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ABSTRACT

This thesis is devoted to the formulation of a new result in [1-3] that establishes a connection
between holographic complexity in the form of the so-called Complexity = Volume proposal and the
gravitational clumping of matter, within the AdS/CFT correspondence. The main result of the thesis,
the ‘Momentum/Volume Complexity (PVC) correspondence’, formalizes the recurrent idea that the
gravitational clumping of matter increases the complexity of the quantum state. The PVC correspon-
dence works for perturbations of finite entropy thermal states beyond the scrambling time, where the
linear growth of complexity is associated to the frozen momentum of the excitation in the black hole

interior. It generalizes previous ‘Momentum/Size’ correspondences in the literature.

The exact PVC correspondence of this thesis works for any normalizable spherically symmetric state
in arbitrary dimensions and for any normalizable state in 2+1 dimensions. Its proof is based on the

kinematics of the Momentum Constraint of General Relativity.

There are two physical obstructions for an exact PVC correspondence in more general situations.
The first one is intrinsic to the topology of space, and it arises in the presence of spatial wormholes
connecting different asymptotic boundaries. In this case, the spatial wormhole can stretch without any
matter whatsoever. The second obstruction comes from the impossibility to define a local notion of
gravitational momentum, and in particular it arises for pure gravity solutions consisting of gravitational
waves. A Generalized PVC correspondence is formulated to include this latter case, derived from the
Codazzi equation, which assigns a contraction of the Weyl tensor to the purely gravitational contribution

of the momentum.

The central notion of ‘infall momentum’ has a Newtonian version which explicitly captures the
intuitive idea that matter clumping increases complexity. A relativistic generalization of this version
also exists. Finally, the value of VC for states with small backreaction is given in terms of a radial

‘moment of inertia’ that quantifies the degree of clumping of matter.

Other work developed during the thesis and related to the topics covered in this manuscript is [4-6].



RESUMEN

Esta tesis se compone de los articulos [1-3] en los que se establece una conexion entre la nocion de
complejidad holografica dada por la denominada prescripcion de Complejidad = Volumen, y el grado
de compresion de la materia debido a la atraccién gravitatoria, en el contexto de la correspondencia
AdS/CFT. El resultado prinicpal de esta tesis formaliza la idea recurrente de que la atraccion grav-
itatioria de la materia aumenta la complejidad cuéntica del estado del sistema. Cuando el colpaso
gravitatorio genera un agujero negro en AdS, la complejidad crece linealmente después de la termal-
izacién global, y este crecimiento lineal estd capturado por el momento propio de la materia en el
interior del agujero negro, que se encuentra congelado debido a la acumulaciéon de las hipersuperfi-
cies extremales. Este resultado generaliza correspondencias previas entre el momento y el tamano del

operador que han aparecido recientemente en la literatura.

La correspondencia PVC de esta tesis captura de forma exacta cualquier configuracion esférica-
mente simétrica de materia normalizable en cualquier dimensién, ademas de cualquier estado en 2+-1
dimensiones. Su demostracion esté basada en la cinematica de la restriccion inicial de momento de la

Relatividad General.

Existen dos obstrucciones principales para extender la correspondencia Complejidad / Momento
exacta a situaciones mas generales. La primera es intrinseca a la topologia del espacio, y aparece
cada vez que este incluya agujeros de gusano que conecten distintas regiones asintéticas. La segunda
restriccién se manifiesta por la imposibilidad de definir una nocién local de momento gravitatorio, y
en particular aparece cuando el espaciotiempo es una solucién dindmica de gravedad pura sin materia,
formada por ondas gravitacionales. Esta tltima situacién se puede incluir en una generalizacién de la
correspondencia PVC, derivada de las ecuaciones de Codazzi, en la que se le asigna una contribucion

dada por una contraccién del tensor de Weyl al momento puramente gravitatorio del sistema.

La nociéon central de ‘momento de caida’ tienen una versiéon Newtonianan que explicitamente captura
la idea intuitiva de que la compresiéon de la materia aumenta la complejidad. Existe también una
generalizacion relativista de esta version. Finalmente, el valor de VC para estados con backreaction
pequena estnia dada en términos de un ‘momento de inercia radial’ que cuantifica el grado de compresion

de la materia.

Otro trabajo de investigacion realizado durante el transcurso de la tesis doctoral, y relacionado con

los temas que cubre este manuscrito es [4-6|.
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CHAPTER 1

Foundations



1. INTRODUCTION

1 Introduction

The long chain of scientific breakthroughs that took place in Physics over the last century completely
revolutionized our way to conceive reality. The world at subatomic scales appears to be governed by
a handful of physical principles: the laws of quantum mechanics, the symmetries of special relativity,
and the principle of spacetime locality of matter and its interactions. Together they logically spawn
the sophisticated framework of Quantum Field Theory, upon which our most precise description of the

constituents of the Universe, the Standard Model of particle physics, is formulated.

Attaining such an incredibly precise and satisfactory description of the electroweak and strong
interactions, it was a matter of time for an attempt to include gravity into this paradigm to materialize
[7]. The solid foundations of QFT remarkably require that the gravitational interaction is transmitted
by means of a massless particle of spin 2, the graviton, which necessarily couples in a universal way to

all forms of energy [8|, providing a microscopic raison d’étre of Einstein’s theory of General Relativity.

In the theory of quantum gravity, the gravitational vertex is weighted by the coupling ¢ ~ VG E,
where G is Newton’s constant and FE is the center-of-mass energy of the process. Any reasonable
gravitational system thus becomes strongly coupled at the Planck scale, M, 1= VG ~ 10733 cm, or

even before, depending on other high-dimension operators present in the effective theory.

As in many other physical systems, the breakdown of the perturbative expansion typically points
towards the existence of unidentified degrees of freedom underlying close to the cutoff scale, which are
ultimately responsible of bringing the theory back into a controlled regime. The question then arises:

what are these degrees of freedom in the case of gravity?

Perhaps a solid indication of what these degrees of freedom are not is provided already by a classic
result of Weinberg and Witten [9]. In essence, any attempt to describe the graviton as a composite
state of more elementary local constituents can be disregarded, since such a bound state will never be
able to reproduce the Lorentz transformation properties of the graviton. This result arguably precludes
the possibility of having an ultraviolet-complete description of gravity without abandoning the route

of QFT at some point below the Planck scale.

String Theory is, for multiple reasons, our most prominent candidate for an ultraviolet completion of
quantum gravity. In the perturbative regime, the graviton is naturally accommodated in the spectrum
of a closed fundamental string of size £, = My ! together with a zoo of different particles arising from
different vibration modes of the string. The theory contains a long list of features which captivate
the aesthetically minded, including: supersymmetry, extra dimensions, complete unification of matter
and the interactions, UV-finiteness of the perturbative S-matrix, dualities between all the seemingly
different weakly coupled corners of the theory, etc. Even if it is yet to be seen whether the conditions
in our Universe can be accommodated into the landscape of string vacua, string theory definitely
exceeded the expectations of many providing ultraviolet-complete models of quantum gravity even at

the non-perturbative level.
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At any rate, due to the large hierarchy between the TeV scale and the Planck (or string) scale, it
seems implausible that these ideas can be put under direct experimental scrutiny in the near future.
Fortunately for us, gravity happens to be radically different at the fundamental level, and it is hides

its marvelous features on objects of the macroscopic world. These objects are black holes.

1.1 The Holographic Principle

Black holes stand out as one of a kind among the plethora of exotic gravitational phenomena. They are
perfectly suited for a classical description within the theory of General Relativity, and yet they provide

a window to the fundamental structure of the quantum theory.

In the realm of astrophysics, black holes of a few kilometers in size are known to generically form
from the gravitational collapse of large stars in the final stages of their lives. Almost a century after
their theoretical prediction, stellar mass black holes have been finally observed in binary systems via
their gravitational wave signal [10]. In addition, supermassive black holes of 10° — 10% solar masses
which inhabit the galactic centers have more recently been observed, including Sagittarius A* in the

center of our own galaxy [11].

Figure 1: Supermassive black hole in the galactic center of M87.

Classically, a black hole of mass M is an object of infinite entropy. Its near-horizon region is able to
accommodate excitations with arbitrarily large redshift which, without modifying the mass of the black
hole, effectively dissipate for an exterior observer once they cross the horizon. Black holes are literally
characterized as spacetime holes out of which nothing can scape, and therefore possess a vanishing
temperature. The existence of such zero-temperature cosmic reservoirs becomes problematic at the
level of the second law of thermodynamics. Basically, throwing anything at them from the outside

world decreases the entropy of the Universe.

The tension between black hole entropy and the second law of thermodynamics is only resolved

in the quantum theory. It was Bekenstein who first considered the thought-experiment of finding the
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most entropic way to form a black hole of mass M starting from matter which satisfies the laws of
quantum mechanics [12,13]. Such an upper bound in the entropy now exists, and it arises from the fact
that the minimum energy of an excitation is inversely proportional to its wavelength, §E = A\~!. To
count on something as falling into the black hole, one must now be sure that its wavelength fits inside
the Schwarzschild radius. A back-of-the envelope calculation then reveals that black holes have finite

entropy proportional to their area in Planck units.

The area of the black hole is a promising candidate for its coarse-grained entropy since, within
General Relativity, it is a quantity which cannot decrease with time for any process involving matter
with positive null energy. However, it was really not until the much more sophisticated analysis by
Hawking [14] that the area could be taken seriously as an entropy in the standard thermodynamic sense.
Hawking made the brilliant observation that black holes do emit thermal radiation, for the reason that
the local inertial vacuum of the quantum fields across the horizon looks thermally populated for an

observer who sits outside.

In light of this observation, black holes do behave as ordinary quantum mechanical systems from
an outside perspective, and in particular they follow the standard laws of thermodynamics, with an

entropy given by the acclaimed Bekenstein-Hawking formula

Area
STe

(1.1)

Unlike in any local physical system, the entropy of the black hole scales with its area, which hints
that the fundamental degrees of freedom of the black hole rearrange in such a way that they live on

the (stretched) horizon, with an approximate density of one degree of freedom per Planck area.

A formula like (1.1) has dramatic consequences for the interior locality. It seems to point out that
the interior space is not fundamental, and that it really emerges from the properties of the fundamental
degrees of freedom placed at the horizon. A caricature of this phenomenon exists in optics, known as
a hologram. A hologram consists of a two dimensional surface that is able to encode the image of a
three dimensional object. The object seems to emerge ‘out of nowhere’ when the observer lights up the
system. In the case of a black hole, however, the hologram encodes all the interior space itself, and the
encoding is physically much more subtle, since there is no simple analog of ‘lighting up’ the black hole

from the outside to see what lies inside.

Furthermore, the black hole entropy accounts for an overwhelming majority of the total microstates
of any gravitational system at sufficient large energy in a finite volume. This can also involve situations
in which the volume is microscopic. Indeed, the scattering amplitude of a few particles at a center-of-
mass energy of £ » Mp will be entropically dominated, at the level of accessible intermediate states,
by the production a ‘large’ black hole resonance of radius R ~ GE » M 1 and entropy S ~ GE? which
will evaporate in a time ¢t ~ G2E3, spitting gravitons and other particles throughout the process of

evaporation. For the S-matrix experimentalist who collects the outcomes of the scattering, it will be

10
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impossible to resolve distances shorter than GE in this experiment. In this way, the existence of black
holes poses an end to the Wilsonian paradigm at the Planck scale. Trying to resolve shorter distances

is fundamentally impossible since the UV and IR degrees of freedom start to mix at the Planck scale.

These considerations regarding black holes as holograms, together with the entropic dominance of
black hole microstates in any system lead, after quite a while, to the radical proposal by t* Hooft [15] and
later by Susskind [16] to promote the black hole entropy to a physical principle, dubbed the holographic
principle, which views space itself as an emergent structure arising from the intricate configuration of

some putative holographic degrees of freedom that live very far away.

For many reasons, the exact nature of the holographic degrees of freedom that could describe
our Universe remains elusive. In other types of ‘Universes’, however, namely those with negative
cosmological constant, the structure of space is such that gravity and matter live inside an infinite
‘box’, called AdS space, which allows to naturally place the holographic degrees of freedom on the walls

of the box.

1.2 AdS/CFT

String theory, as a consistent theory of quantum gravity with black holes, passes the test and is able
to successfully implement the holographic principle in its full glory. In fact, for many, the (second)
largest triumph of the theory is that it allows to reproduce the Bekenstein-Hawking entropy (1.1)
microscopically for certain BPS black holes with Ramond-Ramond fluxes by directly counting states of
strings ending on D-branes at weak coupling in the type IIB string theory [17,18]. More impressively,
string theory accommodates the strong version of the holographic principle in a series of ultraviolet-

complete models of gravitational holograms in AdS space.

The original model proposed by Maldacena [19] consists of N' = 4 supersymmetric Yang-Mills
theory in four dimensions with gauge group SU(N) and gauge coupling g. In the type IIB string, this
theory arises naturally as the low-energy limit of the worldvolume theory of a stack of N coincident
D3-branes.! At strong t’ Hooft coupling A = g?N, the system admits a dual supergravity description
in terms of a black D3-brane solution with IV units of Ramond-Ramond five-form flux, which develops
an AdSs x S° near horizon geometry. In certain low energy limit, the massless closed strings in the
asymptotic region decouple in both pictures, which allows for the definition of the full type IIB string
theory on the throat in terms of the strong coupling regime of the SYM theory. The curvature radius
of the AdS5 and of the S° are given by £ ~ A4/, in units of the string length. The ten-dimensional
Planck scale is £p ~ N~1/4¢ and therefore a very large value of N is required so that the classical

solution can be trusted.

In addition to the original example, there have been quite a variety of different models worked out in

different numbers of AdS dimensions by adding more sophisticated ingredients and following a similar

! Modulo a U(1) collective mode.

11
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route, or by starting from different corners of string theory (see eg. [19-21]). The common thread in
all of these examples is that the string/M theory living inside the AdS;y1 ‘box’ emerges as a collective

phenomenon of a strongly interacting quantum system living on the d-dimensional walls of the box.

The Dictionary

The boundary description displays conformal symmetry, realizing the asymptotic symmetries of the
dual gravitational theory in AdS. These theories of quantum gravity are then, like any other CFT,
fully specified by means of the conformal data {J;, A, CZ} of spins J;, conformal dimensions A; and
OPE coefficients CZ The conformal data, already at this level, has to satisfy the highly non-trivial
constraints imposed by the associativity of the OPE.

Sensible holographic CFTs moreover must have a very particular spectrum of states in radial quan-
tization. In the low-lying part of the spectrum, with A « N2, they contain local primaries @ which
behave as free fields in the large-N limit, even if the theory is strongly coupled. Indeed, these fields
generically incorporate large amounts of anomalous dimension which can scale with some power of the
coupling A. In SYM, these generalized free fields are constructed from properly normalized single traces
of products of gauge-invariant operators, like O(x) = Tr F™(z), where F' is the gauge field strength,

and n €« N.

In the large-N limit, the correlation functions of these fields factorize
(O(x1)O(22)O(x3)O(z4)) ~ (O(x1)O(x2)) {O(23)O(24)) + (permutations) . (1.2)

In fact, the consistency of the conformal block decomposition of this 4-point function (1.2) in the direct
channel requires that there exists, apart from the generalized free field algebra, a tower of conformal
primaries corresponding to ‘multi-particle operators’, like O?(x), O3(x), as well as more complicated
fields of higher spin [22,23]. The generalized free fields therefore generate a low-lying Fock space inside
the full CFT.

The presence of such an integrable substructure in any holographic CF'T becomes obvious once the
bulk dual of a generalized free field O is identified. The dual corresponds simply to a supergravity /string
excitation ¢ of small mass, m¢ ~ O(NV), in AdS. Both operators are related via the so-called extrapolate
dictionary [24,25]

O(x) = lim 2 ¢(r, ), (1.3)

r—00
that is, the generalized free field provides the normalizable boundary value to the bulk field, where r

is the Fefferman-Graham radial coordinate. The mass m of the bulk field ¢ is related to the conformal

12
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dimension A and spin of the operator ©. ? For example, the precise relation for scalar fields is

d d?
A=§+\/Z+m2€2. (1.4)

A compelling example of this relation is the duality between the bulk AdS graviton h,, and a
generalized free field of spin J = 2 and conformal dimension A = d, which must necessarily be conserved
because it saturates the unitarity bound. This field is no other than the energy-momentum tensor of
the CFT, T),,. The holographic construction is therefore able to evade the no-go theorem of Weinberg
and Witten by modifying the number of dimensions of the space where the fundamental description

lives.

At large but finite NV, the non-planar contributions render the above subspace an approximate Fock
space, where conformal dimensions receive 1/N corrections and OPE coefficients between generalized
free fields no longer vanish. The latter correspond to bulk three-point interactions of the supergravity
fields, which are of order 1/N in AdS units. It is then tempting to ‘bootstrap’ the exact bulk theory
in a 1/N expansion, inferring the necessary Witten diagrams that match a consistent conformal block
decomposition of the boundary correlation functions (see [22,23] and references therein). It is plausible,
howver, that only few solutions exist to this problem, all supersymmetric, namely those holographic
CFTs that are handed in known examples of AdS/CFT.

Black holes

At high energies, an overwhelming amount of black hole states is required for the proper functioning of
the holographic duality. The boundary description is a theory with spacetime local degrees of freedom,

in which the high-energy spectrum must obey the ‘Cardy formula’

p(A) ~ exp(cé A%l> , (1.5)

where ¢ ~ N? is the central charge, a measure of the local number of degrees of freedom of the theory
at high enough energies A > N2.
Practically all of the states accounted for in (1.5) come from completely new primaries at high-

energies, which do not originate as multiparticle states of the low-lying Fock space. The latter produces

a density of states of the form
p(A) ~ exp(a Aﬁ) , (1.6)

where a ~ O(N?), and 1 « A « A4, The N-dependence of the free energy shows that there exists a

first-order phase transition, between a ‘confined’ phase at low temperatures and a ‘deconfined’ phase

2 The supergravity description requires of the existence of a gap in the spectrum of the CFT, controlled by A4 for SYM,
for the lightest state of spin greater than 2.

13
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at high temperatures, in the large- N limit of any holographic CFT on the sphere [26,27].

In the bulk, the density of states (1.6) accounts for the supergravity in AdS in d + 1 dimensions,
which is effectively a local theory below the string scale, of O(N?) species. The high-energy phase, on
the other hand, is represented by the dominance of large black hole states in AdS above the Hawking-
Page temperature 7' = ¢~!, which was found long before the microscopic interpretation [28]. * The
bulk Bekenstein-Hawking entropy (1.1) of large AdS black holes provides the right scaling (1.5) of a

local system in one less dimension.

Bulk locality

As described above, the gravitational hologram isometrically embeds the supergravity and stringy
excitations on top of AdS into the Hilbert space of the CFT on the sphere, Hcpr. This approximate
Fock space of the CFT is commonly called the code subspace of empty AdS, Hcode, for reasons that will

become apparent in the next item.

The identification (1.3) between the asymptotic boundary conditions for the bulk fields and the
generalized free field algebra opens up the possibility to derive the approximate local structure of the
bulk in terms of the CFT data [30-33]. Consider a local supergravity field ®(X), where X is some
spacetime point in AdS. * In the large-N limit, the field ®(X) is a free field in the bulk, and its
boundary conditions are given by (1.3). Finding a CFT representation of ®(X) then translates to
finding a ‘spacelike’ Green’s function of the Klein-Gordon equation which propagates the bulk point
X into a boundary point y. Such a Green’s function K (X,y) exists [31-33] and, albeit non-unique, it

provides a boundary representation of the bulk field

(X) = / dy K(X, ) O(y) . (L.7)

The HKLL representation (1.7) corresponds to a smeared local operator over the CFT spacetime.
When propagated into a Cauchy slice of the CFT, the operator (1.7) becomes explicitly non-local.
It consistently reproduces the two main features of an emergent local free bulk: (i) microcausality,
[@(X),®(X')] = 0 for X and X’ spacelike-separated points, and (ii) short-distance vacuum correlations,
P(X)P(X') — |X — X'|'"? as X — X'. These expressions do not hold as operator equations in the
CFT, they can only hold within the code subspace Hcode-

At finite but large N, the field ®(X) is no longer free, and the representation (1.7) needs to be

improved in a 1/N expansion by adding suitable interaction vertices, weighted by powers of 1/N, which

3 In realistic models, an intermediate stringy regime, which develops a Hagedorn density of sates at high temperatures,
will control the details of the phase transition (see [29] and references therein).

4 Gravitational dressing can be added by attaching a spacelike geodesic Wilson line from X to the boundary. For the
sake of simplicity, we omit such a technical discussion here.

14



1. INTRODUCTION

now allow to propagate multiple boundary points (y1, ..., y,) into X. °

Entanglement builds space

Plenty of new ideas have flourished in these last twenty years concerning the precise way in which
the boundary system encodes the quantum information of the bulk in AdS/CFT systems. Arguably
the most intriguing interpretation is that quantum entanglement is at the root of the emergence of a
connected space, an idea which is often referred to with the slogan ‘ER = EPR’ [34,35]. The avatar
of ER=EPR is the eternal black hole in AdS, which possesses a spatial wormhole connecting two
asymptotic regions (see Fig. 2). The fine-grained description is the thermofield-double state living in
two completely independent copies of the CFT [36],

1

VZ(B)

The thermofield-double contains a large amount of bipartite entanglement, in fact given by (1.1),

TFD) = 2 e my @y, - (18)

between the CFTs. On the contrary, product states of the two CF'Ts correspond to disconnected bulk
geometries, since both systems appear uncorrelated. Nevertheless, bipartite entanglement is not enough
to ensure geometric connectivity. The state (1.8) moreover has a very unique entanglement spectrum,
which captures the particular correlations of a short ER bridge. A small perturbation a scrambling

time away in the past is able to completely destroy these correlations [37].

CFTL CFTR

B/2

Figure 2: The thermofield double state |TFD) is dual to an eternal black hole. In the euclidean
section, the semi-circle represents the path integral that prepares the state on Hy ® Hgr, and the filling
of this circle corresponds to the euclidean AdS-Schwarzschild geometry. The bulk state of the quantum
fields is the Hartle-Hawking state.

5 For example, at order 1/N, only a three-point vertex contributes, and ® has an improved HKLL representation in terms
of smeared local and bilocal fields in the CFT.
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Ryu and Takayanagi proposed a formula which strengthens this connection [38]. Consider the
simplest case of the ground state of the CFT on the sphere, |0), and some bipartition of the Hilbert
space Horr = Ha ® Hj, in terms of the degrees of freedom in some spatial region A and on its
complement A (see Fig. 3). © The properties of the state on H are described by the mixed state
pa = Trz]0){0|. In particular, the overall amount of entanglement between A and A on this state
is measured by the von Neumann entropy of the reduced density matrix, S(pa) = —Tra (palogpa).
The proposal is that, in the large-N limit, the entanglement entropy is given by

Area(xa)

XAl (1.9)

S(pa) =

where 4 is a bulk codimension-2 minimal surface, called the RT surface, anchored to ¢A and homolo-
gous to A. Even if the RT formula (1.9) looks structurally like the Bekenstein-Hawking entropy formula
(1.1), and in fact it does reduces to the latter in certain cases, the notion of entropy involved in (1.9)

is a much more fine-grained property of the actual quantum state |0).

A

A
Figure 3: Cauchy slice of empty AdS. The RT surface x4 divides the bulk in two regions A and A.

The RT formula was re-derived from ‘first principles’ in the work of Lewkowycz and Maldacena [40]
(see also [41]). In this work, the replica trick is complemented in holographic systems d la Gibbons-
Hawking by the rule of filling the bulk geometry with any allowable on-shell configuration which respects
the asymptotic boundary conditions, and evaluating the on-shell gravitational action on each of these
saddles. After the analytic continuation of the replica-symmetric geometry in the number of replicas,

and taking this number close to one, the only contribution of the Einstein-Hilbert action which happens

6 Strictly speaking, in the continuum, the Hilbert space of the CFT does not factorize, and only UV finite quantities, like

the relative entropy, make sense. These have to be defined in terms of local operator subalgebras and the Tomita-Takesaki
theory (see [39] and references therein). A similar situation occurs for the case of lattice gauge theories in finite volume,
except that in this case entanglement entropy is finite. We skip such a level of rigor here, and think naively about the
CFT on a lattice and forget about the gauge constraints.
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to survive in this limit is localized on the RT surface x4 and it reproduces (1.9) exactly.

Generalizations of the RT formula have also been extensively studied. On the one hand, the covariant
version of the RT formula, valid for any time-dependent geometry, is the so-called HRT formula [42], in
which x4 appears as an extremal surface, rather than a minimal one. The second kind of generalization
involves 1/N corrections, which in bulk terms correspond to the quantum corrections of the bulk
supergravity fields. Using the same replica trick, but now keeping track of one-loop determinants and
of backreaction, leads to the FLM formula [43]

S(pa) = Swxa) + S(pa) , (1.10)

where Sy (xa) is a local ‘Wald-entropy’ associated to x4, which at leading order in G reduces to
the area term. On the other hand, the RT surface divides the bulk Hilbert space into two regions,
Heode = Ha ® Hjz, where A is a homology hypersurface between the RT surface and A, and A is its
complement (see Fig. 3). The quantity S(p,) represents the entanglement entropy of the bulk state
between A and its complement. ” The bulk domain of dependence of A, denoted D(A), is called the

entanglement wedge of A.

Under linearized variations of the state, the ‘first law of entanglement’, together with (1.10), outputs
the equality of modular Hamiltonians, or equivalently of relative entropies, of the subregions A and A,
within the code subspace [47]. A theorem follows from this assumption, ensuring the recovery of all
the information in the entanglement wedge of A solely from the degrees of freedom of A [48]|. Explicit

ways to implement this reconstruction have also been provided in [49, 50].

The bulk-to-boundary map is redundant, since a bulk point X can belong to many different entangle-
ment wedges, and hence the local operator ®(X) has many representations within different subregions
of the boundary system. This redundancy is crucial to guarantee that, no matter the part of the
boundary A that one loses access to, the information of ®(X) can be recovered from any A, as long as
the bulk point lies within the entanglement wedge X € D(A). In this way, the gravitational hologram
behaves very much like a quantum error correcting code |51 which maps the ‘logical’ bulk information
into the ‘physical’ boundary in a way that it protects this information against the ‘noise’ which destroys

arbitrary parts of the boundary [52].

Such a direct link between the emergence of space, the RT formula and error correction has lead to
the appearance of discrete toy models which qualitatively recreate these basic features of AdS/CFT.
The logic is that entanglement serves as a highly efficient way to parametrize the Hilbert space of a
many-body quantum system, in particular, when trying to look for ground states of local Hamiltonians.
A possible ansatz for the state is given in terms of a tensor network, a graph that inputs some inner

structure for the wavefunction ¥;, ;. by giving a geometric meaning to its entanglement. Precisely,

7 Alternatively, the QES prescription [44] serves as a further generalization of the FLM formula (1.10), valid in principle
to all orders in 1/N, which has been used in recent approaches to the black hole information paradox [45,46].
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the entanglement entropy of some subregion is upper bounded by the minimal cut through the network

which bipartites the system accordingly.

Holographic tensor networks are rooted on discrete realizations of the RT formula, in which the graph
is a representation of the emergent hyperbolic geometry itself (see Fig. 4). This geometry emerges non-
linearly from the entanglement structure of the ground state of a critical many body quantum system,
which possess polynomially decaying correlations, as opposed to the exponentially decaying correlations
in a gapped system. Some particular tensor network representations of holographic states specialize on
capturing the scale invariant details of the entanglement structure, like MERA [53, 54|, while others
favor the exact realization of the RT formula and, at the same time, straightforwardly generalize to

holographic quantum error correcting codes [55,56]. ©

Figure 4: HaPPY tensor network representing the ground state of the holographic system on the
spatial S'. Fach hexagon represents a so-called absolutely maximally entangled state on six parties.
The tensor network is designed to saturate the RT formula. The complexity of the state, measured by
the number of tensors in the network, is proportional to the volume of the slice.

Holographic Volume Complexity

Quantum complexity has been identified as a key notion in the development of the holographic dictio-
nary for its promise to offer a peek into the interior of black holes [58]. In the Complexity = Volume

(VC) prescription, the complexity of a state is given by

Vol(%)
Gt

c(|w)) = (L11)

8 A generic tensor network with hyperbolic geometry will also saturate the RT formula with very high probability, provided
that the bond dimension of the network is large (see [57]).
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where ¥ is a extremal spacelike hypersurface, anchored to the boundary slice in which the state |¥)
lives [59-61]. The heuristic motivation for this proposal is that it measures the overall amount of
emergent space, a quantity which has a direct interpretation in tensor network jargon, namely as the
computational complexity of the ‘circuit’ that efficiently represents the entanglement structure of the

holographic state |¥) (see Fig. 4).

For high-temperature thermofield double states (1.8), the tensor network is a discrete representation
of the ER bridge [35,62]. Under the action of the Hamiltonian Hy, + Hpg, the interior cylindrical circuit

grows a layer of S tensors per thermal time, yielding a total rate of

— ~T 1.12
5 ~ IS, (1.12)

in analogy with the interior volume growth of the black hole (see Fig. 5).

:« # SR A
4 eaaRa
T H’O“
%&Hw ////////ﬁ\.\*

b
(avave

Figure 5: On the left, the extremal volume slice Y is a geometric ER bridge that grows linearly in
time. On the right, the tensor network representation of the time-evolved thermofield double state.
Under time evolution with Hy, + Hp, the circuit grows a layer of tensors per thermal time, in analogy
with the volume of ¥ in the black hole interior. The right figure has been taken from [63].

As opposed to entanglement entropy, the definition of VC purely in terms of the holographic variables
remains elusive for the time being (see however [64-66] for some work in this direction), and we shall not
try to address this issue here. At any rate, extremal spatial volumes parametrized by codimension-one
boundary data are interesting quantities in any putative holographic description. Whether they are
literally related to some sort of computational complexity of the boundary system is an open question,

but it is certain that there exists a notion of ‘volume complexity’ induced from the bulk description.
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2. MOMENTUM AND SIZE

2 Momentum and Size

A recurrent idea since the early days of holography is that there is a somewhat implicit relation between
notions of ‘complexity’ of the encoded quantum information in the boundary system and the degree
of gravitational clumping of matter in the bulk [16]. Recent studies have substantiated this claim,
providing quantitative evidence, within the framework of AdS/CFT and of its two-dimensional coun-
terpart, in favor of the relation between a radial component of the momentum of an infalling particle
and the rate of growth in ‘size’ of the dual operator [67-73]. In this section, we review the so-called

momentum /size (PS) correspondence, which originally motivated [1-3].

2.1 Rindler momentum and fast scrambling

The proposal is that the ‘size’ of an operator can be characterized by a mechanical momentum of an
effective particle in the bulk [67,68]. The bulk particle is injected by the ‘small’ operator O on the
boundary, acting for simplicity on a thermal reference state pg = e PH/Z(B) at, say t = 0. If the
resulting state is evolved in time

e O pget = O_ypp, (2.1)

any increase of complexity is attributed to the increase in ‘size’ of the operator when evolved to the
past, in what we usually refer to a ‘precursor’: O_; = e~ 7O e The state (2.1) can be interpreted

as a heavy particle state falling through the bulk.

Consider a high-temperature reference state pg describing a large black hole in AdS. The effective
particle will fall towards the horizon and eventually will reach the near horizon region. In the vicinity

of the regular horizon, we can pick polar Rindler coordinates (t, p) which approximate the metric as

ds? ~ —k%*p?dt? + dp* + ds? | (2.2)

where ds? is a metric along the horizon which formally sits at p = 0, and k = %” is the surface gravity.

The motion of the radially infalling matter particle can be taken as X = pg in terms of the adapted
reference frame 7 = psinh(xt) and X = pcosh(kt), where 7 is the proper time of the co-moving frame
to the particle. In terms of the Rindler coordinates, the trajectory follows p ~ pg exp(—~t) at late

Rindler times. The proper Rindler-radial momentum satisfies

d
P, = P~ K po e .

-2 (2.3)

Since the surface gravity coincides with the fast-scrambling Lyapunov exponent, x = Ap, the idea is to
relate P, and operator size $(0O), measured by the decay of a suitable out-of-time-order correlator [74|.
In this case, both terms grow exponentially in time, so that the qualitative behavior only establishes

P, ~ 8(O) as proportional to the size, or any of its higher time derivatives.
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'HJr

Figure 6: Standard notions of momentum in the PS correspondence are defined in terms of near-
horizon dynamics, using radial and time coordinates which remain outside the horizon.

2.2 Free fall in a near extremal throat

The precise relation between momentum and size can be elucidated by considering the free fall of the
effective particle in the presence of a near-extremal magnetic Reissner—Nordstrém black hole in four
dimensions [69-71].

In the near horizon region, the geometry now contains an AdSs x S? throat (see Fig. 7), which in

the s-wave sector is effectively described by Jackiw-Teitelboim (JT) gravity, with action

Iyp[M] = Sox(M) + /M ¢ <R+ ;2) + /aM 2¢ (K— 2) . (2.4)

Here x(M) is the Euler characteristic of M, and Sy is the extremal entropy. The dilaton acts as a
Lagrange multiplier which fixes the geometry to be locally AdSy, R = —2/¢, where ¢ = r is the radius of
the higher dimensional black hole. The only gravitational degree of freedom of this system is located at
the cutoff AdS boundary d M, roughly speaking, at the local maximum of the higher dimensional s-wave
potential barrier. Its dynamics is described by the Schwarzian action, which can be reinterpreted as a
non-relativistic ‘boundary particle’ on a constant electric field [75]. The Schwarzian breaks the boundary
reparametrization invariance of the Einstein-Hilbert action into an SL(2, R) subgroup corresponding

to the isometries of AdSs (see [76]).

An analogous pattern of symmetry breaking arises in the infrared sector of the large-N Sachdeev-
Ye-Kitaev (SYK) model. This quantum mechanical model consists of N interacting Majorana fermions

{1;} with quenched disorder given by the Hamiltonian

H = Z Jijkl Yibibih (2.5)

i?j?k)l

where the couplings Jjji; are independent gaussian random variables with zero mean and variance
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0 ] AdS, x S?

T+

273
T+ lOg ?

Figure 7: Near horizon geometry of a near extremal RN black hole with horizon r, and inverse
temperature 3 » r,. The Rindler region sits at the end of the AdSy throat. The proper distance of
the throat is enhanced by a factor of log(8/ry). The blue boundary particle sits at the maximum of
the potential barrier.

J? ~ J%2/N3. In the large-N limit, the theory becomes ‘classical’ in terms of the bilocal master field
G(r,7) = £, {Wi(T)¢i(7')), and develops an emergent reparametrization invariance of this field
in the deep infrared, £ « J. This symmetry gets spontaneously broken by the conformal solution
G ~ (1 —1')722, as well as explicitly broken by a small term, of order E/J, into a SL(2,R) subgroup.
The effective theory of this soft mode is given, at leading order in a derivative expansion, by the same

Schwarzian that governs the dynamical cutoff boundary of JT gravity (see [76,77]). *

The parameter matching in the JT/SYK correspondence can be performed comparing the thermo-
dynamic entropy of both systems at low temperatures. In the large-N SYK model with 57 » 1, the
entropy scales as Sg ~ Sy + %—g, where «a is an O(1) coefficient that determines the specific heat [77].
Remarkably, the model has a huge ground state degeneracy in the large-N limit, given by Sp = vV,
where « is another O(1) coefficient. On the gravitational side, Sg ~ Sy + % is the near-extremal
entropy of the four-dimensional black hole, in terms of the extremal radius r and the four-dimensional

2
Planck scale VG, and Sy = 77% is the extremal entropy. The duality then requires

1

3”;, (26)
2
,

N ~ &, 2.
% (2.7)

modulo some numerical constants that can be found for instance in [70]. *°

® No Goldstone modes arise from this ‘symmetry breaking’, since the SL(2,R) has to be thought of as a redundancy in
G(r,7"), rather than a normal symmetry which acts on the Hilbert space.

10 Tn the putative holographic dual of the full SYK model, there is no sub-AdS locality, since the wavelength of all the
excitations is parametrically controlled by the AdS size J~! ~ ry = £.
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In this controlled framework, it is possible create a particle on the top of the near-extremal throat,
basically by applying some single-fermion operator, like 11, on top of the low-temperature thermal
state of the SYK model, pg = e #/Z(). The typical energy of the excitation will be controlled by
d, which according to (2.6) agrees with the energy at the maximum of the potential barrier of the near
extremal black hole. The strategy is to follow the motion of the effective particle along the throat, and
try to extend the notion of Rindler-momentum (2.3) to the full AdSs region in order to match the dual

behavior of the quantum mechanical ‘size’ of the precursor v (¢) in the SYK model.

Operator growth

To define a notion of operator size, it is necessary to first select a basis of operators and attribute a
natural size to each of the elements of the basis. For a system with a random Hamiltonian, any choice
of basis is completely ad-hoc, and the notion of size will therefore lack of physical meaning. If, however,
the Hamiltonian possesses some degree of locality, it then makes sense to distinguish between small and
large operators. In the SYK model, the Hamiltonian (2.5) is 4-local in the fermion basis, and hence it is
natural to assign size n to the operator ¢;,1;,...4;, with i1 < i < ... < 4y, which basically characterizes

the number of different fermions that the operator contains.

Consider a time-evolved operator O(t) = e~ 1t 0 ¢!t acting on the 2% -dimensional Hilbert space

of the SYK model. '' The operator admits an expansion in the fermion basis of the form
N
= D> DL Cirein () 22 iy iy, (2.8)
n=1 1<...<in
where ¢;, (t) is interpreted as its ‘wavefunction’. The size of the operator is simply
N
=> D e @®n. (2.9)
n=1 1n<...<in

The size measured in this way can be recast as the square of the (anti)commutator of O(t) with one-site

fermion operators, averaged over all sites,

N
Z 2=% T ({0(t), vi}t {O(8), vi}) - (2.10)

In this latter form, it is manifest that the evolution of (2.10) towards saturation is dominated by the
behavior of the out-of-time-order correlator (OTOC) at infinite temperature, and in fact it is possible

to show that
N = 8(0(t)) = ‘0'22 e (0(t) 9 0()w) | (2.11)

1 The operator is for simplicity assumed to be normalized, that is, 2_%Tr(OT(9) =1.
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where (—1)|O| = 0,1 depending on whether the operator O is bosonic or fermionic, respectively. The
OTOC serves to diagnose quantum chaos in a very precise way, namely by reading off the ‘Lyapunov

exponent’ [74].

At finite temperature, the notion of size (2.9) can be generalized. Basically, it is convenient to smear
the operator O in order to wash out the effects of very high energetic modes and isolate the physics
associated with the thermal scale 3 (see e.g. the definition of the OTOC in [74]). A way to do this
in the formulations (2.10) or (2.11) is to perform an euclidean time evolution by /2 of each operator,

that is, consider O pé/ % instead. The finite-temperature size of the operator is defined as

$(0py*) — 8(py?)
8:(0) = ———5———

(2.12)

where g is a normalization such that the size of a single fermion is one, >}, 8g(3);) = 1.

Qi and Streicher found a really simple formula for the growth of the thermal size of a fermion

operator, in the low-temperature limit of the large-N SYK model 78]

5232 .12 e
Sp(n(t)) ~ 2 - sinh 3 (2.13)
At early times, t « 3, the operator grows quadratically as J% ¢, while at late times t = 3, the growth
becomes exponential with fast scrambling Lyapunov exponent A = %’r, again saturating the bound

in [74,79].

Phenomenological PS correspondence

With the Qi-Streicher formula (2.13) at hand, it is now possible to find a generalization of the notion

of Rindler-momentum P, that captures the initial growth of the fermion operator in the SYK model.

The AdS; metric is
ds® ~ —e 2"+ di? + dp? . (2.14)

This near extremal throat extends from the cutoff boundary at p = 0, up to p = 4 log( ), where

12

B
2mry
the Rindler region starts, and the metric becomes (2.2) for a proper length Ap = r, (see Fig. 7).

Consider the motion of the effective particle in free fall through the AdS, throat. From time-
translation symmetry, the proper energy of the particle is conserved, which gives the condition dt/dr =

e2/"+ where 7 is the proper time of the particle. This condition allows to solve explictily for the

12 Tn the exact near-extremal metric, there is a small transition region of length ~ r, between the AdS throat and the
Rindler region. The details of this region are unimportant for the purposes of matching the two parametric behaviors of
(2.13) up to O(1) numerical constants.
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trajectory of the particle
[ 4t2
pt) = - log(1+— | . (2.15)
2 ry

The natural candidate for an extension of the Rindler momentum (2.3) on the throat is the proper

AdS-radial momentum, which behaves as

1 dp 2t 9
P = — = =~ 929%¢ 2.16
P ry dr r2 it ( )

where we used (2.6) to relate r;l to the SYK energy scale J. ' This behavior is prolonged until

t ~ (B/m, the moment at which the particle reaches the Rindler region. In the Rindler region, the
proper radial momentum again follows an exponential growth

2023 2,

P, ~ el (2.17)

™

Comparing these two regimes with (2.13), we conclude that the proper radial momentum phenomeno-
logically agrees with the time derivative of the size of the dual operator in the SYK model, which

establishes the precise PS correspondence

Py~ <85 (1)] (2.18)

or P = § for short.

Additionally, the PS correspondence gives an intuition on why the scrambling time is smaller for a

near extremal black hole, given by
S —So
S )

where 6.5 is the entropy of the effective matter particle. The reason is that the operator is already ‘big’,

ls ~ ﬁlog

(2.19)

of size J%2(2, when it enters the Rindler region of exponential growth. Therefore, it takes less time for
the operator to fully scramble. The extremal degrees of freedom of the black hole do not decouple from
the dynamics of the operator, as the naive interpretation of (2.19) suggests. What really happens is
that the apparent decoupling is an artifact of the emergent AdS throat at low temperatures [69].

Proof of the PS correspondence

A formal proof of the PS correspondence P = § has also been provided in [71]. The proof follows from
the analysis of the representation of the SL(2,R) symmetry generators in the semiclassical Hilbert
space of JT gravity plus matter, I3 + Inatter, where the latter only couples to the metric. In the bulk,
the group of symmetries is generated by the ‘boost’ generator B, the global Hamiltonian E, and the

13 We added the prefactor r:_l to define a momentum with units of energy. The ‘proper mass’ of the particle is of order
-1
T~ J.
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radial momenum operator P (see Fig. 8 ). Together they form the algebra

[B,E] = —i ' P (2.20)
[B,P] = —iJE (2.21)
[P,E] = —iJ B, (2.22)

where, for convenience, we have added dimension J to the momentum P, while B and E remain dimen-
sionless. These symmetries are, in the strict sense, gauge redundancies of the Schwarzian description,

and therefore all of the physical states of the Hilbert space must be uncharged under them.

Figure 8: Orbits of the SL(2,R) generators. From left to right, the modular Hamiltonian B, the
global energy E and the momentum P.

In the SYK, the SL(2, R) reparametrization subgroup only emerges in the deep infrared, and hence,
it will act non-trivially on high-energy states. To construct the generators, it is therefore convenient
to take the formal limit of large N and zero temperature SJ — oo, while keeping the ratio % fixed.
In this regime, it is possible to translate the symmetry generators from the exact Schwarzian theory
(see [71]), which on the doubled SYK Hilbert space Hy ® Hp read

B
B = —(Hrp—H 2.23
271_( R L)7 ( )
E = 72571' (Hr + Hy, + Hint) — Ep (2.24)

and P = iJ[B, FE]. The global energy E has an extra bilocal interaction between both boundaries,
which has the form Hin, = ip ), 1/1Z'L¢ZR, and % is a parameter which depends on 3J. The form of this
term was originally elucidated in [80] to couple the two boundaries, making the wormhole traversable.
14 The constant Ej ensures that the value of E for the thermofield-double vanishes, that is, it satisfies

the SL(2,R) gauge constraints.

The remarkable feature of (2.24) is that the operator S = iy, ¥rf + % connects to the previous

definition of size (2.12). Indeed, it is possible to rewrite the thermal size in terms of the expectation

4 H.¢ has an analogous version for a general QFT in flat space. The global Hamiltonian has a interaction term in the
boundary that separates both Rindler wedges. This is consistent with the fact that the global time-evolution connects
both Rindler regions, while the modular Hamiltonian does not.
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value of S in the doubled Hilbert space |7§]

_ (TFD| O}, SOR|TFD) — (TFD|S|TFD)

85(0) 5

(2.25)

Consider a state of the form |U(¢)) = Og(t) |TFD), where t is the right boundary time generated

by Hp. At the level of expectation values on |¥(t)), we can replace B = —i%%, which leads to

_ BIAE _ B3udS

P=ddlB.El = 5 05 = 4z ar

(2.26)

More explicitly, writing down the expectation values, and using (2.25) yields the familiar version of the

PS correspondence

B*udpd d

W) PIU(n) = % 2 85(0()

(2.27)

where the prefactor can be shown to be an O(1) number, as in (2.18). The momentum P generates
spatial translations along the —d, vector field in AdSs, and therefore it coincides with the kinematical

quantity P, when evaluated for heavy particle states.

2.3 Remarks

The PS correspondence opens up a fascinating way to re-interpret the origin of the gravitational attrac-
tion, namely as the tendency for an operator to scramble between the holographic degrees of freedom.
15 Tt relates a linear kinematical quantity, P, whose evolution is governed by the laws of General Rela-
tivity, to a fine-grained measure of the quantum state $ in the internal large-N space, whose evolution

is completely governed by quantum chaotic dynamics.

The derivation of P = $ presented above, however, gives the impression to rely on the presence of a
large black hole originating the background gravitational field in which the effective particle propagates.
Gravitational attraction, on the other hand, is a universal feature of all forms of energy. A more
satisfactory correspondence should be applicable to a much broader class of reference states, as well as

to higher dimensional standard AdS/CFT setups.

Additionally, the putative generalization of ‘size’ must have all sorts of phenomenology, depending
on the reference state [72,73]. For instance, in the low-lying part of the spectrum of the CFT, an
oscillatory behavior of this ‘size’ is generically expected, since the spectrum is nearly integrable. In the

bulk, these oscillations occur from the trajectory of the heavy particle in the empty AdS potential.

!5 In some sense, the PS correspondence resonates with some of the ideas in [81], even if the notion of entropy is replaced
by ‘complexity’ here.

28



CHAPTER III

Momentum / Complexity Correspondence



3. OPERATOR COMPLEXITY

3 Operator Complexity

Measures of operator complexity have received considerable recent attention in studies of information
scrambling in many-body quantum systems [54, 78, 82-90]. One motivation is the characterization of
operator complexity in holographic systems. A recurring theme in this context is the notion that
gravitational ‘clumping’ increases complexity of the dual quantum state. If a black hole is formed, this
is realized in the most extreme way, as the complexity keeps growing linearly well after the black hole
has equilibrated its exterior geometry. However, the growth of complexity occurs for any gravitational
infall of matter, however dilute, as indicated by explicit calculations for collapsing thin shells [91,92]. A
time-reversal transformation to a situation with matter outflow should instead decrease the complexity,
suggesting that there is a relation between some average ‘infall momentum’ and the rate of complexity

change.

The bulk particle is ‘injected’ by the ‘small’ operator O on the boundary, acting on some reference

state O |U) at, say t = 0. If the resulting state is evolved in time
e M O W) = e HH O M 7 | §) — O_, |1, , (3.1)

any increase of complexity can be attributed partly to the increase in complexity of the time-evolved
reference state |¥);, and partly to the increase in complexity of the operator when evolved to the past,
in what we usually refer to a ‘precursor’> O_; = e *HOe*H If the increase in complexity of the
reference state can be neglected or somehow subtracted, we can define the complexity of the operator
O_; in terms of the complexity of the evolved state. The state (3.1) can be interpreted as a heavy
particle state falling through the bulk. More precisely, we may define the operator complexity in terms

of the state complexity by the subtraction
Co(t) = ClO—¢|¥)] = C|¥)] , (3:2)

with some appropriate normalization. In practice, this definition must be supplemented by some
definite prescription for the state complexity such as, for example, the size (2.9), the VC (1.11) or other
complexity proposals [93-95].

Let us suppose that the state (3.1) can be interpreted as a heavy particle falling through the bulk.
Then, the proposal of a momentum/complexity correspondence (PC correspondence for short) amounts

to a relation of the form

— =P, 3.3
0, (33)

where Cp is the complexity of the operator, and Fp is a suitable component of the mechanical momentum
of the associated particle. On general grounds, the right-hand side of (3.3) has an inherent ambiguity,
since we must specify which particular momentum component is the relevant one, and this selects a

particular coordinate system.
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A particular case of (3.3) is the momentum/size correspondence reviewed in Chapter II, which
involves the particle fall towards the horizon, as indicated in Fig. 6, and an interpretation of Co(t) in
terms of operator size 85(O(t)) defined by (2.12) in the quantum mechanical dual system. In that case,
the momentum P, = —g—f is defined with respect to the proper radial coordinate p in the near horizon
region, which interpolates between the AdS proper momentum and the Rindler proper momentum for

near extremal throats.

A limitation of the PS correspondence is that, for it to hold for all times, it needs to be strictly
interpreted in the large NV limit, where the operator never fully scrambles. In systems with finite size,
operator growth as such should stop at the scrambling time, of order ¢5; ~ )\Zl log Neg, where Neg is the
effective number of degrees of freedom. In the picture of bulk infall, the scrambling time corresponds
to the particle reaching the stretched horizon, a timelike layer situated about one Planck length away

from the horizon (see Fig. 9).

An interesting question is whether it is possible to establish a different type of PC correspondence
for operator complexity that would operate at times much larger than the scrambling time. In this
regime, complexity and size are not expected to be proportional: while operator size should saturate,
an operator complexity defined as in (3.2) should grow linearly at long times, with a slope proportional
to the average energy injected in the system by the action of the operator. This is expected in tensor-
network or quantum circuit definitions of complexity, but it also seems to hold in different definitions of
operator complexity, such as K-complexity [85], which was recently shown to exhibit the characteristic

linear growth at late times |86, 87].

4 C

- » 1/

log Nest

Figure 9: For a fast scrambler, complexity and size are proportional before scrambling. Size saturates
at the scrambling time, while complexity keeps growing linearly for a much longer timescale.
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4 Momentum and Complexity of Thin Shells

In this section we show that, adopting VC prescription (1.11) as the definition of (3.2), a momen-
tum/volume complexity (PVC) correspondence of the form (3.3) exists at all times, for operators that
are dual to spherical shells falling on timelike trajectories. The momentum Fg is that of the shells,

measured with respect to a particular radial coordinate which we specify. More precisely, we find

Lo~ Pty = - [ vgmcg. (4.1)
where ¥; is a maximal-volume surface anchored at boundary time ¢, the basic ingredient of the VC
definition, Ny is the unit normal to ¥; and Cy, is a suitable radial vector field defined on ¥;. In this form
of the PVC correspondence, the shells only contribute through their energy momentum tensor, and the
‘suitable coordinate system’ to measure the momentum is obtained by foliating the bulk spacetime with
the extremal-volume surfaces themselves. Therefore, we expect (4.1) to have a much wider generality
than the thin-shell dynamics which was used for its derivation, and we will indeed give a more general
proof of this correspondence in section 5. The compatibility of a constant late-time complexity rate

and a constant bulk matter momentum results form the late-time accumulation of maximal surfaces in

the black hole interior, a well-known property of the VC prescription.

4.1 Thin-shell operators and states

For a holographic CFT defined on a spherical spatial manifold S%~! of radius ¢, we consider its
gravity dual on AdSg4.1, also taken to have curvature radius ¢. A thin shell of dust injected from the

AdS boundary can be represented in the CFT by the action of a formal product operator

Omet ~ || ¢aps (4.2)

DpePp

where Py is a partition of the sphere in domains Dy of size A1, the regularization cutoff. The operators
®A,p, can be seen as bulk operators, applied at radius of order 7y ~ A £?, and smeared over the domain
Dp. The idea is to use ¢p p, to inject a heavy bulk particle at radius r,. Although we imagine
specifying the operators in bulk effective field theory, we can always regard it as a CFT operator by a

bulk-boundary reconstruction map, say using the HKKL formulation [31, 32].

These operators are ‘big’ in the sense of the spatial structure, but are ‘simple’ in holographic terms,
since they are constructed from operators near the boundary of AdS. By appropriately choosing ¢ p,,
we can generate a semiclassical state whose subsequent evolution is parametrized as the collapse of the
shell of particles in the bulk geometry. In the case that the local factors ¢ p, are engineered with very
massive bulk fields, or equivalently CFT operators with very large conformal weight, we can regard the

shell as composed of classical massive particles forming a dust cloud with density o and four-velocity
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field u*.

For the purposes of this section, we define the operator complexity in terms of the general prescrip-
tion (3.2), where the state complexity is regarded as computed with the VC prescription. For technical
convenience, we shall take the high-temperature thermofield double state as the reference state on the
Hilbert space of two copies of the CF'T, and the shell state is injected on the Right CFT as indicated in
Figure 10, at times much larger than the thermalization time 7!, where T is the Hawking temperature
of the black hole.

Figure 10: Penrose diagram of the collapsing shell geometry. The shell is injected in the bulk at late
times compared with T~!, causing the initial black hole of mass M_ to grow up to the bigger mass
M. The worldvolume of the matter shell is labelled VW and sets the boundary between the two black
hole spacetimes VE.

The complexity of the shell operator is defined in terms of bulk quantities as

d—1

C [Oshell] = m

[Vol(Zph+shen) — Vol(Xpn)] (4.3)

where ¥ denotes the extremal codimension-one hypersurface with given asymptotic boundary condi-
tions, defined in the eternal black hole spacetime with and without the shell. The concrete prefactor
in (4.3) is chosen for convenience of normalization. From now on shall measure bulk lengths in units

of curvature radius, so that we set £ = 1.

The worldvolume of the thin shell is a codimension-one timelike manifold W which divides the
spacetime manifold in two regions: V7 is a Schwarzschild-AdS solution of mass M, which we identify
as ‘exterior’ or ‘right’ region, and V—, a similar solution of mass M_ referred to as the ‘interior’ or ‘left’
region. The ADM energy of the shell is given by M, — M_ and is assumed to be positive. Spherical
symmetry holds globally in the full spacetime, whereas stationarity is broken at /. Both V* have
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smooth Killing vectors which are timelike in the asymptotic regions and spacelike inside event horizons.
Denoting these vectors as £y = 0/0ty, where t4 are adapted coordinates, we can write a standard form

of the metric on both sides of W:

dsi = —frdf3 + fildr? +r2dQ3_, (4.4)
where G
16mrG M+
=1 2T 4.5
Jx +r (d — 1)VQ7’d_2 ) ( )

and Vo = Vol(S%!). The shell dynamics follows from Einstein’s equations, which take the form of

junction conditions (cf. [96,97]). Denoting the induced metric on W as
ds}y, = —dr? + R(7)%dQ3_,, (4.6)

in terms of the shell’s proper time 7 and its radius R(7), continuity of the spacetime metric across W

implies the first junction condition,

The second junction condition establishes the jump of the extrinsic curvature across WV as proportional

to the stress-energy on the shell’s world-volume. For a thin shell of dust we have
Ty = ouyu, 6(0) (4.8)

where u* is the four-velocity field of the shell and o is the surface density. The coordinate ¢ measures
proper distance away from W in the orthogonal spacelike direction, increasing towards the exterior
region; in other words, the normal unit vector Ny, = 0/0¢ satisfies Ng\/ = 1 and wu, N{fv = 0. For
spherically infalling dust the density o(R) must be inversely proportional to the shell’s volume, that is
to say, the total rest mass

m = o Vo R¥1 (4.9)

remains constant.

The second junction condition specifies the jump in extrinsic curvature across W,

\/<(j£>2+f‘(R)_\/<i§>2+f+(R)= 57:(;101%. (4.10)

The particular conditions of spherical symmetry and stationarity along VT allow us to write the

junction conditions in terms of the Killing vectors &4, an expression that will be useful later. Using
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that £, = g¢, and the explicit form of the metric (4.4) we find

(W &e=—fr - (4.11)

Furthermore, since &4 are orthogonal to the angular spheres, the normalization implies

G &l = (1) = —(u- &) + (Nw - €1)* = —f+ (4.12)

an expression which determines Nyy - {4 once we know u - £1. Using (4.11) and (4.12) we may recast
the two junction conditions as jumping rules for the Killing vectors, namely the component normal to

W is continuous

Nw- €| = Nweg| (4.13)

whereas the component tangential to VW jumps like the extrinsic curvature,

(& —u€)| = \/@f)Q - f(R) f\/@f)Q - fi(R) = jiGl oR. (4.14)

Equivalently, we can say that both junction conditions boil down to the jump rule:

G
(A = (& —¢Y) \W = —571 o Ru (4.15)

One more presentation of the shell dynamics is obtained by extracting from (4.10) the ADM mass

of the shell as a constant of motion:

dR\” AnG m?
Mgpen = My — M_ = m\/(dT) + f_(R) — (d — 1)VQ Ri—2 (416)

This can be interpreted as a kinetic contribution proportional to the shell’s rest mass m, corrected by
a gravitational self-energy term. In fact, the constancy of m suggests a natural (1 + 1)-dimensional
picture in terms of an effective particle of mass m, moving in the two-dimensional section of the metric

obtained by simply deleting the angular directions:

dr?
f-(r)

ds? 1 = Gapda®da? = —f_(r)dt* + (4.17)

In particular, the shell energy (4.16) can be obtained as the canonical energy from the effective action

dae dzB
Se = /d)\LeH - —m/dwgag(j;da; : (4.18)

provided we can neglect the gravitational self-energy effects.

of a free particle
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4.2 Proof of the PVC correspondence for thin shells

Our goal is to derive a PVC correspondence relation by direct evaluation of the left hand side of
(3.3), with Cgpen defined as in (4.3). This will allow us to identify the correct component of ‘radial
momentum’. The complexity being defined through the VC prescription, we start with a preliminary

discussion of extremal-volume surfaces in the relevant geometries.

Extremal volumes

Let a codimension-one spacelike surface ¥ be defined by the embedding functions X*(y*), with y*

coordinates along the hypersurface. The volume functional reads

VIZ] = /ddy\/ﬁ, (4.19)

by

where hgp = 0o X" 0p X" g (X) is the induced metric on X. 16 Under a generic variation 6 X* the
volume varies as

5V = / (e.0m.), 6X* + / dS% 0, X, 6 X" . (4.20)
b)) ox

where
1 1
(e.om.), = — ﬁ Oa (\/E he Guv abXV> + 3 h 0, X" 0, X° uYpo (4.21)

vanishes precisely when the hypersurface Y is extremal. In this case, the variation reduces to a boundary

term,

5V‘extremal = /(92 ds® 65 5XN ’ (422)

where we have defined the vector fields el = 9, X* tangent to 2.

For the geometry of interest here, ¥ is a cylindrical manifold of topology R x S%! the boundary
having two disconnected components consisting of spheres at the left and right spatial infinities. We
shall use the same future-directed time variables on both boundaries and take a left-right symmetric time
configuration t; = tg = t, so that we can write the following boundary conditions at the regularization
surfaces r = ry:

oXN = +0t & , (4.23)

=TA =TA

where the + signs account for the fact that the left-side Killing vector £_ is past-directed at large radii.

Spherical symmetry allows us to parametrize the induced metric on extremal surfaces in the form

ds? = ey dy® dy® = dy® + g(y) dQ3_; , (4.24)

16 We use latin indices for coordinates on the hypersurface ¥ and greek indices for general coordinates in the full spacetime.
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tr, tr

Figure 11: Extremal codimension-one surface ¥ of interest. Its boundary 0% consists of two spheres
at infinity, located at times t;, = tp = t.

where y is a radial coordinate running over the real line, with y = +00 corresponding respectively to the
left and right boundaries of ¥. In these coordinates, we can picture e = 0, X* as a unit-normalized,
radial, spherically symmetric, right-pointing vector field. Denoting the spheres at infinity by Sy we

can rewrite the volume variation of extremal surfaces (4.22) as

S—w

5V‘extremal = ot [/S 65(§+)M + / eéj (f—)ﬂ] ) (425>

where we have absorbed the sign assignments in (4.23) into a reversal of orientation for the left-boundary

integral. Namely, both integrals in (4.25) are now written as scalar integrals over the boundary spheres.

This expression for the volume dependence with asymptotic time is useful because the featured
integrals turn out to be Noether charges. If we view the volume functional (4.19) as an action on a
collection of fields X* defined over ¥, the isometries of the V¥ portions are interpreted as ‘internal
symmetries’ of the this field theory, with their corresponding Noether currents. The time-translation

symmetries associated to £+ induce Noether currents of the form 7

Jo=€'E, Vel =0. (4.26)

In particular, the integral of the radial component J, over any fixed-y section S, is a Noether charge

7 In order to prove conservation, we just use £, = gi, and evaluate the equation of motion from (4.21).
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which is conserved under transport in the y direction:

Hwﬂ:/ﬁ%@“ o,1[S,] = 0. (4.27)

Y
Identification of the PC component

We have now the machinery in place to evaluate (4.3). The formula (4.25) implies

dv
— =11 I 4.28
dt + + 9 ( )

in terms of the Noether charges 1T = II[S4 ] on right and left boundaries (a similar result was derived

in [91,92] for null shells). The normalization of the operator complexity requires the subtraction of
(0)

the same expression, evaluated on the Noether charges II}’ of the eternal black hole geometry without

infalling shell, namely
d d—1 ) )
— =—— |II, —1I m —1I : 4.2
i C[Oshen] e [ + — 7+ - ] (4.29)

Left-right symmetry of the eternal black hole geometry implies HSP) = H(_O), whereas we can also set

II_ ~ H(_O) at the left regularization boundary because, for shells that enter the geometry at very late
times, their worldvolume W remains very far from the left boundary. Hence, near the left regularized
boundary, the extremal surface ¥ is very well approximated by that of the eternal black hole. As we

(0)

remove the regularization, in the limit 75 — 00, we must actually obtain II_ = II*"’. This allows us to

remove all explicit reference to the eternal black hole geometry and write

d—1

d
1 C[Oshell] = W

o [, -] . (4.30)

Furthermore, the conservation of Noether charges in either V* or V~ allows us to bring the Noether

charges to both sides of the shell’s worldvolume:

d d—1

d—1
— e = H
7 C|Oshen| e (AIT)yy e /SW el (AS)w (4.31)

where (A&H)yy = (& — ¢ )|W is the jump of the Killing vectors across YW and Syy is the sphere at the

intersection X N W. Using now the junction conditions in the form (4.15), we find

d

EC[Oshell] = — /gw O‘RGZ Uy - (4.32)

We can now elaborate (4.32) in various ways in order to flesh out the PC-duality interpretation. First,

we define a ‘complexity field” over ¥ as a rescaling of the e/, field:

Cy=—rel . (4.33)
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Second, we define a density of proper momentum along the shell’s worldvolume
Pl =ocu". (4.34)

With these definitions we can rewrite (4.31) as

d
. C[Oshell] = PC = PM Cg s (4.35)
dt Sw
a relation which identifies the precise component of momentum which is dual to complexity growth,
namely the projection of the proper momentum along the direction of the complexity vector field C&.

It is a particular radial component with inward orientation and appropriate normalization.

Figure 12: Configuration of relevant vectors at the intersection sphere Syy = X N W.

A second presentation of this result has the virtue of hiding some of the peculiarities of the con-
crete system we have considered so far. In fact, no explicit geometrical information about the shell’s
worldvolume W is needed in order to express the PC duality relation. To see this, let us consider the

expression
_ /E NET,, C%, (4.36)

where Ny is the unit timelike normal to ¥. It measures the flux through ¥ of a suitably normalized
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momentum component along . Upon explicit evaluation for the spherical shell, using (4.8), we find
_ / dy / o (Ns: - ) (Cs - 1) 6(0) - (4.37)
Sy

Furthermore, §(¢) = §(y — yw) |d¢/dy|~", where 1y is the value of the y coordinate at the shell’s
intersection. From the definition of the W-normal we have d¢/dy = 0,X* d,¢ = e, - Nyy, which allows

us to collapse the integral to the intersection sphere Syy:

(Ny: - u) (ey - u)
/SW ocR (e Nop) , (4.38)

where we have used (4.33). To further reduce this integral we notice that Ny, and e, are orthogonal
and unit normalized, as well as the pair v and Nyy, so that we have Ny, - u = —Nyy - ey, where the
minus sign accounts for the timelike character of both N& and u#. This simplifies (4.38) and recovers

(4.32). Hence, we have established the more intrinsic form of the PC relation:

%C[Oshen] P - /E NE T, CY (4.39)

In this version, all explicit reference to the details of the bulk state gets reduced to its stress-energy
tensor. The vector fields Ny: and Cy; are defined in terms of the extremal surface, whose detailed
geometry is also determined by 7}, through the back reaction on the geometry. Indeed, the form
of (4.39) should remain valid for spherical shells with any internal equation of state, including those
corresponding to branes which change the AdS radius of curvature across W. Furthermore, the role
of the Noether charges in the derivation of (4.35) and (4.39) makes it clear that it applies as well to

spherical thin shells collapsing in vacuum AdS and forming a one-sided black hole.

More generally, we expect that any spherical matter distribution can be approximated by a limit of
many concentric thin shells, so that (4.39) should remain valid for any matter bulk distribution with
spherical symmetry. The generalization to one-sided collapse of thin shells with arbitrary equations of
state, but still maintaining spherical symmetry, is explained in Appendix B. A first step towards lifting
the spherical symmetry requirement is presented in Appendix C, which considers a formal collapse of

a rotating shell in AdSs.

4.3 Late time limit and the black hole interior

One chief motivation behind this work is the elucidation of the very late time regime of operator
complexity growth in the light of the PC duality. Any definition of operator complexity with the
structure of equation (3.2) will assign a linear growth at late times. In particular, given that state
complexities are expected to grow proportionally to Eyt, where Fy is a characteristic energy of the

state, the subtracted definition for operator complexity gives a slope proportional to En t, where Fp
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is the additional energy injected by the operator O. Translated to our gravitational set up, we expect

a late time behavior

%C[Oshell] e~ My — M_ = Mgpen - (4.40)
We would like to check that our PVC relation satisfies this expected asymptotic behavior. A simple
check can be performed in the limit of very large AdS black holes. This coincides with the situation
where the infalling shells have small gravitational self-energy at all times that are relevant for the

calculation.

The key point is to notice that, at late times, the extremal surfaces ¥; accumulate in the interior
of the black hole, exponentially converging '® to a limiting surface X4 (cf. [58,98]). For a shell that
enters the black hole very late, this surface interpolates between the limiting surfaces (X)+ associated
to the early and late black holes of mass My (cf. Figure 13). In terms of the interior Schwarzschild
radial coordinates, let 71 denote the saturation radii, defined by the local extremization of the ‘volume
Lagrangian’ rd_lm . By explicit calculation we find, in the limit of very large AdS black holes

~d N 871'GM
T (d-1DVa

(4.41)

Figure 13: The saturation slice ¥, interpolates between the extremal surface barrier inside 7_ and
outside Ty..

We can now make use of the ‘movability’ of the Noether charges 11 to evaluate then away from W,
but still inside the black hole interior, in a region where ¥; is well-approximated by a constant-r surface.

Let us denote the angular spheres at such points by g’i. Then, equation (4.30) can be rewritten as

%C[Oshell] e % (H [§+] -1 [g—D : (4.42)

18 See Appendix A for an quantitative discussion of this phenomenon.
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In computing the Noether charges, we notice that £, = 0/0t, are approximately tangent to ¥; in the

saturation region. Hence, we can write el ~ £#/4/¢2 and the Noether integrals are simply
S ~d— - 8TGM
M3, ] ~ /S VE = Vot 10l ~ Vord ~ T (4.43)
+

In the last equality we have made use of (4.41) and the approximation of a large AdS black hole.

Therefore, upon subtraction we conclude the proof of (4.40).

An important observation regarding this result is the fact that the vector fields C# and e}, do differ
significantly in the interior saturation region, because the rescaling factor 7 is non trivial there, and
yet this rescaling is crucial to obtain the expected long-time asymptotics. Therefore, the peculiar
normalization (4.33) of the momentum component along ¥ is necessary for the consistency of the

results.

We can obtain further insight into the rationale behind the linear complexity growth by passing to
the effective particle description. Again neglecting self-energy corrections, we can envision the dynamics
of the shell as that of a probe particle of mass m falling through the (1 + 1)-dimensional metric (4.17).

The PC duality relation admits the two-dimensional representation:

d

aC[OSheH] =PFP=P,C%, (4.44)

where P* = mu®, with a a two-dimensional index. Picking for example the standard (r,¢) coordinates,

we have 2 2
t r
FPo=-r|—P+—PFP ). 4.45
e = v (5 P+ 5p) (4.45)
Let us introduce an adapted coordinate for the radial ‘complexity field’ C* = —rey, namely we define

a rescaled radial coordinate x such that

o\ o\
a_ [ Y S _ 4.4
¢ (@c) T (0y> ’ (4.46)

or, equivalently

0 0
—=—-r—. 4.47
ox " oy ( )
Using the so-defined x coordinate, we can simplify (4.45) so that
ot or
Po=F—+P.—=P,. 4.48
C t aX + ax X ( )

To the extent that we are only interested in describing the particle motion to the past of the saturation
surface Yo, we may use a time slicing given by the extremal surfaces 3; themselves, and coordinate the

spacetime in terms of (¢, x, 2). In this frame, the complexity momentum coincides with the y-canonical

42



4. MOMENTUM AND COMPLEXITY OF THIN SHELLS

momentum, provided we stay within the probe approximation:

Pe=P, = ag;z : (4.49)

This brings our general formalism into contact with the discussion of canonical Rindler momentum
in the introduction. However, the present treatment is capable of describing the late-time behavior
of the complexity. In particular, the use of a time slicing adapted to the extremal surfaces leads to
the phenomenon of saturation in the black-hole interior. This freezes the value of the momentum at a
constant value for asymptotically large values of ¢, thereby explaining why a linear growth of complexity

can be compatible with a PC-type formula (3.3).

Art

Figure 14: The late-time saturation of the time slicing in the interior of the black hole results in a
frozen momentum component, as required for any PC formula which should apply in a regime of linear
complexity growth.
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5 Momentum and Complexity: A Proof

A key property of the PVC correspondence (4.39) is that all dynamical assumptions about the
shells are concealed inside the energy-momentum tensor 7,,. Therefore, it is natural to suspect that
a PVC relation of this form could have a much wider degree of generality. In this section we confirm
this expectation, showing that the content of (4.39) is essentially the Momentum Constraint of General
Relativity (GR).

5.1 PVC From The Momentum Constraint

We shall work with spacetimes X asymptotic to global AdS;,1 with d = 2. The bulk state is described
as a solution of Einstein equations with energy momentum tensor 7, and the asymptotic behavior
of a normalizable state. We shall adopt units such that the asymptotic radius of curvature of AdS is
¢ = 1, although most of our results still hold in the flat spacetime limit ¢ — oo. The VC formula is
taken to be

Crn] - C;T;Gl Vol(%) | (5.1)
a regularized volume of an extremal codimension-one hypersurface Y;, anchored at boundary time t,
which labels the real line in R x S9!, the conformal boundary of X. For notational simplicity we will
often suppress the time label in ¥;, with the implicit understanding that a choice of ¥ is equivalent to

a choice of boundary time.

To fix notation, g,, denotes the metric on X and h,;, the induced metric on ¥, with world-volume
coordinates . Latin indices are raised and lowered with h,j, whereas greek indices are operated with
guv- The embedding of ¥ into X is described by the functions X*(y*), with tangent frame vector
fields et = 0,X*. The extrinsic curvature of ¥ is denoted K,p, and its trace K = h?® K, will vanish
throughout our discussion, since we are focusing on extremal-volume surfaces. Finally, the future-

pointing, unit timelike normal to X is denoted Ng .

We begin by deriving a useful equation for the rate of VC. Since X is extremal, its first-order

variation with respect to a variation of the anchoring surface is a boundary term of the form
d—1
Y] = —— 0 Xy, 5.2
21 -G [ 0% )

where (0Xy), = e 6X,, is the embedding variation, pulled back to . For a rigid time translation 0t
at the boundary, we have 0 Xy, = 0t (0;)s, where 0; denotes the time-translation vector in X, which is
asymptotically a Killing vector. Dividing by dt we obtain an ADM-like expression for the rate of VC:

€ _d-1r o _d-1
dt_87TG oy tn_87TG ox

dS® et (1), (5.3)
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This equation represents the complexity rate as the integral of (J;),, = e, - 0; over the boundary of the
extremal surface, where €}, = el n&., with ngy, the outward pointing normal to 0X. Since e, is tangent
to X, the integrand is sensitive to the asymptotic bending of 3 by the presence of non-trivial geometry
in the bulk. More precisely, we pick the term of order 1/r%~!, for r the radius of an angular sphere

which regularizes 0.

Given any ‘current’ J® defined on 3, which has the same boundary integral as (),

/ﬁ - /a @, (5.4)

we can use Stokes theorem to write the VC rate as a bulk integral of its ‘source’ over the extremal

surface:

dt 87TG/V J (5.5)

A strategy to obtain a PVC equation is to make a clever choice of J, in such way that it is sourced by a
momentum density. A simple example is provided by the well-known case of spherical thin shells, whose
PVC relation (4.39) can be derived in this language by choosing J, = (), el. In this approximation
scheme ¢, is a Killing vector except for jumps at the worldvolume of the shells, so that the integral (5.5)
localizes to delta-function contributions, with coefficients controlled by the junction conditions (cf. [97]
for a review). This derivation shows that the PVC relation is independent of any choice of equation of

state on the world-volume of the shells.

Exact PVC

In order to pursue this strategy in more general terms, we can work backwards by seeking a natural
GR equation that uses the momentum density over a spacelike surface. The obvious candidate is
the so-called Momentum Constraint (MC): given any Cauchy surface X, initial data hg, and Ky, are

constrained by the equation (cf. [97])
VK, — VoK = —87G P, | (5.6)

where P, = —N’E” T, €7 is the pulled-back momentum flux through ¥. For the purposes of this work,

we can simplify this equation by setting K = 0, since 3 is taken to be extremal.

In order to integrate the MC we must introduce a tangent vector field on Y. Anticipating its role in
what follows, we shall refer to this field, Cy;, as the ‘infall’ vector field, despite the fact that at this point
it is completely arbitrary. Multiplying (5.6) by C? and integrating by parts we obtain the equivalent

expression

87TG 87
where Po = P, C'* is the momentum component that is being selected by the C-field. The left hand

/730 - dS“ Ky, C? +i K“bVaCb, (5.7)

side has the form of the momentum integral we are seeking, whereas we have a boundary term in the
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Figure 15: For each point in S,, the time coordinate is chosen to properly parametrize a geodesic
(dashed lines) on Y,. €, is then picked to be orthogonal to S,.

right-hand side that we could try to interpret as dC/d¢. In other words, we would like to set

1
Jo=———— K C" 5.8
a d—1 ab ) ( )
and fix the behavior of C? at the boundary so that we satisfy (5.4). This can be analyzed by means of
a local computation as follows. In the vicinity of 3, we may choose coordinates such that the metric
reads

d 2 . .
ds% — %2 + 72 (—dt2 + 7i5(r,t,0) d0* df?) as r — 0. (5.9)

Here, r is a Fefferman—Graham coordinate which foliates X by timelike codimension-one submanifolds
Y,. The angles #7 parametrize the intersection S, = Y, n X, of spherical topology and induced metric
proportional to 7;;, which is itself asymptotic to a unit round (d — 1)-sphere, up to normalizable
corrections of order 1/r¢. The crucial simplifying property of (5.9) is the choice of time coordinate,

which is geodesic and orthogonal to S, (cf. Figure 15).

The induced metric on ¥ can be written near the boundary as
ds3, — dy® + r*(y) i (y, 0) 6" A6’ (5.10)

for some function r(y) asymptotic to sinh(y) as y — oo. This allows us to write the normal one-
form as Ny, = e?tJ dr — ey dt, and compute the extrinsic curvature Kgp = el ey V, Ny, The relevant
component turns out to be Ky, which, using the traceless character, K = 0, may be evaluated as
Ky, = . K;;. Explicitly
¢ 1 . 4 r ij
Kyy=—(d—=1)re, — 2,3 &7 Oryij — 5 ey Orij - (5.11)

An asymptotic analysis reveals the large-r scalings ey, ~ r, eg ~ 1/rdt+1, Oryij ~ 1 /r¢ and Orvij ~ 1 Jra+l

so that the right hand side of (5.11) is dominated by the first term: Ky, ~ —(d —1)rel. Since

ey Op = —12 ey, we learn that (5.4) can be satisfied provided the C-field is chosen with the boundary
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conditions

Cy — —r(y)dy as y— . (5.12)

This is exactly the result that was found ‘empirically’ for the case of thin shells in [1], justifying the name
‘infall field’ which, from this point of view, is nothing but the condition for the integrated Momentum

Constraint to compute the complexity rate.

We are now ready to assemble all the pieces and write down a ‘generalized PVC’ relation. Defining

a total ‘C-momentum’ through > and a ‘remainder’ by the expressions

1
PelS) = [Pe. RelS)= g [ KOV (513)
b G Jy
we have established
dcC

This shows that part of the complexity rate at time ¢ can always be attributed to momentum flow
through ;. In fact, a sufficient condition can be placed on the ‘infall field” which ensures the vanishing of
the remainder. The extrinsic curvature K, being symmetric and traceless, we can write the remainder

in the form

1 1
RC’ [2] = % A Kab (V(aCb) - g habv . C) . (515)

The term in parenthesis is proportional to the conformal Lie derivative, which vanishes if the C-field
is a conformal Killing vector (CKV). This happens for any spherically symmetric state, for which the
infall field has exactly the form (E.5) throughout ¥. The same is true of any solution of Einstein’s
equations in 2 + 1 dimensions, because ¥ is then two-dimensional. In both these cases, the induced
metric on % is conformal to the Poincaré ball ds? , = dz? + sinh?(z)dQ2_,, with a rescaling factor
which approaches unity at 0X. The Poincaré ball provides a ‘canonical’ infall field Cy, = —sinh(z) 0,
which is a radial CKV on ¥ with the appropriate boundary conditions (E.5).

1

Therefore, we conclude that any spacetime in 2 + 1 dimensions ' and any spherically symmetric

state in arbitrary dimensions satisfies an exact PVC relation

%f _ R3] (5.16)

It is notable that we obtained all these results with no extra hypothesis on the nature of the matter,
i.e. no positivity conditions on 7}, were required. This suggests that the nature of the PVC relation

is essentially kinematical once we take into account the constraints of GR.

9 Modulo boundary gravitons in AdS3, which do not satisfy the boundary conditions (5.9) globally on the asymptotic
boundary R x S*.
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5.2 Obstructions

The most important exception to an exact PVC relation is provided by gravitational waves. In this
case, the Weyl tensor of X does not vanish, and embedded hypersurfaces will in general fail to be
conformally trivial. In the absence of a canonical choice of Cy;, in the bulk, a remainder correction will
be present generically. This is natural from the physical point of view, since a black hole could be
formed by colliding gravitational waves, and the linear growth of complexity must eventually build up

at long times even if T}, = 0 all along.

Approximate PVC relations should exist in the context of the linearized gravity approximation. If X
contains gravitational waves perturbing a spherically symmetric background X, it should be possible

to establish an approximate PVC relation of the form

i . N§ (T + tu) CF (5.17)

0
where £, is a pseudotensor of Landau-Lifshitz type and the normal, Ny, and infall, Cy, vectors are
referred to the surface Y, extremal with respect to the background geometry Xj. If the gravitational
waves can be fully related to matter sources, the t,, contribution will be hierarchically smaller than

the matter contribution.

A different type of obstruction to an exact PVC correspondence occurs when we have wormholes.
The simplest example which captures the relevant issues is the Einstein—Rosen bridge of an eternal
black hole. In vacuum, the extremal surfaces are spherically symmetric cylinders of topology R x S¢~1,
with a Zs reflection symmetry between left and right sides, acting on R in the standard fashion. Radial
CKVs exist, but the asymptotic boundary conditions are necessarily incompatible with the ‘infall’
interpretation in both boundaries: if the Cyx field is ‘infall’ on the right side, it must be ‘outfall’ on
the left side. Revisiting the asymptotic boundary conditions for the C-field (5.4) and (5.8) we see that
an inversion of C' is correlated with an inversion of the time-translation vector ¢y, namely the equation
% = Pc [X] holds when we interpret the complexity rate as measured with respect to the Killing
Hamiltonian Hx = Hr — Hy. In this case one obtains % = 0 for the vacuum solution, where the
K label stands for the choice of time variable dual to Hx. The same is true for any Zs-symmetric
momentum configuration, such as identical collapsing matter distributions on both sides. In order to

get % > 0 we need a sufficient amount of ‘outfall’ in the left side.

For the case of a vacuum Einstein—Rosen bridge, it is certainly possible to define CKVs with appro-
priate infall conditions in the vicinity of each boundary, but these choices are necessarily incompatible
with each other in the bulk; at some point the conformal Lie derivative must be non-zero, and a contri-
bution from the remainder is turned on. For instance, if we want to compute the standard complexity

rate with respect to the TFD Hamiltonian Hrrp = Hg + Hy,, we must introduce a defect in the interior

20 Note that in this case, (5.14) can be viewed as the generalization of the PVC correspondence provided in [71] for the
case of AdS», in particular, equation (6.114) of that paper.
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Figure 16: On the top panel, a CKV field on the Einstein—Rosen bridge is in-falling on one side and
‘out-falling’ on the other. On the bottom panel, insisting on being in-falling on both sides forces a
discontinuous jump through a defect in the interior.

along which the C-field switches its orientation from ‘right-infall’ to ‘left-infall’ (cf. Figure 16). If we do

this at the S?! sitting at the fixed point of the Zs reflection, we obtain a delta function contribution

to the integrand of the remainder. A simple calculation reveals then the standard result % =2M.
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6 Generalized Momentum and Complexity

Notwithstanding the important cases that show an exact or approximate PVC correspondence, the
remainder term in (5.14) does not vanish in general. The simplest and more important instance occurs
when considering pure gravity solutions. Gravitational wave scattering with black hole formation is the
crucial example of a process with a non-vanishing rate of complexity growth, which must come entirely
from the remainder term (5.15). The purpose of this section is to propose a generalization of (5.14) in
which the notion of ‘infall momentum’ is suitably generalized, in a way that can handle pure gravity
solutions. The very existence of such a generalization is quite remarkable, given that no strictly local

definition of energy-momentum exists for the purely gravitational degrees of freedom.

6.1 Generalized PVC from the Codazzi Equation

The key idea in obtaining a generalized PVC relation is to replace the momentum constraint by a more
general starting point. The natural candidate is the Codazzi equation (cf. [97])

VeKagp — Vy Koge = N R,u,uap 6’5 eg e (61)

c

since the momentum constraint (5.6) is contained in its trace. Notice however that (6.1) involves
a projection of the full Riemann tensor instead of simply the Ricci tensor. Therefore, the difference
between (6.1) and (5.6) is proportional to the Weyl tensor W,,,,s. Since gravitational waves are precisely
characterized by a non-vanishing Weyl tensor, the Codazzi equation has the right ingredients for the

kind of generalization that we are seeking.

Following the same steps of the previous section, we want to integrate (6.1) over the extremal
surface X. In doing so, we need to contract the three free indices with an ‘infall’ rank-3 tensor field,
M®c_ enjoying the same symmetry properties as the Codazzi equation, namely antisymmetry in the
last two indices, M = — M2 and the cyclic identity M+ M4 M — 0. Using these symmetry

properties, the Ricci decomposition of the Riemann tensor and Einstein’s equation, we can rewrite (6.1)

as
81G 1
— MV, Ky = Py + =Wy (6.2)
d—1 2
where Po = P,C?, and the C-field
C° = hge M (6.3)

is an infall vector field induced by the infall tensor field. The density
Wit = =NFWype €4 ef € M (6.4)

is the contraction of the infall tensor field with the pulled-back, projected Weyl tensor. Integrating now
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by parts we find

- / dS, Kp, M = SFG / Pc + = / Wi — / Ko Vo M (6.5)
ox

An interpretation of the left-hand side of (6.5) as computing % requires that we set
J = — Kp, M (6.6)

where J* = 0'ef, satisfies the condition (5.4).

Finally, defining the remainder term

d—1
Ry[X] = — e /EKab V. M (6.7)

and the integrated ‘Weyl momentum’

167rG/ Mo (6:8)

we readily obtain a tensor generalization of (5.14)

dc

o = PelS1+ Wul=] + Ry[2] . (6.9)

This equation is completely general, under the assumption that the boundary condition (6.6) is
satisfied. It generalizes (5.14) in two ways. First, it contains information about bulk dynamics that
goes beyond the mere initial-value constraints of GR, since it stems from the Codazzi equation. Second,
it requires a generalization of the notion of ‘infall’ vector field into a tensor infall field with many more
components. An immediate consequence of this increase in degrees of freedom materializes when we

consider sufficient conditions for the remainder to vanish.

If the infall tensor M€ can be further restricted so that the remainder (6.7) vanishes, that is to

say, if M can be chosen satisfying the conditions:

— K M , Ky VoM =0, (6.10)

[

= ()

ox

then we obtain the remainder-free, generalized PVC correspondence

dc

g = FelEl+ WnlE] (6.11)

Its main novelty compared to the restricted PVC (5.16) is the presence of a purely gravitational con-
tribution to the infall momentum, Wj,[X], formally depending on the Weyl curvature. In particular,

states with no ‘clumping’ matter, having Po = 0, still pick the Weyl contribution to the complexity

51



6. GENERALIZED MOMENTUM AND COMPLEXITY

rate. This we will see explicitly in the next section, in a particular example.

We now collect a few observations regarding our proposed generalization of the PVC correspondence.

o The generalized relations (6.9) and (6.11) reduce to the ‘restricted” ones (5.14) and (5.16) when
the infall tensor field admits the factorized ansatz

1

Mabc _
d—1

(h‘“’ cb - h“bC'C> , (6.12)
in terms of some ‘infall’ vector field C*. For sufficiently localized bulk states, this ansatz can
be used to solve the box boundary condition (6.6) when we place the box at infinity in an
asymptotically flat or AdS spacetime. In the AdS case, the solution involves a C-field with
asymptotic behavior (5.12). In Appendix E we extend this result to the asymptotically flat
case. Conceptually, the combination of (6.12) and (5.12) shows that, asymptotically, the ‘infall’

interpretations of M¢ and C® reduce to one another.

e We can look for sufficient conditions for the vanishing of the remainder (6.7), which would gener-
alize the conformal Killing condition V(,Cy) = VT'C hap- Given that 3 is extremal, with K = 0,
the remainder (6.7) vanishes if the symmetrized divergence of M is a conformal rescaling,
V. M@ = § pab for some scalar function ® on X. Taking traces, we can compute ® and obtain

the equivalent trace-free transversality condition
1
Ve (M(“b)c - h® heg M@f0> 0. (6.13)

We can expect that finding transverse tensors satisfying (6.13) on X should be easier than finding
conformal Killing vectors on X, simply as a consequence of the existence of many more degrees
of freedom in M (@), Within the factorized ansatz (6.12), the M-transversality condition (6.13)
reduces to the conformal Killing condition for the C-field, giving the most general solution of
(6.13) in spherically symmetric spacetimes or any (2 + 1)-dimensional solution, precisely those

cases in which the restricted PVC is exact (see Appendix D).

e The generalized PVC relation presented here is bound to suffer from similar topological obstruc-
tions as the restricted PVC. For an eternal black hole state with spherical symmetry, extremal
hypersurfaces ¥; have two disconnected boundaries, the infall tensor field satisfies the factorized
ansatz (6.12) and the generalized ‘Weyl momentum’ still vanishes when evaluated on the extremal
surfaces. This means that the result of section 5.2 still applies, i.e. the rate of complexity growth
with forward time variables on both sides satisfies (6.9) with a non-zero remainder term Rps[%],
which in this example happens to coincide with (5.15). Therefore, the example of the eternal
black hole implies that an exact PVC relation with vanishing remainder will always require some

topological assumptions about the extremal surfaces.
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6.2 An Explicit Check of the Generalized PVC

In this subsection we present a detailed verification of (6.10) and (6.11) on a non-trivial exact solution of
Finstein’s equations: a gravitational pp-wave. Gravitational waves are usually discussed in the context

of a perturbative expansion around a flat background. In such cases, one usually makes the ansatz

Y = M + Ay (6.14)

where h,, is treated as a small perturbation and its dynamics is determined by the linearized GR
theory. The standard analysis shows that gravitational waves are transversely polarized, that is to say,
in a suitable coordinate frame, a wave travelling in the z direction will only distort the metric in the

transverse directions y' = {x,y}, yielding a metric of the form
ds® = —dudv + (6;j + hyj(u))dy'dy’, (6.15)

where we have defined the light-like coordinates u =t — z and v = ¢ + z.

Exact non-perturbative gravitational wave solutions to the Einstein equations are highly idealized
objects, but nevertheless exist and might be useful for pedagogical purposes. One way of defining them
is through a direct generalization of (6.15), dropping the requirement that h,,, is small and considering
solutions of the form

ds® = —dudv + g;j(u)dy’dy’ (6.16)

known as the Rosen form of a gravitational plane wave with parallel propagation (PP) solution. In order
to be able to perform some calculations, we will sacrifice some generality by sticking to the following

particular ansatz (cf. [99-101])
ds® = —dudv + L*(u) (eQﬂ(u)de + e_gﬁ(u)dyQ) , (6.17)

where the functions L(u) and (u) are to be determined by the Einstein equations. As the solution

represents a null wave by construction, the only component of the Ricci tensor that is excited is
Ryu = —2L71(L" + (B)*L) , (6.18)
where the primes stand for d/du. Demanding a purely gravitational solution therefore requires
L'+ (8)*L=0 (6.19)

to hold. Once this condition is satisfied, the manifold still possess a non-trivial Riemann curvature,
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with the non-zero elements given by

Ruzuz = —€°L (2L + LB"), (6.20)
Ruywy = —e 2PL2L'B +Lp").

We shall check the generalized PVC correspondence for a region X defined by the slice delimited
by —¢ < z < £. The boundary 0X has left and right disconnected components z = +¢. The extremal
surface has the form ¥ = v x R?, where the curve 7 is anchored at 0X on times ¢7 and tx (see Fig.
17). We will fix the conventional normalization of the complexity by choosing the ‘AdS size’ to equal

the coordinate edge of X in the z direction, namely we set £aqg = /.
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Figure 17: Schematic representation of the extremal surface for a pp-wave pulse traversing the box
of size 20 from left to right. The transverse R? plane is not shown.

In checking (6.11), we shall factor the formally infinite transverse volume of the R? component,

namely we aim to compute both sides of

av, ¢
dt - 2V[R? /ZWM ’ (6:21)

where V., = V[X]/V[R?] is the longitudinal volume of a symmetrically anchored curve, with ¢, = tg = t.

Computation of the Extremal Volume

Picking an arbitrary parametrization of v, the longitudinal volume is given by

AR
v, = / /=L (u)éu, (6.22)
AL
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where the dot stands for d/d\ and, as we see, the dependence on the function B(u) drops off the
determinant of the induced metric on the slice, significantly simplifying the extremalization problem.

Furthermore, we may choose the coordinate u itself as our A parameter, yielding the effective lagrangian
L =+/—L(u)*. (6.23)

As the action does not depend explicitly on v we can obtain a first integral for the Euler-Lagrange

equations from the canonical momentum associated to v

b= % _ QL% (6.24)
Feeding this back into the action, we get that the on-shell volume will be
ur,
V, = 21p/du L(u)* = 2p[v(u)]yE | (6.25)
uR

meaning that with this choice of parameters v(u) itself measures (up to a multiplicative constant) the

volume along the slice. Integrating (6.24) we get

1
v(u) = T du L(u)* + ¢, (6.26)
and we can fix the value of the constants p and ¢ by imposing the boundary conditions v(ur, r) = vr, g.

Solving for p we can write the volume purely in terms of the unknown function L(u) and the boundary

values
ug,
Vy= |(vr—vr) /du L(u)*, (6.27)
UR
which is a completely general expression for arbitrary boundaries. For the simpler setup zg = —zp, = ¢

and considering also a symmetric evolution tp = t;, = ¢, we may calculate the rate of growth, which

gives

dVvy 1 4 4
—1t = —|L - L . 6.28
dt p [Z(ur)” = L(ur)'] (6.28)

As a check, we see that the trivial flat solution (L(u) = 1 and S(u) = 0) gives the expected
behaviour, i.e. an extremal surface given by the straight line v(u) = —u + 2t, corresponding to the

fixed-t surface. The volume of this surface is simply V = 2¢, and of course its growth rate vanishes.

Notice that any other non-trivial profile for L(u) enjoying the symmetry L(ur)* = L(ug)* will have
vanishing rate as well. This is for example the case of pp-waves that have a finite extension in the u

direction (e.g. a compactly supported pulse). The volume may change as the wave enters or leaves the
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region but will stay constant if the metric at the boundaries remains flat.

Computation of the Gravitational Infall Momentum

After solving explicitly the variational problem for the pp-wave spacetime (6.17), we will now evaluate
the gravitational infall momentum induced by the Weyl tensor. To begin with, recall that the embedding

functions X* = {u,v(u),z,y} defining the surface are given by

1
v(u) = T /du L(u)* + ¢, (6.29)
so0, choosing the coordinates on 3 to be y* = {u, z,y} we can readily calculate the tangent vectors
_Lw)?*
oxcn 1 12 0 0
k=S =lo 0 1ol (6.30)
0 0 0 1
and the induced metric on the slice
L(w)?*
452 0 0
hap = guvey ey = 0 L(u)?e? 0 (6.31)
0 0 L(u)?e2PWw)
The timelike normal vector is (0)?
2p  L(u
N¥ = 0,0 6.32
(et 3 0). (632

which allows us to compute the extrinsic curvature of the surface

_LL 0 0
P
K = V,Nyelel = 0 %L”rw’) 0 , (6.33)
0 0 2pe*2B(LL’fLﬁ’)

which is of course traceless (K = 0) due to the extremal character of 3.

We now have all the ingredients at hand to determine the infall tensor field satisfying the differential

equation and boundary conditions

l{abvc]w'abC = 0, (634)
. abc _ wc
(KM @) €] - (6.35)
The dynamical equation gives
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+ e (L' - Lp) (M (3L — LB') + LM"¥") =0,
from which it is easy to find a particular solution given by

MY — APL3, (6.37)
M*%  — Be PL73. (6.38)
A and B are integration constants to be fixed by the boundary conditions (6.35) which become

e ? (2pLB' (A — Be??) —2pL’ (A + Be??))
LA

1 2p?
20 (L4

(6.39)

U=uyr,, URr U=UuUr,, UR

Actually, since (6.35) is a vectorial equation, two more scalar equations impose certain algebraic con-
ditions on other tensor components of M®¢. These components will nevertheless be annihilated upon
contraction with the Weyl tensor (6.20) in the generalized PVC formula, so we will not calculate them
here. Solving for the constants A and B we get
oA ePLthr (ePr (4p® — L) (L'y + LrBR) — €L (4p* — L},) (L), + L1nB})) (6.40)
Ape?Pn (L, = Lify) (L + Lrfp) — 4pe*™r (L, + LiBy) (L — LrBy)
% (192 — L) (L, — Lify) — €% (4 — L) (L — L)

/B — 6.41
4pe?n (L, — Lufy) (U + L) — 4pe2s (L + Lufy) (L — L) )

where we used the notation Ly p = L(ur r). Embedding the tensor into the four-dimensional spacetime

M¥P7 = Meboeleleg

o, and contracting it with the Weyl and normal vectors we can finally obtain the

longitudinal portion of the gravitational infall momentum

g g vpo
2V[R2]/EWM - _QV[RQ]/ENMWMWUMp
= ;/du (Ae_ﬁ(U) - Beﬁ(u)) (2L/(u)ﬁ/(u) i L(u)ﬁ”(u)) (6.42)
o

= 1 [L(uz)* = L(ur)"] ,

which of course is exactly (6.28), the same result that we obtained with the direct extremalization
procedure. The vanishing of the total gravitational infall momentum for a perfectly contained pulse,
having L(ur) = L(ug), is consistent with the idea that the pp-wave is ‘infalling’ from the point of view

of the left boundary, but is equally ‘outfalling’ from the point of view of the right boundary.
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Observations

We conclude this section with a few observations regarding these explicit computations.

e The pp-wave example illustrates that a form of the PVC correspondence holds for pure grav-
itational waves in asymptotically flat spacetime but, more emphatically, the ‘box’ can have a
finite size, defined by some conventional coordinate condition. If the M-tensor can be defined as
satisfying (6.10), the generalized PVC holds with no need to make special physical arrangements
to define the walls of the box. In this sense we can say that the generalized PVC correspondence

is a quasilocal property of the bulk dynamics.

e Even though we chose a purely gravitational solution in order to maximize the differences with
our previous analysis for collapsing matter solutions in section 4.1, notice that most of the details
go through even after dropping the Ricci-flatness condition (6.19). In such case, the ansatz
(6.17) describes in general a mixture of a gravitational and a (null) matter pp-wave with an

energy-momentum tensor given by

2 2
Of course, for this model to describe real matter one should ask 7}, to satisfy certain null energy
conditions, which in turn will impose some restrictions on the functions L(u) and S(u). At
any rate, our observation here is that this non-trivial Ricci curvature does not change any of
our analysis from (6.29) to (6.41) since all quantities on the slice depend only on first order

derivatives of the metric, yielding formally identical results for the M#*"? tensor field. The total

volume variation does however pick an additional term from the matter momentum

v, ¢ [1
s QL — | N*T,,C7 44
dt  V[R?] [2 /EWM /2 wC ] ’ (649

where the ‘infall vector field” C* defined in (6.3) can be easily obtained from our solution for M/?b¢
yielding
0 = 1L () <Ae_5(“) + Beﬁ<u>) 5. (6.45)

As it can be readily checked, the sum of the two contributions in (6.44) nicely recovers the correct
result (6.28) again without any additional contribution. The technical reason behind this relies

on the existence of the total derivative

dF(u) 887G 1
o - Vh [d—lPC * 2WM] ’ (6.46)
Flu) = — <Aeiﬁ + Beﬁ> L'+ (Ae*’g - Be’B) Lg, (6.47)

which allows us to perform the integral over ¥ for arbitrary functions L(u) and B(u), including
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the Ricci and conformally flat solutions as well as any generic mixture of gravitational and matter

waves.

e As it is well known, the very concept of local energy and momentum becomes ill-defined when
we try to adapt it to gravity itself, where only perturbative notions of an approximate energy-
momentum pseudotensor t,, have been proposed (cf. [102-104]). For that reason we do not
expect to find a clear general relation between complexity growth and energy inflow for pure
gravity solutions. We find however amusing that our example admits an interpretation along
these lines. In particular, it is possible to find a ‘gravitational inflow vector’ C* which allows us

to re-write the integrand in (6.42) in a similar fashion as the matter piece, i.e.

Wawpe MYP7 = 1,0 (6.48)

with
G = 1LY (w) <Ae‘f3(“) - Be/f(u)) 5o (6.49)
t =2 <2L/B/L+Lﬁ”) 5oy (6.50)

where we can identify £, as the ‘square root’ 2! of the Bel-Robinson tensor (cf. [106]), an object
that is constructed purely from the Weyl tensor and satisfies the dominant property fwu“u” =0
for any future-pointing vector u* (cf. [107]). It would be interesting to investigate whether this

formal analogy still holds beyond the particular example at hand.

21 See [105] for a proper definition of this object.
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7 Matter Infall and Complexity

To gain intuition about the infall momentum, we invoke the PVC correspondence (5.14) in this section
to study the evolution of complexity for states with dilute matter which backreacts slightly on the
geometry. We will just work to leading order in the backreaction, given by some parameter € « 1 that
controls the deviation of the metric g,,, = g, + € dg,, from the background metric g,,,,. We will assume
that this reference state is ‘trivial’, in the sense that background metric g, is a spherically symmetric
vacuum solution. Under these assumptions about the reference state, all the time-dependence of the
complexity of the state can be traced back to the operator that creates the matter, as in the definition
(3.2).

The background C-field is just C* = —r el in terms of the radial tangent field to the background
slice 3, with unit normal N*. Since T}, ~ ¢, at leading order in the backreaction ¢, the infall momentum

can be evaluated on the background slice,

P[] — — /2 NA T, C” . (7.1)

The remainder term (5.15) must vanish in the reference state for this choice of background C-field.
Moreover, the extinsic curvature of the background slice vanishes identically, K., = 0, by virtue of the

staticity of spacetime. The only term that can contribute at leading order in ¢ then comes from
R[Z]—l/éK“b ViuCh — ~hey V- C (7.2)
clxl =& . (aCp) = 7 Mab ; .

where 6 K represents the linear variation of the extrinsic curvature of the slice ¥ due to backreaction,
and hg is the induced metric of the background slice 3. Since the C-field is a CKV of the background
slice, then the term inside the parenthesis exactly vanishes, making Ro[X] = 0. Therefore the PVC

correspondence becomes exact at leading order in the backreaction

dc

— = Poa = — N*T,, C", 7.3
q fall /E p (7.3)

where, from now on in this section, we neglect all contributions of order O(g?).

7.1 Newtonian limit

For any state satisfying an exact PVC relation (5.16), the radial C-field is conformal to the canonical
C-field of the Poincaré ball, which vanishes at the ‘center’. This vanishing point may be moved by the
action of the asymptotic isometries, such as translations in Minkowski spacetime, but a given globally
defined infall field will always have a ‘center’. This suggests that the infall momentum behaves like

angular momentum does: an arbitrary center must be specified, although any center is a valid reference
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point.

The important notion of ‘infall momentum’ can be further elucidated by taking the Newtonian limit
of (7.3) for a collection of point particles. We can have these particles moving deep inside AdS, in a
region of size { « fpqs or work directly in asymptotically flat spacetime. Fixing the reference system
at the point where C = 0, the complexity rate in the Newtonian approximation is the total infall

momentum for the particle system:
d 1
a CNewtonian = Pinfall = _m zlz X Pi, (74)

where we have momentarily restored the dependence on the ‘box’ length scale £5q5 = 1, an arbitrary
choice in this Newtonian discussion. We see that it is indeed a sort of ‘radial-inward’ version of the
angular momentum, constructed with scalar products rather than vector products. Just like angular
momentum, the so-defined ‘infall momentum’ is not invariant under translations or boosts, and a special

role is played by the center of mass X = >, m;x;/ >}, m;.

Suppose our system has a number of distant clusters, so that each of them can be regarded as
approximately isolated. The total infall momentum can be decomposed in ‘intrinsic’ and ‘orbital’

parts:
Pinfan = Z Pan[X Z Po-Xa, (7.5)

where X, is the center of mass of the a-cluster and P, its total momentum. In this expression,
Pinan[Xa] accounts for the ‘intrinsic’ infall momenta within each cluster, measured with respect to its
center of mass. Hence, ‘compositeness’ of effective particles is incorporated through an additive term

for each particle, something analogous to ‘spin’.

Infall momentum has the crucial property of being a total derivative, P = % Zclump, Where
Clump P Zmz (76)

is a sort of ‘spherical’ moment of inertia which measures the degree of ‘clumping’ of the matter. Hence
we find that, within the Newtonian approximation, the complexity is completely determined, up to an

additive constant, by the degree of matter ‘clumping’

CNewtonian = CO + chump . (77)
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Complexity and Newtonian Force

Unlike angular momentum, infall momentum will not be conserved in general. Its time derivative,

proportional to the second derivative of the complexity, is

dc d
= — Py = —2T — -y 7.8
a2~ g e ;X (78)

where F; is the Newtonian force acting on the ¢-th particle and T is the total kinetic energy.

If the internal dynamics of the system is described by a potential V'(x;) which is a homogeneous

function of degree k, Euler’s theorem implies

d
a Popn = 2T+ kV = —(ki + 2)T + kE (79)
with F the conserved total energy. For a gravitational system, £k = —1, which is either unbound

or marginally bound, E > 0, the time derivative of the infall momentum, or equivalently, the sec-
ond derivative of the complexity, is guaranteed to be negative. For stably bounded systems, on the
other hand, the time-average of the infall momentum must vanish, ﬁ f(;/o dt Ppan(t) = 0, where ¢
corresponds to a suitable time-window, and complexity remains constant on average.

7.2 Relativistic Matter

Let us now consider relativistic matter in asymptotically flat spacetime ds? = —dt? + dr? + r2 ng_l,
where we again fix the reference system r = 0 at the center of infall. At leading order in the backreaction,
the PVC correspondence (7.3) is given in terms of the constant global-time background slice X, with

unit normal N = ¢; and C-field C = —r 0,. The infall momentum in this case is

dc

a = P = /dT dQg—1 rd Ty . (710)

This relativistic infall momentum also happens to be a total derivative. The relativistic matter is
conserved at leading order in the backreaction, with respect to the background metric, V,TH = 0.

From this condition, it is straightforward to see that indeed
r
r Ty, = o (r / dr’ /4 Ttt> : (7.11)
0

up to total derivatives that vanish under the integration over the S¢'. Plugging this expression in
(7.10), and interchanging the order of the radial integrals gives, P = %chump, for the relativistic

‘clumping’ moment of inertia
1
Taump = ~5 /derS(r), (7.12)
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where E(r) = f dQg_q r41 T}, is the energy density per radial unit. The power of this expression relies
in the fact that the ‘spherical’ moment of intertia now includes the effect in the complexity of any
classical field with small backreaction. Moreover, we emphasize that our derivation applies for any

dilute distribution of energy T}, which can have an arbitrary profile along the S%1.

The complexity of the relativistic system is given again by the degree of matter ‘clumping’

C= CO + Iclump : (7'13)

Complexity and Relativistic Dynamics

There is also a generalization of (7.8) to the relativistic case. To derive it, let us start by writing
the difference Pingan(t2) — Pfan(t1) as a flux over the boundaries of the spatial region W, 4,y that
extends for ¢ € [t1,t2]. The difference of infall momenta corresponds to the flux of the vector field
vkt = —TH, C" evaluated at oW, 4,). That is, 22

Pugan(t2) — Pgan(t1) = / N, v . (7.14)
Wity t2)
Applying Stoke’s theorem, the difference in infall momenta has the following expression as a spacetime

integral over W, 4,3,

Pitan(t2) — Pnfan(t1) = / T, VFCV. (7.15)
W

t1:t2)
The covariant derivative of the background C-field can be written as V¥ C” = —el e} h®. Decom-

posing the spacetime integral using the 3 slices, and taking to — t; we get

d’¢c  dpP,
¢ _ dPagn _ / . (7.16)
P

de? dt

where ps; = Ty, h® is the ‘total pressure’ along the slice . The average pressure can also be expressed

as p =€+ T, in terms of the energy density e = N* T, N” and the trace T = T}, 23

As an example, consider a perfect fluid with 7, = (p+p)uyu, +p g, the total pressure is positive
provided that the pressure p and the energy density p of the fluid are positive, ps: = dp. The second

derivative of the complexity for such an unbound system is negative.

22 Here we assume that the fields decay sufficiently fast as r — oo.

23 Note that, for the Newtonian case, (7.8) vanishes for a rotating rigid body along the center of infall, since in that case
x; - F; = m;x7. For the relativistic case, the rotating body has p = 0 in (7.16). The ‘centripetal force field’ generates
negative radial pressure 75, < 0 which cancels the angular component.
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8 Conclusions

Recent progress in gravitational holography has lead to some speculation regarding the fundamental
origin of the gravitational attraction. The most radical ideas point towards gravity and quantum
mechanics being two sides of the same coin, after all. Quantitatively, this connection is encapsulated
in the momentum/size correspondence reviewed in section 2 of this thesis, which characterizes the
gravitational attraction exerted by a black hole as the tendency of a ‘small’ probe operator to scramble

under the influence of a chaotic Hamiltonian.

However, any correspondence which relies on the notion of ‘operator size’ will have its own limita-
tions to describe finite-entropy systems after the scrambling time. In particular, the PS correspondence
is unable to describe the experience of the infalling particle in the black hole interior. Furthermore,
black holes and fast scrambling seems crucial on its derivation, while on the other hand, gravitational

attraction is a universal feature of all forms of energy.

In this thesis, we have presented a momentum/complexity correspondence, in the context of the
Complexity = Volume prescription, which: (i) extends to arbitrary late times after scrambling, keeping
track of the experience of the infalling matter in the black hole interior, and (ii) is valid for any
spherically symmetric state of matter, however dilute, in higher dimensions, as well as for any state
in 241 dimensions. The PVC correspondence formalizes the idea that the gravitational clumping of

matter increases the complexity of the quantum state.

In section 4 we have presented the original ‘phenomenological’ derivation of the correspondence,
following the evolution of thin shell operators impinging on double-sided AdS black holes. The key
to the construction is to measure the momentum with respect to a bulk time foliation by the same

maximal surfaces that one uses to compute the VC.

Next, in section 5, we have shown that the momentum //complexity correspondence is implicit in the
Complexity=Volume prescription, as a result of the Momentum Constraint in General Relativity. The
PVC correspondence is based on two ingredients that were advanced in the thin-shell analysis of section
4: the use of maximal-volume hypersurfaces as the time foliation to measure the momentum, and a
particular choice of momentum component along the extremal surfaces, determined by an appropriate

‘infall field’ Cs;. In formulas

if:/zpcu%c 2], (8.1)

where P = —N&T),, C% is the infall momentum. The infall field is required to have fixed boundary
conditions at infinity, but otherwise the freedom implicit in its specification is reflected in the existence
of a ‘remainder’ correction Rc[X] to the PVC relation. The remainder vanishes if Cy; extends to the
bulk as a conformal Killing vector, something that is guaranteed for any spacetime in 2 + 1 dimensions
and any spherically symmetric spacetime in arbitrary dimensions. From the physical point of view, the

most important exception is provided by gravitational waves. This is natural in some sense, since we
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know that there is simply no candidate for a local measure of purely gravitational momentum to be

integrated over X.

In section 6 we have presented a further generalization of the idea that certain holographic com-
plexity /momentum correspondences are largely implicit in the dynamics of Einstein gravity. The main
realization is that the PVC correspondence of section 5 admits a nontrivial generalization into a fully

gravitational PVC stemming from the Codazzi equation:

dCZ/Pc-i-/WM. (8.2)

The main novelty of this generalized PVC relation is the occurrence of a new contribution to the ‘rate
of gravitational clumping’, measured by an appropriate flux of the Weyl tensor across the extremal
surface, Wy = —1%% NEW,pe M7 . A crucial technical ingredient is the generalization of the
notion of ‘infall vector field’ C's; into a rank-3 ‘infall tensor field” My with the same symmetry structure
as the Codazzi equation itself. In order for (8.2) to be true, Mgbc must be chosen to satisfy the equation
Ku VcMgbc = 0 throughout 3, with boundary conditions (6.6). We have explicitly checked that these

requirements can be met in an exact pure-gravity pp-wave solution of Einstein’s equations.

In section 7, we have shown that the central concept of ‘infall momentum’ has a Newtonian version
which explicitly captures the intuitive idea that matter clumping increases complexity. A relativistic
generalization of this version also exists. Finally, the value of VC for states with small backreaction is

given in terms of a radial ‘moment of inertia’ that quantifies the degree of clumping of matter.

The PVC correspondence presented in this thesis opens many avenues for future research. For
instance, it would be interesting to check the complexity slope (4.40) for the thin shells by direct
evaluation of the infall momentum of the shell. This requires detailed control of the precise location of
the intersection sphere Syy in the black hole interior. It is also interesting to check whether a transient
exists for early times which shows a measurable Lyapunov exponent. This is a nontrivial fact, given
that our time foliation is quite different from a near-horizon Rindler system. In particular, such chaotic
transients were numerically identified in [92,108] in VC computations relevant to situations which are

similar, although not identical, to the set up studied in section 4.

Another interesting open problem is to find a generalization of the PVC correspondence to include
non-trivial boundary dynamics in AdS/CFT examples. This includes the VC of ‘cosmological’ con-
structions driven by time-dependent states in the CFT, as in [109], and ‘boundary gravitons’ in 2 + 1
dimensions [64,110-112|. It would be interesting to study the detailed solutions of (5.12) that arise
in these situations, where the PVC relation is expected to contain additional ‘boundary’ contributions

beyond the bulk infall momenta.

The generalized PVC correspondence also poses a number of interesting questions. While (8.2) is
certainly more general than (8.1), we are still lacking a more precise physical interpretation of the Weyl-

momentum W,,. It would be interesting to explore possible connections to pseudo-local energy notions
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based on the Bel-Robinson tensor, as suggested at the end of the section 6.2. Further elucidation along
these lines will follow form a careful analysis of weak-field expansions around the asymptotic factorized

ansatz (6.12).

At a purely mathematical level, it would be interesting to delimitate the reach of sufficient conditions
such as the symmetrized transversality condition on the infall tensor (6.13). The answer is guaranteed
to be nontrivial, for at least two reasons. First, the explicit solution we have found for Mgbc in the
pp-wave example does not satisfy (6.13). Therefore, we know that in cases that are sufficiently far
from the factorized ansatz (6.12), the transversality condition is too strong. Second, even when the
factorized ansatz works and (6.13) reduces to the conformal Killing condition, topological obstructions

can prevent the remainder from vanishing.

We end with a digression on the more general significance of PVC relations like (8.1) and (8.2). First
of all, our proposed PVC correspondences are tailor-made for the VC prescription. By now, a plethora of
different complexity proposals exist [64,65,93-95,111-115] and it would be interesting to see if analogous
momentum /complexity correspondences can be formulated. When addressing this question, one should
keep in mind that subtly different notions of complexity may exist in the boundary description. As a
simple example of this fact, we can consider operator K-complexity [85-88,116], which is conceptually

different from circuit complexity, yet it shows analogous ‘phenomenology’ in certain situations.

At any rate, we know that extremal spatial volumes parametrized by codimension-one boundary
data are interesting quantities in any putative holographic description. Whether they are literally
related to some sort of computational complexity is an open question, but it is certain that there exists
a notion of ‘volume complexity’ induced from the bulk description. In this context, one can imagine
using the PVC formula as a basis for its elucidation. Since the right hand side of (8.2) is a local bulk
integral, we can expect that a sufficiently powerful prescription of bulk operator reconstruction can
be used to give an operational definition of % in the dual holographic picture (CFT or otherwise). A
further integration determines the ‘volume complexity’ up to a constant, mimicking the strategy followed
before to determine the Newtonian limit of the complexity in equations (7.6) and (7.7). In this context,
it becomes interesting to investigate the relation between the PVC correspondence and other structural

properties of holographic complexity, such as the first and second laws of complexity [117-119].
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Conclusiones

El progreso reciente en holografia gravitacional ha generado cierta especulacion a la hora de reinter-
pretar el origen fundamental de la atraccién gravitatoria. Las ideas méas radicales apuntan a que la
gravedad y la mecénica son dos caras de la misma moneda, después de todo. Cuantitativamente, esta
conexion estd capturada en la correspondencia momento/tamano presentada en la seccion 2 de esta
tesis, que caracteriza la atraccién gravitatoria ejercida por un agujero negro como la tendencia de un
operador de prueba a mezclarse entre todos los grados de libertad del agujero negro bajo la acciéon de

un Hamiltoniano cadtico.

Sin embargo, cualquier correspondencia que se base en la nocién de ‘tamano del operador’ tiene
sus propias limitaciones cuando se trata de describir sistemas de entropfia finita después del scrambling
time. En particular, la correspondencia PS es incapaz de describir la experiencia de la particula en
caida libre en el interior del agujero negro. Ademas, los agujeros negros y el caos maximal parecen
ingredientes cruciales en su derivacién, mientras que, por el contrario, la atraccién gravitatoria es una

caracteristica universal de todas las formas de energia.

En esta tesis, hemos presentado una correspondencia momento/complejidad, en el contexto de
la prescripcion Complejidad = Volumen, que satisface las siguientes propiedades: (i) es valida para
tiempos arbitrariamente largos después del scrambling time, y contiene la informacion de la particula
en caida libre en el interior del agujero negro (ii) su rango de aplicabilidad incluye cualquier estado
esféricamente simétrico de materia, sin importar su densidad, en dimensiones superiores, junto con
cualquier estado en 2+1 dimensiones. La correspondencia PVC formaliza la idea de que la compresion

gravitatoria de la materia incrementa la complejidad cuantica del estado.

En la seccién 4 hemos descrito la derivacion ‘fenomenolégica’ original de la correspondencia, sigu-
iendo la evolucion de los operadores de tipo corteza que caen a un agujero negro eterno en AdS. El
punto clave en la construccion es el hecho de medir el momento con respecto a la foliacion temporal
dada por las superficies maximales que se utilizan para calcular la VC.

Después, en la seccion 5, hemos demostrado que la correspondencia momento/complejidad queda

implicita en la prescripcion Complejidad = Volumen, como resultado de la restriccion inicial de mo-
mento de la Relatividad General. La correspondencia PVC esta basada en dos ingredientes que fueron
avanzados en el analisis de las cortezas de la seccién 4: el uso de hipersuperficies de volumen extremal
como la foliacion temporal para medir el momento, y una elecciéon particular de la componente del
momento a lo largo de las superficies extremales, determinada por el correspondiente ‘campo de caida’

Cs.. En férmulas c
d
- = / Pc + Re 2], (8.3)
dt 5

donde Po = —N& T, C¥ es el momento de caida. El campo de caida satisface ciertas condiciones de

contorno en el infinito, pero a pesar de eso, la libertad en definirlo esta implicita en la especificacion
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del resto Ro[X] en la relacion PVC. El resto se anula si Cy, se extiende a lo largo de la superficie como
un vector de Killing conforme, una propiedad que estd garantizada para cualquier espaciotiempo en
2 4+ 1 dimensiones y para cualquier espaciotiempo esféricamente simétrico en dimensiones arbitrarias.
Desde el punto de vista fisico, la excepcién mas importante a que el resto se anule se debe a las ondas
gravitacionales. Esto es natural en cierto sentido, ya que es bien sabido que no existe simplemente una

medida local del momento puramente gravitacional para ser integrado a través de .

En la secciéon 6 hemos presentado una generalizacién mas de la idea de que ciertas correspondencias
momento/complejidad se encuentran implicitas en la dindmica de la gravedad de Einstein. La real-
izacion principal es que la correspondencia PVC de la secciéon 5 admite una generlalizacién no trivial a

una correspondencia PVC totalmente gravitacional que emerge de la ecuacion de Codazzi:

dc:/Pch/WM. (8.4)

La mayor novedad de esta relacion PVC generalizada es la existencia de una nueva contribucién al
ritmo de compresion gravitatoria medida por un flujo apropiado del tensor de Weyl a lo largo de la
superficie extremal, Wiy = — 15 N& W00 My, Un ingrediente técnico crucial es la generalizacion
de la nocién del ‘campo vectorial de caida’ Cy. al ‘campo tensorial de caida’ de rango 3 My con las
mismas simetrias que la ecuacion de Codazzi. Para que (8.4) sea valida, el campo Mgbc tiene que
elegirse de tal forma que satisfaga la ecuacion K VCMgbC = 0 a lo largo de %, con las condiciones
de contorno dadas por (6.6). Hemos corroborado explicitamente que estos requerimientos se pueden

satisfacer para una solucién exacta a las ecuaciones de Einstein sin materia del tipo pp-wave.

En la seccién 7, hemos demostrado que el concepto central de ‘momento de caida’ tiene una version
Newtonianan que captura explicitamente la idea de que la compresiéon de la materia aumenta la com-
plejidad. Existe también una nocién relativista del ‘momento de caida’. Finalmente, el valor de VC
para estados con backreaction pequena viene dada en términos de un ‘momento radial de inercia’ que

cuantifica el grado de compresiéon de la materia.

La correspondencia PVC presentada en esta tesis abre muchas puertas para investigar en el futuro.
Por ejemplo, seria interesante corroborar la pendiente de la complejidad (4.40) para las cortezas me-
diante la evaluacion directa del momento de caida de la corteza. Esto requeriria un control detallado
del lugar de la esfera de intersecciéon Syy en el interior del agujero negro. Seria también interesante
investigar si existe una regién transitoria a tiempos cortos que muestre un exponente de Lyapunov real-
mente medible. Esto es un hecho no trivial, dado que nuestra foliacién temporal es bastante distinta
de las coordenadas de Rindler en la regién cercana al horizonte. KEstas transiciones caodticas fueron
determinadas en particular en [92,108] en célculos de VC correspondientes a situaciones que similares,

pero no del todo idénticas, a las consideradas en la secciéon 4.

Otro problema interesante es encontrar una generalizacion de la correspondencia PVC que incluya

una dinédmica no trivial de la frontera en ejemplos de AdS/CFT. Esto incluye la VC de las construcciones
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‘cosmologicas’ regidas por estados dependientes del tiempo en la CFT, como en [109], y ‘gravitones de
frontera’ en 2+ 1 dimensiones [64,110-112]. Seria interesante estudiar soluciones detalladas a (5.12) que
surgirfan en estas situaciones en las que se espera que la correspondencia PVC contenga contribuciones

adicionales de frontera ademas del momento de caida.

La correspondencia PVC generalizada también genera un gran numero de preguntas interesantes.
Mientras que es ciertamente més general que, todavia nos falta una interpretacion fisica més precisa
del ‘momento de Weyl” W,. Seria interesante explorar las posibles conexiones con las nociones pseudo-
locales de energfa basadas en el tensor de Bel-Robinson, como sugerimos en el final de la seccién 6.2.
La elucidacion de estas nociones requreriria un anélisis detallado de las expansiones de campo débil en

torno al ansatz asintoticamente factorizado (6.12).

A nivel matematico, seria interesante delimitar el alcance de las condiciones suficientes como la
condicion de la transversalidad simétrica del tensor de caida (6.13). La respuesta esta garantizada a
ser no trivial, al menos por dos razones. La primera es que la solucién explicita que hemos encontrado
para Mgbc en el ejemplo de la pp-wave no satisface (6.13). Por ello, sabemos que casos suficientemente
alejados de la solucion factorizada (6.12), la condicién de transversalidad es demasiado restrictiva.
Segundo, aunque la solucién factorizada funcione y (6.13) se reduzca a la condicion de vector de Killing

conforme, las restricciones topologicas pueden prevenir de que el resto se anule.

Finalizamos con una disgresion en el significado méas general de relaciones PVC como (8.1) y
(8.2). Primero, las correspondencias PVC que hemos propuesto estan especificamente diseddas para la
prescripcion VC. Actualmente, existe una plétora de propuestas distinta para la complejidad holgra-
fica [64,65,93-95,111-115] y serfa interesante saber si existen correspondencias momento/complejidad
analogas para estas otras propuestas. Cuando se trata esta cuestién, uno debe tener en mente que
pueden existir nociones de complejidad que difieran sutilmente en la CFT. Como simple ejemplo de este
hecho, podemos considerar la K-complejidad del operador [85-88,116], que es conceptualmente distinta
a la complejidad computacional medida por un circuito cuantico, y atn asi muestra una ‘fenomenologia’

similar en ciertas situaciones.

De cualquier modo, sabemos que los volumenes espaciales extremales parametrizados por datos de la
frontera de codimensién uno son cantidades interesantes en cualquier descripcién holografica hipotética.
Si estas cantidades se corresponden literalmente con algin tipo de complejidad computacional o no es
un problema abierto, pero lo que estd claro es que existe una nocién de ‘complejidad de volumen’
inducida desde la descripciéon dual. En este contexto, uno se podria imaginar tomar la correspondencia
PVC como base para su elucidacion. Por el hecho de que la parte derecha de (8.4) es una cantidad local
en el lado gravitatorio, podemos esperar que una prescripcion lo suficientemente poderosa del operador
en el bulk se pueda reconstruir para dar una definicién operacional a % en el dual holografico (CFT u
otro). Una integracion mas en el tiempo determina la ‘complejidad de volumen’, salvo una constante,
adoptando la estrategia que hemos seguido para determinar el limite Newtoniano de la complejidad en

las ecuaciones (7.6) and (7.7). En este contexto, se vuelve interesante investigar la relacion entre la
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correspondencia PVC y otras propiedades estructurales de la complejidad cuéantica, como la primera y

segunda ley de la complejidad [117-119].
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A. LATE TIME ACCUMULATION OF MAXIMAL SLICES

A Late time accumulation of maximal slices

In this appendix, we show proof of the exponentially fast accumulation of maximal slices in the
black hole interior. For that matter, we will work within the benchmark case of an eternal black hole,

whose metric is given in Eddington-Finkelstein coordinates by
ds* = —f(r)du? + 2dudr +r?dQ3_, . (A1)

By spherical symmetry, the maximal surface can be written as a direct product ¥ = v x 841, with
~ a curve in the u — r plane. Exploiting this symmetry we can reduce thus the problem of volume

extremalization to that of a spacelike geodesic in the effective two-dimensional spacetime
ds? = P20 f(r) du® + 2dudr) (A.2)

so that the effective volume functional is given by

VIEWg! =V = /d/\ rd /= f(r)u? + 2ur (A.3)

where A is an arbitrary spacelike parameter and the dot stands for d/d\. The Lagrangian in (A.3)
enjoys a conserved charge associated to the static Killing

oL — i
I = .’Y:T,d—l f(r)+7"‘7 (A4)
ot —f(r)+27
where II is guaranteed to be positive by the spacelike character of the geodesic ds% > (0 and we have
taken the convinient gauge choice A = u. Feeding the conserved charge into the equations of motion
for r(u) we get

. 112 II 112
r = f(r) + (@) + = (@) + f(r) . (A.5)

r

Upon the imposition of reflection symmetry in our setup (¢ = tg = t), the boundary conditions
can be recasted to be 7(u;) = 0 and 7(uw) = ro for u; = ry(r;) ,ue = t the values of the parameter
at the symmetric turning point and boundary respectively. In terms of the turning point radius r; we
can get a simple expression for 11

=/ =Fr) . (A.6)

An implicit relation between t and r; can be obtained integrating (A.5)

U Too T2(d_1)
du = d . A7
/1;1. U /m r 91/2(7") (H + 91/2(1")) ( )
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where we have defined the function

g(r) = D ) 7 S (A8)

which vanishes at the minimal radius r;. Breaking up the radial integral into an inner an outer piece

and substituting the boundary conditions, we can obtain an expression for the boundary time

2(d-1)

t:f;mﬁvan+¢mm>

+ h(rp, i, ro) - (A.9)

where h(rp,ri,74) is a finite function for all values of its parameters. As we see from the structure of
the zeros of g(r), the integral above contains a pole at r = r;. In order to approximate the integral

(A.9) we may expand g(r) to second order around r;
g(r) = a(f —ri)(r —ri) + %(T —ri) . (A.10)

where « is a positive constant depending on the parameters of the black hole and 7; is the asymptotic
limiting surface. The necessity to go up to second order in the expansion is revealed by the vanishing of
the linear term in the late time limit corresponding to r; — 7. Feeding (A.10) into (A.9) and expanding

the rest of the integral to zero order we get

S oy, N o —-1/2 )
t ~ -t i / dr [a(m —ri)(r—mr) + 5(1" - r,)] + finite . (A.11)
which can be solved exactly
2(d—1)
t ~ —W log('ri - ’ri) + ﬁnlte . (A12)

Inverting this expression we get the desired result, i.e. the exponentially fast saturation of maximal
slices in the black hole interior

ri—7 o~ be T (A.13)

where a and b approach constant values in the late time limit.
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B Omne-sided PVC correspondence

In this appendix, we extend the regime of validity of the PVC correspondence (4.39) to situations
in which there is a spherically symmetric thin shell living in the AdS vacuum. We introduce a slightly
more general formalism to manifestly show that the same PVC formula holds for any spherical thin

shell irrespectively of its internal equation of state.

We start from a single holographic CFT on S9! and take the CFT vacuum as the reference state
to define the operator complexity (3.2). Using the VC prescription, the bulk definition is

d—1

C [Oshell] = m

[Vol(XAds+shell) — Vol(Xaas)] » (B.1)

where 3 is the extremal hypersurface of interest, defined in empty AdS with and without the shell
respectively. A peculiarity of this choice of reference state is that its complexity is constant in time, and
this makes the rate of (B.1) to depend only on the extremal hypersurface on the spacetime with the shell.
This extremal volume hypersurface ¥ will be topologically a ball anchored to the asymptotic sphere Sy,
at boundary time ¢. A generic infinitesimal deformation of its embedding function  X* = de N& + dx* efy

will produce the volume variation

SVIZ]ciromal = /Z Vadk® = /S dSa K" (B.2)

as in (4.22), which in this case follows from the tracelessness of the extrinsic curvature of . In
particular, for time translations of the boundary sphere, we need to take the tangent deformation to

asymptotically become (dkq)|s,, = (0; - €q) 0. From (B.2), the rate of extremal volume then reads

av
o vV, o°
dt /2 P

for p® any tangent vector that asymptotically approaches 0; - e®.

I, (B.3)

For spherically symmetric thin shell configurations, there will be two timelike Killing vectors &
individually defined on each of the regions of spacetime V* glued by the worldvolume W. Taking ¢ as
a normal coordinate to W, we can define the Killing vector field globally as £# = " ©(—¢) + ¢ ©(¢),
where O is the step function. The Killing condition is then broken due to a possible discontinuity across

w
V& = (Nw), (AL, 6(0), (B.4)

where we used that 0,0(¢) = §(¢) (Nw),,, for Ny, the W-normal. The global piecewise Killing ¢/
asymptotically becomes the time translation generator 0, and therefore it is possible to choose its

projection to the extremal hypersurface £ = £ - e to play the role of the tangent vector in (B.3). The
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B. ONE-SIDED PVC CORRESPONDENCE

projection of (B.4) into ¥ reads

Vil = 6(0) (Nyw-e) (A -ep) + (£ Ns) Kap (B.5)

where K, the extrinsic curvature of 3. This second term breaks the Killing condition as a consequence
of the original Killing £* failing to be tangent to . Nevertheless, for the extremal hypersurface ¥ the

trace of this term vanishes, which makes this tangent vector to be conserved away from W
Vap® = 6(0) (Nyy - eq) h? (A€ -ep) . (B.6)

This tangent vector precisely agrees with the Noether current (4.26) arising from the internal time-

translation symmetry of the volume functional.

In this framework, we thus find that the rate of the operator complexity is proportional to a localized

quantity on W
d

< Cloma] = / 5(6) (Now - ea) h™ (AE - ) | (B.7)

namely the discontinuity of the stationary Killing vector field.

To evaluate the discontinuity of the Killing vector across W, let us focus on the codimension two
sphere of intersection Syy = ¥ N W. We define the spacelike tangent to ¥ which is orthogonal to Syy
and unit norm, denoted by e),. Similarly, we define the timelike tangent to W, denoted u*, as the one
orthogonal to ¥ n W and unit norm. From spherical symmetry &/ |,y will be orthogonal to the spheres,
and an identical argument to the one provided in section 4.1 determines that the only discontinuity

will be tangent to W and with value

(A)yy =~ (Spo P R) u (B3)

where S, is the induced energy-momentum on W, and R is the radius of Syy. Substituting in (B.7)

and noting that Nyy - e, can be written as —Ny; - u from the argument given in 4.2, we get

d

< ClOwar = /E (T u”) 1 (N - 1) (u-e) - (B.9)

The one-sided version of the PVC correspondence then follows from the decomposition u*u” =

—g" + Njy, Ny, + gng’ where the last term is the induced metric on Syy, and from the thin-shell

condition T}, Ny;, = 0. Upon the definition of the ‘complexity field’ CL = —rel, we arrive at the
desired formula

d

EC[Oshell] = _/g Ng Ty Cs . (B.10)

This derivation of the PVC correspondence certainly clarifies that the PVC formula applies to any
spherically symmetric thin shell in AdS, including branes that separate AdS patches of different curva-

ture radius.
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C. ROTATING THIN SHELL IN ADS;

C Rotating thin shell in AdS;

In this Appendix we use the language developed in Appendix B to begin exploring less symmetric
configurations. We consider the particular example of a rotating thin shell that collapses in AdSs,
corresponding to a stationary but not static exterior spacetime. This solution will be treated formally
in the sense that we do not insist in the physical consistency of the shell’s energy momentum tensor.
The main interest of this simple exercise is to show that formula (B.10) continues to apply with the
same complexity field CL, despite the existence of ‘shear’ components in the jumping conditions for the

Killing vectors.

The outside spacetime V' consists of a rotating BTZ solution (cf. [120])

dr? a 2
2 _ 2 art 2 _ o
At = —fu(r)dd} + s <d¢>+ 5 dt+) : (C.1)
with blackening factor
2
a
For) = -+ 0 (C2)

for a = 4GJ and p?> = 8 GM the ADM angular momentum and mass, respectively. We choose the

inner spacetime V™ to be pure AdSs

2
2 2\ 142 T 2 7,2
ds_——(1+r)dt_+1+r2+7“ do” . (C.3)
The worldvolume of the shell W will have metric
dsjy = —dr* + R(7)*dy? (C.4)

where 1 is a co-rotating angle. Demanding for the continuity of the metric across W translates then

to the set of conditions

Y =0 = ¢p —w(R)ty +0(7), (C.5)
(R)” (R)”

- _ F)2
f_(R) - f+(R)(t+) + f+(R)7

—1=—f(R)(-)* +

(C.6)

where the angular frequency of the shell is basically w(R) = a/R?, and the function §(7) accounts for

the variation in the angular frequency of the shell due to its shrinking
0(r) = w(R)t, . (C.7)

The discontinuity in the extrinsic curvature on W as seen from V* will be sourced by the induced

energy-momentum tensor of the shell S,,. Since the interior frame is co-rotating with the shell, the
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D. RECOVERING THE EXACT PVC FOR SPECIAL CASES

situation is the same as for the spherically symmetric collapse in section 4.1, for which we already know
the components of the extrinsic curvature. The calculation from the exterior frame is a little more
involved, but it can be done by using the precise form of the outward pointing W-normal (Nyy) u =
ty (dr), — R (dt4), and velocity field ut = RoY + i, 8f+ +wty &ng . The second junction conditions

can then be expressed as

ST, — ﬁ 5.*;%5. (C.8)
SV = ﬁ 6*]_.%5‘ (C.9)
STy = —#wR (C.10)
where 81 =/ R2 + f+(R).
Let us proceed to calculate the discontinuity in the stationary Killing vector
AEH = —(AE - u)ut + (Aééin)an“ + (A& - Nyw) N}y, . (C.11)

It is straightforward to evaluate all these projections, an using (C.8) and (C.10) we can write them as
1
AEt = — (81GS;+R) u* — <87rG St R) OpXH. (C.12)

Plugging this result in (B.7), and noting that the extremal hypersurface ¥ will in this case intersect
W on a constant 7 circle, we have that the angular discontinuity of the Killing does not contribute
to the rate of the complexity since (Nyy - 0, X) vanishes. Moreover, the contribution from the Killing
discontinuity in the u* direction has the same form as in the spherically symmetric case, and hence we

obtain the same PC duality

d
< ClOma] = - / NE T, CY (C.13)
b
where the ‘complexity field’ C§f; = —rej. It is tempting to conjecture that the ‘complexity field’ C§;

persists to be inward pointing tangent to ¥ and orthogonal to ¥ n W for more general situations of

thin shells gluing two stationary spacetimes V* together.

D Recovering the Exact PVC for Special Cases

In this appendix, we show that the factorized ansatz (6.12) for the infal tensor M is the most
general solution of the trace-free transversality condition (6.13) for generic 2+1 dimensional spacetimes
as well as for spherically symmetric solutions in higher dimensions. The boundary condition (6.6)
reduces to (4.23) for the C-field, which is now restricted to be a conformal Killing vector. With previous

knowledge of the required asymptotic behavior for the C-field in AdS, we also comment on how the
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D. RECOVERING THE EXACT PVC FOR SPECIAL CASES

generalized PVC reduces to the exact PVC for extremal volume slices anchored to the asymptotic
boundary of AdS.

Let us first consider a generic spacetime in 2+ 1 dimensions. The number of algebraically indepen-
dent components of the infall tensor M€ for d = 2 is 2, which precisely coincides with the number of
trace-free transversality conditions (6.13). In order to solve them explicitly, we will choose coordinates
locally on ¥ such that

ds? = (=2 dzdz , (D.1)

where z = y + i¢, and w(z,z) some real function. For the case of asymptotically AdS spacetimes,
the metric (D.1) asymptotes the Poincaré disk metric w ~ y as y — 0. We will suitably choose the
two independent components of M€ to be the real and imaginary parts of M??? in these complex

coordinates. The set of conditions (6.13) becomes particularly simple in these coordinates

0z (e M**) =0, (D.2)
0. (e* M) = 0. (D.3)

It is straightforward to see that the most general solution of these equations is
M?**(2,2) = 2g(2) e 2w(z2) (D.4)

for some holomorphic function g(z). The C-field obtained by taking the trace of this infall tensor is
precisely C* = g(z). In two dimensions, every vector field of this form is locally a conformal Killing
vector. The key observation is that this infall tensor field factorizes as M®¢ = h% C® — p9 C€. It then
becomes clear the reason why the general solution of (6.13) can be constructed from an infall C-field
which is a conformal Killing vector. In AdS, the required asymptotic boundary condition is CY¥ ~ —1
for the case of the unnormalized y coordinate. The unique holomorphic extension of this condition
is to set g(z) = —1 throughout ¥. This way, we obtain the canonical C-field (cf. Figure ??) which
is orthogonal to the constant y lines, inward pointing, and has a norm that depends on the point in
question, C? = e?¥. This infall field certainly coincides with the inward radial conformal Killing vector
of the Poincaré disk. In fact, the Weyl-momentum vanishes in 241 dimensions as the Weyl tensor is
exactly zero, which, together with the above definition of the C-field, shows how the generalized PVC

reduces the exact PVC correspondence for any geometric state in 2+1 dimensions.

Let us now consider the case of a spherically symmetric spacetime in higher dimensions. Assuming

that ¥ inherits spherical symmetry, the induced metric can be written as
ds? = dy? +r?(y)dQ3_,, (D.5)

where y is an outward directed coordinate normal to the spheres. Moreover, it is natural to assume

that the most generic infall tensor M is isotropic under SO(d) (cf. [121]), up to possible terms that
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E. ASYMPTOTIC BOUNDARY CONDITIONS

do not contribute to the boundary condition, and hence can be considered as pure gauge redundancies
(tangent diffeomorphisms that die off asymptotically). The only irreducible isotropic rank-3 tensor is
¢ for the case of SO(3), but still this tensor does not lie in the same irreducible representation of
GL(d) as the infall tensor. Therefore, any isotropic M will necessarily be reducible into products of
lower-rank tensors. The most general irreducible isotropic rank-2 tensor is of the form f(y) hqp, where
hap is the spherically symmetric metric (D.5). The most general isotropic vector is orthogonal to the
spheres with an angle-independent norm, C' = C(y) d,. With these building blocks in hand, there are
two ways to construct an isotropic M€, i.e. from a rank-2 tensor and a vector C* h%¢, or alternatively
from three vectors CY Cé’ C%. The latter belongs to the totally symmetric representation of GL(d), and
hence it vanishes when projected into the representation of M. Projecting the former provides then

with the most general isotropic infall tensor

aabe _ ﬁ (hac b hab0c> ’ (D.6)

which is again of the factorized form (6.12). In asymptotically AdS spacetimes, the required asymptotic
boundary condition (6.35) will be satisfied by the canonical inward radial C-field on the Poincaré
ball C = —7(y)d,. For any such factorized M, the Weyl-momentum density will vanish due to

tracelessness and antisymmetry of the Weyl tensor

1 2
WM = _dj N'u WNVPO' (h/yg Cp — hI/p CU) = mN'u‘ WNVPO' Cg (gyp + NVNP) = 0, (D?)

which, together with the characterization of the C-field, leads to the exact PVC correspondence for any

spherically symmetric normalizable state in d + 1 dimensional asymptotically AdS spacetimes.

E Asymptotic Boundary Conditions

In this appendix, we extend the analysis of section 5 of asymptotically AdS boundary conditions
to include the asymptotically flat case. We elaborate on the asymptotic boundary conditions for the
C-field and M-field that solve (5.12) and (6.6) in both cases.

To start, we might adopt asymptotic coordinates in the vicinity of 3 such that the metric reads
2 dr? a 142 2 i 107
dsy — gy dt® + r°;(r,t,0)d6'd0? as r — . (E.1)
where a = 2 is the AdS case and a = 0 is the flat case.

Here, r is an ‘asymptotically radial’ coordinate which foliates X by timelike codimension-one sub-
manifolds Y,. In the case of AdS, it corresponds to a Fefferman-Graham coordinate for a particular
conformal frame. The angles #/ parametrize the intersection S, = Y, n X, of spherical topology and

induced metric proportional to ;;, which is itself asymptotic to a unit round sphere, up to normalizable
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corrections of order 1/r¢. The time coordinate is chosen to be geodesic on Y, and orthogonal to S,.

The induced metric on 3 can be written near the boundary as
ds3 — dy* + 1%(y) vi5(y, 0) do" d6” (E.2)

for some function 7(y) which asymptotically r ~ a/2 sinhy + (1 —a/2)y as y — oo. This allows us to
write the normal one-form as Ny = ety dr—ey, dt, and compute the extrinsic curvature Kgp, = el ey VuNy.
The relevant component turns out to be Ky, which, using the traceless character, K = 0, may be
evaluated as K, = ) K;;. Explicitly

A1, 1
Ky = = & ~ 550 &7 00 = 5 €770 (E:3)

a
Asymptotically, dyy;; ~ 1/rd+1_a/ 2 and OrYij ~ 1/r?*1. For a = 2, this is nothing but the require-
ment that the solution is asymptotically AdS, with the round metric on the conformal boundary. For
asymptotically flat spacetimes, one of the defining properties is that all the derivatives of the metric
perturbation decay with the same inverse power law of the radius. An asymptotic analysis of the K =0
condition reveals the large-r scalings e}, ~ /2, ey~ 1/r?=1+2 5o that the right hand side of (I5.3) is
dominated by the first term:
d—-1 el (E.4)

Cpl-a Y

Kyy ~

Since ey - 0p = —1¢ ez , we learn that (4.23) can be satisfied provided the C-field is chosen with the

boundary conditions

C— —%r(y) Oy as y— 0. (E.5)

This is exactly the same result that was found for asymptotically AdS boundary conditions in section 5,
justifying the name ‘infall field’ for the C-field. Similarly, the M-field satisfying (6.6) will asymptotically
factorize as in (6.12) for the C-field given by (E.5).

80



REFERENCES

References

[1]

2]

3]

4]

[5]

[6]

7]

8]

19]

[10]

[11]

J. L. F. Barbon, J. Martin-Garcia, M. Sasieta, “ Momentum/Complezity Duality and the Black
Hole Interior”, JHEP 07 (2020) 169, arXiv:1912.05996 [hep-th];

J. L. F. Barbon, J. Martin-Garcia, M. Sasieta, “ Proof of a Momentum/Complexity
Correspondence ”; Phys. Rev. D 102 no. 10, (2020) 101901, arXiv:2006.06607 [hep-th];

J. L. F. Barbon, J. Martin-Garcia, M. Sasieta, “A Generalized Momentum/Complezity
Correspondence ”, JHEP 04 (2021) 250, arXiv:2012.02603 [hep-th];

J. L. F. Barb6n, M. Sasieta, “ Holographic Bulk Reconstruction And Cosmological Singularities”,
JHEP 09 (2019) 026, arXiv:1906.04745 [hep-th];

M. Sasieta, “Ergodic Equilibration of Rényi Entropies and Replica Wormholes”, JHEP 08
(2021) 014, arXiv:2103.09880 [hep-th];

R. Emparan, A. M. Frassino, M. Sasieta, M. TomaSevi¢, “ Holographic Complexity of Quantum
Black Holes”, JHEP 02 (2022) 204, arXiv:2112.04860 [hep-th];

M. Fierz, W. E. Pauli, “ On relativistic wave equations for particles of arbitrary spin in an
electromagnetic field”, Proc. R. Soc. Lond. 173 no. 953, (Nov, 1939) 211-232; R. H. Kraichnan,
“Special-Relativistic Derivation of Generally Covariant Gravitation Theory ”, Phys. Rev. 98
(May, 1955) 1118-1122; S. N. Gupta, “ Gravitation and Electromagnetism ”, Phys. Rev. 96 (Dec,
1954) 1683-1685; R. P. Feynman, “ Quantum theory of gravitation”, Acta Phys. Polon. 24 (1963)
697-722; B. S. DeWitt, “ Quantum Theory of Gravity. II. The Manifestly Covariant Theory ”,
Phys. Rev. 162 (Oct, 1967) 1195-1239; S. Deser, “Selfinteraction and gauge invariance ”, Gen.
Rel. Grav. 1 (1970) 9-18, arXiv:gr-qc/0411023; D. G. Boulware, S. Deser, “Classical general
relativity derived from quantum gravity ”, Annals of Physics 89 no. 1, (1975) 193-240;

S. Weinberg, “Infrared Photons and Gravitons ”, Phys. Rev. 140 (Oct, 1965) B516-B524; B. S.
DeWitt, “ Quantum Theory of Gravity. I1I. Applications of the Covariant Theory ”, Phys. Rev.
162 (Oct, 1967) 1239-1256;

S. Weinberg, E. Witten, “ Limits on massless particles ", Physics Letters B 96 no. 1, (1980)
59-62;

LIGO Scientific Collaboration and Virgo Collaboration, B. P. Abbott, et al.,
“Observation of Gravitational Waves from a Binary Black Hole Merger”, Phys. Rev. Lett. 116
(Feb, 2016) 061102;

Event Horizon Telescope, K. Akiyama, et al., “ First M87 FEvent Horizon Telescope Results.
I. The Shadow of the Supermassive Black Hole 7, Astrophys. J. Lett. 875 (2019) L1; Event

81


http://dx.doi.org/10.1007/JHEP07(2020)169
http://arxiv.org/abs/1912.05996
http://dx.doi.org/10.1103/PhysRevD.102.101901
http://arxiv.org/abs/2006.06607
http://dx.doi.org/10.1007/JHEP04(2021)250
http://arxiv.org/abs/2012.02603
http://dx.doi.org/10.1007/JHEP09(2019)026
http://arxiv.org/abs/1906.04745
http://dx.doi.org/10.1007/JHEP08(2021)014
http://dx.doi.org/10.1007/JHEP08(2021)014
http://arxiv.org/abs/2103.09880
http://dx.doi.org/10.1007/JHEP02(2022)204
http://arxiv.org/abs/2112.04860
https://doi.org/10.1098/rspa.1939.0140
https://link.aps.org/doi/10.1103/PhysRev.98.1118
https://link.aps.org/doi/10.1103/PhysRev.98.1118
https://link.aps.org/doi/10.1103/PhysRev.96.1683
https://link.aps.org/doi/10.1103/PhysRev.96.1683
https://link.aps.org/doi/10.1103/PhysRev.162.1195
http://dx.doi.org/10.1007/BF00759198
http://dx.doi.org/10.1007/BF00759198
http://arxiv.org/abs/gr-qc/0411023
https://www.sciencedirect.com/science/article/pii/0003491675903024
https://link.aps.org/doi/10.1103/PhysRev.140.B516
https://link.aps.org/doi/10.1103/PhysRev.162.1239
https://link.aps.org/doi/10.1103/PhysRev.162.1239
https://www.sciencedirect.com/science/article/pii/0370269380902129
https://www.sciencedirect.com/science/article/pii/0370269380902129
https://link.aps.org/doi/10.1103/PhysRevLett.116.061102
https://link.aps.org/doi/10.1103/PhysRevLett.116.061102
http://dx.doi.org/10.3847/2041-8213/ab0ec7

REFERENCES

Horizon Telescope, K. Akiyama, et al., “ First Sagittarius A* Event Horizon Telescope
Results. I. The Shadow of the Supermassive Black Hole in the Center of the Milky Way ”,
Astrophys. J. Lett. 930 (2022) ;

[12] J. D. Bekenstein, “Black holes and the second law”, Lett. Nuovo Cim. 4 (1972) 737-740;
[13] J. D. Bekenstein, “Black holes and entropy ”, Phys. Rev. D 7 (1973) 2333-2346;

[14] S. W. Hawking, “Particle Creation by Black Holes”, Commun. Math. Phys. 43 (1975) 199-220.
[Erratum: Commun.Math.Phys. 46, 206 (1976)];

[15] G. ’t Hooft, “ Dimensional reduction in quantum gravity ”, Conf. Proc. C 930308 (1993)
284-296, arXiv:gr-qc/9310026;

[16] L. Susskind, “The World as a hologram ”, J. Math. Phys. 36 (1995) 63776396,
arXiv:hep-th/9409089;

[17] A. Strominger, C. Vafa, “ Microscopic origin of the Bekenstein-Hawking entropy ”, Phys. Lett. B
379 (1996) 99-104, arXiv:hep-th/9601029;

[18] C. G. Callan, J. M. Maldacena, “ D-brane approach to black hole quantum mechanics”;, Nucl.
Phys. B 472 (1996) 591-610, arXiv:hep-th/9602043;

[19] J. M. Maldacena, “ The Large N limit of superconformal field theories and supergravity ”, Adv.
Theor. Math. Phys. 2 (1998) 231-252, arXiv:hep-th/9711200;

[20] O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri, Y. Oz, “Large N field theories, string
theory and gravity ”, Phys. Rept. 323 (2000) 183-386, arXiv:hep-th/9905111;

[21] O. Aharony, O. Bergman, D. L. Jafferis, J. Maldacena, “ N=6 superconformal
Chern-Simons-matter theories, M2-branes and their gravity duals ”, JHEP 10 (2008) 091,
arXiv:0806.1218 [hep-th];

[22] 1. Heemskerk, J. Penedones, J. Polchinski, J. Sully, “ Holography from Conformal Field Theory ”,
JHEP 10 (2009) 079, arXiv:0907.0151 [hep-th];

[23] S. El-Showk, K. Papadodimas, “ Emergent Spacetime and Holographic CFTs”, JHEP 10 (2012)
106, arXiv:1101.4163 [hep-th];

[24] E. Witten, “ Anti-de Sitter space and holography ”, Adv. Theor. Math. Phys. 2 (1998) 253-291,
arXiv:hep-th/9802150;

[25] S. S. Gubser, I. R. Klebanov, A. M. Polyakov, “ Gauge theory correlators from noncritical string
theory ”, Phys. Lett. B 428 (1998) 105-114, arXiv:hep-th/9802109;

82


http://dx.doi.org/0.3847/2041-8213/ac6674
http://dx.doi.org/10.1007/BF02757029
http://dx.doi.org/10.1103/PhysRevD.7.2333
http://dx.doi.org/10.1007/BF02345020
http://arxiv.org/abs/gr-qc/9310026
http://dx.doi.org/10.1063/1.531249
http://arxiv.org/abs/hep-th/9409089
http://dx.doi.org/10.1016/0370-2693(96)00345-0
http://dx.doi.org/10.1016/0370-2693(96)00345-0
http://arxiv.org/abs/hep-th/9601029
http://dx.doi.org/10.1016/0550-3213(96)00225-8
http://dx.doi.org/10.1016/0550-3213(96)00225-8
http://arxiv.org/abs/hep-th/9602043
http://dx.doi.org/10.1023/A:1026654312961
http://dx.doi.org/10.1023/A:1026654312961
http://arxiv.org/abs/hep-th/9711200
http://dx.doi.org/10.1016/S0370-1573(99)00083-6
http://arxiv.org/abs/hep-th/9905111
http://dx.doi.org/10.1088/1126-6708/2008/10/091
http://arxiv.org/abs/0806.1218
http://dx.doi.org/10.1088/1126-6708/2009/10/079
http://arxiv.org/abs/0907.0151
http://dx.doi.org/10.1007/JHEP10(2012)106
http://dx.doi.org/10.1007/JHEP10(2012)106
http://arxiv.org/abs/1101.4163
http://dx.doi.org/10.4310/ATMP.1998.v2.n2.a2
http://arxiv.org/abs/hep-th/9802150
http://dx.doi.org/10.1016/S0370-2693(98)00377-3
http://arxiv.org/abs/hep-th/9802109

REFERENCES

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

J. M. Maldacena, “ Wilson loops in large N field theories ”, Phys. Rev. Lett. 80 (1998)
4859-4862, arXiv:hep-th/9803002;

E. Witten, “ Anti-de Sitter space, thermal phase transition, and confinement in gauge theories”,
Adv. Theor. Math. Phys. 2 (1998) 505-532, arXiv:hep-th/9803131;

S. W. Hawking, D. N. Page, “ Thermodynamics of black holes in anti-de Sitter space”,
Communications in Mathematical Physics 87 no. 4, (1982) 577 — 588;

J. L. F. Barbon, E. Rabinovici, “ Touring the Hagedorn ridge ”, in From Fields to Strings:
Circumnavigating Theoretical Physics: A Conference in Tribute to Ian Kogan, pp. 1973-2008.
8, 2004. arXiv:hep-th/0407236;

T. Banks, M. R. Douglas, G. T. Horowitz, E. J. Martinec, “ AdS dynamics from conformal field
theory ”, arXiv:hep-th/9808016;

A. Hamilton, D. N. Kabat, G. Lifschytz, D. A. Lowe, “Local bulk operators in AdS/CFT: A
Boundary view of horizons and locality ”, Phys. Rev. D73 (2006) 086003,
arXiv:hep-th/0506118 [hep-th].

A. Hamilton, D. N. Kabat, G. Lifschytz, D. A. Lowe, “ Holographic representation of local bulk
operators ”, Phys. Rev. D74 (2006) 066009, arXiv:hep-th/0606141 [hep-th].

1. Heemskerk, D. Marolf, J. Polchinski, J. Sully, “ Bulk and Transhorizon Measurements in
AdS/CFT”, JHEP 10 (2012) 165, arXiv:1201.3664 [hep-th].

M. Van Raamsdonk, “ Building up spacetime with quantum entanglement”, Gen. Rel. Grav. 42

(2010) 23232329, arXiv:1005.3035 [hep-th];

J. Maldacena, L. Susskind, “ Cool horizons for entangled black holes”, Fortsch. Phys. 61 (2013)
781-811, arXiv:1306.0533 [hep-th];

J. M. Maldacena, “ Eternal black holes in anti-de Sitter 7, JHEP 04 (2003) 021,
arXiv:hep-th/0106112;

S. H. Shenker, D. Stanford, “ Black holes and the butterfly effect”, JHEP 03 (2014) 067,
arXiv:1306.0622 [hep-thl;

S. Ryu, T. Takayanagi, “ Holographic derivation of entanglement entropy from AdS/CFT”,
Phys. Rev. Lett. 96 (2006) 181602, arXiv:hep-th/0603001;

E. Witten, “APS Medal for Exceptional Achievement in Research: Invited article on
entanglement properties of quantum field theory ”, Rev. Mod. Phys. 90 no. 4, (2018) 045003,
arXiv:1803.04993 [hep-th];

83


http://dx.doi.org/10.1103/PhysRevLett.80.4859
http://dx.doi.org/10.1103/PhysRevLett.80.4859
http://arxiv.org/abs/hep-th/9803002
http://dx.doi.org/10.4310/ATMP.1998.v2.n3.a3
http://arxiv.org/abs/hep-th/9803131
https://doi.org/
http://dx.doi.org/10.1142/9789812775344_0048
http://arxiv.org/abs/hep-th/0407236
http://arxiv.org/abs/hep-th/9808016
http://dx.doi.org/10.1103/PhysRevD.73.086003
http://arxiv.org/abs/hep-th/0506118
http://dx.doi.org/10.1103/PhysRevD.74.066009
http://arxiv.org/abs/hep-th/0606141
http://dx.doi.org/10.1007/JHEP10(2012)165
http://arxiv.org/abs/1201.3664
http://dx.doi.org/10.1142/S0218271810018529
http://dx.doi.org/10.1142/S0218271810018529
http://arxiv.org/abs/1005.3035
http://dx.doi.org/10.1002/prop.201300020
http://dx.doi.org/10.1002/prop.201300020
http://arxiv.org/abs/1306.0533
http://dx.doi.org/10.1088/1126-6708/2003/04/021
http://arxiv.org/abs/hep-th/0106112
http://dx.doi.org/10.1007/JHEP03(2014)067
http://arxiv.org/abs/1306.0622
http://dx.doi.org/10.1103/PhysRevLett.96.181602
http://arxiv.org/abs/hep-th/0603001
http://dx.doi.org/10.1103/RevModPhys.90.045003
http://arxiv.org/abs/1803.04993

REFERENCES

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

A. Lewkowycz, J. Maldacena, “ Generalized gravitational entropy ”, JHEP 08 (2013) 090,
arXiv:1304.4926 [hep-thl;

H. Casini, M. Huerta, R. C. Myers, “ Towards a derivation of holographic entanglement entropy
7 JHEP 05 (2011) 036, arXiv:1102.0440 [hep-thl];

V. E. Hubeny, M. Rangamani, T. Takayanagi, “A Covariant holographic entanglement entropy
proposal ”’, JHEP 07 (2007) 062, arXiv:0705.0016 [hep-th];

T. Faulkner, A. Lewkowycz, J. Maldacena, “ Quantum corrections to holographic entanglement

entropy ”, JHEP 11 (2013) 074, arXiv:1307.2892 [hep-th];

N. Engelhardt, A. C. Wall, “ Quantum Extremal Surfaces: Holographic Entanglement Entropy
beyond the Classical Regime”, JHEP 01 (2015) 073, arXiv:1408.3203 [hep-th];

G. Penington, “ Entanglement Wedge Reconstruction and the Information Paradox”, JHEP 09
(2020) 002, arXiv:1905.08255 [hep-th];

A. Almbheiri, N. Engelhardt, D. Marolf, H. Maxfield, “ The entropy of bulk quantum fields and
the entanglement wedge of an evaporating black hole ”;, JHEP 12 (2019) 063, arXiv:1905.08762
[hep-thl];

D. L. Jafferis, A. Lewkowycz, J. Maldacena, S. J. Suh, “ Relative entropy equals bulk relative
entropy ”, JHEP 06 (2016) 004, arXiv:1512.06431 [hep-th];

X. Dong, D. Harlow, A. C. Wall, “ Reconstruction of Bulk Operators within the Entanglement
Wedge in Gauge-Gravity Duality ", Phys. Rev. Lett. 117 no. 2, (2016) 021601,
arXiv:1601.05416 [hep-th];

T. Faulkner, A. Lewkowycz, “Bulk locality from modular flow”, JHEP 07 (2017) 151,
arXiv:1704.05464 [hep-th];

J. Cotler, P. Hayden, G. Penington, G. Salton, B. Swingle, M. Walter, “ Entanglement Wedge
Reconstruction via Universal Recovery Channels”, Phys. Rev. X 9 (Jul, 2019) 031011;

P. W. Shor, “Scheme for reducing decoherence in quantum computer memory ”, Phys. Rev. A 52
(Oct, 1995) R2493-R2496;

A. Almheiri, X. Dong, D. Harlow, “ Bulk Locality and Quantum Error Correction in AdS/CFT”,
JHEP 04 (2015) 163, arXiv:1411.7041 [hep-th];

G. Vidal, “ Entanglement Renormalization”, Phys. Rev. Lett. 99 no. 22, (2007) 220405,
arXiv:cond-mat/0512165;

B. Swingle, “ Entanglement Renormalization and Holography ”, Phys. Rev. D 86 (2012) 065007,
arXiv:0905.1317 [cond-mat.str-ell;

84


http://dx.doi.org/10.1007/JHEP08(2013)090
http://arxiv.org/abs/1304.4926
http://dx.doi.org/10.1007/JHEP05(2011)036
http://arxiv.org/abs/1102.0440
http://dx.doi.org/10.1088/1126-6708/2007/07/062
http://arxiv.org/abs/0705.0016
http://dx.doi.org/10.1007/JHEP11(2013)074
http://arxiv.org/abs/1307.2892
http://dx.doi.org/10.1007/JHEP01(2015)073
http://arxiv.org/abs/1408.3203
http://dx.doi.org/10.1007/JHEP09(2020)002
http://dx.doi.org/10.1007/JHEP09(2020)002
http://arxiv.org/abs/1905.08255
http://dx.doi.org/10.1007/JHEP12(2019)063
http://arxiv.org/abs/1905.08762
http://arxiv.org/abs/1905.08762
http://dx.doi.org/10.1007/JHEP06(2016)004
http://arxiv.org/abs/1512.06431
http://dx.doi.org/10.1103/PhysRevLett.117.021601
http://arxiv.org/abs/1601.05416
http://dx.doi.org/10.1007/JHEP07(2017)151
http://arxiv.org/abs/1704.05464
https://link.aps.org/doi/10.1103/PhysRevX.9.031011
https://link.aps.org/doi/10.1103/PhysRevA.52.R2493
https://link.aps.org/doi/10.1103/PhysRevA.52.R2493
http://dx.doi.org/10.1007/JHEP04(2015)163
http://arxiv.org/abs/1411.7041
http://dx.doi.org/10.1103/PhysRevLett.99.220405
http://arxiv.org/abs/cond-mat/0512165
http://dx.doi.org/10.1103/PhysRevD.86.065007
http://arxiv.org/abs/0905.1317

REFERENCES

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

F. Pastawski, B. Yoshida, D. Harlow, J. Preskill, “ Holographic quantum error-correcting codes:
Toy models for the bulk/boundary correspondence ”, JHEP 06 (2015) 149, arXiv:1503.06237
[hep-thl];

N. Bao, G. Penington, J. Sorce, A. C. Wall, “ Beyond Toy Models: Distilling Tensor Networks in
Full AdS/CFT”, JHEP 11 (2019) 069, arXiv:1812.01171 [hep-th];

P. Hayden, S. Nezami, X.-L. Qi, N. Thomas, M. Walter, Z. Yang, “ Holographic duality from
random tensor networks”, JHEP 11 (2016) 009, arXiv:1601.01694 [hep-th];

L. Susskind, “ Entanglement is not enough ”, Fortsch. Phys. 64 (2016) 49-71, arXiv:1411.0690
[hep-th].

D. Stanford, L. Susskind, “ Complexity and Shock Wave Geometries ”, Phys. Rev. D90 no. 12,
(2014) 126007, arXiv:1406.2678 [hep-th].

L. Susskind, Y. Zhao, “Switchbacks and the Bridge to Nowhere ”, arXiv:1408.2823 [hep-th].

D. A. Roberts, D. Stanford, L. Susskind, “ Localized shocks”, JHEP 03 (2015) 051,
arXiv:1409.8180 [hep-th].

T. Hartman, J. Maldacena, “ Time FEvolution of Entanglement Entropy from Black Hole
Interiors ”, JHEP 05 (2013) 014, arXiv:1303.1080 [hep-th];

J. Martin Garcia, Quantum Complexity and Holography. PhD thesis, U. Auténoma de Madrid,
Madrid (main), 2020;

A. Belin, A. Lewkowycz, G. Sarosi, “ Complexity and the bulk volume, a new York time story ”,
JHEP 03 (2019) 044, arXiv:1811.03097 [hep-th];

J. F. Pedraza, A. Russo, A. Svesko, Z. Weller-Davies, “Sewing spacetime with Lorentzian
threads: complexity and the emergence of time in quantum gravity ”, JHEP 02 (2022) 093,
arXiv:2106.12585 [hep-th];

J. F. Pedraza, A. Russo, A. Svesko, Z. Weller-Davies, “ Computing spacetime ”,
arXiv:2205.05705 [hep-th];

L. Susskind, “ Why do Things Fall? 7, arXiv:1802.01198 [hep-th].

J. M. Magan, “Black holes, complexity and quantum chaos”, JHEP 09 (2018) 043,
arXiv:1805.05839 [hep-th].

A. R. Brown, H. Gharibyan, A. Streicher, L. Susskind, L. Thorlacius, Y. Zhao, “ Falling Toward
Charged Black Holes”, Phys. Rev. D 98 no. 12, (2018) 126016, arXiv:1804.04156 [hep-th];

L. Susskind, “ Complexity and Newton’s Laws ”, arXiv:1904.12819 [hep-th].

85


http://dx.doi.org/10.1007/JHEP06(2015)149
http://arxiv.org/abs/1503.06237
http://arxiv.org/abs/1503.06237
http://dx.doi.org/10.1007/JHEP11(2019)069
http://arxiv.org/abs/1812.01171
http://dx.doi.org/10.1007/JHEP11(2016)009
http://arxiv.org/abs/1601.01694
http://dx.doi.org/10.1002/prop.201500095
http://arxiv.org/abs/1411.0690
http://arxiv.org/abs/1411.0690
http://dx.doi.org/10.1103/PhysRevD.90.126007
http://dx.doi.org/10.1103/PhysRevD.90.126007
http://arxiv.org/abs/1406.2678
http://arxiv.org/abs/1408.2823
http://dx.doi.org/10.1007/JHEP03(2015)051
http://arxiv.org/abs/1409.8180
http://dx.doi.org/10.1007/JHEP05(2013)014
http://arxiv.org/abs/1303.1080
http://dx.doi.org/10.1007/JHEP03(2019)044
http://arxiv.org/abs/1811.03097
http://dx.doi.org/10.1007/JHEP02(2022)093
http://arxiv.org/abs/2106.12585
http://arxiv.org/abs/2205.05705
http://arxiv.org/abs/1802.01198
http://dx.doi.org/10.1007/JHEP09(2018)043
http://arxiv.org/abs/1805.05839
http://dx.doi.org/10.1103/PhysRevD.98.126016
http://arxiv.org/abs/1804.04156
http://arxiv.org/abs/1904.12819

REFERENCES

[71]

[72]

73]

[74]

[75]

[76]

[77]

[78]

[79]
[80]

[81]

[82]

[83]

[84]

[85]

[36]

H. W. Lin, J. Maldacena, Y. Zhao, “Symmetries Near the Horizon ”, JHEP 08 (2019) 049,
arXiv:1904.12820 [hep-th];

A. Mousatov, “Operator Size for Holographic Field Theories”, arXiv:1911.05089 [hep-th].

J. M. Magan, J. Simén, “ On operator growth and emergent Poincaré symmetries ”, JHEP 05
(2020) 071, arXiv:2002.03865 [hep-thl;

J. Maldacena, S. H. Shenker, D. Stanford, “A bound on chaos”, JHEP 08 (2016) 106,
arXiv:1503.01409 [hep-th];

Z. Yang, “ The Quantum Gravity Dynamics of Near Extremal Black Holes”, JHEP 05 (2019)
205, arXiv:1809.08647 [hep-th];

G. Sarosi, “AdSy holography and the SYK model”, PoS Modave2017 (2018) 001,
arXiv:1711.08482 [hep-th];

J. Maldacena, D. Stanford, “ Remarks on the Sachdev-Ye-Kitaev model ”, Phys. Rev. D 94
no. 10, (2016) 106002, arXiv:1604.07818 [hep-th];

X.-L. Qi, A. Streicher, “ Quantum Epidemiology: Operator Growth, Thermal Effects, and SYK”,
JHEP 08 (2019) 012, arXiv:1810.11958 [hep-th].

Y. Sekino, L. Susskind, “ Fast Scramblers ”, JHEP 10 (2008) 065, arXiv:0808.2096 [hep-th];
J. Maldacena, X.-L. Qi, “ Eternal traversable wormhole ”, arXiv:1804.00491 [hep-th];

E. P. Verlinde, “On the Origin of Gravity and the Laws of Newton ”, JHEP 04 (2011) 029,
arXiv:1001.0785 [hep-thl;

D. A. Roberts, D. Stanford, A. Streicher, “ Operator growth in the SYK model 7, JHEP 06
(2018) 122, arXiv:1802.02633 [hep-th].

S. Gopalakrishnan, D. A. Huse, V. Khemani, R. Vasseur, “ Hydrodynamics of operator spreading
and quasiparticle diffusion in interacting integrable systems ”; Phys. Rev. B98 no. 22, (2018)
220303, arXiv:1809.02126 [cond-mat.stat-mech].

V. Khemani, D. A. Huse, A. Nahum, “ Velocity-dependent Lyapunov exponents in many-body
quantum, semiclassical, and classical chaos”; Phys. Rev. B98 no. 14, (2018) 144304,
arXiv:1803.05902 [cond-mat.stat-mech].

D. E. Parker, X. Cao, A. Avdoshkin, T. Scaffidi, E. Altman, “A Universal Operator Growth
Hypothesis ”, Phys. Rev. X9 no. 4, (2019) 041017, arXiv:1812.08657 [cond-mat.stat-mech].

J. L. F. Barbo6n, E. Rabinovici, R. Shir, R. Sinha, “ On The Evolution Of Operator Complexity
Beyond Scrambling ”, JHEP 10 (2019) 264, arXiv:1907.05393 [hep-th].

86


http://dx.doi.org/10.1007/JHEP08(2019)049
http://arxiv.org/abs/1904.12820
http://arxiv.org/abs/1911.05089
http://dx.doi.org/10.1007/JHEP05(2020)071
http://dx.doi.org/10.1007/JHEP05(2020)071
http://arxiv.org/abs/2002.03865
http://dx.doi.org/10.1007/JHEP08(2016)106
http://arxiv.org/abs/1503.01409
http://dx.doi.org/10.1007/JHEP05(2019)205
http://dx.doi.org/10.1007/JHEP05(2019)205
http://arxiv.org/abs/1809.08647
http://dx.doi.org/10.22323/1.323.0001
http://arxiv.org/abs/1711.08482
http://dx.doi.org/10.1103/PhysRevD.94.106002
http://dx.doi.org/10.1103/PhysRevD.94.106002
http://arxiv.org/abs/1604.07818
http://dx.doi.org/10.1007/JHEP08(2019)012
http://arxiv.org/abs/1810.11958
http://dx.doi.org/10.1088/1126-6708/2008/10/065
http://arxiv.org/abs/0808.2096
http://arxiv.org/abs/1804.00491
http://dx.doi.org/10.1007/JHEP04(2011)029
http://arxiv.org/abs/1001.0785
http://dx.doi.org/10.1007/JHEP06(2018)122
http://dx.doi.org/10.1007/JHEP06(2018)122
http://arxiv.org/abs/1802.02633
http://dx.doi.org/10.1103/PhysRevB.98.220303
http://dx.doi.org/10.1103/PhysRevB.98.220303
http://arxiv.org/abs/1809.02126
http://dx.doi.org/10.1103/PhysRevB.98.144304
http://arxiv.org/abs/1803.05902
http://dx.doi.org/10.1103/PhysRevX.9.041017
http://arxiv.org/abs/1812.08657
http://dx.doi.org/10.1007/JHEP10(2019)264
http://arxiv.org/abs/1907.05393

REFERENCES

[87] E. Rabinovici, A. Sanchez-Garrido, R. Shir, J. Sonner, “ Operator complezity: a journey to the
edge of Krylov space”, JHEP 06 (2021) 062, arXiv:2009.01862 [hep-th];

[88] A. Kar, L. Lamprou, M. Rozali, J. Sully, “ Random matrixz theory for complezity growth and
black hole interiors ”, JHEP 01 (2022) 016, arXiv:2106.02046 [hep-th];

[89] P. Caputa, J. M. Magan, D. Patramanis, “ Geometry of Krylov complezity ”, Phys. Rev. Res. 4
no. 1, (2022) 013041, arXiv:2109.03824 [hep-th];

[90] V. Balasubramanian, P. Caputa, J. Magan, Q. Wu, “ Quantum chaos and the complezity of
spread of states”, arXiv:2202.06957 [hep-th];

[91] S. Chapman, H. Marrochio, R. C. Myers, “ Holographic complezity in Vaidya spacetimes. Part I
7 JHEP 06 (2018) 046, arXiv:1804.07410 [hep-th];

[92] S. Chapman, H. Marrochio, R. C. Myers, “ Holographic complezity in Vaidya spacetimes. Part 11
7 JHEP 06 (2018) 114, arXiv:1805.07262 [hep-th].

[93] A. R. Brown, D. A. Roberts, L. Susskind, B. Swingle, Y. Zhao, “ Holographic Complezity Equals
Bulk Action? 7, Phys. Rev. Lett. 116 no. 19, (2016) 191301, arXiv:1509.07876 [hep-th];

[94] A. R. Brown, D. A. Roberts, L. Susskind, B. Swingle, Y. Zhao, “ Complezity, action, and black
holes ”, Phys. Rev. D 93 no. 8, (2016) 086006, arXiv:1512.04993 [hep-th];

[95] J. Couch, W. Fischler, P. H. Nguyen, “ Noether charge, black hole volume, and complezity ”,
JHEP 03 (2017) 119, arXiv:1610.02038 [hep-th];

[96] W. Israel, “Singular hypersurfaces and thin shells in general relativity ”, Nuovo Cim. B44S10
(1966) 1. [Nuovo Cim.B44,1(1966)].

[97] E. Poisson, A Relativist’s Toolkit: The Mathematics of Black-Hole Mechanics. Cambridge
University Press, 2009.

[98] N. Engelhardt, A. C. Wall, “ Extremal Surface Barriers”, JHEP 03 (2014) 068,
arXiv:1312.3699 [hep-th].

[99] C. W. Misner, K. Thorne, J. Wheeler, Gravitation. W. H. Freeman, San Francisco, 1973;

[100] H. Bondi, F. Pirani, I. Robinson, “ Gravitational waves in general relativity. 3. Exact plane
waves ”; Proc. Roy. Soc. Lond. A A251 (1959) 519-533;

[101] J. Ehlers, W. Kundt, “ Ezact solutions of the Gravitational Field Equations”, in The Theory of
Gravitation, L. Witten, ed., pp. 49-101. John Wiley & Sons, Inc., New York and London, 1962;

[102] A. Einstein, Der Energiesatz in der allgemeinen Relativitdtstheorie, vol. 1, pp. 154 — 166. 08,
2006;

87


http://dx.doi.org/10.1007/JHEP06(2021)062
http://arxiv.org/abs/2009.01862
http://dx.doi.org/10.1007/JHEP01(2022)016
http://arxiv.org/abs/2106.02046
http://dx.doi.org/10.1103/PhysRevResearch.4.013041
http://dx.doi.org/10.1103/PhysRevResearch.4.013041
http://arxiv.org/abs/2109.03824
http://arxiv.org/abs/2202.06957
http://dx.doi.org/10.1007/JHEP06(2018)046
http://arxiv.org/abs/1804.07410
http://dx.doi.org/10.1007/JHEP06(2018)114
http://arxiv.org/abs/1805.07262
http://dx.doi.org/10.1103/PhysRevLett.116.191301
http://arxiv.org/abs/1509.07876
http://dx.doi.org/10.1103/PhysRevD.93.086006
http://arxiv.org/abs/1512.04993
http://dx.doi.org/10.1007/JHEP03(2017)119
http://arxiv.org/abs/1610.02038
http://dx.doi.org/10.1007/BF02710419, 10.1007/BF02712210
http://dx.doi.org/10.1007/BF02710419, 10.1007/BF02712210
http://dx.doi.org/10.1017/CBO9780511606601
http://dx.doi.org/10.1007/JHEP03(2014)068
http://arxiv.org/abs/1312.3699
http://dx.doi.org/10.1098/rspa.1959.0124
http://dx.doi.org/10.1002/3527608958.ch14

REFERENCES

[103]

[104]

[105]

[106]

[107]

(108

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

L. Landau, E. Lifschitz, The Classical Theory of Fields, vol. Volume 2 of Course of Theoretical
Physics. Pergamon Press, Oxford, 1975;

L. Abbott, S. Deser, “Stability of Gravity with a Cosmological Constant”, Nucl. Phys. B 195
(1982) 76-96;

M. A. G. Bonilla, J. M. M. Senovilla, “Some Properties of the Bel and Bel-Robinson Tensors”,
Gen. Rel. Grav. 29 no. 1, (1997) 91-116;

J. M. M. Senovilla, “Superenergy tensors ”, Class. Quant. Grav. 17 (2000) 27992842,
arXiv:gr-qc/9906087;

M. A. Bonilla, J. M. M. Senovilla, “ Very Simple Proof of the Causal Propagation of Gravity in
Vacuum 7, Phys. Rev. Lett. 78 no. 5, (1997) 783-786;

L. Schneiderbauer, W. Sybesma, L. Thorlacius, “ Holographic Complezity: Stretching the
Horizon of an Evaporating Black Hole”, JHEP 20 (2020) 069, arXiv:1911.06800 [hep-th];

J. L. F. Barbon, E. Rabinovici, “ Holographic complezity and spacetime singularities 7, JHEP 01
(2016) 084, arXiv:1509.09291 [hep-th];

J. D. Brown, M. Henneaux, “ Central charges in the canonical realization of asymptotic
symmetries: an example from three-dimensional gravity 7, Communications in Mathematical
Physics 104 no. 2, (1986) 207 — 226;

P. Caputa, J. M. Magan, “ Quantum Computation as Gravity ”, Phys. Rev. Lett. 122 no. 23,
(2019) 231302, arXiv:1807.04422 [hep-th];

M. Flory, N. Miekley, “ Complexity change under conformal transformations in AdSs/CFTs”,
JHEP 05 (2019) 003, arXiv:1806.08376 [hep-th];

L. Lehner, R. C. Myers, E. Poisson, R. D. Sorkin, “ Gravitational action with null boundaries ”,
Phys. Rev. D 94 no. 8, (2016) 084046, arXiv:1609.00207 [hep-th];

P. Caputa, N. Kundu, M. Miyaji, T. Takayanagi, K. Watanabe, “ Anti-de Sitter Space from
Optimization of Path Integrals in Conformal Field Theories ”, Phys. Rev. Lett. 119 no. 7,
(2017) 071602, arXiv:1703.00456 [hep-th];

A. Belin, R. C. Myers, S.-M. Ruan, G. Sarosi, A. J. Speranza, “ Does Complexity Fqual
Anything? 7, Phys. Rev. Lett. 128 no. 8, (2022) 081602, arXiv:2111.02429 [hep-th];

S.-K. Jian, B. Swingle, Z.-Y. Xian, “ Complexity growth of operators in the SYK model and in
JT gravity ”, arXiv:2008.12274 [hep-th];

88


http://dx.doi.org/10.1016/0550-3213(82)90049-9
http://dx.doi.org/10.1016/0550-3213(82)90049-9
http://dx.doi.org/10.1023/a:1010256231517
http://dx.doi.org/10.1088/0264-9381/17/14/313
http://arxiv.org/abs/gr-qc/9906087
http://dx.doi.org/10.1103/physrevlett.78.783
http://dx.doi.org/10.1007/JHEP03(2020)069
http://arxiv.org/abs/1911.06800
http://dx.doi.org/10.1007/JHEP01(2016)084
http://dx.doi.org/10.1007/JHEP01(2016)084
http://arxiv.org/abs/1509.09291
https://doi.org/
https://doi.org/
http://dx.doi.org/10.1103/PhysRevLett.122.231302
http://dx.doi.org/10.1103/PhysRevLett.122.231302
http://arxiv.org/abs/1807.04422
http://dx.doi.org/10.1007/JHEP05(2019)003
http://arxiv.org/abs/1806.08376
http://dx.doi.org/10.1103/PhysRevD.94.084046
http://arxiv.org/abs/1609.00207
http://dx.doi.org/10.1103/PhysRevLett.119.071602
http://dx.doi.org/10.1103/PhysRevLett.119.071602
http://arxiv.org/abs/1703.00456
http://dx.doi.org/10.1103/PhysRevLett.128.081602
http://arxiv.org/abs/2111.02429
http://arxiv.org/abs/2008.12274

REFERENCES

[117] A. Bernamonti, F. Galli, J. Hernandez, R. C. Myers, S.-M. Ruan, J. Simén, “ First Law of
Holographic Complezity ", Phys. Rev. Lett. 123 no. 8, (2019) 081601, arXiv:1903.04511
[hep-thl];

[118] A. Bernamonti, F. Galli, J. Hernandez, R. C. Myers, S.-M. Ruan, J. Simon, “ Aspects of The
First Law of Complezity ”, J. Phys. A 53 (2020) 29, arXiv:2002.05779 [hep-th];

[119] A. R. Brown, L. Susskind, “Second law of quantum complexity ”, Phys. Rev. D 97 no. 8, (2018)
086015, arXiv:1701.01107 [hep-th];

[120] M. Banados, C. Teitelboim, J. Zanelli, “ The Black hole in three-dimensional space-time ”; Phys.
Rev. Lett. 69 (1992) 1849-1851, arXiv:hep-th/9204099 [hep-th].

[121] H. Jeffreys, “ On isotropic tensors”, Mathematical Proceedings of the Cambridge Philosophical
Society 73 no. 1, (1973) 173-176;

89


http://dx.doi.org/10.1103/PhysRevLett.123.081601
http://arxiv.org/abs/1903.04511
http://arxiv.org/abs/1903.04511
http://dx.doi.org/10.1088/1751-8121/ab8e66
http://arxiv.org/abs/2002.05779
http://dx.doi.org/10.1103/PhysRevD.97.086015
http://dx.doi.org/10.1103/PhysRevD.97.086015
http://arxiv.org/abs/1701.01107
http://dx.doi.org/10.1103/PhysRevLett.69.1849
http://dx.doi.org/10.1103/PhysRevLett.69.1849
http://arxiv.org/abs/hep-th/9204099
http://dx.doi.org/10.1017/S0305004100047587
http://dx.doi.org/10.1017/S0305004100047587

	 .2cm towebblue Chapter I :   Foundations
	Introduction
	The Holographic Principle
	AdS/CFT

	 .2cm towebblue Chapter II :   Momentum/Size Correspondence
	Momentum and Size
	Rindler momentum and fast scrambling
	Free fall in a near extremal throat
	Remarks

	 .2cm towebblue Chapter III :   Momentum / Complexity Correspondence
	Operator Complexity
	Momentum and Complexity of Thin Shells
	Thin-shell operators and states
	Proof of the PVC correspondence for thin shells
	Late time limit and the black hole interior

	Momentum and Complexity: A Proof
	PVC From The Momentum Constraint
	Obstructions

	Generalized Momentum and Complexity
	Generalized PVC from the Codazzi Equation
	An Explicit Check of the Generalized PVC

	Matter Infall and Complexity
	Newtonian limit
	Relativistic Matter

	Conclusions
	 .2cm toblack Appendices
	Late time accumulation of maximal slices
	One-sided PVC correspondence
	Rotating thin shell in AdS3
	Recovering the Exact PVC for Special Cases
	Asymptotic Boundary Conditions
	References

