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The Wigner bound, setting an upper limit on the scattering effective range, is examined at different 
orders of contact effective field theory. Using cutoff regulator we show that the bound loosens when 
higher orders of the theory are considered. For a sharp and Gaussian regulators, we conjecture an analytic 
formula for the dependence of the Wigner bound on the theory’s order. It follows that the bound vanishes 
in the limit of infinite order. Using a concrete numerical example we demonstrate that the above surmise 
still holds after renormalization at finite cutoff. Studying the 3-body system with this example, we have 
found that limiting the permissible range of cutoffs by the Wigner bound, we avoid the Thomas collapse, 
and don’t need to promote the 3-body force to leading order.

© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

In the last two decades contact effective field theory (EFT) has 
been successfully applied for studying low energy systems where 
the characteristic particle wave length is much larger than the in-
teraction range. Such systems can be found, for example, in ultra 
cold atomic gases, clusters of He atoms, and atomic nuclei, see e.g. 
[1–4]. In such circumstances, it can be argued that the details of 
the short-range part of the interaction become irrelevant and a 
contact interaction, i.e. a delta function and its derivatives, can be 
used to parameterize it [5–7]. This parameterization can be un-
derstood to result from integrating out the high energy degrees of 
freedom of the underlying theory and then expanding the resulting 
Lagrangian in terms of contact interactions.

In a complete EFT, the Lagrangian should include all possible 
terms compatible with the symmetries of the underlying theory. To 
make such theory of any use, only finite number of terms should 
be retained when aiming to calculate some observable to a de-
sired accuracy. Therefore an appropriate ordering of the Lagrangian 
terms is a key ingredient for a successful EFT. A natural order for 
contact EFT is arranging the interaction terms according to their 
mass dimension [8,4,9]. A non-relativistic particle field � counts 
as 3/2 and a derivative counts as 1. This ordering is known as the 
“naïve” power counting. It works very well for the 2-body sector 
if the scattering length as is of the order of the interaction range, 
but fails for very large scattering lengths (see e.g. [10] for a nice 
derivation), and for the 3, 4, . . .-body, interaction terms [11,12].
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In the scheme proposed by Weinberg [13], the contact inter-
actions are to be iterated in the Lippmann-Schwinger equation 
to yield the T -matrix. Analyzing the ability of such a scheme to 
reproduce the low energy s-wave effective range expansion, the 
scattering length and effective range reff , Phillips et al. [14,15] have 
argued, using cutoff regulation, that the resulting effective range is 
necessarily negative in the limit of infinite cutoff, � → ∞. Further-
more, analyzing specifically a contact EFT at next-to-leading-order 
(NLO) with a 2-body potential consisting of a delta function plus 
its derivative-squared, they have shown that in the � → ∞ limit 
reff ≤ 0 regardless of the Lagrangian parameterization, i.e. the value 
of the low energy constants (LECs).

The deep fundamental reason behind this observation can be 
traced back to the causality principle. For a scattering process, 
causality implies that the scattered wave cannot leave the target 
before the incident wave has reached it. Applying this argument to 
2-body scattering with an energy independent potential of range 
R , Wigner has shown [16], followed by others [17,14], that the ef-
fective range has an upper bound,

reff ≤ 2R

(
1 − R

as
+ R2

3a2
s

)
. (1)

The range R of the interaction is proportional to 1/�. Hence, the 
Wigner bound becomes more restrictive with increasing �. In the 
limit of � → ∞ (R → 0), the effective range is bounded from 
above by zero [15].

This bound has a profound effect on contact EFT. The theory 
cannot be renormalized while working non-perturbatively [18]. 
More precisely, the cutoff cannot be eliminated without turning 
reff to be negative, if any order but the leading order is treated 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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non-perturbatively [19]. Consequently, two options remain, either 
working non-perturbatively giving up renormalization group in-
variance, see e.g. [20,21], or working perturbatively for any EFT 
order beyond leading order, see e.g. [3]. The latter option is gen-
erally much harder numerically for the many-body problem, since 
it requires resolving the full leading order Green’s function. How-
ever, in some cases this numerical effort can be reduced, see e.g. 
[22] for the three-body case.

Here we would like to take a second look at non-perturbative 
contact EFT, and check if it is forever doomed to be cutoff depen-
dent or maybe renormalization group invariance can be restored 
if we include enough orders in our calculation. Stated differently, 
does for an arbitrary high cutoff, an EFT order can be picked such 
that the underlying theory is reproduced, to within a desired ac-
curacy? As a motivation, consider an EFT represented by a sum of 
smeared delta functions and their derivatives [5], generated from 
Gaussians with a width of 1/�. In the limit � → ∞ a delta func-
tion is recovered. The range of the EFT interaction at order n is 
associated with terms of the form x2n exp(−x2/2), i.e. higher order 
terms broaden the EFT interaction. For a specific order the result-
ing range is finite and will vanish when � → ∞. However, if we 
change the order of the limits, it can be seen that for any value of 
� there exist n large enough such that the interaction range can 
assume the desired value.

To study this point we consider here a contact EFT of scalar 
bosonic fields. First we show explicitly using partial renormaliza-
tion that up to order N9LO, given a scattering length, the Wigner 
bound loosens as more EFT orders are taken into account. Then 
we demonstrate, for a concrete example at N2LO, that our finding 
holds when the LECs are renormalized to reproduce the effective 
range expansion to order p4. From this analysis we conjecture that 
for an arbitrary value of �, any finite effective range reff can be 
described by the theory if the EFT order is large enough. In the 
process, we find that multiple renormalization choices arise as 
more orders are taken into account. A method to pick the phys-
ical one is then suggested.

2. Effective range in increasing EFT orders

In order to understand the evolution of the Wigner bound with 
increasing EFT orders, we study a low energy EFT for a scalar 
bosonic field � of mass m. This theory is closely related to the 
nuclear pionless effective field theory (/πEFT), that as fundamen-
tal degrees of freedom includes only nucleons, with no mesons. 
Starting from the EFT Lagrangian L, and deducing the 2-body in-
teraction, the low energy scattering parameters are obtained by 
solving the s-wave Lippmann-Schwinger equation. Expanding the 
resulting T -matrix in the usual low-momentum form

1

T
= − m

4π

⎛
⎝− 1

as
+ 1

2
reff p2 +

∑
n≥2

Sn p2n − ip

⎞
⎠ , (2)

the scattering length as is then identified as the leading momen-
tum independent term, the effective range reff as the energy p2

coefficient, and the shape parameters Sn through the p2n terms.
Considering only s-wave interactions, and ignoring 3-body and 

higher multi-particle interaction terms, the EFT Lagrangian can be 
written as

L = L0 +L1 +L2 + . . . (3)

where L0, the LO Lagrangian, includes the free Lagrangian and a 
contact interaction term

L0 = �†
(

i∂t + 1 ∇2
)

� − 1
C00

(
�†�

)2
, (4)
2m 4
L1 includes the subleading NLO interaction term

L1 = −1

8
C20

[(
�†�

)(
�†∇2�

)
+ h.c.

]
, (5)

and L2 the N2LO interaction term

L2 = − 1

8
C40

[(
�†�

)(
�∇4�†

)
+ h.c.

]
− 1

4
C22

(
�†∇2�

)(
�†∇2�

)
. (6)

In a similar fashion, Ln includes all possible 4-field operators with 
n insertions of ∇2. The Lagrangian parameters C pq , known as the 
low energy coefficients (LECs), are fixed through the renormaliza-
tion condition to reproduce the scattering parameters as, reff, Sn , 
etc. For brevity, we also write C00 as C0, C20 as C2, and so on.

In momentum space, the corresponding potential can be writ-
ten as

V NnLO =C0 + C2

(
p2 + p′2

)
+ C4

(
p4 + p′4

)
+ C22 p2 p′2 + · · · , (7)

where p is the incoming relative momentum and p′ the outgoing 
momentum. To avoid the UV divergences embedded in the contact 
terms we regularize the interaction V → F (p′)V F (p) using either 

a Gaussian regulator F (p) = e
− p2

�2 or a sharp cutoff F (p) = �(� −
p), where �(� − p) is the Heaviside step function.

The T -matrix is obtained by iterating the potential through the 
Lippmann-Schwinger equation

T = V + V GT . (8)

Following the footsteps of Phillips, Beane and Cohen [15], we note 
that for a separable potential such as the EFT interaction (7), which 
can be written as

V (p, p′) = F (p)

n∑
i, j=0

p2iλi j p′2 j F (p′) , (9)

the T -matrix assumes the form

T (E) = F (p)

n∑
i, j=0

p2iτi j(E)p′2 j F (p′) , (10)

and the Lippmann-Schwinger equation is reduced into a simple 
matrix equation

τ (E) = λ + λI(E)τ (E) (11)

where the matrix elements of I are given by

Ii j ≡
∫

d3q

(2π)3

F 2(q)q2(i+ j)

E + iε − q2

2μ

(12)

and μ = m/2 is the reduced mass. Equation (11) can be formally 
solved to yield

τ (E) = 1

1 − λI(E)
λ . (13)

The matrix elements λi j are just the LECs organized according to 
their order along the anti diagonals of λ. For example at N3LO

λ =

⎛
⎜⎜⎝

C0 C2 C4 C6
C2 C22 C24
C4 C42
C

⎞
⎟⎟⎠ . (14)
6
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The loop integrals Ii j defined in (12) depends only on the sum 
of their indices, i.e. Ii j = I2(i+ j) . Using the recursive relation [15]

I2k(E) = 2μEI2(k−1)(E) + I2k+1 , (15)

with

I2k+1 = −2μ

∫
d3q

(2π)3
F 2(q)q2k−2 , (16)

the integral I2k can be reduced into the sum

I2k(E) = (2μE)kI0(E) +
k∑

j=1

(2μE) j−1 I2(k− j)+3 (17)

where

I0(E) =
∫

d3q

(2π)3

F 2(q)

E + iε − q2

2μ

. (18)

Explicit expressions for the integrals (16) and (18) are given for 
a sharp cutoff in [23]. The corresponding expressions for a Gaus-
sian cutoff are given by

I0(E) = − μ�

(2π)
3
2

+ μ
√

2μE

π
3
2

D

(√
4μE

�2

)
(19)

− i
μ

√
2μE

2π
e
− 4μE

�2 ,

and

I2k+1 = −

(
k + 1

2

)
μ�2k+1

√
2 · 2k+1π2

. (20)

D(x) is the Dawson function,

D(x) ≡ e−x2

x∫
0

e y2
dy = −i

√
π

2
e−x2

erf(ix) . (21)

Using these results for Gaussian regulator, the NLO T -matrix 
becomes

1

T
= e

4μE
�2

(
(C2 I3 − 1)2

C0 + C2
2 I5 + 2μE

I3

(
1 − (C2 I3 − 1)2

) − I0(E)

)
. (22)

The renormalization conditions for the LECs can be now de-
duced by comparing the EFT T -matrix (22) with the experimental 
parameters of the effective range expansion (2). More specifically, 
the LO parameter C0 is obtained by inverting the scattering length 
equation as = μ

2π T (0), yielding the relation C0 = C0(as, C2). Sim-
ilarly, the effective range is deduced from the real part of the 
energy derivative of the T -matrix at zero,

reff = �
[

d

dE

(
− 2π

μ2T (E)

)∣∣∣∣
E=0

]
. (23)

Substituting C0(as, C2) in (23) one obtains the following relation 
between reff and C2

reff = − 4

�2as
+ 2π

μ2
� [I ′

0(0)
]

− 4π

I3μ

(
μ

2πas
+ � [I0(0)]

)2 [
1 − 1

(C2 I3 − 1)2

]
. (24)

Inspecting the high cutoff limit � → ∞ of (24), the EFT Wigner 
bound on reff , for a given scattering length as ,
Table 1
The Wigner bound parameter W (n) as a function of the EFT order n for n =
1, 2, . . .6. The expressions are presented for both a Gaussian and sharp regulators.

Order 1 2 3 4 5 6

Gaussian 8
√

2
π

32
√

2
π

3

64
√

2
π

5

512
√

2
π

35

1024
√

2
π

63

4096
√

2
π

231

Sharp 16
π

256
9π

1024
25π

65536
1225π

262144
3969π

4194304
53361π

reff ≤ W

�
(25)

is obtained. The Wigner bound parameter W is a positive dimen-
sionless constant, that may depend on the regulator, and in general 
also on the order of our EFT. In the limit � → ∞, Eq. (25) leads to 
the unnatural result reff ≤ 0 [15].

For an EFT at NLO with Gaussian regulator, the explicit ex-

pression W = 8
√

2
π

[
1 − 1

(C2 I3−1)2

]
can be obtained using Eqs. 

(20)–(22). It is clear that in this case the maximum value of reff

is achieved when taking C2 I3 → ∞, leading to W = 8
√

2
π .

Given an experimental value of reff, Eq. (25) can be inverted 
to yield an upper bound on the cutoff � ≤ �max = W /reff. In the 
following we would like to study the dependence of the Wigner 
bound parameter W (n) on the order n of the EFT, and see if W (n)

diverges in the limit n → ∞, removing the Wigner bound for a 
complete theory, and restoring renormalization group invariance. 
To this end, we shall concentrate on the several first EFT orders, 
and try to infer the general behavior.

Using Eqs. (2) and (10) the scattering length as and the effective 
range reff can be expressed through the relations

as = μ

2π
τ00(0) (26)

and

reff = τ ′
00(0) + 2μ(τ01(0) + τ10(0)) − 8πas

�2

2πa2
s

. (27)

The τ matrix, Eq. (13), depends on all LECs of order n or smaller. 
After inverting Eq. (26), reff in (27) is a function of the scatter-
ing length as and all the LECs but C0. Naively, in order to extract 
W (n) one should take the limit of Eq. (27) at high cutoffs and 
then search for the maximum of reff over the LECs parameter space 
{C2, C4, . . .}. We managed to follow this procedure analytically up 
to order n = 2, i.e. N2LO. Beyond that point this approach becomes 
impractical, due to the inversion operation in Eq. (13). Instead, not-
ing that at NLO, Eq. (24), the maximum was obtained in the limit 
C2 I3 → ∞, we introduced the dimensionless LECs

C pq = C̃ pq

μ�p+q+1 . (28)

Now, following the NLO example and searching for a maximum 
reff, we impose the condition C pq I p+q+1 → ∞ by setting C̃ pq =
�/μ. With this condition, it is relatively easy to obtain an analytic 
expression for the Wigner bound parameter W (n) = lim

�→∞� reff. Of 
course, this prescription does not guarantee the maximization of 
reff, but it sets a lower bound. Nevertheless, searching numerically 
for the maximum of reff up to N4LO we obtained exactly the same 
results. We applied this procedure up to EFT order n = 9 and n =
10, for a Gaussian and a sharp regulator correspondingly. The first 
six W (n) results for both regulators are presented in Table 1.

We note that for the Gaussian regulator the results in Table 1
(and those of higher order) follow the pattern

W (n)
Gauss = 4

√
2


(n + 1)



(
n + 1 ) (29)
2
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Fig. 1. The Wigner bound parameter W (n) as a function of the EFT order n. Red 
squares are results for a Gaussian regulator, blue circles denote a sharp regulator. 
The curves are our conjectures Eqs. (29) and (30).

whereas the results for the sharp cutoff follow the pattern

W (n)

Sharp = 4

(

(n + 1)



(
n + 1

2

)
)2

. (30)

Making the conjecture that these relations hold for any EFT order 
n, and utilizing Stirling’s formula, we hypothesize that at high EFT 
orders

lim
n→∞ W (n)

Gauss = 4
√

2n , (31)

and

lim
n→∞ W (n)

Sharp = 4n . (32)

If it holds, this conjecture implies that W (n) diverge in the limit 
n → ∞ defeating the Wigner bound for a complete theory, and 
restoring renormalization group invariance for an EFT with positive 
effective range.

The difference between the two regulators, displayed in Fig. 1, 
is quite striking. It can be viewed as another indication that 
short distance physics coming from loops is important in non-
perturbative EFT. Consequently, regulators with different high mo-
mentum behavior can yield different results.

3. Fixing the LECs

For the EFT to reproduce the available experimental data, the 
LECs should be fitted to some selected observables. For contact 
EFT it is natural to fit the LECs to the effective range expansion 
parameters, Eq. (2). In the previous section we have discussed the 
limited case of fitting the LECs to reproduce as, reff. In this section 
we elaborate more on the fine details of the fitting procedure, aim-
ing to demonstrate that our Wigner bound parameters W (n) hold 
also for the general case where we fit the LECs to reproduce also 
the shape parameters.

In principle, choosing the best LECs demands nothing but a 
simple χ2 minimization. However, iterating the potential to all or-
ders, the scattering T -matrix becomes a non linear function of the 
LECs. As a result, the parameter space {C pq} contains multiple min-
ima, that are equivalent in χ2. The number of these minima might 
grow with the EFT order.

To understand the problem, let us reconsider the bosonic EFT 
of Eq. (3) at NLO, and choose again as and reff as the fitting ob-
servables. Fixing the cutoff � and solving the Lippmann-Schwinger 
equation, one obtains a closed form expression for reff = reff(C2), 
Eq. (24), and thus just need to invert it to get C2 = C2(reff),
Fig. 2. C±
2 in NLO EFT versus the effective range. Upper branch (blue line) - C−

2 , 
lower branch (red, dashed) - C+

2 . Vertical dashed line - the Wigner bound at NLO. 
Black dot - reff obtained at LO for as� = 103.

C±
2 = 1

I3

⎡
⎢⎢⎣1 ±

⎛
⎜⎝1 −

�[I ′
0(0)] − μ2reff

2π − 2μ2

�2πas

2μ
I3

(
μ

2πas
+ �[I0(0)]

)2

⎞
⎟⎠

− 1
2
⎤
⎥⎥⎦ . (33)

Studying this expression we first of all note that for the LECs to 
be real, ensuring a real action, the expression in the root must be 
positive. This condition is nothing else but the Wigner bound. It 
can also be seen that for a positive root there exists two solutions 
for C2. Using the fact that I2k+1 < 0, Eq. (20), we conclude that

C−
2 ∈ (

1

I3
,∞) (34)

C+
2 ∈ (−∞,

1

I3
) < 0 . (35)

Hence, only the C−
2 branch contains the zero, i.e. only the minus 

solution can be thought of as a continuity of the LO theory. Stated 
differently, imagine that the LO completely describes the underly-
ing theory (such as the case for a delta potential), i.e. it reproduces 
all the low energy observables, and specifically the effective range. 
In this situation we expect the NLO theory to be equivalent to the 
LO theory, i.e. C2 = 0. This solution is not accessible by the C+

2
branch, we therefore conclude that C−

2 is the physical branch. This 
situation is presented graphically in Fig. 2. The above situation can 
repeat itself at higher EFT orders. As analytical calculations become 
much harder with increasing n, one must resort to numerical com-
putations. In order to identify numerically the physical solution we 
suggest the following strategy: For a given cutoff �, start at LO and 
fix C0 to reproduce one low energy observable, say as . Proceed to 
NLO and start the search with C0 = CLO

0 and C2 = 0. Now change 
C2 slowly until the theoretical effective range rNLO

eff matches the ex-
perimental value reff. Make sure that in the process the values of 
C0, C2 do not jump from one solution branch to another. Repeat 
the process with each EFT order. This process can be visualized in 
Fig. 2, as follows: we start from the LO solution C2 = 0, black dot, 
and move slowly along the C−

2 branch until we reproduce the ex-
perimental reff.

4. Numerical example

In section 2 we aimed at getting the Wigner bound as a func-
tion of the EFT order n while ignoring the matching between the 
LECs and all physical observables but as, reff. Our conclusion was 
that W (n) increases indefinitely with EFT order. In this section we 
want to verify this observation through a concrete numerical ex-
ample where we fit not only as, reff but also the leading shape 
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Fig. 3. The maximal value of reff as a function of the cutoff for different EFT orders. 
as was fixed to fit the Volkov potential. The calculations were done with a Gaussian 
regulator. The dots show the actual reff value for the Volkov potential.

parameter. To this end we consider a synthetic example where our 
underlying theory consists of bosonic nucleons, i.e. bosons with the 
nucleon mass, that interact via the 2-body Volkov potential [24]. To 
simplify the numerical work, we limit ourselves in this section to 
a Gaussian regulator.

The Volkov potential is given by

V (r) = V Re
− r2

R2
1 + V Ae

− r2

R2
2 , (36)

where V R = 144.86 MeV, V A = −83.34 MeV, R1 = 0.82 fm, and 
R2 = 1.6 fm. Its leading effective range parameters are as =
10.08 fm, reff = 2.37 fm and S2 = 0.43 fm3. The 2-body binding 
energy is E2 = −0.545 MeV.

We start by calculating the Wigner bound, i.e. the maxi-
mal effective range as a function of the cutoff � assuming that 
the Volkov potential is our underlying theory, and fixing as to 
10.08 fm. The results are presented in Fig. 3. Defining �

(n)
max ≡

W (n)/reff as the highest cutoff that can be taken at order n while 
still reproducing the experimental effective range, we see that for 
the Volkov case �(n)

max = 2.3, 3.1, 3.8 fm−1 for n = 1, 2, 3. Compar-
ing these numbers with our analytical prediction Eq. (31) we see 
that indeed as expected �(n+1)

max /�
(n)
max ≈ √

(n + 1)/n.
Now we limit our attention to n = 2, i.e. EFT at N2LO, and uti-

lize the effective range expansion parameters to order p4 to fit the 
LECs. We note that at this order there are 3 observables as, reff, S2, 
but 4 LECs. Considering only the on-shell 2-body T -matrix, it is 
well established that there is a one-to-one correspondence be-
tween the effective range expansion and contact EFT while some 
of the LECs become redundant [26,19]. These LECs encode informa-
tion on the off-shell physics and therefore cannot be renormalized 
via scattering data. It follows that if we focus on the 2-body sec-
tor at N2LO one of the LECs will remains free [25]. In the following 
we will utilize this parameter as a measure for how much freedom 
remains after renormalization at a specific cutoff value.

In practice we have derived an analytic expression for the LECs 
C0, C2, C4 that depends on as, reff, S2 and C22, which we kept as 
a free parameter. We have found that the permissible values of 
C22 were limited by the hermiticity condition that C0, C2, C4 are 
real. In Fig. 4 we present this permissible range of C22 as a func-
tion of the cutoff. It can be seen, that close to the critical point 
� −→ �

(2)
max the permissible range shrinks to a point, and that it 

completely disappears when � > �
(2)
max.

Trying the behavior of the theory near the edge of the permis-
sible C22 range, we explored the relations between C22 and the 
other LECs. It appears that at the edge of the C22 region the LECs 
possess a singular point, i.e. the renormalization conditions for 
Fig. 4. EFT at N2LO. The permissible values of the LEC C22 as a function of the cutoff 
- shaded area. Vertical dashed line - the highest cutoff reproducing reff at N2LO. The 
LECs C0, C2, C4 are fitted to reproduce the Volkov potential as, reff, S2.

Fig. 5. The LEC C0 as a function of c22 at different cutoffs. The scattering parameters 
as, reff, S2 are constrained by the Volkov potential. Blue (full) line - � = 1.0 fm−1, 
red (dashed) line - � = 1.5 fm−1, purple (dashed-dot) line - � = 2.0 fm−1, and 
green (dotted) line - � = 2.5 fm−1.

C0(C22), C2(C22), C4(C22) diverge. It follows that as the freedom 
in C22 decreases, the relations between the LECs become more 
radical. To illustrate this point we plot in Fig. 5 the LEC C0 as a 
function of C22 for different cutoffs.

The shrinking of the permissible C22 interval in the limit � −→
�

(2)
max may lead us to think that in this limit C22 becomes redun-

dant. That is, the range of possible predictions implied from the 
freedom in C22 should shrink as well. To check this hypothesis 
we have utilized our EFT to calculate the triton’s binding energy 
E3(Volkov), that for the Volkov potential is equal to −8.431 MeV. 
The results of these calculations are presented in Fig. 6 as a func-
tion of �. Surprisingly, we have found that up to rather high values 
of � the E3(C22) range increases while the permissible interval of 
C22 decreases. At low cutoffs, the upper bound on E3 coincides 
with the 2-body threshold, and it decreases slowly as � −→ �

(2)
max. 

In contrast, the lower bound drops dramatically, following the 
standard path of the Thomas collapse [27] up to � ≈ 2.7 fm−1. 
Above this point the collapse stops, and near the critical point 
� ≈ �

(2)
max the values of E3 become comparable to the exact bind-

ing energy E3(Volkov).
To better understand this result and its consequences, we have 

calculated the triton’s binding energy also at LO, and NLO, see 
Fig. 7. From the figure it can be seen that the LO takes the 
usual path while the NLO has entire range over which E3(NLO) ≈
E3(Volkov), but as � → �

(1)
max the energy deviates, and at the crit-

ical point E3 ≈ −5 MeV. We note that at N2LO we can renormalize 
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Fig. 6. The triton’s binding energy E3 as a function of the cutoff. Blue line - the 
exact value for the Volkov potential. Shaded gray area - range of possible EFT (at 
N2LO) predictions, reflecting the permissible values of C22, see Fig. 4.

Fig. 7. The triton’s binding energy E3 as a function of the cutoff, like in Fig. 6, with 
the addition of the LO, and NLO results.

C22 to reproduce E3(Volkov), thus eliminating the 3-body force. 
This we can do up to about � = 3 fm−1, the point where the exact 
result is excluded from the permissible E3 region. From this point 
on E3 will move along the lower bound of the region until at �(2)

max
it will reach a value E3 ≈ −5 MeV. Following a pattern similar to 
NLO.

In general, we expect that the renormalization group invari-
ance of the theory will be restored over a limited cutoff range, 
that will increase in size with the EFT order. For the specific NLO 
case, presented in Fig. 7, the prediction of E3 should be taken 
from the interval 1 fm−1 � � � 1.7 fm−1, where dE3/d� ≈ 0. The 
relation dE3/d� ≈ 0 should be taken in an EFT sense, that is 
|d ln (E3) /d ln (�)| � (Q /Mb)

n+1 where Q is the soft scale, Mb is 
the hard scale and n is the EFT order (n = 1 for NLO).

5. Summary

For a non-perturbative contact EFT we analyzed the evolution of 
the Wigner bound parameter W (n) with the EFT order n. Consid-
ering sharp and Gaussian regulators, we have found, up to n = 10
and n = 9 respectively, an analytic lower limit for W (n) . This limit 
is regulator specific. From this analysis, we have concluded that 
the Wigner bound loosens with increasing EFT order, and conjec-
tured for these regulators the general dependence of W (n) on n. 
If it holds, this conjecture implies that W (n) diverge in the limit 
n → ∞ defeating the Wigner bound, and restoring renormalization 
group invariance for a complete theory.
Verifying our results with a concrete numerical example we 
have demonstrated at N2LO that our conclusions hold after full 
renormalization procedure, as long as at least one LEC is utilized to 
maximize the cutoff. Studying the 3-body system with this exam-
ple, we have found that limiting the permissible range of cutoffs 
by the Wigner bound, we avoid the Thomas collapse, and don’t 
need to promote the 3-body force to LO. If proven for the gen-
eral case this observation might be of practical importance, as a 
3-body force appearing at LO, and 4-body force appearing at NLO, 
are a huge liability from a computational many-body perspective.

The implications of the current observation on the nuclear 
/πEFT, on p-wave interaction, and on χEFT call for further study.
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