injection, intermediate cool-

ing and ejection plateaus) with RF off in order to allow for a coasting beam which

is necessary for the algorithms and Schottky measurements. Figure 6.12 shows

times at which scraper measurements were made along an ELENA antiproton

commissioning cycle.

Measurements taken at injection and at the start of the ejection plateau were

not suitable for analysis with the two scan algorithm. A bug in the code which

saves the scraper arm positions affected some measurements at these times, at least

once in each plane. Additionally, during horizontal measurements at injection,

which were not affected by this bug, the scraper blade did not entirely move
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Figure 6.12: Times at which scraper measurements were made during an
ELENA antiproton commissioning cycle, marked by vertical red lines. The y-
axis does not have units as the plot is representational. Three energy plateaus

are labelled.

through the beam, resulting in no information at the core (a plot showing the raw

data may be found in Fig. A.1).

The only Schottky data available for the scraper measurements was taken dur-

ing the intermediate plateau where, fortunately, the scraper system was fully op-

erational and so these sets of measurements could be used to test the algorithm

and investigate the effects of electron cooling. Measurements at the start of the

ejection plateau were not affected by the scraper arm bugs, however a lack of

Schottky data gives higher priority to intermediate plateau measurements. The

unaffected ejection plateau measurements still proved useful, containing the repeat

measurements that formed the basis of the closed orbit error estimations above.

The two sets of measurements (4 directions at each time) taken along the 650

keV intermediate plateau were made at times along the cycle of t = 7.8 s and

t = 14.5 s. This sub-section begins with analysis of the vertical measurements

followed by a discussion of the available Schottky data and corresponding scraper

measurements. Additional scraper measurements for an energy of 100 keV were

also made during a different cycle with a slightly longer repetition rate, and are

discussed after the measurements made for the cycle shown.
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6.5.1 Intermediate Plateau: Cooling at 650 keV

6.5.1.1 Vertical Measurements

Measurements were taken along the intermediate plateau. This is the first cooling

plateau and so the measurements serve to check the cooling efficiency. The nominal

operating parameters of ELENA’s electron cooler may be found in Table. 2.1.

First, scraper measurements in the vertical plane are considered since Dy = 0 m

and hence longitudinal momentum spread does not need to be accounted for. This

simplifies the analysis making it a good place to start. Figure 6.13 shows the raw

signal as a function of position for both vertical scraping directions on the two

scintillators. There appears to be a loss of signal at high intensity on scintillator

2, possibly due to saturation effects. This effect can be seen for both times of the

intermediate plateau and is also present at other times and directions. To ensure

best quality measurements, scintillator 1 was chosen to be used for analysis.

Figure 6.13: Scintillator signals as a function of position for the vertical plane
along the intermediate plateau. The left plot corresponds to t = 7.8 s and the

right to t = 14.5 s.

The two scan algorithm was used to determine the vertical emittances, εy at

both times resulting in emittances of 1.59 (±0.02) mm mrad and 1.15 (±0.02)

mm mrad for t = 7.8 s and t = 14.5 s, respectively. This shows the first evidence

of electron cooling in ELENA, with a reduction in emittance of 28 (±2)% of the

initial value over 6.7 seconds. A slight change in the separation of the two CDFs

generated when scraping can be seen for the two different times along the plateau

in Fig. 6.14, which is consistent with the emittance reduction.
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Figure 6.14 also displays the CDFs generated when simulating the scraping of

Gaussian beams with the calculated emittances from the data. Generally, there

is a good match between simulation and data but closer inspection could reveal

some insight into the effects of the electron cooler on the distribution shape. It

appears that the beam may be better described by the Gaussian simulation at

t = 7.8 s and less so after some cooling. This can be seen by observing a thinner

core with more significant tails at t = 14.5 s than the corresponding simulation.

Additional evidence for this is in comparing the data taken; whilst the bulk and

core of the beam appear to be affected by cooling, less significant differences are

observed in the tails. Further incremental (in time) measurements would allow

a more thorough investigation of this possible effect by the electron cooler. The

vertical plane is most suited for such an investigation since dispersive effects do

not convolute the beam distribution.

Figure 6.14: CDFs for vertical scraper measurements along the intermedi-
ate cooling plateau. Two vertical lines (overlaying) represent calculated closed
orbits for the two times and are correspondingly coloured, whilst Gaussian sim-
ulations (“Sim”) based on reconstructed emittance values are plotted in back.

The closed orbit of the beam was extracted from the measured quantities ac-

cording to Eq. 4.30 and is also displayed in Fig. 6.14. The results show no signifi-

cant change in closed orbit during electron cooling with measured values of -2.88
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(±0.03) mm and -2.89 (±0.03) mm at 7.8 s and 14.5 s, respectively. The offset

from y = 0 mm could be due to a calibration issue with the scraper as all vertical

measurements are offset by a similar magnitude in this direction. Alternatively,

there could be a consistent closed orbit offset during the cycle. Calibration tests

during LS2 would determine which one of these possibilities is more significant.

Table 6.5: Comparison of results from the single scan Gaussian algorithm
with the two scan method.

Two Scan Single Scan “Top” Single Scan “Bot”
t = 7.8 s, εx (mm mrad) 1.59 (±0.02) 1.40 (−11.95%) 1.45 (−8.81%)
t = 14.5 s, εx (mm mrad) 1.15 (±0.02) 0.97 (−15.7%) 0.97 (−15.7%)

The single scan Gaussian algorithm (Eq. 4.19) was tested with the data since

comparisons with Gaussian simulations showed they were a good approximation.

The closed orbit estimates from the two scan method were input into the algorithm

and the momentum spread set to zero. The results are summarised in Table 6.5,

percentages in brackets after the single scan results give the difference between

these values and those calculated from the two scan method. Whilst there ap-

pears to be a systematic underestimation, larger disagreement on the t = 14.5 s

data further suggests the beam has become less Gaussian during electron cool-

ing. Figures A.2, A.3, A.4 and A.5 in the appendix show the fits with the data,

where again the tails at t = 14.5 s deviate from Gaussian. The horizontal scraper

measurements were dealt with next.

6.5.1.2 Horizontal Measurements

To begin analysis of the horizontal scraper measurements, the RMS momentum

spread of the beam was calculated first. The RMS widths, ∆fh and mean values,

fh, were calculated for each slice of the Schottky data before rebunching at around

cycle time t = 15.7 seconds to give an indication of its evolution during electron

cooling. To do this first the background level, estimated from the mean value

of several noise samples, was subtracted from the signals. Numerical integration

was then used across each sample to determine the mean value and variance.

Figure 6.15 shows the estimates for both fh and ∆fh on top of the raw data.

Scraper measurement trigger times are also displayed as vertical green lines.
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Figure 6.15: Estimates for the mean (white crosses) and width (black crosses)
of signal in the raw Schottky data during the intermediate cooling plateau. The

times of initial scraper movement are represented by green vertical lines.

Equation 6.1 was used to estimate the momentum spread at each time, with

errors determined by propagating uncertainties on fh, ∆fh and η through it. The

results are displayed in Fig. 6.16 and show a dramatic decrease in the longitudinal

momentum spread at the start of cooling followed by a plateau where it is expected

an equilibrium is reached with beam heating effects such as IBS. As with Fig. 6.15,

vertical green lines indicate scraper measurement trigger times. Using raw data

containing the scintillator signal and corresponding cycle time, it was possible to

establish when exactly the scraper blade reached and interacted with the beam.

The time windows when signal from the beam was observed are indicated on

the plot between two pairs of vertical red lines. It should be noted that this

scraper blade “travel time” is important when considering a beam with rapidly

changing properties, such as the momentum spread in this case. As a result

of these considerations, estimates for the momentum spread were made at σδ =

1.1 (±0.16)×10−3 and σδ = 0.22 (±0.03)×10−3 for the measurements with triggers

at t = 7.8 s and t = 14.5 s, respectively.

For the horizontal emittance evolution along the intermediate plateau, the two
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Figure 6.16: Evolution of the longitudinal momentum spread of the beam
during the intermediate plateau. Green vertical lines mark scraper trigger posi-
tions with two pairs of red vertical lines showing times between which scintillator

signal was observed.

Figure 6.17: CDFs for horizontal scraper measurements along the interme-
diate cooling plateau. Closed orbits are represented by appropriately coloured

vertical lines.



124 Chapter 6 Measurements

scan algorithm was used with the RMS momentum spread values calculated from

the Schottky data. Figure 6.17 shows the normalised CDFs extracted from the

scraper data, corresponding to horizontal emittance values, εx, of 3.6 (±0.27) mm

mrad and 0.7 (±0.05) mm mrad for for t = 7.8 s and t = 14.5 s, respectively.

Assuming the momentum spread estimations are accurate, the electron cooler has

reduced the emittance by 81 (±10)% of the value at the start of cooling, consistent

with a large observable difference in the separation of CDFs.

Similarly to the vertical measurements, closed orbit calculations showed a con-

sistent offset towards negative x. There was some small change between the esti-

mates, also visible in Fig. 6.17, with values of -4.05 (±0.04) mm and -4.22 (±0.04)

mm measured for the start and end of the plateau, respectively. This could be

explained by a change in the mean momentum offset of the beam, ∆δ̄, affecting

the horizontal amplitude of the particles through dispersion. In fact differences in

fh and x0 at each scraper measurement could be used to calculate the dispersion at

the scraper (∆x0 = Dx∆δ̄). This would require Schottky measurements at a much

higher harmonic (i.e. better time resolution in the spectral density distribution)

to allow for a more accurate estimation of fh for the measurement at t =7.8 s.

Conversely, the change in momentum offset may be calculated from ∆x0 and the

measured Dx, here it was found to be ∆δ̄ = −1.2 (±0.3)× 10−4.

Whilst closely inspecting the core region of the CDFs at t =7.8 s an observation

may be made: that they do not show the characteristic crossing above F (xs) = 0

expected when dispersive effects are present. To compare the expected cross-

ing point two simulations were plotted against the data. One simulation plotted

the emittance calculated taking the Schottky momentum spread (σδ =1.1×10−3:

εx = 3.6 × 10−3 mm mrad), and another with the emittance calculated using no

momentum spread (σδ =0×10−3: εx = 4 mm mrad). Figure 6.18 shows the com-

parison for the entire distribution whilst Fig. 6.19 shows a zoom on the core (the

simulations are plotted against the data separately in the appendix, for clarity:

Fig. A.6 & Fig. A.7).

It is clear that the simulation based on an assumption of no momentum spread

is in much better agreement with the data. It does not necessarily mean that the
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Figure 6.18: Comparison of CDFs obtained from data with simulations of
beams with σδ =1.1×10−3, εx = 3.6× 10−3 mm mrad and σδ =0×10−3, εx = 4

mm mrad.

Figure 6.19: Zoom on the core region of Figure 6.18.

no momentum spread assumption is correct though; even if the Schottky data is

not reliable it is extremely unlikely that the beam has zero momentum spread at

the start of the intermediate plateau. It is possible that an error in the value of
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dispersion at the scraper Dx is responsible, however it would have to be essentially

equal to zero for a discrepancy of this magnitude. This would be very far outside

of the uncertainty range.

More complicated factors could be the cause of this unexpected result. As seen

in the vertical comparisons, the electron cooler appears to be more effective at the

centre of the beam than at the tails. This could also be the case with longitudinal

cooling, where the momentum spread of particles with smaller oscillation ampli-

tudes is more effectively reduced. Particles with larger emittances would then

contribute to the Schottky signal. It is possible that this could reduce the crossing

effect at the centre of the CDFs, even for a scraper measurement at t =7.8 s, since

the beam had already been exposed to electron cooling for >1 s before scraping.

Another explanation could be due to an optical mismatch of beam and lattice

parameters, either at injection or after the deceleration ramp. Simulations scraping

a beam undergoing filamentation showed a marked decrease in the crossing point

of CDFs with an increasing degree of optical mismatch. Figure. 6.20 shows the

CDF pairs resulting from 3 simulations of beams with varying degrees of optical

mismatch. The mismatch was brought about by adjusting the x′ of every particle

by some degree during injection into the ring. Figure A.8 shows horizontal (x, x′)

phase space plots at different times during a simulation with ∆x′ = 1 mrad to

illustrate the beam’s behaviour. A less dense particle distribution at the core

region may be observed due to beam oscillations around (x, x′ = 0). Whilst these

simulations do not match the exact conditions of the data taken, they serve to offer

a potential mechanism for the discrepancy. It would be useful to perform scraper

measurements with known optical mismatches upon injection, or alternatively with

various optical configurations of the ring during and after the first deceleration

ramp to test this supposition.

A similar comparison with the data at t = 14.5 s shows a less obvious dis-

crepancy due to the measured momentum spread already being relatively low.

Figure A.9 shows the comparison with simulations using reconstructed emittance

values of: εx = 0.71 (±0.05) mm mrad for σδ = 0, and 0.7 (±0.05) mm mrad for

σδ = 0.22 (±0.03) × 10−3. It is expected the reasons for the discrepancy here are
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Figure 6.20: Comparison of beam scraping distributions for 3 beams of varying
degrees of mismatch at injection.

the same as for the t =7.8 s measurement.

The Gaussian scan algorithm was tested for both horizontal measurements at

t = 14.5 s. As expected the unexplained deviation in the shape of the CDFs caused

results inconsistent with Schottky measurements and two scan method. Further

measurements would be necessary to thoroughly explain this observation.

6.5.2 Ejection Plateau: Cooling at 100 keV

As mentioned previously, a second set of measurements were made during the

100 keV ejection plateau for an ELENA cycle with a longer repetition rate. The

measurements were again made in all four directions, but this time an important

distinction must be pointed out: The measurements were made twice at the same

cycle time t=28.875 s, with electron cooling on and off. Whilst this approach is

somewhat different, it again allows for investigation into the effects of the electron

cooler. Electron cooling began at the start of the plateau at t= 24.897 s and so the

measurements highlight the effects of 3.888 s of electron cooling compared with a

coasting beam subject only to collective effects such as IBS.

6.5.2.1 Vertical Measurements

Analysis of the vertical data using the two scan algorithm gave emittances of

2.55 (± 0.03) mm mrad and 0.53 (± 0.01) mm mrad, without and with cooling

respectively. After 3.9 s of electron cooling at 100 keV the vertical beam emittance
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Figure 6.21: CDFs compared with simulations for vertical scraper measure-
ments along the ejection plateau. Both sets of data are taken at the same time

in the cycle, with and without electron cooling.

is significantly reduced by 79 (± 2) % of that without. The data showed negligible

changes in the closed orbit offset with values of -2.08 (±0.03) mm and -2.03 (±0.03)

mm calculated without and with electron cooling, respectively.

Similarly to the previous section, Fig. 6.21 shows a comparison of the data

with simulations, yet this time more obvious deviations from a Gaussian distri-

bution are observed for the beam with no cooling. Another difference is that the

beam has a wider core than the Gaussian approximation compared with a thin-

ner core after cooling during the intermediate plateau. This distribution could be

explained by the fact that the beam has been measured 3.9 seconds after the end

of the deceleration ramp with no cooling. The more dense region at the core may

have expanded faster than at the tails during this time due to IBS being more

significant at higher intensities. After cooling the beam is well approximated by

a Gaussian distribution, perhaps due to the cooling being more effective at the

core and correcting for more IBS at the core. Also, when the beam size is even-

tually smaller so is the deviation in electron velocities interacting with the beam,

resulting in more even cooling across the entire beam.
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6.5.2.2 Horizontal Measurements

Due to no Schottky data being available for this plateau it was necessary to make

an estimate of the longitudinal momentum spread in order to use the two scan

algorithm. Preliminary analysis of the data showed that indeed there was a cross-

ing of CDFs above zero in this plane. Measurements at this final plateau were not

taken on the same day as for the intermediate plateau but current readings for the

3 quadrupole families showed negligible changes in the optical configuration. It is

possible that injection conditions were different. This would support the optical

mismatch hypothesis when trying to understand the absence of a raised crossing

point in the CDFs taken at t = 7.8 s, assuming a more well optically matched beam

for these measurements, however as previously stated, further measurements are

required.

After confirming that the Gaussian fit algorithm is accurate for determining

the emittance for vertical measurements, and combined with its capability to ac-

curately estimate momentum spread for simulation results, it was used to make

an estimate for the longitudinal momentum spread of the beam. This was done

first using the data for an uncooled beam, since vertical measurements along the

intermediate plateau suggested the beam becomes less Gaussian with cooling.

The Gaussian fit algorithm was run twice, once for each direction and results

were compared. When scraping from the “Ext” direction, the momentum spread

estimate had extremely large uncertainty values (based on the goodness of the

fit) and so the estimation was discarded. The fit can be seen in Fig. A.10. The

estimations from the “Int” direction returned σδ = 9.4 (±0.2) × 10−4. The fit is

displayed in Fig. 6.22, showing an excellent agreement at the tails but some small

deviation towards the core, suggesting an underestimation. The error on the value,

based on the goodness of the fit, was deemed acceptable for this method to form the

basis for the estimate of the momentum spread. The uncertainty of the estimate

was increased to 20% (±1.9 × 10−4) to account for the uncertain nature of this

method, and was carried through to the error on the reconstructed emittance.

The two scan algorithm was run with this estimation and returned an emittance

of 2.5 (±0.2) mm mrad. For the case with cooling present an RMS momentum
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Figure 6.22: Application of the single scan Gaussian fit algorithm to a hori-
zontal measurement along the ejection plateau in the absence of electron cooling.
Data has been mirrored about x = 0 mm to accommodate the fitting algorithm,

this process does not affect the result.

Figure 6.23: Data vs Gaussian simulations for the ejection plateau.

spread of 0 (±2 × 10−4) was estimated, based on the Gaussian only algorithm

estimating values of the order 10−7 for both directions. With this input, the two
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Figure 6.24: Zoom on beam core region for data vs Gaussian simulations
along the ejection plateau.

scan method returned an emittance of 0.55 (±0.04) mm mrad, a change of 78

(±10) % of the emittance at this time without electron cooling. Again, a shift in

the closed orbit of −0.24 (±0.08) mm was seen, suggesting that because the mean

momentum offset of the beam has changed due to electron cooling, so has the closed

orbit through dispersion. Using the same method as for the intermediate plateau

(∆x0 = Dx∆δ̄), the change in momentum offset with and without electron cooling

was calculated at ∆δ̄ = −1.7 (±0.3)× 10−4. (It was ∆δ̄ = −1.2 (±0.3)× 10−4 for

the intermediate plateau.)

The data and Gaussian simulations based on the two scan algorithm result are

shown in Figs. 6.23 and 6.24. Again there appears to be good agreement with

the Gaussian simulations, and this time the crossing height of the CDFs is much

closer to the data for the non-cooling case. The Gaussian simulation for the non-

cooling case serves well to highlight an asymmetry in the measured distribution.

Such asymmetries were observed during the simulation phase (Section 5.7.1) when

investigating correlations between momentum offset and emittance and so the

correlation coefficient was investigated next.
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6.5.3 Emittance-Momentum Offset Correlation

The emittance-momentum offset correlation was introduced in Section 4.4.2 and

explored through simulations in Section 5.7.1. It would arise from a parabolic

transverse distribution in electron velocities with a minimum at the centre of

the beam pipe (x, y = 0). It would be the case that antiprotons with a smaller

emittance, those populating the core of the beam, have a more reduced momentum

offset than those at the tails after some exposure to electron cooling.

This effect should not be confused with the bi-Gaussian effect whereby electron

cooling is more effective at the core of the beam due to a higher density of electrons.

Although these two effects are related by the parameters of the electron beam, they

must be considered separately. This is possible with scraper measurements since

the bi-Gaussian effect influences both transverse planes, whereas the emittance-

momentum offset correlation effects only horizontal measurements. Additionally,

unlike bi-Gaussian beam distributions, the emittance-momentum offset correlation

manifests through asymmetrical scraper measurements and so careful comparisons

can separate the effects.

An emittance-momentum offset correlation coefficient, henceforth referred to as

the correlation coefficient, was derived. To highlight the nature of such a quantity,

the expression to determine the correlation coefficient for a simulated bi-Gaussian

beam is repeated below;

〈(δ − δ̄)A〉 =

∑2
i=1(Ni

√
εrms,iπ

2
(δ̄i − δ̄beam)2)∑2

i=1Ni

,

where in simulations the subscripts i = 1, 2 refer to the core and tail Gaussian

distributions whose superposition comprises the beam. The quantity is obtained

generally through the algorithm using;

〈(δ − δ̄)A〉 =
σ2

+ − σ2
−

4D
√
β

,

where σ2
± are the variances of the PDFs from each scraping direction. To en-

sure that the coefficient gives an accurate measure of the correlation between the
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emittance of individual particles and their momentum offsets, the quantity is nor-

malised to the overall emittance of the beam by dividing by
√
εx. This accounts for

scaling of the quantity with overall transverse beam size, and we may define the

normalised correlation coefficient as φεδ = 〈(δ − δ̄)A〉ε−1/2
x , for the sake of brevity.

Table 6.6: Calculated correlation coefficients for horizontal scraper measure-
ments at both energy plateaus. The bottom row displays the difference in values,

∆φεδ, and associated errors.

Int Ext
t = 7.8 t = 14.5 No Cooling Cooling

φεδ (×10−5) -5.4 1.0 -16 0.3
Error φεδ (×10−5) 2.5 1.1 3.1 0.9
∆φεδ (×10−5) 6.4 ±3.6 16.3 ±4

The correlation coefficient was calculated for both horizontal measurements

along both energy plateaus and the results are displayed in Table 6.6. Large un-

certainties arise from a combination of large error contributions from βx and εx

combined with errors on σ2
±. It should be noted that this quantity is quite abstract

in nature and single measurements do not offer much insight into a beam’s quali-

ties, aside from observations of its sign (±). It is better served as a comparative

quantity, monitoring how it evolves over time or in different conditions. A posi-

tive change in φεδ for beams after more exposure to electron cooling does, in fact,

indicate a shift in the correlation. Particles with smaller emittance have a reduced

momentum offset compared with an increase for those at higher amplitudes.

The negative initial φεδ indicates that already a negative correlation exists,

perhaps brought about by deceleration, which it seems is unintentionally corrected

for by electron cooling. The next obvious step for this investigation would be to

measure φεδ at injection and monitor how it evolves throughout the entire cycle.

It would be worth measuring the quantity after extended exposure to electron

cooling to see if it continues to positively increase.

The quantity was calculated for the vertical measurements to investigate whether

indeed it is a good measure of the effect of momentum spread on the beam. It

should be clearly stated that when doing so, Dy was set to 1.38 m, the same as Dx

purely for the purposes of comparing the magnitude and evolution of the quantity

in both planes. The quantities calculated for y are hence for benchmarking the
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method only and do not serve to supply any information on the beam. The results

of this benchmarking exercise are presented in Table. 6.7 using the same units as

for the horizontal table for ease of comparison.

Table 6.7: Calculated correlation coefficients for vertical scraper measure-
ments at both energy plateaus. Results presented in this table are purely for

benchmarking purposes only.

Int Ext
t = 7.8 t = 14.5 No Cooling Cooling

φεδ (×10−5) 0.3 -0.5 0.5 0.7
Error φεδ (×10−5) 0.3 0.3 0.2 0.2
∆φεδ (×10−5) -0.7 ±0.6 0.2 ±0.4

Clearly the values obtained for ∆φεδ in the two different planes show that the

effect is restricted only to the horizontal plane, as changes in the vertical plane

are negligible by comparison and by their uncertainties. It is then asserted that

φεδ may indeed an indicator of more complex beam behaviour than has previously

been measured through scraper measurements alone, and its application should

be further investigated.

6.6 Discussion and Summary

Despite some technical challenges relating to hardware and limited beamtime dur-

ing machine commissioning, scraper measurements have been made and analysed

for two points along the intermediate plateau, in the presence of electron cool-

ing, and twice during the extraction plateau, with and without cooling. Larger

errors on horizontal measurements were calculated due to dispersive effects, as

expected. Tables 6.8 and 6.9 display all parameters used and reconstructed from

the data for both plateaus. Estimates used for momentum spread based on the

Gaussian algorithm results are presented in the ejection plateau and hence have

large uncertainties.

A comparison of emittance differences for each plateau and plane is displayed

in Fig. 6.25, complete with the rate of change based on each pair of measurements’

exposure time to electron cooling. The rate of change is included only as a guide

value, indicating the slowest possible rate of change, since it is highly likely that
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Table 6.8: Intermediate plateau summary table. Note: changes in emittance
are expressed as percentages of initial emittance.

t=7.8 Error t=14.5 Error Change Error
εy(mm mrad) 1.59 0.02 1.15 0.02 28% 2%
y0 (mm) -2.88 0.03 -2.89 0.03 -0.01 0.06
εx (mm mrad) 3.6 0.27 0.70 0.05 81% 10%
x0 (mm) -4.05 0.04 -4.22 0.04 -0.17 0.08
σδ (×10−3) 1.10 0.16 0.22 0.03 -0.88 0.19
φεδ(×10−5) -5.4 2.50 1.00 1.10 6.40 3.6

Table 6.9: Ejection plateau summary table.“e−C. Off” and “e−C. On” refer
to the status of the electron cooler. Note: changes in emittance are expressed

as percentages of initial emittance.

e−C. Off Error e−C. On Error Change Error
εy (mm mrad) 2.55 0.03 0.53 0.01 79% 2%
y0 (mm) -2.08 0.03 -2.03 0.03 0.05 0.06
εx (mm mrad) 2.5 0.20 0.55 0.04 78% 10%
x0 (mm) -3.67 0.04 -3.91 0.04 -0.24 0.08
σδ (×10−4) 0.94 0.19 0.0 0.2 -0.94 0.39
φεδ(×10−5) -16 3.1 0.3 0.9 16.3 4

it is not linear. The effects of electron cooling on the emittance show a clear

reduction in both directions for both plateaus, a promising result considering the

measurements were taken shortly after the installation and during commissioning

of the electron cooler. In fact, the emittance reduction at the extraction plateau

shows good agreement with BETACOOL simulations performed previously at the

same energy, with a coasting beam [111]. For comparison, the simulations had

initial emittances of εx,y = 2.8 mm mrad, being reduced to εx = 0.52 mm mrad

and εy = 0.33 mm mrad after 2 seconds. The cooling rate appeared to reach

equilibrium with IBS after this time in the simulations.

Although the linear fit might suggest the cooler is much more horizontally

efficient along the intermediate plateau, it is not known whether both emittances

had reached equilibrium points with IBS earlier than the second (t = 14.5 s)

measurement. Despite IBS being proportional to 1/γ4
l , smaller “final” emittances

for the ejection plateau could be the result of a lower overall beam intensity (less

resistance from collective effects), since during commissioning the RF was not yet

optimised and losses were common during deceleration. Many more incremental
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Figure 6.25: Effects of electron cooling on horizontal and transverse emit-
tances. Here “Inter” and “Eject” refer to intermediate and ejection cooling

plateaus, respectively.

measurements are required to map the curve of emittance reduction and determine

the equilibrium point with collective effects in all cases. For a direct comparison of

cooling between plateaus, measurements should also be taken on the same day with

the same cycle length, whilst monitoring and correcting for intensity differences.

Table. 2.1 presents the nominal parameters of the electron cooler. It is seen

that βx,y is expected to be roughly equal at the centre of the cooler and optics sim-

ulations based on quadrupole current strengths showed small deviations (≈10%) in

opposite directions (smaller βx) from these values. Calculations for the horizontal

RMS beam width at the electron cooler (σRMS ≈
√
βε) gave values of 2.6±0.3 mm

and 2.3±0.3 mm at t=7.8 s and with no cooling at the ejection plateau, respec-

tively. Estimations of horizontal beam widths encapsulating ≈99.7% (≈3σRMS

using the empirical rule) of around 7.8±0.9 mm and 6.9±0.9 mm could be large

enough to be affected by the parabolic distribution of electron velocities within

the cooler. Work done previously to determine optimised lattice functions for elec-

tron cooling [112, 113] could be expanded upon into this next generation of low

energy antimatter beams by using this new two scan algorithm for ELENA. This
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new scraping algorithm combined with variations in the βx/Dx ratio at the cooler

whilst maintaining other conditions could provide a more detailed look into the

unexpected strong influence of dispersion contributing towards decreased cooling

times previously seen in these studies.

Closed orbit estimations show consistent offsets in the negative direction for

both planes and plateaus. It would be beneficial to test the calibration of the

scraper arms during LS2, to ensure that the co-ordinate system aligns with that of

the beam due to consistent offsets towards negative x, y. In the vertical plane, the

closed orbit does not deviate outside its uncertainty levels for both measurements

at either plateau, showing a stable beam. Horizontally, deviations are observed and

were attributed to changes in the mean momentum offset of ∆δ̄ = −1.2 (±0.3)×

10−4 and ∆δ̄ = −1.7 (±0.3) × 10−4 for the intermediate plateau and ejection

plateaus, respectively.

Comparisons with simulations showed that indeed beams appeared to be non-

Gaussian, particularly after some time exposed to electron cooling during the

intermediate plateau where the core has been cooled more efficiently. This was

more apparent for vertical measurements which were free of dispersive effects. It

is likely that the effects of IBS are observed at the extraction plateau where, in

the absence of cooling, the beam core is larger than the Gaussian approximation.

This would be explained by more significant IBS due to a higher beam intensity

at the core.

The non-Gaussian nature of the beams did not, however, appear to be signif-

icant enough to completely render the single scan Gaussian fit algorithm useless,

and in fact it was shown that the algorithm could be used, with careful considera-

tion, to estimate the vertical emittance of the beam. It would be very beneficial to

compare Schottky measurements and momentum spread estimates from the single

scan Gaussian algorithm to benchmark the technique as a viable fast estimation

option or for when Schottky data is not available. It would also be of interest

to make repeat Schottky measurements to ascertain the level of fluctuations be-

tween shots. Of course, Schottky measurements at each plateau are necessary and

analysis in combination with the incremental emittance evolution study suggested
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above would build a complete picture of the beam’s behaviour and quality from

5.3 MeV to 100 keV.

An investigation of the emittance-momentum offset correlation was performed

using the (emittance normalised) correlation coefficient, φεδ, extracted from the

algorithm. The method was benchmarked against vertical measurements which

showed negligible change as expected. Horizontally, although large uncertainties

were observed due primarily to uncertainties in εx and βx, comparisons between

the quantities with and without cooling certainly suggest the electron cooler is

contributing towards such a correlation. To further examine this effect, it would

be useful to make measurements at the same time in the cycle whilst adjusting

electron cooler settings such as the e− beam energy, density or crucially, the ra-

dius. Furthermore, φεδ unexpectedly appeared to be largely negative after both

deceleration ramps.

This chapter has shown that the two scan algorithm is indeed appropriate when

considering low energy beams in the presence of electron cooling. The algorithm

has determined emittances to within desired uncertainty limits for both planes

along both cooling plateaus. Further measurements are required to fully under-

stand the evolution of the beam emittance, distribution shape and momentum

spread due to electron cooling effects. It is also proposed that measurements at

different times during the plateaus with no electron cooling could be performed to

obtain emittance growth rates due to IBS. The measurements and analysis have

thoroughly explored the practical considerations needed for the two algorithms

to be successfully employed. Additionally, detailed analysis of the limited avail-

able measurements has exposed numerous potential studies to be carried out in

continuation from this work and from similar related studies e.g. lattice optimi-

sation for electron cooling. The potential gains from combining opposing scraper

measurements are clear, with particular emphasis on studying φεδ.

Finally, a measurement of the beam profile during the last plateau in the

presence of electron cooling has been made. In the following chapter, the results

of this analysis will be used to best approximate the beam distribution and to

track it through a realistic model of the 37.4 m long transport lines to the ALPHA
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experiment. This will provide the best possible estimation for beam quality at the

handover point, and aid in determining an optimised transport lines configuration.





Chapter 7

Transfer Lines

7.1 Introduction

In order to transport cooled 100 keV antiprotons to the six experiments currently

operating in the AD hall, electrostatic transport lines will be used. The elements

for the transport lines have already been manufactured and at the time of writing

are already being assembled during CERN’s second long shutdown, LS2. Antipro-

ton operations resume in 2020.

The use of electrostatic elements in such a large configuration is a relatively

recent practice and much less common compared with the use of their magnetic

counterparts. For example, the racetrack shaped electrostatic storage ring ELISA

[114] was the first of its kind and was constructed as recently as 1998 in Den-

mark. It has since inspired other facilities to duplicate its design, such as ELASR

constructed in Saudi Arabia between 2014 and 2015 [115].

As the the field of low energy antimatter research expands with new facilities

planned or under construction, for example FLAIR at GSI [116, 117], the use of

electrostatic elements will become more prevalent. To understand why they are so

desirable for such applications we may compare the efficiency of electrostatic and

magnetic elements by inspecting their magnetic and electrostatic rigidities:

ρE =
2Ek
q
, ρB =

1

q

√
2mEk
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where ρ is the bending radius, E is the electric field, B the magnetic field, Ek is the

kinetic energy of the particles, m the mass and q the charge of the particles [118].

It can be seen that the electrostatic rigidity is independent of mass, so electro-

static elements become more desirable for low energy ion beams than their mag-

netic counterparts. Because of the dependence on the square root of the kinetic

energy for the magnetic elements, they become much more efficient for medium to

high energy particles which explains their prevalence in conventional set-ups.

The main goal of the work in this chapter is to develop realistic and com-

putationally fast simulation methods for low energy beam transport using elec-

trostatic elements, whilst simultaneously investigating and optimising the beam

quality along ELENA’s transfer lines, building upon previous studies [119]. To

achieve these goals a 3D simulation of the longest transfer line, connecting ELENA

and ALPHA, was created in G4Beamline [120]. Although numerous other 3D

beam transport codes exist (such as BEAMPATH [121] or TRACK3D [122]),

G4Beamline has been chosen since it is still actively maintained and updated

and is based in a GEANT4 [123] environment.

Connected antimatter experiments such as ALPHA, ASACUSA and AEGIS

[124] use GEANT4 in simulations thanks to its wide range of ever updating li-

braries. Whilst some contention exists regarding discrepancies between FLUKA

and GEANT4, G4Beamline’s accelerator oriented perspective lends itself to these

particular simulations. Efforts are continually made by experiments to provide ex-

perimental observations as input to improve the accuracy of GEANT4 [125, 126],

the benefits of which may then be easily implemented here. This opens the pos-

sibility to directly interface the G4Beamline model with existing experimental

simulations and guarantees access to the most up to date low-energy antiproton

physics packages.

The transport line simulation may be validated and compared with existing

simulations and also benchmarked against real measurements taken once the line

begins operation after LS2. The simulation may then be used to ascertain and

optimise beam quality at the handover point to the ALPHA experiment. Addi-

tionally, the simulation is used to transport distributions based on the most recent
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beam measurements in ELENA with the scraper, and along transport lines to

GBAR, taken at the end of commissioning in 2018 to predict beam quality at the

handover point.

7.2 ELENA to ALPHA Transport Line

Fig. 7.1 shows a drawing of the planned layout of the ELENA transfer lines, with a

focus on the ELENA to ALPHA configuration. One of the benefits of the ELENA

ring is the ability distribute four bunches between experiments during the same cy-

cle. The transport lines are vital in ensuring that the beam is distributed amongst

the experiments whilst meeting certain requirements at the handover point to each.

Optimisation of the optics and junction sections therefore must be performed with

this in consideration. Here we consider the ALPHA configuration where the beam

sees an extraction kicker, a fast kicker & static deflector combination and finally

a static deflector, as well as the periodic quadrupole assemblies. The total length

of this path is 37.4 m.

Ejection fast kicker 
(Inverted: injection)

Unused fast kicker & static deflector
(Inverted: vertical configuration)

Fast kicker & static deflector Static deflector

LNE06

LNE05

LNE07

LNI

LNE50

LNE51

LNE00

LNE01

LNE03

LNE04

Figure 7.1: Layout and naming scheme of the ELENA transfer lines. The
path from ELENA to ALPHA is marked with unbroken lines with all other
sections being marked by dashed lines (elements marked “Unused” are unused
specifically when transporting to ALPHA). The position of all experiments is

also included (note: ATRAP is located above LNE03).
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The transfer lines to all experiments are built in a modular fashion i.e. they

are constructed mostly from repetitions of the same several elements. The main

focusing assembly is an electrostatic quadrupole doublet with horizontal and ver-

tical corrector kickers situated between the quadrupole pair, seen in Fig. 7.2. The

quadrupoles are 10 cm in length along the centreline, s, with a gap of 24.4 cm

between their centres. The electrode radius, r0, (radius of the circle drawn around

x, y = 0 and touching the electrodes) is 30 mm. The correctors are both 3.7 cm

in length and are situated symmetrically between the quadrupoles. The assembly

is typically used in a FODO configuration with one focusing and one defocus-

ing quadrupole, however sometimes in several consecutive assemblies only a single

quadrupole (of alternating polarity per assembly) is active to create a larger FODO

arrangement. Quadrupole assemblies are often immediately preceded or followed

by a microwire beam position monitor (BPM) for online monitoring and tuning.

There are two main types of bending elements in the transport lines, a pulsed

fast deflector (naming convention ZDFA) and static bending elements (three vari-

ations on one design to accommodate different angles, ZDS[A,B,C]). The fast

deflector is designed for small angles (max 240 mrad) and acts as a fast switch

with a rise and fall time < 1µs to allow beams to either pass straight through

or be diverted to another section. The static deflectors are used for larger angles

ranging 33.16°– 77.4°, often directly after a fast deflector at junctions.

There are three fast deflectors within ELENA itself, one injection kicker and

two acting as extraction kickers. The extraction kickers either take beam to the

original experimental area via LNE00 or to the new area that houses GBAR via

LNE50. It is expected that the position of AEGIS will be moved to also branch

from LNE50 (LNE51) although at the time of writing the move is not confirmed.

All other fast deflectors in the transfer lines network are placed at junctions and

are followed by static deflectors. The fast deflectors all have a nominal bending

angle of 220 mrad. Two fast deflectors bend vertically upwards in combination

with vertical static deflectors to take the beam to the two ATRAP handover points

above the transport line.

Three static deflector types were designed to be used in the beam transport
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Quad Quad

C
or H

C
or V

Figure 7.2: ELENA transport lines electrostatic quadrupole assembly showing
horizontal (“H”) and vertical (“V”) correctors (“Cor”) between a quadrupole
(“Quad”) doublet. Lengths and spacing of elements are expressed below in mm.

lines. One for use in combination with the fast horizontal deflector, ZDSA, one

for standalone use, ZDSB, and one to be used in combination with vertical fast

deflectors to bend vertically upward to ATRAP handover points, ZDSC. Because

of the existing layout of the AD hall, it was not possible to design the transport

lines system with just one required angle from each of these designs. The range of

angles required for each deflector type is small enough such that each type has one

specific electrode design to be used at differing operating voltages to accommodate

the range of angles. This allows for simplified production of electrodes and is also

beneficial when considering spare parts and repairs.
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When transporting antiprotons from ELENA to ALPHA two fast kickers are

used, including one for extraction. Additionally, two static deflectors are used,

designs ZDSA and ZDSB, with the ZDSA model being used in conjunction with

one of the ZDFA kickers. 21 sets of quadrupole doublets are used, although only

five of those use both quadrupoles in the assemblies. Typically for longer straight

sections, only one quadrupole per doublet is used to allow for a long phase (≈3

m) repeating FODO arrangement.

7.3 Simulation Environment

G4Beamline is a GEANT4 based particle tracking code developed for the study of

charged particle propagation through accelerator lattices, and was used as the basis

for the simulations presented here. As well as the compatibility reasons mentioned

in the introduction, it was chosen due to several features which allow the user to

find a balance between detailed realism and efficiency within simulations.

To use the code a lattice may be constructed as a combination of predefined

bending and focusing elements, regions of electromagnetic field defined by equa-

tions, or externally generated field maps. The lattice exists in 3D space, with

(x, y, z) as (right handed) global co-ordinates, and similarly a set of centreline

co-ordinates (x, y, s), with s being an axis which follows the lattice’s bends. The

input beam may be generated based on the input parameters used by G4Beamline

or can be read in as an externally generated beam distribution, providing maxi-

mum flexibility.

In contrast with many commonly used tracking codes such as MAD-X, which

uses calculated transport matrices for tracking through optical elements and drift

space, the particles in these simulations are influenced by the electromagnetic

fields they propagate through. A 6D beam distribution will propagate through

voxelised 3D space and fields, with Runge-Kutta methods performing integrations

for the particles’ motion. Optical lattice parameters then arise from the motion

of bunches through these fields naturally as opposed to particle movement based

on calculated optics.



Chapter 7 Transfer Lines 147

Whilst propagating through the 3D environment particles may be also subject

to additional forces depending on the physics package being used. This allows the

simulation to combine many effects, including fringe and inhomogeneous fields,

stray magnetic fields from experiments, space charge effects, the heating effects on

electrodes and more.

The GEANT 4 environment in which the simulations are based allows the user

to choose from the extensive list of physics packages that have been developed

and updated over many years, and which take into account experimental measure-

ments. There is also the possibility to manually create physics lists. These options

provide the possibility to simulate low energy hadron behaviour and to continue

improving the simulations as new data becomes available.

The ability to quickly view lattices and primary and secondary particle tracks

in a 3D visualisation is an extremely useful feature of the program. It allows for the

quick identification of sources of error within the lattice definitions, for example;

to determine which quadrupole may have the wrong position or strength, or to

see the origin of beam loss. It also aids in the correct placement of field maps and

other components of the lattice, particularly useful being the ability to visualise

field lines within a defined volume.

Once a beam has been tracked through the lattice, the program may then cal-

culate many useful accelerator physics quantities based on the beam’s behaviour.

For example, using the profile command one may quickly view the emittance and

beta functions along the lattice, amongst other parameters. The trace command

allows the user to record information on individual particles at defined steps, for

example to check the field type, strength and direction seen by the particles as a

function of s, or the dose deposition in beamline elements.

7.4 Electrostatic Quadrupoles

G4Beamline includes a set of predefined elements such as genericquad, genericbend

and sectorbend. The genericquad command places a hollow cylinder with its

length along the s direction at a specified point in the beamline to act as a
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quadrupole. The dimensions of the object are fully customisable and it is pos-

sible to assign a material to it or set it to kill particles incident on its surface to

act as a limiting aperture. The element includes a typical quadrupole shaped mag-

netic field (transversally r2 cos(2θ), in polar co-ordinates) of user-defined gradient

with a customisable fringe field which is described below.

Figure 7.3: Side by side comparison of the magnetic (left) and electrostatic
(right) quadrupoles as shown in the G4beamline visualisation. The red volume

represents the inner and outer aperture of the elements.

In this simulation the quadrupoles are approximated by modified versions of

these predefined genericquads. At this stage of the simulations where the bend-

ing elements are represented by externally generated field maps, it is sufficient to

represent the quadrupoles by these limiting apertures with well-defined uniform

fields and fringe fields. Currently, field maps are being obtained through mea-

surements of one of the ELENA quadrupoles in a collaboration established during

the course of this work between the Cockcroft Institute, CERN and Technische

Universität Wien using a novel sensor [127]. The results of the study will be used

for benchmarking and it will be possible to implement the obtained field maps

into these simulations.
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The source code G4Beamline was modified to allow for easy implementation

of electrostatic quadrupoles. The genericquad command was edited to allow

the construction of magnetic and electrostatic quadrupoles using the commands

genericquadM and genericquadE. genericquadE has the same field distribution

but with an electrostatic field instead of magnetic, effectively creating a skew

electrostatic quadrupole. Placement of the element into the lattice requires a

45° rotation around s to enable it to act as a standard focusing or defocusing

quadrupole. The field lines shown by G4Beamline may be seen in Fig. 7.3.

Two beamlines based on the start of LNE00 were constructed using an electro-

static injection kicker at z = 100 mm followed by eight quadrupoles of each type,

i.e. an all genericquadM lattice and a rotated genericquadE only lattice. The

magnetic, GM , and electrostatic, GE, quadrupole gradients were calculated from

the nominal integral focusing strengths, k, for each quadrupole, with the intention

of creating two lattices of identical Twiss parameters. The gradients were input

with G4Beamline units (Tm−1, MVm−1) from:

GM =
kp

c× 10−9
, GE =

GMv

106
, (7.1)

where p is the momentum of the particles in the beam, v is the velocity of the

beam particles and c is the speed of light in vacuum. The same optically matched

Gaussian beam distribution, with εx,y = 2 mm mrad, was run through the test

lattices and the results were compared.

The resultant beta functions along the lattices are shown in Fig. 7.4. The two

sets of quadrupoles clearly have the same focusing effect on the beam, and despite

k not being fine tuned, both beams enter an almost identical FODO configuration.

Some small difference can be seen towards the end of the lattice, and is highlighted

in Fig. 7.5 which displays the horizontal phase space of the 1,000 particles tracked

at the end of both lattices. The small difference in particles’ positions could be

explained either by the different effective field shape encountered by the particles,

small rounding errors during the conversion from one gradient to the other, or a

combination of both. The difference does not significantly affect the characteristics
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Figure 7.4: Overlaying comparison of horizontal and vertical beta functions
for magnetic (MQ) and electrostatic (EQ) quadrupoles.

of the overall beam. Similarly, the longitudinal momentum spread is minimally

affected, as seen in Fig. 7.6.

Figure 7.5: Horizontal phase space plot for two beams after tracking through
magnetic and electrostatic versions of LNE00.

A model of the standard ELENA transport line quadrupole was created in CST

Studio [128] using the technical report from CERN’s Drawing Directory (CDD)

[129]. A range of voltages were applied to the electrodes to ascertain the field

gradient and inspect its shape throughout the quadrupole, seen in Figs. 7.7 & 7.8.
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Figure 7.6: Longitudinal momentum distribution of particles after tracking
through magnetic and electrostatic versions of LNE00.

Figure 7.7: An x-y plane cross section of the CST quadrupole model. Field
lines show the shape of the field and the electrodes and shielding are displayed

behind.

The electrostatic potential, V , at x = 20 mm and y = 20 mm was exported to be

used to characterise the fringe field shape. The custom equation in MATLAB’s

curve fitting tool was used to obtain 6 Enge function [130] coefficients, an. The

function has the form:

Enge(z) =
A

1 + exp(a1 + a2(z/D) + ...+ a6(z/D)5)
, (7.2)

where z is the distance perpendicular to the effective field boundary, D is the
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Figure 7.8: The field within the quadrupole along the y-z plane, offset by 14
mm in x.

Figure 7.9: Enge function fitted to the quadrupole fringe field generated in
CST.

full aperture of the element and A is a scaling factor. The line fit is displayed in

Fig. 7.9 and the coefficients may be found in Table 7.1. The coefficients were used

by G4Beamline to generate an accurate approximation of the fringe fields.

Table 7.1: Enge coefficients for Eq. 7.2.

A a1 a2 a3 a4 a5 a6
362.4 -0.7233 10.39 1.003 -6.39 0.8186 2.049
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7.5 Electrostatic Bending Elements

To model the electrostatic bending elements several approaches were tested and

compared. The first element to be simulated was the ejection kicker which, situated

within ELENA, is considered the start of the beamline. Its entrance is placed at

z = 100 mm with the injection beam beginning at z = 0 mm to allow space for

fringe field effects.

7.5.1 Field Expressions

It is possible to define an electrostatic or magnetic field based on either cartesian

or cyclindrical expressions. An electrostatic field, E, perpendicular to the centre

line of the electrodes was created using the following expressions:

Ex = E cos θ, Ey = 0, Ez = E sin θ (7.3)

Figure 7.10: G4Beamline screenshot showing field lines (green) approximat-
ing the fast extraction kicker using field expressions. White volumes represent

electrodes.

where θ is the angle between the centre line of the element and the z axis. Whilst

this approach is fast and simple, it serves as a placeholder for more realistic mod-

els. The expression doesn’t take into account fringe effects or the difference in
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separation of the electrodes from the entrance to the exit. Fig. 7.10 shows the

field lines in the simulation. As the field lines are always contained within a rect-

angular cuboid they cannot be made to fit the elements well and field leakage is

observed. For elements that bend through much larger angles, field lines would not

be perpendicular to s for the majority of the element. Regardless of the flaws, field

expressions are useful for obtaining a quick approximation of what field strength

to use and for tuning the fast deflectors in the beamline during the construction

phase of the simulation. As a placeholder for the large angle static deflectors, a

G4beamline magnetic sector bend was used during initial quadrupole placement.

7.5.2 Finite Element Methods

In order to realistically simulate the field distributions of the bending elements,

field expressions were replaced with externally generated field maps. The field

maps include realistic fringe fields plus field inhomogeneities due to the geometry

of electrode placement e.g. angled edges and tapering of electrodes in the fast

deflector or curved inner walls on the static deflector electrodes. G4beamline

allows the placement of field maps through the fieldmap command, provided the

map is in a grid format with a constant step in either {x, y, z} or {z, r}.

Using technical drawings from the CERN Drawing Directory, CDD [131], CAD

models of electrodes of the fast and two horizontal static deflector electrodes were

created in CST Studio. The models were used to generate field maps by applying

nominal operating voltages on the electrodes. The strengths of the fields could

later be scaled and adjusted during the tuning process. Examples of CST models

and placements in the beamline of the field maps may be found in Fig. 7.11. Tests

using field maps with resolutions (spacing between points) of 1, 3 and 5 mm found

a negligible difference in the resultant beam distribution between 1 and 3 mm and

a larger discrepancy when reducing resolution to 5 mm. 3 mm was chosen for the

majority of simulations as the best compromise between speed and accuracy. Later

the field maps could be replaced by those with 1 mm spacing for most realistic

final results.
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Figure 7.11: Full simulation of the transport line from ELENA to ALPHA.
The red lines represent antiproton tracks. Focusing and defocusing quadrupoles
are represented by red and blue elements respectively, and SEM profile monitor
vacuum tanks are represented as yellow objects. Deflectors created in CST are
shown as well as their placement within the beamline. Dark green disks are

virtual detectors for monitoring beam properties during tuning.

7.6 Input Beams

Input beams were generated using the Python beam generation script developed

for the scraper studies (Section 5.3.2) but modified for G4Beamline input format.

Input Twiss parameters were matched to those used for a MAD-X simulation

of the transport lines supplied by CERN. Macroparticles were generated for a

Gaussian beam with εx,y= 1 mm mrad and zero momentum spread for the testing

and tuning of the beamline optics.

In Chapter 6 the coasting ELENA beam was measured in the presence of elec-

tron cooling along the extraction plateau. Analysis using the two scan method

showed a beam with emittances εx =0.55 (±0.04) mm mrad and εy =0.53 (±0.01)

mm mrad. There did not appear to be any significant emittance-momentum off-

set correlation and the transverse beam distributions were well described by a

Gaussian distribution of the same input parameters.

After the point at which the measurements were taken, the beam is rebunched

and extracted from ELENA. Since rebunching using the RF systems tends to
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lead to a blow-up in transverse emittance and longitudinal momentum spread this

process is performed also in the presence of electron cooling. Previous studies

have shown that slow beam capture and compression, in around one second, with

electron cooling can keep the RMS momentum spread at a suitable level, with an

estimate of σδ = 4.2×10−4 [132].

Profile measurements taken with an SEM grid around 3 m along the transport

line to GBAR gave estimates for horizontal and vertical RMS beam widths of σx =

5 mm and σy = 2.5 mm respectively. Converting to emittance values using simply

ε = σ2/β, for βx = 6.5 m and βy = 3.1 m, gives extraction estimates of εx = 3.9

mm mrad and εy = 2 mm mrad. Although crudely calculated, these values are

currently the best estimate for post-extraction emittance. Coupled with scraper

measurements confirming cooling, showing no significant emittance-momentum

offset correlation and a distribution well approximated by a Gaussian profile they

form the basis of beam generation for beam quality studies. The RMS momentum

spread is set to 4.2 × 10−4. Distributions containing 10,000 macroparticles with

these properties and matched Twiss parameters were generated to determine beam

quality estimates at ALPHA.

7.7 Beamline Optics Tuning

The four different sections that make up the beamline were created and simulated

independently before being merged together to create the entire 37.4 m long line

to ALPHA. It was only after the separate sections were merged that the tuning

process could begin properly, since initial beam conditions at each section depend

on the end conditions of the previous.

7.7.1 Bending Elements

G4Beamline is capable of tuning bending elements and field maps by using a

reference particle repeatedly travelling from s0 to s1 to calculate and minimise

an expression at s1, based on some variable property, typically an element’s field

strength. For example, to tune the extraction kicker the reference particle passes
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through it, from s0 = 0 m to s1= 2 m, adjusting the strength of the field map

to minimise the x position of the particle at s1. When the output satisfies the

tolerance settings the field strength is saved.

This was done to set the strengths of all four bending elements to deflect the

reference particle by the correct angle. Each time this automated tuning was per-

formed, the reference particle was tracked from s = 0 m to ensure entry conditions

into the bending element take into account all preceding effects. Because the hor-

izontal static deflectors must achieve a range of bending angles for a single pair of

electrodes, it was not possible simultaneously satisfy x = 0 m and px/pz= 0 after

a particle passes through them, i.e. a beam leaves the deflector at some horizontal

displacement then passes the centre co-ordinate at s1 and continues diverging (in

the case of minimising x), or the beam will travel parallel to the centreline but at

some displacement in x (in the case of minimising px/pz). A very specific set of

electrodes would have to be designed for each angle for a chance to satisfy these

conditions. It is, however, necessary to satisfy both conditions at some point.

Figure 7.12: Closed orbit of the beam with correctors on and off. Vertical
black lines mark the different sections: LNE00, LNE01, LNE03, LNE04. The
closed orbit through deflectors appears unphysical (skewed ‘M’ shapes) due to
G4Beamline defining reference centre orbit, s at corners with 3 points, whilst

the beam travels in a smooth ark.

To achieve a centred and aligned beam after the two static deflectors, the con-

dition was set to minimise x-position at the entrance of the following quadrupole

assembly. All of the horizontal correctors in the quadrupole assemblies are set to

use a reference particle from s = 0 m to minimise px/pz 15 cm downstream from

the centre of the assembly. This resulted in beams from deflectors entering fol-

lowing quadrupole assemblies at x = 0 but with some small angle and then being

kicked to a non-divergent path, achieving the desired closed orbit of the beam.
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Figure 7.12 shows a comparison. The maximum mean horizontal position of the

beam, during FODO sections, without correctors is almost 20 mm and with is less

than 1 mm, showing how essential the proper operation of the correctors is. The

plot also highlights their necessity for delivering the beam on target.

7.7.2 Quadrupoles

MAD-X determined strength settings for the quadrupoles did not achieve similar

beta functions because of differences due to fringe fields in both the quadrupoles

and deflectors, and field inhomogeneities in field maps due to electrode geometry.

G4Beamline does not offer a built in quadrupole tuning module. A wrap-around

macro based on CERN’s function minimization tool MINUIT [133] is packaged

with the program, however it is not suitable for multi-variate and multi-objective

problems, e.g. tuning several quadrupoles to simultaneously satisfy various beta

function constraints.

Initially, manual quadrupole tuning was used to achieve stable beta func-

tions, based on the MAD-X configuration i.e. variations starting with MAD-X

quadrupole strengths to obtain similar beta functions. To aid in this (and to

generally increase the functionality of these simulations) a GUI interface was de-

veloped in MATLAB [134]. The interface, pictured in Fig. 7.13, is capable of

setting and changing input parameters such as individual quadrupole strengths,

executing the program and displaying resultant properties, such as beta functions

along the line, or 2D and 3D plots from 6D phase space information collected at

virtual detectors. Sliders at the bottom of the GUI may be changed to adjust any

input parameter of the simulation from within the source code. After re-running

simulations with new settings it is possible to plot with previous results for direct

comparisons.

Using this method a stable beta function configuration was achieved and sev-

eral particularly effective quadrupoles for influencing beta functions were identi-

fied. The specific quadrupoles are listed in Fig. A.11 which also includes their

positions along the line and their effects on beta functions. This information may
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Figure 7.13: Screenshot of the GUI developed for use in tuning and optimising
the beamline.

be especially useful during the set up of the transfer lines as it identifies useful

tuning knobs for specific beta adjustments.

Figure. 7.14 shows a comparison of the beta functions for both G4Beamline

and a MAD-X simulation based on that used by CERN during the design phase.

Generally, there is good agreement between the two simulations, but it is seen

that the final static bending element (at 31.5 m) appears to have different effects

on the properties of the beam, particularly for the vertical case. This is unusual

because the behaviour of the earlier static deflector around 18 m is much more

consistent between the simulations. It is asserted that the G4Beamline simulation

gives a more accurate description of the beam’s behaviour since the particles here

are tracked directly through a high resolution field map based on detailed electrode
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geometry, rather than beta functions computed from a Taylor map extracted from

a simplified electrode model. Indeed the extra step of Taylor map generation

increases the likelihood of a miscalculation, a postulation which is supported by

the agreement between the codes for the earlier static deflector.

Figure 7.14: Comparison of beta functions for the G4Beamline simulation
with the MAD-X values. Fast deflectors are positioned between pairs of green

vertical lines and static deflectors between red.

Because MATLAB can interface with G4Beamline, by executing scripts and

extracting results, it was possible to then automate this process using the available

machine learning libraries. This functionality was demonstrated by using a pattern

search algorithm [135] to minimise both beta functions (minimization objective:√
β2
x + β2

y) at the end of the transport line using four quadrupole strengths as

variables. Pattern search was chosen as it works well for non-smooth problems

at a smaller number of trials cost than some other non-smooth problem solving

techniques, such as annealing or a genetic algorithm. The algorithm did cause

larger beta functions earlier along the line to achieve its goal but due to strict

restraints imposed on possible quadrupole strength ranges, large emittance beams

would remain within the aperture. Fig. 7.15 shows the optical arrangement, with

changes in selected quadrupoles highlighted. The final beta functions have been

reduced by a factor of two, with a smaller reduction in RMS beam size due to

σRMS =
√
εβ. It is proposed that the beamline should be tuned to a stable

configuration as in Fig. 7.14 and, if desired, pushed to achieve smaller spot size

with the machine learning results as initial guide changes.

Some preliminary results using the paretosearch function [136], which is capable

of multi-objective analysis, have shown promise and further experimentation with

such techniques is ongoing. It is proposed that using G4Beamline simulations with
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Figure 7.15: Comparison of beta functions and RMS beam width (‘Simga’)
from the machine learning (‘G4ML’) results with the manually matched lattice.
Varied qaudrupoles’ centre positions are marked with green vertical lines next

to their names located on the bottom plot.

a MATLAB machine learning wrap around would be extremely beneficial in the

future design and optimisation of such transport lines. It is also noted that with

enough computing power, numerous quadrupole strengths and positions could be

set as variable parameters solving for a range of desired objectives, such as global

maximum betas or a flat beta function at the handover point, to achieve settings

for highly optimised beam transport. Such solutions would contain considerations

for the large array of effects that G4Beamline is capable of including, for example

the effects of stray magnetic fields on the beamline.

7.7.3 Dispersion

Unfortunately, G4Beamline is not equipped to either calculate or tune the disper-

sion along a beamline. This is an important flaw in the program when considering

its use in quickly calculating lattice properties. To automate a tuning process

which also includes dispersion would require extra macros running at least two

reference particles – one on-momentum reference particle and one with a momen-

tum offset, δ. The dispersion may then be calculated along the line using the
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particle’s horizontal shift due to it’s offset: Dx = ∆x
δ

. The results may then be

used as tuning parameters.

Figure 7.16: Horizontal offsets for particles of differing momentum offsets.
The bottom plot shows the (overlaying) dispersion calculated from the paths of
the four off-momentum particles. Fast deflectors are positioned between pairs

of green vertical lines and static deflectors between red.

This process was performed manually for 5 different particles to determine the

dispersion of the beta function-tuned lattice. The results may be seen in Fig. 7.16.

As expected, all 5 particles gave very similar estimations for the dispersion along

the line. Since there were some small differences, particles were run with positive

and negative values of momentum offset and the dispersion at the handover point

to ALPHA was calculated as a mean of the final values. It was given at Dx =

2.74 m and D′x, calculated from the gradient between the last two data points

(separated by 30 mm) was given as 2.25×10−4.

7.8 Beam Quality

The first beam quality tests were performed with a Gaussian beam of εx,y= 1 mm

mrad with no momentum spread using the lattice pictured in Fig. 7.14. 10,000

macroparticles were tracked along the beamline with a minimum and maximum

step size of 1 mm to ensure highest resolution results. Figure 7.17 shows a compar-

ison of the beam distributions at ejection and at the handover point to ALPHA. It
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can be seen that the beam has maintained its Gaussian distribution, and that it is

at a waist at the handover point. Roughly equal transverse beta values seen at the

handover point during the tuning phase are reflected in a circular x, y distribution.

The RMS beam widths at the handover point are σx = 1.6 mm, and σy = 1.7 mm

which fall within the target values of σx,y = 2 mm. Transverse emittances at the

start and end of the beamline were calculated from particle distributions collected

by virtual detectors and as expected a negligible change was observed.

The longitudinal momentum of the beam was affected along the transport line,

however. At the end of the beamline, the mean momentum offset of the entire

beam was δ = 6.4×10−3 with an RMS momentum spread of σδ = 1.2×10−4. The

momentum offset distribution of the particles can be seen in Fig. 7.18, and may be

well described by a Gaussian distribution. It is likely that this introduction of some

momentum offset has been caused by the use of electrostatic deflectors since their

effect is not necessarily perpendicular to a particle’s motion, i.e. ~F = q ~E+q~v× ~B.

In fact, the momentum increase can be seen incrementally at the end of each

section with values of δp = 2.6, 4.9, 4.9, 6.4 (×10−3) at the ends of LNE00,

LNE01, LNE03 and LNE04, respectively. No increase is seen at the end of LNE03

since the beam did not pass any deflectors during this section. Although the static

deflectors’ geometry is designed to minimise this effect, the results highlight this

important difference between electrostatic and magnetic bending elements.

Running the beam based on most recent measurements with εx,y = 3.9 and

2 mm mrad and σδ = 4.2 × 10−4 again did not show any emittance increase as

expected. The mean momentum offset was increased to the same offset as previ-

ously, 6.4×10−3, with an RMS momentum spread slightly increased from input to

σδ = 4.8× 10−4. With this particular beam it is not a significant change, but the

results suggest the beamline will be sensitive to low quality (high emittance, large

momentum spread) beams, larger momentum offsets lead to larger deviations in

closed orbit, for example. It is therefore essential to minimise dispersion along

the transport lines where possible and to maintain electron cooling during the

rebunching phase in order to ensure beams reach the handover point in the best

possible condition. RMS beam widths of σx = 3.3 mm and σy = 2.4 mm show that
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Figure 7.17: Transverse phase space plots for Gaussian beams of ε = 1 mm
mrad and σδ= 0 at the start (left) and end (right) of the transport line to

ALPHA.

at the end of commissioning in 2018 ELENA would already be delivering beams

to close to their target quality of 2 mm RMS widths with this beamline config-

uration, despite ongoing issues with RF and and beam blow up during bunching

before cooling.
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Figure 7.18: Momentum offset of 10,000 particles at the end of the beamline
for an input beam of εx = 1 mm mrad and σδ = 0.

It should be noted again the importance of the correctors along the beamline.

The beam spot size is increased slightly due to dispersion and RMS momentum

spread, however the centre spot of the beam is well focused around x, y = 0 due

to the correctors. If the correctors were not tuned using what is essentially a

feedback loop with the reference particle (which also underwent a momentum

offset increase), the momentum offset of the beam would cause a large horizontal

shift in the beam spot through dispersive effects. Fortunately, it has been shown

that this increase is consistent between shots and so the beamline can be corrected

accordingly.

7.9 Errors

Monte Carlo methods were used to determine error tolerances along the beamline.

Each effect investigated was the result of 20 random seed runs for 1,000 particles

each.

To investigate the effect of quadrupole position offsets all quadrupoles were

shifted independently. Because in practice the quadrupoles will not shift between
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shots the correctors were allowed to automatically optimise for a reference particle

before each random trial. This then simulates the best quality the beamline can

provide after commissioning with the position offsets in place.

Table 7.2: Effects of quadrupole position offsets on closed orbit of beams.

RMS Position Offset 0.5 mm 1 mm 2 mm
Mean maximum (absolute) x0 0.7 1.2 2.7
Standard Deviation 0.3 0.4 1.0

The only significant effect of this error was on the maximum deviation from

closed orbit along the beam line. To characterise the effect the average maximum

deviation was calculated for the 20 seeds at each different magnitude of position

offset error. The results are summarised in Table 7.2. To keep the maximum devi-

ation below 1 mm the quadrupoles should be installed to within 0.5 mm horizontal

precision. The effect on the accuracy of beam delivery to the target is unaffected

up to and above 2 mm thanks to the final sets of correctors.

Table 7.3: Effects of fast and static deflector position offsets on closed orbit
of beams.

RMS Position Offset 0.5 mm 1 mm 2 mm
Mean maximum (absolute) x0 0.7 1.4 2.2
Standard Deviation 0.4 0.8 1.2

Similarly to above, fast and static deflector offset trials were carried out with

automatic corrector tuning. Although there are only 2 fast and 2 static deflector

elements along the beamline compared with 26 quadrupoles, they obviously play

a much larger factor in the horizontal position of the beam and so errors had a

similar magnitude impact on the maximum closed orbit to those for the quadrupole

offsets. The results are summarised in Table 7.3 whilst Fig. 7.19 highlights how

closed orbit bumps are much more localised when considering deflector errors. It

appears the final static deflector is the most sensitive to position errors, likely due

to its much larger bending angle of 50.4° over a shorter distance than the earlier

33.16° counterpart. Considering that the large offsets following this element are in

the region where beta functions may be maximised, with the aim to then tightly

focus the beam to the handover point, its placement should be treated with most

care.
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Figure 7.19: Comparison of the effect on closed orbit when varying
quadrupoles and static deflectors randomly by RMS 1 mm for random 20 seeds.

Investigations into field uncertainties were carried out under the assumption

of shot to shot fluctuations on power sources. For this reason the correctors were

instead held at values optimised for ideal field strengths during all trial runs. The

effects of quadrupole and deflector field fluctuations were carried out indepen-

dently.

Figure 7.20: Beam size fluctuations based on quadrupole field strength errors.

Quadrupole fields were independently varied as a percentage of their original

strengths and the standard deviation in beam size at the end of the line was

calculated for 20 random seeds. The results are plotted in Fig. 7.20 with linear

fits to inspect the relationship between error magnitudes and effect for each plane.

Larger errors are observed vertically likely due to larger vertical beta functions at



168 Chapter 7 Transfer Lines

Figure 7.21: RMS beam widths along the transport line for field errors of
1.5%

the start of the line, as reflected in the beam widths early on, seen in Fig 7.21. An

upper tolerance limit of 0.7% was given for quadrupole field strength fluctuations

since beam spot size is affected up to around 10% in this error range. With very

stable power sources, it is unlikely that this effect will have a significant impact

on beam quality.

Deflector fields were also varied as a percentage of their original field strengths.

The dominant effect on the beam was on the closed orbit, and because correctors

were held at the same values to simulate shot-to-shot fluctuations this had a strong

impact beam position at the handover point. Figure 7.22 shows the results for the

horizontal position, since vertically the beam was affected negligibly. Again, a

simple line fit is included to give a guide reference for the magnitude of this effect.

To keep the beam on target to within 1 mm the field strengths should fluctuate

no more than 0.028%, a significantly lower tolerance limit than established for

quadrupole field fluctuations. This value serves to highlight the sensitivity issues

when dealing with such low energy (100 keV) beams. Figure 7.23 shows two

examples of the effect in action, with clear jumps in closed orbit offset after the

two static deflectors. Larger orbit bumps after the second static deflector are likely

caused by the cumulative impact of preceding errors and higher field strength to

accommodate the sharper bending angle.

7.10 Summary and Outlook

A highly detailed and realistic G4Beamline simulation of the transport line from

ELENA to ALPHA has been created with the aim of investigating and optimising
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Figure 7.22: Mean absolute horizontal position at target as a function of
deflector field strength fluctuations.

Figure 7.23: Horizontal closed orbit offsets as a function of deflector field
fluctuations. Fast deflectors are positioned between pairs of green vertical lines

and static deflectors between red.

beam quality at the handover point to the experiment. The source code of the

program was modified to include electrostatic quadrupoles and realistic fringe fields

based on a finite element model were implemented into the simulation with Enge

functions. Field maps for the four bending elements were also generated using

finite element methods and included in the simulation.

The field strengths of quadrupoles and bending elements were tuned to ensure

stable beta functions and closed orbits along the lattice. A GUI was developed to

maximise ease of use and productivity for current and future projects. Methods to

apply machine learning to further aid in the tuning process were introduced and
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it was suggested that these methods should be utilised in the future design and

optimisation of beam transport lines.

Beam quality at the end of the beamline was investigated, using both an ideal

beam and a beam based on the most recent observations with the scraper and

beam profile monitors during commissioning of ELENA in 2018. It was found

that an ideal beam with εx,y = 1 mm mrad and no momentum spread would

satisfy the spot size target of σx,y = 2 mm at the handover point. The more

recent beam measurements suggested that after the transport lines the spot size

would be larger than this target, although at the end of the commissioning period

before LS2 there is still work to do to optimise the electron cooler and further

reduce emittance during rebunching and extraction. It is also likely that the

machine learning techniques introduced here will be able to further reduce the

beta functions at the handover point without sacrificing beam quality along the

transport line. An increase in longitudinal momentum offset was observed, likely

introduced through the use of electrostatic bending elements. Whilst the change in

energy at the eV scale is not relevant to experiments, it could cause issues related

to dispersion along the beamline if unchecked and uncorrected for.

Monte Carlo methods were used to investigate error tolerances for this beam-

line. Upper tolerances of 0.5 mm for position offsets on both the quadrupoles

and deflectors were determined individually. It was shown that quadrupole field

strength fluctuations should not have any significant effect on beam quality, with a

tolerance limit of 0.7%. Fast and static deflector field errors were much more sen-

sitive with a value of 0.028% causing position fluctuations at the handover point

of around 1 mm.

With over two years at the time of writing until the first antiproton beams pass

through these transport lines, there is ample opportunity to expand this work.

For example, the simulation may be enlarged to include additional branches of the

transport lines and tailor beam parameters to individual experiments. The effects

of stray magnetic fields from experiments could be investigated using these simu-

lations, building upon previous studies [137], at higher resolution, to include the

updated position of AEGIS, investigate for different lines and perhaps determine
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a range of optimised parameter settings for when various magnets are in use by

the experiments.

Further error studies could include an investigation into thermomechanical

effects resulting from energy deposits on electrodes by importing the CAD models

developed into Ansys [138]. Field maps generated based on these results could be

implemented into the simulation. Ongoing work using a novel device to measure

the electrostatic field generated by a quadrupole from these beamlines is currently

underway. The resultant field distributions and errors could be easily included in

these simulations.

Finally, the methods and software developed during this study collectively form

a comprehensive simulation toolkit for the optimisation of future beam transport

lines. Ongoing work into the applications of machine learning with these tools

shows great promise for the future.
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Conclusions

8.1 Summary

Two new scraper algorithms for measuring the emittance of a beam in a region of

non-zero dispersion have been developed and presented. One algorithm is capable

of estimating the emittance and momentum spread of Gaussian beams through

the use of a fitting algorithm. The other, involving two scraper measurements

from opposing directions, can reconstruct the emittance for beams of arbitrary

transverse beam profiles for scraper blades situated in dispersive regions. These

algorithms improve greatly on existing techniques and go beyond the current state

of the art for emittance measurements by scraping [90,139].

The algorithms have been shown to work for a range of conditions and beam

effects using a combination of MAD-X and custom Python simulations. An er-

ror study showed that the algorithms perform within desired accuracy limits in

the presence of a number of errors. Error tolerances have been established for

these effects which include errors in beta function and dispersion estimations, and

fluctuations in closed orbit between measurements. Additionally, the two scan ar-

bitrary profile algorithm has been shown to accurately reconstruct an emittance-

momentum offset correlation coefficient with the simulations. This quantity may

be used to investigate effects introduced by the electron cooler, brought about for

example by a non-uniform electron velocity distribution.

173
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The two scan arbitrary profile algorithm was applied to scraper measurements

made during the intermediate and extraction energy plateaus of ELENA’s de-

celeration cycle. The practical considerations and methods necessary when using

the algorithm have been presented. Estimates for horizontal emittances were made

in combination with longitudinal momentum spread measurements using Schottky

data taken along the intermediate plateau. The vertical and horizontal emittances

were shown to decrease by 28 (±2) % and 81 (±10) % respectively, over 6.7 s sec-

onds of electron cooling along the intermediate plateau. At the extraction plateau

measurements were made without cooling and then at the same time along the

plateau after 3.9 seconds of cooling. Reductions of 79 (±2) % and 78 (±10) % were

observed for the vertical and horizontal emittances respectively, in the presence of

electron cooling. Comparisons with Gaussian distributions based on the measured

results suggested that indeed the beams had taken on non-Gaussian profiles during

cooling, although further measurements are required to ascertain the magnitude

of this effect.

The emittance-momentum offset correlation was calculated for the horizontal

plane and showed an increase from negative values after deceleration towards pos-

itive values during electron cooling. The method was benchmarked by similarly

calculating the quantities for the vertical plane where, because there is zero verti-

cal dispersion, no significant change was observed after cooling, as expected. The

results confirm that indeed the two scan algorithm is an appropriate choice when

measuring the beam quality in ELENA and other storage rings with non-zero

dispersion and non-Gaussian beam profiles.

Beam profile measurements at the end of the extraction plateau were used in

combination with profile measurements taken along the transport line to GBAR

to create a beam distribution approximating that after extraction from ELENA.

The distribution was tracked along a realistic 3D simulation of the 37.4 m long

beam transfer line from ELENA to the ALPHA experiment.

The simulation includes a G4Beamline source code modification to implement

electrostatic quadrupoles with realistic fringe fields. Four electrostatic bending

elements are implemented as field maps generated in CST from geometrically
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realistic electrodes. The closed orbit was tuned and stabilised through the use

of tuning macros and correctors. Quadrupole adjustments were made to achieve

stable beta functions along the transport line and machine learning methods have

been implemented for optimisation of beam quality at the handover point. Further

development of such techniques is ongoing.

Beam profiles based on an ideal beam and on the current beam quality at the

end of commissioning in 2018 were obtained at the end of the transfer line. For the

current beam quality upon extraction a slightly larger beam size than the target

value of σx,y = 2 mm would be received by ALPHA with this configuration of the

beamlines. For an ideal beam of εx,y = 1 mm mrad the current configuration of

the transport lines would satisfy the target beam size.

A range of systematic errors were investigated using Monte Carlo methods.

Error tolerances on the fields strengths and positions of all elements were obtained,

considering quadrupoles and bending elements separately. It was found that the

deflectors were much more sensitive to field fluctuations in terms of beam quality

at the handover point, with the final static deflector having the largest impact.

8.2 Outlook

Suggestions for further measurements and studies using the two scan scraper al-

gorithm in ELENA have been proposed. These include taking pairs of scraper

measurements in incremental time steps along each energy plateau to build up a

more continuous picture of the emittance evolution in the presence of electron cool-

ing. Similar measurements in the absence of cooling would allow an investigation

into the significance and phase space growth rates introduced by intra-beam scat-

tering. Additionally, the evolution of the emittance-momentum offset correlation

coefficient could be measured for a range of electron cooler settings, particularly

with changes to the density and radius of the electron beam.

Since the two new scraper algorithms have been shown to work through the

use of simulations and used practically with scraper data taken from ELENA, it is

proposed that they are suitable for use in other storage rings. Any machine with a

scraper and non-zero dispersion around the lattice or at the position of the scraper
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blades could well benefit from these algorithms. Although destructive to the beam,

the ability of the two scan algorithm to reconstruct emittance for arbitrary beam

distributions under these conditions is a significant improvement over the standard

scraping techniques used currently. Other less invasive techniques are currently

being investigated, for instance, supersonic gas jet monitors [140].

The methods developed during the creation of the electrostatic transport lines

simulation form a comprehensive simulation toolkit which would be beneficial to

the design and optimisation of future electrostatic facilities. The simulations may

be extended to include transport lines to the other experiments in the AD hall

and investigate further sources of error, such as the influence of stray magnetic

fields on beam stability. Ongoing work to improve optimisation results using

machine learning is expected to benefit beam quality at the handover points to all

experiments. Measurements of the quadrupole field distribution currently being

made using a novel electrostatic sensor [127] may be implemented into simulations,

further building upon realism and accuracy of results. Finally, the simulations

could be modified to extend beyond the interface with experiments, for example

to include the degrader foils at ALPHA and its antiproton trap. Such an extension

would allow a more comprehensive optimisation process and could further improve

antiproton trapping efficiencies.
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Appendix A

Figures

Figure A.1: Scintillator data gathered when the scraper stopped prematurely.
The remaining circulating beam can be seen as loss signal over the remaining

time of acquisition.
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Figure A.2: Gaussian fit to data for the “Top” direction at t =7.8 s.

Figure A.3: Gaussian fit to data for the “Bot” direction at t =7.8 s.
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Figure A.4: Gaussian fit to data for the “Top” direction at t =14.5 s.

Figure A.5: Gaussian fit to data for the “Bot” direction at t =14.5 s.
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Figure A.6: Horizontal scraper measurements at t = 7.8 s compared with a
simulation based on the results of the two scan algorithm with input σδ =0×10−3

resulting in εx = 4 mm mrad.

Figure A.7: Horizontal scraper measurements at t = 7.8 s compared with
a simulation based on the results of the two scan algorithm with input from

Schottky of σδ =1.1×10−3 resulting in εx = 3.6× 10−3 mm mrad.
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Figure A.8: Horizontal phase space plots for a simulation of scraping an
optically mismatched beam. The scraper is represented by a vertical red line
and the measured beam intensity as a function of scraper position is represented

by a curve of black dots.
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Figure A.9: CDFs for horizontal scraper measurements along the intermediate
cooling plateau. The right plot displays a zoom on the core region of the same

data.

Figure A.10: Gaussian fit to a horizontal scrape during the ejection plateau
with no electron cooling. Results showed an unacceptable uncertainty range for

the σδ estimate.
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Figure A.11: Effect of five different quadrupoles on the beta functions along
the transport lines to ALPHA. In the legend MX and PX refer to negative and

positive changes in quadrupole strength by X percent.
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de la luminosité avec application aux anneaux de stockage à intersections.”
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