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Abstract. In our research, we consider and study the inflation theories of Einstein-Gauss-
Bonnet, minimal, non-minimal, and non-minimal derivative couplings with the constant-roll
condition. Given the gravitational wave event, GW170817, which produces the speed of
gravitational waves that was almost equal to the speed of light in vacuum, we constrain that
the speed of the tensor perturbation was nearly equal to unity, ¢ ~ 1. We involve a scalar
field potential whose function can be obtained from an equation of motion by choosing the
Gauss-Bonnet coupling functions. We use the linear and quadratic coupling functions, which
are their simplest functions. The one result obtained are able to produce observed quantities
such as the spectral index for scalar perturbation, ns = 0.9642, the spectral index for tensor
perturbation, ny = —5.2471 x 10™%, and tensor-scalar ratio, = 0.0041, which are compatible
with the newest Planck data using the slow-roll parameters obtained analytically.

1. Introduction

The assumption of the inflation theory is dominated by vacuum energy, so it is liable for the
exponential expansion of the early universe [1]. A phase transition occurs where the vacuum
energy density turns into matter and radiation (reheating) which ended its exponential expansion
and then the Friedmann equation began its evolution [2]. Inflation also predicts the production of
gravitational waves that theoretically resulted from the tensor perturbation of the metric [3]. The
one is the gravitational waves generated by the merging of two neutron stars in the GW170817
event which after its merger occurred a kilonova. It gives the fact that the gravitational waves
nearly arrive at the same time as the electromagnetic radiation emitted by a kilonova, thus
producing the speed of gravitational waves was almost equal to the speed of light in vacuum.
We constrain that the speed of the tensor perturbation is almost equal to unity, 02T ~ 1. This
fact causes some generalizations of Einstein’s theory of relativity must be modified because the
gravity theory predicts difference between the speed of gravitational waves and the speed of
light, which refers to the speed of the tensor perturbation [4].

The formulation of the speed of the tensor perturbation can be obtained by reviewing the
effective field theory (EFT) of cosmological perturbations that has been studied in relation with
inflation characterize the low-energy degree of freedom of a most general gravitational theory
[5,6]. This approach makes it possible to cope with all possible high energy corrections to
standard slow-roll inflation driven by a single scalar field [7]. In particular, the most general
single field modified gravity scenario in terms of a Lagrangian depends on the lapse function
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and some geometrical scalar quantities naturally appearing in the Arnowitt-Deser-Misner (ADM)
formalism on flat Friedmann-Lemaitre-Robertson-Walker (FLRW) cosmological background [8].
Horndeski theory [9] has received much concern [10-12] as the most general scalar-tensor theory
with second-order differential equations of motion. It is caused by the covariant Galileons
generalization [13-15] allowing for the realizations of cosmic acceleration [16]. The explanation
of Ref. [8] shows that the Horndeski theory is supported in the EFT framework of inflation as a
special condition. In fact, the Horndeski theory fulfills conditions for the absence of spatial
derivatives higher than second order in the equations of linear cosmological perturbations.
Gleyzes et al. [8] gave explanations connecting the variables between the Horndeski theory
and the EFT of inflation.

The theory of Einstein-Gauss-Bonnet is one of theories that describe the inflation era and
provides a solution of GW170817 since it is based on the string theory by reviewing the canonical
scalar fields with minimal coupling [17]. It has been calculated [18] that assuming the constant-
roll of a scalar field from the theory of Einstein-Gauss-Bonnet yields observational quantities
that are compatible with the newest Planck data [19]. Another method that has been calculated
is to add the non-minimal [20] and non-minimal derivative coupling terms separately [21], giving
results that are also compatible with the latest Planck data. Therefore, with high motivation, we
combine all the previously worked correction terms to show the tensor and perturbation and the
scalar perturbation will produce the solutions of the gravitational wave with the constant-roll
condition and the spectral index to compare with the observational data based on the GW170817
event.

2. Theoretical framework of minimal and non-minimal derivative couplings with
string correction from the Horndeski theory

By using the EFT framework, we consider the most general scalar-tensor theory only up to
second-order differential equations of motion is named the Horndeski theory [9]. This theory is
described by the action S = [ d*z\/=gL with the Lagrangian [22],

5
L=Y"L;, (1)

=2

where,
Ly = G(¢,X), (2)
L3 G3(¢7X)D¢a (3
Li = Gu(6,X)R—2Gix(6,X) [(00)" = 6" 6, 4)
Ls = Gs5(¢, X)G o™

+3Csx(6,X) [(T6 — 306)6 6™ + 266" 63 (5)

Here G;(i = 2,3,4,5) are functions in terms of a single scalar field ¢ and its kinetic energy X =
MPpOup = (V¢)2 with the partial derivative G;x = 6XZ and Gy = %C; O=o0ro, = at2 - V2
is d’Alembert operator, R is the scalar curvature, and G, is the Einstein tensor. Based on our
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model, the corresponding G; functions are,

Gy = —g —V(¢) + if(4)X2 [3 —In <—)2(>] : (6)
Gy = —%f(?’)X [7—3111 <—)2(>] (7)
61 = 3(-¢) - 3rox 2-m (-5 )], Q
Gy = &p— %f(l) In (—)2(> : (9)

where (") = 9" f(¢)/d¢". Substitute Egs. (6)—(9) to the Horndeski Lagrangian in Eqs. (2)-(5)
are obtained the action [23],
4 R 1 2 1 2 1 2 2
S= [ dz/—g 5 5 (Vo)™ + gf(¢)RGB - 5@5 R+ oG = V(o) p,  (10)

where g is the metric determinant, f(¢) is the Gauss-Bonnet coupling function, while RZp
expressed the Gauss-Bonnet invariant, R%B = R“VagR“”o‘ﬁ — 4R, R" + R?, with R, and
R,,qp are the Ricci tensor and the Riemann tensor respectively, ¢ and § are non-minimal and
non-minimal derivative coupling constants respectively, and V' (¢) is the scalar potential function.
Furthermore, we shall assume that the cosmological geometric background is flat Friedmann-
Lemaitre-Robertson-Walker (FLRW), and consequently the line element reads,

3
ds? = —di? + () Y (da?)”, (11)
=1

where a(t) is the cosmic scale factor. Therefore, the Ricci scalar and the Gauss-Bonnet invariant
are R = 6(2H% + H) and R%, = 24H?(H? + H), where H = 4 is Hubble’s parameter and the
”dot” signifies differentiation with respect to cosmic time ¢.

By varying the action in Eq. (10) with respect to the metric tensor g"” and the scalar field
¢ are obtained the equations of motion as follows,

3H = J32 +V 430 (H26 + 2H0d) — 9HP — 3HY, (12)

—2l = 420 (Hod— He* — ¢ - 60)
Y (3H2¢2 . 2H¢¢5> YOHHf + H? (f‘ . Hf') , (13)

(1— 6¢H?) (¢'5 + 3H<z'>) +6¢ <2H2 + H) &
_126HH$ — 3f H? (H2 + H) LV =0, (14)

where ”prime” signifies differentiation with respect to the scalar field ¢. Fortunately, in this
case we consider the universe during inflation, then we shall implement the inflation and the
constant-roll condition as follows,

H?> H, Vo> %dﬁ, ¢ = BHG, (15)
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where [ is the constant-roll parameter. Furthermore, we shall assume that the string terms are
also negligible from the equations of motion, leaving only the canonical scalar field terms. As
an example, we show the approximation for Eq. (12) which are,

V> —3H%, V> —9¢H?¢?. (16)

In principle, we assume that f < 1 and £ < 1 with all the possible combinations appearing
Egs. (12)—(14), while ( is still used in the background because it is directly coupled to the Ricci
scalar [20]. For the above assumptions, the equations of motion in Egs. (12)—(14) become very
simple namely,

(1) B = v+ 20H, (a7)
—2(1-(¢*)H ~ (1-20)¢*+2((1-B)Hog, (18)
(B+3)Hp+12CH?¢p+ V' ~ 0. (19)

However, before we go any further calculation, we shall apply certain additional constraints to
get compatibility with the newest observations.

Since string corrections of the Gauss-Bonnet term are applied, the speed of gravitational
waves which is propagated through spacetime does not necessarily coincide with the speed of
light in vacuum. Particularly, the tensor propagation speed square is given by [22],

2 _
& = —, 20
b= (20)

in natural units, and € and Lg are defined as,
1 .
E=Gy4+ §XG5¢ — XGs5x ¢, (21)
1

Ls = Gy — 2XGyx + H(-X)*?Csx — 5XGsg. (22)

Then, use the functions of G4 and G5 in Egs. (8) and (9) to calculate Egs. (21) and (22), we
get,

) (23)

Ls = 3(1— (& +68 + HS). (24

As a result, compatibility with the GW170817 event was recoverable by reviewing that the speed

of the primordial tensor perturbation was nearly equal to unity, cgp ~ 1. By using Egs. (23) and

(24), so that Eq. (20) becomes,

(1-B) HS
-2

where the differential symbol % is equivalent to gi)d%. By applying the limit 8 = 0, Eq. (25) in

¢ = (25)

equivalent to the slow-roll case. Thus, the equations of motion in Eqgs. (17)-(19) are rewritten
in this case becomes,
1 "—2
H? ~ 2V 2\ (£ ! ¢ AN
30 L =¢e?) (f" =28 —2(1 - p) Cof

(26)
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(1) E (1—5)2H2f’[ (1-20) f’]
2 (1 <¢ ) H f// _ 25 2C¢ + f// _ 25 ’ (27)
r | L+ B/3) (1—B)f’+4c¢(f”—2£)]
V V ~0.
lma-por+a-c 29" =" 2%)

The three above equations are much more simple to calculate analytically. In Eq. (27) produces
the slow-roll parameter expression, £ = —H /H?, which is useful because it is directly related
to the constant-roll parameter § and the Gauss-Bonnet coupling function f(¢). While for Eq.
(28), the inflaton potential function can be known explicitly if the coupling function f(¢) is
specifically set and the corresponding parameters are appropriately given.

Consider the six slow-roll parameters on cosmic inflation which can be expressed as,

H ¢ Qt éT Qs és
=—— = — = — o = , = , . = , 2
€ H2’ ﬁ H(b’ 6Qt HQt’ T HCT 5Qs HQS 0 s HCS ( 9)
where,
_ Ls _ 2L
Qt = 77 QS = 3W2 (9W2 + 8L5w) ) (30)
and,
2 .
2 = — —
2= <M+HM 8) , (31)

which is the speed of the primordial scalar perturbation. The quantities of W, w, and M are
defined as,
W = 4HG4+20XG3x — 16H(XGax + X Guxx) + 26(Gap + 2X Gapx)
—2H%)(5XGsx + 2X*Gsxx) — 2HX (3G54 + 2X Gs4x), (32)
w = —18H?Gy+3(XGax +2X?Gaxx) — 18H¢ (2XG3x + X*Gsxx)
—3X (G3p + XG3px) + 18H? (TXGax + 16X*Gaxx +4X*Gaxxx)
~18H (Gap + 5X Gugx + 2X*Gapxx) + 6H?¢ (15X G5x + 13X*Gsxx

—|—2X3G5XX)() + 9H?’X (6G5¢ + 9XG5¢X + 2X2G5¢Xx) R (33)
4L3
M o= 3 34
- (34)
Then, use the functions of G; in Egs. (6)—(9) to calculate Eqgs. (32)—(34), we get,
W = 2H -2 (H¢2 + ¢¢'>) 6EHG + 3H2 (35)
1. . . ,
w = 3 [—3}12 + §¢2 +3¢ (H2¢2 + 2H¢¢) — 18¢H?¢? —6H>f| , (36)

(1-¢o ved v mf)

9H — 2¢ (H¢2 + ¢¢) Y 6EHG? + 3H2f

(37)

Hence, according to Eqgs. (24), (27) and (30), the first three slow-roll parameters, ¢, 5, and g,
can be analytically rewritten as,

=052 [(1 5 ) () (f”]i/2£>2] | )
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281 B)TEHP + (1= B) (" —26) [-2¢ + (B —e) H* ' + H["] [

(1= Ce?) (f" —26)" + (1= B)* EH2f2 + (1 — ) (f" — 26) H2 [
and S will be chosen in the section of the coupling function models. For the last three slow-roll
parameters, 0., 0¢,, and d.,, we do not calculate in detail, because the equations are too long,
then its alternative solutions can be calculated using computations. In Eq. (38) can produce
eternal inflation when € = 0, so 8 = 1 does not fulfill these conditions. Lastly, we discuss the
observational quantities in the case of models we will choose. The scalar spectral index ng, the
tensor spectral index np, and the tensor-to-scalar ratio r in terms of the slow-roll parameters
are defined as,

;o (39)

Qt

ne = 1—2—3dq, — 30, (40)
ny = —2—06¢g, — 30y, (41)

(@6

We can do this calculation by first evaluating the final value of the scalar field ¢. This value
can be calculated by equating the slow-roll parameter ¢ in Eq. (38) equal to one. Consequently,
the initial value of the scalar field ¢; can be calculated from the e-foldings number, expressed as

N = fttlf Hdt = fif %d(b, where the difference ¢y —t; denotes the duration of inflation. Recalling
expression of ¢ in Eq. (25), we will find that ¢; can be derived from,

1 [0 " —2¢
= de.

Therefore, by using expression of ¢; as an calculation input in Eqs. (40)—(42), we will calculate
and check if there exist values for the free parameters which gives compatible results with the
newest Planck data which specifically constrains ng and r as follows,

N

ns = 0.9649 + 0.0042, r < 0.064, (44)

with 68% C.L and 95% C.L respectively. Referring to the tensor spectral index ng, until now
no specific value is known because the B-mode has not been observed [19]. It can be seen that
from Eqs. (43) and (38), it is obvious that choosing the right coupling function, is the key to
simplify the results. In the next section, we will consider certain functional forms of this coupling
function and derive the scalar potential function from Eq. (28), then returns the results for the
observational quantities introduced earlier.

3. Specific models of Gauss-Bonnet coupling function and its compatibility with
observational data

In this section, we will analyze two models that can provide the most feasible phenomenology, by
appropriately choosing and the simple scalar coupling function f(¢). Therefore, we will define
specifically the Gauss-Bonnet coupling scalar function f(¢) i.e. the linear and quadratic coupling
functions. After that, we will find the potential function V' (¢) obtained from Eq. (28) based on
the selection of the coupling scalar function. Next, we will calculate the slow-roll parameters € in
Eq. (38) equal to unity to discover the final value of the scalar field ¢, and from the expression
of the e-foldings number from Eq. (43), the initial value of the scalar field ¢; can be determined
as an input, and fundamentally, we must choose best values for these parameters. Accordingly,
by comparing the numerical value of the observational indices obtained by the model, namely the
scalar spectral index ng, the tensor spectral index np, and the tensor-to-scalar ratio r, which are
coming from the newest Planck 2018 collaboration, the validity of the models can be confirmed.
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3.1. A Linear Coupling Function
We choose a linear coupling function which is expressed as,

f(9) = ¢, (45)

where A is a dimensionless constant. Whereas, the first and second derivatives of f(¢) to the
scalar field respectively are,

fl@)y=xr f'(¢)=0. (46)

Then, plug the above conditions into Eq. (28) to discover the explicit function of the scalar
potential function V' (¢), and we briefly get,

V(9) = Voeln ), (47)

where Vj is an initial potential, as well as 7 and 7 are the function of the scalar field which is
expressed as,

— b2 _
ﬁ:m[m <¢)£|z|(1 B)Awl]’ 8)
and,
__0-pEc-pB-pA| [ 200+ (1)
Ve — (1 g e Ve — (1 - g e
— arctan (1 _ 5) ¢ (49)

Ve — (1 - g

By applying the conditions (45) and (46) to the slow-roll parameters in Egs. (38) and (39), we
have,

_ o [—4CEAG + (1 = 20) N2
e={-5) [ 81— o7& ] o
and,
5 41 -p)CrAp+2(1 - B) (e — 5%) N*H? (51)
O T (D PV
where the expression of H? in Eq. (26) becomes,
2 1 S
w3 e a— o) o

You can see only three the slow-roll parameters, namely ¢, 3, and Jg, which have the simplest
form compared to d.,, d¢,, and d., which will be calculated numerically. Since expression of ¢ is
the simplest slow-roll expression, the initial and final value of the scalar field are easily obtained
as follows,

4 =B
bi = o5+ T (53)
(L=BPOr (1= ) (N2 —2(1— B) (1 - 20) X + 16662
¢5 = 1CE (54)
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The resulting theory from the above equations can be compatible with the observational
data for several free parameters. For instance by selecting (X, Vp,N,B,(,E) =
(—3>< 1077,102, 60, —0.0345, 0.279, 10_5) in Planck units, subsequently the observational
quantities reads,

ns = 0.964154, np = —5.247070 x 1074, 7 = 0.004100, (55)

which are compatible with the newest Planck data [19]. Furthermore, the scalar field increases
with time i.e ¢; = 0.954096 whereas ¢y = 1.885146, the sound wave velocity is equal to unity
as expected and moreover, the slow-roll parameters are valid since these numerical values are
of order O (10_2) and lesser. In particular, ¢ = 0.005799, 8 = —0.0345, dgp, = —0.011074,
Sep = 4.4 x 10719 dg, = —0.041322, and 4., = 0.021856. In this model, the scalar potential
function has about V = 5.454349 x 10% and the square of the Hubble parameter about
H? = 2.464357 x 10%2. The best results are shown in |A| ~ 1077 since it has a wide interval,
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Figure 1. A linear coupling function model: the contour plot of the scalar spectral index
ns (left) and tensor-to-scalar ratio r (right) depending on parameters 5 and A on intervals
[—0.04, —0.02] and [—8 x 1077, —1 x 10_7] respectively. It can be seen that the value of the
scalar spectral index of are very much determined by the constant-roll parameter 5 and has a
narrow area to be compatible with observational data.

hence has a significant difference between ¢; and ¢; which indicates the scalar field growth
during inflation, as well as V and H? are almost close to Vo. The largest order of A in this
model is about | — 1.2 x 1079| and if it is more than that, the other quantities are imaginary.
The smaller the order of A causes ¢; and ¢ to be almost the same value, the orders of V' and
H? extremely drops, and 3 the nearly same to produce n, that fits the data. Now, we consider
variations of ¢ = (10,50,100) at |[A| ~ 1078 resulting ¢; and ¢; are almost the same, V, H?,
and ¢ decreases, as well as  — 1 and dg, > 1 so that it does not match the expected values.
Therefore, the order of ¢ ~ 10~! works well in this model. On the other hand, if we consider
€ > 1075, the values of ¢; and ¢ ¢ are almost the same, V' and H 2 decreases, as well as € and 3
become relatively constant. Therefore, the order of & works well in this model. This proves that
the assumption of the coupling € and f ~ A works on the relatively small order of the proposed
models. The most important thing from the results (55) obtained analytically is how the values
changes when varied against independent parameters, such as 8 which affects the scalar spectral
index value, and A which affects the Gauss-Bonnet coupling function value. Shown at Figure 1
above, the contour plot of the scalar spectral index perturbation ng and the scalar-to-tensor
ratio r at corresponding intervals.
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Finally, we validate whether the approximations assumed in Eqgs. (15) and (16) holds
true. Firstly, by choosing (X, Vo, N,B,¢(, &) = (=3 x1077,10?,60,—0.0345,0.279,107°), we
have H ~ O (1) compared to H? ~ O (10?) holds true. Similarly, %¢2 ~ 0 (107%) while
V ~ 0 (10%) also holds true. In addition, we have —9¢H2¢? ~ O (1073) and —3H3f ~ 0 (107%)
compared to 3CH?¢? ~ O (102), 6CHpgp ~ O (1), and potential term holds true. Also 2HH f ~
0 (1076), H? (f'— Hf> ~ 0 (1071), —2¢ (3H2¢2 _H? - 2Hq’s¢£> ~ 0 (1071), compared to
2 (qué _H$? — g2 — ¢<}5) ~ O (1) and kinetic term holds true. As well —6¢H2 ~ O (10-2),
—126HH$ ~ O (107%), —3f'H? <H2 —i—f{) ~ 0 (1072) compared to 12(H?$ ~ O (10%) and
b+Hp~0O (101) also holds true.

3.2. A Quadratic Coupling Function
We choose again a quadratic coupling function which is expressed as,

f() = A%, (56)

where A is a dimensionless constant. Whereas, the first and second derivatives of f(¢) to the
scalar field respectively are,

f'(¢) = 2A¢, f(d) = 2A. (57)

Then, plug the above conditions into Eq. (28) to discover the explicit function of the scalar
potential function V' (¢), and we briefly get,

lkg” + C']m7 (58)

]

V<¢>:vo[

where Vj is an initial potential, as well as k, ¢, and m are constants which is expressed as,

E=20-5)A+C (-8, c=-(-g, m=CTEIEZITLLEZD )

By applying the conditions (56) and (57) to the slow-roll parameters in Eqgs. (38) and (39), we
have,

1—pB)? A2 —2¢€N) ¢?
(-9 [ ( 2C£)<Z>2]7 )
2 (1=¢p*)(A=¢)
and,
5. 280~ B)ENTH2 G +2 (1 — B) (A = &) [-CA$* + (B — &) N2H?¢? + N2 H )] (61)
T A0 TH (1-BPEHR +2(1- B) (A - O NH?
where the expression of H? in Eq. (26) becomes,
2 1 A=¢ }
w2V [ ow (62)

You can see only three the slow-roll parameters, namely ¢, 3, and Jg, which have the simplest
form compared to d.,, dg,, and d., which will be calculated numerically. Since expression of ¢ is
the simplest slow-roll expression, the initial and final value of the scalar field are easily obtained

as follows,
(1-5) AN}

— (63)

Gi = ¢yexp [
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N

2(A - ¢)°
(1= 5)* (A2 = 20EN) +2¢ (A — €)*
The resulting theory from the above equations can be compatible with the observational
data for several free parameters. For instance by selecting (X, Vp,N,5,(,E) =

(—3><10_7,103,60,—0.0349,0.1,10_5) in Planck wunits, subsequently the observational
quantities reads,

¢r = (64)

ns = 0.964266, np = —2.497178 x 104, r = 0.001973, (65)

which are compatible with the newest Planck data [19]. Furthermore, the scalar field increases
with time i.e ¢; = 0.509468 whereas ¢y = 3.108606, the sound wave velocity is equal to unity
as expected and moreover, the slow-roll parameters are valid since these numerical values are of
order O (1072) and lesser. In particular, € = 9.281029 x 104, 8 = —0.0349, Jg, = —0.001607,
Sep = 2.9 x 1079, dg, = —0.066916, and d., = 0.033598. In this model, the scalar potential
function has about V = 9.450100 x 10? and the square of the Hubble parameter about
H? = 3.239177 x 102. The best results are shown in |[A| ~ 1077 since it has a wide interval,

Eil A
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Figure 2. A quadratic coupling function model: the contour plot of the scalar spectral index
ns (left) and tensor-to-scalar ratio r (right) depending on parameters 8 and A\ on intervals
[—0.04, —0.02] and [—8 x 1077, -1 x 10_7] respectively. It can be seen that the value of the
scalar spectral index are also very much determined by the constant-roll parameter 8 and also
has a narrow area to be compatible with observational data.

hence has a significant difference between ¢; and ¢; which indicates the scalar field growth
during inflation, as well as V and H? are almost close to Vo. The largest order of A in this
model is about | — 2.4 x 1079| and if it is more than that, the other quantities are imaginary.
The smaller the order of A causes ¢; and ¢ to be almost the same value, the orders of V' and
H? extremely drops, and 3 the nearly same to produce ng that fits the data. Now, we consider
variations of ¢ = (10,50,100) at [A| ~ 107® resulting ¢; and ¢; are almost the same, V and
H? decreases, as well as 3 — 1 and 09, > 1 so that it does not match the expected values.
Therefore, the order of ¢ ~ 10~! works well in this model. On the other hand, if we consider
€ > 107?, the values of ¢; and ¢y are almost the same, V and H 2 decreases, as well as ¢ and
B become relatively constant. Therefore, the order of & works well in this model. This proves
that the assumption of the coupling £ and f ~ A works on the relatively small order of the
proposed models. The most important thing from the results (65) obtained analytically is how
the values changes when varied against independent parameters, such as § which affects the
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value of the scalar spectral index, and A which affects the value of the Gauss-Bonnet coupling
function. Shown at Figure 2 above, the contour plot of the scalar spectral index ng and the
scalar-to-tensor ratio r at corresponding intervals.

Lastly, we validate whether the approximations assumed in Egs. (15) and (16) holds
true. Firstly, by choosing (A, Vo, N, 8,¢, &) = (=3 x 1077,10%,60, —0.0349,0.1,107°), we have
H ~ 0 (10*1) compared to H? ~ O (102) holds true. Similarly, %ng ~ 0 (10*2) while
V~0 (102) also holds true. In addition, we have —9§H2g252 ~ 0 (10_3) and —3H3f ~ 0 (10_3)
compared to 3CH?¢? ~ O (101), 6CHpop ~ O(1), and potential term holds true. Also
2HHf ~ 0(1077), B2(f = Hf) ~ 0(107), —2¢ (302 — H? — 2Hd3) ~ 0(107),
compared to 2¢ <H¢¢ — quZ — q32 — (b(b) ~ 0 (10*1) and kinetic term holds true. As well
~6¢H? ~ 0(1072), ~126HH$ ~ 0(107Y), ~3'H? (H2+ [) ~ 0(107%) compared to
12CH?¢p ~ O (102) and <}5+ Hqﬁ ~ 0 (101) also holds true.

4. Conclusion

In this work, we studied the gravitation models with string correction term which is the Einstein-
Gauss-Bonnet term, minimal, non-minimal, and non-minimal derivative couplings during cosmic
inflation in which we combined the action function in previous work [18,20,21]. Theories of
gravity in Eq. (10) belong to a wider class of Horndeski’s theory. The GW170817 event provides
evidence that gravitational waves travel at almost the same to the speed of light in vacuum,
so we impose the constraint ¢z ~ 1 [4]. This constraint makes the expression of the rate of
the scalar field qb depends on the Gauss-Bonnet coupling function f(¢), non-minimal derivative
coupling constant £, and the constant-roll 5, which greatly affects calculations so that compatible
with data. The constraint 02T ~ 1 actually refers to non-minimal derivative coupling which is
phenomenologically viable in correcting the Einstein-Gauss-Bonnet inflationary theory.

By using the constant-roll assumption in our theoretical work, we can demonstrate its
feasibility by phenomenology. As prove, if we saw from the contour plots presented in the
previous section, the correct selection of B produces observational quantities (analytically
obtained) which is compatible with the latest Planck data [19]. The Gauss-Bonnet coupling
function models we chose are also very simple functions. This proves that even the simple
models also give viable results.

Thus, one can use Eq. (25) as an additional constraint and provide numerical solutions for
cosmological and astrophysical interest. Our task in planning future theoretical research also
relies on future observational research data relating to the speed of gravitational waves, or events
in the early universe.
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