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Abstract this system would then constitute a solution to the steering

We describe a simple hybrid numerical method for bearRrOblem for theM BPMs. . . . .
orbit correction in particle accelerators. The method over- The. equations are often written in matrlx'form, which
comes both degeneracy in the linear system being soIvI—:tecpdS itself to solution by numerical methods:

and respects boundaries on the solution. It uses the Sip- 711 712 713 ... TN Ab, Ab,
gular Value Decomposition (SVD) to find and remove the T2 T2 T ... TN Aby Aby
null-space in the system, followed by a bounded Linea . . .
Least Squares analysis of the remaining recast problem. (It . . .
was developed for correcting orbit and dispersioninthe Bt 715 ' T1iy? T{y* -~ TN Abn Abm

factory rings. In practice though, there is a barrier (mrak amplitude

constraint; that eachhd does not result in exceeding the
1 INTRODUCTION AND PROBLEM STATEMENT practical maximum strength for that magnet. That is, each

The main objective in accelerator steering is to minimiz&/ement in the unknown vector &6 has an upper limit.
deviations of the beam from the center of the beam pipe, SO, We could characterize this as a linear least squares
that is, to minimize the rms of the orbit. There may be othegproblem

objectives such as minimizing the corrector strengths, or |Ax — b]|> 1)
dispersion, but these are generally secondary. What follows subject tax; < x*

can be generalized very easily to include these secondary

objectives, but for illustration only orbit correction will be _oF Which a solutionx ca? be found by least-squares in-
discussed. version of A giving x = A™Tb. b would be the vector of

For practical purposes of online orbit correction in a Iin-"“II the desired changes to the BPMs valuess the vec-

ear accelerator, its reasonable to assume that there is onl é(zjf neclessarri;ch ar;]ges n 'corfreclzltohr magnetbstrengths as
linear relationship between a corrector magnet's streng ndangles, and is t gmatrlx ora the ratios et_ween a
(the extent to which it bends the beam) and the be‘,ﬂmc;sorrectorstrength and its concomitant beam monitor value.
position when measured horizontally or vertically by any>Pecifically, A is the matrix of theT',s in the system,
“down-stream” Beam Position Monitor (BPM). The mag_Where each colgmn ok represents a single corrector. .
nitude of this influence can be computed or measured, andposed, asa Ilnﬁar sxste;n then, tTe.prqulem' Ier;ds itself
recorded, for all magnets to all BPMs in the accelerato]:f)fqul?lsnolf1S SIU(? as 'Sdt _ferﬁ aso utn??lhs.o "; ¢ “et:)re .
This coefficient is sometimes called, informallf;,, the 2 amily of solutions, and it there is, which is the "best
subscripts refer to the position of this coefficient in thesolutlon according to some criteria, if there is no solution,

. . . i ise?”
larger “Transport matrix” discussed in [5] and elsewhere’ Elf_}(]are at least some opt“nurl‘n c%mpr%mse.
which describes to the first-order the action-response rela- ese questions are all re ate. to the propertyaok i
tionship between control elements of a beam-line. the maximal number of linearly independent columns in

The problem of accelerator steering can then be pos&' and the ratio of this rank to the number of unknowns in
as a system of simultaneous linear equations relatihg - The termsingularity is also often used particularly for
BPMs to N magnets used for orbit correction square matrices. There are a number of separate theoreti-

' cal methods to answer these questions, but one, the SVD

TIAG + T2A0, + -+ TINAOy = ABPM, has become popular because its very robust and is easily

licable to all of these questions.

TG + TEAG, + -+ T2NAOy = ABPM, PP . -

12 A0+ Tz A0 + -+ Ty AbN 2 The SVD though does not respect barrier conditions so
_ its not possible to include the magnet limits in the problem

M1 M2 MN _ posed to classical SVD algorithms, and it is this drawback

Tz AbL+ Ty Aby + -+ T " A0 = ABPMu o s qdress later,

whereABPM;, i = 1... M, is the desired change in the
ith BPM, andAg;, j = 1... N, is the sought change in 2 THE SINGULAR VALUE DECOMPOSITION

the bend angle of thgth corrector magnet to achieve thattne syvp technique is based on a factorizatiomofvhich
change. A suitable vector of thé Af values which solves \ye shall summarize as followA = USVT whereA is

“Work supported by the Department of Energy, contract DE-AC03/Y rOWS X N C(_)IumnSvU is an'M x M COlu_mn' orth.o'g-
76SF00515 onal matrix,¥ is anM x N diagonal matrix of positive



or 0 values, an&/ is an N x N column-orthogonal ma-  If we now wanted to look at alternative solutions, per-
trix, i.e. UTU = VTV = 1. SinceV is square it is also haps because the particular solution involved exceeding the
row-orthogonal. limit of some corrector, we can look more closely at the ge-
ometric interpretations o6 and'V. To do this lets make
explicit the ideas of range and null-space. If there are al-
() . . .
(A) = (U) - _ -(VT) (2) ternative solutionx, A must be singular oM < N, and
" then there must be some sub-spader which A - x = 0.
oN This is the null-space oA, and its dimension is called the
“nullity” of A. The space that can be reached&ynulti-

condition-number ofA is given by the ratio of the largest plled.by anyx atall is callgd the_ “range“‘ OA. The rank

of the singular values to the smallest. The rankAofs of Ais equwallent to the d|mens!on of th|§ rangg.

given by the number of non-0 singular values, and so the The non-0 smgullailr values define the dimensions of these

nullity (explained more fully below) ofA is given by the sub-spaces. Specifically, the columndbthat correspond

number of 0 valued singular values. Given the above prof® S&me-numbered non-0 valued elementLdbrm a set

erties of orthogonality, the pseudo-inverselofs given by of or'Fhonorma! ba5|s. fu.nctlons for the rangeﬁ&'nc call this

At = VEIUT. s a diagonal matrix, so its inverse is thematrix Uy. This basis is a s.et of veqtors yvhlch spans thgz

diagonal matrix of reciprocals of its elements. This then i{§2Me Sub-space as the original matrix. Itis orthonormal in

the simple method of solving a linear system given in eq the sense that it is a set of mutually orthqg.onal unit v_eqtors,

using the formalism used in Press et al[2]: and so makes up a necessary and sufficient description of

. ) . the sub-space.
AT =V -diag(1/o;)- U ®3) The columns oV that correspond to 0 valued elements
The properties of these matrices for diagnosing algedf X form a set of orthonormal bases functions for the null-

braic problems are well explored, particularly by Golub angpace ofA, call this matrixVy.

Riensch [1]. The interpretation of results under the condi- Using Vo one can compute alternative solutions by

tionsM < N,M = N andM > N are very practically adding to the particular solutios linear multiples (or

explained in Press et al, and Strang[3] describes Linear Alcombinations”) of columns; drawn fromVy, giving x’

gebra in general, and its geometric interpretation in parti@nd the overall valuAx’ won't be different fromAx.

ular. Taking this process further, how can we find those spe-
cific alternative solutions which do not exceed some spe-

3 THE SOLUTION SPACE cific barriers?

o1

The elementsy; are thesingular valuesof A. The

To illustrate our method of finding solutions which re-
spect barrier conditions lets look at the case of the under- 4 BOUNDED LEAST SQUARES SEARCH

determined system, one in which there are simply less o . . .
equations than unknowns/ < N, or the rank ofA Recall that the objective is to find a vectowhich mini-

is insufficient to find a single perfect solution. This mayMiZesl|Ax —bl|; - alinear least squares problem. This is
have been due simply to there being more correctors thgfuivalent to minimizing the RMS of the beam orbit when
BPMs, or more subtly because of correctors and BPMs bét IS the “transport matrix” of an accelerator. But the prob-
ing poorly separated in phase space, or one sub-set of clsm is made @fﬁcu!t to solve by the classical linear Ieas_t
rectors having roughly the same influence on the BPMs &guares algorithm implementations such as LSSOL[4] if
some other sub-set. All of these conditions would caus@€re is degeneracy in the equatichs Degeneracy sig-
degeneracy in the transformation matfix nificantly compounds the effects of rounding error in nu-

The SVD will return at leastv — M 0 or smallg;’s.  Merical computations.
There may also be additionald) due to rank deficiency.  One way to overcome the problem would be to remove
Call the number of 0 singular valués the trouble-some null-space frot, and search for solu-

One must also set; that are very close to 0 to 0, sincetionsx in the remaining sub-space. The constraints on the
those are probably dominated by numerical error. If theslution would also have to be transformed in to the coor-
values are allowed to remain they will tend to attract thélinates of that, re-cast, problem. When a solution is found
computation in 3 toward a null-space vector. Specificalljf Would be transformed back again into the original co-
what constitutes “close to 07, is related to computationgfrdinates.
precision and accuracy of original data. Guidelines for de- To delineate these transformations, define the basis func-
ciding appropriate cut-off values are given in the literaturelions that will be used to generate them:

The SVD can easily be used to select a ‘particular so- y, % columnsu;, for whicha; # 0 : An orthonormal
lution” and it will be the solution which is smallest in the basis for the range ok. Uy is M x N — k.
least squares sense: one simply sets all the 0 valafier U, def

0

. ; 2 = columnsu;, for whichg; = 0 : An orthonormal
editing for computational precision) to O rather tHglo ;. basis for the orthogonal complement of the rang&.olU

x =V - [diag(1/o;)] - (UT - b) (4) isM xk.



def

orbit corrections using the same transport matrix can pro-
ceed from it.
We do not submit the recast problem to a constrained

Vo = columnsv;, for whicho; = 0 : An orthonormal
basis for the null-space &. Vo is N x k.

def .
£ columnsv;, for whicho; # 0 : An orthonormal

A.ViisN x N — k. Fion, by 4|, ftipdsr?olutitljns (tjhaLare ir]] boudndi,lsinc;ahth? min-
3 def aj, for whichoj # 0 : The extent of each dimen- Imum solution has aiready been found. AISO, the iinear
least squares technique in the case of negligible degeneracy

sion of Fhe range oAl 3y is a square diagonal matrix of is equivalent to the SVD when all of the singular values are
non-0 singular values andi§ — k x N — k.

. used.
Then define the orthogonal sub-spacetof The hybrid method has been tested in simulation and
been in operation in the SLC linac for some time with suc-

) cess. It was developed for the B-factory, which will be
The solution vector being sought must similarly be intere0mmissioned in the summer of '97, when heavier require-
preted in the coordinates of the orthogonal complement §f€nts will be made of its ability to deal with degenerate

A, e U3,

the null-space oA:

matrices. It is also part of a larger project in which disper-

sion is corrected simultaneously with orbit [6].

X1 def Vrlrx (6)
x1 wWilbe N —k x 1.
Then the minimization can be re-written to exclude th

null-space:

|Ax — bl|;
— ||U121V'11‘X — b||2
— ||A1X1 — b||2 (7)

[1]
This is then a least squares problem of smaller dimen-
sion - those dimensions in the null-spacefothave been
removed.
To incorporate the barriers on the original problemn<
x™ax wherex™2* agre the limits on changes to the corrector
magnet settings, we need to pose those barriers also in the

(2]

recast coordinates. From the interpretatioiVaf, and the  [3]
definition ofx; given in 6, and since the left inverse of an
orthogonal matrix is its transpose, then [4]

(8)

V1 then is the matrix whose rows each define a general lin°]
ear constraint o, Each corresponding row vector mul-
tiplication V1;x1 must not exceed**~.

Altogether, the linear least squares problem in the recadfl
coordinate space is to minimize:

X = V1X1

|A1x1 — b]| 9

subjecttoVx; < x™#*

This can be solved by any linear least squares solver that
accepts a linear constraints matrix as part of the problem
parameters, such as LSSOL. When satqeis found, it
can be transformed back into regular coordinates by 8.

5 PERFORMANCE

Both the SVD and the Linear Least Squares method for

non-singular matrices are known to be very robust.
Although the decomposition operation itself is fairly ex-

pensive, it need at least only be computed once and then all
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