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Abstract 

This thesis is devoted to the formulation of a new result in [1–3] that establishes a connection

between holographic complexity in the form of the so-called Complexity = Volume proposal and the

gravitational clumping of matter, within the AdS/CFT correspondence. The main result of the thesis,

the ‘Momentum/Volume Complexity (PVC) correspondence’, formalizes the recurrent idea that the

gravitational clumping of matter increases the complexity of the quantum state. The PVC correspon-

dence works for perturbations of fnite entropy thermal states beyond the scrambling time, where the

linear growth of complexity is associated to the frozen momentum of the excitation in the black hole

interior. It generalizes previous ‘Momentum/Size’ correspondences in the literature.

The exact PVC correspondence of this thesis works for any normalizable spherically symmetric state

in arbitrary dimensions and for any normalizable state in 2+1 dimensions. Its proof is based on the

kinematics of the Momentum Constraint of General Relativity.

There are two physical obstructions for an exact PVC correspondence in more general situations.

The frst one is intrinsic to the topology of space, and it arises in the presence of spatial wormholes

connecting di˙erent asymptotic boundaries. In this case, the spatial wormhole can stretch without any

matter whatsoever. The second obstruction comes from the impossibility to defne a local notion of

gravitational momentum, and in particular it arises for pure gravity solutions consisting of gravitational

waves. A Generalized PVC correspondence is formulated to include this latter case, derived from the

Codazzi equation, which assigns a contraction of the Weyl tensor to the purely gravitational contribution

of the momentum.

The central notion of ‘infall momentum’ has a Newtonian version which explicitly captures the

intuitive idea that matter clumping increases complexity. A relativistic generalization of this version

also exists. Finally, the value of VC for states with small backreaction is given in terms of a radial

‘moment of inertia’ that quantifes the degree of clumping of matter.

Other work developed during the thesis and related to the topics covered in this manuscript is [4–6].



Resumen 

Esta tesis se compone de los artículos [1–3] en los que se establece una conexión entre la noción de

complejidad holográfca dada por la denominada prescripción de Complejidad = Volumen, y el grado

de compresión de la materia debido a la atracción gravitatoria, en el contexto de la correspondencia

AdS/CFT. El resultado prinicpal de esta tesis formaliza la idea recurrente de que la atracción grav-

itatioria de la materia aumenta la complejidad cuántica del estado del sistema. Cuando el colpaso

gravitatorio genera un agujero negro en AdS, la complejidad crece linealmente después de la termal-

ización global, y este crecimiento lineal está capturado por el momento propio de la materia en el

interior del agujero negro, que se encuentra congelado debido a la acumulación de las hipersuperf-

cies extremales. Este resultado generaliza correspondencias previas entre el momento y el tamaño del

operador que han aparecido recientemente en la literatura.

La correspondencia PVC de esta tesis captura de forma exacta cualquier confguración esférica-

mente simétrica de materia normalizable en cualquier dimensión, además de cualquier estado en 2+1

dimensiones. Su demostración está basada en la cinemática de la restricción inicial de momento de la

Relatividad General.

Existen dos obstrucciones principales para extender la correspondencia Complejidad / Momento

exacta a situaciones más generales. La primera es intrínseca a la topología del espacio, y aparece

cada vez que este incluya agujeros de gusano que conecten distintas regiones asintóticas. La segunda

restricción se manifesta por la imposibilidad de defnir una noción local de momento gravitatorio, y

en particular aparece cuando el espaciotiempo es una solución dinámica de gravedad pura sin materia,

formada por ondas gravitacionales. Esta última situación se puede incluir en una generalización de la

correspondencia PVC, derivada de las ecuaciones de Codazzi, en la que se le asigna una contribución

dada por una contracción del tensor de Weyl al momento puramente gravitatorio del sistema.

La noción central de ‘momento de caída’ tienen una versión Newtonianan que explícitamente captura

la idea intuitiva de que la compresión de la materia aumenta la complejidad. Existe también una

generalización relativista de esta versión. Finalmente, el valor de VC para estados con backreaction

pequeña estña dada en términos de un ‘momento de inercia radial’ que cuantifca el grado de compresión

de la materia.

Otro trabajo de investigación realizado durante el transcurso de la tesis doctoral, y relacionado con

los temas que cubre este manuscrito es [4–6].
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Chapter I 

Foundations



1. INTRODUCTION

1 Introduction

The long chain of scientifc breakthroughs that took place in Physics over the last century completely

revolutionized our way to conceive reality. The world at subatomic scales appears to be governed by

a handful of physical principles: the laws of quantum mechanics, the symmetries of special relativity,

and the principle of spacetime locality of matter and its interactions. Together they logically spawn

the sophisticated framework of Quantum Field Theory, upon which our most precise description of the

constituents of the Universe, the Standard Model of particle physics, is formulated.

Attaining such an incredibly precise and satisfactory description of the electroweak and strong

interactions, it was a matter of time for an attempt to include gravity into this paradigm to materialize

[7]. The solid foundations of QFT remarkably require that the gravitational interaction is transmitted

by means of a massless particle of spin 2, the graviton, which necessarily couples in a universal way to

all forms of energy [8], providing a microscopic raison d’être of Einstein’s theory of General Relativity.
? 

In the theory of quantum gravity, the gravitational vertex is weighted by the coupling g „ GE,

where G is Newton’s constant and E is the center-of-mass energy of the process. Any reasonable
?

´1gravitational system thus becomes strongly coupled at the Planck scale, M “ G „ 10 ´33 cm, orP 

even before, depending on other high-dimension operators present in the e˙ective theory.

As in many other physical systems, the breakdown of the perturbative expansion typically points

towards the existence of unidentifed degrees of freedom underlying close to the cuto˙ scale, which are

ultimately responsible of bringing the theory back into a controlled regime. The question then arises:

what are these degrees of freedom in the case of gravity?

Perhaps a solid indication of what these degrees of freedom are not is provided already by a classic

result of Weinberg and Witten [9]. In essence, any attempt to describe the graviton as a composite

state of more elementary local constituents can be disregarded, since such a bound state will never be

able to reproduce the Lorentz transformation properties of the graviton. This result arguably precludes

the possibility of having an ultraviolet-complete description of gravity without abandoning the route

of QFT at some point below the Planck scale.

String Theory is, for multiple reasons, our most prominent candidate for an ultraviolet completion of

quantum gravity. In the perturbative regime, the graviton is naturally accommodated in the spectrum
´1of a closed fundamental string of size ` s Á M , together with a zoo of di˙erent particles arising fromP 

di˙erent vibration modes of the string. The theory contains a long list of features which captivate

the aesthetically minded, including: supersymmetry, extra dimensions, complete unifcation of matter

and the interactions, UV-fniteness of the perturbative S-matrix, dualities between all the seemingly

di˙erent weakly coupled corners of the theory, etc. Even if it is yet to be seen whether the conditions

in our Universe can be accommodated into the landscape of string vacua, string theory defnitely

exceeded the expectations of many providing ultraviolet-complete models of quantum gravity even at

the non-perturbative level.

8



1. INTRODUCTION

At any rate, due to the large hierarchy between the TeV scale and the Planck (or string) scale, it

seems implausible that these ideas can be put under direct experimental scrutiny in the near future.

Fortunately for us, gravity happens to be radically di˙erent at the fundamental level, and it is hides

its marvelous features on objects of the macroscopic world. These objects are black holes.

1.1 The Holographic Principle

Black holes stand out as one of a kind among the plethora of exotic gravitational phenomena. They are

perfectly suited for a classical description within the theory of General Relativity, and yet they provide

a window to the fundamental structure of the quantum theory.

In the realm of astrophysics, black holes of a few kilometers in size are known to generically form

from the gravitational collapse of large stars in the fnal stages of their lives. Almost a century after

their theoretical prediction, stellar mass black holes have been fnally observed in binary systems via

their gravitational wave signal [10]. In addition, supermassive black holes of 106 ´ 109 solar masses

which inhabit the galactic centers have more recently been observed, including Sagittarius A˚ in the

center of our own galaxy [11].

Figure 1: Supermassive black hole in the galactic center of M87.

Classically, a black hole of mass M is an object of infnite entropy. Its near-horizon region is able to

accommodate excitations with arbitrarily large redshift which, without modifying the mass of the black

hole, e˙ectively dissipate for an exterior observer once they cross the horizon. Black holes are literally

characterized as spacetime holes out of which nothing can scape, and therefore possess a vanishing

temperature. The existence of such zero-temperature cosmic reservoirs becomes problematic at the

level of the second law of thermodynamics. Basically, throwing anything at them from the outside

world decreases the entropy of the Universe.

The tension between black hole entropy and the second law of thermodynamics is only resolved

in the quantum theory. It was Bekenstein who frst considered the thought-experiment of fnding the

9



1. INTRODUCTION

most entropic way to form a black hole of mass M starting from matter which satisfes the laws of

quantum mechanics [12,13]. Such an upper bound in the entropy now exists, and it arises from the fact

that the minimum energy of an excitation is inversely proportional to its wavelength, δE “ λ ´1 . To

count on something as falling into the black hole, one must now be sure that its wavelength fts inside

the Schwarzschild radius. A back-of-the envelope calculation then reveals that black holes have fnite

entropy proportional to their area in Planck units.

The area of the black hole is a promising candidate for its coarse-grained entropy since, within

General Relativity, it is a quantity which cannot decrease with time for any process involving matter

with positive null energy. However, it was really not until the much more sophisticated analysis by

Hawking [14] that the area could be taken seriously as an entropy in the standard thermodynamic sense.

Hawking made the brilliant observation that black holes do emit thermal radiation, for the reason that

the local inertial vacuum of the quantum felds across the horizon looks thermally populated for an

observer who sits outside.

In light of this observation, black holes do behave as ordinary quantum mechanical systems from

an outside perspective, and in particular they follow the standard laws of thermodynamics, with an

entropy given by the acclaimed Bekenstein-Hawking formula

Area
S “ . (1.1)

4G 

Unlike in any local physical system, the entropy of the black hole scales with its area, which hints

that the fundamental degrees of freedom of the black hole rearrange in such a way that they live on

the (stretched) horizon, with an approximate density of one degree of freedom per Planck area.

A formula like (1.1) has dramatic consequences for the interior locality. It seems to point out that

the interior space is not fundamental, and that it really emerges from the properties of the fundamental

degrees of freedom placed at the horizon. A caricature of this phenomenon exists in optics, known as

a hologram. A hologram consists of a two dimensional surface that is able to encode the image of a

three dimensional object. The object seems to emerge ‘out of nowhere’ when the observer lights up the

system. In the case of a black hole, however, the hologram encodes all the interior space itself, and the

encoding is physically much more subtle, since there is no simple analog of ‘lighting up’ the black hole

from the outside to see what lies inside.

Furthermore, the black hole entropy accounts for an overwhelming majority of the total microstates

of any gravitational system at suÿcient large energy in a fnite volume. This can also involve situations

in which the volume is microscopic. Indeed, the scattering amplitude of a few particles at a center-of-

mass energy of E " MP will be entropically dominated, at the level of accessible intermediate states,
´1by the production a ‘large’ black hole resonance of radius R „ GE " M and entropy S „ GE2 whichP 

will evaporate in a time t „ G2E3 , spitting gravitons and other particles throughout the process of

evaporation. For the S-matrix experimentalist who collects the outcomes of the scattering, it will be
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1. INTRODUCTION

impossible to resolve distances shorter than GE in this experiment. In this way, the existence of black

holes poses an end to the Wilsonian paradigm at the Planck scale. Trying to resolve shorter distances

is fundamentally impossible since the UV and IR degrees of freedom start to mix at the Planck scale.

These considerations regarding black holes as holograms, together with the entropic dominance of

black hole microstates in any system lead, after quite a while, to the radical proposal by t‘ Hooft [15] and

later by Susskind [16] to promote the black hole entropy to a physical principle, dubbed the holographic

principle, which views space itself as an emergent structure arising from the intricate confguration of

some putative holographic degrees of freedom that live very far away.

For many reasons, the exact nature of the holographic degrees of freedom that could describe

our Universe remains elusive. In other types of ‘Universes’, however, namely those with negative

cosmological constant, the structure of space is such that gravity and matter live inside an infnite

‘box’, called AdS space, which allows to naturally place the holographic degrees of freedom on the walls

of the box.

1.2 AdS/CFT

String theory, as a consistent theory of quantum gravity with black holes, passes the test and is able

to successfully implement the holographic principle in its full glory. In fact, for many, the (second)

largest triumph of the theory is that it allows to reproduce the Bekenstein-Hawking entropy (1.1)

microscopically for certain BPS black holes with Ramond-Ramond fuxes by directly counting states of

strings ending on D-branes at weak coupling in the type IIB string theory [17, 18]. More impressively,

string theory accommodates the strong version of the holographic principle in a series of ultraviolet-

complete models of gravitational holograms in AdS space.

The original model proposed by Maldacena [19] consists of N “ 4 supersymmetric Yang-Mills

theory in four dimensions with gauge group SUpNq and gauge coupling g. In the type IIB string, this

theory arises naturally as the low-energy limit of the worldvolume theory of a stack of N coincident
D3-branes.1 At strong t’ Hooft coupling λ “ g2N , the system admits a dual supergravity description

in terms of a black D3-brane solution with N units of Ramond-Ramond fve-form fux, which develops

an AdS5 ˆ S5 near horizon geometry. In certain low energy limit, the massless closed strings in the

asymptotic region decouple in both pictures, which allows for the defnition of the full type IIB string

theory on the throat in terms of the strong coupling regime of the SYM theory. The curvature radius

of the AdS5 and of the S5 are given by ` „ λ1{4 ` s in units of the string length. The ten-dimensional

Planck scale is ` P „ N ´1{4 ` and therefore a very large value of N is required so that the classical

solution can be trusted.

In addition to the original example, there have been quite a variety of di˙erent models worked out in

di˙erent numbers of AdS dimensions by adding more sophisticated ingredients and following a similar

1 Modulo a Up1q collective mode.
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1. INTRODUCTION

route, or by starting from di˙erent corners of string theory (see eg. [19–21]). The common thread in

all of these examples is that the string/M theory living inside the AdSd`1 ‘box’ emerges as a collective

phenomenon of a strongly interacting quantum system living on the d-dimensional walls of the box.

The Dictionary

The boundary description displays conformal symmetry, realizing the asymptotic symmetries of the

dual gravitational theory in AdS. These theories of quantum gravity are then, like any other CFT,

fully specifed by means of the conformal data tJi, Δi, Cij
k u of spins Ji, conformal dimensions Δi and

OPE coeÿcients Cij
k . The conformal data, already at this level, has to satisfy the highly non-trivial

constraints imposed by the associativity of the OPE.

Sensible holographic CFTs moreover must have a very particular spectrum of states in radial quan-

tization. In the low-lying part of the spectrum, with Δ ! N2 , they contain local primaries O which
behave as free felds in the large-N limit, even if the theory is strongly coupled. Indeed, these felds

generically incorporate large amounts of anomalous dimension which can scale with some power of the

coupling λ. In SYM, these generalized free felds are constructed from properly normalized single traces

of products of gauge-invariant operators, like Opxq “ TrF npxq, where F is the gauge feld strength,

and n ! N .

In the large-N limit, the correlation functions of these felds factorize

xOpx1qOpx2qOpx3qOpx4qy „ xOpx1qOpx2qy xOpx3qOpx4qy ` ppermutationsq . (1.2)

In fact, the consistency of the conformal block decomposition of this 4-point function (1.2) in the direct

channel requires that there exists, apart from the generalized free feld algebra, a tower of conformal

primaries corresponding to ‘multi-particle operators’, like O2pxq, O3pxq, as well as more complicated

felds of higher spin [22,23]. The generalized free felds therefore generate a low-lying Fock space inside

the full CFT.

The presence of such an integrable substructure in any holographic CFT becomes obvious once the

bulk dual of a generalized free feld O is identifed. The dual corresponds simply to a supergravity/string

excitation φ of small mass, m` „ OpN0q, in AdS. Both operators are related via the so-called extrapolate

dictionary [24, 25]

Opxq “ lim r Δ φpr, xq , (1.3)
rÑ8 

that is, the generalized free feld provides the normalizable boundary value to the bulk feld, where r 
is the Fe˙erman-Graham radial coordinate. The mass m of the bulk feld φ is related to the conformal

12



1. INTRODUCTION

dimension Δ and spin of the operator O. 2 For example, the precise relation for scalar felds is

c 
d d2 

2`2Δ “ ` ` m . (1.4)
2 4 

A compelling example of this relation is the duality between the bulk AdS graviton hµν and a

generalized free feld of spin J “ 2 and conformal dimension Δ “ d, which must necessarily be conserved

because it saturates the unitarity bound. This feld is no other than the energy-momentum tensor of

the CFT, Tµν . The holographic construction is therefore able to evade the no-go theorem of Weinberg

and Witten by modifying the number of dimensions of the space where the fundamental description

lives.

At large but fnite N , the non-planar contributions render the above subspace an approximate Fock

space, where conformal dimensions receive 1{N corrections and OPE coeÿcients between generalized

free felds no longer vanish. The latter correspond to bulk three-point interactions of the supergravity

felds, which are of order 1{N in AdS units. It is then tempting to ‘bootstrap’ the exact bulk theory

in a 1{N expansion, inferring the necessary Witten diagrams that match a consistent conformal block

decomposition of the boundary correlation functions (see [22,23] and references therein). It is plausible,

howver, that only few solutions exist to this problem, all supersymmetric, namely those holographic

CFTs that are handed in known examples of AdS/CFT.

Black holes

At high energies, an overwhelming amount of black hole states is required for the proper functioning of

the holographic duality. The boundary description is a theory with spacetime local degrees of freedom,

in which the high-energy spectrum must obey the ‘Cardy formula’

´ ¯ 
1 d´1 

ρpΔq „ exp c d Δ d , (1.5)

where c „ N2 is the central charge, a measure of the local number of degrees of freedom of the theory

at high enough energies Δ Á N2 .

Practically all of the states accounted for in (1.5) come from completely new primaries at high-

energies, which do not originate as multiparticle states of the low-lying Fock space. The latter produces

a density of states of the form
´ ¯ 

d 
ρpΔq „ exp α Δ d`1 , (1.6)

where α „ OpN0q, and 1 ! Δ ! λ1{4 . The N -dependence of the free energy shows that there exists a

frst-order phase transition, between a ‘confned’ phase at low temperatures and a ‘deconfned’ phase

2 The supergravity description requires of the existence of a gap in the spectrum of the CFT, controlled by λ1{4 for SYM,
for the lightest state of spin greater than 2.
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1. INTRODUCTION

at high temperatures, in the large-N limit of any holographic CFT on the sphere [26, 27].

In the bulk, the density of states (1.6) accounts for the supergravity in AdS in d ` 1 dimensions,

which is e˙ectively a local theory below the string scale, of OpN0q species. The high-energy phase, on

the other hand, is represented by the dominance of large black hole states in AdS above the Hawking-

` ´1 3Page temperature T Á , which was found long before the microscopic interpretation [28]. The

bulk Bekenstein-Hawking entropy (1.1) of large AdS black holes provides the right scaling (1.5) of a

local system in one less dimension.

Bulk locality

As described above, the gravitational hologram isometrically embeds the supergravity and stringy

excitations on top of AdS into the Hilbert space of the CFT on the sphere, HCFT. This approximate

Fock space of the CFT is commonly called the code subspace of empty AdS, Hcode, for reasons that will

become apparent in the next item.

The identifcation (1.3) between the asymptotic boundary conditions for the bulk felds and the

generalized free feld algebra opens up the possibility to derive the approximate local structure of the

bulk in terms of the CFT data [30–33]. Consider a local supergravity feld ΦpXq, where X is some

spacetime point in AdS. 4 In the large-N limit, the feld ΦpXq is a free feld in the bulk, and its

boundary conditions are given by (1.3). Finding a CFT representation of ΦpXq then translates to

fnding a ‘spacelike’ Green’s function of the Klein-Gordon equation which propagates the bulk point

X into a boundary point y. Such a Green’s function KpX, yq exists [31–33] and, albeit non-unique, it
provides a boundary representation of the bulk feld

ˆ
ΦpXq “ dd y KpX, yq Opyq . (1.7)

The HKLL representation (1.7) corresponds to a smeared local operator over the CFT spacetime.

When propagated into a Cauchy slice of the CFT, the operator (1.7) becomes explicitly non-local.

It consistently reproduces the two main features of an emergent local free bulk: piq microcausality,

rΦpXq, ΦpX 1qs “ 0 forX andX 1 spacelike-separated points, and piiq short-distance vacuum correlations,

ΦpXqΦpX 1q Ñ |X ´ X 1|1´d as X Ñ X 1 . These expressions do not hold as operator equations in the

CFT, they can only hold within the code subspace Hcode.

At fnite but large N , the feld ΦpXq is no longer free, and the representation (1.7) needs to be

improved in a 1{N expansion by adding suitable interaction vertices, weighted by powers of 1{N , which

3 In realistic models, an intermediate stringy regime, which develops a Hagedorn density of sates at high temperatures,
will control the details of the phase transition (see [29] and references therein).
4 Gravitational dressing can be added by attaching a spacelike geodesic Wilson line from X to the boundary. For the
sake of simplicity, we omit such a technical discussion here.
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1. INTRODUCTION

5now allow to propagate multiple boundary points py1, ..., ynq into X.

Entanglement builds space

Plenty of new ideas have fourished in these last twenty years concerning the precise way in which

the boundary system encodes the quantum information of the bulk in AdS/CFT systems. Arguably

the most intriguing interpretation is that quantum entanglement is at the root of the emergence of a

connected space, an idea which is often referred to with the slogan ‘ER = EPR’ [34, 35]. The avatar

of ER=EPR is the eternal black hole in AdS, which possesses a spatial wormhole connecting two

asymptotic regions (see Fig. 2). The fne-grained description is the thermofeld-double state living in

two completely independent copies of the CFT [36],

ÿ1 ´β En ˚|TFDy “ a e 2 |nyL b |n yR . (1.8)
Zpβq n 

The thermofeld-double contains a large amount of bipartite entanglement, in fact given by (1.1),

between the CFTs. On the contrary, product states of the two CFTs correspond to disconnected bulk

geometries, since both systems appear uncorrelated. Nevertheless, bipartite entanglement is not enough

to ensure geometric connectivity. The state (1.8) moreover has a very unique entanglement spectrum,

which captures the particular correlations of a short ER bridge. A small perturbation a scrambling

time away in the past is able to completely destroy these correlations [37].

Figure 2: The thermofeld double state |TFDy is dual to an eternal black hole. In the euclidean
section, the semi-circle represents the path integral that prepares the state on HL b HR, and the flling
of this circle corresponds to the euclidean AdS-Schwarzschild geometry. The bulk state of the quantum
felds is the Hartle-Hawking state.

5 For example, at order 1{N , only a three-point vertex contributes, and Φ has an improved HKLL representation in terms
of smeared local and bilocal felds in the CFT.
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Ryu and Takayanagi proposed a formula which strengthens this connection [38]. Consider the

simplest case of the ground state of the CFT on the sphere, |0y, and some bipartition of the Hilbert

space HCFT “ HA b HĀ, in terms of the degrees of freedom in some spatial region A and on its

complement Ā (see Fig. 3). 6 The properties of the state on HA are described by the mixed state
¯ρA “ TrĀ |0y x0|. In particular, the overall amount of entanglement between A and A on this state

is measured by the von Neumann entropy of the reduced density matrix, SpρAq “ ´TrA pρA log ρAq.
The proposal is that, in the large-N limit, the entanglement entropy is given by

AreapχAq
SpρAq “ , (1.9)

4G 

where χA is a bulk codimension-2 minimal surface, called the RT surface, anchored to BA and homolo-

gous to A. Even if the RT formula (1.9) looks structurally like the Bekenstein-Hawking entropy formula

(1.1), and in fact it does reduces to the latter in certain cases, the notion of entropy involved in (1.9)

is a much more fne-grained property of the actual quantum state |0y.

¯Figure 3: Cauchy slice of empty AdS. The RT surface χA divides the bulk in two regions A and A.

The RT formula was re-derived from ‘frst principles’ in the work of Lewkowycz and Maldacena [40]

(see also [41]). In this work, the replica trick is complemented in holographic systems á la Gibbons-

Hawking by the rule of flling the bulk geometry with any allowable on-shell confguration which respects

the asymptotic boundary conditions, and evaluating the on-shell gravitational action on each of these

saddles. After the analytic continuation of the replica-symmetric geometry in the number of replicas,

and taking this number close to one, the only contribution of the Einstein-Hilbert action which happens

6 Strictly speaking, in the continuum, the Hilbert space of the CFT does not factorize, and only UV fnite quantities, like
the relative entropy, make sense. These have to be defned in terms of local operator subalgebras and the Tomita-Takesaki
theory (see [39] and references therein). A similar situation occurs for the case of lattice gauge theories in fnite volume,
except that in this case entanglement entropy is fnite. We skip such a level of rigor here, and think naively about the
CFT on a lattice and forget about the gauge constraints.
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to survive in this limit is localized on the RT surface χA and it reproduces (1.9) exactly.

Generalizations of the RT formula have also been extensively studied. On the one hand, the covariant

version of the RT formula, valid for any time-dependent geometry, is the so-called HRT formula [42], in

which χA appears as an extremal surface, rather than a minimal one. The second kind of generalization

involves 1{N corrections, which in bulk terms correspond to the quantum corrections of the bulk

supergravity felds. Using the same replica trick, but now keeping track of one-loop determinants and

of backreaction, leads to the FLM formula [43]

SpρAq “ SW pχAq ` SpρAq , (1.10)

where SW pχAq is a local ‘Wald-entropy’ associated to χA, which at leading order in G reduces to

the area term. On the other hand, the RT surface divides the bulk Hilbert space into two regions,
¯Hcode “ HA b HĀ, where A is a homology hypersurface between the RT surface and A, and A is its

complement (see Fig. 3). The quantity SpρAq represents the entanglement entropy of the bulk state

between A and its complement. 7 The bulk domain of dependence of A, denoted DpAq, is called the

entanglement wedge of A.

Under linearized variations of the state, the ‘frst law of entanglement’, together with (1.10), outputs

the equality of modular Hamiltonians, or equivalently of relative entropies, of the subregions A and A,

within the code subspace [47]. A theorem follows from this assumption, ensuring the recovery of all

the information in the entanglement wedge of A solely from the degrees of freedom of A [48]. Explicit
ways to implement this reconstruction have also been provided in [49, 50].

The bulk-to-boundary map is redundant, since a bulk point X can belong to many di˙erent entangle-

ment wedges, and hence the local operator ΦpXq has many representations within di˙erent subregions

of the boundary system. This redundancy is crucial to guarantee that, no matter the part of the
¯boundary A that one loses access to, the information of ΦpXq can be recovered from any A, as long as

the bulk point lies within the entanglement wedge X P DpAq. In this way, the gravitational hologram

behaves very much like a quantum error correcting code [51] which maps the ‘logical’ bulk information

into the ‘physical’ boundary in a way that it protects this information against the ‘noise’ which destroys

arbitrary parts of the boundary [52].

Such a direct link between the emergence of space, the RT formula and error correction has lead to

the appearance of discrete toy models which qualitatively recreate these basic features of AdS/CFT.

The logic is that entanglement serves as a highly eÿcient way to parametrize the Hilbert space of a

many-body quantum system, in particular, when trying to look for ground states of local Hamiltonians.

A possible ansatz for the state is given in terms of a tensor network, a graph that inputs some inner

structure for the wavefunction Ψi1,...,iN by giving a geometric meaning to its entanglement. Precisely,

7 Alternatively, the QES prescription [44] serves as a further generalization of the FLM formula (1.10), valid in principle
to all orders in 1{N , which has been used in recent approaches to the black hole information paradox [45, 46].
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the entanglement entropy of some subregion is upper bounded by the minimal cut through the network

which bipartites the system accordingly.

Holographic tensor networks are rooted on discrete realizations of the RT formula, in which the graph

is a representation of the emergent hyperbolic geometry itself (see Fig. 4). This geometry emerges non-

linearly from the entanglement structure of the ground state of a critical many body quantum system,

which possess polynomially decaying correlations, as opposed to the exponentially decaying correlations

in a gapped system. Some particular tensor network representations of holographic states specialize on

capturing the scale invariant details of the entanglement structure, like MERA [53, 54], while others

favor the exact realization of the RT formula and, at the same time, straightforwardly generalize to

holographic quantum error correcting codes [55, 56]. 8 

Figure 4: HaPPY tensor network representing the ground state of the holographic system on the
spatial S1 . Each hexagon represents a so-called absolutely maximally entangled state on six parties.
The tensor network is designed to saturate the RT formula. The complexity of the state, measured by
the number of tensors in the network, is proportional to the volume of the slice.

Holographic Volume Complexity

Quantum complexity has been identifed as a key notion in the development of the holographic dictio-

nary for its promise to o˙er a peek into the interior of black holes [58]. In the Complexity “ Volume

(VC) prescription, the complexity of a state is given by

VolpΣqCp|Ψyq “ , (1.11)
G` 

8 A generic tensor network with hyperbolic geometry will also saturate the RT formula with very high probability, provided
that the bond dimension of the network is large (see [57]).
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where Σ is a extremal spacelike hypersurface, anchored to the boundary slice in which the state |Ψy

lives [59–61]. The heuristic motivation for this proposal is that it measures the overall amount of

emergent space, a quantity which has a direct interpretation in tensor network jargon, namely as the

computational complexity of the ‘circuit’ that eÿciently represents the entanglement structure of the

holographic state |Ψy (see Fig. 4).

For high-temperature thermofeld double states (1.8), the tensor network is a discrete representation

of the ER bridge [35,62]. Under the action of the Hamiltonian HL ` HR, the interior cylindrical circuit

grows a layer of S tensors per thermal time, yielding a total rate of

dC 
„ TS , (1.12)

dt 

in analogy with the interior volume growth of the black hole (see Fig. 5).

Figure 5: On the left, the extremal volume slice Σ is a geometric ER bridge that grows linearly in
time. On the right, the tensor network representation of the time-evolved thermofeld double state.
Under time evolution with HL ` HR, the circuit grows a layer of tensors per thermal time, in analogy
with the volume of Σ in the black hole interior. The right fgure has been taken from [63].

As opposed to entanglement entropy, the defnition of VC purely in terms of the holographic variables

remains elusive for the time being (see however [64–66] for some work in this direction), and we shall not

try to address this issue here. At any rate, extremal spatial volumes parametrized by codimension-one

boundary data are interesting quantities in any putative holographic description. Whether they are

literally related to some sort of computational complexity of the boundary system is an open question,

but it is certain that there exists a notion of ‘volume complexity’ induced from the bulk description.
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2. MOMENTUM AND SIZE

2 Momentum and Size

A recurrent idea since the early days of holography is that there is a somewhat implicit relation between

notions of ‘complexity’ of the encoded quantum information in the boundary system and the degree

of gravitational clumping of matter in the bulk [16]. Recent studies have substantiated this claim,

providing quantitative evidence, within the framework of AdS/CFT and of its two-dimensional coun-

terpart, in favor of the relation between a radial component of the momentum of an infalling particle

and the rate of growth in ‘size’ of the dual operator [67–73]. In this section, we review the so-called

momentum/size (PS) correspondence, which originally motivated [1–3].

2.1 Rindler momentum and fast scrambling

The proposal is that the ‘size’ of an operator can be characterized by a mechanical momentum of an

e˙ective particle in the bulk [67, 68]. The bulk particle is injected by the ‘small’ operator O on the

boundary, acting for simplicity on a thermal reference state ρβ “ e ´βH {Zpβq at, say t “ 0. If the

resulting state is evolved in time
´itH O ρβ e iHt e “ O´t ρβ , (2.1)

any increase of complexity is attributed to the increase in ‘size’ of the operator when evolved to the
´itH O eitHpast, in what we usually refer to a ‘precursor’: O´t “ e . The state (2.1) can be interpreted

as a heavy particle state falling through the bulk.

Consider a high-temperature reference state ρβ describing a large black hole in AdS. The e˙ective

particle will fall towards the horizon and eventually will reach the near horizon region. In the vicinity

of the regular horizon, we can pick polar Rindler coordinates pt, ρq which approximate the metric as

2 2ds « ´κ2ρ2dt2 ` dρ2 ` dsK , (2.2)

2 2πwhere dsK is a metric along the horizon which formally sits at ρ “ 0, and κ “ is the surface gravity.β 

The motion of the radially infalling matter particle can be taken as X “ ρ0 in terms of the adapted

reference frame τ “ ρ sinhpκtq and X “ ρ coshpκtq, where τ is the proper time of the co-moving frame

to the particle. In terms of the Rindler coordinates, the trajectory follows ρ « ρ0 expp´κtq at late

Rindler times. The proper Rindler-radial momentum satisfes

dρ κtPρ “ ´ « κ ρ0 e . (2.3)
dτ 

Since the surface gravity coincides with the fast-scrambling Lyapunov exponent, κ “ λL, the idea is to

relate Pρ and operator size SpOq, measured by the decay of a suitable out-of-time-order correlator [74].

In this case, both terms grow exponentially in time, so that the qualitative behavior only establishes

Pρ „ SpOq as proportional to the size, or any of its higher time derivatives.
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2. MOMENTUM AND SIZE

Figure 6: Standard notions of momentum in the PS correspondence are defned in terms of near-
horizon dynamics, using radial and time coordinates which remain outside the horizon.

2.2 Free fall in a near extremal throat

The precise relation between momentum and size can be elucidated by considering the free fall of the

e˙ective particle in the presence of a near-extremal magnetic Reissner–Nordström black hole in four

dimensions [69–71].

In the near horizon region, the geometry now contains an AdS2 ˆ S2 throat (see Fig. 7), which in

the s-wave sector is e˙ectively described by Jackiw-Teitelboim (JT) gravity, with action

ˆ ˆ ˙ ˆ ˆ ˙ 
2 1 

IJTrMs “ S0 χpMq ` φ R ` ` 2φ K ´ . (2.4)
`2 ` M BM 

Here χpMq is the Euler characteristic of M, and S0 is the extremal entropy. The dilaton acts as a

Lagrange multiplier which fxes the geometry to be locally AdS2, R “ ´2{`, where ` “ r` is the radius of

the higher dimensional black hole. The only gravitational degree of freedom of this system is located at

the cuto˙ AdS boundary BM, roughly speaking, at the local maximum of the higher dimensional s-wave

potential barrier. Its dynamics is described by the Schwarzian action, which can be reinterpreted as a

non-relativistic ‘boundary particle’ on a constant electric feld [75]. The Schwarzian breaks the boundary

reparametrization invariance of the Einstein-Hilbert action into an SLp2, Rq subgroup corresponding

to the isometries of AdS2 (see [76]).

An analogous pattern of symmetry breaking arises in the infrared sector of the large-N Sachdeev-
Ye-Kitaev (SYK) model. This quantum mechanical model consists of N interacting Majorana fermions

tψiu with quenched disorder given by the Hamiltonian

ÿ

H “ Jijkl ψiψjψkψl (2.5)
i,j,k,l 

where the couplings Jijkl are independent gaussian random variables with zero mean and variance

22



2. MOMENTUM AND SIZE

Figure 7: Near horizon geometry of a near extremal RN black hole with horizon r` and inverse
temperature β " r`. The Rindler region sits at the end of the AdS2 throat. The proper distance of
the throat is enhanced by a factor of logpβ{r`q. The blue boundary particle sits at the maximum of
the potential barrier.

J2 „ J2{N3 . In the large-N limit, the theory becomes ‘classical’ in terms of the bilocal master feld
1 ř 

Gpτ, τ 1q “ i xψipτqψipτ
1qy, and develops an emergent reparametrization invariance of this feldN 

in the deep infrared, E ! J. This symmetry gets spontaneously broken by the conformal solution
´2ΔG „ pτ ´ τ 1q , as well as explicitly broken by a small term, of order E{J, into a SLp2, Rq subgroup.

The e˙ective theory of this soft mode is given, at leading order in a derivative expansion, by the same

Schwarzian that governs the dynamical cuto˙ boundary of JT gravity (see [76, 77]). 9 

The parameter matching in the JT/SYK correspondence can be performed comparing the thermo-

dynamic entropy of both systems at low temperatures. In the large-N SYK model with βJ " 1, the
entropy scales as Sβ « S0 ` αN , where α is an Op1q coeÿcient that determines the specifc heat [77].βJ 

Remarkably, the model has a huge ground state degeneracy in the large-N limit, given by S0 “ γN ,
4π2r3 

where γ is another Op1q coeÿcient. On the gravitational side, Sβ « S0 ` ` is the near-extremalGβ 

entropy of the four-dimensional black hole, in terms of the extremal radius r` and the four-dimensional
? 2rPlanck scale G, and S0 “ π ` is the extremal entropy. The duality then requiresG 

1 
J „ , (2.6)

r` 
2r` N „ . (2.7)
G 

modulo some numerical constants that can be found for instance in [70]. 10 

9 No Goldstone modes arise from this ‘symmetry breaking’, since the SLp2, Rq has to be thought of as a redundancy in
Gpτ, τ 1

q, rather than a normal symmetry which acts on the Hilbert space.
10 In the putative holographic dual of the full SYK model, there is no sub-AdS locality, since the wavelength of all the
excitations is parametrically controlled by the AdS size J ´1 

„ r` “ `.
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In this controlled framework, it is possible create a particle on the top of the near-extremal throat,

basically by applying some single-fermion operator, like ψ1, on top of the low-temperature thermal

state of the SYK model, ρβ “ e ´βH {Zpβq. The typical energy of the excitation will be controlled by

J, which according to (2.6) agrees with the energy at the maximum of the potential barrier of the near

extremal black hole. The strategy is to follow the motion of the e˙ective particle along the throat, and

try to extend the notion of Rindler-momentum (2.3) to the full AdS2 region in order to match the dual

behavior of the quantum mechanical ‘size’ of the precursor ψ1ptq in the SYK model.

Operator growth

To defne a notion of operator size, it is necessary to frst select a basis of operators and attribute a

natural size to each of the elements of the basis. For a system with a random Hamiltonian, any choice

of basis is completely ad-hoc, and the notion of size will therefore lack of physical meaning. If, however,

the Hamiltonian possesses some degree of locality, it then makes sense to distinguish between small and

large operators. In the SYK model, the Hamiltonian (2.5) is 4-local in the fermion basis, and hence it is

natural to assign size n to the operator ψi1 ψi2 ...ψin with i1 ă i2 ă ... ă in, which basically characterizes

the number of di˙erent fermions that the operator contains.

Consider a time-evolved operator Optq “ e ´iHt O eiHt acting on the 2 
N 
2 -dimensional Hilbert space

of the SYK model. 11 The operator admits an expansion in the fermion basis of the form

N
ÿ ÿ

Optq “ ci1...in ptq 2 
n 
2 ψi1 ψi2 ...ψin , (2.8)

n“1 i1ă...ăin 

where ci1...ip ptq is interpreted as its ‘wavefunction’. The size of the operator is simply

N
ÿ ÿ

SpOptqq ” |ci1...in ptq|
2 n . (2.9)

n“1 i1ă...ăin 

The size measured in this way can be recast as the square of the (anti)commutator of Optq with one-site

fermion operators, averaged over all sites,

N
1 ÿ ` ˘ 

SpOptqq “ 2 ´ N 
2 Tr tOptq, ψiu

: tOptq, ψiu . (2.10)
2 
i“1 

In this latter form, it is manifest that the evolution of (2.10) towards saturation is dominated by the

behavior of the out-of-time-order correlator (OTOC) at infnite temperature, and in fact it is possible

to show that
N
ÿ

N ´ SpOptqq “ p´1q|O| 2 ´ N 
2 Tr

` 
Optq:ψi Optqψi 

˘ 
, (2.11)

i“1 

11 The operator is for simplicity assumed to be normalized, that is, 2 ´ N 
2 TrpO:Oq “ 1.
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where p´1q|O| “ 0, 1 depending on whether the operator O is bosonic or fermionic, respectively. The

OTOC serves to diagnose quantum chaos in a very precise way, namely by reading o˙ the ‘Lyapunov

exponent’ [74].

At fnite temperature, the notion of size (2.9) can be generalized. Basically, it is convenient to smear

the operator O in order to wash out the e˙ects of very high energetic modes and isolate the physics

associated with the thermal scale β (see e.g. the defnition of the OTOC in [74]). A way to do this

in the formulations (2.10) or (2.11) is to perform an euclidean time evolution by β{2 of each operator,
1{2that is, consider O ρ instead. The fnite-temperature size of the operator is defned asβ 

1{2 1{2
SpO ρ q ´ Spρ qβ β

SβpOq ” , (2.12)
δβ 

ř

where δβ is a normalization such that the size of a single fermion is one, Sβ pψiq “ 1.i 

Qi and Streicher found a really simple formula for the growth of the thermal size of a fermion

operator, in the low-temperature limit of the large-N SYK model [78]

ˆ ˙ 
β2J2 πt 

Sβpψ1ptqq « 2 sinh2 (2.13)
π2 β 

At early times, t ! β, the operator grows quadratically as J2 t2 , while at late times t Á β, the growth
2πbecomes exponential with fast scrambling Lyapunov exponent λL “ β , again saturating the bound

in [74, 79].

Phenomenological PS correspondence

With the Qi-Streicher formula (2.13) at hand, it is now possible to fnd a generalization of the notion

of Rindler-momentum Pρ that captures the initial growth of the fermion operator in the SYK model.

The AdS2 metric is
2 ´2ρ{r` 2 dρ2ds « ´e dt ` . (2.14)

´ ¯ 
βThis near extremal throat extends from the cuto˙ boundary at ρ “ 0, up to ρ “ r` log , where2πr` 

the Rindler region starts, and the metric becomes (2.2) for a proper length Δρ “ r` (see Fig. 7). 12 

Consider the motion of the e˙ective particle in free fall through the AdS2 throat. From time-

translation symmetry, the proper energy of the particle is conserved, which gives the condition dt{dτ “ 
2ρ{r` e , where τ is the proper time of the particle. This condition allows to solve explictily for the

12 In the exact near-extremal metric, there is a small transition region of length „ r` between the AdS throat and the
Rindler region. The details of this region are unimportant for the purposes of matching the two parametric behaviors of
(2.13) up to Op1q numerical constants.

25



2. MOMENTUM AND SIZE

trajectory of the particle
ˆ ˙ 

r` 4t2 
ρptq “ log 1 ` . (2.15)22 r` 

The natural candidate for an extension of the Rindler momentum (2.3) on the throat is the proper

AdS-radial momentum, which behaves as

1 dρ 2t 
Pρ “ ´ “ « 2J2 t , (2.16)

r` dτ r2 
` 

´1 13where we used (2.6) to relate r to the SYK energy scale J. This behavior is prolonged until` 

t « β{π, the moment at which the particle reaches the Rindler region. In the Rindler region, the

proper radial momentum again follows an exponential growth

2J2 β 2π 
Pρ « e β

t 
. (2.17)

π 

Comparing these two regimes with (2.13), we conclude that the proper radial momentum phenomeno-

logically agrees with the time derivative of the size of the dual operator in the SYK model, which

establishes the precise PS correspondence

Pρ « 
d
dt 

Sβ pψ1ptqq , (2.18)

or P “ 9S for short.

Additionally, the PS correspondence gives an intuition on why the scrambling time is smaller for a

near extremal black hole, given by
S ´ S0 

ts „ β log , (2.19)
δS 

where δS is the entropy of the e˙ective matter particle. The reason is that the operator is already ‘big’,

of size J2β2 , when it enters the Rindler region of exponential growth. Therefore, it takes less time for

the operator to fully scramble. The extremal degrees of freedom of the black hole do not decouple from

the dynamics of the operator, as the naive interpretation of (2.19) suggests. What really happens is

that the apparent decoupling is an artifact of the emergent AdS throat at low temperatures [69].

Proof of the PS correspondence

9A formal proof of the PS correspondence P “ S has also been provided in [71]. The proof follows from

the analysis of the representation of the SLp2, Rq symmetry generators in the semiclassical Hilbert

space of JT gravity plus matter, IJT ` Imatter, where the latter only couples to the metric. In the bulk,

the group of symmetries is generated by the ‘boost’ generator B, the global Hamiltonian E, and the

13 We added the prefactor r ´1 to defne a momentum with units of energy. The ‘proper mass’ of the particle is of order
r ´1 

„ J.
` 

` 
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radial momenum operator P (see Fig. 8 ). Together they form the algebra

rB, Es “ ´iJ ´1 P (2.20)

rB, P s “ ´iJ E (2.21)

rP, Es “ ´iJ B , (2.22)

where, for convenience, we have added dimension J to the momentum P , while B and E remain dimen-

sionless. These symmetries are, in the strict sense, gauge redundancies of the Schwarzian description,

and therefore all of the physical states of the Hilbert space must be uncharged under them.

Figure 8: Orbits of the SLp2, Rq generators. From left to right, the modular Hamiltonian B, the
global energy E and the momentum P .

In the SYK, the SLp2, Rq reparametrization subgroup only emerges in the deep infrared, and hence,

it will act non-trivially on high-energy states. To construct the generators, it is therefore convenient
Nto take the formal limit of large N and zero temperature βJ Ñ 8, while keeping the ratio fxed.βJ 

In this regime, it is possible to translate the symmetry generators from the exact Schwarzian theory

(see [71]), which on the doubled SYK Hilbert space HL b HR read

β 
B “ pHR ´ HLq , (2.23)

2π 
β 

E “ pHR ` HL ` Hintq ´ E0 , (2.24)
2π 

and P “ iJrB, Es. The global energy E has an extra bilocal interaction between both boundaries,
ř

which has the form Hint “ iµ ψLψR , and µ is a parameter which depends on βJ. The form of thisi i i J 

term was originally elucidated in [80] to couple the two boundaries, making the wormhole traversable.
14 The constant E0 ensures that the value of E for the thermofeld-double vanishes, that is, it satisfes

the SLp2, Rq gauge constraints.
ř 

ψLψR NThe remarkable feature of (2.24) is that the operator S “ i ` connects to the previousi i i 2 

defnition of size (2.12). Indeed, it is possible to rewrite the thermal size in terms of the expectation

14 Hint has an analogous version for a general QFT in fat space. The global Hamiltonian has a interaction term in the
boundary that separates both Rindler wedges. This is consistent with the fact that the global time-evolution connects
both Rindler regions, while the modular Hamiltonian does not.
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value of S in the doubled Hilbert space [78]

xTFD| O: SOR |TFDy ´ xTFD| S |TFDyRSβpOq “ . (2.25)
δβ 

Consider a state of the form |Ψptqy “ ORptq |TFDy, where t is the right boundary time generated
dby HR. At the level of expectation values on |Ψptqy, we can replace B “ ´i β , which leads to2π dt 

βJ dE β2Jµ dS 
P “ iJrB, Es “ “ . (2.26)

2π dt 4π2 dt 

More explicitly, writing down the expectation values, and using (2.25) yields the familiar version of the

PS correspondence
β2µδβ J d

xΨptq| P |Ψptqy “ Sβ pOptqq , (2.27)
4π2 dt 

where the prefactor can be shown to be an Op1q number, as in (2.18). The momentum P generates
spatial translations along the ´Bρ vector feld in AdS2, and therefore it coincides with the kinematical

quantity Pρ when evaluated for heavy particle states.

2.3 Remarks

The PS correspondence opens up a fascinating way to re-interpret the origin of the gravitational attrac-

tion, namely as the tendency for an operator to scramble between the holographic degrees of freedom.
15 It relates a linear kinematical quantity, P , whose evolution is governed by the laws of General Rela-

tivity, to a fne-grained measure of the quantum state S9 in the internal large-N space, whose evolution

is completely governed by quantum chaotic dynamics.

9The derivation of P “ S presented above, however, gives the impression to rely on the presence of a

large black hole originating the background gravitational feld in which the e˙ective particle propagates.

Gravitational attraction, on the other hand, is a universal feature of all forms of energy. A more

satisfactory correspondence should be applicable to a much broader class of reference states, as well as

to higher dimensional standard AdS/CFT setups.

Additionally, the putative generalization of ‘size’ must have all sorts of phenomenology, depending

on the reference state [72, 73]. For instance, in the low-lying part of the spectrum of the CFT, an

oscillatory behavior of this ‘size’ is generically expected, since the spectrum is nearly integrable. In the

bulk, these oscillations occur from the trajectory of the heavy particle in the empty AdS potential.

15 In some sense, the PS correspondence resonates with some of the ideas in [81], even if the notion of entropy is replaced
by ‘complexity’ here.
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3. OPERATOR COMPLEXITY

3 Operator Complexity

Measures of operator complexity have received considerable recent attention in studies of information

scrambling in many-body quantum systems [54, 78, 82–90]. One motivation is the characterization of

operator complexity in holographic systems. A recurring theme in this context is the notion that

gravitational ‘clumping’ increases complexity of the dual quantum state. If a black hole is formed, this

is realized in the most extreme way, as the complexity keeps growing linearly well after the black hole

has equilibrated its exterior geometry. However, the growth of complexity occurs for any gravitational

infall of matter, however dilute, as indicated by explicit calculations for collapsing thin shells [91,92]. A

time-reversal transformation to a situation with matter outfow should instead decrease the complexity,

suggesting that there is a relation between some average ‘infall momentum’ and the rate of complexity

change.

The bulk particle is ‘injected’ by the ‘small’ operator O on the boundary, acting on some reference

state O |Ψy at, say t “ 0. If the resulting state is evolved in time

e ´itH O |Ψy “ e ´itH O e itH e ´itH |Ψy “ O´t |Ψyt , (3.1)

any increase of complexity can be attributed partly to the increase in complexity of the time-evolved

reference state |Ψyt, and partly to the increase in complexity of the operator when evolved to the past,
´itH O eitHin what we usually refer to a ‘precursor’: O´t “ e . If the increase in complexity of the

reference state can be neglected or somehow subtracted, we can defne the complexity of the operator

O´t in terms of the complexity of the evolved state. The state (3.1) can be interpreted as a heavy

particle state falling through the bulk. More precisely, we may defne the operator complexity in terms

of the state complexity by the subtraction

COptq “ C rO´t|Ψyts ´ C r|Ψyts , (3.2)

with some appropriate normalization. In practice, this defnition must be supplemented by some

defnite prescription for the state complexity such as, for example, the size (2.9), the VC (1.11) or other

complexity proposals [93–95].

Let us suppose that the state (3.1) can be interpreted as a heavy particle falling through the bulk.

Then, the proposal of a momentum/complexity correspondence (PC correspondence for short) amounts

to a relation of the form
dCO 

“ PC , (3.3)
dt 

where CO is the complexity of the operator, and PC is a suitable component of the mechanical momentum

of the associated particle. On general grounds, the right-hand side of (3.3) has an inherent ambiguity,

since we must specify which particular momentum component is the relevant one, and this selects a

particular coordinate system.
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A particular case of (3.3) is the momentum/size correspondence reviewed in Chapter II, which

involves the particle fall towards the horizon, as indicated in Fig. 6, and an interpretation of COptq in
terms of operator size Sβ pOptqq defned by (2.12) in the quantum mechanical dual system. In that case,

dρthe momentum Pρ “ ´ dτ is defned with respect to the proper radial coordinate ρ in the near horizon

region, which interpolates between the AdS proper momentum and the Rindler proper momentum for

near extremal throats.

A limitation of the PS correspondence is that, for it to hold for all times, it needs to be strictly

interpreted in the large N limit, where the operator never fully scrambles. In systems with fnite size,

operator growth as such should stop at the scrambling time, of order ts „ λ ´1 log Neff , where Neff is theL 

e˙ective number of degrees of freedom. In the picture of bulk infall, the scrambling time corresponds

to the particle reaching the stretched horizon, a timelike layer situated about one Planck length away

from the horizon (see Fig. 9).

An interesting question is whether it is possible to establish a di˙erent type of PC correspondence

for operator complexity that would operate at times much larger than the scrambling time. In this

regime, complexity and size are not expected to be proportional: while operator size should saturate,

an operator complexity defned as in (3.2) should grow linearly at long times, with a slope proportional

to the average energy injected in the system by the action of the operator. This is expected in tensor-

network or quantum circuit defnitions of complexity, but it also seems to hold in di˙erent defnitions of

operator complexity, such as K-complexity [85], which was recently shown to exhibit the characteristic

linear growth at late times [86, 87].

Figure 9: For a fast scrambler, complexity and size are proportional before scrambling. Size saturates
at the scrambling time, while complexity keeps growing linearly for a much longer timescale.
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4 Momentum and Complexity of Thin Shells

In this section we show that, adopting VC prescription (1.11) as the defnition of (3.2), a momen-

tum/volume complexity (PVC) correspondence of the form (3.3) exists at all times, for operators that

are dual to spherical shells falling on timelike trajectories. The momentum PC is that of the shells,

measured with respect to a particular radial coordinate which we specify. More precisely, we fnd
ˆ

dCO 
Nµ

“ PCptq “ ´ Tµν CΣ 
ν , (4.1)Σdt Σt 

where Σt is a maximal-volume surface anchored at boundary time t, the basic ingredient of the VC

defnition, NΣ is the unit normal to Σt and CΣ is a suitable radial vector feld defned on Σt. In this form

of the PVC correspondence, the shells only contribute through their energy momentum tensor, and the

‘suitable coordinate system’ to measure the momentum is obtained by foliating the bulk spacetime with

the extremal-volume surfaces themselves. Therefore, we expect (4.1) to have a much wider generality

than the thin-shell dynamics which was used for its derivation, and we will indeed give a more general

proof of this correspondence in section 5. The compatibility of a constant late-time complexity rate

and a constant bulk matter momentum results form the late-time accumulation of maximal surfaces in

the black hole interior, a well-known property of the VC prescription.

4.1 Thin-shell operators and states

For a holographic CFT defned on a spherical spatial manifold Sd´1 of radius `, we consider its

gravity dual on AdSd`1, also taken to have curvature radius `. A thin shell of dust injected from the

AdS boundary can be represented in the CFT by the action of a formal product operator

ź 
Oshell „ φΛ,DΛ , (4.2)

DΛPPΛ 

where PΛ is a partition of the sphere in domains DΛ of size Λ ´1, the regularization cuto˙. The operators

φΛ,DΛ can be seen as bulk operators, applied at radius of order rΛ „ Λ ̀ 2 , and smeared over the domain

DΛ. The idea is to use φΛ,DΛ to inject a heavy bulk particle at radius rΛ. Although we imagine

specifying the operators in bulk e˙ective feld theory, we can always regard it as a CFT operator by a

bulk-boundary reconstruction map, say using the HKKL formulation [31, 32].

These operators are ‘big’ in the sense of the spatial structure, but are ‘simple’ in holographic terms,

since they are constructed from operators near the boundary of AdS. By appropriately choosing φΛ,DΛ ,

we can generate a semiclassical state whose subsequent evolution is parametrized as the collapse of the

shell of particles in the bulk geometry. In the case that the local factors φΛ,DΛ are engineered with very

massive bulk felds, or equivalently CFT operators with very large conformal weight, we can regard the

shell as composed of classical massive particles forming a dust cloud with density σ and four-velocity
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feld uµ.

For the purposes of this section, we defne the operator complexity in terms of the general prescrip-

tion (3.2), where the state complexity is regarded as computed with the VC prescription. For technical

convenience, we shall take the high-temperature thermofeld double state as the reference state on the

Hilbert space of two copies of the CFT, and the shell state is injected on the Right CFT as indicated in

Figure 10, at times much larger than the thermalization time T ´1 , where T is the Hawking temperature

of the black hole.

Figure 10: Penrose diagram of the collapsing shell geometry. The shell is injected in the bulk at late
times compared with T ´1 , causing the initial black hole of mass M´ to grow up to the bigger mass
M`. The worldvolume of the matter shell is labelled W and sets the boundary between the two black
hole spacetimes V˘ .

The complexity of the shell operator is defned in terms of bulk quantities as

d ´ 1 C rOshells “ rVolpΣbh`shellq ´ VolpΣbhqs , (4.3)
8πG ̀  

where Σ denotes the extremal codimension-one hypersurface with given asymptotic boundary condi-

tions, defned in the eternal black hole spacetime with and without the shell. The concrete prefactor

in (4.3) is chosen for convenience of normalization. From now on shall measure bulk lengths in units

of curvature radius, so that we set ` “ 1.

The worldvolume of the thin shell is a codimension-one timelike manifold W which divides the

spacetime manifold in two regions: V ` is a Schwarzschild-AdS solution of mass M` which we identify

as ‘exterior’ or ‘right’ region, and V ´ , a similar solution of mass M´ referred to as the ‘interior’ or ‘left’

region. The ADM energy of the shell is given by M` ´ M´ and is assumed to be positive. Spherical

symmetry holds globally in the full spacetime, whereas stationarity is broken at W. Both V˘ have
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smooth Killing vectors which are timelike in the asymptotic regions and spacelike inside event horizons.

Denoting these vectors as ξ˘ “ B{Bt˘, where t˘ are adapted coordinates, we can write a standard form

of the metric on both sides of W:

2 2 ´1ds “ ´f˘dt˘ ` f dr 2 ` r 2dΩ2 (4.4)˘ ˘ d´1, 

where
16πGM˘2 ´f˘ “ 1 ` r 

d´2 , (4.5)
pd ´ 1qVΩr 

and VΩ “ VolpSd´1q. The shell dynamics follows from Einstein’s equations, which take the form of

junction conditions (cf. [96, 97]). Denoting the induced metric on W as

2ds “ ´dτ2 ` Rpτq2dΩ2 (4.6)W d´1 , 

in terms of the shell’s proper time τ and its radius Rpτq, continuity of the spacetime metric across W 
implies the frst junction condition,

ˆ ˙2 ˆ ˙2dt˘ 1 dR 
f˘pRq ´ “ 1 . (4.7)

dτ f˘pRq dτ 

The second junction condition establishes the jump of the extrinsic curvature across W as proportional
to the stress-energy on the shell’s world-volume. For a thin shell of dust we have

Tµν “ σ uµ uν δp`q , (4.8)

where uµ is the four-velocity feld of the shell and σ is the surface density. The coordinate ` measures

proper distance away from W in the orthogonal spacelike direction, increasing towards the exterior

Nµregion; in other words, the normal unit vector NW “ B{B` satisfes N2 “ 1 and uµ “ 0. ForW W 

spherically infalling dust the density σpRq must be inversely proportional to the shell’s volume, that is

to say, the total rest mass

m “ σ VΩ R
d´1 (4.9)

remains constant.

The second junction condition specifes the jump in extrinsic curvature across W,

d

ˆ d

ˆ˙2 ˙2dR dR 8πG 
` f´pRq ´ ` f`pRq “ σ R . (4.10)

dτ dτ d ´ 1 

The particular conditions of spherical symmetry and stationarity along V˘ allow us to write the

junction conditions in terms of the Killing vectors ξ˘, an expression that will be useful later. Using
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that ξµ “ gtµ and the explicit form of the metric (4.4) we fnd

dt˘ 
pu ¨ ξq˘ “ ´f˘ . (4.11)

dτ 

Furthermore, since ξ˘ are orthogonal to the angular spheres, the normalization implies

2 2 gµν ξ˘ 
µ ξ˘ 

ν “ pξ˘q “ ´pu ¨ ξ˘q2 ` pNW ¨ ξ˘q “ ´f˘ , (4.12)

an expression which determines NW ¨ ξ˘ once we know u ¨ ξ˘. Using (4.11) and (4.12) we may recast

the two junction conditions as jumping rules for the Killing vectors, namely the component normal to

W is continuous
 

   

 

NW ¨ ξ`  “ NW ¨ ξ´  , (4.13)
W W 

whereas the component tangential to W jumps like the extrinsic curvature,

d

ˆ d

ˆ

 

˙2 ˙2dR dR 8πG 
pu ¨ ξ` ´ u ¨ ξ´q 

 

  “ ` f´pRq ´ ` f`pRq “ σ R . (4.14)
W dτ dτ d ´ 1 

Equivalently, we can say that both junction conditions boil down to the jump rule:

` 
ξµ ˘  

  8πG 
pΔξµqW ” ` ´ ξ´ 

µ 
  “ ´ σ Ruµ . (4.15)
W d ´ 1 

One more presentation of the shell dynamics is obtained by extracting from (4.10) the ADM mass

of the shell as a constant of motion:
d

ˆ ˙2 2dR 4πG m 
Mshell “ M` ´ M´ “ m ` f´pRq ´ . (4.16)

Rd´2dτ pd ´ 1qVΩ 

This can be interpreted as a kinetic contribution proportional to the shell’s rest mass m, corrected by

a gravitational self-energy term. In fact, the constancy of m suggests a natural p1 ` 1q-dimensional

picture in terms of an e˙ective particle of mass m, moving in the two-dimensional section of the metric

obtained by simply deleting the angular directions:

2dr2 β 2 `ds1`1 “ ḡ αβ dx α dx “ ´f´prqdt . (4.17)
f´prq 

In particular, the shell energy (4.16) can be obtained as the canonical energy from the e˙ective action

of a free particle
c ˆ ˆ 

α β 
Seff “ dλLeff “ ´m dλ ḡ αβ 

dx dx
, (4.18)

dλ dλ 

provided we can neglect the gravitational self-energy e˙ects.
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4.2 Proof of the PVC correspondence for thin shells

Our goal is to derive a PVC correspondence relation by direct evaluation of the left hand side of

(3.3), with Cshell defned as in (4.3). This will allow us to identify the correct component of ‘radial

momentum’. The complexity being defned through the VC prescription, we start with a preliminary

discussion of extremal-volume surfaces in the relevant geometries.

Extremal volumes

a aLet a codimension-one spacelike surface Σ be defned by the embedding functions Xµpy q, with y 
coordinates along the hypersurface. The volume functional reads

ˆ 
? 

V rΣs “ dd y h , (4.19)
Σ 

16where hab “ BaX
µ BbX

ν gµν pXq is the induced metric on Σ. Under a generic variation δXµ the

volume varies as

δV 
ˆ ˆ

“ pe.o.m.qµ δX
µ ` dSa BaXµ δX

µ . 
Σ BΣ 

(4.20)

where
´ ? ¯ 1

pe.o.m.qµ “ ´ ? Ba h hab gµν BbX
ν ` 

h 
1 
hab BaX

ρ BbX
σ Bµgρσ

2 
(4.21)

vanishes precisely when the hypersurface Σ is extremal. In this case, the variation reduces to a boundary

term, ˆ 
µδV 

 

  “ dSa e δXµ , (4.22)
extremal a 

BΣ 
µwhere we have defned the vector felds ea “ BaX

µ tangent to Σ.

For the geometry of interest here, Σ is a cylindrical manifold of topology R ˆ Sd´1 , the boundary

having two disconnected components consisting of spheres at the left and right spatial infnities. We

shall use the same future-directed time variables on both boundaries and take a left-right symmetric time

confguration tL “ tR “ t, so that we can write the following boundary conditions at the regularization

surfaces r “ rΛ:
   

δXµ  
  “ ˘δt ξµ  

  , (4.23)˘ ˘ 
r“rΛ r“rΛ 

where the ˘ signs account for the fact that the left-side Killing vector ξ´ is past-directed at large radii.

Spherical symmetry allows us to parametrize the induced metric on extremal surfaces in the form

2 bds “ hab dy a dy “ dy 2 ` gpyq dΩ2 (4.24)Σ d´1 , 

16 We use latin indices for coordinates on the hypersurface Σ and greek indices for general coordinates in the full spacetime.
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Figure 11: Extremal codimension-one surface Σ of interest. Its boundary BΣ consists of two spheres
at infnity, located at times tL “ tR “ t.

where y is a radial coordinate running over the real line, with y “ ˘8 corresponding respectively to the
µleft and right boundaries of Σ. In these coordinates, we can picture ey “ ByX

µ as a unit-normalized,

radial, spherically symmetric, right-pointing vector feld. Denoting the spheres at infnity by S˘8 we

can rewrite the volume variation of extremal surfaces (4.22) as

« ff ˆ ˆ
 

  µ µδV “ δt e pξ`qµ ` e pξ´qµ , (4.25)y yextremal 
S`8 S´8 

where we have absorbed the sign assignments in (4.23) into a reversal of orientation for the left-boundary

integral. Namely, both integrals in (4.25) are now written as scalar integrals over the boundary spheres.

This expression for the volume dependence with asymptotic time is useful because the featured

integrals turn out to be Noether charges. If we view the volume functional (4.19) as an action on a

collection of felds Xµ defned over Σ, the isometries of the V˘ portions are interpreted as ‘internal

symmetries’ of the this feld theory, with their corresponding Noether currents. The time-translation

symmetries associated to ξ˘ induce Noether currents of the form 17 

µJa “ e ξµ , raJ
a “ 0 . (4.26)a 

In particular, the integral of the radial component Jy over any fxed-y section Sy is a Noether charge

17 In order to prove conservation, we just use ξµ “ gtµ and evaluate the equation of motion from (4.21).
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which is conserved under transport in the y direction:
ˆ 

µΠrSys “ e ξµ , ByΠrSys “ 0 . (4.27)y 
Sy 

Identifcation of the PC component

We have now the machinery in place to evaluate (4.3). The formula (4.25) implies

dV 
“ Π` ` Π´ , (4.28)

dt 

in terms of the Noether charges Π˘ ” ΠrS˘8s on right and left boundaries (a similar result was derived

in [91, 92] for null shells). The normalization of the operator complexity requires the subtraction of
p0qthe same expression, evaluated on the Noether charges Π˘ of the eternal black hole geometry without

infalling shell, namely
d d ´ 1 ” 

p0q p0q 
ı 

CrOshells “ Π` ´ Π` ` Π´ ´ Π´ . (4.29)
dt 8πG 

p0q p0qLeft-right symmetry of the eternal black hole geometry implies Π “ Π , whereas we can also set` ´ 
p0q

Π´ « Π at the left regularization boundary because, for shells that enter the geometry at very late´ 

times, their worldvolume W remains very far from the left boundary. Hence, near the left regularized

boundary, the extremal surface Σ is very well approximated by that of the eternal black hole. As we
p0qremove the regularization, in the limit rΛ Ñ 8, we must actually obtain Π´ “ Π . This allows us to´ 

remove all explicit reference to the eternal black hole geometry and write

d d ´ 1 CrOshells “ rΠ` ´ Π´s . (4.30)
dt 8πG 

Furthermore, the conservation of Noether charges in either V ` or V ´ allows us to bring the Noether

charges to both sides of the shell’s worldvolume:
ˆ

d d ´ 1 d ´ 1 µCrOshells “ pΔΠqW “ e pΔξµqW , (4.31)
dt 8πG 8πG y 

SW 

  
where pΔξµqW “ pξ` 

µ 
´ ξ´ 

µ 
q  is the jump of the Killing vectors across W and SW is the sphere at theW 

intersection Σ X W. Using now the junction conditions in the form (4.15), we fnd

ˆ
d CrOshells “ ´ σ R ey

µ uµ . (4.32)
dt SW 

We can now elaborate (4.32) in various ways in order to fesh out the PC-duality interpretation. First,
µwe defne a ‘complexity feld’ over Σ as a rescaling of the ey feld:

CΣ 
µ 
” ´r eµy . (4.33)
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Second, we defne a density of proper momentum along the shell’s worldvolume

Pµ µ” σ u . (4.34)

With these defnitions we can rewrite (4.31) as

ˆ
d CrOshells “ PC “ Pµ CΣ 

µ , (4.35)
dt SW 

a relation which identifes the precise component of momentum which is dual to complexity growth,

namely the projection of the proper momentum along the direction of the complexity vector feld CΣ 
µ.

It is a particular radial component with inward orientation and appropriate normalization.

Figure 12: Confguration of relevant vectors at the intersection sphere SW “ Σ X W.

A second presentation of this result has the virtue of hiding some of the peculiarities of the con-

crete system we have considered so far. In fact, no explicit geometrical information about the shell’s

worldvolume W is needed in order to express the PC duality relation. To see this, let us consider the

expression ˆ
´ Nµ Tµν CΣ 

ν , (4.36)Σ 
Σ 

where NΣ is the unit timelike normal to Σ. It measures the fux through Σ of a suitably normalized
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momentum component along Σ. Upon explicit evaluation for the spherical shell, using (4.8), we fnd
ˆ ˆ

´ dy σ pNΣ ¨ uq pCΣ ¨ uq δp`q . (4.37)
Sy 

Furthermore, δp`q “ δpy ´ yW q |d`{dy|
´1 , where yW is the value of the y coordinate at the shell’s

intersection. From the defnition of the W-normal we have d`{dy “ ByX
µ Bµ ̀  “ ey ¨ NW , which allows

us to collapse the integral to the intersection sphere SW :

ˆ 
pNΣ ¨ uq pey ¨ uq

σ R , (4.38)
pey ¨ NW qSW 

where we have used (4.33). To further reduce this integral we notice that NΣ and ey are orthogonal

and unit normalized, as well as the pair u and NW , so that we have NΣ ¨ u “ ´NW ¨ ey, where the
µminus sign accounts for the timelike character of both Nµ and u . This simplifes (4.38) and recoversΣ 

(4.32). Hence, we have established the more intrinsic form of the PC relation:

ˆ 
Nµd CrOshells “ PC “ ´ Tµν CΣ 

ν . (4.39)
dt Σ

Σ 

In this version, all explicit reference to the details of the bulk state gets reduced to its stress-energy

tensor. The vector felds NΣ and CΣ are defned in terms of the extremal surface, whose detailed

geometry is also determined by Tµν through the back reaction on the geometry. Indeed, the form

of (4.39) should remain valid for spherical shells with any internal equation of state, including those

corresponding to branes which change the AdS radius of curvature across W. Furthermore, the role

of the Noether charges in the derivation of (4.35) and (4.39) makes it clear that it applies as well to

spherical thin shells collapsing in vacuum AdS and forming a one-sided black hole.

More generally, we expect that any spherical matter distribution can be approximated by a limit of

many concentric thin shells, so that (4.39) should remain valid for any matter bulk distribution with

spherical symmetry. The generalization to one-sided collapse of thin shells with arbitrary equations of

state, but still maintaining spherical symmetry, is explained in Appendix B. A frst step towards lifting

the spherical symmetry requirement is presented in Appendix C, which considers a formal collapse of

a rotating shell in AdS3.

4.3 Late time limit and the black hole interior

One chief motivation behind this work is the elucidation of the very late time regime of operator

complexity growth in the light of the PC duality. Any defnition of operator complexity with the

structure of equation (3.2) will assign a linear growth at late times. In particular, given that state

complexities are expected to grow proportionally to EΨ t, where EΨ is a characteristic energy of the

state, the subtracted defnition for operator complexity gives a slope proportional to EO t, where EO 
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is the additional energy injected by the operator O. Translated to our gravitational set up, we expect

a late time behavior
 d CrOshells 
 

  « M` ´ M´ “ Mshell . (4.40)
dt late 

We would like to check that our PVC relation satisfes this expected asymptotic behavior. A simple

check can be performed in the limit of very large AdS black holes. This coincides with the situation

where the infalling shells have small gravitational self-energy at all times that are relevant for the

calculation.

The key point is to notice that, at late times, the extremal surfaces Σt accumulate in the interior

of the black hole, exponentially converging 18 to a limiting surface Σ8 (cf. [58, 98]). For a shell that

enters the black hole very late, this surface interpolates between the limiting surfaces pΣ8q˘ associated

to the early and late black holes of mass M˘ (cf. Figure 13). In terms of the interior Schwarzschild

radial coordinates, let r˘ denote the saturation radii, defned by the local extremization of the ‘volume
a 

d´1Lagrangian’ r |fprq|. By explicit calculation we fnd, in the limit of very large AdS black holes

d r « 
8πGM 

. (4.41)
pd ´ 1qVΩ 

Figure 13: The saturation slice Σ8 interpolates between the extremal surface barrier inside r´ and
outside r`.

We can now make use of the ‘movability’ of the Noether charges Π˘ to evaluate then away from W,

but still inside the black hole interior, in a region where Σt is well-approximated by a constant-r surface.
Let us denote the angular spheres at such points by Sr˘. Then, equation (4.30) can be rewritten as

  ´ ” ı ” ı¯d
  d ´ 1 CrOshells  « Π Sr` ´ Π Sr´ . (4.42)

dt late 8πG 

18 See Appendix A for an quantitative discussion of this phenomenon.
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In computing the Noether charges, we notice that ξ˘ “ B{Bt˘ are approximately tangent to Σt in the
a 

µsaturation region. Hence, we can write ey « ξµ{ ξ2 and the Noether integrals are simply

ˆ 
b

a 8πGM˘d´1 dΠrSr˘s « ξ2 “ VΩ r |fprq˘| « VΩ r « . (4.43)˘ ˘ 
r d ´ 1S˘ 

In the last equality we have made use of (4.41) and the approximation of a large AdS black hole.

Therefore, upon subtraction we conclude the proof of (4.40).
µAn important observation regarding this result is the fact that the vector felds Cµ and ey do di˙er

signifcantly in the interior saturation region, because the rescaling factor r is non trivial there, and

yet this rescaling is crucial to obtain the expected long-time asymptotics. Therefore, the peculiar

normalization (4.33) of the momentum component along Σ is necessary for the consistency of the

results.

We can obtain further insight into the rationale behind the linear complexity growth by passing to

the e˙ective particle description. Again neglecting self-energy corrections, we can envision the dynamics

of the shell as that of a probe particle of mass m falling through the p1 ̀  1q-dimensional metric (4.17).

The PC duality relation admits the two-dimensional representation:

d CrOshells “ PC “ Pα Cα , (4.44)
dt 

αwhere P α “ mu , with α a two-dimensional index. Picking for example the standard pr, tq coordinates,
we have

ˆ ˙ 
Bt Br 

PC “ ´r Pt ` Pr . (4.45)
By By 

αLet us introduce an adapted coordinate for the radial ‘complexity feld’ Cα “ ´rey , namely we defne

a rescaled radial coordinate χ such that

ˆ ˙α ˆ ˙α
B α B Cα “ “ ´r e “ ´r , (4.46)y
Bχ By 

or, equivalently
B B

“ ´r . (4.47)
Bχ By 

Using the so-defned χ coordinate, we can simplify (4.45) so that

Bt Br 
PC “ Pt ` Pr “ Pχ . (4.48)

Bχ Bχ 

To the extent that we are only interested in describing the particle motion to the past of the saturation

surface Σ8, we may use a time slicing given by the extremal surfaces Σt themselves, and coordinate the

spacetime in terms of pt, χ, Ωq. In this frame, the complexity momentum coincides with the χ-canonical
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momentum, provided we stay within the probe approximation:

BLeff 
PC “ Pχ “ . (4.49)

Bχ9 

This brings our general formalism into contact with the discussion of canonical Rindler momentum

in the introduction. However, the present treatment is capable of describing the late-time behavior

of the complexity. In particular, the use of a time slicing adapted to the extremal surfaces leads to

the phenomenon of saturation in the black-hole interior. This freezes the value of the momentum at a

constant value for asymptotically large values of t, thereby explaining why a linear growth of complexity

can be compatible with a PC-type formula (3.3).

Figure 14: The late-time saturation of the time slicing in the interior of the black hole results in a
frozen momentum component, as required for any PC formula which should apply in a regime of linear
complexity growth.
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5 Momentum and Complexity: A Proof

A key property of the PVC correspondence (4.39) is that all dynamical assumptions about the

shells are concealed inside the energy-momentum tensor Tµν . Therefore, it is natural to suspect that

a PVC relation of this form could have a much wider degree of generality. In this section we confrm

this expectation, showing that the content of (4.39) is essentially the Momentum Constraint of General

Relativity (GR).

5.1 PVC From The Momentum Constraint

We shall work with spacetimes X asymptotic to global AdSd`1 with d ě 2. The bulk state is described

as a solution of Einstein equations with energy momentum tensor Tµν , and the asymptotic behavior

of a normalizable state. We shall adopt units such that the asymptotic radius of curvature of AdS is

` “ 1, although most of our results still hold in the fat spacetime limit ` Ñ 8. The VC formula is

taken to be
d ´ 1 C rΣts “ VolpΣtq , (5.1)
8πG 

a regularized volume of an extremal codimension-one hypersurface Σt, anchored at boundary time t,

which labels the real line in R ̂  Sd´1 , the conformal boundary of X. For notational simplicity we will

often suppress the time label in Σt, with the implicit understanding that a choice of Σ is equivalent to
a choice of boundary time.

To fx notation, gµν denotes the metric on X and hab the induced metric on Σ, with world-volume
acoordinates y . Latin indices are raised and lowered with hab, whereas greek indices are operated with

agµν . The embedding of Σ into X is described by the functions Xµpy q, with tangent frame vector
µfelds ea “ BaX

µ. The extrinsic curvature of Σ is denoted Kab, and its trace K “ habKab will vanish

throughout our discussion, since we are focusing on extremal-volume surfaces. Finally, the future-

pointing, unit timelike normal to Σ is denoted NΣ 
µ.

We begin by deriving a useful equation for the rate of VC. Since Σ is extremal, its frst-order

variation with respect to a variation of the anchoring surface is a boundary term of the form
ˆ

d ´ 1 
δC rΣs “ δXΣ , (5.2)

8πG BΣ 

µwhere pδXΣqa “ ea δXµ is the embedding variation, pulled back to Σ. For a rigid time translation δt 
at the boundary, we have δXΣ “ δt pBtqΣ, where Bt denotes the time-translation vector in X, which is

asymptotically a Killing vector. Dividing by δt we obtain an ADM-like expression for the rate of VC:
ˆ ˆ

dC d ´ 1 d ´ 1
“ pBtqn “ dSa eµ pBtqµ . (5.3)adt 8πG 8πG BΣ BΣ 
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This equation represents the complexity rate as the integral of pBtqn “ en ¨ Bt over the boundary of the
µ µ aextremal surface, where en “ ea nBΣ, with nBΣ the outward pointing normal to BΣ. Since en is tangent

to Σ, the integrand is sensitive to the asymptotic bending of Σ by the presence of non-trivial geometry
d´1in the bulk. More precisely, we pick the term of order 1{r , for r the radius of an angular sphere

which regularizes BΣ.

Given any ‘current’ Ja defned on Σ, which has the same boundary integral as pBtqn,
ˆ ˆ

Jn “ pBtqn , (5.4)
BΣ BΣ 

we can use Stokes theorem to write the VC rate as a bulk integral of its ‘source’ over the extremal

surface: ˆ
dC d ´ 1

“ raJ
a . (5.5)

dt 8πG Σ 

A strategy to obtain a PVC equation is to make a clever choice of J , in such way that it is sourced by a

momentum density. A simple example is provided by the well-known case of spherical thin shells, whose
µPVC relation (4.39) can be derived in this language by choosing Ja “ pBtqµ ea . In this approximation

scheme Bt is a Killing vector except for jumps at the worldvolume of the shells, so that the integral (5.5)

localizes to delta-function contributions, with coeÿcients controlled by the junction conditions (cf. [97]

for a review). This derivation shows that the PVC relation is independent of any choice of equation of

state on the world-volume of the shells.

Exact PVC

In order to pursue this strategy in more general terms, we can work backwards by seeking a natural

GR equation that uses the momentum density over a spacelike surface. The obvious candidate is

the so-called Momentum Constraint (MC): given any Cauchy surface Σ, initial data hab and Kab are

constrained by the equation (cf. [97])

r aKab ´ rbK “ ´8πG Pb , (5.6)

“ ´Nµ νwhere Pb Tµν e is the pulled-back momentum fux through Σ. For the purposes of this work,Σ b 

we can simplify this equation by setting K “ 0, since Σ is taken to be extremal.

In order to integrate the MC we must introduce a tangent vector feld on Σ. Anticipating its role in

what follows, we shall refer to this feld, CΣ, as the ‘infall’ vector feld, despite the fact that at this point

it is completely arbitrary. Multiplying (5.6) by Cb and integrating by parts we obtain the equivalent

expression ˆ ˆ ˆ
1 1 

KabPC “ ´ dSa Kab C
b ` raCb , (5.7)

8πG 8πG Σ BΣ Σ 

where PC “ Pa C
a is the momentum component that is being selected by the C-feld. The left hand

side has the form of the momentum integral we are seeking, whereas we have a boundary term in the
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Figure 15: For each point in Sr, the time coordinate is chosen to properly parametrize a geodesic
(dashed lines) on Yr. ~ey is then picked to be orthogonal to Sr.

right-hand side that we could try to interpret as dC{dt. In other words, we would like to set

1 
Ja “ ´ Kab C

b , (5.8)
d ´ 1 

and fx the behavior of Cb at the boundary so that we satisfy (5.4). This can be analyzed by means of

a local computation as follows. In the vicinity of Σ, we may choose coordinates such that the metric

reads

Ñ 
dr2 

` ˘

2ds2 ` r ´dt2 ` γij pr, t, θq dθi dθj as r Ñ 8 . (5.9)X 2r 

Here, r is a Fe˙erman–Graham coordinate which foliates X by timelike codimension-one submanifolds

Yr. The angles θj parametrize the intersection Sr “ Yr X Σ, of spherical topology and induced metric

proportional to γij , which is itself asymptotic to a unit round pd ´ 1q-sphere, up to normalizable
dcorrections of order 1{r . The crucial simplifying property of (5.9) is the choice of time coordinate,

which is geodesic and orthogonal to Sr (cf. Figure 15).

The induced metric on Σ can be written near the boundary as

2ds2 Ñ dy2 ` r pyq γij py, θq dθi dθj , (5.10)Σ 

for some function rpyq asymptotic to sinhpyq as y Ñ 8. This allows us to write the normal one-
µt r νform as NΣ “ e dr ´ e dt, and compute the extrinsic curvature Kab “ ea eb rµ Nν . The relevanty y 

component turns out to be Kyy which, using the traceless character, K “ 0, may be evaluated as

Kyy “ ´r ´2 γij Kij . Explicitly

2 
Kyy “ ´pd ´ 1q r e t ´ 

1 
ey
r γij Btγij ´ 

r
e t γij Brγij . (5.11)y y22r 2 

r t d`1 d`1An asymptotic analysis reveals the large-r scalings e „ r, e „ 1{r , Btγij „ 1{rd and Brγij „ 1{r ,y y 
tso that the right hand side of (5.11) is dominated by the frst term: Kyy « ´pd ´ 1q r ey. Since

2 tey ¨ Bt “ ´r e , we learn that (5.4) can be satisfed provided the C-feld is chosen with the boundaryy 
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conditions

CΣ Ñ ´rpyq By as y Ñ 8 . (5.12)

This is exactly the result that was found ‘empirically’ for the case of thin shells in [1], justifying the name

‘infall feld’ which, from this point of view, is nothing but the condition for the integrated Momentum

Constraint to compute the complexity rate.

We are now ready to assemble all the pieces and write down a ‘generalized PVC’ relation. Defning

a total ‘C-momentum’ through Σ and a ‘remainder’ by the expressions
ˆ ˆ 

KabPC rΣs “ PC , RC rΣs “ 
1 raCb , (5.13)

8πG Σ Σ 

we have established
dC 

“ PC rΣs ` RC rΣs . (5.14)
dt 

This shows that part of the complexity rate at time t can always be attributed to momentum fow

through Σt. In fact, a suÿcient condition can be placed on the ‘infall feld’ which ensures the vanishing of

the remainder. The extrinsic curvature Kab being symmetric and traceless, we can write the remainder

in the form
ˆ ˙ 

RC rΣs “ 
1 
ˆ

Kab rpaCbq ´ 
1 
hab r ¨ C . (5.15)

8πG Σ d 

The term in parenthesis is proportional to the conformal Lie derivative, which vanishes if the C-feld

is a conformal Killing vector (CKV). This happens for any spherically symmetric state, for which the

infall feld has exactly the form (E.5) throughout Σ. The same is true of any solution of Einstein’s

equations in 2 ` 1 dimensions, because Σ is then two-dimensional. In both these cases, the induced

metric on Σ is conformal to the Poincaré ball ds2 “ dz2 ` sinh2pzq dΩd 
2 
´1, with a rescaling factorball 

which approaches unity at BΣ. The Poincaré ball provides a ‘canonical’ infall feld CΣ “ ´ sinhpzq Bz 

which is a radial CKV on Σ with the appropriate boundary conditions (E.5).

Therefore, we conclude that any spacetime in 2 ` 1 dimensions 19 and any spherically symmetric

state in arbitrary dimensions satisfes an exact PVC relation

dC 
“ PC rΣs . (5.16)

dt 

It is notable that we obtained all these results with no extra hypothesis on the nature of the matter,

i.e. no positivity conditions on Tµν were required. This suggests that the nature of the PVC relation

is essentially kinematical once we take into account the constraints of GR.

19 Modulo boundary gravitons in AdS3, which do not satisfy the boundary conditions (5.9) globally on the asymptotic
boundary R ˆ S1 .
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5.2 Obstructions

The most important exception to an exact PVC relation is provided by gravitational waves. In this

case, the Weyl tensor of X does not vanish, and embedded hypersurfaces will in general fail to be

conformally trivial. In the absence of a canonical choice of CΣ in the bulk, a remainder correction will

be present generically. This is natural from the physical point of view, since a black hole could be

formed by colliding gravitational waves, and the linear growth of complexity must eventually build up

at long times even if Tµν “ 0 all along.

Approximate PVC relations should exist in the context of the linearized gravity approximation. If X 
contains gravitational waves perturbing a spherically symmetric background X0, it should be possible

to establish an approximate PVC relation of the form
ˆ

dC 
Nµ

« ´ pTµν ` tµν q Cν , (5.17)
dt 0 0 

Σ0 

where tµν is a pseudotensor of Landau–Lifshitz type and the normal, N0, and infall, C0, vectors are

referred to the surface Σ0, extremal with respect to the background geometry X0. If the gravitational

waves can be fully related to matter sources, the tµν contribution will be hierarchically smaller than

the matter contribution.

A di˙erent type of obstruction to an exact PVC correspondence occurs when we have wormholes.

The simplest example which captures the relevant issues is the Einstein–Rosen bridge of an eternal

black hole. In vacuum, the extremal surfaces are spherically symmetric cylinders of topology R ̂  Sd´1 ,

with a Z2 refection symmetry between left and right sides, acting on R in the standard fashion. Radial

CKVs exist, but the asymptotic boundary conditions are necessarily incompatible with the ‘infall’

interpretation in both boundaries: if the CΣ feld is ‘infall’ on the right side, it must be ‘outfall’ on

the left side. Revisiting the asymptotic boundary conditions for the C-feld (5.4) and (5.8) we see that

an inversion of C is correlated with an inversion of the time-translation vector Bt, namely the equation
dC “ PC rΣs holds when we interpret the complexity rate as measured with respect to the Killingdt 

Hamiltonian HK “ HR ´ HL. In this case one obtains dC “ 0 for the vacuum solution, where thedtK 

K label stands for the choice of time variable dual to HK . The same is true for any Z2-symmetric

momentum confguration, such as identical collapsing matter distributions on both sides. In order to
dCget dtK 

ą 0 we need a suÿcient amount of ‘outfall’ in the left side. 20 

For the case of a vacuum Einstein–Rosen bridge, it is certainly possible to defne CKVs with appro-

priate infall conditions in the vicinity of each boundary, but these choices are necessarily incompatible

with each other in the bulk; at some point the conformal Lie derivative must be non-zero, and a contri-

bution from the remainder is turned on. For instance, if we want to compute the standard complexity

rate with respect to the TFD Hamiltonian HTFD “ HR `HL, we must introduce a defect in the interior

20 Note that in this case, (5.14) can be viewed as the generalization of the PVC correspondence provided in [71] for the
case of AdS2, in particular, equation (6.114) of that paper.
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Figure 16: On the top panel, a CKV feld on the Einstein–Rosen bridge is in-falling on one side and
‘out-falling’ on the other. On the bottom panel, insisting on being in-falling on both sides forces a
discontinuous jump through a defect in the interior.

along which the C-feld switches its orientation from ‘right-infall’ to ‘left-infall’ (cf. Figure 16). If we do

this at the Sd´1 sitting at the fxed point of the Z2 refection, we obtain a delta function contribution

to the integrand of the remainder. A simple calculation reveals then the standard result dC “ 2M .dt 
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6 Generalized Momentum and Complexity

Notwithstanding the important cases that show an exact or approximate PVC correspondence, the

remainder term in (5.14) does not vanish in general. The simplest and more important instance occurs

when considering pure gravity solutions. Gravitational wave scattering with black hole formation is the

crucial example of a process with a non-vanishing rate of complexity growth, which must come entirely

from the remainder term (5.15). The purpose of this section is to propose a generalization of (5.14) in

which the notion of ‘infall momentum’ is suitably generalized, in a way that can handle pure gravity

solutions. The very existence of such a generalization is quite remarkable, given that no strictly local

defnition of energy-momentum exists for the purely gravitational degrees of freedom.

6.1 Generalized PVC from the Codazzi Equation

The key idea in obtaining a generalized PVC relation is to replace the momentum constraint by a more

general starting point. The natural candidate is the Codazzi equation (cf. [97])

ν σ ρ rc Kab ´ rb Kac “ Nµ Rµνσρ ea eb ec , (6.1)

since the momentum constraint (5.6) is contained in its trace. Notice however that (6.1) involves

a projection of the full Riemann tensor instead of simply the Ricci tensor. Therefore, the di˙erence

between (6.1) and (5.6) is proportional to the Weyl tensorWµνρσ. Since gravitational waves are precisely

characterized by a non-vanishing Weyl tensor, the Codazzi equation has the right ingredients for the

kind of generalization that we are seeking.

Following the same steps of the previous section, we want to integrate (6.1) over the extremal

surface Σ. In doing so, we need to contract the three free indices with an ‘infall’ rank-3 tensor feld,

Mabc , enjoying the same symmetry properties as the Codazzi equation, namely antisymmetry in the

“ ´Macblast two indices,Mabc , and the cyclic identityMabc ̀ M bca ̀ M cab “ 0. Using these symmetry

properties, the Ricci decomposition of the Riemann tensor and Einstein’s equation, we can rewrite (6.1)

as

´ Mabc rc Kab “ 
8πG PC
d ´ 1 

` 
1 WM ,
2 

(6.2)

where PC Ca“ Pa , and the C-feld

MabcCb “ hac (6.3)

is an infall vector feld induced by the infall tensor feld. The density

ν ρ σ MabcWM “ ´NµWµνρσ ea eb ec (6.4)

is the contraction of the infall tensor feld with the pulled-back, projected Weyl tensor. Integrating now
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by parts we fnd
ˆ ˆ ˆ ˆ

8πG 1 
Kbc M

bca Mabc´ dSa “ PC ` WM ´ Kab rc . (6.5)
d ´ 1 2BΣ Σ Σ Σ 

An interpretation of the left-hand side of (6.5) as computing dC requires that we setdt 

´ Kbc M
bcaJa “ (6.6)

awhere Ja “ B
µe satisfes the condition (5.4).t µ 

Finally, defning the remainder term
ˆ

d ´ 1 
MabcRM rΣs “ ´ Kab rc , (6.7)

8πG Σ 

and the integrated ‘Weyl momentum’
ˆ

d ´ 1 
WM rΣs “ WM , (6.8)

16πG Σ 

we readily obtain a tensor generalization of (5.14)

dC 
. (6.9)“ PC rΣs ` WM rΣs ` RM rΣs 

dt 

This equation is completely general, under the assumption that the boundary condition (6.6) is

satisfed. It generalizes (5.14) in two ways. First, it contains information about bulk dynamics that

goes beyond the mere initial-value constraints of GR, since it stems from the Codazzi equation. Second,

it requires a generalization of the notion of ‘infall’ vector feld into a tensor infall feld with many more

components. An immediate consequence of this increase in degrees of freedom materializes when we

consider suÿcient conditions for the remainder to vanish.

If the infall tensor Mabc can be further restricted so that the remainder (6.7) vanishes, that is to

say, if Mabc can be chosen satisfying the conditions:

   
´ Kab M

abc 
  “ pBtqc

 

  , Kab rcM
abc “ 0 , (6.10)

BΣ BΣ 

then we obtain the remainder-free, generalized PVC correspondence

dC 
“ PC rΣs ` WM rΣs . (6.11)

dt 

Its main novelty compared to the restricted PVC (5.16) is the presence of a purely gravitational con-

tribution to the infall momentum, WM rΣs, formally depending on the Weyl curvature. In particular,

states with no ‘clumping’ matter, having PC “ 0, still pick the Weyl contribution to the complexity
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rate. This we will see explicitly in the next section, in a particular example.

We now collect a few observations regarding our proposed generalization of the PVC correspondence.

• The generalized relations (6.9) and (6.11) reduce to the ‘restricted’ ones (5.14) and (5.16) when

the infall tensor feld admits the factorized ansatz

´ ¯ 1 
Mabc hac Cb habCc“ ´ , (6.12)

d ´ 1 

in terms of some ‘infall’ vector feld Ca . For suÿciently localized bulk states, this ansatz can

be used to solve the box boundary condition (6.6) when we place the box at infnity in an

asymptotically fat or AdS spacetime. In the AdS case, the solution involves a C-feld with

asymptotic behavior (5.12). In Appendix E we extend this result to the asymptotically fat

case. Conceptually, the combination of (6.12) and (5.12) shows that, asymptotically, the ‘infall’

interpretations of Mabc and Ca reduce to one another.

• We can look for suÿcient conditions for the vanishing of the remainder (6.7), which would gener-
r¨Calize the conformal Killing condition rpaCbq “ hab. Given that Σt is extremal, with K “ 0,d 

the remainder (6.7) vanishes if the symmetrized divergence of Mabc is a conformal rescaling,

M pabqcrc “ Φ hab for some scalar function Φ on Σ. Taking traces, we can compute Φ and obtain

the equivalent trace-free transversality condition

ˆ ˙ 
M pabqc ´ 

1 
hab hef M

efc rc “ 0 . (6.13)
d 

We can expect that fnding transverse tensors satisfying (6.13) on Σ should be easier than fnding

conformal Killing vectors on Σ, simply as a consequence of the existence of many more degrees

of freedom in M pabqc . Within the factorized ansatz (6.12), the M -transversality condition (6.13)

reduces to the conformal Killing condition for the C-feld, giving the most general solution of

(6.13) in spherically symmetric spacetimes or any p2 ` 1q-dimensional solution, precisely those

cases in which the restricted PVC is exact (see Appendix D).

• The generalized PVC relation presented here is bound to su˙er from similar topological obstruc-

tions as the restricted PVC. For an eternal black hole state with spherical symmetry, extremal

hypersurfaces Σt have two disconnected boundaries, the infall tensor feld satisfes the factorized

ansatz (6.12) and the generalized ‘Weyl momentum’ still vanishes when evaluated on the extremal

surfaces. This means that the result of section 5.2 still applies, i.e. the rate of complexity growth

with forward time variables on both sides satisfes (6.9) with a non-zero remainder term RM rΣts,

which in this example happens to coincide with (5.15). Therefore, the example of the eternal

black hole implies that an exact PVC relation with vanishing remainder will always require some

topological assumptions about the extremal surfaces.
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6.2 An Explicit Check of the Generalized PVC

In this subsection we present a detailed verifcation of (6.10) and (6.11) on a non-trivial exact solution of

Einstein’s equations: a gravitational pp-wave. Gravitational waves are usually discussed in the context

of a perturbative expansion around a fat background. In such cases, one usually makes the ansatz

gµν “ ηµν ` hµν , (6.14)

where hµν is treated as a small perturbation and its dynamics is determined by the linearized GR

theory. The standard analysis shows that gravitational waves are transversely polarized, that is to say,

in a suitable coordinate frame, a wave travelling in the z direction will only distort the metric in the
itransverse directions y “ tx, yu, yielding a metric of the form

2 jds “ ´dudv ` pδij ` hij puqqdy idy , (6.15)

where we have defned the light-like coordinates u “ t ´ z and v “ t ` z.

Exact non-perturbative gravitational wave solutions to the Einstein equations are highly idealized

objects, but nevertheless exist and might be useful for pedagogical purposes. One way of defning them

is through a direct generalization of (6.15), dropping the requirement that hµν is small and considering

solutions of the form
2 jds “ ´dudv ` gij puqdy idy , (6.16)

known as the Rosen form of a gravitational plane wave with parallel propagation (PP) solution. In order

to be able to perform some calculations, we will sacrifce some generality by sticking to the following

particular ansatz (cf. [99–101])

´ ¯ 
ds 2 “ ´dudv ` L2puq e 2βpuqdx 2 ` e ´2βpuqdy 2 , (6.17)

where the functions Lpuq and βpuq are to be determined by the Einstein equations. As the solution

represents a null wave by construction, the only component of the Ricci tensor that is excited is

` ˘ 
Ruu “ ´2L ´1 L2 ` pβ1q2L , (6.18)

where the primes stand for d{du. Demanding a purely gravitational solution therefore requires

L2 ` pβ1q2L “ 0 (6.19)

to hold. Once this condition is satisfed, the manifold still possess a non-trivial Riemann curvature,
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with the non-zero elements given by

Ruxux “ ´e 2βL p2L1β1 ` Lβ2q , (6.20)

Ruyuy “ ´e ´2β L p2L1β1 ` Lβ2q . 

We shall check the generalized PVC correspondence for a region X defned by the slice delimited

by ´` ď z ď `. The boundary BX has left and right disconnected components z “ ˘`. The extremal

surface has the form Σ “ γ ˆ R2 , where the curve γ is anchored at BX on times tL and tR (see Fig.

17). We will fx the conventional normalization of the complexity by choosing the ‘AdS size’ to equal

the coordinate edge of X in the z direction, namely we set ` AdS “ `.

Figure 17: Schematic representation of the extremal surface for a pp-wave pulse traversing the box
of size 2` from left to right. The transverse R2 plane is not shown.

In checking (6.11), we shall factor the formally infnite transverse volume of the R2 component,

namely we aim to compute both sides of
ˆ

dVγ ` 
“ WM , (6.21)

dt 2V rR2s Σ 

where Vγ “ V rΣs{V rR2s is the longitudinal volume of a symmetrically anchored curve, with tL “ tR “ t.

Computation of the Extremal Volume

Picking an arbitrary parametrization of γ, the longitudinal volume is given by

λR ˆ 
a 

Vγ “ dλ ´Lpuq4v9u ,9 (6.22)
λL 
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where the dot stands for d{dλ and, as we see, the dependence on the function βpuq drops o˙ the

determinant of the induced metric on the slice, signifcantly simplifying the extremalization problem.

Furthermore, we may choose the coordinate u itself as our λ parameter, yielding the e˙ective lagrangian

a 
L “ ´Lpuq4v9 . (6.23)

As the action does not depend explicitly on v we can obtain a frst integral for the Euler-Lagrange

equations from the canonical momentum associated to v 

BL Lpuq2 
p “ “ ? . (6.24)

Bv9 2 ´v9 

Feeding this back into the action, we get that the on-shell volume will be

uL ˆ
1 4 uLVγ “ du Lpuq “ 2p rvpuqs , (6.25)uR2p 
uR 

meaning that with this choice of parameters vpuq itself measures (up to a multiplicative constant) the

volume along the slice. Integrating (6.24) we get
ˆ

1 
vpuq “ ´ du Lpuq4 ` c , (6.26)

4p2 

and we can fx the value of the constants p and c by imposing the boundary conditions vpuL,Rq “ vL,R.
Solving for p we can write the volume purely in terms of the unknown function Lpuq and the boundary

values

Vγ “

g

f

f

f

e
pvR ´ vLq 

uL ˆ 
du Lpuq4 , (6.27)

uR 

which is a completely general expression for arbitrary boundaries. For the simpler setup zR “ ´zL “ ` 
and considering also a symmetric evolution tR “ tL “ t, we may calculate the rate of growth, which

gives

“ dVγ 1 4“ LpuLq
4 ´ LpuRq

dt 4p 
‰ 
. (6.28)

As a check, we see that the trivial fat solution (Lpuq “ 1 and βpuq “ 0) gives the expected

behaviour, i.e. an extremal surface given by the straight line vpuq “ ´u ` 2t, corresponding to the

fxed-t surface. The volume of this surface is simply V “ 2`, and of course its growth rate vanishes.

Notice that any other non-trivial profle for Lpuq enjoying the symmetry LpuLq4 “ LpuRq4 will have

vanishing rate as well. This is for example the case of pp-waves that have a fnite extension in the u 
direction (e.g. a compactly supported pulse). The volume may change as the wave enters or leaves the
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region but will stay constant if the metric at the boundaries remains fat.

Computation of the Gravitational Infall Momentum

After solving explicitly the variational problem for the pp-wave spacetime (6.17), we will now evaluate

the gravitational infall momentum induced by the Weyl tensor. To begin with, recall that the embedding

functions Xµ “ tu, vpuq, x, yu defning the surface are given by
ˆ

1 
vpuq “ ´ du Lpuq4 ` c , (6.29)

4p2 

aso, choosing the coordinates on Σ to be y “ tu, x, yu we can readily calculate the tangent vectors

¨ ˛ 
1 ´

Lpuq4 

24p
0 0 

0 0 1 0 
˚

˚

˝ 
BXµ

‹

‹ 
‚

(6.30)µ “ “e ,a 
Bya 

0 0 0 1 

and the induced metric on the slice
¨ ˛ 

Lpuq4 
0 0

4p2
˚

˚

˝ 
‹

‹ 
‚ 

ν (6.31)hab “ gµν e “ 0 Lpuq2e2βpuq
µ 

0 
Lpuq2e ´2βpuq 

e .ba 

0 0 

The timelike normal vector is
ˆ ˙ 

2p Lpuq2 
, 

2p 
(6.32)Nµ “ , 0, 0 ,

Lpuq2 

which allows us to compute the extrinsic curvature of the surface

¨ ˛ 
´LL1 

0 0
˚

˚

˝ 
p 

2p e2β pL1`Lβ1q

L 

‹

‹ 
‚ 

ν (6.33)µ“ rµNν e “Kab 0 0e ,ba 
2p e ´2β pL1´Lβ1q0 0 L 

which is of course traceless (K “ 0) due to the extremal character of Σ.

We now have all the ingredients at hand to determine the infall tensor feld satisfying the di˙erential

equation and boundary conditions

  

Mabc 

´`KabM
abc 

  µ c  
 

“ pBtq e . (6.35)µ
φΣ φΣ 

The dynamical equation gives

(6.34)“Kabrc 0 , 

e 2β ` ˘ ` 
L1 ` Lβ1 Mxxu ` ˘ ˘ 

3L1 ` Lβ1 ` LM 1xxu (6.36)
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` ˘ ` ` ˘ ˘

´2β Myyu ` LM 1yyu ` e L1 ´ Lβ1 3L1 ´ Lβ1 “ 0 , 

from which it is easy to fnd a particular solution given by

Myyu “ Aeβ L ´3 , (6.37)

Mxxu ´β L ´3“ B e . (6.38)

A and B are integration constants to be fxed by the boundary conditions (6.35) which become

´βe 
` ` ˘ ` ˘˘

 

2pLβ1 A ´ Be2β ´ 2pL1 A ` Be2β  

 

L4  

  “ 
1 
2` 

´ 

 

22p  

 

 

 `L4 . (6.39)
u“uL,uR u“uL,uR 

Actually, since (6.35) is a vectorial equation, two more scalar equations impose certain algebraic con-

ditions on other tensor components of Mabc . These components will nevertheless be annihilated upon

contraction with the Weyl tensor (6.20) in the generalized PVC formula, so we will not calculate them

here. Solving for the constants A and B we get

` ` ˘ ` ˘ ˘

βL ̀ βRe eβR 4p2 ´ L4 pL1 ` LRβR 
1 q ´ eβL 4p2 ´ L4 pL1 ` LLβL 

1 qL R R L`A “ ` ˘ ` ˘ ` ˘ ` ˘ , (6.40)
4pe2βR L1 ´ LLβ1 L1 ` LRβ1 ´ 4pe2βL L1 ` LLβ1 L1 ´ LRβ1 L L R R L L R R

` ˘ ` ˘ 
eβR 4p2 ´ L4 pL1 ´ LLβL 

1 q ´ eβL 4p2 ´ L4 pL1 ´ LRβR 
1 qR L L R`B “ ` ˘ ` ˘ ` ˘ ` ˘ , (6.41)

4pe2βR L1 ´ LLβ1 L1 ` LRβ1 ´ 4pe2βL L1 ` LLβ1 L1 ´ LRβ1 L L R R L L R R 

where we used the notation LL,R “ LpuL,Rq. Embedding the tensor into the four-dimensional spacetime

Mνρσ Mabc ν ρ σ“ e eb e , and contracting it with the Weyl and normal vectors we can fnally obtain thea a 

longitudinal portion of the gravitational infall momentum

ˆ ˆ
` ` WM “ ´ Nµ Wµνρσ M

νρσ 
2V rR2s Σ 2V rR2s Σ 

ûL 
´ ¯

` ` ˘ 
“ du Ae ´βpuq ´ Beβpuq 2L1puqβ1puq ` Lpuqβ2puq (6.42)

2 
uR 

1 “ ‰

4“ LpuLq
4 ´ LpuRq ,

4p 

which of course is exactly (6.28), the same result that we obtained with the direct extremalization

procedure. The vanishing of the total gravitational infall momentum for a perfectly contained pulse,

having LpuLq “ LpuRq, is consistent with the idea that the pp-wave is ‘infalling’ from the point of view

of the left boundary, but is equally ‘outfalling’ from the point of view of the right boundary.
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Observations

We conclude this section with a few observations regarding these explicit computations.

• The pp-wave example illustrates that a form of the PVC correspondence holds for pure grav-

itational waves in asymptotically fat spacetime but, more emphatically, the ‘box’ can have a

fnite size, defned by some conventional coordinate condition. If the M -tensor can be defned as

satisfying (6.10), the generalized PVC holds with no need to make special physical arrangements

to defne the walls of the box. In this sense we can say that the generalized PVC correspondence

is a quasilocal property of the bulk dynamics.

• Even though we chose a purely gravitational solution in order to maximize the di˙erences with

our previous analysis for collapsing matter solutions in section 4.1, notice that most of the details

go through even after dropping the Ricci-fatness condition (6.19). In such case, the ansatz

(6.17) describes in general a mixture of a gravitational and a (null) matter pp-wave with an

energy-momentum tensor given by

2 ` ˘ 
Tµν “ ´ L ´1 L2 ` pβ1q2L δuδν

u . (6.43)µ8πG 

Of course, for this model to describe real matter one should ask Tµν to satisfy certain null energy

conditions, which in turn will impose some restrictions on the functions Lpuq and βpuq. At

any rate, our observation here is that this non-trivial Ricci curvature does not change any of

our analysis from (6.29) to (6.41) since all quantities on the slice depend only on frst order

derivatives of the metric, yielding formally identical results for the Mµνσ tensor feld. The total

volume variation does however pick an additional term from the matter momentum

„ ˆ ˆ j

dVγ ` 1
“ WM ´ NµTµν C

ν , (6.44)
dt V rR2s 2 Σ Σ 

where the ‘infall vector feld’ Cµ defned in (6.3) can be easily obtained from our solution for Mabc 

yielding
´ ¯ 

Ca “ ` ´1L ´1puq Ae ´βpuq ` Beβpuq δa . (6.45)u 

As it can be readily checked, the sum of the two contributions in (6.44) nicely recovers the correct

result (6.28) again without any additional contribution. The technical reason behind this relies

on the existence of the total derivative
„ j

?dF puq 8πG 1
“ h PC ` WM , (6.46)

du d ´ 1 2
´ ¯ ´ ¯ 

F puq “ ´ Ae ´β ` Beβ L1 ` Ae ´β ´ Beβ Lβ1 , (6.47)

which allows us to perform the integral over Σ for arbitrary functions Lpuq and βpuq, including
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the Ricci and conformally fat solutions as well as any generic mixture of gravitational and matter

waves.

• As it is well known, the very concept of local energy and momentum becomes ill-defned when

we try to adapt it to gravity itself, where only perturbative notions of an approximate energy-

momentum pseudotensor tµν have been proposed (cf. [102–104]). For that reason we do not

expect to fnd a clear general relation between complexity growth and energy infow for pure

gravity solutions. We fnd however amusing that our example admits an interpretation along

these lines. In particular, it is possible to fnd a ‘gravitational infow vector’ Crµ which allows us

to re-write the integrand in (6.42) in a similar fashion as the matter piece, i.e.

WµνρσM
νρσ “ rtµν Cr

ν (6.48)

with

´ ¯ 
Cra “ ` ´1L ´1puq Ae ´βpuq ´ Beβpuq δa , (6.49)u 

ˆ ˙ 
2L1β1 ` Lβ2 

rtµν “ 2 δµ
uδν
u , (6.50)

L 

where we can identify rtµν as the ‘square root’ 21 of the Bel-Robinson tensor (cf. [106]), an object
µthat is constructed purely from the Weyl tensor and satisfes the dominant property rtµν u uν ě 0 

for any future-pointing vector uµ (cf. [107]). It would be interesting to investigate whether this

formal analogy still holds beyond the particular example at hand.

21 See [105] for a proper defnition of this object.
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7 Matter Infall and Complexity

To gain intuition about the infall momentum, we invoke the PVC correspondence (5.14) in this section

to study the evolution of complexity for states with dilute matter which backreacts slightly on the

geometry. We will just work to leading order in the backreaction, given by some parameter ε ! 1 that
controls the deviation of the metric gµν “ gµν ` ε δgµν from the background metric gµν . We will assume

that this reference state is ‘trivial’, in the sense that background metric gµν is a spherically symmetric

vacuum solution. Under these assumptions about the reference state, all the time-dependence of the

complexity of the state can be traced back to the operator that creates the matter, as in the defnition

(3.2).
µThe background C-feld is just Cµ “ ´r ey in terms of the radial tangent feld to the background

sliceΣ, with unit normalNµ. Since Tµν „ ε, at leading order in the backreaction ε, the infall momentum

can be evaluated on the background slice,
ˆ

P rΣs “ ´ Nµ Tµν C
ν . (7.1)

Σ 

The remainder term (5.15) must vanish in the reference state for this choice of background C-feld.

Moreover, the extinsic curvature of the background slice vanishes identically, Kab “ 0, by virtue of the

staticity of spacetime. The only term that can contribute at leading order in ε then comes from

ˆ ˙ 
RC rΣs 

ˆ
1 

δKab“ 
8πG Σ 

1 rpaCbq ´ hab r ¨ C ,
d 

(7.2)

where δKab represents the linear variation of the extrinsic curvature of the slice Σ due to backreaction,

and hab is the induced metric of the background slice Σ. Since the C-feld is a CKV of the background

slice, then the term inside the parenthesis exactly vanishes, making RC rΣs “ 0. Therefore the PVC

correspondence becomes exact at leading order in the backreaction
ˆ

d
d
C 
t 

“ Pinfall “ ´ 
Σ 

Nµ Tµν C
ν , (7.3)

where, from now on in this section, we neglect all contributions of order Opε2q.

7.1 Newtonian limit

For any state satisfying an exact PVC relation (5.16), the radial C-feld is conformal to the canonical

C-feld of the Poincaré ball, which vanishes at the ‘center’. This vanishing point may be moved by the

action of the asymptotic isometries, such as translations in Minkowski spacetime, but a given globally

defned infall feld will always have a ‘center’. This suggests that the infall momentum behaves like

angular momentum does: an arbitrary center must be specifed, although any center is a valid reference
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point.

The important notion of ‘infall momentum’ can be further elucidated by taking the Newtonian limit

of (7.3) for a collection of point particles. We can have these particles moving deep inside AdS, in a

region of size ` ! ` AdS or work directly in asymptotically fat spacetime. Fixing the reference system

at the point where C “ 0, the complexity rate in the Newtonian approximation is the total infall

momentum for the particle system:

d CNewtoniandt
“ Pinfall “ 

ÿ1
´ xi ¨ pi ,
` AdS i 

(7.4)

where we have momentarily restored the dependence on the ‘box’ length scale ` AdS “ 1, an arbitrary

choice in this Newtonian discussion. We see that it is indeed a sort of ‘radial-inward’ version of the

angular momentum, constructed with scalar products rather than vector products. Just like angular

momentum, the so-defned ‘infall momentum’ is not invariant under translations or boosts, and a special
ř ř

role is played by the center of mass X “ i mixi{ i mi.

Suppose our system has a number of distant clusters, so that each of them can be regarded as

approximately isolated. The total infall momentum can be decomposed in ‘intrinsic’ and ‘orbital’

parts:
ÿ ÿ

Pinfall “ PinfallrXαs ´ Pα ¨ Xα , (7.5)
α α 

where Xα is the center of mass of the α-cluster and Pα its total momentum. In this expression,

PinfallrXαs accounts for the ‘intrinsic’ infall momenta within each cluster, measured with respect to its

center of mass. Hence, ‘compositeness’ of e˙ective particles is incorporated through an additive term

for each particle, something analogous to ‘spin’.
dInfall momentum has the crucial property of being a total derivative, Pinfall “ dt Iclump, where

ÿ 
2Iclump “ ´

1 
mixi (7.6)

2 
i 

is a sort of ‘spherical’ moment of inertia which measures the degree of ‘clumping’ of the matter. Hence

we fnd that, within the Newtonian approximation, the complexity is completely determined, up to an

additive constant, by the degree of matter ‘clumping’

CNewtonian “ C0 ` Iclump . (7.7)
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Complexity and Newtonian Force

Unlike angular momentum, infall momentum will not be conserved in general. Its time derivative,

proportional to the second derivative of the complexity, is

d2C ÿd
“ Pinfall “ ´2T ´ xi ¨ Fi , (7.8)

dt2 dt
i 

where Fi is the Newtonian force acting on the i-th particle and T is the total kinetic energy.

If the internal dynamics of the system is described by a potential V pxiq which is a homogeneous

function of degree k, Euler’s theorem implies

d
Pinfall “ ´2T ` kV “ ´pk ` 2qT ` kE , (7.9)

dt

with E the conserved total energy. For a gravitational system, k “ ´1, which is either unbound

or marginally bound, E ě 0, the time derivative of the infall momentum, or equivalently, the sec-

ond derivative of the complexity, is guaranteed to be negative. For stably bounded systems, on the´
1 t0other hand, the time-average of the infall momentum must vanish, dt Pinfallptq “ 0, where t02t0 ´t0 

corresponds to a suitable time-window, and complexity remains constant on average.

7.2 Relativistic Matter

2Let us now consider relativistic matter in asymptotically fat spacetime ds “ ´dt2 ` dr2 ` r2 dΩ2 
d´1,

where we again fx the reference system r “ 0 at the center of infall. At leading order in the backreaction,

the PVC correspondence (7.3) is given in terms of the constant global-time background slice Σ, with

unit normal N “ Bt and C-feld C “ ´r Br. The infall momentum in this case is
ˆ

dC 
“ Pinfall “ dr dΩd´1 r d Ttr . (7.10)

dt

This relativistic infall momentum also happens to be a total derivative. The relativistic matter is

T µνconserved at leading order in the backreaction, with respect to the background metric, rµ “ 0.
From this condition, it is straightforward to see that indeed

ˆ ˆ ˙ r 
1 r d Ttr “ Bt r dr r 1d´1 Ttt , (7.11)

0 

up to total derivatives that vanish under the integration over the Sd´1 . Plugging this expression in
d(7.10), and interchanging the order of the radial integrals gives, Pinfall “ Iclump, for the relativisticdt 

‘clumping’ moment of inertia ˆ
Iclump “ ´

1 
dr r 2 Eprq , (7.12)

2 
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´
where Eprq “ dΩd´1 r

d´1 Ttt is the energy density per radial unit. The power of this expression relies

in the fact that the ‘spherical’ moment of intertia now includes the e˙ect in the complexity of any

classical feld with small backreaction. Moreover, we emphasize that our derivation applies for any

dilute distribution of energy Ttt, which can have an arbitrary profle along the Sd´1 .

The complexity of the relativistic system is given again by the degree of matter ‘clumping’

C “ C0 ` Iclump . (7.13)

Complexity and Relativistic Dynamics

There is also a generalization of (7.8) to the relativistic case. To derive it, let us start by writing

the di˙erence Pinfallpt2q ´ Pinfallpt1q as a fux over the boundaries of the spatial region Wpt1,t2q that

extends for t P rt1, t2s. The di˙erence of infall momenta corresponds to the fux of the vector feld
µv “ ´T µ ν C

ν evaluated at BWpt1,t2q. That is,
22 

ˆ 
µPinfallpt2q ´ Pinfallpt1q “ Nµ v . (7.14)

BWpt1,t2q 

Applying Stoke’s theorem, the di˙erence in infall momenta has the following expression as a spacetime

integral over Wpt1,t2q, ˆ
Pinfallpt2q ´ Pinfallpt1q “ Tµν rµ Cν . (7.15)

Wpt1,t2q 

µ νThe covariant derivative of the background C-feld can be written as rµ Cν “ ´ ea e hab . Decom-b 

posing the spacetime integral using the Σ slices, and taking t2 Ñ t1 we get

ˆ
d2C dPinfall

“ “ ´ pΣ (7.16)
dt2 dt Σ 

where pΣ “ Tab hab is the ‘total pressure’ along the slice Σ. The average pressure can also be expressed
23as p “ � ` T , in terms of the energy density � “ Nµ Tµν N

ν and the trace T “ Tµµ.

As an example, consider a perfect fuid with Tµν “ pρ ̀  pquµuν ` p gµν , the total pressure is positive

provided that the pressure p and the energy density ρ of the fuid are positive, pΣ ě dp. The second

derivative of the complexity for such an unbound system is negative.

22 Here we assume that the felds decay suÿciently fast as r Ñ 8.
23 Note that, for the Newtonian case, (7.8) vanishes for a rotating rigid body along the center of infall, since in that case
xi ¨ Fi “ mix9 i 

2 . For the relativistic case, the rotating body has p “ 0 in (7.16). The ‘centripetal force feld’ generates
negative radial pressure Trr ă 0 which cancels the angular component.
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8 Conclusions

Recent progress in gravitational holography has lead to some speculation regarding the fundamental

origin of the gravitational attraction. The most radical ideas point towards gravity and quantum

mechanics being two sides of the same coin, after all. Quantitatively, this connection is encapsulated

in the momentum/size correspondence reviewed in section 2 of this thesis, which characterizes the

gravitational attraction exerted by a black hole as the tendency of a ‘small’ probe operator to scramble

under the infuence of a chaotic Hamiltonian.

However, any correspondence which relies on the notion of ‘operator size’ will have its own limita-

tions to describe fnite-entropy systems after the scrambling time. In particular, the PS correspondence

is unable to describe the experience of the infalling particle in the black hole interior. Furthermore,

black holes and fast scrambling seems crucial on its derivation, while on the other hand, gravitational

attraction is a universal feature of all forms of energy.

In this thesis, we have presented a momentum/complexity correspondence, in the context of the

Complexity = Volume prescription, which: piq extends to arbitrary late times after scrambling, keeping

track of the experience of the infalling matter in the black hole interior, and piiq is valid for any

spherically symmetric state of matter, however dilute, in higher dimensions, as well as for any state

in 2+1 dimensions. The PVC correspondence formalizes the idea that the gravitational clumping of

matter increases the complexity of the quantum state.

In section 4 we have presented the original ‘phenomenological’ derivation of the correspondence,

following the evolution of thin shell operators impinging on double-sided AdS black holes. The key

to the construction is to measure the momentum with respect to a bulk time foliation by the same

maximal surfaces that one uses to compute the VC.

Next, in section 5, we have shown that the momentum/complexity correspondence is implicit in the

Complexity=Volume prescription, as a result of the Momentum Constraint in General Relativity. The

PVC correspondence is based on two ingredients that were advanced in the thin-shell analysis of section

4: the use of maximal-volume hypersurfaces as the time foliation to measure the momentum, and a

particular choice of momentum component along the extremal surfaces, determined by an appropriate

‘infall feld’ CΣ. In formulas ˆ
dC 

“ PC ` RC rΣs , (8.1)
dt Σ 

where PC “ ´Nµ Tµν C
ν is the infall momentum. The infall feld is required to have fxed boundaryΣ Σ 

conditions at infnity, but otherwise the freedom implicit in its specifcation is refected in the existence

of a ‘remainder’ correction RC rΣs to the PVC relation. The remainder vanishes if CΣ extends to the

bulk as a conformal Killing vector, something that is guaranteed for any spacetime in 2 ̀  1 dimensions

and any spherically symmetric spacetime in arbitrary dimensions. From the physical point of view, the

most important exception is provided by gravitational waves. This is natural in some sense, since we
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know that there is simply no candidate for a local measure of purely gravitational momentum to be

integrated over Σ.

In section 6 we have presented a further generalization of the idea that certain holographic com-

plexity/momentum correspondences are largely implicit in the dynamics of Einstein gravity. The main

realization is that the PVC correspondence of section 5 admits a nontrivial generalization into a fully

gravitational PVC stemming from the Codazzi equation:
ˆ ˆ

dC 
“ PC ` WM . (8.2)

dt Σ Σ 

The main novelty of this generalized PVC relation is the occurrence of a new contribution to the ‘rate

of gravitational clumping’, measured by an appropriate fux of the Weyl tensor across the extremal
νρσ 

´ d´1 Nµsurface, WM “ Wµνρσ M . A crucial technical ingredient is the generalization of the16πG Σ Σ 

notion of ‘infall vector feld’ CΣ into a rank-3 ‘infall tensor feld’ MΣ with the same symmetry structure

as the Codazzi equation itself. In order for (8.2) to be true,Mabc must be chosen to satisfy the equationΣ 

MabcKab rc Σ “ 0 throughout Σ, with boundary conditions (6.6). We have explicitly checked that these

requirements can be met in an exact pure-gravity pp-wave solution of Einstein’s equations.

In section 7, we have shown that the central concept of ‘infall momentum’ has a Newtonian version

which explicitly captures the intuitive idea that matter clumping increases complexity. A relativistic

generalization of this version also exists. Finally, the value of VC for states with small backreaction is

given in terms of a radial ‘moment of inertia’ that quantifes the degree of clumping of matter.

The PVC correspondence presented in this thesis opens many avenues for future research. For

instance, it would be interesting to check the complexity slope (4.40) for the thin shells by direct

evaluation of the infall momentum of the shell. This requires detailed control of the precise location of

the intersection sphere SW in the black hole interior. It is also interesting to check whether a transient

exists for early times which shows a measurable Lyapunov exponent. This is a nontrivial fact, given

that our time foliation is quite di˙erent from a near-horizon Rindler system. In particular, such chaotic

transients were numerically identifed in [92, 108] in VC computations relevant to situations which are

similar, although not identical, to the set up studied in section 4.

Another interesting open problem is to fnd a generalization of the PVC correspondence to include

non-trivial boundary dynamics in AdS/CFT examples. This includes the VC of ‘cosmological’ con-

structions driven by time-dependent states in the CFT, as in [109], and ‘boundary gravitons’ in 2 ` 1 
dimensions [64, 110–112]. It would be interesting to study the detailed solutions of (5.12) that arise

in these situations, where the PVC relation is expected to contain additional ‘boundary’ contributions

beyond the bulk infall momenta.

The generalized PVC correspondence also poses a number of interesting questions. While (8.2) is

certainly more general than (8.1), we are still lacking a more precise physical interpretation of the Weyl-

momentum WM . It would be interesting to explore possible connections to pseudo-local energy notions
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based on the Bel–Robinson tensor, as suggested at the end of the section 6.2. Further elucidation along

these lines will follow form a careful analysis of weak-feld expansions around the asymptotic factorized

ansatz (6.12).

At a purely mathematical level, it would be interesting to delimitate the reach of suÿcient conditions

such as the symmetrized transversality condition on the infall tensor (6.13). The answer is guaranteed

to be nontrivial, for at least two reasons. First, the explicit solution we have found for Mabc in theΣ 

pp-wave example does not satisfy (6.13). Therefore, we know that in cases that are suÿciently far

from the factorized ansatz (6.12), the transversality condition is too strong. Second, even when the

factorized ansatz works and (6.13) reduces to the conformal Killing condition, topological obstructions

can prevent the remainder from vanishing.

We end with a digression on the more general signifcance of PVC relations like (8.1) and (8.2). First

of all, our proposed PVC correspondences are tailor-made for the VC prescription. By now, a plethora of

di˙erent complexity proposals exist [64,65,93–95,111–115] and it would be interesting to see if analogous

momentum/complexity correspondences can be formulated. When addressing this question, one should

keep in mind that subtly di˙erent notions of complexity may exist in the boundary description. As a

simple example of this fact, we can consider operator K-complexity [85–88, 116], which is conceptually

di˙erent from circuit complexity, yet it shows analogous ‘phenomenology’ in certain situations.

At any rate, we know that extremal spatial volumes parametrized by codimension-one boundary

data are interesting quantities in any putative holographic description. Whether they are literally

related to some sort of computational complexity is an open question, but it is certain that there exists

a notion of ‘volume complexity’ induced from the bulk description. In this context, one can imagine

using the PVC formula as a basis for its elucidation. Since the right hand side of (8.2) is a local bulk

integral, we can expect that a suÿciently powerful prescription of bulk operator reconstruction can

be used to give an operational defnition of dC in the dual holographic picture (CFT or otherwise). Adt 

further integration determines the ‘volume complexity’ up to a constant, mimicking the strategy followed

before to determine the Newtonian limit of the complexity in equations (7.6) and (7.7). In this context,

it becomes interesting to investigate the relation between the PVC correspondence and other structural

properties of holographic complexity, such as the frst and second laws of complexity [117–119].
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Conclusiones

El progreso reciente en holografía gravitacional ha generado cierta especulación a la hora de reinter-

pretar el origen fundamental de la atracción gravitatoria. Las ideas más radicales apuntan a que la

gravedad y la mecánica son dos caras de la misma moneda, después de todo. Cuantitativamente, esta

conexión está capturada en la correspondencia momento/tamaño presentada en la sección 2 de esta

tesis, que caracteriza la atracción gravitatoria ejercida por un agujero negro como la tendencia de un

operador de prueba a mezclarse entre todos los grados de libertad del agujero negro bajo la acción de

un Hamiltoniano caótico.

Sin embargo, cualquier correspondencia que se base en la noción de ‘tamaño del operador’ tiene

sus propias limitaciones cuando se trata de describir sistemas de entropía fnita después del scrambling

time. En particular, la correspondencia PS es incapaz de describir la experiencia de la partícula en

caída libre en el interior del agujero negro. Además, los agujeros negros y el caos maximal parecen

ingredientes cruciales en su derivación, mientras que, por el contrario, la atracción gravitatoria es una

característica universal de todas las formas de energía.

En esta tesis, hemos presentado una correspondencia momento/complejidad, en el contexto de

la prescripción Complejidad = Volumen, que satisface las siguientes propiedades: piq es válida para

tiempos arbitrariamente largos después del scrambling time, y contiene la información de la particula

en caída libre en el interior del agujero negro piiq su rango de aplicabilidad incluye cualquier estado

esféricamente simétrico de materia, sin importar su densidad, en dimensiones superiores, junto con

cualquier estado en 2+1 dimensiones. La correspondencia PVC formaliza la idea de que la compresión

gravitatoria de la materia incrementa la complejidad cuántica del estado.

En la sección 4 hemos descrito la derivación ‘fenomenológica’ original de la correspondencia, sigu-

iendo la evolución de los operadores de tipo corteza que caen a un agujero negro eterno en AdS. El

punto clave en la construcción es el hecho de medir el momento con respecto a la foliación temporal

dada por las superfcies maximales que se utilizan para calcular la VC.

Después, en la sección 5, hemos demostrado que la correspondencia momento/complejidad queda

implícita en la prescripción Complejidad = Volumen, como resultado de la restricción inicial de mo-

mento de la Relatividad General. La correspondencia PVC está basada en dos ingredientes que fueron

avanzados en el análisis de las cortezas de la sección 4: el uso de hipersuperfcies de volumen extremal

como la foliación temporal para medir el momento, y una elección particular de la componente del

momento a lo largo de las superfcies extremales, determinada por el correspondiente ‘campo de caída’

CΣ. En fórmulas ˆ
dC 

“ PC ` RC rΣs , (8.3)
dt Σ 

donde PC “ ´Nµ Tµν C
ν es el momento de caída. El campo de caída satisface ciertas condiciones deΣ Σ 

contorno en el infnito, pero a pesar de eso, la libertad en defnirlo está implícita en la especifcación
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del resto RC rΣs en la relación PVC. El resto se anula si CΣ se extiende a lo largo de la superfcie como

un vector de Killing conforme, una propiedad que está garantizada para cualquier espaciotiempo en

2 ` 1 dimensiones y para cualquier espaciotiempo esféricamente simétrico en dimensiones arbitrarias.

Desde el punto de vista físico, la excepción más importante a que el resto se anule se debe a las ondas

gravitacionales. Esto es natural en cierto sentido, ya que es bien sabido que no existe simplemente una

medida local del momento puramente gravitacional para ser integrado a través de Σ.

En la sección 6 hemos presentado una generalización más de la idea de que ciertas correspondencias

momento/complejidad se encuentran implícitas en la dinámica de la gravedad de Einstein. La real-

ización principal es que la correspondencia PVC de la sección 5 admite una generlalización no trivial a

una correspondencia PVC totalmente gravitacional que emerge de la ecuación de Codazzi:
ˆ ˆ

dC 
“ PC ` WM . (8.4)

dt Σ Σ 

La mayor novedad de esta relación PVC generalizada es la existencia de una nueva contribución al

ritmo de compresión gravitatoria medida por un fujo apropiado del tensor de Weyl a lo largo de la
νρσ superfcie extremal, WM “ ´ d´1 Nµ Wµνρσ M . Un ingrediente técnico crucial es la generalización16πG Σ Σ 

de la noción del ‘campo vectorial de caída’ CΣ al ‘campo tensorial de caída’ de rango 3 MΣ con las

mismas simetrías que la ecuación de Codazzi. Para que (8.4) sea válida, el campo Mabc tiene queΣ 

Mabcelegirse de tal forma que satisfaga la ecuación Kab rc “ 0 a lo largo de Σ, con las condicionesΣ 

de contorno dadas por (6.6). Hemos corroborado explícitamente que estos requerimientos se pueden

satisfacer para una solución exacta a las ecuaciones de Einstein sin materia del tipo pp-wave.

En la sección 7, hemos demostrado que el concepto central de ‘momento de caída’ tiene una versión

Newtonianan que captura explícitamente la idea de que la compresión de la materia aumenta la com-

plejidad. Existe también una noción relativista del ‘momento de caída’. Finalmente, el valor de VC

para estados con backreaction pequeña viene dada en términos de un ‘momento radial de inercia’ que

cuantifca el grado de compresión de la materia.

La correspondencia PVC presentada en esta tesis abre muchas puertas para investigar en el futuro.

Por ejemplo, sería interesante corroborar la pendiente de la complejidad (4.40) para las cortezas me-

diante la evaluación directa del momento de caída de la corteza. Esto requeriría un control detallado

del lugar de la esfera de intersección SW en el interior del agujero negro. Sería también interesante

investigar si existe una región transitoria a tiempos cortos que muestre un exponente de Lyapunov real-

mente medible. Esto es un hecho no trivial, dado que nuestra foliación temporal es bastante distinta

de las coordenadas de Rindler en la región cercana al horizonte. Estas transiciones caóticas fueron

determinadas en particular en [92,108] en cálculos de VC correspondientes a situaciones que similares,

pero no del todo idénticas, a las consideradas en la sección 4.

Otro problema interesante es encontrar una generalización de la correspondencia PVC que incluya

una dinámica no trivial de la frontera en ejemplos de AdS/CFT. Esto incluye la VC de las construcciones
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‘cosmológicas’ regidas por estados dependientes del tiempo en la CFT, como en [109], y ‘gravitones de

frontera’ en 2`1 dimensiones [64,110–112]. Sería interesante estudiar soluciones detalladas a (5.12) que

surgirían en estas situaciones en las que se espera que la correspondencia PVC contenga contribuciones

adicionales de frontera además del momento de caída.

La correspondencia PVC generalizada también genera un gran numero de preguntas interesantes.

Mientras que es ciertamente más general que, todavía nos falta una interpretación física más precisa

del ‘momento de Weyl’ WM . Sería interesante explorar las posibles conexiones con las nociones pseudo-

locales de energía basadas en el tensor de Bel–Robinson, como sugerimos en el fnal de la sección 6.2.

La elucidación de estas nociones requreriría un análisis detallado de las expansiones de campo débil en

torno al ansatz asintóticamente factorizado (6.12).

A nivel matemático, sería interesante delimitar el alcance de las condiciones sufcientes como la

condición de la transversalidad simétrica del tensor de caída (6.13). La respuesta está garantizada a

ser no trivial, al menos por dos razones. La primera es que la solución explícita que hemos encontrado

para Mabc en el ejemplo de la pp-wave no satisface (6.13). Por ello, sabemos que casos sufcientementeΣ 

alejados de la solución factorizada (6.12), la condición de transversalidad es demasiado restrictiva.

Segundo, aunque la solución factorizada funcione y (6.13) se reduzca a la condición de vector de Killing

conforme, las restricciones topológicas pueden prevenir de que el resto se anule.

Finalizamos con una disgresión en el signifcado más general de relaciones PVC como (8.1) y

(8.2). Primero, las correspondencias PVC que hemos propuesto están específcamente diseádas para la

prescripción VC. Actualmente, existe una plétora de propuestas distinta para la complejidad holgrá-

fca [64, 65,93–95, 111–115] y sería interesante saber si existen correspondencias momento/complejidad

análogas para estas otras propuestas. Cuando se trata esta cuestión, uno debe tener en mente que

pueden existir nociones de complejidad que diferan sutilmente en la CFT. Como simple ejemplo de este

hecho, podemos considerar la K-complejidad del operador [85–88,116], que es conceptualmente distinta

a la complejidad computacional medida por un circuito cuántico, y aún así muestra una ‘fenomenología’

similar en ciertas situaciones.

De cualquier modo, sabemos que los volumenes espaciales extremales parametrizados por datos de la

frontera de codimensión uno son cantidades interesantes en cualquier descripción holográfca hipotética.

Si estas cantidades se corresponden literalmente con algún tipo de complejidad computacional o no es

un problema abierto, pero lo que está claro es que existe una noción de ‘complejidad de volumen’

inducida desde la descripción dual. En este contexto, uno se podría imaginar tomar la correspondencia

PVC como base para su elucidación. Por el hecho de que la parte derecha de (8.4) es una cantidad local

en el lado gravitatorio, podemos esperar que una prescripción lo sufcientemente poderosa del operador
dCen el bulk se pueda reconstruir para dar una defnición operacional a dt en el dual holográfco (CFT u

otro). Una integración más en el tiempo determina la ‘complejidad de volumen’, salvo una constante,

adoptando la estrategia que hemos seguido para determinar el límite Newtoniano de la complejidad en

las ecuaciones (7.6) and (7.7). En este contexto, se vuelve interesante investigar la relación entre la
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correspondencia PVC y otras propiedades estructurales de la complejidad cuántica, como la primera y

segunda ley de la complejidad [117–119].
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A. LATE TIME ACCUMULATION OF MAXIMAL SLICES

A Late time accumulation of maximal slices

In this appendix, we show proof of the exponentially fast accumulation of maximal slices in the

black hole interior. For that matter, we will work within the benchmark case of an eternal black hole,

whose metric is given in Eddington-Finkelstein coordinates by

2 2ds “ ´fprq du ` 2 du dr ` r 2dΩ2 (A.1)d´1 . 

By spherical symmetry, the maximal surface can be written as a direct product Σ “ γ ˆ Sd´1 , with

γ a curve in the u ´ r plane. Exploiting this symmetry we can reduce thus the problem of volume

extremalization to that of a spacelike geodesic in the e˙ective two-dimensional spacetime

2 2ds “ r 2pd´1qp´fprq du ` 2 du drq , (A.2)γ 

so that the e˙ective volume functional is given by
ˆ 

a 
d´1V rΣsV ´1 

“ V rγs “ dλ r ´fprq u9 2 ` 2 u9 r9 , (A.3)Ω 

where λ is an arbitrary spacelike parameter and the dot stands for d{dλ. The Lagrangian in (A.3)

enjoys a conserved charge associated to the static Killing

BLγ ´fprq ` r9 
Π “ “ r d´1 

a , (A.4)
Bu9 ´fprq ` 2 r9 

2where Π is guaranteed to be positive by the spacelike character of the geodesic ds ą 0 and we haveγ 

taken the convinient gauge choice λ “ u. Feeding the conserved charge into the equations of motion

for rpuq we get
d 

Π2 Π Π2 
r9 “ fprq ` ` ` fprq . (A.5)

2pd´1q d´1 2pd´1qr r r 

Upon the imposition of refection symmetry in our setup (tL “ tR “ t), the boundary conditions

can be recasted to be r9puiq “ 0 and rpu8q “ r8 for ui “ r˚priq , u8 “ t the values of the parameter

at the symmetric turning point and boundary respectively. In terms of the turning point radius ri we

can get a simple expression for Π 
a

pd´1q
Π “ r ´fpriq . (A.6)i 

An implicit relation between t and ri can be obtained integrating (A.5)

ˆ u8 
ˆ r8 2pd´1qr 

du “ dr ` ˘ . (A.7)
g1{2prq Π ` g1{2prqui ri 
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where we have defned the function

2pd´1q
gprq “ r 2pd´1q fprq ´ r fpriq , (A.8)i 

which vanishes at the minimal radius ri. Breaking up the radial integral into an inner an outer piece

and substituting the boundary conditions, we can obtain an expression for the boundary time

ˆ rh 2pd´1qr 
t “ dr ` ˘ ` hprh, ri, r8q . (A.9)

g1{2prq Π ` g1{2prqri 

where hprh, ri, r8q is a fnite function for all values of its parameters. As we see from the structure of

the zeros of gprq, the integral above contains a pole at r “ ri. In order to approximate the integral

(A.9) we may expand gprq to second order around ri 

α 
gprq “ αpri ´ riqpr ´ riq ` pr ´ riq ` ... . (A.10)

2 

where α is a positive constant depending on the parameters of the black hole and ri is the asymptotic

limiting surface. The necessity to go up to second order in the expansion is revealed by the vanishing of

the linear term in the late time limit corresponding to ri Ñ ri. Feeding (A.10) into (A.9) and expanding

the rest of the integral to zero order we get

2pd´1q ˆ 
” ı´1{2rhr αit « dr αpri ´ riqpr ´ riq ` pr ´ riq ` fnite . (A.11)

Π 2ri 

which can be solved exactly

2pd´1q
rit « ´ logpri ´ riq ` fnite . (A.12)

Πpα{2q1{2 

Inverting this expression we get the desired result, i.e. the exponentially fast saturation of maximal

slices in the black hole interior

ri ´ ri « b e ´t{a , (A.13)

where a and b approach constant values in the late time limit.
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B One-sided PVC correspondence

In this appendix, we extend the regime of validity of the PVC correspondence (4.39) to situations

in which there is a spherically symmetric thin shell living in the AdS vacuum. We introduce a slightly

more general formalism to manifestly show that the same PVC formula holds for any spherical thin

shell irrespectively of its internal equation of state.

We start from a single holographic CFT on Sd´1 and take the CFT vacuum as the reference state

to defne the operator complexity (3.2). Using the VC prescription, the bulk defnition is

d ´ 1 C rOshells “ rVolpΣAdS`shellq ´ VolpΣAdSqs , (B.1)
8πG 

where Σ is the extremal hypersurface of interest, defned in empty AdS with and without the shell

respectively. A peculiarity of this choice of reference state is that its complexity is constant in time, and

this makes the rate of (B.1) to depend only on the extremal hypersurface on the spacetime with the shell.

This extremal volume hypersurface Σ will be topologically a ball anchored to the asymptotic sphere S8 
µat boundary time t. A generic infnitesimal deformation of its embedding function δXµ “ δε Nµ 

` δκa eaΣ 

will produce the volume variation

 

  
ˆ ˆ

δV rΣs “ raδκ
a “ dSa δκ

a , (B.2)
extremal 

Σ S8 

as in (4.22), which in this case follows from the tracelessness of the extrinsic curvature of Σ. In

particular, for time translations of the boundary sphere, we need to take the tangent deformation to

asymptotically become pδκaq|S8 “ pBt ¨ eaq δt. From (B.2), the rate of extremal volume then reads

ˆ
dV 

“ ra ρ
a ” Π , (B.3)

dt Σ 

afor ρa any tangent vector that asymptotically approaches Bt ¨ e .

For spherically symmetric thin shell confgurations, there will be two timelike Killing vectors ξµ 
˘ 

individually defned on each of the regions of spacetime V˘ glued by the worldvolume W. Taking ` as
a normal coordinate to W, we can defne the Killing vector feld globally as ξµ “ ξ´ 

µ Θp´`q ` ξ` 
µ Θp`q,

where Θ is the step function. The Killing condition is then broken due to a possible discontinuity across

W 
rpµ ξνq “ pNW qpµ pΔξqνq δp`q , (B.4)

where we used that BµΘp`q “ δp`q pNW q , for NW 
µ the W-normal. The global piecewise Killing ξµ 

µ 

asymptotically becomes the time translation generator Bt
µ, and therefore it is possible to choose its

aprojection to the extremal hypersurface ξa “ ξ ¨ e to play the role of the tangent vector in (B.3). The
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projection of (B.4) into Σ reads

` ˘ ` ˘ 
rpa ξbq “ δp`q NW ¨ epa Δξ ¨ ebq ` pξ ¨ NΣq Kab , (B.5)

where Kab the extrinsic curvature of Σ. This second term breaks the Killing condition as a consequence

of the original Killing ξµ failing to be tangent to Σ. Nevertheless, for the extremal hypersurface Σ the
trace of this term vanishes, which makes this tangent vector to be conserved away from W 

ρa ra “ δp`q pNW ¨ eaq hab pΔξ ¨ ebq . (B.6)

This tangent vector precisely agrees with the Noether current (4.26) arising from the internal time-

translation symmetry of the volume functional.

In this framework, we thus fnd that the rate of the operator complexity is proportional to a localized

quantity on W ˆ
d d ´ 1 CrOshells “ δp`q pNW ¨ eaq hab pΔξ ¨ ebq , (B.7)
dt 8πG Σ 

namely the discontinuity of the stationary Killing vector feld.

To evaluate the discontinuity of the Killing vector across W, let us focus on the codimension two

sphere of intersection SW “ Σ X W. We defne the spacelike tangent to Σ which is orthogonal to SW 
µ µand unit norm, denoted by ey . Similarly, we defne the timelike tangent to W, denoted u , as the one

orthogonal to Σ X W and unit norm. From spherical symmetry ξ˘ 
µ 
|W will be orthogonal to the spheres,

and an identical argument to the one provided in section 4.1 determines that the only discontinuity

will be tangent to W and with value

8πG ρ µpΔξµqW “ ´ pSρσ u u σ Rq u , (B.8)
d ´ 1 

where Sµν is the induced energy-momentum on W, and R is the radius of SW . Substituting in (B.7)

and noting that NW ¨ ey can be written as ´NΣ ¨ u from the argument given in 4.2, we get

ˆ
d µ νCrOshells “ pTµν u u q r pNΣ ¨ uq pu ¨ eyq . (B.9)
dt Σ 

The one-sided version of the PVC correspondence then follows from the decomposition uµuν “ 
µν µν

´g ` Nµ Nν ` gSW 
, where the last term is the induced metric on SW , and from the thin-shellW W 

µcondition Tµν N
ν “ 0. Upon the defnition of the ‘complexity feld’ Cµ 

“ ´r ey , we arrive at theW Σ 

desired formula ˆ
d CrOshells “ ´ NΣ 

µ Tµν CΣ 
ν . (B.10)

dt Σ 

This derivation of the PVC correspondence certainly clarifes that the PVC formula applies to any

spherically symmetric thin shell in AdS, including branes that separate AdS patches of di˙erent curva-

ture radius.
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C Rotating thin shell in AdS3 

In this Appendix we use the language developed in Appendix B to begin exploring less symmetric

confgurations. We consider the particular example of a rotating thin shell that collapses in AdS3,

corresponding to a stationary but not static exterior spacetime. This solution will be treated formally

in the sense that we do not insist in the physical consistency of the shell’s energy momentum tensor.

The main interest of this simple exercise is to show that formula (B.10) continues to apply with the

same complexity feld CΣ 
µ , despite the existence of ‘shear’ components in the jumping conditions for the

Killing vectors.

The outside spacetime V ` consists of a rotating BTZ solution (cf. [120])

dr2 ´ a ¯ 2 
2 2 2ds “ ´f`prq dt ` ` r dφ` ´ dt` , (C.1)` ` 2f`prq r 

with blackening factor
2a2f`prq “ r 2 ´ µ ` , (C.2)
2r 

2for a “ 4 GJ and µ “ 8 GM the ADM angular momentum and mass, respectively. We choose the

inner spacetime V ´ to be pure AdS3 

2dr2 2 2ds “ ´p1 ` r q dt ` ` r 2 dφ2 . (C.3)´ ´ ´ 1 ` r2 

The worldvolume of the shell W will have metric

2 2 dψ2ds “ ´dτ2 ` Rpτq , (C.4)W 

where ψ is a co-rotating angle. Demanding for the continuity of the metric across W translates then

to the set of conditions

ψ “ φ´ “ φ` ´ ωpRq t` ` θpτq , (C.5)

pR9 q2 pR9 q2 
2 2´1 “ ´f´pRq pt9´q ` “ ´f`pRq pt9`q ` , (C.6)

f´pRq f`pRq 

where the angular frequency of the shell is basically ωpRq “ a{R2 , and the function θpτq accounts for
the variation in the angular frequency of the shell due to its shrinking

θ9pτq “ ω9 pRq t` . (C.7)

The discontinuity in the extrinsic curvature on W as seen from V˘ will be sourced by the induced

energy-momentum tensor of the shell Sµν . Since the interior frame is co-rotating with the shell, the
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situation is the same as for the spherically symmetric collapse in section 4.1, for which we already know

the components of the extrinsic curvature. The calculation from the exterior frame is a little more

involved, but it can be done by using the precise form of the outward pointing W-normal pNW q “ µ 
µt9` pdrqµ ´ R9 pdt`qµ and velocity feld u “ R9 Brµ 

` t9` B
µ 

` ω t9` B
µ . The second junction conditionst` φ` 

can then be expressed as

1 β` ´ β´ 
Sτ τ “ (C.8)

8πG R 
9 91 β` ´ β´ 

Sψ ψ “ (C.9)
8πG R9 

Sτ ψ “ ´ 
1 

ωR (C.10)
8πG 

b 
9where β˘ “ R2 ` f˘pRq.

Let us proceed to calculate the discontinuity in the stationary Killing vector

pΔξ ¨ BψXqµΔξµ “ ´pΔξ ¨ uq u ` BψX
µ ` pΔξ ¨ NW q Nµ . (C.11)

R2 W 

It is straightforward to evaluate all these projections, an using (C.8) and (C.10) we can write them as

ˆ ˙ 
1µΔξµ “ ´p8πGSττ Rq u ´ 8πG Sτψ BψX

µ . (C.12)
R 

Plugging this result in (B.7), and noting that the extremal hypersurface Σ will in this case intersect

W on a constant τ circle, we have that the angular discontinuity of the Killing does not contribute

to the rate of the complexity since pNW ¨ BψXq vanishes. Moreover, the contribution from the Killing

discontinuity in the uµ direction has the same form as in the spherically symmetric case, and hence we

obtain the same PC duality ˆ 
Nµd CrOshells “ ´ Tµν CΣ 

ν , (C.13)
dt Σ

Σ 

µwhere the ‘complexity feld’ Cµ 
“ ´r ey . It is tempting to conjecture that the ‘complexity feld’ Cµ 

Σ Σ 

persists to be inward pointing tangent to Σ and orthogonal to Σ X W for more general situations of

thin shells gluing two stationary spacetimes V˘ together.

D Recovering the Exact PVC for Special Cases

In this appendix, we show that the factorized ansatz (6.12) for the infal tensor Mabc is the most

general solution of the trace-free transversality condition (6.13) for generic 2+1 dimensional spacetimes

as well as for spherically symmetric solutions in higher dimensions. The boundary condition (6.6)

reduces to (4.23) for the C-feld, which is now restricted to be a conformal Killing vector. With previous

knowledge of the required asymptotic behavior for the C-feld in AdS, we also comment on how the
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generalized PVC reduces to the exact PVC for extremal volume slices anchored to the asymptotic

boundary of AdS.

Let us frst consider a generic spacetime in 2 ̀  1 dimensions. The number of algebraically indepen-

dent components of the infall tensor Mabc for d “ 2 is 2, which precisely coincides with the number of

trace-free transversality conditions (6.13). In order to solve them explicitly, we will choose coordinates

locally on Σ such that
2 2ωpz,¯ds “ e zq dz dz̄  , (D.1)Σ 

where z “ y ` iφ, and ωpz, z̄q some real function. For the case of asymptotically AdS spacetimes,

the metric (D.1) asymptotes the Poincaré disk metric ω „ y as y Ñ 8. We will suitably choose the
ztwo independent components of Mabc to be the real and imaginary parts of M zz¯ in these complex

coordinates. The set of conditions (6.13) becomes particularly simple in these coordinates

` ˘

2ω M zzz̄Bz̄  e “ 0 , (D.2)
` ˘

2ω M z̄z̄z Bz e “ 0 . (D.3)

It is straightforward to see that the most general solution of these equations is

M zzz̄  ´2ωpz,z̄qpz, z̄q “ 2 gpzq e , (D.4)

for some holomorphic function gpzq. The C-feld obtained by taking the trace of this infall tensor is

precisely Cz “ gpzq. In two dimensions, every vector feld of this form is locally a conformal Killing

hac Cb ´ hab Ccvector. The key observation is that this infall tensor feld factorizes as Mabc “ . It then

becomes clear the reason why the general solution of (6.13) can be constructed from an infall C-feld

which is a conformal Killing vector. In AdS, the required asymptotic boundary condition is Cy „ ´1 
for the case of the unnormalized y coordinate. The unique holomorphic extension of this condition

is to set gpzq “ ´1 throughout Σ. This way, we obtain the canonical C-feld (cf. Figure ??) which

is orthogonal to the constant y lines, inward pointing, and has a norm that depends on the point in
2ωquestion, C2 “ e . This infall feld certainly coincides with the inward radial conformal Killing vector

of the Poincaré disk. In fact, the Weyl-momentum vanishes in 2+1 dimensions as the Weyl tensor is

exactly zero, which, together with the above defnition of the C-feld, shows how the generalized PVC

reduces the exact PVC correspondence for any geometric state in 2+1 dimensions.

Let us now consider the case of a spherically symmetric spacetime in higher dimensions. Assuming

that Σ inherits spherical symmetry, the induced metric can be written as

2 2 2dsΣ “ dy ` r pyq dΩd 
2 
´1 , (D.5)

where y is an outward directed coordinate normal to the spheres. Moreover, it is natural to assume

that the most generic infall tensor Mabc is isotropic under SOpdq (cf. [121]), up to possible terms that
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do not contribute to the boundary condition, and hence can be considered as pure gauge redundancies

(tangent di˙eomorphisms that die o˙ asymptotically). The only irreducible isotropic rank-3 tensor is

�abc for the case of SOp3q, but still this tensor does not lie in the same irreducible representation of

GLpdq as the infall tensor. Therefore, any isotropic Mabc will necessarily be reducible into products of

lower-rank tensors. The most general irreducible isotropic rank-2 tensor is of the form fpyq hab, where
hab is the spherically symmetric metric (D.5). The most general isotropic vector is orthogonal to the

spheres with an angle-independent norm, C “ Cpyq By. With these building blocks in hand, there are

two ways to construct an isotropic Mabc , i.e. from a rank-2 tensor and a vector Ca hbc , or alternatively

from three vectors Ca Cb Cc 321 . The latter belongs to the totally symmetric representation of GLpdq, and

hence it vanishes when projected into the representation of Mabc . Projecting the former provides then

with the most general isotropic infall tensor

´ ¯ 
Mabc hac Cb habCc“ 

1 
´ , (D.6)

d ´ 1 

which is again of the factorized form (6.12). In asymptotically AdS spacetimes, the required asymptotic

boundary condition (6.35) will be satisfed by the canonical inward radial C-feld on the Poincaré

ball C “ ´ rpyq By. For any such factorized Mabc , the Weyl-momentum density will vanish due to

tracelessness and antisymmetry of the Weyl tensor

WM “ 
1

´ 
d ´ 1 

Nµ Wµνρσ ph
νσ Cρ ´ hνρ Cσq “ 

2 
d ´ 1 

Nµ Wµνρσ C
σ νρ pg ` Nν Nρq “ 0 , (D.7)

which, together with the characterization of the C-feld, leads to the exact PVC correspondence for any

spherically symmetric normalizable state in d ` 1 dimensional asymptotically AdS spacetimes.

E Asymptotic Boundary Conditions

In this appendix, we extend the analysis of section 5 of asymptotically AdS boundary conditions

to include the asymptotically fat case. We elaborate on the asymptotic boundary conditions for the

C-feld and M -feld that solve (5.12) and (6.6) in both cases.

To start, we might adopt asymptotic coordinates in the vicinity of Σ such that the metric reads

ds 2 
2 

Ñ 
dr 

X ra ´ r a dt2 ` r 2 γij pr, t, θq dθidθj as r Ñ 8 . (E.1)

where a “ 2 is the AdS case and a “ 0 is the fat case.

Here, r is an ‘asymptotically radial’ coordinate which foliates X by timelike codimension-one sub-

manifolds Yr. In the case of AdS, it corresponds to a Fe˙erman-Graham coordinate for a particular

conformal frame. The angles θj parametrize the intersection Sr “ Yr X Σ, of spherical topology and

induced metric proportional to γij , which is itself asymptotic to a unit round sphere, up to normalizable
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dcorrections of order 1{r . The time coordinate is chosen to be geodesic on Yr and orthogonal to Sr.

The induced metric on Σ can be written near the boundary as

2ds2 Ñ dy2 ` r pyq γij py, θq dθi dθj , (E.2)Σ 

for some function rpyq which asymptotically r „ a{2 sinh y ` p1 ´ a{2q y as y Ñ 8. This allows us to
µt r νwrite the normal one-form asNΣ “ ey dr´ey dt, and compute the extrinsic curvatureKab “ ea eb rµ Nν .

The relevant component turns out to be Kyy which, using the traceless character, K “ 0, may be

evaluated as Kyy “ ´r ´2 γij Kij . Explicitly

ad ´ 1 t 1 r
γijBr 

r tKyy “ ´ ey ´ ey γ
ij Btγij ´ ey γij . (E.3)

1´ar 2ra 2 

d`1Asymptotically, Btγij „ 1{rd`1´a{2 and Brγij „ 1{r . For a “ 2, this is nothing but the require-

ment that the solution is asymptotically AdS, with the round metric on the conformal boundary. For

asymptotically fat spacetimes, one of the defning properties is that all the derivatives of the metric

perturbation decay with the same inverse power law of the radius. An asymptotic analysis of the K “ 0 
condition reveals the large-r scalings er „ ra{2 , et „ 1{rd´1`a , so that the right hand side of (E.3) isy y 

dominated by the frst term:
d ´ 1 tKyy « ´ e . (E.4)y1´ar 

a tSince ey ¨ Bt “ ´ r e , we learn that (4.23) can be satisfed provided the C-feld is chosen with they 

boundary conditions
1 

C Ñ ´ rpyq By as y Ñ 8 . (E.5)
b 

This is exactly the same result that was found for asymptotically AdS boundary conditions in section 5,

justifying the name ‘infall feld’ for the C-feld. Similarly, theM -feld satisfying (6.6) will asymptotically

factorize as in (6.12) for the C-feld given by (E.5).
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