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Abstract

In this article we make a brief review of the generalized Gaudin spin chains with [21] and without [18],
[19] external magnetic field in the simplest case of g = so(3) and provide the r-matrix interpretation and
generalization of the recent results of [38], [39], [40], on their exact solution. We present the classification
theorem for the r-matrices that are diagonal in the natural basis and for the “shift elements” playing the role
of the interaction strengths and external magnetic fields in the corresponding Gaudin-type models. We apply
these results to the description, classification and solution of BCS-Richardson-type models. In particular, we
introduce “elliptic” BCS-Richardson hamiltonian corresponding to non-skew-symmetric elliptic r-matrix
and calculate its spectrum. We show that the “closed” [23], [30] and the “open” [36] BCS-Richardson
hamiltonian of p + ip-type coincide with its trigonometric degenerations.
© 2019 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The Gaudin models [1] are quantum integrable models describing spin chain of N spins with
a long-range interaction among the spins in the chain that are characterized by quadratic spin
hamiltonians in which the interaction strengths r® (v, vp) of the componentwise spin-spin in-
teraction are the matrix elements of the classical r-matrix:
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3
rue o)=Y rP (. v)Xa ® Xp,
o,f=1

satisfying the classical Yang-Baxter equation [3] and skew-symmetry property r® (vi,v)) =
—r®B (v, »). The parameters vy, k € 1, N may be interpreted as the coordinates of the spins
of the chain, {X,, @ € 1, 3} is the basis of so(3).

A slight modification of the Gaudin model — the so-called Gaudin models in an external

magnetic field are characterized by linear-quadratic hamiltonians [7] where the coefficients of
3
the linear part of the spin hamiltonians are characterized by an element of so(3) c = > ¢x X4
a=1

belonging to the symmetry algebra of the classical r-matrix.

The revival of the interest to the Gaudin models has begun after the paper [11], where it
was shown that the famous Richardson model [2] of nuclear physics is a partial case of the
Gaudin model in the external magnetic field corresponding to the standard rational r-matrix.
Since that there have been a number of papers (see e.g. [13], [14], [15]) proposing to construct
the Richardson-type models with the help of some other skew-symmetric, in particular, trigono-
metric solutions of the usual classical Yang-Baxter equation. The review of this approach may be
found in [16]. Some applications of the algebra of Lax operators governed by skew-symmetric
r-matrices were considered also in [17].

In our papers [18], [19], [21] we have constructed classical and quantum generalizations
of Gaudin models with and without external magnetic field associated with general non-skew-
symmetric classical r-matrices satisfying, instead of the usual classical Yang-Baxter equation, the
so-called “permuted” or “generalized” classical Yang-Baxter equation [10]. The generalized clas-
sical Yang-Baxter equation possesses much more solutions than the usual classical Yang-Baxter
equations does and includes all non-degenerated skew-symmetric solutions of the classical Yang-
Baxter equations as a subset of its solutions. That is why the variety of the generalized Gaudin
models with or without external magnetic field is much wider than the variety of the usual Gaudin
models with or without external magnetic field. Observe that the role of the external magnetic
field is played by the so-called “shift elements” [21], [25] that are not in general connected with
the symmetries of the r-matrix. In the subsequent papers [22], [23], [24] we have proposed to
construct Richardson-type models with the help of our generalized Gaudin models in an ex-
ternal magnetic field. In such a way we have constructed, in particular, the so-called p + ip
BCS-Richardson model [23], [24]. We remark, that the p + ip BCS-Richardson model was in-
dependently constructed in [30] by other method.

The aim of the present article is threefold. The first aim is connected with the recent inter-
est in the generalized Gaudin models (see e.g. [36-38], [39,40], [47], [51]). In the connection
with this interest it becomes necessary to make more order in the subject, in particular to
give a classification of the most physically important class of the non-skew-symmetric classi-

cal r-matrices, namely, diagonal in the standard basis classical r-matrices having the following
3
form: r(u,v) = > ry(u, v) Xy ® Xy In this paper we show that there are only four classes of
a=1
non-equivalent non-degenerated non-skew-symmetric so(3) ® so(3)-valued classical 7-matrices

diagonal in the standard basis. They are:

1. “Shifted” rational r-matrices [22],
2. “Shifted” trigonometric r-matrices [22],
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3. Non-skew-symmetric elliptic 7-matrix [18],
4. Skew-symmetric elliptic r-matrix of Sklyanin [3].

Observe that from this result follows that there are only two classes of the Cartan-invariant
r-matrices, namely the “shifted” rational and “shifted” trigonometric r-matrices. In the present
paper we also classify the shift elements having physical interpretations of the integrable mag-
netic fields in the corresponding generalized Gaudin models which are important in the BCS-
Richardson theory.

The second aim of the present article is to obtain some new interesting generalizations of the
BCS-Richardson model. By the virtue of the above classification there are only four possibilities
for the BCS-Richardson model associated with the “diagonal” r-matrices. The first two of them
— shifted rational and shifted trigonometric cases have been in details considered in our previous
paper [22]. The fourth — skew-symmetric elliptic case is not useful for the BCS-type models —
the corresponding r-matrix possesses no non-trivial shift elements and no non-trivial integrable
magnetic fields. It is, hence, left to analyze the third — non-skew-symmetric elliptic case. The
associated generalized Gaudin hamiltonians in the external magnetic field read as follows [18],
[19], [21], [25], [26]:

Z Z L Ja ok TV Ty a0 g

+
k=1,k#l a=1 (Vg = vi)
3 . . . . .
+ ja) Qv + jp + jy) — (v + +0) sty e
+Z (v + Jja) vy ],1.3 Jy) .(Vl ],3.)(1)1 ])/)Sg)sg)_i_

= AV Jay/Vi+ Jpy/Vi+ dy
3
Z SO 1eT,N, (1)

-1 vV + Ja
where S}El) is a-th component of spin operator living in the site v/, j, o € I, 3 are the branching
points of the elliptic curve and the representation of the spin algebra is arbitrary. The hamiltonians
(1) mutually commute for all values of ¢y, j, and v; (here v; # vg, vj # —jo, k, 1 €1, N, @ €
1,3):

(A, H;]=0.

The corresponding “elliptic” BCS-Richardson hamiltonian is constructed from (1) by the

fermionization of the spin operators 3’3) using the combination of the hamiltonians (1) in the
limit j3 — oo. It has (up to the identity operator) the following simple form:

N N
3 il i T
Hpcs = Z €1.1€21(¢; o Cje +Cj Cje) + 8 Z (€1,1€1,k + €2,1€2,0)€; 1Cp ClieCle
I=1 k=1 k#l
N
oo
5 Z (€2,1€2, 1 — €1,1€1 k)(Ck Cr.eCl. e’cl ¢ T Checrecrecre), (2)
kI=1,kl

1
where €11 = /v + j1, €21 = +/VI + j2, § = — and we have put for simplicity c; = c; = 0. Here
C3

cie,, cje»i,j€1,N, € € €+, — are standard fermion creation-annihilation operators.
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The important problem is diagonalization of the generalized Gaudin and BCS hamiltonians,
in particular, of the hamiltonians (1), (2). There are two standard methods used in order to find
the spectrum of the Gaudin-type hamiltonians: algebraic Bethe ansatz and quantum separation of
variables method [7]. The algebraic Bethe ansatz technique for the case of non-skew-symmetric
classical 7-matrices and Lie algebra so(3) was developed in our papers [20], [22]. Unfortunately
its standard form works only for the Cartan-invariant classical »-matrices [20]. The standard form
of the separation of variables method [7] works for a wider [29], but yet restricted class of s/(2) ®
s1(2) ~ so(3) ® so(3)-valued classical r-matrices that does not contain elliptic r-matrices. For
the skew-symmetric elliptic r-matrix quantum separation of variables was performed in the paper
[12]. The variable separation for the non-skew-symmetric elliptic r-matrix and the corresponding
integrable models was performed in [27], [28] in the classical case. In the quantum case it is still
missing.

A simple alternative approach to the diagonalization problem of the generalized Gaudin mod-
els has been proposed in recent papers [38], [39], [40]. Its idea goes back to the papers [43],
[44], [45] and (in a certain sense) further to the paper [35]. The approach works in the simplest
case when the values of all spin in the chain is equal to one-half and is based on the additional
quadratic identities satisfied in this case by quantum Gaudin-type hamiltonians. So the third aim
of the present article is to give the r-matrix interpretation and generalization of the above method.
We show that this method works when the corresponding r-matrix satisfies the following condi-
tions:

(r13(u, w), r23(v, w))z = f (v, wria(u, v) + f(u, w)rz1 (v, u), (3a)
[[r12(u, v), ri2(u, V)]] = =2 f (u, V)r21 (v, u), (3b)

where (, )3 is a scalar product in the third tensor component, the bilinear operation [[ , ]]
denotes simultaneous commutator in the both components of the tensor product, f(u,v) is a

3 3
scalar function, ri2(u, v) = Y rPw, V)Xo @ Xg®@ L, rizw,w)= Y rPw, w)X, ®1®
ao,B=1 o,B=1

X etc.

We show, that among the “diagonal” r-matrices the conditions (3) are satisfied by skew-
symmetric rational r-matrix, two equivalent non-skew-symmetric trigonometric r-matrices
and non-skew-symmetric elliptic r-matrix. We call the corresponding r-matrices non-skew-
symmetric triad. It seems to be more important for the applications than the standard skew-
symmetric triad of XXX, XXZ and XYZ Gaudin models. We show also that the method of
“quadratic identities” can be prolonged onto the Cartan-invariant r-matrices not satisfying the
conditions (3) if one includes into these identities also the number of particle operator M.

We apply the results on the quadratic identities in order to find the spectra of the hamilto-
nian (2). The eigenvalues of the hamiltonian (2) are given by the formula:

3
hpes=—g v+ /v + iahi.
=1

_L
where h; are (up to the constants) eigenvalues of the “re-scaled” lim j, 2 H; elliptic Gaudin-
J3—> 00

type hamiltonians H given by (1) in the representation of the spin algebra so(3)®"V with the

highest wight A = (%, %, s %). The eigenvalues h; satisfy the following system of quadratic
equations:
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(v — v)?
replacing the (yet unknown in this case) set of Bethe equations.

Let us also remark that the discussed quadratic identities may be used in the proof of the
completeness of the set of Bethe vectors (if known) (see [46] for the case of standard rational
r-matrix).

The structure of this paper is the following: in the second section we remind the basic facts
about the classical r-matrices with spectral parameters and perform the classification of the
“diagonal” classical r-matrices and their shift elements. In the third section we review the gen-
eralized Gaudin models with and without external magnetic field and describe in details the
generalized Gaudin models connected with the diagonal r-matrices. In the section four we ob-
tain the quadratic identities on the generalized Gaudin hamiltonians and derive the conditions (3).
In the fifth section we apply the obtained results to the BCS-Richardson models. At last in the
sixth section we conclude and discuss the ongoing problems.

), lel,N 4

2. Classical r-matrices with spectral parameters
2.1. Generalities

Let g = so(3) be the Lie algebra of the three dimensional rotation group over C. Let X, @ €
1, 3 be a standard basis in so(3) =~ s/(2) with the commutation relations:

[Xo, Xpgl=2i€ap, Xy . 5)
We will use the following definition [8], [9], [10]:

Definition 1. A function of two complex variables r(u1, u2) with values in so(3) ® so(3) is
called a classical r-matrix if it satisfies the generalized classical Yang-Baxter equation:

[ri2Qur, uz), ri3(ur, u3)] = [ra3(ua, uz), riz(uy, uz)] — [r3z(us, uz2), riz(uy, us)l, (6)

3 3
where rip(ui,u2) = Y. rPui,u)Xoe®@Xp® 1, riz(ur uz) = Y. r*(ur,u3) X, ®1® Xp,
o,f=1 o,f=1
etc. and r®P (u, v) are matrix elements of the r-matrix r(u, v).

Remark 1. In the case of “skew-symmetric” r-matrices, i.e. when r12(u1, up) = —ra1(uz, up) the
generalized classical Yang-Baxter equation reduces to the usual classical Yang-Baxter equation:

[ri2Quy, uz), riz(ur, uz)l = [r3(ua, uz), rio(uy, u2)l + [r23(uz, uz), riz(uy, uz)l. @)

The important notion is a notion of the equivalence of the r-matrices. There are three classes
of the equivalence transformations in the space of solutions of the equation (6). They are:
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1) “gauge transformations”: ri2(u1, u2) — Adgu;) ® Adgu,)ri2(ui, uz).
2) “re-parametrizations”: ri2(u1, u2) — ri2(A1, A2), where uy = u1(ry), us = uaz(A).
3) “rescalings™: r12(u1, u2) — f(u2)ri2(ur, uz), where f(u2) is an arbitrary function.

Remark 2. Note that integrable systems associated with equivalent r-matrices are equivalent.

Definition 2. The r-matrix r(u, v) is called non-degenerated in an open region U if there is no
such a subalgebra g’ C g and subspace g’ C g that r(u,v) € ¢ ® g or r(u,v) € g ® g” for all
u,vel.

We will also use the following definition [26]:

Definition 3. A point u = vy or v = vy, vg ¢ U is called a “special point” of the classical 7-matrix
if one of the following two conditions is satisfied:

(i) r(vo, v) takes the values in g, ® g forall v e U,
(ii) r(u, vo) takes the values in g ® g forallu € U,

where g, is a subalgebra and g is a subspace of g not coinciding with g itself.

Hereafter we will additionally assume that the function r(u1, u2) is meromorphic in an open
region U x U C C? and possesses the following decomposition:

r(uy,up) = + ro(uy, uz), ¥

where ro(u1, uz) is a holomorphic function with the values in so(3) ® so(3), 2 is a tensor
Casimir:

3
Q:ZXaQbXa.

a=1

Remark 3. Observe that the classical »-matrices satisfying (8) are non-degenerate in the sense
of the Definition 2. Moreover, for skew-symmetric r-matrices the regularity property (8) in an
open region U is equivalent to the non-degeneracy in this region in the sense of the Definition 2

(51

Definition 4. A subalgebra h C g = so(3) is called a symmetry algebra of the r-matrix if each
X e satisfies the following equation:

[ro(,v),X®1+1® X]=0. 9

Definition 5. The r-matrix r(u, v) is called to be h-invariant if its symmetry algebra coincides
with h. In particular, if f is a Cartan subalgebra, then the r-matrix is called to be Cartan-invariant.

‘We will need one more definition:
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3
Definition 6. The so(3)-valued function c(#) = Y ¢4 (1) X, is called a generalized shift element

a=1
(or simply ““a shift element”) if it satisfies the following equation:
[ri2(u, v), c(u) @ 11— [r21(v, u), 1 ® c(v)] =0. (10)

Remark 4. The non-trivial solutions of the equation (10) not always exist. Their existence is
connected with the existence of the special points of the classical r-matrices r(u, v) [25], [26].
For skew-symmetric r-matrices any element of its symmetry algebra (if it exists) is a constant
shift element. The shift elements (if exist) constitute a linear space.

Finally, the last definition we need in this section is the following one:

Definition 7. The classical so(3) ® so(3)-valued r-matrix is so-called to be “diagonal” in the
natural basis if it has the following form:

3
r,v) =Y ra(u,v)Xa ® Xq. (11)

a=1

Remark 5. Observe that standard skew-symmetric elliptic, trigonometric and rational »-matrices
are diagonal in the natural basis of so(3).

2.2. Classification of the diagonal r-matrices

Without loss of generality we will hereafter assume that Cartan subalgebra of h C so(3)
is spanned over the element X3. The diagonal r-matrices are then divided into two sub-
classes: Cartan-invariant “partially anisotropic” r-matrices and non-Cartan-invariant “com-
pletely anisotropic” r-matrices.

The following Theorem holds true:

Theorem 2.1. (i) Up to the equivalence Cartan-invariant r-matrices possessing the decomposi-
tion (8) are divided into two subclasses:
a) “Shifted rational” r-matrices:

3
X X
run =Y 228 i@ xs, Y cC, (12)
u—v
a=1
b) “Shifted trigonometric” r-matrices

1 u? + 2

r(u,v) = (Xl®X1+X2®X2)+(CO+Em)X3®X3» Yeo C C.

uv
W? —v?)
13)

(ii) Up to equivalence there are only two Cartan non-invariant r-matrices with decomposition
(8):
a) Non-skew-symmetric elliptic r-matrix of the following form [18], [19], [27]:

3
=3 Y X, @ X, (14)

a=l1
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where ui =u+ jo vgl =v+ jo, @ € 1,3 and parameters j, are arbitrary.

b) Skew-symmetric elliptic r-matrix of the following form [3]:
dn(u —v) n(u —v)

1 c
r,v)=——X19X1+ ——X2 @ Xo+ ——— X3 ® X3. (15)
sn(u —v) sn(u —v) sn(u —v)

Idea of the Proof!. The proof of the item (i) of the Theorem repeats in its major part the lines of
the proof of a Theorem 4.1 from [23], where a bit more general gl/(2) case was considered. The
idea of the proof is that the generalized Yang-Baxter equation in the component form is reduced
to two non-equivalent quadratic equations on the functions r3(u, v) and ry(u,v) = r2(u, v),
which, after the usage of the regularity condition (8) are reduced to one functional equation
for the functions F(u) and f(u), where r3(u, v) = u]Tv + F(v), ri(u,v) = ﬁ {,Eﬁ; (see [23]
for the details). It is then shown that the corresponding functional equation has two types of
non-equivalent solutions, leading (after the equivalence transformation) to the r-matrices (12)
and (13).

The statement of the item (ii) of the Theorem follows already from the results of [6] stating
that there are only two completely anisotropic integrable models on so(3)* @ so(3)* with the
diagonal in the natural basis quadratic hamiltonians. They are Shottky-Frahm and Steklov models

that correspond to the cases b) and a) of the item (ii).

Remark 6. We call the r-matrix (14) to be elliptic because it possesses parametrization in terms
of the elliptic Jacobi functions and j, are interpreted as the branching points of the elliptic curve:

Y2w) = (4 )+ j2)u+ j3).

Nevertheless, the irrational parametrization used in this article is more convenient for the usage.
The above Theorem has the following important Corollary:

Corollary 2.1. Up to the equivalence there exist only one so(3)-invariant classical r-matrix
possessing the decomposition (8), namely the standard rational r-matrix, i.e. the r-matrix (12)
with cg = 0.

From this Corollary follows, in particular, that the r-matrix implicitly present in the paper
[34] is equivalent to the rational one and the corresponding Gaudin-type model is also equivalent
to the standard rational Gaudin model.

Remark 7. Note, that in the skew-symmetric case all non-degenerated classical r-matrices are
classified [4]. They include three above diagonal r-matrices, as well as two non-diagonal rational
and one non-diagonal trigonometric r-matrix [4].

Remark 8. Observe that the families of the r-matrices (12), (13) have a skew-symmetric point
co = 0. As it is easy to show, after re-parametrization they coincide with the rational and trigono-
metric degeneration of skew-symmetric elliptic 7-matrix of Sklyanin. Together with the elliptic
r-matrix of Sklyanin they produce a famous friad of XXX, XXZ and XYZ Gaudin models.

1 The details of the proof will be published elsewhere.
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Like the elliptic »-matrix of Sklyanin (15) the r-matrix (14) defines a triad of non-skew-
symmetric classical r-matrices: the r-matrix (14) itself, its trigonometric and rational degenera-
tions.

The following Proposition holds true:

Proposition 2.1. (i) In the completely isotropic case j; = j, i € 1,3 the r-matrix (14) is equiva-
lent to the standard rational r-matrix, i.e. the r-matrix (12) with cy = 0.

(ii) In the partially isotropic case ji = j» = j, ja # j the r-matrix (14) is equivalent to the
r-matrix (13) with cy = :I:%.

Proof. The Proposition is proven by the direct calculation. The item (i) is proven by the multipli-

1—
cation of the r-matrix (14) by /v + j and by the change of the spectral parameters: u — el ,
u

1= vi
v— _v] To prove the item (ii) we at first observe that by the shift of the spectral parameter
v

u— u—j,v— v— j we can make j; and j, = j; to be zero. Then multiplying the r-matrix

T . .

by 7]3 and changing the spectral parameters: u — J3 , U —> 3 we come to the
J3 u?—1 v2—1

r-matrix (12) with ¢g = —%. Finally, the r-matrices (12) with cp = % and co = —% are equiva-

lent. The equivalence is achieved by the substitution u — u~!, v — v~

Proposition is proven.

Remark 9. Observe, that the rational »-matrix (12) with cp = 0 can be more simply obtained
from the r-matrix (14) dividing it by 4/1 j2j3 and taking the limit ji, j», j3 — 0. The r-matrix
equivalent to the shifted trigonometric 7-matrix (12) with co = :l:% is obtained from the r-matrix
(14) dividing it by 4/ 3, taking the limit j3 — 0 and putting j; = j» = j. We will use this con-
nection while considering the corresponding BCS hamiltonians.

2.3. Shift elements for the diagonal r-matrices

Let us now explicitly describe all possible shift elements for the diagonal classical r-matrices
classified in the Theorem 2.1. They will be necessary for the construction of “integrable magnetic
fields” in the corresponding Gaudin-type models.

The following Proposition holds true:

Proposition 2.2. The generic shift elements for diagonal so(3) ® so(3)-valued r-matrices are
(i) for the “shifted rational” r-matrices:
if co # 0 then

c(u) =c3X3,

if co =0 then

3
c(u):anXa. (16)
a=1

(ii) for the “shifted trigonometric” r-matrices:
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if co # x4 then
c(u) = c3X3,
if co= j:% then
cu) =c3X3 +uF' (2X2 + c1X)). (17)

(iii) for the non-skew-symmetric elliptic r-matrix:

3
c(u):Z'i—a, where ui:u—i—ja, (18)

a=1 ¢
(iv) for the skew-symmetric elliptic r-matrix of Sklyanin there is no non-trivial shift elements.

The constants cq, o € 1,3 in the formulae (16), (17), (18) are arbitrary.

Sketch of the Proof. The proof of the Proposition follows from the results of [25], [26]. In more
details, the corresponding spaces of shift elements are identified with the dual spaces of the quo-
tient of r-matrix algebras 5“/0v(3):0 / [;0\/(3):0’ so/@/):()], where vy is a special point of the classical
r-matrix. The shifted rational r-matrix has only one special point # = co. Depending on the
value of ¢, the corresponding dual of the quotient space coincide either with the Cartan subal-
gebra or with so(3) itself. The shifted trigonometric r-matrix has two special points u = 0, co.
Depending on the value of cg, the corresponding dual of the quotient space coincide either with
the Cartan subalgebra or contains it, is three dimensional and its elements are described by the
formula (17) [25]. Non-skew-symmetric elliptic »-matrix (14) has three special points u = — j,
a € 1, 3 and each of the corresponding quotient spaces is one-dimensional [25]. In the result the
corresponding generic shift element has the form (18). At last, elliptic r-matrix of Sklyanin has
no special points, and, hence, no shift elements.

Remark 10. Observe, that only the r-matrices of the described above non-skew-symmetric triad
possess three-dimensional spaces of shift elements. They are special in this, and in some other
senses too. In particular, they satisfy the additional equalities (3), which are useful in the diago-
nalization of the corresponding Gaudin-type hamiltonians.

3. Classical r-matrices and Gaudin-type models
3.1. Generalized Gaudin hamiltonians

Let Sék), a€1,3, kel, N be linear operators acting in some linear space that constitute a
Lie algebra isomorphic to so(3)®" with the commutation relations:

(8. 8571 = 26" €0, S (19)

The operator S‘O(lk) is an «-component of the spin operator living in the k-site of the spin chain.

Let vk, vi # v, k,I =1, ..., N be some fixed points on the complex plane belonging to the
open region U such that in U x U the r-matrix r(u, v) possesses the decomposition (8). Using
this data, arbitrary non-skew-symmetric r-matrix satisfying (6) and possessing the decomposi-
tion (8) we have introduced in the papers [18], [19] the generalized Gaudin hamiltonians®:

2 The generalized Gaudin hamiltonians are written also for arbitrary simple (reductive) Lie algebra g [18], [19].
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N 3 3
A ~ ~ 1 " R R R
! i i
Hi= 3 3 rPeewmdP8 + 5 30 il oSO8+ 8050 o)
k=1,k#l o,f=1 a,p=1

In the partial case of skew-symmetric r-matrices the second summand in the rhs of (20) disap-
pears and hamiltonian (20) turns into the ordinary Gaudin hamiltonian. Like the ordinary Gaudin
hamiltonians, the hamiltonians (20) mutually commute in arbitrary representation of spin algebra
50(3)®N (see [19] for the proof), defining in such a way quantum a integrable system.

The evident difference of the hamiltonians (20) from the standard Gaudin hamiltonians of [1]
is in the presence in them of the additional second “self-interaction” term. It is interesting to
remark, that there is an example when this second term disappears:

Example 1. Let us consider the simplest possible case when the representation of the spin algebra
50(3)®V is given by the Pauli matrices (all representation with the spin equal to one-half):

S’g):oo(f), ael,3, lel,N.

In this case due to the existence of the additional associative relations among the Pauli matrices:

(TCEI)O’;}I) = ieaﬂyd)gl) + 5aﬂld,

the hamiltonians (20) acquire (up to the identity operator) the following exactly Gaudin-like
form:

N 3
y ]
H= Y > rfu,molof. 1)
k=1,k#l a,f=1

Nevertheless, the hamiltonians (21) do not coincide with the standard Gaudin hamiltonians: they
have in general non-skew-symmetric interaction strengths r® (v, vy).

Remark 11. Some sporadic particular examples of the hamiltonians (20) that generalize standard
Gaudin hamiltonians have appeared in the literature also previously (mainly) in the context of
reflection equation algebras (see [31-33]). Nevertheless, until our papers [18], [19] their connec-
tion with the solutions of the equation (6) was neither observed nor understood.

3.2. Generalized Gaudin hamiltonians in a magnetic field
For the physical applications it is usually necessary to modify the hamiltonians (20) adding
to it a linear term. How to do this in general without spoiling the integrability was explained
3
in our paper [21]. It was shown that if the algebra-valued function c(u) = Y co(u)X, is a

a=1
“generalized shift element”, i.e. satisfies the equation (10) then the quantum hamiltonians of the

following form®:

N 3 3
A ~ ~ 1 n R R .
! 1 1
A= 30 30 r P wSP8P + 5 37 il P8 + 8050
k=1k#l a,f=1 a,p=1

3 The generalized Gaudin hamiltonians in magnetic field are written for arbitrary simple (reductive) Lie algebra [21].
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3
+ Z Ca (w)S’S) (22)

a=1

mutually commute in the arbitrary representation of the Lie algebra so(3)®". The hamiltonians
(22) are the generalized Gaudin hamiltonians in the external magnetic field, where the role of ex-
ternal (non-homogeneous in general) magnetic field is played by generalized shift element c(u).

Example 2. Let us consider the simplest possible case when the representation of the Lie algebra
s0(3)®V is given by the Pauli matrices (all representation with the spin %):

SO =6 «el,3,1€T,N.

In this case the hamiltonians (22) acquire (up to the identity operator) the Gaudin-like form:

Z Z (e, oo <1>+an(vz>a<” (23)

k=1,ksl o, f=1
Remark 12. Observe, that the hamiltonians (23) differ from the hamiltonians (22) by the constant

3
term proportional to the identity operator: ) r§* (v, v)Id. Their spectra also differ by this
a=1
term.

In the case of diagonal r-matrices generalized Gaudin hamiltonians in magnetic field are
simpler:

N 3
= Y Y rauw)SPSY + - Z ror ) (S +an(w)5(” (24)
k=1,k#l a=1 a=1

Example 3. In the case when the representation of the spin algebra so(3)®" is given by the Pauli
matrices the hamiltonians (24) have the form:

Z Z re(, v)o Mo (l)+an(w)0(” (25)

k=1,k#l o, p=1

This partial case of the hamiltonians (22) was considered in the papers [39], [40]. The coinci-
dence of the hamiltonian (25) with that of [39], [40] is achieved by a substitution: ry (g, V) =
le, co(v1) = Bla-

3.3. “Diagonal” Gaudin-type hamiltonians: case by case study

Having at hand the classification of the diagonal so(3) ® so(3) valued r-matrices we can (up
to the equivalence) explicitly describe all the corresponding Gaudin-type hamiltonians with and
without external magnetic field, i.e. specify the hamiltonians (24) for all the above four classes
of r-matrices.

3.3.1. Shifted rational case
The Gaudin Hamiltonians in magnetic field corresponding to the r-matrix (13) have the form:

SD S e

k=1,kl a=1

§O8D 4 ¢ Zs<"’s<”+c SV 1eT,N. (26)

(Vk —v) ¢ P
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Due to their U (1) symmetry they commute with the “global spin operator” M;:
N
=Y s 27)

With the help of this operator one can write the Hamiltonian (26) as follows:
H = A + (coM3 + )8, 1 e TN.

Here I:Il’“’ is a standard rational Gaudin hamiltonian without external magnetic field correspond-
ing to the choice ¢y =0, ¢c3 = 0 in the hamiltonian (26). By the other words, the appearance
of ¢o in the r-matrix leads to the appearance of the “dynamical” external magnetic field in the
corresponding rational Gaudin hamiltonian. The operator Ms is connected with H; as follows:
N
> " H =coM3 + c3M;. (28)
=1
In the case cop = 0 we obtain standard rational Gaudin hamiltonians in the constant magnetic
field:

3
——§Wgh 4 Zc SO 1eT1,N.

a=1

N3
k:lzqélo; (Vk —v)

It is Cartan-invariant with respect to the chosen Cartan subalgebra only in the case c; = ¢ =0.

3.3.2. Shifted trigonometric case
The Gaudin Hamiltonians in magnetic field corresponding to the r-matrix (13) in the case
co # :tl have the form:

Vv, —|— ~
Z ( k Vi (S(k)S(l) + S(k)S(l)) + l k Sgk)Sél)) +e Z S(k)S(l) + C3S§l)
k=1 k= vg —vf Vi = k=1
(29)
Due to their U (1) symmetry they commute with the “global spin operator” (27). Similar to the
rational case one can write the Hamiltonian (29) as follows:

A=A+ (coM3 + )8, 1eT,N. (30)

Here H;”g is a standard “skew-symmetric” trigonometric Gaudin hamiltonian without external

magnetic field corresponding to c¢p = 0, ¢3 = 0 in the formula (29) and Ms is a global spin
operator. By the virtue of (30) the relation (28) holds true also in this case.

In the case cp = — l the Gaudin-type hamiltonians in external magnetic field have the form:
Z ( ViV 2 (S(k)S(l) S(k) S(l)) 41 S;k) Sél)) (Svgl))z + C3.§§l)
k=1 kA k -
—i—vl(CzSé)-i-Clsél)). 31

Such the Gaudin-type model with non-diagonal magnetic field has been studied in the papers
[36], [38], [42]. For the case of the diagonal magnetic field they have been studied previously
in [24].
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Remark 13. One can connect arbitrary hamiltonian of the “shifted trigonometric series” also
with the hamiltonian (29). In general hamiltonians f]l of the “shifted series” differ from each
other by the “dynamical magnetic field term” proportional to M3 3’;1). By other words the models
associated with the r-matrices that are connected with each other by the tensorial shift co X3 ® X3
are very close, but non-equivalent. They have different (although similar) algebras of integrals,
different (although similar) equations for the spectra, may have different spaces of shift elements
(admissible magnetic field) etc.

3.3.3. Non-skew-symmetric elliptic case
Let us consider the most interesting non-skew-symmetric elliptic case. The direct calculation
gives:

Z \/Vl+]a\/vk+]ﬁ\/vk+]y S(k)S(l)
k=1 k£l

1 (v —vp)
o=
3 . . . . . 3
" Z v + jou) Qv + 1{3 +Jy) _ (v + ]ﬂ.)(Vl +Jy) S,g)s,([) Z S(l) (32)
4V + Ja/vi + Js/viF y — Vit Ja
In the case when Sfj) (l) ,ael,3,1el,N (up to identity operator) it is simplified to the
form:
Z Z\/Vl+]a\/Vk+]ﬂ\/Uk+]y 103) (1)+Z (l) (33)
(Ve —vr) \/w + Jjo

k=1,ksl a=1

3.3.4. Skew-symmetric elliptic case
Let us finally briefly consider the case of the elliptic skew-symmetric r-matrix. The standard
elliptic “X’YZ” Gaudin hamiltonians correspond to it:

al 1 dn(vg —v) en(vg — vy)

2 o) ol - o) ol - k) o

B= Y (——8§P80 + ————=8P8P + —= 3050 39
sn(vy —vp) sn(vp —vp) sn(vg — vl)

k=1,k1

Unfortunately elliptic “XYZ” Gaudin hamiltonians (34) will be of no use for us because they do
not have integrable magnetic fields and do not have several other good properties, in particular,
they do not satisfy the additional quadratic identities that will be considered in the next section.

4. Additional identities among the Gaudin-type integrals

In this section we will describe additional identities existing for some of the Gaudin-type
hamiltonians (20) when the values of all spin in the chain are equal to one-half. They are used
in order to find the quadratic identities for the eigenvalues of the Gaudin-type hamiltonians
(20). These equations replace the famous Bethe equations which are known not for all classi-
cal r-matrices.

4.1. The case of the generalized Gaudin models

The following Proposition holds true:
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Proposition 4.1. Let the classical r-matrix r (u, v) satisfies the following two conditions:

(riz(u, w), ra3(v, w))z = f (v, wrpp(u, v) + f(u, wyra1 (v, u), (35a)
[[rIZ(Mv U)v 7'12(14, U)]] = _Zf(u$ U)r21(1), M), (35b)

where ( , )3 is a scalar product in the third tensor component and the bilinear operation
[[ , 1] denotes simultaneous commutator in the both components of the tensor product, e.g.
[[Xe ® Xg, Xy @ Xsl] =[Xu, Xy 1 ®[Xp, Xs5]. Then the hamiltonians (21) satisfy the following
quadratic identities:

N N 3
HY =23 forwHec+ > > ¢*Pw.w)’ld, 1€T,N. (36)

k=1 k=1k#l o, f=1

Sketch of the Proof. The proof is achieved by the direct computation, using the definition of

the Hk, the identities among the Pauli matrices o, (l) él) =i eaﬁya)g) + dapld, and the condi-

tions (35).

Remark 14. Observe that the form of the conditions (35) is invariant (modulo the change of the
function f(u, v)) with respect to the three equivalence transformations of the r-matrices.

4.2. The case of the generalized Gaudin models in magnetic field

Let us now consider the generalized Gaudin models in the external magnetic field and find the
analog of the equation (36).
The following Proposition holds true:

Proposition 4.2. Let the r-matrix satisfies the conditions (35) and its shift element c(u) satisfy
the following additional condition:

(riz(u, v), c2(v))2 = f(u, v)ci(u), 37

where (, )2 is a scalar product in the second multiplier of the tensor product.
Then the hamiltonians (23) satisfy the following quadratic identities:

H} =2 Z F v Hy + Zc (v) + Z Z(r“ﬂwk w)?)id, 1eT,N.

k=1,k#l k=1,ksl a,f=1
(38)

Sketch of the Proof. The proof is achieved by the direct computation using the definition of

the Hk, the identities among the Pauli matrices o, ( ) é ) — =i€ypy Uy + Sapld, and the conditions

(35), (37).

Remark 15. Observe the covariance of the conditions (37) with respect to the three equivalence
transformations of the r-matrix.



240 T. Skrypnyk / Nuclear Physics B 941 (2019) 225-248

4.3. The case of the diagonal r-matrices

Let us consider the most interesting case of the diagonal classical r-matrices and find out
which of them satisfy the conditions (35), so that the equation (36) be applicable to the corre-
sponding Gaudin-type hamiltonians.

The following Theorem holds true:

Theorem 4.1. The only diagonal so(3) ® so(3) valued r-matrices satisfying the condition (35)
are the anisotropic non-skew-symmetric r-matrix (14) and the r-matrices that are equivalent to
its trigonometric and rational degenerations.

Proof. In order to prove the theorem it is necessary to re-write the conditions (36) for the case
of the diagonal r-matrices. They are written in the component form as follows:

ro(u, wrg (v, w) = f (U, wyrg(v, u) + f(v, Wre(u, v), (39a)
Fo(u, V)rg(u, v) = —f(u, v)r, (v, u). (39b)

We will prove the Theorem using our classification of the r-matrices and case by case calculation.
Let us at first consider the »-matrix (14). The direct calculation show that
uiuU3 V1203

Fo (U, wry (v, w) = ro(v,u) + ro(u,v), (40)
—w v—w
o (10, V)1, v) = — 20 (4 ), 1)
u—v
i.e.
uiuU3
f(u7 v) == bl
u—v
Upiy vy 2

where we have used that for this r-matrix ry (1, v) = . where v; = v + jg, ui =U+ ju,

a€l,3and cyclic permutation of the indices «, 8, y is implied.
The direct check shows that for the r-matrix (12) the conditions (39) are satisfied only for

c():Oandf(u,v):u_

The direct check shows also that conditions (39) are satisfied for the r-matrix (13) only for
o= :I:% and in this last cases we have:

in this last case.
v

v2 1 u?

f(u,v):m, ifCZ—E, f(u,v):m, lfC':E
Finally, using the properties of the elliptic Jacobi functions one shows that skew-symmetric

elliptic r-matrix of Sklyanin satisfies neither the condition (39a) nor the condition (39b).
This proves the Theorem.

Let us now check whether the r-matrices satisfying the condition (35) satisfy the condi-
tion (37).
The following Proposition holds true:

Proposition 4.3. The non-skew-symmetric elliptic r-matrix (14) and the r-matrices that are
equivalent to its trigonometric and rational degenerations satisfy the conditions (37).
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Proof. The Proof is achieved by the direct calculation. Indeed, in the case of the diagonal
r-matrices one has that the condition (37) reads as follows:

ra(u, v)cg(v) = f(u,v)ca(u), Vael,3. (42)
o . UBUy Vg 5 .
Substituting in (42) the components of the r-matrix (14) ry (4, v) = , where v; = v+ jg,
—v
u2 =u + j,, a € 1,3, the components of the corresponding shift element: cq (1) = Co and the

Uy
uijuu3

function f(u,v) = one easily obtains that (42) is satisfied.

In the same direct way it is checked that the shifted rational and shifted trigonometric
r-matrices in the points co = 0 and cp = :I:% correspondingly satisfy the conditions (42).
Proposition is proven.

Now let us present the equations (38) for the above “non-skew-symmetric triad” case by case.
1) For the case of the r-matrix (12) with co = 0 the equations (38) reads as follows:

~ 3 _
2
A =2 Z _ka+(an+ > m)Id, leT,N. 43)
k=t ket Tk TV a=1 k=1l KM
2) For the case the r-matrix (13) with ¢ = —5 the equations (38) reads as follows

N 2
52 i 5 2, 2,2, 2
H =2 Y — U2Hk+(c3+vl(cl+02)

v} v —
+ ( NId, [€l,N. (44)
lek:;él g —vp)? (VI%_sz)z )

3) For the case of the r-matrix (14) the equations (38) reads as follows:

N 3 2 N
5 y) ¢ Wk +Jp) ik + Jy) V1 + ja)
e Y 2y )

_ 2
k=1 ksl ¥ a=1 (e — )
lel,N, 45)

where y2(v) = (v + j1) (% + j2) (% + Jj3).-
4.4. Additional identities for other models with diagonal r-matrices

Shifted rational r-matrices with cg # 0 and shifted trigonometric r-matrices with co # :t%
(including standard trigonometric r-matrix with cg = 0) do not satisfy the conditions (39). Nev-
ertheless, for the corresponding Gaudin hamiltonians in the representations with all spins equal
to one-half, it is sill possible to write the additional identities. Indeed, as it follows from the re-
sults of the previous section the generalized Gaudin hamiltonians H; whose r-matrices differ by
the term proportional to X3 ® X3 differ from each other by the “dynamical magnetic field term”
proportional to A;[33’§l). Hence, taking as a starting point the generalized Gaudin hamiltonians,

corresponding to the rational r-matrix with ¢y = 0 and trigonometric r-matrix with co = —%
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and external magnetic field with ¢; = ¢ = 0 we obtain from (43) and (44) correspondingly, the
following equations:
1) for the case of the r-matrix (12):

N
A =2 A+ ( M) —— )14, 1T N,
1 Z . k + (C3+Co 3 g Z (Vk—Ul)2 d, lel,N, (46)
k=1 k2l " k=1,ks£l
2) For the case the r-matrix (13):
L o~ 2
A =2 Z Hk+((C3+(Co+§)M3)
k=1 k¥ l
2022 v -
+ Z (g s))ld, 1T N, @)
k=1 kAl (Vk )2 (g —v )?

where we have taken into account that M3 is an integral of motion, commuting with H indepen-
dently of the values of ¢y and commuting with all S’él). It behaves as a scalar with respect to them
and does not influence the proof of the Proposition 4.2, leading only to the appropriate shift of
the constant c3 in the equations (43) and (44).

Remark 16. Observe that using the relation (28) one can exclude the integral M; from the equa-

N

tions (46) and (47), expressing it via Y H;. Nevertheless, from the point of view of spectrum
=1

calculation it is better to leave M3 in the corresponding equations: its eigenvalues are usually

known.

5. Applications: BCS-Richardson models
5.1. Fermionization

Having obtained quantum integrable spin systems it is possible to derive, using them, inte-
grable fermionic systems. For this purpose it is necessary to consider realization of the corre-
sponding spin operators in terms of fermionic creation-annihilation operators. We will consider
here only simplest “fermionization” of the Lie algebra so(3)®V corresponding to its representa-
tion with all the spins in the chain equal to one half.

Let cj e, ¢ i,jel,2,...N, ¢ € €{+,—} be fermionic creation-annihilation operators,
ie.

ie’

t t_ t _ _
CieCje TCjeCi o =8eeBijs ¢ ec/ ot C, o€l e=0, Ciccje+cjecic=0. (43)

Let us introduce the sI(2) basis {04, 0_, 03} in so(3) =~ sl(2) as follows:
o1=—(0oy+0_), op=—i(oy —0_), 03 =03.
By direct calculation it is possible to show that the following formulae:
O’_E_]) =ch. ,cje, o =CjeCjes 03(]) = —(C;E/Cj,e’ — Cj,eC;,SL i,jel,2,...N,e#¢
(49)
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provide realization of the Lie algebra s/(2)®V with the highest weight A ji= %, j€l,N. Here

operators cj-

state j, €.

. are chosen to annihilate, and operators c; ¢ are chosen to create fermion in the

5.2. BCS-Richardson-type hamiltonians and their spectra

5.2.1. Elliptic case

The hamiltonian To obtain the most physical BCS-Richardson’s hamiltonian it is necessary to
chose the “right” combinations of the generalized Gaudin hamiltonians in the external magnetic
field. We will consider the following combination of the hamiltonians (33):

N
ﬁ:z\/vl+j1\/v1+j2\/w+j3ﬁ1. (50)
I=1
After the simple transformation we obtain:
1 N 3
H==3 Do D Vit st iVt s+ ipo ol
kl=1,ks#l a=1

N
+ D cauit gy v+ dyo. (51

=1 a=1

~

Now for the “elliptic BCS hamiltonian” we will take the following singular limit of H:

A

. A
Hpcs = lim —, (52)
J3—00 J3

where we have also re-scaled the “shift constant” ¢z — jzc3, c3 = +/j3c2, c1 = +/J3C1.
In the result we obtain the following hamiltonian:

N

. 1 . ~ (k) _( ; oR gl

Hpcs=—3 Yo Wt iVt o ol + Vu+ jivuc+ o) o)+
k=1 k!

N N N
+c3 Z\/w +j1ivv+ jza?fl) +ao Z‘/W + jlaz(l) +c Z\/w +j201(l). (53)
I=1 I=1 I=1

The terms proportional to ¢y, ¢; in it are interpreted, similar to [36], [38] as interaction with the
environment.
Using the relation between so(3) and s/(2) basis we obtain the following form of (53):

N

A 1 . . . = (k) K _(
Hpes=—3 > Wi+ v+ 2+ v+ vt inePe? + 0Pl
ke =1,k
N
1 . . . = (k) K _(
3 > Wi+ i+ 2 = Vvt i+ ineed +6960)
k, =1,k

N

N
+c3 Z\/ v+ jivvi + ol — Z(Cl\/vl + o +icoy/vi + jl)UJ(rl)
=1

=1
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N
. . . 1
=Y e+ jo —icav/u + e (54)
=1
Now, applying the fermionization formulae and putting

eLi=vvtji, =yt
we obtain (up to the identity operator) the following integrable fermion hamiltonian:

N N
5 i T . P
Hpcs = —c3 Zél,zfz,z(cj,e/cj',y +¢jCie) — 2(6‘162,1 ticoer1)e; ¢
=1 =1
N N
= (ciear —icrerNerecre — Y, (eri€ri+ 62,162,k)CZ’6/C,'(,€Cl,eCz,e/
I=1 k =1,k

N
Z (e21€2,k — 051,161,k)(C,'(,E/C,LEC;,E/C;,6 + CreCr,eCleCrer).  (55)
kI=1 k1

We call it “open” elliptic BCS-type hamiltonian. In the case ¢ = ¢ = 0 it acquires “closed”
form:

N N
A T ¥ oot
Hpcs = —c3 ZGI,ZGZ,I(Cj’E/Cj,e’ ¢ eCle) = Z (€1,1€1,k +€2,1€2,k)C /Cp CLeCle!

=1 k,I=1,k#l

N
! P
—3 Z (€2,1€2,k — €11€1,K)(Cp 1Cp (€1 €] ¢ T ChieChe'CLeCLe).  (56)
ki=1,ksl

The spectra The eigenvalues of the hamiltonian (53), by its definition, are given by the formula:
3
hpes=Y_Vvi+ jiv/vi+ jahi,
=1

L.
where /; are the eigenvalues of the “re-scaled” elliptic Gaudin-type hamiltonians lim j; * H;
J3—>00

that, by the virtue of the results of the previous section satisfy the following system of quadratic
equations:

N 5 5
h C C
B=2 Y Va2 gy
k=1,kl Ve—=Vv v+ j1 v+
N , , . _
e+ 2D+ 1) e+ )W+ j2)
" Z ( (v —wp)? (v — )2
k=1 kI
iy iy
vk + J1) vk ! ]1))’ leTN. (57)
(vk —vr)

where we have taken in the equations (45) the limit j3 — oo, previously dividing the equation
(45) by j3 and re-scaling appropriately ¢y, @ € 1,3 and H;.
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Remark 17. The equations (57) replace the Bethe equations unknown in this case.
5.2.2. Trigonometric degeneration

The hamiltonian In the trigonometric degeneration j; = j, = j the elliptic hamiltonian (54)
has the form

N N
A . - (k) _( K _( N
Hpcs = — Z \/Vz+J\/Vk+J(Ui)G£)+G£)Ui))+C3Z(w+J)03()

=1,k =1
N N

=Y Vit tiened =3Vt jer—iena?. (58)
=1 =1

After the fermionization and substitution €; = /v; + j it acquires “open” p + ip BCS form:

N N

; 20,4 i i

Hpcs = —c3 E € (¢; Cje+CjCle) =2 E EIEKC) o Ch CLeCle
=1 ke I=1,k#l

N N
. o .
_ § (c1 +’CZ)6101,€/CZ,5 — E (c1 —ico)ecjecjer. (59)
=1 =1

To obtain standard “closed” p +ip BCS hamiltonian one has simply to putin (59) ¢; =0, c» =0:
N N
Hpcs = —c3 ZEZZ(C]}.’E,CJ"G/ + C]{',ecj,é) -2 Z Elekcli,e’cll,eclsfcl»f" (60)
I=1 k,I=1,k#l

The spectra The eigenvalues of the hamiltonian (58) are given by the formula:

3

hpes =) i+ DHhi,
=1

where the eigenvalues A; of the “trigonometric” Gaudin-type hamiltonians H, satisfy the follow-
ing system of quadratic equations:

h 1
~

(42 + 2
Vg — VY VH-J1 2 3

N
hi=2 Y (+))

k=1,k#l
d 20+ N+ e+ j)?
+ S SR R 1e TN, (6
PR C ) (Ve —vr)
These equations coincide with the equations (44) after the change of variables vy — v~ 2.

5.2.3. Rational degeneration
The hamiltonian In order to obtain the rational BCS-Richardson hamiltonians one should con-
sider another combination of the elliptic Gaudin-type hamiltonians and take the following limit:

J1.j2,j3—>00

N

~ L1 1 ~

H= lim j 2j,%j5 2 whH, (62)
=1
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where we have also to re-scale the constants cy: o = +/Jju/J1J2J3Ca-
In the result we obtain the following combination of the rational Gaudin hamiltonians:

N

3
H=- Y > o® (Z)—I-ZZvlca D 1eT,N. (63)
k,=1,k#l a=1

=1 a=1

It can be put to the standard Richardson-type form only in the case ¢; =0, ¢ =0 when Ms is
an integral of motion. Putting ¢; = 0, ¢ = 0, extracting from H the integral M 2 and passing to
s1(2) basis we obtain (up to the identity) the s-type BCS-Richardson hamlltonlan written in the
spin form:

N
Hges=— Y (0’0 (l)+0(k)0(l))+032v10(1) (64)
k,=1,k#l =1

which yields after the fermionization the famous s-type BCS-Richardson fermionic hamiltonian

[2]:

N N

2 il il Toor

Hpes=—c3 Y el oo+l ) =2 Y ¢ el Crecre (65)
=1 k=1 ksl

where €; = v;. The integral Mg is connected with I:II as follows:

Z Hl (66)

C311

The spectra The eigenvalues of the hamiltonian (64), by its definition, are given by the formula:

3
hpes =) vihi + Mj,
=1
where h; are the eigenvalues of the “re-scaled” elliptic Gaudin-type hamiltonians

1 1

o lim gy J; 2 J3 2H, coinciding with the rational Gaudin hamiltonians in the constant mag-
J1:J2,J3—> 00
netic field and satisfying the following system of quadratic equations:

h =2 Z

k=1,k#l

N

hk+(C%+ Z

k=1,k#l

3
(v — p)?

), lel,N, (67)
Vg —V

which exactly coincide with the equations (43) in the case ¢; =0, ¢ = 0 and M3 is the eigen-

value of M3 connected with the eigenvalues h; by the virtue of (66) as follows: M3 = — Y _ k.
C3 =1

6. Conclusion and discussion

In this article we have considered generalized Gaudin spin chains with [21] and without [18],
[19] external magnetic field in the simplest case of g = so(3) and presented the classification
theorem for the diagonal in the natural basis r-matrices and their “shift elements” playing the
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role of external magnetic fields. We have applied these results to the description, classification
and solution of BCS-Richardson-type models. In particular, we have introduced “elliptic” BCS-
Richardson hamiltonian corresponding to non-skew-symmetric elliptic r-matrix.

We have developed and generalized the technique of the spectrum calculation based on the
additional quadratic identities among the Gaudin hamiltonians proposed (in the partial cases)
in [39], [40] finding the general conditions on the corresponding r-matrix to be hold true for
their existence. We have shown that for all the Gaudin models based on the diagonal r-matrices,
except for the XYZ Gaudin model based on the elliptic r-matrix of Sklyanin, this technique is
applicable. Using this technique we have calculated, in particular, the spectrum of our elliptic
BCS-Richardson hamiltonian in terms of solutions of the set of quadratic equations for the spec-
trum of the corresponding Gaudin-type hamiltonians. It will be interesting to find out for what
non-diagonal non-skew-symmetric r-matrices the discovered conditions are satisfied. For this
purpose it will be necessary to classify such the »-matrices. This problem is open.

Another interesting ongoing problem is to generalize the technique of spectrum calculation
based on the additional quadratic identities among the Gaudin hamiltonians onto the case of
integrable spin-boson models of the Jaynes-Cummings-Dicke type. As we have shown in our pa-
pers [48], [49], [50] such the models exist for a wide class of the non-skew-symmetric classical
r-matrices, in particular for all diagonal r-matrices (except for the elliptic r-matrix of Sklyanin).
Observe that in the case of the standard rational r-matrix the existence of such the quadratic
identities follows from the results of [35]. Their existence for the Jaynes-Cummings-Dicke type
models associated with the skew-symmetric trigonometric r-matrices was shown in [41]. In
order to obtain the quadratic identities among the Jaynes-Cummings-Dicke type hamiltonians
based on the general r-matrix it will be necessary to impose yet another additional constraint
on this r-matrix. We conjecture that such the additional quadratic identities exist for the case
of the models based on the shifted rational and shifted trigonometric r-matrices but do not ex-
ist for the Jaynes-Cummings-Dicke type model based the non skew-symmetric elliptic 7-matrix
[49], [50], [28].
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