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The Wigner bound, setting an upper limit on the scattering effective range, is examined at different
orders of contact effective field theory. Using cutoff regulator we show that the bound loosens when
higher orders of the theory are considered. For a sharp and Gaussian regulators, we conjecture an analytic
formula for the dependence of the Wigner bound on the theory’s order. It follows that the bound vanishes
in the limit of infinite order. Using a concrete numerical example we demonstrate that the above surmise

still holds after renormalization at finite cutoff. Studying the 3-body system with this example, we have
found that limiting the permissible range of cutoffs by the Wigner bound, we avoid the Thomas collapse,
and don’t need to promote the 3-body force to leading order.
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1. Introduction

In the last two decades contact effective field theory (EFT) has
been successfully applied for studying low energy systems where
the characteristic particle wave length is much larger than the in-
teraction range. Such systems can be found, for example, in ultra
cold atomic gases, clusters of He atoms, and atomic nuclei, see e.g.
[1-4]. In such circumstances, it can be argued that the details of
the short-range part of the interaction become irrelevant and a
contact interaction, i.e. a delta function and its derivatives, can be
used to parameterize it [5-7]. This parameterization can be un-
derstood to result from integrating out the high energy degrees of
freedom of the underlying theory and then expanding the resulting
Lagrangian in terms of contact interactions.

In a complete EFT, the Lagrangian should include all possible
terms compatible with the symmetries of the underlying theory. To
make such theory of any use, only finite number of terms should
be retained when aiming to calculate some observable to a de-
sired accuracy. Therefore an appropriate ordering of the Lagrangian
terms is a key ingredient for a successful EFT. A natural order for
contact EFT is arranging the interaction terms according to their
mass dimension [8,4,9]. A non-relativistic particle field ¥ counts
as 3/2 and a derivative counts as 1. This ordering is known as the
“naive” power counting. It works very well for the 2-body sector
if the scattering length as is of the order of the interaction range,
but fails for very large scattering lengths (see e.g. [10] for a nice
derivation), and for the 3,4, ...-body, interaction terms [11,12].
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In the scheme proposed by Weinberg [13], the contact inter-
actions are to be iterated in the Lippmann-Schwinger equation
to yield the T-matrix. Analyzing the ability of such a scheme to
reproduce the low energy s-wave effective range expansion, the
scattering length and effective range re¢, Phillips et al. [14,15] have
argued, using cutoff regulation, that the resulting effective range is
necessarily negative in the limit of infinite cutoff, A — co. Further-
more, analyzing specifically a contact EFT at next-to-leading-order
(NLO) with a 2-body potential consisting of a delta function plus
its derivative-squared, they have shown that in the A — oo limit
reff < 0 regardless of the Lagrangian parameterization, i.e. the value
of the low energy constants (LECs).

The deep fundamental reason behind this observation can be
traced back to the causality principle. For a scattering process,
causality implies that the scattered wave cannot leave the target
before the incident wave has reached it. Applying this argument to
2-body scattering with an energy independent potential of range
R, Wigner has shown [16], followed by others [17,14], that the ef-
fective range has an upper bound,

R R?
Tetf <2R(1—-—+— | . (1)
as  3ag

The range R of the interaction is proportional to 1/A. Hence, the
Wigner bound becomes more restrictive with increasing A. In the
limit of A — oo (R — 0), the effective range is bounded from
above by zero [15].

This bound has a profound effect on contact EFT. The theory
cannot be renormalized while working non-perturbatively [18].
More precisely, the cutoff cannot be eliminated without turning
reff to be negative, if any order but the leading order is treated
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non-perturbatively [19]. Consequently, two options remain, either
working non-perturbatively giving up renormalization group in-
variance, see e.g. [20,21], or working perturbatively for any EFT
order beyond leading order, see e.g. [3]. The latter option is gen-
erally much harder numerically for the many-body problem, since
it requires resolving the full leading order Green’s function. How-
ever, in some cases this numerical effort can be reduced, see e.g.
[22] for the three-body case.

Here we would like to take a second look at non-perturbative
contact EFT, and check if it is forever doomed to be cutoff depen-
dent or maybe renormalization group invariance can be restored
if we include enough orders in our calculation. Stated differently,
does for an arbitrary high cutoff, an EFT order can be picked such
that the underlying theory is reproduced, to within a desired ac-
curacy? As a motivation, consider an EFT represented by a sum of
smeared delta functions and their derivatives [5], generated from
Gaussians with a width of 1/A. In the limit A — oo a delta func-
tion is recovered. The range of the EFT interaction at order n is
associated with terms of the form x%" exp(—x2/2), i.e. higher order
terms broaden the EFT interaction. For a specific order the result-
ing range is finite and will vanish when A — oco. However, if we
change the order of the limits, it can be seen that for any value of
A there exist n large enough such that the interaction range can
assume the desired value.

To study this point we consider here a contact EFT of scalar
bosonic fields. First we show explicitly using partial renormaliza-
tion that up to order N°LO, given a scattering length, the Wigner
bound loosens as more EFT orders are taken into account. Then
we demonstrate, for a concrete example at N2LO, that our finding
holds when the LECs are renormalized to reproduce the effective
range expansion to order p*. From this analysis we conjecture that
for an arbitrary value of A, any finite effective range ref can be
described by the theory if the EFT order is large enough. In the
process, we find that multiple renormalization choices arise as
more orders are taken into account. A method to pick the phys-
ical one is then suggested.

2. Effective range in increasing EFT orders

In order to understand the evolution of the Wigner bound with
increasing EFT orders, we study a low energy EFT for a scalar
bosonic field W of mass m. This theory is closely related to the
nuclear pionless effective field theory (7 EFT), that as fundamen-
tal degrees of freedom includes only nucleons, with no mesons.
Starting from the EFT Lagrangian £, and deducing the 2-body in-
teraction, the low energy scattering parameters are obtained by
solving the s-wave Lippmann-Schwinger equation. Expanding the
resulting T-matrix in the usual low-momentum form

1 m

1 1 2 2n .
S > sp? —ip | 2
T yp= as+2 eff D -l-n>2 nD P (2)

the scattering length as is then identified as the leading momen-
tum independent term, the effective range ref as the energy p?
coefficient, and the shape parameters S, through the p2" terms.

Considering only s-wave interactions, and ignoring 3-body and
higher multi-particle interaction terms, the EFT Lagrangian can be
written as

L=Lo+L1+Ly+... (3)

where Ly, the LO Lagrangian, includes the free Lagrangian and a
contact interaction term

1 1 2
Lo=W (i3 + —V2 )W~ -Coo (\IJT\IJ> , (4)
2m 4

L1 includes the subleading NLO interaction term
L= —%Czo [(\IJT\IJ) (\yTvzxp) + h.c.] , (5)
and £, the N2LO interaction term
Ly=— %c‘m [(w) (w9*9f) + e ]
_ %czz (\I/TVZ\IJ> (\Iﬁvzxy) . (6)

In a similar fashion, £, includes all possible 4-field operators with
n insertions of V2. The Lagrangian parameters Cpq, known as the
low energy coefficients (LECs), are fixed through the renormaliza-
tion condition to reproduce the scattering parameters ds, eff, Sn,
etc. For brevity, we also write Cgg as Co, Cz9p as Co, and so on.

In momentum space, the corresponding potential can be writ-
ten as

Vo =Co + G2 (Pz + 13/2)
+Ca(p*+p ) + Coapp 2 4 (7)

where p is the incoming relative momentum and p’ the outgoing

momentum. To avoid the UV divergences embedded in the contact

terms we regularize the interaction V — F(p’)V F(p) using either
2

_p
a Gaussian regulator F(p) =e 42 or a sharp cutoff F(p) = ®(A —
p), where ®(A — p) is the Heaviside step function.

The T-matrix is obtained by iterating the potential through the
Lippmann-Schwinger equation
T=V+VGT. (8)

Following the footsteps of Phillips, Beane and Cohen [15], we note
that for a separable potential such as the EFT interaction (7), which
can be written as

V(p,p)=F(p) Y p*mjp F(p), (9)
i,j=0

the T-matrix assumes the form

T(E)=F(p) Y _ p*u(E)p F(p), (10)
i,j=0

and the Lippmann-Schwinger equation is reduced into a simple
matrix equation

T(E)=A+MZ(E)T(E) (11)
where the matrix elements of Z are given by

s _ [ La_FP@et) 12)
T ey 2
21

and pu =m/2 is the reduced mass. Equation (11) can be formally
solved to yield

T(E)=——X. (13)

The matrix elements A;; are just the LECs organized according to
their order along the anti diagonals of A. For example at N°LO

Co G (4 Cg
Cy Cypp Cyg
Cqy Cy

Cs

(14)
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The loop integrals Z;; defined in (12) depends only on the sum
of their indices, i.e. Z;jj = (i j). Using the recursive relation [15]

Tok(E) = 2ET (1) (E) + Iopeq1 s (15)
with
-9 d’q 2 2=2 6
L1 =—-2p s F7(@)q (16)
(2m)
the integral Z,, can be reduced into the sum
k
_ k j-1 .
To(E) = QUE)To(E) + Y QUE) ™ Iyg—jy43 (17)
j=1
where
g  F*g
To(E) = 5 5 (18)
@ yis - &

Explicit expressions for the integrals (16) and (18) are given for
a sharp cutoff in [23]. The corresponding expressions for a Gaus-
sian cutoff are given by

To(k) =~ M0 BVARE, G/ ) (19)
Q)3 3 A2
_ IMW —
27 ’

and

o Dt g)pa!

2k+1 = _W (20)
D(x) is the Dawson function,

X
D(x) = e f eyzdy = —i?e’xzerf(ix) ) (21)

0

Using these results for Gaussian regulator, the NLO T-matrix
becomes

1 4uE (Cal3 —1)2
T=en 2UE
T Co+C3ls + 7= (1= (Cal3 = 1)2

The renormalization conditions for the LECs can be now de-
duced by comparing the EFT T-matrix (22) with the experimental
parameters of the effective range expansion (2). More specifically,
the LO parameter Cy is obtained by inverting the scattering length
equation as = %T(O), yielding the relation Cy = Co(as, C2). Sim-
ilarly, the effective range is deduced from the real part of the
energy derivative of the T-matrix at zero,

[ d 2
rmzmhf(ﬁﬁwﬂso]' (23)

) —IO(E)> . (22)

Substituting Co(as, C2) in (23) one obtains the following relation
between ref and Cy

21 ,
Teff = — + ﬁm [75(0)]

A2ag
_ NI[Zo(0 . 24
bu( FAROL) = En o2 (24)

Inspecting the high cutoff limit A — oo of (24), the EFT Wigner
bound on reff, for a given scattering length ag,

Table 1
The Wigner bound parameter W™ as a function of the EFT order n for n =
1,2,...6. The expressions are presented for both a Gaussian and sharp regulators.

Order 1 2 3 4 5 6
2 2 2 2 2
Gaussian s /2 32,/2 64‘/; 512,/ 2 1024,/ 2 4096,/ 2
T 3 5 35 63 231

Shar 16 256 1024 65536 262144 4194304

p b3 or 257 12257 39697 533617
w

Teff < — (25)

A

is obtained. The Wigner bound parameter W is a positive dimen-
sionless constant, that may depend on the regulator, and in general
also on the order of our EFT. In the limit A — oo, Eq. (25) leads to
the unnatural result ref <0 [15].

For an EFT at NLO with Gaussian regulator, the explicit ex-

pression W = 8[[ Gh 1)2}

(20)-(22). It is clear that in this case the maximum value of reg

can be obtained using Egs.

is achieved when taking C,I3 — oo, leading to W = 8@

Given an experimental value of ref, EQ. (25) can be inverted
to yield an upper bound on the cutoff A < Apax = W /regs. In the
following we would like to study the dependence of the Wigner
bound parameter W™ on the order n of the EFT, and see if W@
diverges in the limit n — oo, removing the Wigner bound for a
complete theory, and restoring renormalization group invariance.
To this end, we shall concentrate on the several first EFT orders,
and try to infer the general behavior.

Using Egs. (2) and (10) the scattering length as and the effective
range rof can be expressed through the relations

as =5~ 700(0) o6)
T
and
740(0) + 214 (701 (0) + T10(0)) — ¥
Feff = —2 o1 10 _ o

Znas

The 7 matrix, Eq. (13), depends on all LECs of order n or smaller.
After inverting Eq. (26), ref in (27) is a function of the scatter-
ing length as and all the LECs but Cg. Naively, in order to extract
W@ one should take the limit of Eq. (27) at high cutoffs and
then search for the maximum of re¢ over the LECs parameter space
{C3,C4,...}. We managed to follow this procedure analytically up
to order n = 2, i.e. N2LO. Beyond that point this approach becomes
impractical, due to the inversion operation in Eq. (13). Instead, not-
ing that at NLO, Eq. (24), the maximum was obtained in the limit
CyI3 — o0, we introduced the dimensionless LECs

CPq

Cpg= WAPFI+T (28)

Now, following the NLO example and searching for a maximum

refr, we impose the condition Cpglpiq+1 — 0o by setting Cpq =

A /. With this condition, it is relatively easy to obtain an analytic

expression for the Wigner bound parameter W™ = Alim Atefr. Of
— 00

course, this prescription does not guarantee the maximization of
Teff, Dut it sets a lower bound. Nevertheless, searching numerically
for the maximum of ref up to N4LO we obtained exactly the same
results. We applied this procedure up to EFT order n=9 and n =
10, for a Gaussian and a sharp regulator correspondingly. The first
six W® results for both regulators are presented in Table 1.

We note that for the Gaussian regulator the results in Table 1
(and those of higher order) follow the pattern

Frn+1)
—4 29
\/—F(n—i— ) (29)
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Fig. 1. The Wigner bound parameter W™ as a function of the EFT order n. Red
squares are results for a Gaussian regulator, blue circles denote a sharp regulator.
The curves are our conjectures Eqgs. (29) and (30).

whereas the results for the sharp cutoff follow the pattern

2
wm _a(fatD\ 30
<r<n+ ) .

Making the conjecture that these relations hold for any EFT order
n, and utilizing Stirling’s formula, we hypothesize that at high EFT
orders

; (n)
nlgrolo Wi =4V2n, (31)
and

; m  _
nll)ngo WSharp =4n. (32)

If it holds, this conjecture implies that W™ diverge in the limit
n — oo defeating the Wigner bound for a complete theory, and
restoring renormalization group invariance for an EFT with positive
effective range.

The difference between the two regulators, displayed in Fig. 1,
is quite striking. It can be viewed as another indication that
short distance physics coming from loops is important in non-
perturbative EFT. Consequently, regulators with different high mo-
mentum behavior can yield different results.

3. Fixing the LECs

For the EFT to reproduce the available experimental data, the
LECs should be fitted to some selected observables. For contact
EFT it is natural to fit the LECs to the effective range expansion
parameters, Eq. (2). In the previous section we have discussed the
limited case of fitting the LECs to reproduce as, rer. In this section
we elaborate more on the fine details of the fitting procedure, aim-
ing to demonstrate that our Wigner bound parameters W™ hold
also for the general case where we fit the LECs to reproduce also
the shape parameters.

In principle, choosing the best LECs demands nothing but a
simple x2? minimization. However, iterating the potential to all or-
ders, the scattering T-matrix becomes a non linear function of the
LECs. As a result, the parameter space {Cq} contains multiple min-
ima, that are equivalent in x2. The number of these minima might
grow with the EFT order.

To understand the problem, let us reconsider the bosonic EFT
of Eq. (3) at NLO, and choose again as and reg as the fitting ob-
servables. Fixing the cutoff A and solving the Lippmann-Schwinger
equation, one obtains a closed form expression for reff = reff(C2),
Eq. (24), and thus just need to invert it to get Co = Ca(Teff),

100

50

-4.0 -2.0 0.0 2.0 4.0 6.0
Teff [Ail]

Fig. 2. CZi in NLO EFT versus the effective range. Upper branch (blue line) - C;,
lower branch (red, dashed) - C;. Vertical dashed line - the Wigner bound at NLO.
Black dot - ref obtained at LO for asA = 103.

N—=

2 2
[ mon -t - 33
2 T - 2
I 8%
3 2 (S +MTo0)])

Studying this expression we first of all note that for the LECs to
be real, ensuring a real action, the expression in the root must be
positive. This condition is nothing else but the Wigner bound. It
can also be seen that for a positive root there exists two solutions
for C,. Using the fact that Iyx4+q1 < 0, Eq. (20), we conclude that

1
C; € (3, ) (34)

1
CS e (—oo, E) <0. (35)

Hence, only the C, branch contains the zero, i.e. only the minus
solution can be thought of as a continuity of the LO theory. Stated
differently, imagine that the LO completely describes the underly-
ing theory (such as the case for a delta potential), i.e. it reproduces
all the low energy observables, and specifically the effective range.
In this situation we expect the NLO theory to be equivalent to the
LO theory, i.e. C; = 0. This solution is not accessible by the C;
branch, we therefore conclude that C; is the physical branch. This
situation is presented graphically in Fig. 2. The above situation can
repeat itself at higher EFT orders. As analytical calculations become
much harder with increasing n, one must resort to numerical com-
putations. In order to identify numerically the physical solution we
suggest the following strategy: For a given cutoff A, start at LO and
fix Co to reproduce one low energy observable, say as. Proceed to

NLO and start the search with Co = C{° and C; = 0. Now change

C, slowly until the theoretical effective range r§:° matches the ex-

perimental value reg. Make sure that in the process the values of
Cp, C2 do not jump from one solution branch to another. Repeat
the process with each EFT order. This process can be visualized in
Fig. 2, as follows: we start from the LO solution C; = 0, black dot,
and move slowly along the C, branch until we reproduce the ex-
perimental reff.

4. Numerical example

In section 2 we aimed at getting the Wigner bound as a func-
tion of the EFT order n while ignoring the matching between the
LECs and all physical observables but as, reg. Our conclusion was
that W® increases indefinitely with EFT order. In this section we
want to verify this observation through a concrete numerical ex-
ample where we fit not only as, reg but also the leading shape
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Fig. 3. The maximal value of ref as a function of the cutoff for different EFT orders.
as was fixed to fit the Volkov potential. The calculations were done with a Gaussian
regulator. The dots show the actual reg value for the Volkov potential.

parameter. To this end we consider a synthetic example where our
underlying theory consists of bosonic nucleons, i.e. bosons with the
nucleon mass, that interact via the 2-body Volkov potential [24]. To
simplify the numerical work, we limit ourselves in this section to
a Gaussian regulator.

The Volkov potential is given by

2 2

r

V(r)=Vre M +Vse B, (36)

where Vg = 144.86 MeV, V4 = —83.34 MeV, Ry = 0.82 fm, and
R; = 1.6 fm. Its leading effective range parameters are as; =
10.08 fm, reff = 2.37 fm and Sy = 0.43 fm>. The 2-body binding
energy is E; = —0.545 MeV.

We start by calculating the Wigner bound, i.e. the maxi-
mal effective range as a function of the cutoff A assuming that
the Volkov potential is our underlying theory, and fixing as; to
10.08 fm. The results are presented in Fig. 3. Defining Ag',;,( =
W@ /re as the highest cutoff that can be taken at order n while
still reproducing the experimental effective range, we see that for
the Volkov case A,(I'}?,X =23,3.1,3.8fm™! for n=1,2,3. Compar-
ing these numbers with our analytical prediction Eq. (31) we see
that indeed as expected Ag;;l)/A(m";X ~ ., /(n+1)/n.

Now we limit our attention to n =2, i.e. EFT at N2LO, and uti-
lize the effective range expansion parameters to order p* to fit the
LECs. We note that at this order there are 3 observables as, reff, S,
but 4 LECs. Considering only the on-shell 2-body T-matrix, it is
well established that there is a one-to-one correspondence be-
tween the effective range expansion and contact EFT while some
of the LECs become redundant [26,19]. These LECs encode informa-
tion on the off-shell physics and therefore cannot be renormalized
via scattering data. It follows that if we focus on the 2-body sec-
tor at N2LO one of the LECs will remains free [25]. In the following
we will utilize this parameter as a measure for how much freedom
remains after renormalization at a specific cutoff value.

In practice we have derived an analytic expression for the LECs
Co, C3, C4 that depends on ds, refr, So and Cz2, which we kept as
a free parameter. We have found that the permissible values of
Cy, were limited by the hermiticity condition that Cg, Cy, C4 are
real. In Fig. 4 we present this permissible range of Cyy as a func-
tion of the cutoff. It can be seen, that close to the critical point
A —> AI(TZI;X the permissible range shrinks to a point, and that it
completely disappears when A > A;%;X.

Trying the behavior of the theory near the edge of the permis-
sible Cyy range, we explored the relations between Cy; and the
other LECs. It appears that at the edge of the C,, region the LECs
possess a singular point, i.e. the renormalization conditions for

800

600

o400
=

61 200

0

1.0 1.5 2.0 2.5 3.0
A [fm™]

Fig. 4. EFT at N2LO. The permissible values of the LEC Cy; as a function of the cutoff
- shaded area. Vertical dashed line - the highest cutoff reproducing rer at N2LO. The
LECs Co, C2, C4 are fitted to reproduce the Volkov potential as, reff, S2.

2500
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;1,_1/\_1
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LA ey e

N A=15[fm™]

—:= A=2[fm™]

+ A=25[fm™

0 200 400 600

500

.
K-
Ml

Fig. 5. The LEC Cy as a function of ¢y, at different cutoffs. The scattering parameters
as, Teff, S2 are constrained by the Volkov potential. Blue (full) line - A =1.0 fm~T,
red (dashed) line - A =1.5 fm~?, purple (dashed-dot) line - A =2.0 fm~!, and
green (dotted) line - A =2.5 fm~1.

Co(C22), C2(C22), C4(Cyp) diverge. It follows that as the freedom
in Cyy decreases, the relations between the LECs become more
radical. To illustrate this point we plot in Fig. 5 the LEC Cq as a
function of Cy, for different cutoffs.

The shrinking of the permissible Co; interval in the limit A —>
Ag;x may lead us to think that in this limit C2; becomes redun-
dant. That is, the range of possible predictions implied from the
freedom in Cp; should shrink as well. To check this hypothesis
we have utilized our EFT to calculate the triton’s binding energy
E3(Volkov), that for the Volkov potential is equal to —8.431 MeV.
The results of these calculations are presented in Fig. 6 as a func-
tion of A. Surprisingly, we have found that up to rather high values
of A the E3(Cyy) range increases while the permissible interval of
Cy, decreases. At low cutoffs, the upper bound on E3 coincides
with the 2-body threshold, and it decreases slowly as A —> Aggx.
In contrast, the lower bound drops dramatically, following the
standard path of the Thomas collapse [27] up to A ~ 2.7 fm~!.
Above this point the collapse stops, and near the critical point
A= A,(ﬁ;x the values of E3 become comparable to the exact bind-
ing energy E3(Volkov).

To better understand this result and its consequences, we have
calculated the triton’s binding energy also at LO, and NLO, see
Fig. 7. From the figure it can be seen that the LO takes the
usual path while the NLO has entire range over which E3(NLO) ~
E3(Volkov), but as A — Aﬁllgx the energy deviates, and at the crit-
ical point E3 ~ —5 MeV. We note that at N°>LO we can renormalize
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B (*H)
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A [fm’l}

Fig. 6. The triton’s binding energy E3 as a function of the cutoff. Blue line - the
exact value for the Volkov potential. Shaded gray area - range of possible EFT (at
N2LO) predictions, reflecting the permissible values of Cy;, see Fig. 4.
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Fig. 7. The triton’s binding energy E3 as a function of the cutoff, like in Fig. 6, with
the addition of the LO, and NLO results.

Cyy to reproduce E3(Volkov), thus eliminating the 3-body force.
This we can do up to about A =3 fm™!, the point where the exact
result is excluded from the permissible E3 region. From this point
on E3 will move along the lower bound of the region until at Aggx
it will reach a value E3 ~ —5 MeV. Following a pattern similar to
NLO.

In general, we expect that the renormalization group invari-
ance of the theory will be restored over a limited cutoff range,
that will increase in size with the EFT order. For the specific NLO
case, presented in Fig. 7, the prediction of E3 should be taken
from the interval 1fm™" <A <1.7fm™", where dE3/dA ~ 0. The
relation dEs/dA ~ 0 should be taken in an EFT sense, that is
|dIn (E3) /dIn(A)| < (Q/Mp)"t! where Q is the soft scale, My is
the hard scale and n is the EFT order (n =1 for NLO).

5. Summary

For a non-perturbative contact EFT we analyzed the evolution of
the Wigner bound parameter W™ with the EFT order n. Consid-
ering sharp and Gaussian regulators, we have found, up to n =10
and n =9 respectively, an analytic lower limit for W™, This limit
is regulator specific. From this analysis, we have concluded that
the Wigner bound loosens with increasing EFT order, and conjec-
tured for these regulators the general dependence of W™ on n.
If it holds, this conjecture implies that W™ diverge in the limit
n — oo defeating the Wigner bound, and restoring renormalization
group invariance for a complete theory.

Verifying our results with a concrete numerical example we
have demonstrated at N?LO that our conclusions hold after full
renormalization procedure, as long as at least one LEC is utilized to
maximize the cutoff. Studying the 3-body system with this exam-
ple, we have found that limiting the permissible range of cutoffs
by the Wigner bound, we avoid the Thomas collapse, and don’t
need to promote the 3-body force to LO. If proven for the gen-
eral case this observation might be of practical importance, as a
3-body force appearing at LO, and 4-body force appearing at NLO,
are a huge liability from a computational many-body perspective.

The implications of the current observation on the nuclear
7 EFT, on p-wave interaction, and on x EFT call for further study.
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