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Abstract

The main topic of this thesis is classification with Adversarial Neural Net-
works, which are for the first time used in an analysis targeting final states in
which the Higgs boson decays to pairs of photons (H → γγ). The analysis uses
139 fb−1 of proton-proton collision data recorded at

√
s = 13 TeV by the ATLAS

experiment at the Large Hadron Collider, and targets the associated top pair
and Higgs boson production (ttH). Backgrounds with non-resonant photon pairs
such as multi-jet or top-antitop pair production in association with photons are
mainly rejected by using the photon kinematics. The signal is extracted from a
fit of the di-photon invariant mass (Mγγ) distribution, which consists of a narrow
signal peak on the top of a substantial background. Using the kinematic variables
of the photons for the classification causes the background Mγγ distribution to
peak at the Higgs boson mass value, due to these variables being correlated with
Mγγ. This sculpted background distribution is hard to parametrise with a simple
functional form needed for the background fit to the Mγγ sidebands. The novel
adversarial neural network approach developed in this thesis enables designing
a classification discriminant independent of Mγγ, which removes the sculpting,
while keeping the classification efficiency optimally high.

Additionally, work towards the creation of a programme to deal with the
interpolation of energy values used for the incident single particles in the fast
calorimeter simulation of the ATLAS experiment, which is used to date, is also
presented in this thesis.
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Lay Summary

The Standard Model is the theory able to describe all fundamental interactions
apart from gravity. In the Standard Model conjecture, fundamental particles
obtain mass through the coupling with the Higgs boson. The aim of the thesis
is precision measurement of the coupling of the top quark, the Standard Model
particle with the largest mass. This measurement could reveal deviations from
the theory predictions, hinting that the standard model is not the ultimate theory.

The data for the measurement is provided by the Large Hadron Collider
(LHC), the world’s largest particle accelerator which collides protons with ex-
tremely high energies in a 27 km underground tunnel located close to Geneva. In
these collisions, particles, that cannot be found in the usual matter around us,
such as the top quark and the Higgs boson, can be created. Four main detec-
tors are used to observe the collisions. The thesis uses data taken by the ATLAS
detector, one of the two experiments which descries this coupling.The ATLAS ex-
periment records about a thousand high energy collisions each second, and each
of these collisions contains thousands of particles. Sophisticated computer algo-
rithms are therefore required to analyse the collision events and draw conclusions
from them.

This thesis investigates a novel machine learning algorithm (artificial intelli-
gence), called adversarial neural network (ANN). The ANN is used to measure
the top quark coupling in events containing two top quarks and a Higgs boson.
The Higgs boson has a short lifetime and is studied by the particles into which
it decays. The thesis uses the Higgs decays to two photons, which is one of the
most distinct Higgs decays that ATLAS can observe.

An adversarial neural network consists of two neural networks with different
objectives, nevertheless working towards the same final goal: a precise measure-
ment of the top quark coupling. The first network is developed to remove events,
which look like they are containing two top quarks and the Higgs boson, even
though they do not actually contain these particles. This process is not 100%
efficient and events which evade it are "sculpted" to look like the actual events
containing two top quarks and the Higgs boson. This sculpting substantially
degrades the precision of the measurement. This problem is addressed by the
second network, which is tasked with removing the sculpting. With this system
of two networks, the adversarial method finds the balance between the removal
of unwanted events and sculpting. The ANN is unique compared to other algo-
rithms developed by ATLAS, because it is designed to find the optimal balance.
This is shown to match the highest precision top quark coupling measurements.
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Additionally, this thesis deals with a separate problem related to the simula-
tion of the ATLAS detector. Simulation is a crucial factor in studying the ATLAS
detector’s response for all physics measurements, which are computationally pos-
sible. The general ATLAS simulation is detailed and computationally expensive,
so fast simulations, such as AtlFast calorimeter simulation, which is discussed in
detail in this thesis, are essential. Simulation events used to be generated with
specific energies in simulation while In reality, the particles can have any energy.
So an energy interpolation method to address this issue is presented in this thesis
and included in the AtlFast3 fast simulation.
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Glossary

SM Standard Model of particle physics

BSM Beyond the Standard Model

LHC Large Hadron Collider

ATLAS A Toroidal LHC Apparatus

pp proton–proton collision

MC Monte Carlo

QCD Quantum Chromodynamics

EM Electromagnetic

FCS Fast Calorimeter Simulation

AF AtlFast calorimeter simulation

G4 Geant4 simulation toolkit

NTNI Non-Tight or Non-Isolated; refers to data with NTNI photons

SS Spurious Signal; background misidentified as signal

ML Machine Learning

NN Neural Network

ANN Adversarial Neural Network

ROC Receiver Operating Characteristic curve

JSD Jensen-Shannon Divergence
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Chapter 1

Introduction

The theory, which combines the relevant fundamental forces and the elemen-
tary particles involved is the Standard Model of particle physics. Although, it is a
set of laws and equations, which describe many physical phenomena, there is a lot
we still do not know and need to understand. The process of understanding what
we do not yet know include two main branches in particle physics: discovering
new particles and improving already made measurements about known particle
and interactions, which leads to either confirming theoretical expectations of the
Standard Model or implying the existence of new, yet unknown physics. The anal-
ysis described in this thesis is under the second branch. It deals with improving
the understanding of a fundamental interaction called the Yukawa interaction by
examining one of the Higgs boson production mode (from a pair of top quarks)
and one of its decay signatures (to two photons) with the final goal of contribut-
ing to the coupling strength measurement between the top quark and the Higgs
boson (top-Higgs Yukawa coupling). When using the kinematic variables of the
final state photons in the analysis chain, an additional separation power between
the signal (ttH(H → γγ)) and the background (all other processes) is provided.
They are particularly important for the rejection of backgrounds, which contain
photons in their final state. An example of such a background process is the
production of a pair of photons from a pair of top quarks: ttγγ.

The photon kinematic variables have not been used in previous iterations of
the analysis, because selections using these variables result in a large sculpting of
the background distribution: (50-60)%. This sculpting results in a background
shape that mimics closely the signal shape. The signal peak is the Higgs boson’s
mass peak, which is expected to be seen as a two sided distribution around the
measured Higgs mass of 125.35 GeV. The sculpting made it impossible to see the
signal peak after background rejection.
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In this thesis, a machine learning method using Adversarial Neural Networks
(ANN) is proposed to deal with the above issue, while keeping the signal accep-
tance and background rejection optimal. In the adversarial approach used, there
are two networks, which work together towards the same goal, but with different
objectives. Those objectives are the optimal signal and background classification,
which the first neural network is tasked with, and the complete removal of back-
ground sculpting, which is the task of the second network. The ANNs have been
successfully used in ATLAS analyses targeting resonance decays to large-radius
jets [2] and Higgs decays to b-quarks (H → bb) [3]. In this thesis, ANN is for the
first time used in an analysis targeting H → γγ decays.

The performance of the ANN matches that of the scaled network used by
ATLAS at the time of the studies in this thesis, where the transverse momenta
and energy of the Higgs candidates are scaled by the di-photon invariant mass.
This is used as a bench-mark comparison for the analysis presented here, in
particular to compare the final sensitivity obtained, and to quantify the level
of remaining background sculpting. In the final states with at least one lepton
(leptonic decay channel), the ANN performance is found to be satisfactory and
comparable to that of the scaled network. In the lower sensitivity final states with
no leptons (hadronic decay channel), categories with a high ANN discriminant
cut could only be fitted with functions using many free parameters, but they
contained too few expected background events to constrain these parameters in
a fit. A modification of the adversary architecture (less nodes, smaller number
of Gaussian Model Mixture components) and more training data alleviates the
sculpting in this case. The full update of the results with such architecture is
beyond the scope of this thesis. In hadronic categories with lower discriminant cut
values, the Adversarial network performed comparably well to the Scaled network.
The ANN setup developed in this thesis is thus applicable to the ttH, H → γγ

classification in most categories and could be a viable scientific solution to any
resonant physics channel, which suffers from sculpting issues after background
rejection while maintaining high signal rates.
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Chapter 2

Theoretical Background

2.1 The Standard Model

Particle physics deals with the smallest constituents of our Universe called
fundamental particles and with the interactions between them. The theory, which
combines these particles and the forces between them is called the Standard
Model [4]. It is a relativistic non-abelian gauge theory and has a total of twelve
gauge bosons: the photon, three weak bosons and eight gluons. It comprises
all non-gravitational physical laws as we know them. Any deviation from it
would be considered new physics, not just unknown to us, but also bringing new
fundamental meaning to our Universe. For this exciting reason, physicists at
CERN and other particle physics research oriented institutions, are providing a
united daily effort to measure all possible properties of those particles, as precisely
as possible and compare them with the theoretical expectations provided by the
Standard Model. There are three families of elementary particles in Standard
Model - leptons, quarks and gauge bosons There are 12 elementary fermions, six
quarks and six leptons and 4 gauge bosons [4].

2.1.1 Fundamental Interactions

Generally, it seems as if the world around us as we know it consists of mostly
just a few fundamental particles. All matter consists of atoms, which are fur-
ther comprised of neutrons and protons in their core and electrons around that
core. But the more we understand all the physical processes involved, the more
all particles appear to have interesting and important roles. The way electrons
are bound to the nucleus is a low-energy scale electromagnetic property and
described by the part of the Standard Model theory called Quantum Electrody-
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namics (QED) [5]. The force, which is responsible for how protons and neutrons
are bound in the nucleus is called the strong nuclear force and is the force cor-
responding to the strong interaction. The part of the SM theory, which deals
with that is called Quantum Chromodynamics (QCD) [6]. Another fundamental
interaction is the weak interaction, which deals with β decays and here appears
another important particle: the neutrino ν. The next fundamental interaction is
gravitation not included in the SM. It is typically much weaker than others; the
gravitational force between a proton and an electron is about 1040 times weaker
than the electromagnetic force. This brings scientists a lot of new ideas of poten-
tial undiscovered dimensions and new physics to be discovered, but for now we use
it to describe the attraction of objects to one another, which is particularly im-
portant when talking about objects with astronomical scale, for example in space.
The Yukawa process happens from electroweak symmetry breaking and the Higgs
mechanism, which is the most important theory for this thesis. It describes the
interaction strength between the Higgs boson field and fermion particles, which
is responsible for the fermion particle masses.

At higher energy scales, even more detailed (and small) structures are ob-
served, including smaller particles. In the experimental particle physics, the most
fundamental constituents are currently believed to be the quarks and the leptons.
The proton consists of two valence up quarks and one down quark p(uud) and
the neutron of two down quarks and one up quark n(ddu). Together the electron-
neutrino, electron, up and down quarks are known as the first generation of fun-
damental particles. They are each considered to be point-like. There are three
generations in total (Figure 2.1), where each of the other two consists also of four
particles, which differ in mass and their decays but are otherwise identical to the
ones in the first generation.

2.2 Strong Interactions

Strong interactions are mediated by the exchange of massless particles called
gluons. The theory of how those interactions happen is called Quantum Chromo-
dynamics (QCD) [6]. Gluons interact with quarks and other gluons through
the colour force. There are three colours in QCD: red, green and blue, and
three corresponding anti-colours. Due to colour confinement all freely observed
particles are colour neutral.

One explanation for colour confinement is the fact that two colour-connected
quarks attract each other when pulled apart (Figure 2.2 a). If an electron-positron
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Figure 2.1: The three generations of fundamental fermions. The particles not
shown are the anti-particles with opposite charge. First generation with the elec-
tron neutrino νe, electron e−, down quark d and up quark u. Second generation
with the muon neutrino νµ, the muon µ−, the strange quark s and the charm
quark c. Third generation with the tau neutrino ντ , the tau τ−, the bottom
quark b and the top quark t [7].

pair in QED is pulled apart by increasing the distance between the electron and
the positron, the field lines between them would spread out (Figure 2.2 b). This
is different in QCD, where if two quarks are pulled away from each other (Figure
2.2 c), the field lines are confined to a tube between the quarks and the force
between the quarks is very large regardless of the separation. This means that it
will require an infinite amount of energy to separate two quarks [4].

Figure 2.2: Fields in QED vs. QCD when particles moved apart. (a) attraction,
(b) field lines spreading out, (c) field lines confined to a tube [4].

When a quark anti-quark pair is produced (say from the process e+e− → qq),
the two initially free quarks, which are back to back cannot be observed individ-
ually, but rather each is observed as a collimated spray of colourless particles.
The process is known as hadronisation and all its stages are shown in Figure 2.3.
Hadronisation is the mechanism by which quarks and gluons produced in hard
processes form the hadrons that are observed in the final state. First, the quark-
antiquark pair is produced (i), followed by them separating where the QCD field
between them is contained in a tube-like narrow shape (ii), then as they separate
further, the potential energy becomes sufficient for the formation of new quark-
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antiquark pairs (iii), more pairs are produced (iv) and finally the energy of the
quarks is low enough for them to form a spray of colourless hadrons.

Figure 2.3: The five stages of producing hadrons [4].

Splitting functions [8] in QCD describe exactly how energy is shared between
partons. They provide the mechanism for handling un-cancelled collinear di-
vergences, which arise from the radiation of massless partons from one of the
incoming partons taking part in a scattering process.

2.2.1 Kinematics

In hadron-hadron collisions, several different kinematic variables are used to
describe the interactions. The most common QCD processes at the LHC are
pp → jj + X, where j denotes hadrons grouped in a jet. Frequently used kine-
matic variables are the angle of the two jets with respect to the beam axis (z-
axis) and the component of the momenta in the plane transverse to the beam
axis (xy plane), referred to as the transverse momentum. The pseudorapidity
is a more convenient way for physicists to describe the angle of a particle rel-
ative to the beam axis, because the differences in pseudorapidities are Lorentz
invariant under boosts along the longitudinal axis. This is an important variable
in particle physics as colliding particles carry differential longitudinal momen-
tum, which leads to different longitudinal boosts under different reference frames.
The azimuthal angle is measured from the xy plane, around the beam. These
measurements contribute to the final measurement of different cross-sections for
interactions, which give information about both well known and new physical
processes [4].

The direction of the beam axis is defined as z and the momentum transverse
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to that axis is given as:

pT =
√
px2 + py2 (2.1)

In processes like pp→ jj +X, the two resulting jets are then boosted in the
direction of the beam in the detector. The rapidity is given in terms of the energy
E of the resulting particle (a jet in the example here) and the momentum parallel
to the beam axis, pz, by:

y =
1

2
ln

(
E + pz
E − pz

)
(2.2)

In the majority of cases at the LHC, the energies with which the detector
operates are so large, that the masses of some of the particles can be neglected.
In such cases, the variable used is the pseudorapidity:

η = − ln

(
tan

θ

2

)
. (2.3)

2.2.2 Cross section

The cross section, σ, is a measurement of the probability that an event oc-
curs. Due to the finite proton size, elastic scattering at high momentum scales are
unlikely and inelastic reactions where the proton breaks up dominate. The cross-
section for a proton-proton event must consider the parton distribution functions
(PDFs), i.e., the probability density for finding a parton with a certain longi-
tudinal proton momentum fraction, x, at momentum scale Q [9]. PDFs encode
information about the proton’s deep structure. The cross-section is therefore
expressed as:

σ =

∫
dx1dx2fi(x1;Q2)fj(x2;Q2)σ̂ij(x1, x2, Q

2). (2.4)

Individual Q can be extracted from a set of structure function measurements.
Gluons are not measured directly, but carry about 1/2 the proton’s momentum.
An example of PDFs at two specific values of Q2 is showed in Figure 2.4, which
shows the NNLO PDFs at scales of Q2 = 10 GeV2 and Q2 = 104 GeV2, including
the associated one-sigma (68%) confidence-level uncertainty bands. The gluon
PDFs are largest and this is why ggF is the dominant production process at the
LHC. The figures show the probability density functions weighted by x of the
various partons. At small x, gluon is the most likely for both scales Q.

To calculate the rate or cross-section of a certain set of final state particles (say
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Figure 2.4: Example NNLO PDFs at scales of Q2 = 10 GeV2 (left) and Q2 = 104

GeV2 (right) [9].

jj+X), in principle all possible combinations which lead to this final state, as well
as all orders of QCD diagrams, would need to be calculated and the summation
of all those contributions leads to the final cross-section of the process. If we just
calculate the lowest-order term in QCD coupling, that is called a leading order
(LO) diagram, If only the lowest-order term in QCD coupling is calculated, that
is called a leading order (LO) diagram , if the second is calculated, it is next to
leading order (NLO) [10]. In QCD the coupling strength is larger than in QED
and therefore higher orders must be considered to obtain accurate predictions.

2.2.3 Phenomenology

The strong coupling, αs, runs with the energy such that it is larger at lower
momentum transfers than at higher momentum transfers. This changeable be-
haviour along with the complexity of the cross-section calculation are some of
the main challenges the LHC physics faces when examining the properties of
proton-proton events. In the modern age of QCD phenomenological calculations,
ATLAS is one of the collaborations, which have proven to provide excellent com-
parison with the theoretical evidence we have for the existence of the SU(3colour)

non-Abelian (non-commutative group operation) gauge symmetry.

2.3 Electroweak interactions

The theory of the electroweak interaction [4] unifies two of the fundamental
interactions, the weak and electromagnetic forces which at low energies seem very
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different.
The W boson 1 is a spin-1 particle with a mass of 80.433± 0.009 GeV [11]. It

has either a positive or a negative electric charge and a lifetime of ≈ 3 × 10−25

s. It can decay to a lepton and an anti-neutrino with a branching ratio of about
33%, or to a quark and anti-quark pair. The three possible positively charged
leptonic decays correspond to the three flavours of leptons and are as follows:
W+ → e+νe, W+ → µ+νµ and W+ → τ+ντ , where e+ is a positron, µ+ and τ+

and νl is the corresponding neutrino. The lowest order Feynman diagram for the
example process W− → e−ν̄e can be seen in Figure 2.5.

Figure 2.5: Feynman diagram of lowest order for one of the possible decay chan-
nels of the W boson. Conservation of momentum means that p1 = p3 + p4, where
p1, p3 and p4 are the momenta used to describe the motion of the particles [4].

Sheldon Glashow, Abdus Salam, and Steven Weinberg all contributed to the
unification of the weak and the electromagnetic interaction and created what
is known as the Weinberg–Salam theory [12] [13] [14]. The weak interaction
belongs to an SU(2) local gauge symmetry and after the unification with the
electromagnetic interaction, that becomes the SU(2) × U(1) gauge group, which
as before describes the exact transformations on the fields (W1,W2 andW3 for the
three SU(2) gauge bosons of the weak and B for the electromagnetic interaction),
under which the dynamics of the system would not change. In the Standard
Model, all particles associated with this unified interaction (W,Z bosons and
the photon γ) are produced through processes called “spontaneous symmetry
breaking” and “the Higgs mechanism” and are discussed further in Section 2.4.

The W3 and B in the unified interaction are coalesced to the neutral Z boson
and photon γ and considering the mixing angle θW :

[
γ

Z0

]
=

[
cos θW sin θW

− sin θW cos θW

][
B

W3

]
(2.5)

1W could be either W+ or W−.
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The other two bosons involved (W1 and W2) combine to produce the charged
massive bosons W±:

W± =
1√
2

(W1 ∓ iW2) (2.6)

The Lagrangian (described in more detail in Section 2.4) of this interaction
before symmetry breaking contains a term, Lg, which depends on the interaction
between the three W bosons and B, the kinetic term for the Standard Model
fermions, Lf , the Higgs field, Lh and the Yukawa interaction with fermions, Ly:

LEW = Lg + Lf + Lh + Ly (2.7)

After electroweak symmetry breaking, the Lagrangian for the electroweak in-
teraction includes the Higgs boson and takes a different form, due to the elec-
troweak symmetry breaking. It is given by:

LEW = Lk + Ln + Lc + Lh + Lhv + Lwwv + Lwwvv + Ly (2.8)

Lk is the kinetic term and includes all the mass terms and all the quadratic
terms, Ln and Lc are the terms corresponding to the neutral and charged currents,
Lhv corresponds to the Higgs interactions with the gauge vector bosons, Lwwv is
for the gauge three-point self interactions and Lwwvv for the gauge four-point self
interactions.

2.4 The Higgs Mechanism

The Higgs Mechanism [4] and the associated Higgs boson allow for theW and
Z bosons to acquire mass after the electro-weak symmetry breaking as well as
being responsible for the fermion masses.

To understand the basics of the Higgs mechanism, one should have a good
understanding of the concept of the Lagrangian of the Standard Model. We
start with the Lagrangian for classical systems, i.e., those which are present in
our everyday experiences. The general equation used to describe any physical
system, where T is the kinetic energy and V the potential is:

L = T − V (2.9)

Replacing that with the Lagrangian density instead gives us the equivalent
for a continuous system (instead of discrete coordinates), where we now need to
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consider fields φ instead of points:

L→ L(φi, ∂φi). (2.10)

If we take as an example a free non-interacting scalar field with the Lagrangian
would be given with the same equation as a spin-0 particle in Quantum Field
Theory (QFT):

LS =
1

2
[(∂µφ)(∂µφ))−m2φ2]. (2.11)

When we have an interacting scalar field, on the other hand, combinational
terms (such as φφ̄Aµ, where Aµ denotes the electromagnetic field) on top of the
ones above, need to be considered in the new Lagrangian.

For a scalar field with a potential V (φ) = 1
2
µ2φ2 + 1

4
λφ4, where the first term

represents the mass of the particle and the second the self-interactions of the scalar
field (say for a four-point interaction vertex), the Lagrangian now becomes:

L =
1

2
(∂µφ)(∂µφ)− 1

2
µ2φ2 +

1

4
λφ4. (2.12)

Figure 2.6: 1D potential V (φ) = 1
2
µ2φ2 + 1

4
λφ4 of a real scalar field φ for a) µ2 > 0

and b) µ2 < 0. If λ ≥ 0, the minimum of V (φ) is at 0 in the case a). In the case
b) we have two non-zero minima: ±ν [4].

A simplified 2d case for the potential is illustrated in Figure 2.6. In the second
scenario, 2.6 b) µ2 < 0, the term proportional to Φ2 can no longer be interpreted
as the mass term and there are two minima at non-zero vacuum expectation
values −ν and +ν. This choice between two local minima breaks the symmetry
of the Lagrangian, which is what we call spontaneous symmetry breaking. To
deal with this symmetry breaking, the mass term needs to be represented in a
form, which still describes a massive scalar field. To do that, we express the
field as excitations about the minimum φ = ν + η, or in other words, as small
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perturbations. This leads to:

L =
1

2
(∂µη)(∂µη)− 1

2
m2
ηη

2 − V (η). (2.13)

The case of a complex scalar field which has a local U(1) symmetry (potential
illustrated on Figure 2.7) is similar and the Lagrangian ends up as:

L =
1

2
(∂µη)(∂µη)− 1

2
m2
ηη

2 +
1

2
(∂µξ)(∂

µξ)− V (η, ξ). (2.14)

In the above, the scalar part of the field is denoted with η as before and is
massive but now there are extra terms corresponding to the complex part of the
field ξ, which is massless. This is called the “Goldstone boson”.

Figure 2.7: Potential V (φ) for a complex scalar field φ = φ1 + iφ2. a) µ2 > 0,
when both the real and complex fields are 0, so is the potential. b)µ2 < 0, the
potential has an infinite set of minima |φ|2 = ν2 [4].

The full complex field Lagrangian of the Higgs mechanism after considering
all the gauge transformation properties and the gauge field B and dealing with
the broken symmetry can be written as:

L =
1

2
(∂µh)(∂µh)− λν2h2︸ ︷︷ ︸

massive h scalar

− 1

4
FµνF

µν +
1

2
g2ν2BµB

µ︸ ︷︷ ︸
massive gauge boson

+ g2νBµB
µh+

1

2
g2BµB

µh2︸ ︷︷ ︸
h, B interactions

−λνh3 − λνh3 − 1

4
λh4︸ ︷︷ ︸

h self-interactions

.
(2.15)

This final Lagrangian describes fully the Higgs mechanism and the way par-
ticles acquire masses through their interactions with it. It is for a new quantum
field; Higgs field and a massive gauge boson B associated with the U(1) local
gauge symmetry. It has four main parts. The first part is the kinetic term
for a massive scalar field, which is denoted with h, with constants for the self-
interaction term λ2 and the vacuum state ν, which sets the scale for the masses
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of both the gauge boson and the Higgs boson. The second part is about the
massive gauge boson with its kinetic term FµνF

µν and potential term BµB
µ of

the gauge field with coupling g. The third part describes the interactions between
the massive scalar field h and the gauge field B and the final fourth part is about
the self-interactions of the massive scalar field h. After the symmetry breaking
and gauge transformation, the Goldstone field no longer appears. It has been
replaced by the longitudinal polarisation state of the massive gauge field B (η
is replayed by ν and h). Equation 2.15 is an example for how gauge bosons get
their mass. Fermions instead would require a separate term.

2.5 The Higgs Boson

In 2012, the ATLAS experiments at CERN announced the observation of a
new particle with measured by ATLAS [15] 5.9σ sensitivity and mH = 126.0 ±
0.4(sys) ± 0.4(stat) GeV mass (confirmed by the CMS experiment [16]), which
behaved in every way like a neutral scalar boson. It corresponded to the the-
oretical SM prediction for the Higgs boson - the most important missing (at
that time) piece in the electroweak symmetry breaking scientific mystery. Be-
ing such a big part of the very fundamentals of our universe, responsible for the
masses of fermions and gauge bosons in a local gauge invariance theory, elec-
troweak symmetry and quark mixing, the discovery of the Higgs boson can easily
be described as one of the most important physics discoveries of our century [17].
There were three problems with the electroweak theory which were resolved with
the introduction of the Higgs boson. First, the massive gauge bosons and mas-
sive fermions were not allowed in the theory. The second problem comes from
the fermions. The left-handed and right-handed fields helicity states ψR and ψL
change differently under the gauge invariance and the symmetry is broken. The
third problem is the violation of unitarity by for example WW -scattering at high
energies [18]. All these three problems are resolved with the introduction of a
new field which keeps the Lagrangian invariant. This new term is what we call
the Higgs mechanism which is based on the neutral scalar Higgs boson.

2.5.1 Higgs couplings and Decay

The SM Higgs boson couplings are proportional to the masses of the coupled
particles. The strongest couplings are to the decays to W and Z bosons, t and b
quarks and τ leptons. The decay to two photon has a very small branching ratio
(2.28± 0.01)× 10−3 for mH = 125 GeV, but is particularly attractive because of
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the possibility to unravel new physics beyond the Standard Model and because
of the large signal yield due to the high photon reconstruction and identification
efficiency at ATLAS. The signal manifests itself as a narrow peak, due to the
excellent ATLAS calorimeter resolution, on top of a smooth falling background
[19].

Figure 2.8: Higgs boson branching fractions for the mass region 120 - 130 GeV [20].

The branching ratios for the different Higgs decay channels are given using
Figure 2.8 for the Higgs mass region (120-130) GeV and the branching ratios for
the SM Higgs boson mass [17] [21] in Table 2.1. The decay rates to fermions,
gauge bosons, gluons and photons can be calculated:

Γ(h→ ff̄) =
Nc

8πv2
m2
fmh

√
1− x (2.16)

where x =
4m2

f

m2
h
, mh is the mass of the Higgs boson,

mf of the fermion, Nc is the number of colours of
the quarks and v = 246GeV , g = 2MW

v
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Process Branching ratio [%]
H → bb 57.7+3.2%

−3.3%

H → WW 21.5 +4.3%
−4.2%

H → gg 8.57 +10.2%
−10.0%

H → ττ 6.32+5.7%
−5.7%

H → γγ 0.228 +5.0%
−4.9%

H → Zγ 0.154 +9.0%
−8.8%

H → µµ 0.022 +6.0%
−5.9%

Table 2.1: SM branching ratios for all Higgs boson decay channels for a Higgs
boson mass of 125 GeV. Uncertainties: QCD corrections were calculated by scale
dependence of the width resulting from a variation of the scale by a factor 2
or from the size of known omitted corrections. EW corrections were calculated
based on the known structure and size of the NLO corrections [22].

Γ(h→ V V ) =
g2

64πM2
W

m2
hSV V (1− x+

3

4
x2)
√

1− x

(2.17)
where x =

4m2
V

m2
h

and SWW = 1, SZZ = 1
2
and g is the

gauge coupling

Γ(h→ gg) =
α2
s

72πv2
m2
h[1 + (

95

4
− 7Nf

6
)
αs
π

+ ...]2

(2.18)
where αs is the coupling strength and Nf the

number of fermions

Γ(h→ γγ) =
α2

256π3v2
m3
h[

4

3
ΣfN

(f)e2
f − 7]2 (2.19)

where ef is the fermion’s EM charge.
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2.5.2 Higgs Production

There are four main ways for the SM Higgs boson to be produced in proton-
proton collisions. The dominant one is gluon fusion (Figure 2.9 a), following by
vector boson fusion (Figure 2.9 b), then associated Higgs and electroweak boson
production (WH and ZH), also called Higgsstrahlung (Figure 2.9 c) and the least
likely, the associated Higgs and top quark pair production ttH (Figure 2.9 d).

Figure 2.9: Feynmans diagram for the main production modes of the Higgs boson
in pp collisions, where (a) is the dominant gluon fusion ggH,(b) vector boson fusion
VBF, (c) associated Higgs and electroweak boson production WH, ZH, and (d)
associated Higgs and top quark pair production ttH.

The most probable way for the Higgs to be produced is for two gluons to collide
and forming a triangular W boson, top or bottom quark loops (Higgs coupling
is proportional to mass and t and b quarks are heavy). It happens ≈ 80% of the
time and is ≈ 10 times more likely than vector boson fusion (VBF) [23] [24].

The second most likely production mode of the Higgs boson at LHC is VBF
- two quarks collide to produce two virtual W or Z bosons which produce the
Higgs boson alongside two quarks. For this process, the high mass behaviour of
the Higgs has been one of the interesting recent studies as it is key for setting the
upper limit of mH and as it gives knowledge about the scattering of longitudinal
vector bosons which is possible due to electroweak symmetry breaking [25].

Figure 2.9 c shows Higgs-Strahlung - two quarks collide to produce a virtual
W or Z boson, which if energetic enough, emits a Higgs boson. This mechanism
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is quite interesting in the high mass range of the virtual boson, because of the
possibility to tag the boson and reconstruct the Higgs decay to two bottom quarks
by using jet-substructure techniques [24].

Finally, there is the channel of interest in this thesis - top quark pair produc-
tion, ttH. Although with the smallest cross section, this channel is of significant
importance for the direct measurement of the top-Higgs Yukawa coupling. More
about the current status of ttH can be found in the following section.

The total cross-sections for the five most likely production processes can be
found in Table 2.2.

Process σ at
√
s = 13 TeV [pb] Uncertainty [%]

ggF 48.580 +4.56
−6.72

V BF 3.782 +0.43
−0.33

WH 0.943 +0.5
−0.7

ZH 0.178 +3.8
−3.1

ttH 0.516 +6.0
−9.5

Table 2.2: Cross sections σ for all known Higgs production channels, calculated
at Higgs mass of mH = 125 GeV [26].

2.5.3 Higgs Couplings Constraints by ATLAS

In order to check for deviations in the bosonic and fermionic couplings of
the Higgs boson from the SM predicted Higgs couplings, coupling modifiers are
introduced and the κ-framework [27] used for their evaluation. The coupling
modifier κ for decay mode j is defined as follows:

κ2
j =

σj
σSMj

(2.20)

σ is the measured cross section and σSMj is the SM cross section. A coupling
modifier κj for a production or decay process via the coupling to a particle j is
defined as:

κ2
j =

σj
σSMj

or κ2
j =

Γj
ΓSMj

,

where σj is the measured cross-section, Γj the partial decay width into a pair of
particles j, and σSMj ,ΓSMj their SM values.

A common scaling can be assumed for all fermions κF , as well as for the
electroweak bosons κV . "The best fit points and the 68% and 95% confidence
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level (CL) intervals" [28]. The 68% and 95% CL likelihood is shown in Figure
2.10. Results are compatible with the SM prediction.

Figure 2.10: Fermion (κF ) and boson (κV ) coupling modifiers, obtained in the
combination of Higgs boson production and decay measurements by the ATLAS
collaboration [29]. The best-fit value, 68% and 95% CL contours and the SM
value are shown.

To probe contributions of new particles though loops, the effective coupling
strengths to photons and gluons κγ and κg are measured. Both κγ and κg are
measured to be compatible with the SM expectation Figure 2.11.

2.6 Yukawa interaction

The Yukawa interaction was initially developed to model the strong force
between hadrons or to describe the nuclear force between nucleons and pions.
Later on it was expanded to describe the coupling between the Higgs field and
the fermion fields [30].

All interactions between the Higgs field and the fermions are named Yukawa
interactions. A generic interaction Lagrangian between a scalar doublet and the
fermion fields is given by:

LY = − 1√
2

(ν+H).[hie(ē
i
Le

i
R+ ēiRe

i
L)+hiu(ū

i
Lu

i
R+ ūiRu

i
L)+hid(d̄

i
Ld

i
R+ d̄iRd

i
L)]+h.c.

(2.21)
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Figure 2.11: Photon (κγ) and gluon (κg) effective coupling modifiers, obtained
in the combination of Higgs boson production and decay measurements by the
ATLAS collaboration [29]. The best-fit value, 68% and 95% CL contours and the
SM value are shown.

The three fermion families are denoted with u, d and e, H is a scalar field
with non-zero vacuum-expectation value and denotes the Higgs boson, subscripts
L and R correspond to left and right handed fermions. The two terms of Equation
2.21 are controlled by the Yukawa coupling hif and show that the interaction of
the Higgs boson with the fermions is proportional to their masses [31] [30] [32].

An essential ingredient of the Standard Model are the Cabibbo mixing of d
and s quarks as well as other fermion flavour mixing. In the quark sector, the
rotation to the mass eigenstate basis introduces the mixing among the families.
Masses among the three flavours and on each fermion types always follow the
following hierarchical order:

md(M)� ms(M)� mb(M) (2.22)

Fermion mixing is given by:

Mf = νYf = ν(Yf,b + Yf,s + Yf,d), (2.23)

where ν the non-vanishing vacuum expectation value of the neutral component
of the Higgs field and Yf is the fermion family coupling to the Higgs field. The
mixing between the weak eigenstates of the d, s and b quarks is described by the
Cabibbo-Kobayashi-Maskawa (CKM) matrix [33]:
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d
′

s
′

b
′

 =

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb


ds
b


A non-diagonal element of the CKM matrix results in the coupling of the

W boson to two quarks, which belong to two different fermion families. The
matrix can be fully described by the 3 mixing angles, which control the mixing
between the families and a parameter called the complex phase, responsible for
the CP-violation.

The important Yukawa coupling, for this thesis, is that between top quark
(largest mass in the SM) and the Higgs boson. If the final measurement is different
from that expected given the top quark mass, that would mean new physics, which
hasn’t been fully explored yet and with every improvement of its measurement,
we come closer to the full understanding of this.

2.7 Top quark and ttH production

Top quarks have an extremely short lifetime, and decay through the weak
interaction into a W boson and a bottom quark with a branching ratio of almost
100%. In the ttH channel, there are two W bosons from the t quarks. There are
three possible cases for the decay of the two W bosons; di-leptonic in which both
decay to a lepton and a neutrino, semi-leptonic in which one decays to jets and
fully hadronic in which both W bosons decay to hadrons. The branching ratios
for the three cases are given in Table 2.3. In this thesis, the semi-leptonic and
the di-leptonic channels are combined in one leptonic dataset.

1 2 3
45.7% 43.8% 10.5%

Table 2.3: The tt̄ branching ratios for three cases: 1. fully hadronic tt̄ →
W+b,W−b̄ → qq̄b, qq̄b̄ , 2. semi-leptonic tt̄ → W+b,W−b̄ → qq̄b, lνb̄ and 3.
di-leptonic tt̄→ W+b,W−b̄→ lνb, l−ν̄b̄ respectively [34].

The di-leptonic top decay (Figure 2.12) is particularly challenging. First, it
has a small branching fraction (Table 2.3), second there are two undetectable
neutrinos, but with only one parameter for the missing transverse energy Emiss

T .
The ttH(H → γγ) channel, the subject of this thesis is of particularly high

importance due to several factors, which will be discussed in more detail in 2.8.2.
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Figure 2.12: Leading order Feynman diagram for the di-leptonic ttH(γγ) channel,
in associated Higgs and top production. Higgs decays to two photon through a
fermion loop.

The Feynman diagrams for this process are shown in Figure 2.13 along with the
three different decay possibilities for the W boson. As previously mentioned, the
data are collected into only two categories: fully hadronic and leptonic (both
single and di-lepton decays).

Figure 2.13: Example Feynman diagram of the production and decay channel
interest of this thesis: ttH(H → γγ). The Higgs boson does not decay to two
photons directly but rather through a fermion loop. From left to right: fully
hadronic, semi-leptonic and di-leptonic channels.

The ttH production cross-section at
√
s = 13 TeV is predicted to be: σSMttH =

507+35
−30 fb, where the uncertainty corresponds to the combined scale and PDF

uncertainty.
The cross-section has been calculated at NLO QCD and NLO EW accuracies

[20].
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2.8 Measurements of ttH production

2.8.1 Observation of ttH production

The ttH production was observed in 2018 with 80 fb−1 of LHC Run 2 data
[35]. Figure 2.14 shows the ttH production cross sections measured in the in-
dividual Higgs boson decay modes at the time of the ttH observation at the
LHC. The Higgs multi-lepton analysis, which targets H → WW ∗, H → ZZ∗ and
H → ττ decays had the lowest total uncertainty of about 40% [35], with equal
contributions from systematic and statistical uncertainties.

Figure 2.14: The combined ttH production cross-section over the SM prediction,
as well as cross-sections measured in the individual decay modes of the Higgs
boson as measured for the observation of the ttH production in 2018. Ratios of
the measured values to the SM prediction are shown. The black lines show the
total ±1σ uncertainties, and the bands indicate the statistical and systematic
uncertainties. The red vertical line indicates the SM cross-section and the grey
band represents the uncertainties due to missing higher-order corrections [35].

2.8.2 Latest ttH measurements and prospects

As expected from extrapolating the results of the ttH observation described
in the previous section, with the full Run 2 luminosity of 139 fb−1, the H →
γγ decay channel provides the highest sensitivity [36]. Both ATLAS and CMS
reached the total uncertainty of about 20% and observed the ttH production in
the H → γγ decays at 5 standard deviations (5σ) from the background-only
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hypothesis [37] [38].
The latest measurements of the ttH signal strength µ, defined as the measured

ttH cross-section divided by the SM cross-section value, are stated in Table 2.4
with their total uncertainties. The combined result is the 2018 observation of
the ttH production. It uses Run 2 data, but does not yet include the latest
measurements in H → bb, H → γγ and H → ZZ decay channels, which are
listed separately.

Channel Best-fit µ Sensitivity Ref.
Observed Expected Observed Expected

H → bb̄ 0.43+0.36
−0.33 1.0± 0.6 1.3σ 3.0σ [39]

H → γγ 0.92+0.27
−0.24 1.0+0.8

−0.6 4.7σ 5.0σ [40]
H → ZZ∗ → 4l 1.7+1.7

−1.2 1.0+3.2
−1.0 1.0σ 0.8σ [41]

Combined 1.32± 0.27 1.0± 0.3 5.8σ 4.9σ [35]

Table 2.4: Signal strength (µ) and sensitivity of the ttH cross-section measure-
ments by ATLAS in the different Higgs boson decay channels. The combined
result uses Run 2 data, but does not yet include the latest measurements in
H → bb, H → γγ and H → ZZ → 4l decay channels, which are listed separately.

With the LHC Run 2 data, the H → γγ decay channel provides the highest
accuracy measurement of ttH production.

There are several physical factors behind the high sensitivity of the H → γγ

measurements compared to the other Higgs boson decay channels. The H → γγ

decay channel had an uncertainty of about 45% [35], dominated by the statistical
uncertainty. The H → bb decay channel had an uncertainty of about 60%, and
was dominated by systematic uncertainty [42]. The H → bb decay channel has
the highest branching ratio of ≈ 58%. As the ttH production cross-section is
only about 507 ±40 fb, this was advantageous in Run 1 and early Run 2 ttH
searches. The b-jets are identified with an efficiency of about 70%, and jets are
reconstructed an energy resolution of about 50 %/

√
E, which yields a Higgs mass

peak with the width of about 10 GeV. In this broad peak, contamination from
irreducible background from ttbb production is large. The modelling uncertainty
of this ttbb background limits the sensitivity of ttH measurements in the H → bb

decay channel [43] [44].
In the H → multi-lepton decay channel, the branching ratio is about 6% and

the signal identification is high due to the presence of leptons. Most signal events
contain missing transverse energy from τ decays. As the Emiss

T resolution is low,
the resulting Higgs peak is relatively broad, with relatively large contamination
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from the irreducible non-resonant ttW background. The modelling uncertainty
of this background limits the sensitivity of ttH measurements in the multi-lepton
decay channel [45] [46].

Experimentally, the H → ZZ∗ decay channel is reconstructed with even nar-
rower mass peak than the H → γγ decay channel. However, it has a branching
ratio of only 0.012% and is therefore expected to remain limited by the statistical
uncertainty even at the future high-luminosity LHC, as shown on Figure 2.15.

Finally, in the H → γγ decay channel, the branching ratio is about 0.23%, but
the final state photons provide high identification efficiency. As all Higgs decay
products are reconstructed with high resolution (σE/E ≈ 10%/

√
E), the resulting

Higgs peak is narrow, and the non-resonant ttγγ background contamination small.
The background can be readily estimated from the fit to the data side-band.
The systematic uncertainties are low, and the Run 2 data-set provides sufficient
statistics for an accurate measurement.

Figure 2.15: Expected uncertainties on the ttH production cross sections for
ATLAS and CMS at the future high-luminosity LHC. For each measurement, the
total uncertainty is indicated by a grey box while the statistical, experimental
and theory uncertainties are indicated by a blue, green and red line respectively.
In addition, the numerical values in % are also reported [47].
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2.9 Beyond the Standard Model

Despite the Standard Model being able to describe all known physical phe-
nomena in one theory, there are still unanswered questions. Examples include
[7]: why do the fermion masses follow the observed hierarchy? Why is there far
more matter than antimatter in the observable universe? What is dark matter?
How to include gravity?

Some compelling evidence for potential beyond SM physics in the dark matter
sector are the tangential velocity calculations of large objects in our Universe and
also some calculations in the cosmic model related to the Cosmic Microwave
background (CMB) [48], which both confirm the existence of dark matter but
so far have not given specifics for what the majority of it consists of or how to
detect it. The leading candidates for dark matter are weakly interacting massive
particles (WIMPs) [49], axions [50] and sterile neutrinos but as to date, there is
no clear evidence supporting either. WIMPs appeared for a long time as a perfect
dark-matter candidate, as new particles at the weak-interaction mass scale (10
GeV to 1 TeV) would be produced naturally with the right relic abundance in
the early Universe [51]. There was also hope for the resolution of the hierarchy
problem. Unfortunately, no detection of other than the Higgs boson particles at
the electroweak scale has been made so far [52]. The cosmological models also
predict the existence of dark energy [53].

Another example for compelling evidence for potential beyond SM physics
is the fact that CP violation, which we have measured (eg. in [54] and [55])
and theorised so far in the SM does not seem to be sufficient enough to explain
the observed matter-antimatter asymmetry of the Universe. Parity symmetry
is the invariance of physics under a discrete transformation, which changes the
sign of the space coordinates [56] [57] [58]. Charge symmetry is the existence of
a particle with an opposite charge for every particle but with exactly the same
properties and violation is the lack of the existence of an exact pair.

Additionally, the SM predicts all charged leptons to have identical EW inter-
action strengths (lepton universality). Evidence has been observed by the LHCb
collaboration at CERN for the breaking of lepton universality [59].

Other examples can be found in the lack of success in the attempts for full
unification of all forces (gravity is much weaker than the others), extra dimensions,
which are possible mathematically, the unexplained difference of mass of the
neutrinos in comparison to all other fermions etc.

In conclusion, there’s a lot more to be discovered and with the increased
data in Run 3, high-luminosity LHC, and future colliders, we can expect some
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revolutionary discoveries in the future.
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Chapter 3

The ATLAS Experiment

3.1 The Large Hadron Collider

The Large Hadron Collider (LHC) [60] is the world’s largest and highest
energy particle accelerator. It was first operational in the year of 2008 with
first collection of data in the autumn of 2009. It consists of a 27 km main ring
of superconducting magnets with a number of accelerating structures to boost
the energy of the particles. During its first run (colliding bunches of protons
and collecting the data), the protons were collided with a centre of mass energy
of
√
s = 7 TeV (2011) and

√
s = 8 TeV (2012) and in the second run with a

centre of mass energy of
√
s = 13 TeV (2015-2018), which makes it the most

powerful collider in the world built to date. The full ATLAS 13 TeV Run 2 data
corresponds to an integrated luminosity of 139 fb−1. The trigger menu improved
due to the increase of the instantaneous luminosity and the number of pile-up
interactions. Peak instantaneous luminosities ranged from 0.5 × 1034 cm−2s−1 to
2.1 × 1034 cm−2s−1 and 28–60 pile-up collisions [61]. These pile-up collisions are
multiple pp interactions in the same bunch crossings.

The CERN accelerator as a whole (Figure 3.1) consists of a system, which
prepares and accelerates the protons to their injection energy in the LHC, in
which they are further accelerated, focused and collided. The preparation in-
cludes stripping the electrons from the hydrogen atoms using an electric field,
accelerating in a linear trajectory (LINAC2) to an energy of 50 MeV and then
further accelerating in the three synchrotron systems (BOOSTER) to 1.4 GeV.
Guiding the particles, which have high energy and flux, requires extremely power-
ful superconducting magnets. An extraordinary cooling system for those bending
magnets is necessary. The magnets have to be cooled to −271.3°C (a tempera-
ture lower than the average temperature of the Universe) and for that purpose,
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a distribution system with liquid helium is connected to the magnets.
The LHC consists of eight straight parts and eight circular arcs connected

to one another. The protons are accelerated in the RF cavities in one of the
straight components. The bunches in the LHC are held in the circular orbit by the
bending magnets. There are 1232 main dipoles, each 15 metres long and weighing
35 tonnes. They bend the particle trajectories, while quadrupole magnets for
focusing. Quadrupoles have four magnetic poles arranged symmetrically around
the beam pipe to squeeze the beam either vertically or horizontally. The two
beams of protons circulate around the LHC in opposite directions, colliding in
the locations of the different experiments: ATLAS [62], CMS [63], LHCb [64]
and ALICE [65]. The beam dump system consists of 15 fast extraction magnets
(MKD),15 magnetic septa (MSD) and 10 dilution kickers (MKB) together with
the various control system elements [66].

3.2 The ATLAS Detector

ATLAS [62] is the largest of the LHC detectors and used for various pur-
poses including searches and measurements in the Higgs boson sector, searches for
new BSM particles eg. possible candidates for dark matter, precision Standard
Model measurements (W mass, top quark physics etc.), heavy ion physics and
the investigation of the matter/antimatter asymmetry through CP-violation. The
coordinate system used by ATLAS is right-handed, with its origin at the nominal
interaction point (IP) in the centre of the detector and the z-axis along the beam
pipe. The x-axis points from the IP to the centre of the LHC ring, and the y-axis
points upward. Cylindrical coordinates (r, φ) are used in the transverse plane, φ
being the azimuthal angle around the z-axis. The pseudorapidity is defined in
terms of the polar angle θ as η = − ln tan(θ/2). The detector consists of four main
parts: the Inner Detector (ID), surrounded by a 2 T magnetic field, the Electro-
magnetic liquid-argon Calorimeter (ECAL), Hadronic Calorimeter (HCAL) and
Muon Spectrometer (MS).

The ID consists of three sub-detectors: Pixel, Semiconductor Tracker and
Transition Radiation Tracker (TRT). It provides efficient and precise tracking
measurements of the kinematics of charged particles through examining their tra-
jectories. The magnetic field bends the charged particles and creates curvatures,
the measurements of which provide momentum and charge of the particles [67].
The TRT also provides electron identification via transition radiation measure-
ments.
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Figure 3.1: The accelerator complex at CERN is a succession of machines that
accelerate particles to increasingly higher energies. Each machine or accelerator
boosts the energy of a beam of particles, before injecting the beam into the next
machine in the sequence. The last stage is the Large Hadron Collider (LHC),
where four major experiments are installed: ALICE, ATLAS, CMS, LHCb. They
use detectors to analyse the myriad of particles produced by collisions in the
accelerator [60].

The ECAL is used for electron and photon identification and measurements,
missing transverse energy (Emiss

T ) and jet measurements. The HCAL detects
mainly hadrons that interact via the strong and electromagnetic force and is
predominantly made out of iron as an absorber and scintillating tiles as an active
material.

The MS is the outer-most sub-detector due to the penetrating power of muons.
It complements the calorimeters and the tracker to identify and reconstruct
muons. The reconstruction is done through looking for the hit patterns in the
different layers of the MS, creating segments and combining them together to
build the track candidates [68].
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3.2.1 Inner detector

The inner detector, ID [69], shown in Figure 3.2 is a part of the detector, with
which particle tracks are found. The detector requires high-precision measure-
ments to achieve the momentum and vertex resolution needed to study funda-
mental physics processes. That requirement is met by pixel and Semiconductor
(SCT) trackers combined with straw tubes in the transition radiation tracker
(TRT).

The ID acts as dead material in front of the calorimeter, which reduces the
calorimeter’s resolution. To ensure the required precise tracking, several measur-
ing points are needed along the particle’s trajectory. This leads to the need of
multiple tracking layers. Therefore, the innermost detector must have a very fine
granularity. This minimises the occupancy, while maximising the impact param-
eter (distance of closest approach of the track to the collision point) resolution.
This maximising of the resolution leads to the overall improvement of perfor-
mance and the decrease in number of fake hit assignments. This inner most part
is called the pixel detector technology. It consists of three barrel layers concentric
with the beam line and centred on the interaction point.

Figure 3.2: Cut-away view of the ATLAS Inner Detector [62]

The pixel detector is 1.3 m long and provides a three-hit system for particles
with |η| < 2.5 [70]. The three layers are situated at radius of 50.5 mm, 88.5
mm and 122.5 mm from the beam pipe respectively. It consists of 1700 iden-
tical modules with 80 million pixels. The radiation hardness requirement is 50
MRad [71].
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The inner most pixel layer is called the Insertable B-Layer (IBL) [72] and has
been operational since the beginning of Run 2 data taking. Providing additional
hit information at the closest position to the beam collision point, the IBL sig-
nificantly improves the performance of b-jet tagging, resolving decay vertices for
b, c and τ .

The semiconductor tracker [73] provides additional precision position measure-
ments for the reconstruction of charged particle tracks after the pixel detector. It
covers |η| < 2.5 and consists of four barrel layers and nine end-cap disks. Each of
these consists of two module layers, placed at 40 mrad stereo angle between the
direction of their respective microstrip sensors. In this way, the SCT provides 2D
position measurements.

The Transition Radiation Tracker (TRT), or the most outer part of ID [74],
consists of ≈ 350 000 drift/straw tubes, 4 mm each. It provides 36 space points
in η < 2 and for pT > 0.5 GeV/c. It detects transition radiation x-ray photons
in an Xe-based gas mixture, which provides electron identification capability.

The final high-precision of measurements and pattern recognition in both R−φ
and z polar coordinates is achieved by combining the SCT tracker information
with the TRT hits at larger radii. The straw hits at the outer radius are an
important contribution to the momentum measurement. The tracker also helps
the calorimeters with the electron identification by detecting transition-radiation
photons in the xenon-based gas mixture of the straw tubes.

3.2.2 Calorimeters

Electromagnetic and hadronic showers

Calorimeters in particle physics are devices, which measure the deposited en-
ergies of particles traversing the calorimeter’s material. Most particles enter the
calorimeter and initiate particle showers, depositing either their full energies or
a sample of their energies. Simulations of calorimeters include a certain particle
injection into the calorimeter medium and the study of the processes, which fol-
low. A view of the calorimeters is presented in Figure 3.3. ATLAS calorimetry
has what is called sampling structure. This means that the active signal gener-
ation and passive particle absorption are performed in two separate media. The
alternative would be a single material for both, which is called a homogenous
structure. It consists of the hadronic end-cap 1.5 <| η |< 3.2, the electromag-
netic barrel | η |< 2.5 (lead and liquid argon), the electromagnetic end-cap (also
lead and liquid argon), the forward calorimeter 3.1 <| η |< 4.9 (copper-tungsten
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and liquid argon) and the hadronic barrel calorimeter (iron and scintillating tile)
covering the pseudorapidity range | η |< 1.7.

Figure 3.3: ATLAS calorimeter components; a) hadronic calorimeter (HCAL)
end-cap, b) electromagnetic calorimeter (ECAL) barrel and end-cap, c) forward
calorimeter (FCAL) and d) hadronic calorimeter (HCAL) barrel [62].

In the work presented in Chapter 5.2, three types of particles were used for
the generated simulation samples - electrons, photons and pions. At low energies,
photons lose energy through Compton scattering and the photoelectric effect and
electrons through ionisation and electron capture. For electron interactions above
10 MeV, the dominant mechanism through which energy is lost is bremsstrahlung
(when a charged particle loses energy, by emitting photons, as a result of being
deflected by another charged particle), for photons at energies of 1.02 MeV and
above it is pair production (e−e+). Shower shape parameters are energy depen-
dent, but the underlying processes (pair production and bremsstrahlung) become
energy independent above 1 GeV. Showers initiated by electrons develop initially
in a different way than those initiated by photons. The shower development is
described by a radiation length X0. The X0 is the specific length traversed in a
material. For electrons 1 X0 is defined as the material passed until their energy
falls to 1/e of their initial energy. In Figure 3.4 the energy loss for high energy
electrons and photons traversing 5 X0 is shown. It shows the fraction of energy
deposited, it can be seen that electrons lose approximately 21% on average and
photons 14.8%, but the width of the e- distribution is much narrower [75]. After
the secondary photons have been produced, the process repeats until the energy of
the final electron reaches a critical value, ε. The mean energy deposition

〈
E(x)

〉
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is represented using the radiation length X0:

〈
E(x)

〉
= E0e

x
X0 (3.1)

for electrons, where E(x) is the energy, x the distance, E0 the initial energy and
X0 the radiation length and

〈
I(x)

〉
= I0e

7
9
x
X0 (3.2)

for photons, where
〈
I(x)

〉
is the mean intensity, I0 is the initial intensity.

Photons reach 1/e of their initial intensity after a distance of 7
9
x
X0

[76].

Figure 3.4: Distribution of energy fraction deposition in 5 X0 for e− (red) and
for γ (blue). The mean energy fraction deposited is higher for the electron, as
expected [75].

To understand the behaviour of the pions, a grasp of hadron calorimetry is
also needed. Hadronic showers are more complicated and have longer radiation
lengths than electromagnetic showers due to the more complex hadronic and
nuclear processes such as excitation, nuclear capture, nucleon evaporation, spal-
lation etc. Hadronic showers also have an electromagnetic component due to the
neutral pions π0 which decay to two photons. Protons and neutrons from a pion
induced shower are released from the nucleus. The binding energy has to be pro-
vided, therefore the fraction of the shower energy needed for that is invisible and
its contribution to calorimeter signal has be accounted for. The ratio between
visible EM and visible hadronic energy is a crucial part in the understanding
and improving the resolution of a hadronic calorimeter. The visible energy for
electrons is given by:

Ee
vis = Eηe (3.3)
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where ηe and ηh are the efficiencies for observing purely electro-magnetic and
purely hadronic signals and E is the incident energy. The visible energy for pions
is given by:

Eπ
vis = ηe(Fπ0 +

ηh
ηe
Fh)E, (3.4)

where Fπ0 and Fh are the pion and the hadronic fractions.

Electromagnetic Calorimeter

In the Electromagnetic Calorimeter (ECAL), photons, electrons and positrons
interact with the inner material to produce showers. The architecture shown in
Figure 3.3 consists of a cylindrical barrel centred on the beam and two end-caps.
It has an accordion geometry for gaps and absorbers. The active medium is liquid
argon gas (LAr) cooled by a cryostat to a temperature of 88 K with the purpose
of keeping it in its liquid form. The passive material is lead [77].

Hadronic Calorimeter

In the Hadronic Calorimeter (HCAL) shown in Figure 3.3, sprays of particles
interact with the material inside and produce hadronic showers. It consists of
three parts: the Tile [78], LAr hadronic end-cap and the LAr forward calorime-
ters [79]. The Tile calorimeter has an absorber material made of steel and the
LAr hadronic end-cap has an absorber material made of copper. The LAr for-
ward calorimeter (FCAL) consists of three modules in each end-cap, where the
innermost module also has copper and the two outer modules have tungsten as
absorber materials.

Resolution

There are many factors that contribute to the deterioration of the response
eg. noise from electronics, material changes, instrument effects etc. The energy
resolution is expressed as:

σ

E
=

a√
E
⊕ b

E
⊕ c, (3.5)

where ⊕ is the symbol for the quadratic sum. The first term in Equation
3.5 is due to statistical fluctuations in the shower development. In homogeneous
calorimeters, the intrinsic fluctuations are actually smaller than the statistical
prediction due to the fact that the energy deposited in the active medium does
not fluctuate event by event. This is measured by the Fano factor [80]. In

34



sampling calorimeters on the other hand, the deposited energy does fluctuate
event by event, due to the fluctuations of the number of particles which traverse
the active layers. Therefore, sampling calorimeters have lower energy resolution
compared to homogeneous calorimeters [62] [76].

The second (noise) term is due to electronic noise in the detector. When a
signal is collected in the form of light, for example with photomultipliers, the
noise term is smaller than when collected by charge. The noise term decreases
linearly with increased energy of the incident particle. In sampling calorimeters,
the noise term can be decreased by increasing the sampling fraction and therefore
improving signal to noise ratio.

The third (constant) term includes calibration inhomogeneities, imperfections
in geometry of the detector, leakages in longitudinal energy component and energy
loses in dead material. As the energy increases, the other terms decrease and the
constant term dominates the energy resolution.

The energy resolution of the current ATLAS ECAL can be seen in Figure 3.5.
The performance goal for the ECAL is σE/E = 10% ⊕ 0.7% over a range of |η| <
3.2 and for the HCAL: σpT /E = 50%/

√
E ⊕ 3% in the barrel and end-cap and

σpT /E = 100%/
√
E⊕ 10% in the forward region [81]. These resolutions are after

noise subtraction and fitting only the stochastic and constant terms. The relative
resolution improves with energy, which means that particles with higher ET are
measured more accurately.

Figure 3.5: ATLAS EM calorimeter energy resolution with all contributions -
stochastic (red), noise (blue) and constant (green) terms. The total resolution is
obtained from electron test-beam data, and the contributions from a fit to this
data [75].
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3.2.3 Muon System

The muon spectrometer system [62] (Figure 3.6) is based on magnetic de-
flection of muon tracks in three large superconducting air-core toroid magnets.
The performance of the bending power of the magnets is calculated by

∫
Bdl,

where B is the magnetic field component normal to the muon direction. Two
of the magnets are located in the end-caps of the muon system and one in the
barrel region. The barrel toroid provides 1.5 to 5.5 Tm of bending power in the
pseudorapidity range of 0 < |η| < 1.4 and the two end-cap toroids 1 to 7.5 Tm
in the range 1.6 < |η| < 2.7. The region between is called transition region and
has a lower magnetic field strength. The measurements of track coordinates are
done with Monitored Drift Tubes (MDTs) and Cathode Strip Chambers (CSCs).
The trigger system consists of Resistive Plate Chambers (RPCs) and Thin Gap
Chambers (TGCs), which are responsible for bunch-crossing identification, pT
thresholds and the measurements of the muon coordinates in the direction or-
thogonal to the one determined by the precision-tracking chambers.

Figure 3.6: Sketch of ATLAS muon system. The detector size is about 22 m in
diameter and 44 m in length [62].

The expected resolution of the muon spectrometer is illustrated in Figure
3.7 with respect to the transverse momentum of the muons. The resolution for
muons with pT around 100 GeV is 4%, which increases to 10% at 1 TeV. For
pT < 100 GeV, the dominant process is multiple scattering and for pT > 100
GeV, calibration and alignment of the spectrometer are the main contributors in
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the momentum resolution. The muons cross three layers of MDT chambers for
sagitta measurements. The measurements related to the tracks are performed
with a resolution of ≈ 40 µm. For muons with pT = 1 TeV, the resultant sagitta
is ≈ 500 µm and for the highest expected resolution of 10%, the sagitta is ≈
50 µm [82]. The higher the momentum, the more precision is required in the
measurement of the sagitta.

Figure 3.7: Resolution of the muon spectrometer for the different contributing
factors [82].

3.2.4 Forward Detectors

The forward detectors of ATLAS are located in the forward region. Two of
them: LUCID (LUminosity measurement using Cherenkov Integrating Detector)
in pseudorapidity range 5.6 < |η| < 5.9 [83] and ALFA(Absolute Luminosity For
ATLAS) in pseudorapidity range 10.6 < |η| < 13.5 [84], determine the luminosity
(number of events) delivered to the experiment and the third: ZDC (Zero Degree
Calorimeter) in pseudorapidity range |η| > 8.3 [85] determines the centrality
of heavy-ion collisions [62]. LUCID measures instantaneous luminosity at z =

±17 m and ALFA at z = ±240 m. The main idea of the forward detectors is
to measure elastic scattering at very small angles, so that the calculations of the
absolute luminosity at ATLAS can be made with the appropriate precision [86].

37



3.2.5 Trigger and readout

The trigger system is responsible for event selection to significantly reduce the
rate of collecting data, which can be up to 1 TB/s. It consists of three levels: L1,
high-level L2 trigger and Event Filter, where L1 includes muon and calorimeter
triggers and L2 and Event Filter are combined in HLT and deal with Regions of
Interest and whole event physics respectively [62]. The trigger can be adjusted
to a set of conditions, which vary with respect to the types of events of interest,
and therefore the type to be thrown out. The general trigger constraints used for
Run 2 are the maximum L1 rate of 100 kHz (75 kHz in Run 1) defined by the
ATLAS readout capacity and an HLT average rate of 1 000 Hz (400 Hz in Run
1), defined by the off-line computing capacity [87]. The primary event processing
occurs at CERN in a what is called Tier-0 facility. The RAW data starts on site
at CERN and is the copied to different sites around the world, which are called
Tier-1 facilities. At this stage of the process, scientists process and analyse the
data and then, it is copied further to Tier-2 facilities [88].

The read-out system is responsible for transferring data from the detector,
the configuration and control of the hardware and software components and the
conversion of the detector’s responses into human storable electronic information.
The read-out system receives and temporary stores the data in the local buffers.
The selected events passing both levels of the triggers are then transferred to
the event-building system and the event filter for final selection. Those resultant
events are passed to the CERN computing centre. The data acquisition system
is called TDAQ. It takes 2.5 µs for the signal from the detector to reach L1,
therefore all the data, which reaches in that 2.5 µs needs to be processed, while
≈ 100 other bunch crossings take place in the mean time. This is the reason
for ATLAS to have buffers as part of their front-end electronics. An important
occurrence is time between measurements, which is called “dead time”. The data
flow in the ATLAS sub-detector acquisition systems needs to be controlled in
order to prevent information losses. To minimize dead time, during which no
data can be recorded, TDAQ has a parallel processing technique. At the end of
Run 2, the simple dead time setting was four bunch crossings, which corresponds
to an inefficiency of about 1% for a L1 rate of 90 kHz [61].
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Chapter 4

Analysis strategy and Datasets

The thesis targets ttH(Hγγ) final states. The signature of the Higgs boson in
the di-photon decay channel is a narrow peak in the smoothly falling di-photon
invariant mass Mγγ distribution. The width of the peak is consistent with the
resolution of the detector and is typically between 1 GeV and 2 GeV, depending
on the kinematics in the event. The mass and event rate of the Higgs boson can
be inferred from the fits of the Mγγ distribution.

Backgrounds with non-resonant photon pairs such as multi-jet production in
association with photons or tt production in association with photons, can be
rejected mainly by using the photon kinematics. The signal is extracted from an
Mγγ fit with a narrow peak on the top of a substantial background. Using the
kinematic variables of the photons will sculpt the background, or otherwise said,
a background peak will appear exactly where the Higgs boson mass peak in Mγγ

is. This thesis, therefore, introduces a scientific way to de-correlate the cuts set
on photon variables fromMγγ in order to remove the sculpting of the background
and achieve smaller uncertainties. The state-of-the-art ttH(Hγγ) analyses [43]
have used simpler, approximate procedures to avoid the sculpting, such as scaling
the photon kinematics with Mγγ.

4.1 Monte Carlo signal and background simulated

data

Monte Carlo (MC) simulations are used to develop the ttH(Hγγ) analysis
and estimate the expected sensitivity. The first step is the event generation,
in which matrix element events are produced, showered and hadronised. The
event generation relies on MC four vector description generators, which are writ-
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ten separately by third parties and interfaced to the ATLAS software framework
[89]. The different processes used in this thesis were generated using different
MC software packages. The signal ttH is produced using PowhegBox v2 gener-
ator [90] [91] [92], at next to leading order (NLO) in the strong coupling con-
stant αs. The NNPDF3.0nlo set of parton distribution functions is used [93].
Pythia8.230 [94] with A14 tune [95], is used for parton shower and hadronisa-
tion. The decays of bottom and charm hadrons are simulated using a different
generator called EvtGen v1.6.0 [96].

Following the event generation, the signal events are passed through the AT-
LAS simulation infrastructure, using the Geant4 toolkit [69]. They are normalised
to the inclusive cross-section of σ = 0.51 pb calculated at 13 TeV and Higgs mass
of 125.09 GeV [97] and the branching ratio for the Higgs decaying to two photons
of 0.227% [20].

The main background process is assumed to be from the ttγγ production, for
which the matrix element events were generated with MadGraph5 v2.3.3 [98] at
LO in QCD, using NNPDF2.3lo parton distribution function. The shower and
hadronization are the same as for the ttH signal events. The detector response is
simulated using a fast parametric simulation of the ATLAS calorimeter [69]. In
all simulated samples, pile-up events are modelled with Pythia 8.186 using A3
tune [99].

4.2 Real data collected with the ATLAS detector

The data is from proton-proton collisions at the centre-of-mass energy of
√
s =

13 TeV. It was collected with the ATLAS detector at CERN between 2015-2018.
This data is called Run 2 data, as it is collected during the second data collecting
period of time after major detector upgrades. Events in which the calorimeters or
the inner detector were not fully operational are excluded, using the data quality
requirements in Ref. [100]. After the data quality requirements, the data has a
preliminary integrated luminosity of 139.0±2.4 fb−1 [101] and an average number
of interactions per bunch crossing of 33.7.

Events used for this study are required to pass a di-photon trigger with thresh-
olds of > 35 GeV and > 25 GeV for the leading and sub-leading photon respec-
tively. The trigger uses shower shape information from the calorimeter to identify
the photons. In 2015-2016, photons were required to pass the loose photon iden-
tification criterion at the trigger level. In 2017-2018 the medium identification
requirement was used, to cope with the higher instantaneous luminosity. After
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passing the trigger di-photon trigger, the events were required to contain at least
one primary vertex, and the offline photons had to match the photons identified
by the trigger.
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Chapter 5

Simulation

Simulation is an important part of particle physics analyses at CERN. It is
needed for three general purposes: to allow the detection efficiency to be mea-
sured, to study the performance of future detector designs before construction
and to ease the work of physicists by providing them with the possibility for
applying numerous methods to manipulate the data from the detector, without
actually using the physical detector itself.

This chapter is devised into two sections and ten subsections. Section 5.1
describes the general ATLAS simulation and the fast simulations used for less
CPU-intensive running of physical processes in the detector. Section 5.2 de-
scribes the fast calorimeter simulation AtlFast3, which is the next generation
of high-accuracy fast simulation in ATLAS and which combines parametrisation
based approaches and machine learning techniques. The subsections of Section
5.2 are ordered as follows: simulation data samples used in Section 5.2.1, energy
parametrisation in Section 5.2.2 , energy interpolation, which the author’s main
personal contribution to AtlFast3 in Section 5.2.3, all final corrections, made
through validation by comparing with the general full Geant4 simulation in Sec-
tion 5.2.4 and reconstruction of physical objects in Section 5.2.5. The physics list
and performance studies, which also include personal contributions are described
in Sections 5.2.6 and 5.2.7. Finally, conclusions on the AtlFast3 fast calorimeter
simulation are given in Section 5.2.8.

5.1 ATLAS simulation

To study the ATLAS detector’s response for as many physics scenarios
as computationally possible, a detailed simulation was developed to carry events
from the event generation level through to the final step of outputting the data in
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the same format as the data received from the physical detector (Raw Data Object
type converted to byte stream) [69]. The ATLAS simulation uses the Athena
framework [102] for the software architecture and the Geant4 toolkit [103] [104]
for the simulation of passing particles through the detector geometry [105]. The
ATLAS simulation operates on three general levels: generation of the particles,
interactions of the particles and their decay particles with the detector, pileup and
digitisation of the output energy depositions in the sensitive parts of the detector
geometry. The reason for making sure that the formats produced for simulated
and real data are the same is because the simulated data, just like the real data,
should be run through the same ATLAS trigger and reconstruction packages to
avoid biases. The computational power required for the full chain is large, so
several fast simulations were developed separately. The fast simulations have
simplified detector geometry and various response parametrisations for analyses,
which don’t require the full complexity of the detector or to facilitate Monte Carlo
to data tuning. Moreover, with latest improvements of fast simulation, there is
an ongoing discussion for using them as the default for analyses [69].

The full chain of the ATLAS simulation is shown in Figure 5.1. The first step
is at generator level, where particles are produced in a format called HepMC [106].
This is an object oriented event record written in C++ and used specifically for
high energy physics simulations [106]. The process of particle generation also
includes particle filtering, where only particles of interest can be chosen. Event
generation jobs can be run for several thousands of events at a time. The detector
is not described at that level, because only prompt decays are dealt with at this
stage, stable particles are stored and propagated through the detector during the
simulation stage at Geant4. The physical processes of the propagated particles
through the detector are also described with Geant4. The energies deposited in
the sensitive parts of the detector are recorded as “hits” and the stored information
about each event (called truth) includes the momentum, decay time and tracks
of incoming and ongoing particles.

The output with the hit information goes through the digitization stage next.
The noise of the detector is considered at this stage and digits are produced.
The first level trigger (hardware trigger) and all information is outputted in a
Raw Data Object (RDO) format. Hypotheses are evaluated, but no events are
discarded.

Finally, the ATLAS high level trigger (HLT) and reconstruction use the RDO
output files. Apart from truth information, which is simulation specific, the
reconstruction is identical for simulation and data.
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Figure 5.1: Flow of the ATLAS Simulation software [69].

5.1.1 Physics Lists

Physics lists are collections of numerical models of the interactions of particles
in Geant4. A single model is usually not enough for the description of a complex
process, as it only involves a specific type of interaction and for a specific range,
which is why the use of several models together is required. The lists used by the
ATLAS collaboration are provided by Geant4 with the exception of the transition
radiation model, which was added by the ATLAS collaboration. Physics lists
used by ATLAS are FTFP_BERT (since 2014, i.e. for Run 2), QCSP_BERT (before
2014) and QGSP_BERT_HP was used for specialised neutron studies, eg. for cavern
background.

The currently used physics list FTFP_BERT [107] has a hadronic and an elec-
tromagnetic component. The hadronic package includes the Fritiof string Pre-
compound (FTFP) and the Bertini intranuclear cascade model (BERT). The elec-
tromagnetic package includes step limiting multiple Coulomb scattering. Trans-
portation processes dominate the inner detector simulation and electromagnetic
physics processes dominate the calorimeter simulation, due to the large number
of soft electrons, positrons and photons within the showers.

5.1.2 Fast Simulations

The simulation of physical processes in ATLAS depends on Monte Carlo based
creation of events. The Monte Carlo (MC) method deals with the idea of solv-
ing mathematical, statistical and more importantly for the studies in this thesis,
physical problems, which have many degrees of freedom. It does that by random
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sampling to evaluate the integrals numerically, which can not be solved analyt-
ically. The simulation of the development of particle showers in the events is
very CPU (Central Processing Unit) intensive, so much so, that it takes 90% of
the overall simulation time. Therefore, fast simulations are essential to simulate
enough MC events to match the real data with limited computing resources. The
slowest software component of the full ATLAS simulation is the calorimeter part.
This led to the development of the alternative fast simulation tool called Fast
Calorimeter Simulation (FCS).

5.2 Fast Calorimeter Simulation

The calorimeter of the ATLAS experiment (described in Chapter 3.2.2) mea-
sures the energies deposited from the resultant particles of collisions and decays.
The fast simulation used for this purpose is the AtlFast3 or Fast Calorimeter Sim-
ulation (FCS). Performance studies of a much improved parametrization-based
Fast Calorimeter Simulation can be found in Appendix D. The particles modelled
in FCS are photons (γ), electrons (e±) and pions (π±) for the physical processes
in the electromagnetic (EM) and hadronic (HCAL) parts of the calorimeter. In-
put particles that are used for the parametrisation are produced with discrete
values of the logarithm of their momenta in range (0.064 - 4) TeV and uniformly
distributed in η bins with size 0.05 up to η < 5. The corresponding η values
for the different parts of the detector are shown in Figure 5.2. The detector re-
sponse for the input particles is simulated using the original Geant4 simulation
of the ATLAS detector under Run 2 conditions, but with electronic noise, cross
talk between neighbouring cells and dead cells turned off. The current AtlFast3
includes parametrisation-based and a machine learning based parts, where the
former deals with the parametrisation of the single particle calorimeter simula-
tion and the later is currently used for improving the performance of single pions
in the momentum range of 16 GeV to 256 GeV. An energy interpolation is used
to make sure that both are consistent with one another and that the transition
is smooth.

5.2.1 Simulation of Reference Samples for AtlFast3

All AtlFast3 fast simulation samples were compared to the full Geant4 (G4)
ATLAS simulation. [103] The Geant4 samples produced used Geant4 version
10.1.3. The physics list used was FTFP-BERT-ATL [108], [109], [110], which
uses the Bertini intra-nuclear cascade model below 9 GeV and transitions to
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Figure 5.2: Pseudorapidity values for the ATLAS calorimeter.

the Fritiof model with a pre-compound model for 12 GeV and higher [1]. The
“frozen showers” technique, which is used for the full ATLAS Geant4 simulation
in general, to simulate electromagnetic showers [69] is omitted in the Geant4
reference samples.

All reference Geant4 samples were produced for single particles with coordi-
nates |z| < 3550 mm outside of the TRT and a cylinder around them with a
radius r = 1148 mm. The particles are produced with a uniform distribution in
φ and without the spread of the LHC beam in z, to correspond to the simplifi-
cations adopted in AtlFast3. All showers are parametrised from the the particles
entrances to the calorimeters. The hadronic showers are parametrised with pos-
itive and negative pions π± and the electromagnetic showers with electrons e±

and photons γ. Corrections were made to ensure that all particles perform op-
timally. The differences in shower development due to the lack of the modelling
of the beam spread were considered negligible [1]. Other differences between the
produced Geant4 reference samples and the used samples for ATLAS analyses in
general (full ATLAS simulation) include the omission of any cross talk or read-out
noise from electronics and smaller simulation step.

For a complete comparison to AtlFast3, the simulation samples included the
same energy and pseudorapidity ranges and steps between them and an energy
interpolation 5.2.3 was used to generalised the results for any available real-life
possibility. The energy range for the incoming single particles is 16 MeV < E <

4.2 TeV, with steps of powers of 2 and the pseudorapidity of |η| ≤ 5 with steps
of 0.05.

After all comparisons are performed, several corrections are applied to the
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AtlFast3 responses, which are described in 5.2.4.

5.2.2 Energy Parametrisation

The energies deposited in the different layers of the ATLAS calorimeter are
very strongly correlated to one another, which makes it difficult to simulate them
correctly. A method using principal component analysis (PCA) was developed
to de-correlate the longitudinal deposited energies between the different layers
of the calorimeter. The principal components of the data are a sequence of
directional vectors, where every vector is orthogonal to the previous one. These
components are eigenvectors of the data’s covariance matrix. The directions of
the vectors constitute an orthonormal basis, in which the different dimensions of
the data space are linearly uncorrelated. This is also referred to as a “change
of basis”. A Geant4 single particle input sample is used with a particular η
bin and particular fraction of the total energy in each layer. Using an inverse
error function, the energy distributions for all layers are then converted into
Gaussian distributions. A PCA matrix is created using the information given by
the Gaussian distributions. The distributions are then changed so that they use
bins with the same number of events per bin, after which a PCA is performed
again, to further de-correlate the distributions of the different layers from one
another [111].

Figure 5.3: Comparison of the energy
parametrisation in FCS with G4. Pre-
Sampler [1].

Figure 5.4: Comparison of the en-
ergy parametrisation in FCS with G4.
EMB1 (first layer) [1].

In the simulation, a similar PCA procedure is applied but in reversed order. A
random bin is assigned for each simulated particle until there’s a certain random
number of events per bin, the distribution of which is Gaussian. The random
numbers are rotated using a PCA matrix, resulting in transformed Gaussian
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distributions. The error function is then used to make these distributions (which
are at this stage uncorrelated) correlated with each other. After small corrections
are applied to the resulting distributions to approximate them as much as possible
to the expected quantities, the final energy distributions are obtained for each
layer. If the particle does not deposit any energy in the calorimeter, it is assigned
to the so called “0 bin”.

The full longitudinal energy parametrisation results for two example parts of
the calorimeter from validations with respect to the full Geant4 (G4) simulation
are shown in Figures (5.3 and 5.4). The examples given in the Figures are for 65
GeV photons in the pseudorapidity range 0.2 < |η| < 0.25. There is a general
agreement between the G4 and FCS in the separate components.

5.2.3 Energy Interpolation

As mentioned earlier, in FCS, three types of particles are parametrised and
used - photons, electrons and charged pions. Photons and electrons are used to
parametrize electromagnetic showers and pions are used to parametrize hadronic
showers. In the simulation at the time of this analysis (2019-2020), generated
samples were available with specific energies of the incident particle with energies
between 64 MeV and 4 TeV and 100 equidistant pseudorapidity |η| slices in the full
range 0 < |η| < 5.0 [111]. Having only discrete values is insufficient as in reality,
the particles entering the calorimeter will have a continuous range of kinetic
energies. A software package to address this issue by interpolating between the
different energies was written in C++ and included in the full ATLAS simulation
infrastructure Athena.

To investigate what type of functionality (linear or more complex) was needed
for the interpolation, the mean of the simulated total distribution of the energies
deposited in all calorimeter cells over the energy of the sample was plotted against
the energy of the sample. The energy loss was observed in order to check for
potential irregularities. An example for the individual energy distributions of the
incident particle is shown for a single pion for three of the used energies in Figure
5.5.

The tails of the distribution are asymmetric, therefore each and every entry
has to be considered when calculating the mean. A perfect detector’s response
would be an ideal Gaussian shaped distribution, but a realistic one gives a more
complicated shape. It consists of a Gaussian core, that models the detector res-
olution, with tails, which are non-Gaussian and parametrize the effect of photon
radiation by the final state particles in the decay. The asymmetrical tails are
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Figure 5.5: Individual pion distributions of the ratio between the total cell energy
and the energy of the sample for incident energies of 1.024 GeV (left), 2.048 GeV
(middle) and 4.096 GeV(right) of the pion with Geant4. Fits to the peak were
made with a Gaussian function.

due to fluctuations (shower leakages) in the energy resolution of the calorimeter.
They tend to occur in the low-energy side of the distributions because energy is
escaping from the active detector volume.

The expected behaviour at lower energies (Figure 5.6) is for the fraction of
the total cell energy over the energy of the sample to increase. The expected
behaviour at higher energies (different for the different particles) is for the above
mentioned ratio to approach and plateau at 1. These expectations were met for
the photon and the electron samples. The corresponding plots for three exam-
ple pseudorapidity ranges are shown for single pion, photon and electron samples.
There is a clear loss of energy. This is due to the material in front of the calorime-
ter. In the full simulation, the electron comes from the interaction point or from
photon conversions, which means the electron passes through material before the
calorimeter. For photons, an energy loss of 3 − 5% and for pions of 15 − 30% is
considered normal.

The expected plateau at one is seen for the photon and electron but not for
pions in the investigated energy range. This is because most of the energy of
electrons and photons is visible, which is not the case for pions. Some fraction
of the energy is used for nuclear excitations and some to release nucleons from
nuclei. This binding energy contributes to the invisible energy of pions. It was
also noted that as expected, the shape varies in the transition region between
barrel and end-cap (≈ 1.47, black line in Figure 5.6). The different patterns for
the pions sample gave a first indication of a potentially more complicated energy
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interpolation shape needed for the pion energies.

Figure 5.6: Investigation of the energy distributed in all cells for pion (left), pho-
ton (middle) and electron (right) single particle generated samples with Geant4
for various η ranges.

The plots created for all generated samples were used for the finalisation of
the currently used energy interpolation package for FCS. A spline fit function-
ality was adopted, where the parametrisation is based on the logarithm of the
total cell energy of the particle was selected. The closer the logarithm of the
cell energy is to the logarithm of the energy of sample, the more likely it is that
this parametrisation is picked. In Figure 5.7, the right plot shows constant be-
haviour of the energy response in a certain energy range and a jump to the next
parametrization.

Figure 5.7: Comparison of the photon response with (left) and without (right)
random choice for the interpolation between neighbouring parametrizations.
Probability chosen based on log(energy of sample). Credit for plots: Michael
Duehrssen (CERN).

Three examples for the implemented spline fits patterns for electrons, photons
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and pions are shown in Figure 5.8 for a) photon and b) electron and Figure 5.9
with an example pseudorapidity range of 0.95 < η < 1.00. Spline fits for photons
and electrons were relatively straightforward to create as the overall shape on a
linear scale appeared to be linear for these two particles. The expected plateau
effect of the spline fit at higher energies can be seen for electrons, but a drop of
the kinetic energy was observed for photons. This is a result of particularly high
energy photons, which escape the calorimeter and end up in other parts of the
detector.

Pions required a more complicated spline fit shape which is shown in Figure
5.9. The pion spline fits have three notable features: a higher than expected en-
ergy of the first used sample, a resonance-like shape between 102 and 103 MeV
and a drop at high energies. The higher than expected energy of the first sample
was investigated further by the collaboration and only appears in some cases ran-
domly, so it was concluded to not be a real physical effect. The resonance-like part
of the spline fit is an artefact of the sampling structure of the calorimeter. Pions
have a specific narrow range of energies, where most of their energy is deposited in
the pre-sampler, which is calibrated using only high energies. This leads to high
multiplication factors when calibrating the detector’s response, which are correct
for high pion energies, but not perfectly correct for particles which deposit most
of their energies in the pre-sampler part of the detector. Finally, the drop at
higher energies (> 106 MeV) in the last bin occurs due to longitudinal leakage
into the muon system or pions, which did not finish their path in the hadronic
calorimeter but instead continued and decayed in further parts of the detector.
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(a) Photon

(b) Electron

Figure 5.8: Spline fit covering the kinetic energy interpolation using Geant4
samples of (a) photons and (b) electrons with energy 64 MeV < E < 4 TeV in

0.95 < η < 1.00.

Figure 5.9: Spline fit for a pion covering the kinetic energy interpolation using
samples with energy 64 MeV < E < 4 TeV in 0.95 < η < 1.00.
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In several different η ranges, a slightly fluctuating spline fit was seen, which is
why the change of efficiency with respect to a change in the pseudorapidity range
of the different incident samples was also investigated. A comparison was made
with the pattern expected from Geant4 (Figure 5.10). Overall, the expected close
similarity of FCS and Geant4 was seen. A noticeable bottleneck effect was seen
at η of around 1.55 -1.60 in the FCS plot, which was thought to be an effect of
the too fine granularity of the data points.

(a) FCS

(b) Geant4. Plot thanks to Jana Schaarschmidt

Figure 5.10: Comparison between FCS efficiency as a function of η for a range
of particle energies shown in different colours (a) and full Geant4 for a single

energy of 131 GeV (b).

The change of the efficiency with respect to the pseudorapidity was also com-
pared to what was found for a previous release of the simulation (Figure 5.11).
The bottleneck effect seemed reduced with the reducing of granularity of the
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data points. Approximately 30% difference of efficiency for low energies was ob-
served(Figure 5.10 a). Another difference was the dip around 0.8 in η, which
was not to be seen on the plot for the previous release of the Athena simulation
infrastructure. Those differences were attributed to differences in material de-
scription, densities and sampling fractions inside the calorimeter, as well as the
noise threshold. The later was electronic noise dominated before 2011 (in the
previous release) and cell-signal baseline fluctuations created pile-up dominated
after 2011 (including 21.0.73 release used in this analysis).

(a) FCS recent release 21.0.73

(b) FCS previous release: 13.0.20. Plot thanks to
Sven Menke

Figure 5.11: Comparison between current (a) and previous relieve of FCS (b).
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5.2.4 Corrections

Five different types of corrections are applied to the total energy response
in the calorimeter in the full AtlFast3: an energy resolution correction, energy-φ
modulation correction, hadron total energy correction, a residual energy response
correction and a simplified geometry shower shape correction. The energy res-
olution correlation is a weight-based change of the FCS energy parametrisation,
where the weight applied is the proportion of the FCS and G4 PCA bins. Every
RMS is calculated using at least 99% of the total events and in 3σ range around
the mean. Figure 5.12 a shows an example for the pseudorapidity range of 0.4
< |η| < 0.45, of how this correction worked, where the an initial FCS photon en-
ergy distribution is shown in blue, FCS distribution after the correction is shown
in red and the Geant4 energy response in black. The agreement is significantly
improved.

(a) 0.4 < |η| < 0.45 (b) 1.65 < |η| < 1.7, φ correction

Figure 5.12: Example impact of the energy response corrections applied to the
FCS. Left: an example of energy resolution correction for a photon sample.
Geant4 energy response is shown in black, FCS before correction in blue and
FCS after correction in red [1]. Right: an example of energy-φ modulation
correction. The Geant4 energy response with and without φ modulation is

shown in grey and black respectively, FCS response is shown in red.

The energy-φ modulation correction is the correction applied to the energy re-
sponse, due to the lack of functional dependence on φ, where |φ| = |(φcalo, φ/512)|,
in FCS. FCS, has a set of simplifications, in comparison to Geant4, the lack of
φ dependence considered, being one of them. Figure 5.12 b shows the difference
between the original G4 energy of a photon sample in 1.65 < |η| < 1.7 in grey and
the G4 energy after removing the φ dependence. The FCS response is given in
red and shows a very good agreement with the Geant4 energy prediction without
φ dependence.
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The hadron total energy correction is applied to correct for the use of pion
energy response in the derivation of the parametrisation of all hadrons. It is a
scaling of the energies involved, as follows:

Ecorr,h
Total =

〈Eh
G4〉

〈Eπ
G4〉
× Eπ,true

kin

Eh,true
kin

× ETotal (5.1)

Ecorr,h
Total is the total hadron corrected energy, 〈Eπ

G4〉 is the mean G4 simulated
pion response, 〈Eh

G4〉 the mean G4 simulated hadron response, Eπ,true
kin is the true

kinetic energy of the pion and Eh,true
kin of the hadron and ETotal is the total energy

before the hadron correction. This correction is largest at small kinetic energies
and decreases with the increase of energy.

The residual energy response correction is the final correction of the energy
response applied after all reconstruction and simulation ATLAS procedures have
been finalised. The final corrected energy is given with:

Ecorr,res
Total (p) = 〈EG4(p)〉/〈EAF3(p)〉 × ETotal(p) (5.2)

〈EG4(p)〉 is the mean energy of the particle p (electron, photon or pion) in
G4 and 〈EAF3(p)〉 in the AF3 part of the fast simulation. This residual energy
correction is shown in Figure 5.13 for the three particles, where it is slightly higher
overall for pions (green), than it is for the other two particles.

Figure 5.13: Residual energy correction for pions(green), photons(orange) and
electrons(blue). The electron and photon scale is shown on the left and the
pion’s on the right y-axis [1].

The final correction, the simplified geometry shower shape correction is needed
due to the simplified version of the calorimeter cells in FCS in comparison to
G4. A significant number of hits are misplaced in φ hitting neighbouring to the
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correct cells. This effect is shown in Figure 5.14 a), where there’s a clear lack of
consistency of the ratio of G4 and FCS number of hits between the cells. After
correction, shown in Figure 5.14 b), FCS is in good agreement with G4.

Figure 5.14: Ratio of calorimeter hits in G4 and FCS a) before and b) after the
simplified geometry shower shape correction [1].

5.2.5 Reconstruction of Physical Objects

All comparisons of AtlFast3 with G4 and the previous iteration of AtlFast3 are
made by comparing how the simulations perform at modelling and reconstructing
different physical objects. The physical objects relevant for the work in this thesis
are photons, electrons and pions, as they were used for the energy interpolation
part of the simulation. The performance for those particles depends mainly on
the calorimeter performance and on the performance of the tracking detectors.

Photons and electrons are reconstructed by considering energy depositions of
the topological clusters in the calorimeter, where for electrons, tracks from the
inner detector are matched to the clusters from the calorimeter. The electrons
and photons used for the FCS studies in this thesis satisfy the “tight” isolation
and identification requirements, which are set to be the strictest rules about
the shower shape and particle’s identification efficiency. For electrons, AtlFast3
results in a total difference of about 2% in the full variable phase space apart
from the 30 < pT < 300 GeV, where it differs with about 5%. The situation
for photons is similar, where G4 and AtlFast3 have negligible differences (Figure
5.15). a good agreements are shown at middle range and high range pT and small
differences in low pT .

Pions often occur as daughter particles in τ hadronic decays. Taus are recon-
structed by measuring the quantities of the daughter particles which range from
one to three charged ot neutral pions [112, 113, 114].
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Figure 5.15: Comparison of current (AF3), previous (AF2) iteration of the FCS
simulation and Geant4 (G4) reference samples for electrons and photons in

pT [1].

5.2.6 Performance of FCS

The average CPU time of the G4 ATLAS simulation for the simulation of
a particle is about 200 times larger than the average CPU time for the current
iteration of the simulation (AF3) for 8 GeV photons produced on the calorime-
ter surface and 600 times larger for 256 GeV photons. This demonstrates the
efficiency of fast simulations in general and the high overall performance of FCS
in this particular case (Figure 5.16). For the calorimeter simulation alone, G4
is 500 times slower than AF3. With the full simulation production chain, the
required CPU time for completing one event is 5 times larger in G4, than it is in
AF3. The conclusion made from the above is the need for a fast simulation for
the tracking detector, which would improve the overall CPU performance even
further. Personal performance studies completed in 2018 before the release of the
last literation of AlFast3 [1] in 2021, and only on the FastCaloSim part of the
fast simulation, can be found in Appendix D.

5.2.7 Physics List Range

The physics lists, as explained in Section 5.1.1 are used to describe the in-
teractions of particles in Geant4. The main physics list used by ATLAS is the
FTFP . The energy region 3-12 GeV for the incoming particle was investigated
with the goal of improving the spline fit in that region, if necessary. Sixteen new
samples with finer granularities were generated with energies between 1 and 16
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Figure 5.16: CPU performance of FCS in latest (AF3 red) and previous iteration
(AF2 blue) in comparison to G4 black. Calorimeter simulation only. Example is
for a photon sample in range 0.20 < |η| < 0.25 [1].

GeV for two pseudorapidity regions 0.20 < η < 0.25 (away from the crack and
transition regions) and 1.40 < η < 1.45 (transition region). The kinetic energy
distributions were then added to the samples from the original production in or-
der to create a new updated spline fit shape to be compared with the previous
one. A final version of the plot is shown on Figure 5.17 alongside with a zoom on
the desired part of the spectrum. The conclusion made was that the difference
observed can be neglected as it is at most 10% and generally much less, therefore
no further work for the improvement of that energy region was necessary.
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5.2.8 Conclusions of the AtlFast3 Studies

AtlFast3 is the new generation of the fast calorimeter simulation of the AT-
LAS calorimeter. It uses parametrised detector response, and the samples for
this parametrisation used to only be simulated for discrete values of particle en-
ergies. A technique was developed and described in this thesis, which interpolates
the detector response between these simulated energy points, and it was demon-
strated that this interpolation is accurate. A piece-wise third order polynomial
spline fit function was adopted, in order to interpolate to intermediate energies.
Furthermore, linear extrapolation is used to reach energies beyond those of the
simulated input samples. The spline fit interpolations are generated for each
particle and each slice and are used to rescale the total energy response from
the parameterization points. In addition to the interpolation of the total energy
response, the other longitudinal and lateral shower shape properties also need to
be interpolated. The shape interpolation is done by randomly selecting the pa-
rameterization from the nearest energy point with a probability linear in energy
and fitted such that unit probability is reached for the grid energy points. For
electrons and photons the spline fit for the energy response ranges down to 16
MeV, below which a linear extrapolation is used. For hadrons the energy response
ranges down to a kinetic energy of 200 MeV, below which Geant4 is used for the
simulation.

The interpolation enables the simulation of particles with any energy in Atl-
Fast. It is used in AtlFast3, which significantly improves the agreement between
the fast simulation with the full ATLAS simulation, most notably for jet sub-
structure variables [1]. AtlFast3 is planned to be the default simulation for Run
3 physics production with the ATLAS detector. AtlFast3 significantly improves
the modelling of reconstructed objects for physics analysis in comparison to the
previous version of the fast calorimeter simulation. In the majority of studies,
AtlFast3 agrees with the full Geant4 within a few percent. AtlFast3 requires
only 20% of the CPU time required by Geant4 to simulate an event, AtlFast3 is
currently being used to simulate 7 billion events with the Run 2 data.
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(a) Ereco/Ekintrue Green and red: original spline fits; orange
and blue: spline fit after added points

(b) Ereco/Ekintrue Close up in the region of interest.

Figure 5.17: Physics list investigation for checking the agreement after added
points. The ratio of the reconstructed and true kinetic energy as a function of

the true kinetic energy is shown. Comparison of π spline fit with
and without additional points with energies 1 to 16 GeV.
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Chapter 6

Machine Learning

"Machine learning is a field of study that gives computers the ability to learn
without being explicitly programmed."

Arthur Samuel (1959)

By its definition, the idea of machine learning could be seen as the program-
ming equivalent of a very basic example for how humans evolve in a lifetime. We
start by having some initial predispositions, which then change with respect to
what we learn by observing numerous examples for how a certain task is done.
We copy them, attempt them in our own lives and then we decide what to take
from each experience (aka learning) before moving on to the next one, with a now
better understanding for how to perform the task.

This thesis deals with a task (or problem) of how to separate events, in which
we have interest, i.e. signal, from events which we do not need, i.e. background.
The basic approach to solve the above is to look at certain regions of phase space
for each variable in the data using what we call the cut-based approach. We
“cut” on each variable’s range to find an area of phase space with the largest
signal/background ratio. Most real life problems tend to be too complex for the
cut-based approach to be enough. If, for example, we have two variables x1 and
x2 (Fig 6.1 a) and three classes of objects to be classified (blue, green and red),
one way to perform the cut-based method would be to divide the 2D variable
space into squares and then make a decision on which class each square belongs
to by counting the number of objects with a certain colour in each square (Fig
6.1 b) [115]. The final goal of the classification in this case is being able to
predict which class a certain data point belongs to by knowing its coordinates
in the (x1, x2) space. An example point is marked with a black cross in Fig 6.1.
Assuming equal distribution, using the square cut-based approach, would classify
this data point as red with a good certainty (small chance of being green too)
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because it falls within a red square.

Figure 6.1: a) Three objects, represented with blue, green and red data points
within a range (0.0) to (1,2) for two variables x2 and x1. b) Cut-based approach
on a) [115].

For most real life problems, a simple cut-based approach would be limiting,
due to the complex nature of the problems. The example described above deals
with only two variables. If the number of variables is increased by even just
one (Fig 6.2 c), the problem of classification becomes a lot more difficult and
the difficulty grows exponentially with the increase of the number of variables.
This exponential growth of the number of cells (or squares in 2D) is what is
called the “curse of dimensionality” and is the reason for the development of more
sophisticated ML techniques. More sophisticated techniques include using the
most useful variables, as well as reducing the number of features.

Figure 6.2: The curse of dimensionality illustrated for D = 1 (a), D = 2 (b) and
D = 3 (c) variable dimensions. The number of points needed to sample the space
spanned by the axes in D dimensions grown exponentially with D [115].

The tasks machine learning algorithms can perform include Projection Pursuit
Regression (PPR), which predicts a real-value output, to give best estimate for a
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certain output quantity, under some conditions, or logistic regression (otherwise
called classification), which predicts a discrete-valued output, to separate certain
components of the input data into categories.

6.1 Project Pursuit Regression

Linear regression (having a linear model fit for input data) is the most
basic type of Projection Pursuit Regression (PPR). If, for example, we consider
the most simplistic case of having two parameters: a and b and one input variable
x, the hypothesis for the best fit for a training sample i is:

h(x) = ai + bix (6.1)

The idea of linear regression is to find a set of parameters (a, b), which min-
imises the shortest length between the data points yi and their linear fit h(x), in
a number of training samples m:

min
ai,bi

J(ai, bi) =
∂

∂(ai, bi)

1

2m

m∑
i=1

(h(x)i − yi)2 (6.2)

J(ai, bi) is known as the loss or cost function. The algorithm learning starts
with a procedure called Batch Gradient Descent. The 1

2
in Equation 6.2 is to

cancel the factor of 2 from implicit differentiation. We set some initial values
for the parameters ai and bi (the machine learning equivalent of predispositions
in our human analogy), which then keep changing simultaneously. New values
are assigned: ai+1 = ai − α ∂

∂ai
J(ai, bi) and bi+1 = bi − α ∂

∂bi
J(ai, bi) until a local

minimum of the cost function is reached. Here α is called the learning rate. It
controls the size of the step, taken from one estimated value of a parameter for
a training sample i, to the next estimated value for a training sample i+ 1. The
learning rate needs to be carefully chosen so that it is not too small, which would
make the gradient descent too slow, but also not too big, which will overshoot so
as to miss the minimum.

A slightly more complicated scenario would be when we have multiple vari-
ables for the above described linear model. The work of the algorithm in this case
is the same, only we need to make sure our variables are in comparable ranges
and if not, use variable scaling as well as make sure we don’t have redundant
(highly correlated) variables and if we do, use variable regularization. Variable
regularization is the process of determining which variables are most useful for
the final goal, and which are least useful, and removing the later to save compu-
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tational time and power, or to avoid over-fitting of the model [116]. If the number
of weights is n, the loss function becomes:

J(
−→
θ ) = J(θ0, θ1, ..., θn) =

1

2m

m∑
i=1

(h(x)i − yi)2. (6.3)

6.2 Logistic Regression

Logistic regression refers to the part of a machine learning algorithm, which
deals with problems requiring classification of the outputs in particular categories.
The output is classified in a binary form of 0 or 1. In particle physics, classification
is usually used to separate signal, denoted with y = 1, from background, denoted
with y = 0. The algorithm would therefore output a number between 0 and 1,
which will correspond to the probability for a certain event to be signal (closer
to 1) or background (closer to 0). The hypothesis function corresponding to this
case is:

h(θ) =
1

1 + e−
−→
θ T x

(6.4)

This is called the logistic or sigmoid function and is illustrated in Fig 6.3.
−→
θ T

is the transpose of the parameter vector
−→
θ .

Figure 6.3: The sigmoid activation function h(z) = 1
1+e−z

.

The loss function for logistic regression in two steps, is given by:

J(
−→
θ ) =

− log ( 1

1+e−
−→
θ T x

) if y = 1

− log (1− 1

1+e−
−→
θ T x

) if y = 0
(6.5)

The logarithmic operation is used to ensure the local minima free nature of
the function, which guarantees the convergence of the gradient descent to the
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only minimum. To simplify, we can also have one equation for both cases and
rewrite Equation 6.5 as:

J(
−→
θ ) =

1

m
[
m∑
i=1

y(i) log hθ(x
(i)) + (1− y(i)) log(1− hθ(x(i)))] (6.6)

However, as mentioned above, most real life problems require more compli-
cated learning algorithms going beyond a simple linear and/or logistic regression,
because we have multiple variables, as well as multiple parameters and the pa-
rameter space becomes a complex higher-dimensional area. As mentioned earlier,
this problem is usually referred to as the curse of dimensionality. Therefore, a
polynomial of higher order is usually more appropriate. Unfortunately, the higher
the order, the higher the computational power needed, so the increased complex-
ity of the problem, increases the need for a more architecturally complex but less
computationally heavy algorithm.

6.2.1 Over-fitting and variable scaling

To make sure that the data is properly modelled, the possibilities for either
over-fitting or under-fitting should be minimised. Over-fitting is the process of the
model learning to fit the data so well, that it negatively biases the performance of
the model on new data. In other words, the noise or random fluctuations in the
data are picked up as a main part of the model and included in the fit. This results
in any changes, however small they may be, to influence the model significantly
and incorrectly. Examples of under-fitting, correct fitting and over-fitting can be
seen in Figure 6.4, where the example given is of a classification problem (similar
to the objective of the first neural network in these studies described later in this
chapter). The linear function in Figure 6.4 left side is not enough to describe
the division between signal and background in the 2D variable space, contrary
to Figure 6.4 right side quartic function, which is too precise to the extent of
damaging the flexibility of data used in the model. In the Figure 6.4 middle, we
see an example of a good fit to this particular case, with a quadratic function.

In addition to dealing with over- and under-fitting, techniques such as feature
scaling and splitting the data into smaller parts, to ensure the most unbiased
solution to the problem is found, can be adopted. Variable scaling ensures the
uniformity of the ranges of the different input variables. Features, which have
a drastically different scale than all the others could lead to complications or
complete instability of the final convergence when finding the global minimum.
Feature scaling deals with that problem in the so called data pre-processed step
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Figure 6.4: Examples of under-fitting (left), a good fit (middle) and over-fitting
(right) of the background (blue circles) in a problem of classification of signal

(red crosses) categories.

and each variable, x, and its mean, µ, and variance, σ, is scaled using:

x̃i =
(xi − µi)

σi
. (6.7)

6.3 k-fold Cross Validation

Once a model has been trained, it is critical to evaluate its generality and
robustness on an independent dataset. The method of validation used in this
thesis is called k-fold cross validation. It involves the separation of the total data
set into k smaller parts and running k times in total. The idea behind it, is that
all the results will be validated statistically, while we do not lose events, as each
and every event is used in the training regardless. The procedure for this to be
achieved is that after the data sets is divided in k parts, 1 of those parts is used for
validation and the remaining k − 1 for training. Then the procedure is repeated
k − 1 more times, where each time a different set of events aka fold is used for
the training and all the rest for validation. When the process is finished, the
mean and standard deviation for each calculated value of each loss function for
the particular epoch aka pass though the training data are used as the final result
and its error. If the training agrees with validation for each of the final resulting
values, then it can be concluded that they are not over- or under-trained. Due
to the computationally intensive procedures of the machine learning techniques
used in this thesis, three folds were used, which proved to be sufficient as the
values between the folds did not vary significantly. The usual number of folds in
the current ML world is 3 < k < 10 [117].
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6.4 Neural Networks

Neural Networks were originally meant to be the programming equivalent of
neurons from the human brain. They started being widely used in ’80s and early
’90s, after which their popularity diminished due to the insufficient computational
power (time and capability) of the computers at that time. They re-emerged in
recent years with an enormous success and are the state of the art technique for
many fields, from economics and politics to science and technology.

The central nervous system is made up of two basic types of cells: neurons and
glia. The neurons are the most diverse and important part of the brain. They
carry information by transmitting electrical impulses (signals) and have three
basic parts: a cell body, an axon and dendrites, see Figure 6.5. The dendrites
receive information (input), the nucleus processes the received information and
the axon sends the processed information to other neurons (output). In other
words, the neuron can be called a computational unit - the connection between
nodes in neural networks.

Figure 6.5: A basic representation of a neuron, as the simplified basic unit of the
central nervous system. Picture: https://byjus.com.

A neural network in machine learning is a collection of units (neurons), which
transmit and process information, see Figure 6.6. They consist of layers. The
first layer is the input with units xi, last layer the output and in the middle,
we have what are called “hidden layers", with units a(j)

i ; for node i and layer
j. When working with neural networks, the parameters are called weights and
are, just as in the above ML examples, represented with the vector Θ(j). In
order to compute precisely the output, or the value, computed by the hypothesis
function, the information received in each unit of each layer has to be calculated.
For example, for unit a(2)

1 , this calculation would be:

a
(2)
1 = g(Θ

(1)
10 x0 + Θ

(1)
11 x1 + Θ

(1)
12 x2 + Θ

(1)
13 x3). (6.8)
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In the above equation, g(x) = 1

1+e−
−→
ΘT x

is the sigmoid or logistic function
and Θj is a matrix of weights controlling the function, which maps layer j to
layer j + 1. For example, Θ(2)14 is the weight corresponding to the information
transferred between node 4 of layer j = 2 and node 1 of layer j + 1 = 3.

A bias value x0 allows you to shift the argument of the activation function
(g) to the left or right, which may be critical for successful learning. A bias unit
can therefore move the sigmoid (or any other activation function) curve to fit
the prediction with the data better. Considering all the above and taking into
account the bias unit (usually x0 = 1) the hypothesis function, which calculates
the output is now given by:

hΘ(x) = g(Θ
(2)
10 a

(2)
0 + Θ

(2)
11 a

(2)
1 + Θ

(2)
12 a

(2)
2 + Θ

(2)
13 a

(2)
3 ) (6.9)

Figure 6.6: A basic representation of a neural network. x1 - x3 are the inputs
layers (blue), a2

1 - a2
3 the hidden layers (orange) and hΘ(x) is the output from the

output layer (green).

The cost function used for neural networks is a generalisation of the one used
for logistic regression:

J(Θ) = − 1

m
[
m∑
i=1

K∑
k=1

y
(i)
k hΘ(x(i))+(1−y(i)

k ) log(1−hΘ(x(i)))]+
r

2m

L−1∑
l=1

sl∑
i=1

sl+1∑
j=1

(Θ
(l)
ij )2

(6.10)
In the above Equation 6.10, m is the number of training samples, K is the

total number of units, L the total number of layers, sl the number of units (not
counting bias unit) in layer l, and r is the regularisation parameter responsible
for the penalisation of terms, which may contribute to over-fitting, but don’t help
the algorithm to learn.
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Several expressions can be used for the activation function (g in Equation
6.9). Activation functions can be divided into two types: linear and non-linear.
The former is only used for simple problems and the latter for problems, which
have more variables and require more complex learning. The most common types
of activation functions are: sigmoid (mentioned in Chapter 6), tanh, relu [118],
softplus [119] and Gaussian, shown in Figure 6.7. For the purpose of the studies
of this thesis the relu activation function was chosen.

Figure 6.7: Most common activation functions used in ML. The value of the
activation function (g(x)) as a function of the argument x is shown. Source:
https://www.analyticsvidhya.com/.

Finally, the exact architecture of the NN depends on the particular problem
to be solved. Initial decisions (before optimisation) need to be taken about the
number of hidden layers, number of input units, number of units per hidden layer
and weights. The code needs to include an implementation of the forward prop-
agation (transmission of information towards the output layer) to get hΘ(x(i)),
computation of the loss function J(Θ) defined in Equation 6.10 and computa-
tion of the minimum by finding the derivative ∂

∂Θ
(l)
jk

J(Θ). The neural networks

use densely connected layers, which map every input variable to every output
variable and also batch normalisation layers which standardise the variables from
the preceding layer (taking the values from the previous densely connected layer
and scaling them such that they have a mean of zero and a standard deviation
of one). This is part of regularisation and is needed to cope with a potential
situation of a single node giving a very different value than the average, therefore
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shifting it significantly. Each node in a dense layer outputs a set of values that
are dependent on the weights in that layer and the choice of activation function.
The next layer is tasked with learning new features based on the activation values
a of the previous one.

6.4.1 Neural Network (NN) Architecture

The configuration of hidden layers and nodes (as shown in 6.4) is referred to
as a neural network architecture. The exact neural network architecture depends
on the physical problem considered. Generally, as the number of nodes and layers
increases, so does the power of the network. The reason for the increasing power
is the increase of the number of variables (weights), which leads to a higher
dimensional variable space computed by the NN, which can be used for more
complex physical problem. Two neural networks are used for the analysis in this
thesis. Both operate with the open-source software platform Keras [120], which
provides a python based interface for the TensorFlow platform [121]. The former
was constructed specifically for neural networks, while the later can be used on
its own too for numerous ML related tasks [122] .

6.5 Adversarial Neural Networks (ANN)

6.5.1 The ANN Methodology

Adversarial neural networks [123] (classifier and adversary) are where two
neural networks work with different objectives towards the same common goal.
Important input variables for this analysis are: transverse momentum pT , pseu-
dorapidity η and azimuth angle φ of the two photons (labelled X in Fig 6.8).
The classifier (first neural network) is developed as described in 6.4 and exploits
non-linear combinations of the inputs in order to find the optimal cuts to reject
background events. The classifier is tasked with predicting mass signal labels (0
or 1 based on the probability for a certain event to be signal or background).
The adversary is tasked with inferring the values of the variables, from which the
output of the classifier should be de-correlated. The output of the classifier is
then treated as input to the adversary which is trained to decorrelate the vari-
ables from Mγγ. These correlations lead to a sculpted background in Mγγ, shown
in Figure 6.9. After rejecting background with the classifier, the distribution of
background events left, peaks approximately where the signal peaks. There is,
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therefore, no way of knowing, exactly how many of the remaining events are sig-
nal events and how many background, as illustrated in Figure 6.9. This problem
of bias is resolved with the adversary, which is trained to de-correlate the input
variables with the invariant mass distribution Mγγ distribution and therefore to
remove the sculpting.

The adversary is designed to create a probability density function (PDF) padv
for Mγγ conditional on Jcls(

−→
θ ) by using a Gaussian Mixture Model (GMM). A

Gaussian mixture model is a probabilistic model that assumes all the data points
are generated from a mixture of a finite number of Gaussian distributions, which
have parameters that keep being updated at each optimisation iteration of the
gradient descent procedure for finding the local minimum for the loss function.
Auxiliary inputs (aux) which are specifically useful for the decorrelation can be
provided as additional input to the adversary, in a similar manner as the original
inputs are provided to the classifier.

The final loss function, which includes the auxiliary variable aux (a variable
introduced after classifier training not as an input to the classifier but rather an
additional variable to the adversary) is then given by:

Jadv(
−→
θ adv) = − 1

m
[
m∑
i=1

y(i) log padv(Mγγ|θadv, Jcls(
−→
θ cls), aux)]. (6.11)

The ANNs use both batch normalization and dense layers.
The adversarial training uses both neural networks, which have opposing

goals, and therefore compete with each other to achieve the best possible bal-
ance between maximum background rejection and minimum background sculpt-
ing. The training of the two networks simultaneously is done using a gradient
reversal technique. A gradient reversal layer brings both networks closer after
performing some transformation and learns discriminative and invariant features,
which gives the most optimal balance between Jcls and Jadv: JANN . For the anal-
ysis in this thesis, the logarithm of the variable with the highest correlation with
Mγγ, the transverse momentum of the leading photon, is used as an auxiliary
variable. The logarithmic scale is used, so that the auxiliary variable’s range can
correspond to the range of the classifier output.

A binary function which depends on the data, the weights on the neural
networks θcls and θadv and a parameter, which controls the loss function’s pa-
rameter λ is used to monitor the balance between minimising the loss function
Jcls (maximising background rejection) while maximising Jadv (minimising back-
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Figure 6.8: Adversarial neural networks schematics. Shown from left to right -
X: data, θcls and θadv: weights on classifier and adversary, λ: parameter, which
controls the loss function Jadv(θcls,θadv). The classifier is tasked with predicting
mass signal labels (0 or 1 based on the probability for a certain event to be signal
or background). The adversary is tasked with inferring the values of the variables,
from which the output of the classifier should be de-correlated by parametrising
a PDF as a Gaussian mixture model. The training of the two networks simulta-
neously is done using a gradient reversal technique, which gives the most optimal
balance between Jcls and Jadv: JANN .

Figure 6.9: A graphical example of the problem of sculpting in the invariant
mass distribution Mγγ, where the red curve represents signal and the blue

background. After rejecting background with the classifier, the distribution of
background events left, peaks approximately where signal peaks.

ground sculpting). The loss function Jcls is aimed to be minimised and the loss
function Jadv is aimed to be maximised.

minθclsmaxθadvJANN = Jcls(θcls)− λJadv(θadvθcls) (6.12)

In Equation 6.12, minimising the classifier loss function Jcls(θcls) is a static
problem, which means that there is a local minimum, which the network looks for
by using the gradient descent procedure described in Section 6.1, where after ev-
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ery optimisation step, the values of the weights of the classifier and the adversary
networks are optimised simultaneously until a local minimum is reached. The
final loss function JANN is calculated by including the loss function of the sec-
ond neural network λJadv(θadvθcls). The losses are being updated simultaneously
after each optimisation iteration. The classifier is trained stand-alone, which is
why its loss only depends on its own weights. However, the adversary can only
be trained in combination with the classifier, so the adversary’s loss depends on
both the weights of the classifier and the adversary. The minus sign in front of the
adversary term in Equation 6.12 accounts for the classifier and the adversary’s
competing objectives or in other words, the classifier being trained to maximise
the loss function of the adversary, which is trained to be minimised by the ad-
versary itself. The parameter, which controls the trade-off between classifier and
adversary λ can be set to 0 for a stand-alone classifier training (or just background
rejection here) and to any value greater than 0, depending on the trade-off of level
of importance in background rejection versus background sculpting minimisation.

6.5.2 ANN Architecture

The full ANN architecture with all its nodes, layers and inner connections
can be found illustrated in Appendix A. The novelty challenge to the ML world,
which ANNs deal with, is the joint optimisation of the networks, which ultimately
work against one another. In this analysis, θcls and θadv undergo simultaneous
optimisation by using gradient reversal [124], which deals with optimising with
more than one objective at a time, by optimising the connection between the two
neural networks and then updates the weights simultaneously and accordingly.
The update of the weights happens at each node-node connection, within each
layer of the neural networks. The gradient scaling operation is applied directly to
the connection between the networks, instead of to each of them separately and
consecutively.

During each epoch, the gradient, which propagates from classifier to adversary
and then back to classifier is scaled by −λ. Due to the more complex nature of the
adversary due to the fact that it depends on both adversarial and classifier weights
and that it is meant to resolve a problem caused by the classifier, additional
help by the user needs to be set to ensure the correct convergence to minima.
Therefore, to ensure that the joint optimisation converges properly and the true
minimum is found, the learning rate of the classifier (10−2) is given to be smaller
than that of the adversary 10−1.
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6.5.3 ANN Hyperparameters

Hyperparameters, which need to be optimised for the final set-up of the ANN
architecture are the number of units, the activation function, the usage of batch
normalisation, the number of layers, the number of epochs, the shuffling of events
after every epoch, the learning rate of each neural network, the type of optimiser,
the number of epochs used for pre-training, the parameter which controls the
power of the adversary λ, the learning ratio between the two networks, the batch
size and the loss function. Pre-training is the process before fine-tuning the
network of starting with random weights and then training the network until the
weights are optimised. Most of these parameters have already been discussed in
Chapter 6. In addition, the learning ratio is the ratio between the learning rates
of both networks and is important, because it is part of the balance between
them, which decides on which network’s objective to put more weight [125].

6.6 Boosted Decision Trees

Another machine learning technique very commonly used in particle physics is
that of boosted decision trees (BDT, Figure 6.10). These were used in the analysis
described in Section 7. It is very similar to a neural network, in the sense that
it uses an N- dimensional hyperparameter space of input variables and it uses
the information provided by their relationships to either classify or regress. The
name of this technique comes from the idea of using segmented predictor space
(as seen in Figure 6.10 top left for the segmented space and bottom right for the
prediction space) of the input variables to make certain decisions by calculation
of the mean/mode between the different segments (which could also be called
branches). The decision trees are trained in sequence, enumerated by a boosting
step n and similarly to neural networks, there is a weight an calculated. The final
learning algorithms using input data X, is then given by:

BDT (X) =
∑
n

anDT n(X). (6.13)

If, for example, there was a regression problem to be resolved, the procedure
of using decision trees (shown in Figure 6.10) includes splitting the variable space
into a number of main regions (which are usually called leaves of the tree or
more technically terminal nodes) and the connections between them are known
as branches. The importance of and relationships between the variables are then
taken into consideration and a final prediction for the desired result is made. For
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Figure 6.10: The steps in BDTs. Top left plot shows an example for a 2D seg-
mented space with variables X1 and X2. Top right plot illustrates the splitting
of regions. Bottom left shows the tree that is used to create the segmented space
and bottom right illustrates the prediction space [117].

every observation that falls into the same region, the same prediction would be
made which would be the mean of the response values for all the input observa-
tions in that specific region. Next, the process is repeated, looking for the best
predictor and best cut-point in order to split the data further so as to minimize
the residual sum of squares (Equation 6.14) within each of the resulting regions.

There are several ways for the main regions to be chosen and several shapes,
which they can take. The most common shape is a 2D box and the most usual
way similarly to how we do this with NNs, by minimising the distance between
the observable yi and the mean response of the corresponding box ŷRj :

J∑
j=1

∑
i

(yi − ŷRj)2, (6.14)

where J is the number of samples in the box. A “greedy ” approach is then
applied by choosing the best possible split for each step of the process of starting
from the top of the tree and going down until finished. Similar to any other
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machine learning techniques, when working with decision trees, it is crucial to
avoid over-fitting. A too complex tree with too many regions would be time
consuming and may lead to over-fitting. A too simple tree may give the optimal
minima and therefore may give precise enough predictions. The way around that
problem when using neural network is to control the learning rate. A large tree
with the sole aim to reach the optimal minima, on the other hand, is first built
and then it is sized down.

Boosting is an additional technique, which deals with the production of mul-
tiple decision trees used towards the same goal. It is particularly useful in high
energy physics (HEP) scenarios, where the decision function is not usually ex-
pected to be discontinuous like in the case described above. The input variables,
for either the classification or regression problem is usually not expected to ex-
hibit discontinuous jumps. Boosting is used to deal with the discontinuity of a
decision tree. The idea is to combine a set of learners and use them together to
construct a stronger final learner.

6.7 Jenson-Shannon Divergence

The Kullback-Leibler divergence (KLD) is a measure of relative entropy [126].
If it is equal to 0, this means that the two distributions in comparison are com-
pletely identical and if it is equal to 1, that they have nothing in common with
one another. To measure the relative entropy of A with respect to B, we need to
consider both the entropy of A: H(A), and the cross-entropy between A and B,

KL(A||B) = H(A,B)−H(A) = −
∑
i

Ai lognBi +
∑
i

Ai lognAi (6.15)

The KL divergence for two distributions A and B with i bins each is given by:

KL(A||B) =
∑
i

Ai logn

(
Ai
Bi

)
. (6.16)

All entropy calculations in this thesis will use a logarithm with base 2, with the
purpose of an easy to use range for the divergence of [0, 1]. In case of identical
distributions, H(A,B) = H(A), KL = 0. The bigger the difference between
the two distributions, the bigger the cross-entropy, therefore the larger the KLD
coefficient. As described above, KLD is prone to mathematical instabilities. An
example for that is if one or more bins of a given distribution is bigger than 0,
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while the same bin for the second distribution is exactly 0. In this case, Equation
6.15 will go to infinity due to the cross entropy factor. Another potential problem
is the asymmetry of KLD with respect to its arguments. In this analysis, when
classifying the events as signal or background, ideally, we should not have to deal
with a scenario where the same event leads to different classification value, which
would be the case if the relative cross-entropy is not symmetrical with respect to
its arguments. The above leads to the need for a divergence similar to KLD but
one, which can avoid all instabilities.

The Jenson-Shannon divergence (JSD) [127] is frequently used in statistics
and machine learning to quantify the difference between the shapes of two distri-
butions. In this thesis the JSD is used to determine how much the classification
algorithms sculpt theMγγ background. Visually, there can only be an insufficient
knowledge gained for exactly how much sculpting there is in different cases and
for different optimisation set-ups of the NNs. The JSD is a generalisation of the
KLD divergence, which solves the mentioned problems. The JSD between two
distributions A and B and M = A+B

2
is given by:

JSD(A||B) = H(M)− 1

2
(H(A) +H(B)) =

1

2
(KL(A||M) +KL(B||M)) .

(6.17)
Similar to KLD, in the JSD, when the two distributions are identical, H(A) =

H(B) = H(M) and JSD = 0. When the two distributions are completely
different and have no overlapping bins, H(M) = H(A)+H(B)

2
+ log2(2) and JSD =

H(A)+H(B)
2

+ log2(2)− H(A)+H(B)
2

= 1 and JSD = 1.
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Chapter 7

Measurements in H → γγ decay
channel

The event selection and signal extraction techniques of H → γγ studied in
this thesis follow the baseline ATLAS analysis, described in [43]. The signature
of the Higgs boson in the di-photon decay channel is a narrow peak on top of
the smoothly falling Mγγ distribution. The width of the peak is consistent with
the resolution of the detector and is typically between 1 GeV and 2 GeV, de-
pending on the kinematics of the event. The mass and event rate of the Higgs
boson can be inferred from the first of the Mγγ distribution. Major Higgs boson
production processes, including ttH were generated using Powheg Box v2 [128].
All generated events for the processes are interfaced to Pythia 8.2 [129] to model
parton showering, hadronization and the underlying event. All events are gener-
ated with a Higgs boson mass of 125 GeV and an intrinsic width of 4.07 MeV.
Prompt di-photon production is simulated with the Sherpa 2.2.4 [130] generator.
The production of ttγγ events is modelled using MadGraph5_aMC@NLO 2.3.3
[131].

7.1 Event reconstruction and selection

7.1.1 Photons

Photon reconstruction includes separation of the photons from electrons and
jets. The photons are divided into groups of the so called “converted” and “un-
converted” candidates, where converted means that they decay to an electron-
positron pair. Photon candidates are required to deposit the majority of their
energy in the electromagnetic calorimeter, and to have a lateral shower shape
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consistent with that expected from a single electromagnetic shower [19]. Pho-
ton candidates are separated from jet backgrounds using an identification criteria
based on calorimeter shower shape variables. The full efficiency range after all
cuts, which lead to tight photons with energy Eγ > 25 GeV, is 84% - 94% (85%

to 98%) for unconverted (converted) photons. The final criteria for photons is
that the energy in a radius ∆R = 0.2 around the photon, excluding the energy
containing the photon shower, has to be less than 6.5 % of the photon transverse
momentum of each photon. Photons are considered isolated when each photon
has a track isolation of less than 5% of the transverse energy. A track isolation
is the scalar sum of the transverse momenta of all tracks with radius ∆R < 0.2

around the photon candidate. In case of a candidate converted photon, the tracks
associated to the conversion are excluded from the sum.

Additional requirements are set on the di-photon system [43]. The system
is created by choosing the two highest pT photons. The primary vertex is then
reconstructed with a neural network. Each of the two photon candidates is then
required to satisfy the tight criteria. The efficiency of the tight identification for
unconverted (converted) photons ranges from about 84% (85%) at pT = 25 GeV
to 94% (98%) for pT > 100 GeV. A final cut is applied on the leading and sub-
leading candidates of pT/Mγγ > 0.35 and 0.25 respectively. Events, which fail
the isolation or the identification criteria are used as an approximation to data
or for modelling purposes.

7.1.2 Leptons

Electrons are reconstructed by matching EM clusters from the ECAL with the
corresponding tracks seen in the ID part of the detector and are required to have
pT > 10 GeV and |η| < 2.47 excluding the transition region and to satisfy medium
selection, based on shower shapes and track parameters [132]. Additionally, the
longitudinal impact parameter z0 (the distance of closest approach of the track to
the collision point along the z axis) is set to |z0 sin θ| < 0.5 mm and the transverse
impact parameter divided by the uncertainty is set to be |d0|/σd0 <5.

Muons are reconstructed from a combination of tracks built in the inner de-
tector and the muon spectrometer and must have pT > 10 GeV and |η| < 2.7 and
satisfy the medium identification requirement, described in [133]. The identifica-
tion efficiency is 95-97% for muons with pT = [10− 60] GeV and 99% for muons
with pT > 60 GeV. The tracks have to satisfy |z0 sin θ| < 0.5 mm and |d0|/σd0 <

3.
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7.1.3 Top quark

Top quark candidates are reconstructed and identified using a BDT discrim-
inant. The BDT targets both leptonic and hadronic top quark signatures. The
BDT is trained using the XGBoost package [134]. It is trained with the ttH
sample with the idea to infer the three-jet combination appearing most like the
hadronic decay products of a top quark. In the hadronic case for the decay of the
W bosons, the triplet with the highest BDT score is taken as the primary top
quark candidate and in the leptonic case for events containing only one lepton, a
W boson candidate is first constructed from the lepton and the missing transverse
momentum, followed by the reconstruction of the top by considering the highest
BDT score jet, as well. After the highest score top quark is selected, if there
are at least three additional jets, a second top quark candidate is reconstructed
following the same procedure [135].

7.1.4 Jets

Jets are reconstructed using a particle flow [136] algorithm of topological clus-
ters [137] of energy deposits in the calorimeter implemented in the anti-kT algo-
rithm [138, 139] with a radius parameter R=0.4. The key feature of the anti-kT
is that soft particles do not modify the shape of the jet, while hard particles do.
I.e. the jet boundary in this algorithm is resilient with respect to soft radiation,
but flexible with respect to hard radiation. Initial cuts are set on transverse
momentum and η as follows: pT > 25 GeV and |η| < 4.4. The constructed jet
four-momenta are corrected for the signal losses due to noise threshold effects,
energy losses in gap regions and pile-up. An additional jet-vertex-tagger dis-
criminant is applied to jets with pT < 60 GeV and pseudorapidity of |η| < 2.4
to suppress pile-up. b-jets are tagged with a separate algorithm [140] with four
different efficiency working points: 60%, 70%, 77% and 85%. The tagging of
b-jets is the process of identifying them against a large jet background containing
c-hadrons or light-flavour jets. The jet-vertex-tagger [141] is constructed using a
two-dimensional likelihood derived using simulated di-jet events and based on a
k-nearest neighbour (kNN) algorithm [142]. A relative probability is calculated
for each event to be of type signal by calculating the ratio between the number
of hard-scatter jets and the number of hard-scatter plus pile-up jets found in a
local neighbourhood with k neighbours.
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7.1.5 Missing energy Emiss
T

The missing transverse energy is defined as the negative vector sum of the
transverse energies of the selected photon, electron, muon and jets and also
of other particles associated with the diphoton vertex, estimated using tracks
matched to the diphoton primary vertex but not assigned to any of the selected
objects [43] [143].

7.2 Event Categorisation

The events passing the event selection are classified into mutually exclusive
event categories, targetting ttH production for different ranges of the transverse
momentum of the Higgs boson ptH . In each of these categories, the sensitivity is
defined as [43]:

Z =
√

2((S +B) ln(1 + (S/B)− S), (7.1)

where S is the signal yield, B the background yield from the continuum di-
photon distribution, which includes all non-ttH Higgs processes and f = S/(S +

B) is the purity. The total sensitivity, after splitting into different categories is
the square of the quadratic sum of all.

The sensitivity in the full analysis in [43] are calculated using Equation 7.1
for eight selected and 1 unselected categories and shown on Table 7.1. The
categories correspond to ranges of binary BDT (boosted decision tree with two
possible outputs) values, which are chosen to maximise Z. If an event fails to
enter a selected final category, it is placed in the un-selected category. A class is
split into two categories if this leads to an improvement of more than 5% in the
expected sensitivity, and into three categories if a further improvement of at least
5% relative to the two-category configuration can be achieved. The categories
are referred to as high-purity, mid-purity and, in the case of a 3-category split,
low-purity.

7.3 Published ttH measurement and uncertainty

When probing the Higgs boson production mechanism, the different produc-
tion channels considered are ggF , V BF , WH, ZH and the combined tH and
ttH channels. The measurement reported [43] is in terms of (σ × Bγγ), where
σ is the fiducial cross-section and Bγγ is the branching ratio of the di-photon

82



Categories S B f Z

pHT < 60 GeV, High purity 3.2 5.0 0.39 1.3
pHT < 60 GeV, Mid-purity 3.5 15 0.18 0.8

60 ≥ pHT < 120 GeV, High purity 5.1 4.3 0.54 2.1
60 ≥ pHT < 120 GeV, Mid-purity 3.7 10 0.26 1.1
120 ≥ pHT < 200 GeV, High-purity 6.1 3.8 0.62 2.6
120 ≥ pHT < 200 GeV, Mid-purity 3.1 8.1 0.28 1.0

200 ≥ pHT < 300 4.6 1.7 0.73 2.7
pHT ≥ 300 GeV 3.6 1.0 0.78 2.6

Unselected (incl tH) 11 120 0.08 1.0

Table 7.1: The expected signal (S) and background (B) yields, purity (f) and
sensitivity (Z) for analysis categories targetting the ttH production [43].

decay channel. The observed (expected) sensitivity values for the ttH+tH pro-
cess is 4.7 (5.0)σ. The total uncertainties are decomposed into components for
data statistics (Stat), and systematic uncertainties (Syst). The best-fit value and
uncertainty for (σttH+tH × Bγγ) are 1.2+0.4tot

−0.3tot(±0.3 ± 0.1) fb, where ±0.3 fb is
the Stat uncertainty and ±0.1 fb the Syst uncertainty. The SM prediction is
1.3± 0.1 fb. For the ttH process, the leading experimental uncertainty is related
to the measurement of jets, and it can be as large as 6%. The dominant system-
atic uncertainties in the ttH+ tH are from the photon energy resolution: ±4.9%,
photon efficiency: ±2.4% and luminosity and trigger: ±2.3%. The full list of
contributors can be found in [43]. The statistical uncertainty is much larger than
the systematic uncertainty in the ttH channel, so the systematic uncertainty is
considered negligible in this thesis.

7.4 Signal and Background Modelling

The shapes of the background and signal distributions add up to create a
probability density function (PDF) of all events left after full background rejection
procedure is completed. They are both modelled with analytical functions of
Mγγ to create a final analysis likelihood function. The likelihood function also
includes all uncertainties, which are incorporated as nuisance parameters, each
of which corresponds to a Gaussian shaped PDF. The Higgs boson cross sections
are included as parameters to the final likelihood model and the Higgs mass is
assumed to be 125.09± 0.24 GeV [144].
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7.4.1 Signal Modelling

The shape of the invariant massMγγ distribution of the ttH signal is described
by an analytical function. Te same as previous ATLAS analyses before the 2020
publication [43], the double-sided Crystal Ball (DSCB) function is used. It is a
composite function with 6 parameters formed by a Gaussian core, which models
the peak, and two power-law tails, given by Equation 7.2:

fDSCB(Mγγ) = N ×



e−t
2/2 if − αlow ≤ t ≤ αhigh

e−
1
2α

2
low[

1
Rlow

(Rlow − αlow − t)
]nlow if t < −αlow

e−
1
2α

2
high[

1
Rhigh

(Rhigh − αhigh + t)
]nhigh if t > αhigh

(7.2)
The N denotes a normalization factor and the six parameters are

• µCB and σCB are the mean and the width of the Gaussian core, and are
combined in t = (mγγ − µCB) /σCB;

• αlow and αhigh are the positions of the transitions from the Gaussian core
to power-law tails on the low and high mass sides respectively;

• nlow and nhigh are the exponents of the low and high mass tails. With the
α’s, they define Rlow = nlow

αlow
and Rhigh =

nhigh
αhigh

.

Signal modelling for three high purity categories in different Higgs pT regions
is shown in Figure 7.1.

7.4.2 Background modelling

The background modelling procedure [43] includes the following two main
steps: first a background model template histogram (example template given in
Figure 7.2) is constructed after applying all analysis cuts and running either a
BDT [43] or, used for this thesis, the adversarial neural networks platform with
the purpose of rejecting maximum number of background events, while having the
highest signal efficiency. For the ttH production, the templates are obtained from
the simulated ttH events. In the second step, that template is used and run what
is called a spurious signal test, which choses the best function among several
options to fit the continuos background and therefore model the background
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Figure 7.1: An example for signal modelling for three high purity ttH categories
in different Higgs pt regions [43].

distribution. The final goal is to choose an analytical function for the fit, which
results in a small potential bias compared to the statistical uncertainty.

Figure 7.2: An example for constructing a background template. The data has
been blinded in the signal region (120-130) GeV [43].

The background Mγγ shape is described using an analytic function, which is
fitted to theMγγ distribution in each analysis category. The considered functions,
where the coefficients, ci, are the free parameters used to define the function
shape, are:

• Exponential function: f(Mγγ) = ec·Mγγ ,
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• Exponential function of 2nd order polynomial called ExPoly2:
f(Mγγ) = ec1·M

2
γγ+c2·Mγγ ,

• Exponential function of 3rd order polynomial called ExPoly3:
f(Mγγ) = ec1·M

3
γγ+c2·M2

γγ+c3·Mγγ ,

• Bernstein polynomial of order N :

BN(Mγγ) =
∑N

i=0 ci · bi,N with bi,N =

(
N

i

)
mi
γγ(1−Mγγ)

N−i,

• First-order power law function called Pow: f(mγγ) = M c
γγ,

• Second-order power law function called Pow2: f(Mγγ) = M c1
γγ + c2 ·M c3

γγ.

The coefficients are assumed to be independent across categories, regardless
of the functions chosen, and are always treated as free parameters in the fits to
data.
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Chapter 8

Results

The two main outcomes of this study are: (1) classifying ttH events with
an Adversarial Neural Network performs comparably well as the classification
techniques used by ATLAS so far; (2) The Adversarial Neural Network enables
a balance between the efficient background rejection and the minimisation of the
sculpting, which occurs in the process. This Chapter provides the results of a
proof-of-principle analysis which answers this question. The ANN architecture
developed for this thesis is provided in Section 8.1. Compared to the ATLAS
analysis [43], this thesis uses a simplified set of input variables, described in
Section 8.2. The loss functions for the two networks are shown in Section 8.3.
The proposed Adversarial case is compared to the Scaled networks described
in Chapter 8.4. They are first compared using performance metrics that are
key to the ttH(H → γγ) analysis, i.e., classification (Section 8.5), decorrelation
(Section 8.6) and a combined metric, simultaneously accounting for classification
and sculpting performance (Section 8.7). Finally, results of the proof-of-principle
ttH(H → γγ) analysis are documented in Sections 8.8 and 8.10.

8.1 ANN Architecture

The hyperparameters used have been optimised for the Adversarial Neural
Networks, used in [145] with the Spearmint library [146]. This uses Bayesian
optimisation and scans the hyperparameter space for the optimal points, which
correspond to the best balance between background sculpting minimisation and
background rejection maximisation. The hyperparameters were chosen after a
manual hyperparameter optimisation was performed for several values of the
number of epochs, the adversarial network learning rate, the decay rate, and
lastly the ratio between the classifier and adversarial learning rates. All the ANN
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hyperparameter values required to reproduce the thesis results can be found in
Table 8.1. The Adam optimiser [147] is an algorithm used for stochastic descent
ML problems or for the calculation of exponential moving average of the gradient.
The stochastic gradient descent maintains a single learning rate for all weight up-
dates and the learning rate does not change during training. Adam was chosen
due to its multiple advantages compared to other algorithms. It is computation-
ally efficient, invariant to diagonal rescale of the gradients, works well with large
data and it is also appropriate for problems with very noisy/or sparse gradients.
The binary cross-entropy was chosen.

Classifier Adversary

Units 64 64
Activation Function Relu Relu

Architecture 3 1
Epochs 200 200

Batch Size 8192 8192
Loss Type Binary Cross-Entropy Binary Cross-Entropy

Learning Rate 1× 10−2 1× 10−1

Decay 1× 10−3 1× 10−2

Optimiser Adam Adam

Table 8.1: ANN hyperparameters. Units are the number of activation neurons,
architecture corresponds to the number of layers. All hyperparameters are de-
scribed in Chapter 6.

8.2 Input Variables

The input variables to the neural networks used for training were the en-
ergy E, transverse momentum pT , pseudorapidity η and azimuthal angle φ of the
leading (highest pT ) photon (γ1) and the sub-leading (second highest pT ) photon
(γ2) and of the three leading jets (j1, j2, j3), the difference between the pseudo-
rapidities of the two photons ∆η, the difference between the azimuthal angles of
the two photons ∆φ and the angular difference between the two photons ∆R.
The two photons γγ come from the Higgs decay H → γγ and the three leading
jets from the decays of the W bosons. This information is used to differentiate
between signal (MC ttH,H → γγ) and background and also to de-correlate the
ANN discriminant from Mγγ. Two background hypotheses are used: ttγγ MC
and Non-Tight, Non-Isolated photon (NTNI) data. The idea behind NTNI data
is trying to separate QCD jets (abundant, as they come from QCD processes)
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from prompt photons (rare, as they come from electro-weak processes). The AT-
LAS calorimeter is good, but not 100% accurate when separating them. Isolated
and tight cuts are therefore the cuts which are very likely to select photons rather
then QCD jets, the non tight and non isolated are much more likely to select jets
faking photons. Isolated refers to hadronic activity (tracks, calorimeter signals)
around a photon. A QCD jet has a lot of hadronic activity and a prompt photon
as little. Tight refers to identification requirement, which accounts for photon
shape in the calorimeter. It means that the calorimeter assigns higher degree of
confidence that this is a prompt photon. Loose, corresponds to a low degree of
confidence. Therefore, selecting NTNI backgrounds gives a good impression of
how the background looks like in the TI region.

The reason for using two alternatives is that the shape and the background
composition to the ttH(H → γγ) production is not predicted accurately. In an
ideal scenario the choice of the classification working point used to extract the
result in the data analysis would not depend on which background is assumed in
the network training. The MC and the NTNI cases have notable differences in
the input variable distributions and therefore enable us to probe how robust the
network is.

Examples for the shapes of the variables used for training are shown in Fig-
ures 8.1 - 8.7 for the leading photon and jet in both MC and NTNI data. The
figures shown in this section are obtained for the hadronic event selection (both
W bosons decay hadronically). Similar conclusions are also obtained when con-
sidering the events passing the leptonic event selection (at least one W boson
decays leptonically).

Figure 8.1: Transverse momentum dis-
tribution of the leading photon.

Figure 8.2: Energy distribution of the
leading photon.
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Figure 8.3: Pseudorapitidy distribution
of the leading photon.

Figure 8.4: Angular difference distri-
bution between the two photons.

Figure 8.5: Transverse momentum dis-
tribution of the first jet.

Figure 8.6: Energy distribution of the
leading
jet.

Figures 8.1, 8.2, 8.5 and 8.6 show the distributions of the transverse momenta
and energies of the leading photon and jet. The transverse momentum and energy
distributions tend to be the hardest for the ttH signal and softest for the NTNI
data. The corresponding η distributions (Figure 8.3 and 8.7) show that the
fraction of central events is the highest for signal and lowest for NTNI data. Both
these observations can be explained by the fact that the ttH events are produced
at the highest energy scales, since the final state contains three heavy particles
(t, t̄, H). The NTNI background contains a large fraction of QCD background
events with no massive final state particles, produced at low energy scales. The
angular difference ∆R (Figure 8.4) shows that the distributions peak at higher
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Figure 8.7: Pseudorapidity distribution and ratio of the leading jet.

∆R values in ttγγ and NTNI data with respect to signal ttH and different shapes
of the distributions. The signal ttH events, in which the photons are emitted from
the Higgs boson, peak at smaller values compared to the backgrounds. The reason
ttH has small ∆R is that the photons come from a boosted resonance, differently
from NTNI data, which peaks at ≈ π because the photons are mostly the hardest
objects in the events, thus back-to-back. The ttγγ case is somewhere in-between
ttH and NTNI data in this aspect.

8.2.1 Correlations

The reason for the sculpting of the Mγγ distribution after background
rejection are the correlations between the input variables and the Mγγ distribu-
tion. Some examples of correlations are shown in Figures 8.8 - 8.15 for both MC
and NTNI background, where the colour scale (z-axis) represents the number of
events. The correlation with a variable X, where n denotes all events in the
sample, X and Mγγ are the mean values and σX , σMγγ the standard deviations
of X and Mγγ respectively, is be given by:

cX,Mγγ =

∑n
i=1(X −X)(Mγγ −Mγγ)

σXσMγγ

. (8.1)

Examples of variables with strong correlations with Mγγ are the transverse
momentum and the energy of the leading photon (Figure 8.8 and 8.12).

The cuts used in this analysis include cuts on the fraction pT/Mγγ, in order
to keep the general analysis’ cuts. This introduces a further correlation, as it
is another constraint on the relationship between the already most correlated
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Figure 8.8: Correlation between the
transverse momentum pT γ1

and Mγγ in
simulated ttγγ background events.

Figure 8.9: Correlation between the en-
ergy of the leading photon Eγ1 and Mγγ

in simulated ttγγ background events.

Figure 8.10: Correlation between the
pseudorapidity of the leading photon ηγ1

and Mγγ in simulated ttγγ background
events.

Figure 8.11: Correlation between the
angular difference ∆R of the two pho-
tons and Mγγ in simulated ttγγ back-
ground events.

photon variable pT and Mγγ. Another example is the correlation between the
Mγγ and the angular difference ∆R (Figures 8.11, 8.15). The correlations can be
understood by considering the two-body decay of the Higgs boson to the massless
photons. The energy-momentum conservation requires:

M2
γγ = 2Eγ1Eγ2(1− cos θ), (8.2)

where θ is the opening angle between the two photons.
Summaries of correlations between all input variables and Mγγ are shown in

Figure 8.16 for MC tt̄γγ, Figure 8.17 for MC tt̄H and Figure 8.18 for NTNI data.
On all correlation plots, the positive correlations are shown in red, the negative
correlations in blue and the negligible to no correlations are shown in grey. On
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Figure 8.12: Correlation between the
transverse momentum pT γ1

and Mγγ in
the NTNI background events.

Figure 8.13: Correlation between the
energy of the leading photon Eγ1 and
Mγγ in the NTNI background events.

Figure 8.14: Correlation between the
pseudorapidity of the leading photon
ηγ1 and Mγγ in the NTNI background
events.

Figure 8.15: Correlation between the
angular difference ∆R of the two pho-
tons and Mγγ in the NTNI background
events.

top of each figure, there’s a grid showing which variables are most correlated,
where the ones most similar are always close neighbours.

In both NTNI data and MC tt̄γγ (Figure 8.16 and 8.18), the most similar and
highest correlated variables to theMγγ distribution are the transverse momentum
and energy of the leading and sub-leading photons and although the azimuthal
angle φ and the pseudo-rapidity η themselves have negligible correlations with
Mγγ, while ∆η, ∆φ and ∆R have high correlations with Mγγ.

The correlations between the different input variables in signal tt̄H (Figure
8.17) are similar to those in background, but with the important difference of
them not being correlated with the Mγγ distribution, which is one of the main
differences between signal and background that can be used for classification as
well as decorrelation.
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Figure 8.16: Correlations between the input variables in the ttγγ background
events. The correlations withMγγ are highlighted by the green box. The positive
correlations are shown in red, the negative correlations in blue and the negligible
to no correlations are shown in grey. The highest correlated variables to the
Mγγ distribution are the transverse momentum and energy of the leading and
sub-leading photons. The azimuthal angle φ and the pseudo-rapidity η have
negligible correlations with Mγγ but ∆η, ∆φ but ∆R have high correlations with
Mγγ.

The relative importance of all used variables for training can be observed in
Figure 8.19 for MC simulated events and in Figure 8.20 for NTNI data. for NTNI
data. The ranking was obtained with ELI5 library, using classification accuracy
as the figure of merit. The variables which contribute the most to the learning
of the neural networks are, as expected, the ones that have the optimal balance
between having the highest correlations with Mγγ and the highest importance
for rejection of background events. Both in MC and NTNI data, pT γ, ηγ and
φγ are significantly stronger than the others, but regardless are not the only
variables included. This is due to the way the ANN combines variables and
creates relationships between them, which end up also contributing to the final
result.
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Figure 8.17: Correlations between the input variables in the tt̄H signal events.
The correlations with Mγγ are highlighted by the green box. The positive corre-
lations are shown in red, the negative correlations in blue and the negligible to
no correlations are shown in grey.
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Figure 8.18: Correlations between the input variables in the NTNT data back-
ground events. The correlations with Mγγ are highlighted by the green box. The
positive correlations are shown in red, the negative correlations in blue and the
negligible to no correlations are shown in grey. The highest correlated variables
to the Mγγ distribution are the transverse momentum and energy of the leading
and sub-leading photons. The azimuthal angle φ and the pseudo-rapidity η have
negligible correlations with Mγγ but ∆η, ∆φ and ∆R have high correlations with
Mγγ.

Figure 8.19: Ranking variables used for training in MC simulated ttH signal and
ttyy background events.
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Figure 8.20: Ranking variables used for training in MC simulated ttH signal and
NTNI data background events.
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8.3 Loss Functions

The loss function is, as discussed in Section 6.1, the smallest difference between
the fit and the data points, which is minimised (or maximised depending on the
final goal) by finding the set of weights, which correspond to the absolute minima.
The general loss function for a regression problem is given by equation 6.10 and
the general loss function for a classification problem is given by equation 6.5.
While the first neural network classifies the events as either signal or background,
the second deals with the sculpting.

The neural networks are trained on 50% signal (ttH), 50% background (either
ttγγ for MC or NTNI for real data) events. The total dataset is then randomised
and split into two equal parts, one used for training and the other for calculating
predictions. This ensures that the events, on which training is done, are different
from the events used for a test, which is adopted for unbiased learning.

Figures 8.21 - 8.23 show the loss function of the classifier (Jcls), adversary
(Jadv) and the combined network (JANN = Jcls− λJadv) respectively. The results
are shown for the networks trained with the simulated ttγγ background events in
the hadronic decay channel, but similar conclusions are obtained for the network
trained with the NTNI background, and the networks trained in the leptonic
decay channel. The results are shown for λ=25, and similar conclusions are
obtained for other λ values. In all cases, the loss functions reach a plateau or
an optimum (meaning, it no longer learns in further epochs). This means that
training was sufficiently long for the neural network to reached a stage, where
it no longer learns. The classifier in this analysis was pre-trained to an optimal
configuration for classification, before the adversarial training commences.

The training was validated with k-fold cross-validation. All figures show a
good agreement of the validation losses with the training losses, which confirms
there is no over-fitting, i.e., differences between the training and validation.

8.4 Scaled Neural Network

A benchmark for evaluating the performance of the ANN is a Scaled neural
network. In this Scaled NN the sculpting is reduced by a technique used in the
ATLAS ttH(H → γγ) analyses for the top quark Yukawa observation [43]. It is
to scale the transverse momentum and the energy of the two photons by dividing
them by Mγγ, before using them as inputs to the machine learning classification
algorithms.

The reason for the sculpting are the correlations between the input kinematic
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Figure 8.21: Loss function of the clas-
sifier network in training (solid) and in
validation (dashed) samples. The num-
ber of epochs of training are given on
the x-axis. First 10 epochs are for pre-
training.

Figure 8.22: Loss function of the adver-
sary network in training (solid) and in
validation (dashed) samples. The num-
ber of epochs of training are given on
the x-axis. First 10 epochs are for pre-
training.

Figure 8.23: Total loss function JANN = Jcls − λJadv for the ANN training and
its corresponding validation loss. The number of epochs of training are given on
the x-axis. First 10 epochs are for pre-training.

variables of the photons and Mγγ. Dividing the pT and E by Mγγ removes some
of this dependence, but does not deal with the correlations between the photon
angular variables (∆R, ∆η, ∆φ) and Mγγ. Additionally, the division by Mγγ

provides a single point in a space of potentially many solutions. The goal is to
find the balance between having the highest possible sensitivity and having the
lowest possible sculpting. While the division is simple, there is no way for the
optimal solution to be selected among the different possible scenarios, and the
probability for the single point in the solutions space to be the optimal one is
negligible. The adversarial neural networks on the other hand, enable a much
more flexible environment, where the network’s hyperparameters and the input
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variables can be varied until a true optimum is achieved for both sensitivity and
sculpting.

8.5 Classification

8.5.1 Simulated events

The aim of classification is to use a discriminant cut to keep a high fraction of
signal events, while rejecting most backgrounds. By rejecting the events, which do
not contain the Higgs boson, originating from a pair of top quarks and decaying
to a pair of photons, the classifier ensures, the final signal mass peak is clearer.
In Figure 8.24, the discriminant distribution after background Mγγ distribution
after classifier stand-alone training is shown for each of the ttH signal and ttγγ
background. The discriminant here is a reduction technique that is commonly
used for supervised classification problems. It is used for modelling differences in
groups i.e. separating two or more classes; signal and background in this study.

Figure 8.24: Signal ttH (in red) and background ttγγ (in blue) classifier NN
discriminant shapes for MC hadronic events.

The performance of the network is calculated with what is called Receiver
Operating Characteristic Curves (ROC). A ROC curve is a graph, which shows
the balance between the False Positives (the rate of background misidentified as
signal) and the True Positives (the rate of signal identified as signal). All ROC
curves for the performance of the networks in each MC scenario discussed, are
shown in Figure 8.25. The ANNs with a lower value of the parameter λ have
a higher classification power, but are less effective in reducing the sculpting of
the background Mγγ distribution. This is due to λ being the parameter, which
controls how much more importance in the learning process is given to the adver-
sary’s job in comparison to the classifier’s. The reduction of sculpting is discussed
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in Section 8.6, where λ=20 is shown to be a good compromise. In this case a
comparison between the Scaled NN and the ANNs (Figure 8.26) for MC leptonic
and hadronic scenarios show values within 5% difference between the ROC curve
areas for the Scaled NN and ANN cases.

Figure 8.25: ROC curves and their corresponding areas under the curve for ANN
training with MC hadronic ttH signal and tt̄γγ background events. The pink
curve shows the classifier’s performance, the orange, red, cyan, purple and yel-
low curves show the adversaries’ performance for the values of λ, the parameter
controlling the loss function Ladv, of 10, 15, 20, 25 and 30 respectively.

Figure 8.26: ROC curves and their corresponding areas under the curve for train-
ing with MC leptonic (left) and hadronic (right) events. The red curve shows the
performance of a Scaled network, described in Section 7.4, the yellow and cyan
the performance of the ANNs for λ = 20.
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Network Efficiency [%]
Signal Rejection Background Total

NN lep 87 85 86
NN had 95 85 90

ANN lep λ = 20 67 62 65
ANN had λ = 10 70 60 66
ANN had λ = 15 67 60 64
ANN had λ = 20 67 55 61
ANN had λ = 25 69 52 61
ANN had λ = 30 65 55 60
Scaled NN lep 60 69 65
Scaled NN had 66 64 65

Table 8.2: Overall efficiencies (in %) of the neural networks in signal and back-
ground and total (50 % signal and 50 % background) after training with MC
leptonic (lep) and hadronic (had) events. NN is the classifier, ANN the combined
classifier with adversary, and the Scaled NN is the benchmark network described
in Section 8.4. Efficiency is the percentage of time the neural network learns
correctly what it signal and what is background.

8.5.2 NTNI Data

Figure 8.27: Distribution of signal ttH (in red) and background ttγγ (in blue)
for NTNI data events. The discriminant is the probability for an event to be a
signal event.

The ANNs were also used for the training with NTNI data as background.
The signal and background distributions after classifier training with the NTNI
data (Figure 8.27) are much better separated than what was observed in MC, due
to the higher ANN performance. In this case, whatever discriminant is chosen
between ≈ 0.05 and ≈ 0.9, the efficiencies of classification in both signal and
background remain excellent (Table 8.3). After adversarial training, the efficien-
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cies drop slightly, but remain excellent and vary between 84-95% in both signal
and background for a discriminant cut of 0.5. This can also be seen from the
high ROC areas values in Figure 8.28. Another tendency observed in NTNI data,
in comparison to MC simulated events, is the higher parameter λ, required to
achieve full sculpting minimisation.

Figure 8.28: ROC curves and their corresponding areas for ANN training with
NTNI hadronic data. The pink curve is the ROC shows the classifier’s perfor-
mance, the orange, red, cyan, purple and yellow curves show the adversaries’
performance for the values of λ, the parameter controlling the loss function Ladv:
10, 100, 500, 1000 and 1500 correspondingly. Scaled network yeilds comparable
results.
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Network Efficiency
Signal Rejection Background Total

NN lep 89 87 88
NN had 97 96 96

ANN lep λ = 500 73 70 71
ANN had λ = 10 94 92 93
ANN had λ = 100 94 87 91
ANN had λ = 500 93 85 89
ANN had λ = 1000 93 87 90
ANN had λ = 1500 95 84 90
Scaled NN lep 63 53 58
Scaled NN had 93 90 92

Table 8.3: Overall efficiencies (in %) of the neural networks in signal and back-
ground and total (50 % signal and 50 % background) after training with NTNI
data leptonic (lep) and hadronic (had) events. NN is the classifier, ANN the
combined classifier with adversary, and the Scaled NN is the benchmark network
described in Section 8.4. Efficiency is the percentage of time the neural network
learns correctly what it signal and what is background.
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8.6 Decorrelation

8.6.1 Simulated MC Events

The second neural network, the adversary, deals with the decorrelation of the
Mγγ distribution from the photon kinematic variables. Those correlations, as
described in Section 8.2.1, are the reason for the sculpting of the background
distribution after classification. In Figure 8.29, the Mγγ distributions can be
seen in three phases: before classifier training in blue, after a cut on the clas-
sifier discriminant in red and after full adversarial training in green. Ideally,
the shape of the distribution after the discriminant cut would have a consistent
shape as the initial Mγγ distribution before any discriminant cuts. This would
correspond to a fully solved sculpting problem. Figure 8.29 contains five plots
for the hadronic case, which are different only in λ value, i.e., the strength given
to the adversary’s task with respect to the classifier’s task, which is one of the
ANNs hyper-parameters controlled by the user. Figure 8.30 contains two plots
of the training and predictions on MC leptonic events (left) and training on MC
and predictions on NTNI leptonic events (right). The red curve is the same for
all, as it is the Mγγ distribution after the stand-alone classifier. It shows strong
sculpting and peaks at the mass of the Higgs boson. The adversary joins the clas-
sifier after the initial stand-alone classifier training to resolve that problem. The
higher the value of the parameter λ, which controls the loss function, the lower
the accuracy of the networks (Figure 8.25), but the higher the minimization of
the sculpting (see Table 8.4). A balance is sought, which achieves both the goals
of high performance and negligible to no sculpting simultaneously. In the case of
λ = 10, the sculpting is significantly reduced, but not to an extent where a sim-
ple background modelling can be used for Mγγ after it has undergone adversarial
training, similarly to before training. This is important to make sure that the
spurious signal test (described in Section 8.10) passes with minimum additional
complexity introduced. As λ increases, the sculpting diminishes, and on the plot
in the far right, the optimal case for λ = 20 can be observed, which corresponds
to a final sensitivity of Z = 3.3 (described in detail in 8.8). Apart from the slight
change in slope, the initial and final distribution’s shapes can be modelled with
the same function. For Figure 8.29, a classifier discriminant cut Dcls was chosen
for illustration purposes. The cut corresponds to the signal acceptance of 80%.
The area under the ROC curve for this case is 0.67.

In the leptonic decay channel, the choice of λ = 20 yields optimal perfor-
mance (metric explained in 8.6.3) for both the ttγγ and NTNI data background
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hypotheses. The corresponding area under the ROC curve is 0.64 for ttγγ and
0.71 for the NTNI data respectively.

The combined ANN discriminant in Mγγ (Figure 8.31) varying with respect
to λ in a discriminant range [0.2,1] shows the most evident regions of dependence.
A case of full lack on dependence would have only fully horizontal white contour
lines.

The same events used as input to the ANNs in both MC and NTNI data
were used with scaled variables pT

Mγγ
and E

Mγγ
for the scaled network as input to

a stand-alone classifier and the sculpting and sensitivity were compared with the
optimal case from the ANNs (Figures 8.32 and 8.33). In both cases, a change in
slope from the original Mγγ distributions can be observed.
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λ = 10 λ = 15

λ = 25 λ = 30

λ = 20

Figure 8.29: The shapes of the Mγγ distribution in the hadronic MC background
ttγγ events. The initial background is shown in blue, the background after stand-
alone classifier training in red and the background after adversarial training with
both networks in green. The stand-alone classifier distribution does not depend
on λ, and is therefore the same in all figures. Signal efficiency = 80%.
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Figure 8.30: MC semi-leptonic and di-leptonic Mγγ background shapes for the
three main steps of ANN training. The distributions are normalized to unit
area. The initial background is shown in blue, the background after stand-alone
classifier training in red and the background after adversarial training with both
networks in green. Left plot: training and predictions on MC leptonic events.
Right plot: training on MC leptonic events, predictions on NTNI leptonic events.
Signal efficiency = 80%.

λ = 10 λ = 15

λ = 25 λ = 30

λ = 20

Figure 8.31: 2D Plots of the combined ANN discriminant with respect to Mγγ

for various values of the regularization parameter λ. The white lines show the
contours connecting the bins with the same number of events.
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Figure 8.32: Background Mγγ distribu-
tion after ANN training of MC ttγγ
background and ttH signal events with
un-scaled photon kinematic variables.
λ = 20.

Figure 8.33: Background Mγγ distribu-
tion after classifier stand-alone training
of MC ttγγ background and ttH signal
events with scaled photon kinematic in-
put variables.
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8.6.2 NTNI data background

The sculpting minimisation achieved is shown in Figure 8.34 in the data driven
background NTNI, for five different λ values, where the optimal case was chosen
to be λ = 500. Just like in MC, a small change in slope can be observed as
a difference between the initial and final Mγγ background distributions. The
dependence of Mγγ distribution on the discriminant is significantly smaller than
the observed in MC background. This is shown through the very nearly horizontal
contour lines in Figure 8.35.
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λ = 10 λ = 100

λ = 1000 λ = 1500

λ = 500

Figure 8.34: NTNI data hadronic Mγγ background distribution’s integrated area
shapes after ANN training. The initial background is shown in blue, the back-
ground after stand-alone classifier training in red and the background after ad-
versarial training with both networks in green. Signal acceptance = 80%.
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λ = 10 λ = 100

λ = 1000 λ =1500

λ = 500

Figure 8.35: 2D Plots for NTNI data of the combined ANN discriminant (y axis)
with respect to Mγγ (x axis) for various values of the regularization parameter λ.
The white lines show the contours connecting the bins with the same number of
events.
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Differently from MC, the real data shows no change in slope in the scaled case
(Figure 8.37) but has larger statistical fluctuations than the unscaled (Figure 8.36)
at (120-140) GeV, which includes the mass of the Higgs.

Figure 8.36: Optimal background Mγγ

distribution after ANN training of
NTNI Run 2 background data and
ttH signal events with un-scaled photon
kinematic variables. λ = 500.

Figure 8.37: Classifier stand-alone
training of NTNI real Run 2 background
data and ttH signal events with scaled
photon kinematic input variables.

8.6.3 Stability test of results

To quantify the sculpting effects, the Jenson Shannon Divergence (JSD), de-
fined in Section 6.7, is calculated for the difference between the initial Mγγ back-
ground distribution and the Mγγ background distribution after cutting on the
neural network discriminant.

The statistical uncertainty of the JSD is estimated from the statistical un-
certainty of the underlying histograms by using pseudo-experiments. In each
pseudo-experiment the histogram bins are randomly fluctuated according to their
statistical uncertainty, and the JSD of the fluctuated histogram pair is evaluated.
The spread of the JSD values over the pseudo-experiments is taken as the sta-
tistical uncertainty on the JSD. To validate the procedure randomly sampled
histogram pairs from an identical underlying distribution are generated. On av-
erage, the resulting JSD is found to be unbiased, and the spread of the example
histogram’s JSD values is consistent with the assigned JSD uncertainty.

The JSD values for MC simulated events can be seen in Table 8.4. Two
features of the differences between the Mγγ distributions before and after the
discriminant cut are important, when quantifying sculpting: the full Mγγ range,
as used in the H → γγ analyses: 105 GeV < Mγγ < 160 GeV, and the range
around the Higgs boson mass peak: 120 GeV < Mγγ < 130 GeV.
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The sculpting in the full range was calculated to fall until λ = 20, where it
reaches its minima. In the Higgs mass peak range, the values show a different
pattern, where the sculpting keeps falling after λ = 20, but considering the neg-
ligible values, the error nearly equates to the value itself, so this does not go
against the conclusion of an optimum at λ = 20. The first two rows (NN lep and
NN had) show the JSD values obtained when running a NN classifier with no
scaling of the photon pT and E. As expected, this results in large sculpting and
therefore large JSD values. A JSD value is accepted as negligible in this study, if
JSD < 10−3.

Network JSD
(105-160)GeV (120-130)GeV

Classifier NN lep (53.519 ± 0.104) ×10−2 (71.634 ± 0.213) ×10−2

Classifier NN had (58.973 ± 0.022) ×10−2 (76.345 ± 0.341) ×10−2

ANN lep λ = 20 (1.22 ± 0.52) ×10−3 (0.99 ± 0.45) ×10−3

ANN had λ = 10 (1.02 ± 0.11) ×10−3 (2.63 ± 0.52) ×10−3

ANN had λ = 15 (0.85 ± 0.11) ×10−3 (1.62 ± 0.51) ×10−3

ANN had λ = 20 (0.68 ± 0.11) ×10−3 (0.73 ± 0.48) ×10−3

ANN had λ = 25 (0.81 ± 0.11) ×10−3 (0.43 ± 0.46) ×10−3

ANN had λ = 30 (1.16 ± 0.11) ×10−3 (0.43 ± 0.49) ×10−3

Scaled NN lep (0.20 ± 0.48) ×10−3 (0.11 ± 0.61)×10−3

Scaled NN had (0.32 ± 0.36) ×10−3 (0.82 ± 0.92) ×10−3

Table 8.4: Lowest JSD values for the full Mγγ distribution analysis range (105−
160) GeV and for the peak part of the distribution, at the mass of the Higgs
boson (120− 130) GeV. See text for further explanations.

8.7 Combined Metric

A simultaneous study of the background rejection and the background sculpt-
ing is necessary to determine the optimal choice of the regularization parameter
λ. The background rejection is defined as:

ebkgrej = 1− ebkgeff = 1−
N bkg
after

N bkg
before

(8.3)

The ANN efficiency for background events is ebkgeff , the number of background
events, before the ANN discriminant cut is N bkg

before and the number of background
events after the ANN discriminant cut as N bkg

after. With the higher background
rejection, also the JSD factor rises, or the more background events are rejected,
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the higher the final sculpting. The connection between the two is observed to
diminish with the raising values of λ (Figure 8.38 and Figure 8.39), but so does
the efficiency of the networks in both signal and background, observed in Figures
8.25 and 8.28.

8.7.1 Metric in Simulated MC Events

A good compromise between minimising sculpting and maximising background
rejection is again observed for λ = 20 using MC ttγγ background events, as shown
in Figure 8.38. Both the full analysis range (105 - 160 GeV) and the Higgs mass
peak range (120 - 130 GeV) are used. For this value of λ, any background rejec-
tion ebkgrej < 0.6 shows sculpting of JSD < 10−3 ≈ 0 in both the full analysis and
the Higgs mass peak ranges.

(a) Full analysis range, 105 GeV < Mγγ <
160 GeV

(b) Higgs mass peak range, 120 GeV <Mγγ

< 130 GeV

Figure 8.38: Jenson Shannon Divergence for different ANN background rejection
efficiencies in MC simulated data. Lines correspond to λ = 10, 15, 20, 25 and 30
and points correspond to ANN background rejection efficiency of (90 - 10)% in
increments of 10%.

8.7.2 Metric in NTNI Data

NTNI data background (Figure 8.39) shows similar trends as the MC ttγγ

background. The overall sculpting in the full range, as well as in the Higgs mass
peak range, is bigger by ≈ 3 and ≈ 20 times respectively, due to the larger change
in slope after the ANN training. Another significant difference is the optimality
achieved with λ = 500 does not only show very high efficiencies of both networks
(Table 8.3), but also the absolute optimal case for sculpting minimisation, where
increasing λ more only gave higher sculpting with a higher dependence on the
background rejection. Just like with ttγγ background, any background rejection
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ebkgrej < 0.6 shows sculpting of JSD < 10−3 ≈ 0 in both the full analysis and the
Higgs mass peak ranges.

(a) Full analysis range, 105 GeV < Mγγ <
160 GeV

(b) Higgs mass peak range, 120 GeV <Mγγ

< 130 GeV

Figure 8.39: Jenson Shannon Divergence for different ANN background rejection
efficiencies in NTNI real data. Lines correspond to λ = 10, 100, 500, 1000 and
1500 and points correspond to ANN background rejection efficiency of (90 - 10)
% in spaces of 10%.

8.8 Signal Results

The most important performance metric of the classification network is the sen-
sitivity to the signal ttH production. In this section the sensitivity achievable
with the adversarial neural networks is presented. The results are compared to
the network in which the photon momenta are scaled by Mγγ. This scaled net-
work is shown to be good approximation of the classification used in the ATLAS
analyses [43].

To estimate the sensitivity to the ttH production, a cut on the classification
discriminant is used to design categories enriched in signal ttH events. Two
scenarios are studied:

• 1-category scenario in which a single signal category is created, using a
discriminant cut for which such selection yields the highest sensitivity.

• 2-category scenario in which two signal categories are selected, such that
their combined sensitivity is maximised.

The sensitivity is estimated using Equation 7.1, by counting the numbers
of expected signal (S) and background (B) events in the region: 121 GeV<
Mγγ <129 GeV. For the 2-category scenario the two optimal boundary positions
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are selected by scanning them all, and for each calculating the total sensitivity,
which is the sensitivity of the 1st and 2nd categories summed in quadrature.

In these sensitivity estimates, which are used to select the discriminant cuts,
only statistical uncertainty is considered. This is well motivated for a ttH, H →
γγ analysis, since the statistical uncertainty dominates the measurement precision
in Run 2 [40].

The sensitivity estimate requires the knowledge of the absolute numbers of sig-
nal and background events, which are obtained by normalizing the corresponding
yields to the preliminary integrated luminosity of the Run 2 dataset; L = 139

fb−1. The signal is normalized to the cross-section calculated at NLO QCD and
NLO EW accuracy and the H → γγ branching ratio as reported in Section 4.1.

Prior to the classification network discriminant cuts, 26.5 and 8.0 signal events
are expected in the hadronic and leptonic decay channels respectively. The back-
ground events are normalized such that the expected number of events with
90 GeV< Mγγ <105 GeV matches the corresponding tight isolated data yields.
This side-band region used for the normalization is orthogonal to the analysis re-
gion. In the analysis the region of 105 GeV< Mγγ <160 GeV is used to determine
the signal yield, and in this region 916 and 76 background events are expected in
the hadronic and leptonic channel prior to the discriminant cuts.

When selecting the discriminant cut which maximises the sensitivity, an ad-
ditional requirement that the categories should have at least 20 expected back-
ground events is made. This ensures sufficient number of events to fit the back-
ground from the Mγγ spectrum.

Figures 8.40 and 8.41 show the sensitivity as a function of the 1-category
discriminant cut as obtained in the leptonic decay channel (Nlep >0). The 1-
category and 2-category discriminant cuts which maximise the sensitivity are
denoted by vertical lines. In Figure 8.40 simulated ttγγ background events are
used, whereas Figure 8.41 uses NTNI data events. The results obtained with
the adversarial neural network are compared to the network in which the photon
momenta are scaled by Mγγ (Scaled Network).

The sensitivities obtained in the leptonic decay channel are listed in Table 8.5.
In each of the 1-category and 2-category scenarios, the sensitivities obtained with
the ANN are comparable with the Scaled Network, with the Scaled Network yield-
ing about 10% higher sensitivity. The 2-category scenario reaches substantially
higher sensitivity and is therefore more interesting than the 1-category scenario.
Comparing the two background hypotheses, the simulated ttγγ and NTNI back-
grounds yield similar sensitivities with the Adversarial Network.
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Figure 8.40: Sensitivity (Significance Z) to the ttH production in the leptonic
decay channel as a function of the neural network discriminant cut, as obtained
with the adversarial neural network (left) and the network in which the photon
momenta are scaled by Mγγ (right). The sensitivity corresponds to creating a
single signal-like category. The vertical lines show the discriminant cuts used
to create one (dashed) or two (full line) signal-like categories. Simulated ttγγ
background events are used.

Figure 8.41: Sensitivity to the ttH production in the leptonic decay channel as a
function of the neural network discriminant cut as obtained with the adversarial
neural network (left) and the network in which the photon momenta are scaled
by Mγγ (right). NTNI data background events are used. In the right figure, the
1-category discriminant cut overlaps with the 2-category cut of 0.415, and its
corresponding dashed line is not visible.

As can be seen by comparing Figures 8.40 and Figure 8.41, the ttγγ and NTNI
data also yield comparable ANN discriminant cut choices; if the 1-category cut
optimised for the NTNI data was applied to the ttγγ background hypothesis, the
sensitivity would only decrease by 1.8%. The Adversarial Network classification
is therefore stable to the variations in the assumed background shape, which is
important, because the background shape is not known precisely. Comparing
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the two background hypotheses, the simulated ttγγ and NTNI backgrounds yield
similar sensitivities with the Adversarial Network. The ratio of sensitivities is
shown in Figure 8.42, the largest difference across the full discriminant range is
about 14%.

Figure 8.42: Sensitivity (Significance Z) ratio of ttγγ MC over the sensitivity of
NTNI data in dependence of the discriminant cut.

Z(1-category) Z(2-category) {Z(low-D.),Z(high-D.)}
Background: simulated ttγγ:

Adversarial Network 2.1 2.3 {1.3,1.8}
Mγγ Scaled Network 2.3 2.5 {1.0,2.2}

Background: non-tight or non-isolated (NTNI) data:
Adversarial Network 2.3 2.5 {1.1,2.2}
Mγγ Scaled Network 2.6 2.7 {0.8,2.6}

Table 8.5: Sensitivity (Significance Z) in the leptonic decay channel obtained with
a single signal category (Z(1-D)) and two signal categories Z(2-D). In the 2-D case
the total sensitivity, as well as the sensitivity of the individual categories, corre-
sponding to low and high discriminant cuts {low-D.,high-D.}, is listed. Results
are shown for two background hypotheses: simulated ttγγ and NTNI data events.

Figure 8.43 shows the sensitivity obtained in the hadronic decay channel,
using simulated ttγγ background events. The obtained sensitivities are listed
in Table 8.6. Similar to the leptonic decay channel, the Scaled Network yields
about 10% higher sensitivity to the ttH production compared to the Adversarial
Network.

Combining the lepton and hadron decay channel results by adding them in
quadrature, the classification performed with the Adversarial network yields a
sensitivity of Z = 3.6, while the Scaled network yields a sensitivity of Z=4.1
assuming ttγγ background events. This is comparable to the published ATLAS
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Figure 8.43: Sensitivity (Significance Z) to the ttH production in the hadronic
decay channel as a function of the neural network discriminant cut, as obtained
with the adversarial neural network (left) and the network in which the photon
momenta are scaled by Mγγ (right). Simulated ttγγ background events are used.

Z(1-category) Z(2-category) {Z(low-D.),Z(high-D.)}]
Adversarial Network 2.3 2.7 {2.0,1.8}
Mγγ Scaled Network 2.7 3.2 {2.1,2.5}

Table 8.6: Sensitivity (Significance Z) in the hadronic decay channel obtained
with a single signal category (Z(1-D)) and two signal categories Z(2-D). In the
2-category case the total sensitivity, as well as the sensitivity of the individual
categories, corresponding to low and high discriminant cuts {low-D.,high-D.}, is
listed.

ttH,H → γγ analyses [43] with a sensitivity of Z = 4.4. The overall sensitivity
obtained when applying the Adversarial Neural Network method is lower than
the 5.0 σ sensitivity reached in the state of the art ATLAS analysis in [43]. This
is due to several factors, such as more extensive categorisation of 11 categories,
as well as feature engineering [148]. This is beyond the scope of this thesis, which
aims to establish a proof of principle that ANNs can be used to handle the Mγγ

sculpting. It is advisable for any future work, aiming to improve the sensitivity
achievable with an ANN, to include a full hyperparameter optimisation of the
networks by looking at the broader parameter hyperspace. In particular, the
ANN Units and Architecture discussed in Section 8.1 could be optimised further.

In summary the results of this Section establish that the Adversarial network
achieves an overall comparable sensitivity to the Scaled network. The Scaled net-
work sensitivity is about 10% higher, and this difference is likely to be reduced
after hyperparameter optimization. The sensitivity calculation described so far
only accounted for the statistical uncertainty. While this uncertainty dominates
the Run 2 ttH, H → γγ measurement uncertainty, it is important to consider
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whether the use of the novel adversarial neural network may exacerbate the back-
ground modelling uncertainty. To evaluate this, the Spurious Signal has to be
evaluated.

8.9 Signal modelling

The fit of the DCSB to the ttH,H → γγ signal events is shown in Figure 8.44.

Figure 8.44: Double-sided Crystal Ball function fit to the ttH,H → γγ signal
events. The fitted parameters are described in Equation 7.2.

The fitted parameter values are kept fixed during the signal+background fits
used to extract the spurious signal, and the same parameter values will be used
in all categories. The reason for this is that the fits in the leptonic and hadronic
decay channel yield very similar parameter values. Likewise, there are only small
differences between the events passing high or low discriminant cuts of the clas-
sification networks. Therefore, the DSCB parameters are extracted only once,
using all ttH events having at least three jets. The signal yield is not fitted as it
is determined in each fitted category separately from the yields of the simulated
ttH events normalized to the theory predictions detailed in Section 4.1.
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8.10 Spurious Signal Evaluation

8.10.1 Spurious Signal Fit

Spurious signal (SS) is the bias in the signal yield, or the number of events,
which can be classified as fake signal. For this, the background template is fitted
with a signal+background model to determine both the signal and background
event yields. The potential bias from differences between the actual background
distribution and the fitted one is estimated from the fitted signal yield (spurious
signal). The SS is performed on templates with a 1 GeV step in the Mγγ range of
120 GeV - 130 GeV in order to avoid accidentally small bias values at the nominal
Higgs boson mass. The fitted number of spurious signal events is allowed to be
either of positive or negative.

Categories pass the spurious signal test in the general analysis described in
[43] if, they have a minimum of 100 events in their sidebands and |Nsp| satisfies
the following criteria:

• |Nsp| is smaller than 10% of the expected number of total Higgs boson signal
events

• |Nsp| is smaller than 20 % of the statistical uncertainty of the fitted signal
yield, σexp

If more than one analytic function passes the spurious signal test, then the
function with the fewest parameters is selected.

The spurious signal fit used in this thesis closely follows the conventions used
in ATLAS H → γγ analyses [43] and is performed with the software developed
by the ATLAS H → γγ group. The signal + background model is fitted to
background-only events in the range of 105 ≤ Mγγ ≤ 160 GeV. The number of
fitted signal events as a function of the Higgs mass is computed in the range of
120 ≤Mγγ ≤ 130 GeV in steps of 0.5 GeV. The number of spurious signal events
Nsp corresponds to the maximum of the absolute value of the fitted number of
signal events. In this thesis, the following criteria are required for the functional
form to pass the spurious signal (SS) test:

• The goodness of fit: the χ2 per number of degrees of freedom is required to
be consistent with 1 with a probability higher than 1%.

• The number of spurious signal events should be less than 50% of the ex-
pected signal statistical uncertainty

(
Nsp
∆S

< 50%
)
.
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The motivation for choosing 50% is that at this value, the spurious signal
would be the dominant systematic uncertainty of the ttH measurement, and it
would substantially degrade the analysis sensitivity. If the test passes at this
value, it means, it passes at all expected signal thresholds.

Out of all functions passing the required criteria, the best function to use in
the fit is selected as follows:

• If several functions pass the spurious signal test, the function with the lowest
number of parameters is selected.

• In case of several functions with the same number of parameters, the one
with the lowest |Nsp| is chosen.

The reason for the preference of the low number of parameters is that most of
the categories in this analysis contain a low number (<50) of expected background
events. A fit of a function with many parameters to such low number of events
would result in large uncertainties on the fitted parameters.

These criteria are somewhat different from the spurious signal criteria used
in ATLAS H → γγ analyses [43], which are intended for all Higgs boson pro-
duction modes. In contrast to the ttH production, production modes such as
the ggF use categories with high numbers of background events and the spurious
signal dominates the measurement uncertainty. The spurious signal criteria for
such production modes therefore allow for higher-order functions if this lowers
the spurious signal yields. The analysis [43], attempts to construct uniform SS
criteria, usable across all production modes and 100+ categories. These criteria
are overly complicated and overly strict for the stat-dominated ttH channel.

8.10.2 Spurious Signal in the Leptonic Decay Channel

In the ttH final states with at least one lepton, categorising the events into two
signal categories results in the sensitivity of Z=2.3 for the Adversarial network and
Z=2.5 for the Scaled network, using ttγγ background events. The corresponding
discriminant (D) cuts and background yields (Nb) within 105 ≤Mγγ ≤ 160 GeV
are:

Adversarial network:

• high-cut category: D > 0.695, Nb=24.7

• low-cut category: 0.025 < D < 0.695, Nb=50.0
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Scaled network:

• high-cut category: D > 0.49, Nb=24.7

• low-cut category: 0.24 < D < 0.49, Nb=44.9

The Mγγ background spectra of these two categories are shown in Figure 8.45.

Figure 8.45: Distribution of Mγγ leptonic background for the Adversarial (left)
vs distribution of Mγγ leptonic Scaled (right) NN scenarios in their best low
discriminant (green) and high discriminant (red) cut categories.

Tables 8.7 and 8.8 show the results of the spurious signal fits in the high-cut
and low-cut categories respectively. the SS fit allows both the lack and excess of
signal, as both would bias the signal estimate. This leads to both negative (-) and
positive (+) values for the spurious signal. The fitted function name and number
of the parameters is shown, alongside the number of spurious signal events (Nsp),
fraction of the signal uncertainty Nsp

∆S
, the χ2 per number of degrees of freedom,

and the result of passing the spurious signal test requirements described in the
previous section (result=pass or fail). For the function selected by the spurious
signal procedure, the values are listed in bold. The information is shown for each
of the Adversarial and Scaled network, and the last column provides a comparison
of their performance. The listed value is the relative difference between the
number of the spurious signal events obtained by the Adversarial network and
the Scaled network, defined as:

ANN− Scaled =
|Nsp(Adversarial)| − |Nsp(Scaled)|

0.5(|Nsp(Adversarial)|+ |Nsp(Scaled)|)
. (8.4)

The trend to be mindful of is whether the value of (ANN− Scaled) > 0 is
obtained frequently. This would mean that the Adversarial network exacerbates
the spurious signal compared to the Scaled network.
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Adversarial Network Scaled Network
Name Npar Nsp

Nsp
∆S [%] χ2 result Nsp

Nsp
∆S [%] χ2 result diff [%]

Pow 1 1.08 21.5 1.86 fail -0.84 -15.2 0.97 pass 24
Expo 1 0.74 14.7 1.43 pass -1.41 -25.4 1.11 pass -62
ExpPoly2 2 0.21 3.97 1.23 pass -1.13 -19.2 1.0 pass -136
ExpPoly3 3 -0.43 -7.56 1.08 pass -1.2 -19.1 1.03 pass -94
Pow2 3 0.32 6.3 1.36 pass -1.03 -18.0 1.05 pass -104
Bern3 3 -0.68 -11.9 0.96 pass -1.08 -17.4 1.01 pass -45
Bern4 4 -0.67 -11.8 0.76 pass -1.17 -18.6 1.01 pass -54
Bern5 5 -0.83 -13.5 0.79 pass -1.79 -26.9 0.97 pass -72

Table 8.7: Results of the spurious signal test for the leptonic high-cut category
using ttγγ background events. The results of the functions selected by the spu-
rious signal procedure are highlighted in bold. The columns are described in the
text, where diff = ANN - Scaled (see equation 8.4). Explanation of functions can
be found in Chapter 7.4.2

From the high-cut category spurious signal test shown Table 8.7, we see that a
first-order function is selected for each of the Adversarial network (Exponential)
and the Scaled network (Power Law). In the case of the Adversarial network, the
power law fails the test due to a poor fit, which has a χ2 probability of only 0.4%.
The test results in two important positive outcomes:

• For the same functional form, the Adversarial network typically yields less
spurious signal. With Expo fitted, the number of spurious events Nsp is:
0.74 (ANN) and 1.41 (Scaled), with ExpPoly2 = 0.21 (ANN) and 1.13
(Scaled) etc.

• For all functional forms, the spurious signal uncertainty is much smaller
than the statistical uncertainty on the number of signal events. With
Expo fitted, the spurious signal uncertainty Nsp

∆S
= 14.7% (ANN) and 25.4%

(Scaled), with ExpoPoly2, it is = 3.97% (ANN) and 19.2% (Scaled) etc.

Table 8.8 shows the test results in the low-cut category. The Exponential
function is selected for the Adversarial network and the Power Law for the Scaled
network. All functions pass the test and yield small spurious signals.

Similar conclusions as for the 2-category classification with ttγγ background
hold for the 1-category classification and also in case of the NTNI data back-
ground. We therefore conclude that the performance of the Adversarial network
is satisfactory and comparable to that of the Scaled network in the leptonic decay
channel.
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Adversarial Network Scaled Network
Name Npar Nsp

Nsp
∆S [%] χ2 result Nsp

Nsp
∆S [%] χ2 result diff [%]

Pow 1 0.89 15.4 1.66 pass 0.39 7.26 1.08 pass 77
Expo 1 -0.29 5.05 0.83 pass -0.68 -12.1 1.04 pass -79
ExpPoly2 2 -0.57 -9.04 0.78 pass -0.47 -7.91 0.98 pass 19
ExpPoly3 3 -0.83 -12.3 0.8 pass -0.52 -8.21 1.01 pass 46
Pow2 3 -0.84 -12.1 0.77 pass 0.47 9.84 1.01 pass 56
Bern3 3 -0.69 -10.2 0.81 pass -0.4 -6.39 0.97 pass 52
Bern4 4 -0.81 -12.0 0.68 pass -0.53 -8.29 0.9 pass 42
Bern5 5 -0.92 -12.9 0.71 pass -0.79 -11.7 0.89 pass 15

Table 8.8: Results of the spurious signal fit for the leptonic low-cut category using
ttγγ background events. diff = ANN-Scaled (see equation 8.4). Explanation of
functions can be found in 7.4.2.

8.10.3 Spurious Signal in the Hadronic Decay Channel

In the hadronic decay channel, the spurious signal test turns out to be very
challenging for the categories obtained with the Adversarial network, especially
for the high-cut category in the categorization with two signal categories. The
discriminant (D) cuts and background yields (Nb) within 105 ≤Mγγ ≤ 160 GeV
are:
Adversarial network:

• high-cut category: D > 0.955, Nb=28.9

• low-cut category: 0.115 < D < 0.955, Nb=787

Scaled network:

• high-cut category: D > 0.795, Nb=28.7

• low-cut category: 0.415 < D < 0.795, Nb=407

The corresponding Mγγ distributions are shown in Figure 8.46. It is evident that
the high-cut category spectrum obtained with the Adversarial network can only
be fitted with a higher-order function.

Tables 8.9 and 8.10 show the results of the spurious signal test in the high-cut
and low-cut categories respectively.

The results for the high-cut category in Table 8.9 confirm what is expected
from Figure 8.46: when the Adversarial network is used, only 5th order Bernstein
Polynomial passes the spurious signal test. All other functions fail the goodness
of fit requirement (χ2 probability > 1%) and some also yield Nsp

∆S
> 50%. The

Scaled network shows superior performance, with all functions passing the test
and a Power Law function selected.
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Figure 8.46: Distribution of Mγγ leptonic background for the Adversarial (left)
vs distribution of Mγγ leptonic Scaled (right) scenarios in their best low (green)
and high (red) cut categories. In both figures, the high-cut category yield has
been scaled up by a factor of 20 for visibility.

Adversarial Network Scaled Network
Name Npar Nsp

Nsp
∆S

[%] χ2 result Nsp
Nsp
∆S

[%] χ2 result diff [%]
Pow 1 3.83 56.8 9.85 fail 0.33 6.68 0.78 pass 168
Expo 1 3.23 47.8 7.96 fail -0.59 -11.5 1.1 pass 137
ExpPoly2 2 2.81 38.9 7.27 fail -0.23 -4.25 0.77 pass 169
ExpPoly3 3 2.86 38.9 7.54 fail 0.23 4.17 0.75 pass 170
Pow2 3 3.83 70.8 10.6 fail 0.22 4.03 0.79 pass 178
Bern3 3 2.64 35.6 7.27 fail 0.0 0.0 0.81 pass 200
Bern4 4 2.06 27.4 4.87 fail 0.3 5.39 0.74 pass 149
Bern5 5 0.17 2.15 1.0 pass 0.39 6.29 0.79 pass -75

Table 8.9: Spurious signal test for the hadronic high-cut category.The results of
the functions selected by the spurious signal procedure are highlighted in bold.
ANN requires a 5th order function in the high-cut category, therefore, it is less
performant, than the scaled in this case. Explanation of functions can be found
in 7.4.2. diff = ANN-Scaled (see equation 8.4).

Adversarial Network Scaled Network
Name Npar Nsp

Nsp
∆S

[%] χ2 result Nsp
Nsp
∆S

[%] χ2 result diff [%]
Pow 1 2.92 28.5 4.94 fail 1.73 16.4 2.56 fail 51
Expo 1 1.14 11.1 1.11 pass -0.93 -8.61 0.84 pass 19
ExpPoly2 2 -0.42 -3.8 0.65 pass -0.78 -6.76 0.81 pass -59
ExpPoly3 3 0.27 2.37 0.59 pass -0.47 -3.91 0.79 pass -54
Pow2 3 2.41 23.6 3.81 fail -0.89 -7.56 1.0 pass 92
Bern3 3 0.37 3.24 0.59 pass -0.43 -3.55 0.74 pass -14
Bern4 4 -0.59 -5.03 0.64 pass -0.35 -2.86 0.76 pass 51
Bern5 5 0.55 4.38 0.65 pass 0.36 2.76 0.82 pass 42

Table 8.10: Spurious signal test for the hadronic low-cut category. Explanation
of functions can be found in 7.4.2. diff = ANN-Scaled (see equation 8.4). The
ANN shows comparable performance to the Scaled.
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The results for the low-cut category in Table 8.10 show that in this cate-
gory the Adversarial network and the Scaled network perform comparably, with
Exponential function being selected in the test.

Overall, the Adversarial network is not adequate for the 2-category classifi-
cation in the hadronic decay channel, since it requires a 5th order function in
the high-cut category. As this category only contains 28.9 expected background
events, such function would not be fitted accurately in the data. Given the failure
of the 2-category classification, Table 8.11 shows the spurious signal test for the
1-category classification in the hadronic decay channel. The 1-category discrimi-
nant cut and the expected number of background events are:

• Adversarial network: D > 0.215, Nb=693

• Scaled network: D > 0.575, Nb=189

Adversarial Network Scaled Network
Name Npar Nsp

Nsp
∆S

[%] χ2 result Nsp
Nsp
∆S

[%] χ2 result ANN-Scaled [%]
Pow 1 3.32 34.8 5.82 fail 1.63 16.4 2.22 fail 68
Expo 1 1.85 19.4 2.1 fail -0.72 -7.05 0.85 pass 87
ExpPoly2 2 0.75 7.37 1.29 pass -0.46 -4.18 0.8 pass 49
ExpPoly3 3 1.04 9.99 1.26 pass -0.34 -2.99 0.76 pass 101
Pow2 3 1.32 13.2 1.36 pass 1.45 29.0 0.78 pass -9
Bern3 3 1.04 9.84 1.3 pass 0.48 4.32 0.71 pass 73
Bern4 4 0.74 6.95 1.12 pass 0.41 3.69 0.75 pass 57
Bern5 5 -0.52 -4.36 0.81 pass 0.74 6.03 0.83 pass -35

Table 8.11: Spurious signal test for the 1-category classification in the hadronic
decay channel. Explanation of functions can be found in Section 7.4.2

For the 1-category classification the Adversarial network performance is found
to be adequate. While the 1-parameter functions fail the spurious signal test,
the functions with two or more parameters pass the test. Such functions could
be fitted accurately, as the category has 693 expected background events. The
spurious signals yields obtained with the Adversarial network are comparable to
the ones obtained with the Scaled network, and much smaller than the statistical
uncertainty on the signal.

8.10.4 Conclusions of the Spurious Signal test

In this Section it has been demonstrated that the performance of the Adversarial
network for the spurious signal test matches that of the Scaled network in the
leptonic decay channel.
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In the hadronic decay channel, the Adversarial network also performed com-
parably well to the Scaled network, except for the categories with high ANN dis-
criminant cuts. In these categories the background Mγγ spectrum was sculpted.
It could therefore only be fitted with functions with many (5 or more) free parame-
ters. However, these categories are expected to contain only about 30 background
events, which is too few to constrain many parameters in a fit. Thus, categories
with high ANN discriminant cuts could not be used. The Scaled network required
no such restrictions on high discriminant categories. Due to this, the hadronic
channel sensitivity achievable with the Scaled network (Z=3.2) exceeded the sen-
sitivity achievable with the Adversarial network (Z=2.3).

What are the possible ways to improve the Adversarial network performance
in the hadronic decay channel? The Adversarial network is a system of two
networks (classifier and adversary), and therefore has more degrees of freedom
(node weights) compared to the Scaled network (classifier). This larger number of
degrees of freedom implies the need for more training data. A study with about
5 times more training data than available for this thesis was conducted in Ref.
[149]. The additional training data was obtained from two sources: (1) larger
signal and background samples, (2) a larger fraction of data allocated to the
training sample, and a smaller fraction to the validation and prediction ones. In
addition, Ref. [149] used a smaller number of classifier nodes and Gaussian Model
Mixture components. With more training data and fewer degrees of freedom, the
sculpting in the high ANN discriminant categories was alleviated. To match the
training sample statistics of Ref. [149], ATLAS should produce about 12 million
simulated signal ttH and 12M background ttγγ events. This is a factor of about
a factor 2.5 more compared to the samples available to Run 2 analyses.

The Adversarial network setup developed in this thesis is thus applicable to
the ttH, H → γγ classification in most categories. Because of the sculpting in
the high ANN discriminant categories of the hadronic decay channel, the sensi-
tivity to ttH production achievable with the Adversarial network classification
is lower compared to the Scaled network. Combining the leptonic and hadronic
decay channels, the sensitivity with the Adversarial network is Z=3.3, compared
to the Scaled network Z=4.1. In future ATLAS analyses, the performance of the
Adversarial network could be improved by larger simulated samples and hyper-
parameter optimization.
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Chapter 9

Conclusion and Outlook

The work performed for this thesis consists of two parts. The first part was
key to the development of the new generation of AtlFast, the fast simulation
of the ATLAS calorimeter. AtlFast uses a parametrised detector response, and
the samples for this parametrisation can only be simulated for discrete values of
particle energies. A technique which interpolates the detector response between
these simulated energy points, has been developed, and demonstrated that this
interpolation is accurate. The interpolation enables the simulation of particles
with any energy in AtlFast. It is used by the collaboration in AtlFast3, which
significantly improves between the fast simulation with the full ATLAS simulation
which is now excellent.

In the second and main part of this thesis the use of adversarial neural net-
works for the classification of ttH(Hγγ) events was investigated. The goal of the
approach is to prevent sculpting of the background Mγγ distribution after back-
ground rejection, while retaining high background rejection and signal selection
efficiencies. The new adversarial technique developed in this work is proven to
perform comparably to the classification techniques currently used by ATLAS,
with the benefit that the background sculpting was automatically handled by
the adversary network, and required no approximate, manual approach. How-
ever, the sensitivity to ttH production achievable with the Adversarial network
classification (Z=3.3) is still lower compared to the ATLAS classification tech-
niques (Z=4.1). This is primarily due to the sculpting observed in high ANN
discriminant categories of the hadronic decay channel. Means to improve the
adversarial networks were identified based on Ref. [149]: more training data and
hyper-parameter optimisation. If ATLAS produced at least 12 million simulated
ttH signal and 12 million ttγγ background events, the sensitivity could be further
enhanced.
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For the imminent ATLAS Run3 analyses, AtlFast3 will be the baseline sim-
ulator, which was made possible by the improvements described in the first part
of the thesis. AtlFast3 will speed-up the detector simulation by about a factor of
five compared to the full simulation with Geant4 [1]. With this speed-up, it could
be feasible to produce 2.5 times larger ttH signal and ttyy background samples,
as required for the adversarial neural network training.

At the future HL-LHC the ttH(Hγγ) measurements are projected to have a
statistical uncertainty of 4.2% and a systematic uncertainty of 4.0% [47]. Hence,
reduction of the systematic uncertainty would substantially enhance the measure-
ment sensitivity. In this scenario, adversarial networks could be used to provide
a classification discriminants independent of Mγγ, and robust to systematic un-
certainties. A proof-of-principle of such uncertainty-aware classification has been
provided by phenomenology studies, including Ref [150]. A substantial speed up
of the simulated sample production is planned for the HL-LHC, and is projected
to enable a production of much larger simulated signal and background samples.
With these, there are several directions in which the adversarial neural networks
may improve the current ATLAS classification solutions.
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Appendix A

Adversarial Neural Networks
Structure

The number of layers, nodes and and the full architecture of the ANNs is
shown on Figures A.1, A.2 and A.3.

Figure A.1: Classifier Neural Network set-up, described in Section 8.1. The
layer dimensions are displayed in the format: (batch size, number of nodes),

where the batch size is a hyper-parameter, and is therefore listed as ’None’. The
classifier’s InputLayer takes 23 features, and feeds them to three hidden layers.
Each of these hidden layers uses batch normalisation. The classifier outputs the

probability that the even is signal-like.
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Figure A.2: Adversary Neural Network set-up, described in Section 8.1. The
layer dimensions are displayed in the format: (batch size, number of nodes),

where the batch size is a hyper-parameter, and is therefore listed as ’None’. The
adversary concatenates two inputs: the auxiliary variable and the classifier
output. It feeds these to one hidden layer, and subsequently to a Gaussian
Mixture Model of 20 Gaussian distributions. The adversary determines the

means, widths, and normalisation coefficients of these Gaussians, and compares
the Gaussian Mixture Model distribution with the actual Mγγ distribution.
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Appendix B

ROC curves

A receiver operating characteristic curve (ROC) is a graphical illustration of
the performance ability of a machine learning tool to diagnose in a certain task,
as its discrimination threshold is varied. The curve consists of a plot of the
true positive rate (TP, the sensitivity of detection) vs. the false positive (FP,
probability or false alarm) of the output of a machine learning algorithm. It can
also be seen as a graphics, which represents the Type 1 Error in statistics. Type
1 Error is the mistaken rejection of a null hypothesis (Figure B.1) [151]. Type
2 Error is the false negative probability (FN). In every ROC plot, the diagonal
line from the left bottom of the plot to the right top, represents the guessing line,
which means beyond that line, all values obtained as output are random guessing
and the machine learning algorithm has not worked at all. The rule for overall
performance rates is to stay as far from the guessing line corresponding to 50%

as possible. A ROC area of ≈ 70% is usually considered acceptable.
In mathematical terms, the ROC curves plots TP (D) =

∫ inf

D
f0(x)dx versus

FP (D) =
∫ inf

D
f1(x)dx, where D is the discriminant and f(x) are the probability

density functions.
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Figure B.1: An illustration of the true positive (TP), false positive (FP), false
negative (FN), true negative (TN) at top and a ROC curve at the bottom of the
plot. The green arrow shows the possibility for varying the discriminant, the two
bell curves represent the two possible hypothesis.
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Appendix C

Manual Background Modelling

Four functions were considered for the modelling of the final Mγγ distribution
after ANN training (Figure C.1): linear, Chebyshev first order exponential and
second order exponential, explained in Section 7.4.2. Those functions have been
used in the analysis categories, due to their simplicity, which does not lead to
complications with the spurious signal.

C.0.1 Simulated MC Events

The best fitting one was found to be the first order exponential, which gave
promising values of χ2/ndf for λ = 20. Further background fitting was performed
after spurious signal studies, which can be found in Section ??.

C.0.2 Real Run 2 Data Events

The NTNIMγγ distribution before ANN training already appeared more com-
plex than the MC ttγγ, which could also explain the need for an order of magni-
tude bigger value for the parameter, which controls the adversary’s loss: λ (Figure
C.2). With manual optimisation, from the functions used, the exponential was
the closest match, which is why it was used for a preliminary comparison between
the initial and final distributions, but is not the function, which was used for the
final modelling of the background. In the optimal case of λ = 500, the sculpting is
fully minimised and the final χ2 shows good approximation to the original value,
which corresponds to no additional complexity added by the ANN training.
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λ = 10 λ = 15

λ = 25 λ = 30

λ = 20

Figure C.1: Manual modelling of the ttγγ MC background distribution before
ANN training (blue) and after (green) with a first-order exponential function for
λ = 10, 15, 20, 25 and 30. where ndf is the number of degrees of freedom. Each
χ2 value corresponds to the fraction χ2

ndf
, where ndf is the number of degrees of

freedom.
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λ = 10 λ = 100

λ = 1000 λ = 1500

λ = 500

Figure C.2: Manual modelling of the NTNI real data background distribution
before ANN training (blue) and after (green) with a first-order exponential func-
tion for λ = 10, 100, 500, 1000 and 1500. where ndf is the number of degrees of
freedom. Each χ2 value corresponds to the fraction χ2

ndf
, where ndf is the number

of degrees of freedom.
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Appendix D

Simulation Profiling

CPU time reduction is the main reason for using fast simulations. Sometimes
a part of the software can do the job but take a very long time, so optimization of
code is a crucial part of particle physics simulations. Three profilers were used to
study the performance of the StepinfoSD package, part of the new FastCaloSim
(improved with the exclusion of the ParamAlg algorithm). Ten single photon
simulation samples were generated for four different pseudorapidity ranges and
two different energies. The first profiler investigated was Perfmon [152]. The
final outputs for time spent per event can be seen in Table D.1 and part of the
output plots on Figure D.1. A few minutes per event was already a significant
improvement from the previous version of the simulation which had CPU with
an order of magnitude bigger.

aaaaaa
E η 0.2 - 0.25 1.00 - 1.05 2.00 - 2.05 3.00 - 3.05 4.00 - 4.05

1 TeV 2.6 min 3.0 min 11.2 min 2.9 min 0.7 min
4 TeV 11.3 min 14.0 min 14.8 min 12.1 min 8.6 min

Table D.1: Perfmon CPU time per event for photon generated samples. First line
represents the pseudorapidities η of the generated samples used and first column
their energies E.

Next, the StepinfoSD package was investigated in more detail in order to see
whether a certain function or an algorithm takes a sufficiently more time than
the rest of the code. Two profilers were tested for the purpose - Callgrind [153]
and GPerfTools [154] [155].

Callgrind is a tool which uses the number of functions executed, the rela-
tionships between them, the caller/callee function relationship and the number
of such calls. An example of the output for one of FastCaloSim’s packages is
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Figure D.1: Perfmon output for 1TeV photon, pseudorapidity 4 – 4.05. CPU time
per event (top) and memory leakage (bottom).

shown on Figure D.2. The first percentage in each box represents the fraction
of time this particular library took with respect to the whole software package
in one athena (ATLAS’ software framework) event and the second the fraction
with respect to its caller. It took more than three hours for only one event and
the profiling of only a certain part of the code appeared to be challenging for the
profiler. Considering that the output from event to event can vary especially in
the first few events due to library loading, this profiler was considered useful only
if there is interest in the specific libraries and the time or memory they consume.
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The last and considered most useful profiler used was GPerfTools. Due to
the possible worse performance of the first fifteen events, twenty events were run
for each sample. An example of the output can be seen in Table D.2. The last
column of the table represents the profiling samples in a particular function and
its branches. There is a one to one correspondence of percentage to seconds. One
profiling sample in a given function would correspond to spending ten ms in that
function. It was noted that in all tested samples, the FCS-SteInfoSD::update-
map class took the most time and a suggestion was made to the group for further
optimization.

Finally, detailed instructions for how to run, use and understand the output
of the three profilers were presented to the FastCalSim group for possible future
investigations.

1 2 3 4 5 6
1TeV, η: 3-3.05 FCS-SteInfoSD::update-map 3766 3.9% 30.4% 3820 4.0%

LArFCS-StepInfoSD::ProcessHit 280 0.3% 67.2% 524 0.5%
LArFCS-StepInfoSD::ConvertID 186 0.2% 75.4% 186 0.2%

1 TeV, η: 1-1.05 FCS-SteInfoSD::update-map 23927 10.7% 10.7% 24160 10.8%
LArFCS-StepInfoSD::ProcessHit 1411 0.6% 38.5% 11974 5.4%
LArFCS-StepInfoSD::ConvertID 1326 0.6% 39.7% 1326 0.6%

Table D.2: Example for GPerfTools output for two of the generated samples,
where 1 is the name of the function/class, 2 - Number of profiling samples in this
function, 3 - percentage of profiling samples in this function, 4 - percentage of
profiling samples in the functions printed so far, 5 - number of profiling samples
in this function and its branches and 6 - percentage of profiling samples in this
function and its branches
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Appendix E

Comparison in Signal/Background

In terms of classification power, the differences are obvious in the shape of the
signal and background with respect to the classifier discriminant. The events,
which are classified as signal or background with a high certainty lie around 0 or
1 and the discrimination is easier in the un-scaled case (Figure E.1), as compared
to the scaled case (Figure E.2).

Figure E.1: Signal and Background
with respect to the final ANN dis-
criminant in MC ttγγ background and
ttH signal events with un-scaled photon
kinematic variables. λ = 20.

Figure E.2: Signal and Background
with respect to the classifier discrimi-
nant in MC ttγγ background and ttH
signal events with scaled photon kine-
matic input variables.

The separation between signal and background is slightly better in the un-
scaled but overall similar to the scaled. (Figures E.3 and E.4).

The ANN discriminant distributions for signal and ttγγ background events
are shown in Figure E.5, using λ = 20.
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Figure E.3: Signal and Background
with respect to the final ANN discrim-
inant in NTNI real run 2 background
and ttH signal events with un-scaled
photon kinematic variables. λ = 500.

Figure E.4: Signal and Background
with respect to the classifier discrimi-
nant in NTNI real run 2 background
and ttH signal events with scaled pho-
ton kinematic input variables.

Figure E.5: ANN discriminant distributions for signal and background events in
hadronic events. Background hypothesis: ttγγ MC (left), NTNI data (right).
The regularization parameter is set to λ = 20 and λ = 500 in the left and right
figures respectively.
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