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1. Introduction

Black holes have received tremendous interest in recent years, originating on the

one hand from the discovery of gravitational waves, generated in the merger of

stellar black holes, by the LIGO collaboration,1 and on the other hand from the

observation of the shadow of the supermassive black hole at the center of M87

by the EHT collaboration.2 The analysis of observational data of black holes is

typically based on the Kerr hypothesis, namely the assumption that rotating black

holes are well described by the Kerr solution of General Relativity. Just like General

Relativity itself, also the Kerr hypothesis is still consistent with all available data.

However, there are a number of reasons suggesting that General Relativity will

be superseded by a new theory of gravity, which would reduce to General Relativity

in a limit. From a theoretical side these reasons include the problem of quantiza-

tion of gravity and the presence of singularities in solutions of General Relativity,

while from an observational side the need for Dark Matter and Dark Energy in a

cosmological context seem most provoking.

All these reasons have led to a large number of suggestions for alternative the-

ories of gravity based on deep theoretical reasoning or simply phenomenological

modelling, see e.g.,3–6 While alternative theories of gravity should be consistent

with observations in the weak gravity regime, thus in particular, with observations

in the solar system, the strong gravity regime is so far much less constrained. In the

strong gravity regime there exist certainly high precision data from pulsar observa-

tions (see, e.g.7), but the unknown equation of state of matter at extreme densities

and pressures may lead to degeneracies with the unknown theory of gravity. There-

fore black holes may present cleaner probes of the strong gravity regime.
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In General Relativity black holes are remarkably simple objects in terms of the

characterization of the space-times, as expressed by the no-hair theorem (see, e.g.8).

Consequently, Kerr black holes are uniquely determined by their mass and their an-

gular momentum, and all their higher multipole moments can be fully expressed by

these two lowest moments. Moreover, when considering the fields of the Standard

Model of Particle Physics, no astrophysical rotating black holes other than the bald

Kerr black holes arise. Only microscopic black holes might carry fields of the Stan-

dard Model as hair (see, e.g.9,10). However, if one allows for a hypothetical complex

massive scalar field or Proca field, then General Relativity allows for rotating Kerr

black holes with scalar or Proca hair that might be of astrophysical relevance.11,12

Alternative theories of gravity typically introduce further degrees of freedom,

often in the form of gravitational scalar or vector fields.3–6 Prominent theories with

additional scalar fields are Horndeski and beyond Horndeski theories,13–16 while

their counterparts with vector fields are generalized Proca and beyond generalized

Proca theories.17–20 But further degrees of freedom may also be present when the

tensorial part of gravity is modified, yielding, for instance, de Rham-Gabadadze-

Tolley massive gravity21 and bigravity theories.22,23 While General Relativity can

be formulated in terms of curvature, torsion or non-metricity, as expressed by the

geometrical trinity of gravity ,24 the associated generalizations of these formulations

are no longer equivalent.

Up to now most work on black holes in alternative theories of gravity has been

done in metric theories. Here the recent years have witnessed the emergence of new

types of black holes due to newly discovered phenomena. These are, for instance,

curvature-induced spontaneously scalarized black holes that arise in certain Horn-

deski models with higher curvature terms, when curvature is sufficiently strong to in-

duce a tachyonic instability in the background of a Schwarzschild or Kerr black hole

solution.25–29 Similarly, spin-induced spontaneously scalarized black holes emerge

in the presence of sufficient curvature and spin.30–33 While these solutions satisfy

circularity, this is not necessarily true for rotating black holes in beyond Horndeski

theories, where also so-called disformed black holes with a non-circular geometry

can arise (see, e.g.34,35).

A very important aspect of black holes in alternative theories of gravity is of

course their stability and their response to perturbations. In particular, the study of

quasi-normal modes (QNMs) is very valuable here, since these are also of relevance

for the analysis of the ringdown phase of black hole mergers. Whereas the QNMs

of the Schwarzschild and Kerr black holes are known since quite some time (see,

e.g.36–40), the study of the QNMs of black holes in alternative theories of gravity is

still in its infancy. While some work has been done for static black holes (see, e.g.41),

very little is known so far even for the case of slow rotation only. The presence of

additional degrees of freedom in alternative theories of gravity, yields a much more

intricate spectrum, though, since various modes forbidden in General Relativity will

be present in alternative theories of gravity.
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In the following we will summarize the progress on black holes in alternative

theories of gravity reported in our session of the 16th Marcel Grossmann Meeting.

2. Summary of the presentations

The 16th Marcel Grossmann Meeting was held online on July 5-10 2021. This was

the first time that the meeting was held completely online, mainly because of the

COVID-19 pandemic around the world. In the parallel session “Black Holes in Al-

ternative Theories of Gravity” abbreviated as BH3, 16 physicists presented their

recent research activities in two days, Tuesday 06 July 2021 09:30-12:30 and Thurs-

day 08 July 2021 16:30-19:30 CEST. Here we recall the main points of the talks in

BH3, and provide a summary of the presentations.

2.1. Asymptotically flat hairy black holes in massive bigravity

Presented by: Mikhail Volkov

In collaboration with: Romain Gervalle

Based on the Ref.42.

The ghost-free theories of bigravity were first introduced by Hassan and Rosen

in Ref.43. In these theories, there are two metrics denoted by gµν and fµν . Both of

the metrics have the usual Einstein-Hilbert action, and there is an interaction term

between the two metrics. The metric gµν can be coupled to some matter, while fµν
is not coupled to any matter. Analyzing the propagating degrees of freedom, there

are two gravitons in such theories, one massive and one massless. These family of

theories have been shown to be able to describe the accelerating expansion of the

universe without a cosmological constant.

Any black hole as a vacuum solution in general relativity is a solution to bigrav-

ity theories by the choice of gµν = fµν . For example, the Schwarzschild metric is a

solution to these theories if one chooses gµν = fµν be equal to the Schwarzschild

metric. However, this solution is not a stable solution in these theories. An interest-

ing question arises here: if one relaxes the constraint gµν = fµν , is it possible to have

spherically symmetric asymptotically flat solutions other than the Schwarzschild.

The terminology “hairy black holes” has been used for such solutions in bigravity,

and the “bald Schwarzschild” for the special case of gµν = fµν to be Schwarzschild.

It has been a debate to answer this question44–46 whether there are hairy black

holes in ghost-free bigravity or not. Romain Gervalle and Mikhail Volkov in Ref.42

have tried to answer this interesting question by constructing spherically asymptot-

ically flat black hole solutions numerically. They have found that there exist such

black hole solutions (as pairs of solutions, one for gµν and one for fµν) with the

same horizon and surface gravity. Free parameters of the Schwarzschild hairy black

holes are constrained by studying the stability of the solution. To this end, the gµν
metric should be close to the Schwarzschild metric, the fµν metric should not be

coupled to the matter, and the mass of the black hole should be between 0.2M⊙
and 0.3× 106M⊙.
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2.2. An overview of quasinormal modes in modified and

extended gravity

Presented by: Aurélien Barrau

In collaboration with: Flora Moulin and Killian Martineau

Based on the Ref.47.

Quasi-normal modes (QNMs) are dissipative perturbations around a black hole

background solution. They satisfy purely outgoing and ingoing boundary conditions

at infinity and at the event horizon respectively. The oscillatory time dependence

of these modes is described by

ψ ∝ eiωt = ei(ωR+iωI)t. (1)

The frequency ωR characterizes the oscillatory behavior of the mode, while for the

ωI > 0 and ωI < 0 the mode grows or decays exponentially, respectively. The main

question in the QNM analysis is to find the behavior of the complex function ω.

In this talk, Aurélien Barrau provided an overview on QNMs, and presented

their results for perturbations around a spherically symmetric black hole in

some alternative theories of gravity. Their analysis is based on Wentzel-Kramers-

Brillouin (WKB) approximation method.48–50 The theories under consideration

have been chosen to be the massive gravity,21,22,51,52 Modified Scalar-Tensor-Vector

(STV) Gravity,53 Horava-Lifshitz,54–57 ℏ-correction (quantum correction),58 and

loop quantum gravity (based on the model presented in Ref.59). For each one of

these choices, the diagrams of ωR and ωI for some suitable multipole number ℓ and

overtone number n were illustrated and compared qualitatively.

2.3. Constraining modified gravity theories with

physical black holes

Presented by: Sebastian Murk

In collaboration with: Daniel R. Terno

Based on the Ref.60.

In this work, the authors emphasize that a physical black hole is a celestial ob-

ject which has a smooth apparent horizon and trapped surface.61 Requesting the

smoothness of these surfaces constrains the gravitational models which govern the

dynamics of such solutions. To be more accurate, the existence of semiclassical phys-

ical black holes in modified theories of gravity induces some necessary conditions.

In order to find such necessary conditions, Sebastian Murk as a PhD student

and his colleague have focused on the spherically symmetric black hole solutions

which are presented as expansions in the coordinate distance from the apparent

horizon and do not require a General Relativity solution as the zeroth-order pertur-

bative solution of the modified theory. The only condition which they impose is the

regularity of apparent horizon for black hole solutions. They pick finiteness of Tµ
µ

and TµνTµν as the regularity condition on the trapped horizon. By perturbing the

Einstein equation with a new term Gµν + λϵµν = 8πTµν and a generic ansatz for a
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spherically symmetric black hole metric, the necessary conditions on the component

of the ϵµν are investigated. In the end, the results are studied more for a special

modified gravity, the Starobinsky model.62

2.4. Black holes, stationary clouds and magnetic fields

Presented by: Nuno Santos

In collaboration with: Carlos A.R. Herdeiro

Based on the Ref.63.

Stationary bosonic clouds are stable configuration of scalar fields around a black

hole resulting in a bound state. Suggested by many examples, in order to have such a

bound state, two conditions are necessary: (1) the possibility for superradiance, (2) a

confinement mechanism. The former is necessary to synchronize the bosonic cloud

with the black hole rotation, and the latter is needed to make the configuration

stable. Interestingly, stationary clouds are characterized by a discrete number of

nodes in the radial direction, n, the orbital angular momentum, ℓ , and the azimuthal

harmonic indexm. In this regard, they resemble orbital configurations in a Hydrogen

atom.11,12,64,65

In this presentation, the bosonic clouds are studied around a Reissner-Nordström

black hole immersed in a magnetic field. These family of black hole solutions are

called Reissner-Nordström-Melvin black holes.66 They are solutions to Einstein-

Maxwell theory, and their asymptotics resemble a magnetic Melvin universe. These

black holes are stationary and axially symmetric. The presence of an external mag-

netic field provides both of the conditions for the stability of a bosonic cloud, i.e.,

the ergoregion and the confinement mechanism. The scalar field in this analysis has

been considered to be complex, massless and minimally coupled to gravity. So, the

theory is described by the action:

I =
1

4π

∫
d4x

√
−g

[R
4
− F 2

4
− (∇µΨ∗)(∇µΨ)

]
. (2)

The bosonic clouds in this model, and on the Reissner-Nordström-Melvin solution

are studied, and it is shown that for specific mass to charge ratios, there exist stable

bosonic clouds.

2.5. Bardeen black hole from a self-dual radius in spacetime

Presented by: Michael Florian Wondrak

In collaboration with: Marcus Bleicher, Piero Nicolini, and Euro Spallucci

Based on the Ref.67,68.

String T-duality is an equivalence between two string theories on spacetimes

with at least one compactified extra dimension – provided that the compactification

radii are inversely related to each other, i.e. R1 = R and R2 = (R⋆)2

R . The special

case of R = R⋆ is called self-dual radius. Beginning from T-duality in bosonic

string theory, Michael Florian Wondrak first gave an overview on how quantum

 T
he

 S
ix

te
en

th
 M

ar
ce

l G
ro

ss
m

an
n 

M
ee

tin
g 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 G
E

R
M

A
N

 E
L

E
C

T
R

O
N

 S
Y

N
C

H
R

O
T

R
O

N
 @

 H
A

M
B

U
R

G
 o

n 
01

/3
0/

23
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



1377

field propagators are deformed.69 The scalar propagator obtained via Schwinger’s

proper time formalism is read to be

G(k) = −ℓ0K1(ℓ0
√
k2 +m2)√

k2 +m2
. (3)

In this relation, Kν(x) is the Modified Bessel function of second kind, and ℓ0 is the

zero point length.70 Studying the potential induced by this propagator, a spherically

symmetric black hole solution was derived,

ds2 = −f(r)dt2 + dr2

f(r)
+ r2dΩ2, f(r) = 1− 2Mr2

(r2 + ℓ20)
3/2

. (4)

This metric resembles the Bardeen black hole with a new interpretation of the UV

cut-off in terms of the zero point length ℓ0 instead of a magnetic monopole charge.

Then, the thermodynamics of this black hole was studied and it was shown that at

the end of evaporation process, the evaporation stops with a cold remnant instead

of a final explosion. The remnants of these black holes were investigated regarding a

possible fraction of dark matter. With a mass below 5×10−8M⊙, they comply with

recent constraints on primordial black holes.71 In the rest of the talk, observability of

ℓ0 was discussed: From the hydrogen energy spectrum, an upper bound of 4×10−19

meter was deduced.

2.6. Asymptotically flat black hole solution in modified gravity

Presented by: Surajit Kalita

In collaboration with: Banibrata Mukhopadhyay

Based on the Ref.72.

f(R) gravities are among alternative theories of gravity which have observational

motivations to be studied. In these theories, one replaces the Ricci scalar R in the

Lagrangian of General Relativity by a function of R, which is called f(R).

I =
1

16π

∫
d4x

√
−gf(R). (5)

Although the equations of motion are higher-order in derivatives, they do not suf-

fer from Ostrogradsky instability. In this presentation, Surajit Kalita presented the

construction of spherically symmetric asymptotic flat black hole solutions to a sub-

set of f(R) theories. This subset is parametrized by a constant B in the relation
df
dR = 1 + B

r . The metric ansatz is chosen to be gµν = diag(gtt, grr, r
2, r2 sin2 θ).

By inserting this ansatz in the equations of motion of f(R) gravities, the unknown

components (gtt, grr) are found as an expansion if powers of B and 1
r . Then, some

properties of these solutions are analyzed, including marginally stable and bound

orbits, and spherical accretion flows. Moreover, from these solutions it is deduced

that the Birkhoff theorem can be violated in f(R) gravities.
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2.7. Infinitely degenerate exact Ricci-flat solutions in f(R) gravity

Presented by: Semin Xavier

In collaboration with: Jose Mathew and S. Shankaranarayanan

Based on the Ref.73.

In this talk, Semin Xavier presented their results for an infinite number of solu-

tions to a subset of f(R) gravities. The theory is described by the action

I =
1

16π

∫
d4x

√
−gf(R), f(R) = (α0 + α1R)

p, (6)

for a real number p > 1, and constants α0 and α1. The metric ansatz is chosen to

be spherically symmetric:

ds2 = −A(r)eδ(r)dt2 + dr2

A(r)
+ r2(dθ2 + sin2 θdφ2). (7)

Solving the equations of motion for the unknown functions A(r) and δ(r) it is shown

that there are an infinite number of possibility for these functions. As a result, it is

discussed that in f(r) gravities the Birkhoff theorem may be violated. In order to

show this explicitly, two black hole solutions are constructed and studied.

2.8. Does the Penrose suggestion as to black holes from a prior

universe showing up in today’s universe have credibility?

Examined from a singular, and nonsingular beginning of

cosmological expansion

Presented by: Andrew Walcott Beckwith

Based on the Ref.74.

Conformal Cyclic Cosmology (CCC) is a cosmological model in the framework of

General Relativity, which is proposed by Roger Penrose.75 In this model of cosmol-

ogy, the universe iterates through infinite cycles, with the future timelike infinity of

each previous iteration being identified with the past timelike infinity of the next

universe. From the observational point of view, it has been suggested that the black

holes in the previous universe can have implications in our universe, imprinted in

the cosmic microwave background (CMB).76,77

In this talk, AndrewWalcott Beckwith discussed on the feasibility and credibility

of the proposed methods for checking CCC using CMB data. He discussed the

Penrose singularity theorem, and investigated the two cases of the CCC: cycling

through singular or non-singular starting/ending points.

2.9. Analytical computation of quasi-normal modes of

slowly-rotating black-holes in dCS gravity

Presented by: Manu Srivastava

In collaboration with: Yanbei Chen and S. Shankaranarayanan

Based on the Ref.78.
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Gravitational waves have provided interesting data about the inspiral and ring-

down phases of black hole mergers. The waves in the ring-down phase are quasi-

normal modes of the black hole merger. Therefore, by studying the data in the

ring-down phase we can investigate the quasi-normal modes of the system.36,37,40

However, quasi-normal mode frequencies depend on the gravitational theory. So,

they provide a new tool to distinguish and examine alternative theories of gravity.

In this line of research, Manu Srivastava and his collaborators have focused

on dynamical Chern-Simons gravity (dCS), which is described by the following

action:79

I =
1

16π

∫
d4x

√
−gR− β

2

∫
d4x

√
−g(∇µϑ∇µϑ+ V (ϑ))

+
α

4

∫
d4x

√
−gϑ ∗RR + Imatter, (8)

in which ϑ is a pseudo-scalar field, and ∗RR is the Pontryagin density

∗RR ≡ 1

2
ϵcdefRa

befR
b
acd. (9)

where ϵcdef is the Levi-Civita tensor. The background is chosen to be a slowly

rotating black hole introduced in Ref.80. The parameter of slow rotation is denoted

by a. In the analysis, quasi-normal modes in the axial and polar sectors are studied

up to linear order in a and quadratic order in α. The results of this study, along

with the data from gravitational wave observations, can be used as a test for dCS

gravity and to constrain coupling parameters.

2.10. Scalar perturbations of Kerr black-holes in hybrid

metric-Palatini gravity

Presented by: João Lúıs Rosa

In collaboration with: José P. S. Lemos and Francisco S. N. Lobo

Based on the Ref.81.

In General Relativity, the connection Γλ
µν is assumed to be the metric connection,

which is related to the metric by the relation

Γλ
µν =

1

2
gλσ

(
∂µgσν + ∂νgσµ − ∂σgµν). (10)

However, in the Palatini formulation of gravity (see a review in Ref.82), the con-

nection Γ̂λ
µν is considered independent of the metric. If we denote the Ricci scalar

which is built upon Γ̂ by R, then the generalized hybrid metric-Palatini (GHMP)

gravity83–85 (see a review in Ref.86) is described by the following action:

I =
1

16π

∫
d4x

√
−gf(R,R) + Imatter. (11)

By the equations of motion, it turns out that the R is the Ricci scalar calculated

for a metric which is conformal to gµν . Motivated by this, João Lúıs Rosa and his
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collaborators have shown that for any vacuum solution to GR, there is a non-trivial

function f(R,R) such that it is a solution to the GHMP too.

In this context, the Kerr black hole can also be considered as a solution to the

GHMP. The stability of the Kerr constrains the f(R,R), and this is analyzed in

this presentation by studying massive scalar perturbations around the Kerr black

hole. In particular, it is shown that the Kerr black hole is stable for some specific

f(R,R) theories and masses for the scalar perturbation.

2.11. Emergent magnetic monopoles in degenerate theory

Presented by: Suvikranth Gera

In collaboration with: Sandipan Sengupta

Based on the Ref.87.

Magnetic monopoles are theoretical counterparts for electric charges in electric-

magnetic duality.88,89 Although they have been studied extensively, there is not yet

observational evidence for their existence in nature.

In this talk, Suvikranth Gera presented a non-invertible metric which resem-

bles a magnetic monopole in the first-order formulation of gravity.90–92 Unlike the

usual metric formulations, the non-invertible metric is well-defined in the tetrad

formulations. In the presentation, he first presented the metric explicitly, and then

followed by the calculation the spin-connection and its field strength in the first-

order formulation. The magnetic charge is calculated, and the topological origin

and its observability is discussed at the end, and it is mentioned that this solution

has not any curvature singularity. Moreover, for the observers moving on timelike

geodesics, this emergent magnetic charge is not accessible observationally, although

it affects the curvature of the space-time.

2.12. Black holes in metric-affine gravity: properties and

observational discriminators

Presented by: Diego Rubiera-Garcia

Based on the Ref.93.

A generic connection Γλ
µν can be independent of the metric (see the review in

Ref.82). Such a generic connection is called affine connection. Accordingly, it can

be regarded as an independent field in the Lagrangian. These models of gravity are

called metric-affine gravities. In a subset of such models, which is called “Ricci based

gravities,” the connection Γλ
µν appears in the Lagrangian only through a symmetric

Ricci tensor Rµν ,

I =
1

16π

∫
d4x

√
−gLG[gµν , Rµν(Γ)] + Imatter[gµν , ψm]. (12)

In this talk, Diego Rubiera-Garcia presented an overview on recent results for the

black holes in these models of gravity. It is shown that for spherically symmet-

ric black holes, the curvature singularity can be smoothed out, and the geodesic
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completeness is restored. Moreover, for such solutions there exist “double critical

curves.” This feature makes the shadow of the black hole to appear as two or more

bright rings.

2.13. Holography for rotating black holes in f(T ) gravity

Presented by: Masoud Ghezelbash

In collaboration with: Canisius Bernard

Based on the Ref.94.

General relativity is based on the Riemann curvature, while the torsion and non-

metricity are considered to vanish. However, it is equivalent to make gravitational

theories solely based on torsion, or non-metricity. These equivalent formulations in

the literature are referred as Teleparallel and Symmetric Teleparallel (or coincident)

gravities respectively. Similar to the Ricci scalar R which is made from the Riemann

tensor, one can appropriately define the torsion scalar T , or the non-metricity scalar

Q. According to the equivalence alluded to above, one can have analogous theories

for f(R), namely f(T ) or f(Q).

It is useful to study gravitational features in GR, in the Teleparallel gravity or

Symmetric Teleparallel gravity. In this talk, Masoud Ghezelbash has focused on the

Kerr/CFT correspondence in f(T ) gravities. Kerr/CFT is a correspondence between

the near horizon region of extremal black holes (originally Kerr black hole95) with

a (chiral) two dimensional CFT. In this correspondence, the entropy of the black

hole is calculated via the Cardy-formula for the entropy in a CFT:96,97

S =
π2

3
(cLTL + cRTR), (13)

in which the c’s are the central charge of the left and right sectors, and the T ’s are

Frolov-Thorne temperatures.98 The result of such analyses shows that the entropy

is proportional to the angular momentum associated with the axial symmetry which

eventually enhances to the Virasoro sectors in the CFT (a review on Kerr/CFT and

its extensions can be found in Ref.99). Besides, there are many works attempting to

realize black hole microstates from the CFT using the Kerr/CFT correspondence

(see e.g.100–108).

In this study, the model of gravity has been chosen to be

I =
1

16π

∫
d4x

√
−g

(
f(T )− 2Λ− F 2

)
, (14)

in which Λ is the cosmological constant, and F 2-term is the Maxwell theory. A

rotating charged black hole as a solution to this theory (introduced in Ref.109) is

chosen to be studied, and the wave equation for a massless scalar field is approxi-

mated in the near horizon geometry of this black hole. Instead of a chiral Virasoro,

a full Virasoro algebra is reported in this near horizon, and the Cardy formula (13)

is used to reproduce the black hole entropy.
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2.14. Universe in a black hole with spin and torsion

Presented by: Nikodem Poplawski

Based on the Ref.110.

The Einstein-Cartan theory (EC) of gravity111–115 is the simplest theory with

torsion and curvature. In this theory, the Lagrangian is the same as the Einstein

gravity

I =
1

2κ

∫
d4x

√
−g(R + Lmatter), (15)

but in addition to the metric, the torsion is considered as a dynamical field. In this

talk, Nikodem Poplawski studies the collapse of spherically symmetric fermionic

matter to form a black hole in EC. He explains that if a fermionic field is considered

as a perfect fluid with energy density ϵ and pressure p as the matter in this theory,

the effect of the dynamics of torsion can be absorbed in the energy-momentum

tensor116 by

Tµν = ϵuµuν − p(gµν − uµuν) → T̃µν = ϵ̃uµuν − p̃(gµν − uµuν), (16)

in which

ϵ̃ = ϵ− αn2f , p̃ = p− αn2f . (17)

In this relation, uµ is the four-velocity, nf is the number density of fermions, and

α = κ
32 . Using T̃µν , the equation of motion can be written as the usual Einstein

equation:

Gµν = κT̃µν . (18)

In this setup, the collapse is studied by the Tolman ansatz117 for the metric:

ds2 = eν(τ,R)dτ2 − eλ(τ,R)dR2 − eµ(τ,R)(dθ2 + sin2 θdφ2), (19)

and solved for the unknown functions (ν, µ, λ). The results show that in this col-

lapse, the singularity is prevented by the effects of the torsion. The geometry of

the universe on the other side of the horizon is calculated, and it is shown that the

geometry is an oscillating FLRW metric and it describes a closed universe. It is also

calculated that due to the pair particle production, the frequency of the oscillation

is reduced in time.

2.15. Absorption by deformed black holes

Presented by: Renan B. Magalhães

In collaboration with: Luiz C.S. Leite and Lúıs C.B. Crispino

Based on the Ref.118.

The usual way to study alternative theories of gravity is to change the

Lagrangian or the dynamical fields. Then, the equations of motion follow, and one

can study the solutions to the new equations. However, in Ref.119, Johannsen and
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Psaltis introduced a parametric deviation approach, which is the reverse of the pro-

cedure mentioned above. They deform black holes by some parameters such that the

black holes remain smooth, free of pathology, and have some suitable properties.

Then, the equations of motion which could have such solutions are investigated.

Following this method, Konoplya and Zhidenko in Ref.120 have deformed the Kerr

black hole by some parameters, while keeping its suitable features intact.

In this talk, Renan B. Magalhães presented the analysis of the absorption cross

section of a massless scalar field for the static Konoplya-Zhidenko black hole. The

metric of this black hole is similar to the Schwarzschild black hole with a deformed

mass:

ds2 = −fdt2 + dr2

f
+ r2dΩ2, f = 1− 2M

r
, M →M +

1

2

∑
i

ηi
ri
, (20)

with the special choice of ηi = δi2. So, the f is chosen to be f = 1− 2M
r + η

r3 for some

parameter η. In order to have a horizon, ηmin < η < 0 in which ηmin = −32
27M3 . On

this specific background, Renan B. Magalhães and his collaborators have studied

the wave equation for a scalar field □ψ = 0. He presented the result of the radial

potential for different spherical harmonic modes, illustrating them from numerical

calculations. Moreover, the absorption cross sections are derived numerically.

2.16. Shadow of a charged black hole surrounded by an anisotropic

matter field

Presented by: Javier Bad́ıa

In collaboration with: Ernesto F. Eiroa

Based on the Ref.121.

Observation of the shadow of a supermassive black hole at the center of galaxy

M87 has been one of the main progresses in black hole physics in recent years.122 In

parallel with this observation, theoretical studies of black hole shadows have been

one of the active lines of research (see Ref.123 for a review). Especially, the presence

of matter fields surrounding black holes, and its effect on their shadows has been

investigated (see e.g.124–127).

In this talk, Javier Bad́ıa presents the results of the calculation of shadows for

rotating charged black holes surrounded by an anisotropic matter field.128,129 In the

spherical coordinates (t, r, θ, φ) the anisotropic matter is considered to be a perfect

fluid which is described by the energy-momentum tensor

T ν
µ = diag(−ρ, p1, p2, p2), p1 = −ρ, p2 = wρ. (21)

The rotating charged black hole surrounded by this matter is derived by the

Newman-Janis algorithm to the following spherically symmetric spacetime:

ds2 = −f(r)dt2+ dr2

f(r)
+r2dΩ2, f(r) = 1−2m(r)

r
, m(r) =M−Q

2

2r
+

K

2r2w−1
.

(22)
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The M , Q, and K are integration constants, and w is restricted to be 1
2 < w < 1 by

physical energy conditions. The resulting metric by the Newman-Janis algorithm is

the Kerr metric in which M → m(r), i.e.

ds2 =− (1− f)dt2 +
ρ2

∆
dr2 + ρ2dθ2 − 2fa sin2 θ dtdφ

+
(
r2 + a2 + fa2 sin2 θ

)
sin2 θ dφ2,

ρ2 = r2 + a2 cos2 θ , ∆ = r2 − 2m(r)r + a2 , f =
2m(r)r

ρ2
, (23)

and m(r) =M − Q2

2r + K
2r2w−1 .

On this background, the Hamilton-Jacobi equation for the null geodesics is sep-

arable, and reduces to ordinary differential equations with radial derivatives. The

result of the shadow calculations for an asymptotic observer on the equator is pre-

sented by illustrations. Moreover, three observables which characterize the shadows,

named as the area, oblateness, and centroid of the shadows are discussed.121,130
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