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Résumé

La théorie des spins élevés est le domaine de la physique théorique au centre de cette
thése.

Outre une introduction présentant le contexte général de la naissance de cette théo-
rie, ce manuscrit de thése regroupe trois études récentes dans ce domaine. Une attention
particuliére sera portée aux symétries, aux courants et a I’holographie.

La premiére partie est axée sur les ingrédients permettant la construction de vertex
cubiques entre un champ scalaire de matiére et un champ de jauge de spin élevé dans un
espace-temps a courbure constante. La méthode de Noether indique comment construire
ces interactions a partir des courants conservés, dont on peut condenser 1’écriture en utili-
sant les fonctions génératrices. Le formalisme ambiant est le principal aspect de ce calcul
puisqu’il le facilite et en permet la simplification.

Dans un second temps, nous préparons les éléments pour un futur test de la correspon-
dance holographique & 'ordre cubique voire quartique en la constante de couplage. Plus
précisément, nous révisons en détail le calcul de certains propagateurs, ce qui nous meéne a
calculer les fonctions & trois points impliquant deux champs scalaires.

La derniére partie, bien que concernant toujours ’holographie des spins élevés, traite
de la physique non-relativiste. Les symétries et les courants d’un gaz parfait/unitaire de
Fermi y sont étudiés. En particulier, nous prouvons que l'algébre maximale de symétrie
de I’équation de Schrodinger est l'algébre de Weyl. Le lien entre physiques relativiste et
non-relativiste est obtenu grace a la réduction dimensionnelle de Bargmann. L’holographie
des spins élevés non relativistes est également évoquée.

Mots clés :  Symétries, méthode de Noether, courants conservés, espace-temps de cour-
bure constante, formalisme ambiant, holographie, correspondance AdS/CFT, spins élevés,
gaz parfait/unitaire de Fermi.
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Abstract

The higher spin theory is the field of theoretical physics at the center of this thesis.

Besides an introduction presenting the general context of the birth of this theory, this
PhD thesis consists of three recent studies in this area. Particular attention will be paid to
symmetries, currents and holography.

The first part focuses on the ingredients for the construction of cubic vertices between
a scalar matter field and a higher spin gauge field in a constant curvature space-time.
Noether’s method describes how to build the interactions from conserved currents, whose
writing may be condensed using generating functions. Ambient formalism is the main
aspect of this calculation since it allows simplification.

In a second step, we prepare the around for a future test of the holographic correspon-
dence in the cubic or quartic order in the coupling constant. More specifically, we review
in detail the computation of some propagators, which leads us to calculate three-point
functions involving two scalar fields.

The last part, although always on the higher spin holography, deals with non-relativistic
physics. Symmetries and currents of an ideal or unitary Fermi gas are studied. In particular,
we prove that the maximal symmetry algebra of Schréodinger equation is the Weyl alge-
bra. The link between relativistic and non-relativistic physics is obtained by Bargmann’s
dimensional reduction. The higher spin nonrelativistic holography is also discussed.

Keywords :  Symmetries, Noether method, conserved currents, spacetime of constant
curvature, ambient formalism, holography, AdS/CFT correspondence, higher spin, ideal/
unitary Fermi gas.
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NOTATIONS 17

Notations

- ® : champ scalaire dans ’espace ambiant

- ¢ : champ scalaire dans l'intérieur de ’espace-temps de courbure constante (par exemple
I'espace d’anti de Sitter AdS)

- ¢ : valeur du champ scalaire au bord d’AdS

- ¢ : champ scalaire dans la théorie conforme des champs au bord d’AdS

- X4 : coordonnées cartésiennes ambiantes d’un point d’AdS
- z* : coordonnées d’un point d’AdS

-x = (z,%) : coordonnées de Poincaré d’un point d’AdS

- X’ : coordonnées ambiantes d’un point du bord

-2’ : coordonnées d’un point du bord

- A : poids ou dimension conforme (symbole parfois utilisé pour le laplacien)
- n : dimensions d’AdS (pour la premiére partie de cette thése)
- d+1 : dimensions d’AdS (pour la seconde partie de cette these)

:= : égalité de définition

~ : égalité faible (égalité sur la couche de masse, c’est-a-dire utilisée dans une équation
qui est vérifiée seulement lorsque les équations de mouvement le sont également)

- ~ : équivalence entre deux termes & un terme radial prés

- <— : correspondance entre objets de I'espace-temps de courbure constante et objets de
I’espace ambiant

- L : densité lagrangienne ou lagrangien

- Lo : lagrangien initial libre (on dit aussi quadratique) dans le couplage champ de ma-
tiére/champ de jauge

- L4 : lagrangien du couplage minimal (cubique)

- Lo : lagrangien a l'ordre supérieur (quartique)

- SC : variation totale (des coordonnées et du champ) de paramétre infinitésimal ¢

- 0¢ : variation de parameétre infinitésimal ¢ soit des coordonnées d’espace-temps soit du
champ seulement

- O(z") : terme d’ordre n en x



18 NOTATIONS

- S™ : sphére & n dimensions

- M,, : variété (ou hypersurface) de dimension n de courbure constante
- (A)dS,, : espace-temps de (d’anti) de Sitter de dimension n

- FAdS, : espace d’anti de Sitter euclidien de dimension n

- H,, : espace hyperbolique de dimension n

- RP : espace plat ambiant & D = n + 1 dimensions

- Ré) : espace plat ambiant & D dimensions, privé de 'origine

-t : tenseur covariant d’ordre r dans 1’espace-temps de courbure constante
M1
- T4, . A, : tenseur covariant d’ordre r dans 1’espace ambiant
1 r
- T}, : tenseur énergie-impulsion

1
- (AB) : symétrie selon ces deux indices de poids 1; T(4p) = B (Tap + Tra)
1
- [AB] : antisymétrie selon ces deux indices de poids 1; Tisp = 5 (Tap — Ta)

- N : tenseur métrique plat de I'espace-temps de Minkowski

- guv  tenseur métrique de 'espace-temps de courbure constante

- G 4p : représentation du tenseur métrique courbe en espace ambiant

- nap : tenseur métrique plat de 'espace ambiant et de signature quelconque

- Pf : projecteur d’un vecteur de I’espace ambiant sur I’espace-temps de courbure constante

- 0y, : dérivée partielle dans I'espace-temps plat minkowskien

- 04 : dérivée partielle dans 'espace plat ambiant

- P0ud" = P Oud* — Oud 9*

-V, : dérivée covariante en espace-temps de courbure constante
- D4 : représentation de la dérivée covariante en espace ambiant

-V2 = g V..V, : opérateur d’Alembertien en espace-temps de courbure constante (Dans
le cas riemannien, il s’appelle opérateur de Laplace-Beltrami ou laplacien de connexion.)
-0, = 90,0, : opérateur d’Alembertien en espace-temps plat de Minkowski

-Op = n*Bd,40p : opérateur d’Alembertien en espace plat ambiant

- D% = GAB D4 Dp : représentation de opérateur d’Alembertien dans 'espace ambiant
- K, : correspondant en espace-temps de courbure constante de 'opérateur d’Alembertien
en espace ambiant

- j : courant dans AdS

- J : courant dans ’espace ambiant

- jort : courant dans la CFT bilinéaire en ¢

- jév : courant de Noether conservé

- ju : défini par jﬁv () = (¢ Jp @ courant conservé ne tenant pas compte du parameétre
constant (¢ de la transformation globale

= Jjn-py © cOurant symétrique

- jZ : courant trivial

- j(z,p) : fonction génératrice des courants dans l'espace-temps de Minkowski ou dans
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I’espace-temps de courbure constante
- J(X, P) : fonction génératrice des courants dans I'espace ambiant

- h : champ de jauge dans AdS

- H : champ de jauge dans ’ambiant

- hg : valeur du champ de jauge au bord d’AdS
- O(s) : opérateur conforme

- k : degré d’homogénéité

- R : rayon de courbure

- R : scalaire de Ricci

- Ry : tenseur de Ricci

- Ruvpo : tenseur de Riemann
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Chapitre 0

Introduction

Ce chapitre introductif décrira de maniére trés succinte le contexte dans lequel est
apparue ’étude des particules de spin élevé, et tentera de motiver les problémes étudiés
dans ma thése.

Deux précisions préalables semblent fondamentales. D’une part, la complexité de la
longue histoire et des résultats techniques dans ce domaine ne m’a pas permis d’approfondir
toutes les directions évoquées ci-dessous; seule une vue d’ensemble est proposée. D’autre
part, il m’est évidemment impossible de faire référence a I’ensemble de la vaste littérature
sur le domaine. Le domaine des spins élevés a connu un développement particuliérement
important lors de la derniére décennie. Seules quelques références a des revues, notes de
cours, ou articles originaux seront citées ici afin que le lecteur, qui souhaite explorer un
sujet précis, puisse avoir une base de documentation.

On distinguera les spins “bas” ou “usuels” qualifiant ceux inférieurs ou égaux a deux
tandis qu’on réservera le terme de spin “élevé” (malgré I'expression anglaise “higher spin”
signifiant littéralement spin supérieur”) pour les spins supérieurs ou égaux a 5/2.

0.1 Historique et introduction aux particules de spin élevé

Sur le plan expérimental, jusque dans les années 40, seuls ’électron, le proton, le neu-
tron, le muon, leurs antiparticules et le photon étaient observés. Puis le nombre de parti-
cules observées commenca a augmenter rapidement & partir des années 50. Cependant la
plupart de ces particules massives, dont certaines sont précisément de spin élevé, ne sont
pas élémentaires; ce sont des états excités appelés résonances hadroniques. La physique
des particules repose aujourd’hui sur le modéle standard basé sur le champ de jauge non
abélien de Yang-Mills [1]. Les particules élémentaires connues aujourd’hui sont les fermions
constituants de la matiére et possédant un spin 1/2 tels les leptons et les quarks, et les
bosons médiateurs des interactions ! électromagnétique (photon) et nucléaires (faible : bo-
sons Z, W* et forte : gluons). Une particule semblable au boson de Brout-Englert-Higgs
(particule de spin 0) semble avoir été découverte trés récemment au Large Hadron Collider

1. La théorie des perturbations permet de voir la force entre deux particules comme un échange d’autres
particules, appelées bosons médiateurs.
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(LHC) de Genéve [2,3]. D’un point de vue théorique, le graviton, particule de masse nulle
et de spin 2, serait médiateur de la gravité et représenterait les fluctuations de la métrique
autour d’un espace-temps de fond. Bien que l'on ait observé une pléthore de particules
composites massives de spin élevé (hadrons), & ce jour aucune particule élémentaire de
spin élevé (et méme de spin supérieur a un) n’a été observée.

Sur le plan théorique, la naissance des spins élevés remonte aux années 1930 grace a Ma-
jorana [4], dont les travaux passérent inapergus pendant plusieurs décennies avant d’étre
a Porigine de nombreuses avancées en physique théorique et en théorie des groupes [5].
La formulation de ’électromagnétisme par Maxwell en 1865 dans [6] est a l'origine de la
relativité restreinte d’Einstein en 1905 [7]. Trés tot aprés la naissance de la mécanique
quantique (explicitée en 1926 par Schrodinger sous la forme d’équation d’onde), les physi-
ciens ont souhaité écrire des équations d’ondes relativistes linéaires et décrivant donc des
particules libres. En effet, en théorie quantique des champs, on associe & chaque particule
une fonction d’onde (un champ) et la propagation d’une particule libre est décrite par
une équation d’onde. Au début, seules les équations d’ondes pour des particules de spin 0
(équation de Klein-Gordon décrivant un champ scalaire (massif ou non) date de 1926), de
spin 1/2 (massives nommeées fermions, comme 1’électron, écrites par Dirac en 1928 [8]), de
spin 1 (non massives comme le photon, représentées par I’équation de Maxwell et massives
décrites par 'équation de Proca en 1929-1930), de spin 2 (baptisées gravitons dont le com-
portement est décrit par I’équation de Pauli-Fierz en 1939 [9]) et de spin 3/2 (équation de
Rarita-Schwinger en 1941 [10]) étaient connues. Dirac en 1936 [11| puis Fierz et Pauli en
1939 19,12] (pour ne citer que les plus célébres) généralisérent ces équations et introduirent
les équations décrivant une particule massive de spin fixé et arbitraire.

Les travaux de Wigner liérent la physique théorique et la théorie des groupes. En
effet, dans un langage moderne, on peut dire qu’il montra que les régles de la mécanique
quantique et de la relativité restreinte impliquent la correspondance entre une particule
élémentaire libre et une représentation unitaire irréductible (notée UIR pour I’équivalent
anglais “unitary irreducible representation”) d’un groupe d’isométries de 1’espace-temps de
fond (supposé stationnaire). Le programme de Wigner se propose d’étudier et de classer
toutes les représentations unitaires irréductibles des groupes d’isométries des espaces-temps
a symétrie maximale. Wigner dans [13] s’intéressa au groupe de Poincaré (cas particulier,
dont l'invariance est celle de la relativité restreinte) dans l'espace-temps de Minkowski &
quatre dimensions. Puis vint le programme de Bargmann et Wigner qui vise & associer
a chaque UIR, une équation relativiste des champs [14]. Dans les années 60-70, Fronsdal
généralisa ces deux programmes aux espaces-temps de (anti) de Sitter & quatre dimensions
[17,18] et ce fut étendu aux dimensions supérieures par Ferrara et Fronsdal au début des
années 2000 [19].

Le programme de Fierz-Pauli, visant & écrire les lagrangiens correspondants aux équa-
tions d’onde, ne fut achevé qu’en 1974 par Singh et Hagen [20], pour les champs massifs
sur Minkowski en dimension quatre, tandis que la limite de masse nulle de leurs lagran-
giens fut ensuite étudiée par Fronsdal (pour les bosons) [21] et Fang et Fronsdal (pour les
fermions) [22| (dans le formalisme métrique).

Le programme de Fronsdal débuté en 1978 [21] vise & construire une théorie de jauge de
champs de spins élevés en interactions. Les conditions d’une théorie de jauge de spin élevé



CHAPITRE 0. Introduction 23

interactive cohérente est d’avoir une limite correcte pour les champs libres (c’est-a-dire
sans fantomes) et une symétrie de jauge de spin élevé non abélienne et non brisée.

Ces derniéres conditions sont difficiles & satisfaire puisque, dans la théorie de diffusion
(consistant & étudier la collision entre plusieurs particules incidentes), on doit préserver
I'unitarité (autrement dit la conservation de la somme des probabilités) de la matrice de
diffusion S (exprimant I’amplitude des processus). C’est particuliérement le cas lorsqu’on
étudie des particules de masse nulle en espace-temps plat. Par exemple, & partir du lagran-
gien libre en espace-temps de Minkowski, on souhaite coupler le champ scalaire de matiére
a4 un champ de jauge. Le couplage minimal & un champ de jauge vectoriel ne pose pas
de probléme et redonne ‘I’électrodynamique scalaire”. On peut aussi reconstruire la relati-
vité générale par la méthode de Noether a partir de I'introduction perturbative de vertex
d’interactions ordre par ordre en la perturbation de la métrique a partir de ’équation de
Pauli-Fierz en espace plat couplée au tenseur-énergie-impulsion d’un champ scalaire, méme
si ce processus est infini lorsqu’on remplace les dérivées usuelles par des dérivées covariantes
dans le lagrangien du champ scalaire [23]|. Quant aux spins élevés, différents théorémes “no-
go” suggérent qu’il n’existe pas de solutions a ce probléme en espace-temps plat (cf. [24]
et les références de cet article). Un obstacle est le probléme d’Aragone-Deser [25,26] car
I'invariance de jauge covariantisée ne reste pas nécessairement une symétrie du lagrangien
quadratique covariantisé.

Un autre exemple est le théoréme “no-go” de Coleman-Mandula démontré en 1967 [27], qui
contraint les symétries d’'une matrice S interactive. Un corollaire est qu’il n’existerait pas
de symétrie asymptotique de spin élevé.

Différentes solutions ont été envisagées afin de surmonter cette difficulté. D’une part il
semble nécessaire d’introduire une infinité de champs (en dimension quatre et plus). D’autre
part, le théoréme de Coleman-Mandula ne s’applique pas dans un fond vide avec une
constante cosmologique non nulle d’ott I'intérét des espaces-temps de (anti) de Sitter ou le
probléme d’Aragone-Deser peut étre contourné.

En effet, Fradkin et Vasiliev ont montré, en utilisant la procédure de Noether (qui est
une méthode perturbative) qu’a partir du lagrangien quadratique dans AdS, il existe des
interactions cohérentes de champ de jauge de spin élevé avec un champ de jauge de spin
deux représentant la gravité au premier ordre non trivial cubique [28]. Ceci est loin d’étre
trivial car il faut rajouter des termes pour compenser le probléme apparent d’Aragone-
Deser. Ils ont ensuite pu construire des couplages cubiques incluant tous les spins a la
fin des années 1980 [29]. Puis Vasiliev est parvenu a écrire des interactions cohérentes a
tous les ordres au niveau des équations du mouvement au début des années 1990 en (3-+1)
dimensions [30-32].

Une des motivations de départ pour I’étude des spins élevés est un des principaux
probléme actuel en physique théorique : quantifier la gravité. La théorie de Yang-Mills
(non abélienne de spin 1) est renormalisable car elle ne contient qu'une dérivée dans le
vertex cubique et sa constante de couplage est sans dimension. Ce n’est pas le cas de la
relativité générale, pouvant étre vue comme une théorie de jauge non-abélienne pour un
champ de masse nulle et de spin 2, qui contient deux dérivées dans le vertex cubique et
dont la constante de couplage n’est pas adimensionnée (constante de Newton). Pour un
spin élevé s, on peut montrer qu'un vertex cubique contient au moins s dérivées, le degré
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de divergence ultraviolette augmente donc avec le spin. Cependant lorsqu’on considére
la tour infinie de spin, la sommation pourrait amener a une convergence des corrections
quantiques. Ainsi Fradkin a spéculé dans [33] que la théorie de jauge des spins élevés
puisse étre une théorie quantique finie incluant un champ de masse nulle et de spin deux,
et donc en ce sens la gravité. De fagon similaire, la théorie des cordes fournit un exemple de
théorie finie de champs massifs de spin élevé avec des interactions cohérentes. La masse au
carré d’une particule y est proportionnelle a la tension de la corde et au spin. La théories
des cordes (massive) et celle de Vasiliev (sans masse) sont les seuls exemples connus de
théories cohérentes d’interaction de particules de spin élevé (en dimension supérieure ou
égale & quatre). La théorie des spins élevés de Vasiliev (non massive) pourrait donc étre
une limite quand la tension de la corde tend vers zéro. Autrement dit, une supposition est
que la masse des champs en théorie des cordes serait générée par une brisure spontanée de
la symétrie de jauge associée a un champ non massif de spin élevé. Mieux comprendre la
théorie des spins élevés permettrait ainsi de mieux analyser les propriétés quantiques de la
théorie des cordes et éventuellement de résoudre le probléme de la barriére de spin deux.

Une motivation plus récente provient de la correspondance holographique AdS/CFT
qui a été présentée en 1997-1998 par Gubser, Klebanov, Maldacena, Polyakov et Witten.
Elle lie une théorie quantique de la gravitation dans l'espace-temps d’anti de Sitter et
une théorie quantique ordinaire conforme & une dimension de moins. Un des exemples les
plus simples de dualité holographique seraient celui ol la théorie “gravitationnelle” serait
celle de Vasiliev dans AdS & quatre dimensions duale & une théorie conforme des champs
a trois dimensions : le modéle O(N) libre [34]| ou critique [35] (ou encore le modéle de
Gross-Neveu [36]).

Pour résumer, ’étude de la théorie des spins élevés fut initialement motivée par 1’ob-
servation de particules massives de spin élevé (méme si non élémentaires). Aujourd’hui la
question ouverte de la quantification de la gravité motive 'attention portée & cette théorie
de jauge de spin élevé qui pourrait contenir la gravitation. Qui plus est, la théorie de jauge
des spins élevés pourrait étre une limite de la théorie des cordes et sa meilleure compréhen-
sion permettrait ainsi de mieux appréhender cette derniére. Par ailleurs, le récent dévelop-
pement de ’holographie relance 'intérét pour les spins élevés qui est devenu un domaine
trés actif ou il existe de nombreux articles de revue. Derniérement de nombreuses contri-
butions au volume spécial "Higher Spin Theories and AdS/CFT" de J. Phys. A édité par
M. R. Gaberdiel and M. Vasiliev ont été publiées sur Arxiv [37-48]. Les comptes-rendus du
colloque Solvay [49] constitue un outil pédagogique utile pour se familiariser avec le sujet.
On peut également mentionner, par ordre chronologique, les compte-rendus de conférence,
notes de cours ou synthéses suivants [50-74| ainsi que le mémoire d’habilitation & diriger
les recherches (en francais) de X. Bekaert [75].

0.2 Plan

Ce manuscrit de thése se divise en trois parties : aprés une rapide introduction histo-
rique & la théorie des spins élevés, je développerai, a partir de mon premier article [76], les
interactions de spin élevé avec un champ scalaire de matiére dans un espace-temps de cour-
bure constante basées sur ’explicitation des fonctions génératrices des courants conservés
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et du couplage cubique. La seconde partie résume des travaux en cours de réalisation dans
I'objectif de faire un premier test quantitatif de la correspondance holographique AdS/CFT
a ordre quartique en la constante de couplage en dimension arbitraire. La derniére par-
tie, bien que concernant toujours I’holographie des spins élevés, est axée sur la physique
non-relativiste. Aprés avoir déterminé les symeétries et courants d’un gaz parfait /unitaire de
Fermi (issues du troisiéme article [77]), je rappelerai une proposition du dual gravitationnel
d’un gaz de Fermi unitaire |78§].

Des annexes viennent compléter ce manuscrit. Tout d’abord, les démonstrations des étapes
importantes des résultats présentés dans la premiére partie sont détaillées. Puis mon pre-
mier article associé & ces travaux est présenté. Enfin, mon troisiéme article développe les
idées et les démonstrations décrites dans la troisiéme partie.

La convention d’Einstein est utilisée ici et tout au long de ce rapport. On pose la célérité
de la lumiére ¢ égale a I'unité.






Premiére partie

Interactions de spin élevé avec un
champ scalaire de matiére dans un
espace-temps de courbure constante :
fonctions génératrices des courants
conservés et du couplage cubique
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La premiére partie de cette thése est basée sur mon premier article publié avec mon
directeur de thése Xavier Bekaert suite & mon stage de master 2 (voir annexe B).

Le principal objectif de ce travail a été I'obtention de 'infinité de courants conservés
(de rang arbitraire), bilinéaires en le champ scalaire libre, en espace-temps de courbure
constante a partir des travaux réalisés en espace-temps plat issus de ’étude des symétries
et du théoréme de Noether. L’écriture de ces courants se simplifie lors de I'utilisation de
fonctions génératrices et de ’extension des champs physiques dans un espace plat auxilliaire
(dit “ambiant”) ayant une dimension en plus. Elle s’effectue grace a deux outils :

e La construction ambiante, c’est-a-dire celle d’un dictionnaire entre les objets de 1'es-
pace plat ambiant et ceux de ’espace-temps de courbure constante, est le fondement de ce
calcul original.

e La méthode de Noether indique ensuite comment construire, dans une théorie de
jauge, les interactions (qui se traduisent par le terme de couplage minimal) véhiculées par
les bosons médiateurs (ici sans masse et de spin entier quelconque). Nous nous sommes
restreints & la construction des vertex d’interactions cubiques.

Le plan de la premiére partie est le suivant : le premier chapitre est une introduction
(parfois de niveau élémentaire destinée a des étudiants de master et permettant de fixer les
notations) a la méthode de Noether et a la formulation ambiante. Dans le second chapitre, la
quantification de Weyl est développée car elle est aussi bien utilisée en physique relativiste
que dans un contexte non-relativiste (c.f. la troisiéme partie). Enfin, le troisiéme chapitre
contient les résultats, & savoir les courants conservés, les calculs des symboles et les vertex
cubiques.
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Chapitre 1

Boite a outils

1.1 Méthode de Noether

Le premier théoréme de Noether permet, a partir des symétries continues de ’action,
de retrouver les grandeurs conservées associées. Bien aprés la publication de ce théoréme,
les physiciens élaborérent une méthode qui porte aussi son nom. Elle indique, par exemple,
comment construire, dans une théorie de jauge, des interactions véhiculées par des parti-
cules sans masse nommées bosons médiateurs. Elle donne également la possibilité de « jau-
ger », c’est-a-~dire de faire dépendre des coordonnées d’espace-temps, les symétries rigides
de la théorie étudiée. L’interaction entre une particule de matiére et le photon de spin 1
en est le plus simple exemple et donne lieu & I'électromagnétisme. Il est possible de faire
le méme travail pour la gravitation qui est représentée par la particule de spin 2 baptisée
graviton. Quant aux cas de spin supérieur a deux et appelés spins élevés, le probléme reste
encore ouvert mais ce domaine a, récemment, connu de nombreux développements. Lors-
qu’on étudie le cas du champ scalaire complexe libre, il apparait une infinité de courants
conservés de rang arbitraire dans 1’espace-temps de Minkowski. Pour plusieurs raisons que
nous évoquerons plus loin, un des objectifs de cette thése est de construire et d’expliciter
les courants conservés dans les espaces-temps de courbure constante (mais non nulle) tels
que la solution cosmologique dite de (anti) de Sitter.

1.1.1 Pré-requis

Le premier théoréme de Noether fournit une correspondance univoque entre symé-
tries continues globales et lois de conservation. Lorsqu’on parle de lois de conservation, on
pense souvent & la conservation de I’énergie au cours du temps. L’'invariance d’une théorie
par translation dans l'espace implique que la quantité de mouvement (ou impulsion) est
conservée et que la position spatiale n’est pas absolue. L’invariance par rotation dans l'es-
pace implique que le moment angulaire est conservé et que 'orientation spatiale n’est pas
absolue.

Le second théoréme de Noether fournit une correspondance entre symétries locales et
identités sur les équations du mouvement. A partir de maintenant, quand nous parlerons
du « théoréme de Noether », nous utiliserons le premier théoréme de Noether comme il est
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d’usage de le faire en physique.

Nous allons voir comment exprimer les symétries des champs scalaires en terme des
variations infinitésimales. Et avant d’énoncer le théoréme en question, nous préciserons les
différentes symétries (globale/locale, discréte/continue, finie/infinitésimale, interne/d’es-
pace-temps, de spin élevé etc.) ainsi que les transformations géométrique/cinématique/d’or-
dre élevé et les représentations “vraie”/projective/“multiplier”.

1.1.1.1 Formalisme lagrangien du champ scalaire : le lagrangien de Klein-
Gordon

Le champ scalaire

Pour introduire les notations et la terminologie, nous allons consacrer un paragraphe au
formalisme lagrangien du champ scalaire. Le champ scalaire (autrement dit une fonction
des coordonnées d’espace-temps!) ¢(z) décrit des particules de masse m de spin nul et
modeélise ici la matiére 2. Il posséde un nombre infini de degrés de liberté. De plus, s’il est
compleze, il représente une particule chargée. (Si le champ scalaire était réel, il n’y aurait
pas de distinction de charge entre particules et anti-particules.) Lorsqu’il est libre, le champ
(et action du champ) posséde un nombre infini de symétries.

Le lagrangien peut dépendre du champ, de ses dérivées et des coordonnées d’espace-temps
mais nous considérerons ici qu’il ne dépend pas explicitement de ces derniéres pour préserver
la symétrie sous les translations : £ = L(¢, 9,6, 0,0,¢, ...). L’évolution du champ scalaire
est représentée par le lagrangien de Klein-Gordon :

1 2
Lra(9, 0u0) = =5 10u0l — - |6l (L.1)

d|> = ¢*(x) ¢(x) est le module au carré du champ scalaire complexe ¢(z).
Sa propagation est décrite par 1’équation d’Fuler-Lagrange :

OLxe\ OLka
a“(@(@m)) 9o "

appelée, dans ce cas, équation de Klein-Gordon (1926) :

ou

(O, —m*) ¢ =0 (1.2)

ou O, = n"0,0, est I'opérateur d’Alembertien (on dit aussi opérateur d’onde) et on
utilise la convention — + - - - + pour la signature de la métrique plate de Minkowski.

Si une équation est vérifiée seulement lorque les équations du mouvement sont satisfaites
(c’est-a-dire que la condition de couche de masse p? = m? est vérifiée), on note cela par une
égalité faible symbolisée par = a la place de 'égalité stricte =. Les indices minuscules (grecs

1. On écrira I'argument du champ scalaire seulement lorsqu’il y aura une ambiguité.
2. En réalité, la matiére usuelle est représentée par des champs spinoriels.
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et latins) prennent les valeurs de 0 & n — 1. Afin de simplifier au maximum les formules,

nous nous servirons réguliérement de la notation suivante ¢0,¢* = ¢ 0,¢* — 0,¢ ¢*.

1.1.1.2 Variations finies et infinitésimales

Des coordonnées
Une transformation finie des coordonnées d’espace-temps s’exprime par :

gt = o = i) (1.3)

ou f est une fonction. Par la suite, nous utiliserons x pour désigner les composantes x*.
Une transformation infinitésimale et proche de I'identité est de la forme :

ot — 2" = ot + H(x) (1.4)

ot (M(z) est le paramétre infinitésimal (ou d’ordre 1) de la transformation. La wvariation
infinitésimale des coordonnées d’espace-temps peut ainsi étre définie par :

Seah = o — gt = (M(x). (1.5)

Lorsque le paramétre de la transformation (* ne dépend pas des coordonnées x c’est-a-
dire que la méme transformation est effectuée en tous les points de ’espace-temps, ce type
de symétrie est qualifiée de rigide, on dit aussi globale.

Il arrive parfois qu'une théorie admette une symétrie bien plus grande et autorise a effectuer
des transformations différentes en chaque point de I’espace-temps. Lorsque ce phénomeéne
se produit, la symétrie est dite de jauge, ou encore locale. Les symétries de jauge jouent un
role essentiel dans le “modéle standard” et les tentatives actuelles d’unification des différents
types d’interactions.

L’électromagnétisme est une théorie de jauge. En effet, les équations de Maxwell sont
inchangées lorsque le potentiel électrique V est modifié par la dérivée par rapport au
temps d’une fonction arbitraire V' — 0;f et que simultanément le potentiel vecteur A est
modifié par le gradient de cette méme fonction A+ V f- Si cette fonction f varie selon
le temps et ’espace, alors en chaque point on effectue bien une transformation différente.
Pourtant les équations restent inchangées et les conclusions physiques restent les mémes.
L’électromagnétisme est donc un exemple de théorie de jauge.

D’un champ
Appliquons ceci & un champ scalaire. Il est laissé invariant par une transformation
“totale” :

¢'(a') = ¢(z)
c’est-a~dire par une transformation du champ combinée a celle d’espace-temps. La variation
totale est définie par :

Sep(x) = ¢/(a') — plz) = 0. (1.6)

La variation du champ seul [79] correspond & un terme de transport :

ed(z) = ¢'(x) — d(z) = —("(2) () + OC?). (1.7)



34 CHAPITRE 1. Boite & outils

1.1.1.3 Différents types de symétries

En toute généralité, une symétrie peut toujours étre définie de fagon mathématique
comme une action de groupe sur un ensemble d’objets3. En géométrie, une figure posséde
une symétrie si elle est laissée invariante par une transformation géométrique. Deux figures
géomeétriques sont congruentes si on peut trouver une relation d’équivalence entre les deux.
Par exemple, les isométries sont des symétries conservant les produits scalaires (et donc
les angles et les distances). La symétrie en physique englobe une notion plus générale
qu’en géométrie classique : c’est une transformation (pas forcément géométrique) qui laisse
la forme des lois de la nature (par exemple Iintégrale d’action) invariante. Toute notion
de symétrie est fondée sur une hypothése selon laquelle certaines grandeurs ne sont pas
indépendantes de I’observateur.

Les principes d’invariance jouent un réle crucial dans la recherche des lois régissant des
phénomeénes nouvellement découverts puisqu’ils en restreignent sévérement le cadre, voire
les suggerent. D’autres types de charges (que la charge électrique) ont été découvertes dans
le monde des particules (leptoniques, baryoniques, etc.), qui obéissent aussi a des lois de
conservation strictes. Le théoréme de Noether peut s’appliquer a ’envers et permet de
relier ces lois de conservation a des principes de symétrie.

Symétrie globale/locale
Les symétries globales et locales ont été définies au paragraphe précédent.

Symétrie discréte/continue

Une symétrie est dite discréte lorsque I’ensemble des transformations correspondantes
constitue un groupe discret. Il existe des symétries de conjugaison de charge, de parité
et d’inversion du temps qui permettent d’exprimer le théoréeme CPT affirmant que toute
théorie quantique relativiste doit étre invariante sous le produit de ces trois symétries.

De fagon intuitive, une symétrie est continue lorsque les paramétres qui la déterminent

varient de fagon continue. C’est seulement dans ce cas que I'on peut parler de variations
infinitésimales. De maniére précise, une symétrie est dite continue lorsque ’ensemble des
transformations correspondantes constitue un groupe infini (c’est-a-dire un ensemble avec
un nombre infini d’éléments et une structure de groupe) : un groupe de Lie [80].
Les transformations rigides correspondent & un groupe de Lie de dimension finie au sens
ou il y a un nombre fini de paramétres, tandis que les symétries locales correspondent a
un groupe de Lie de dimension infinie car il faut se donner des fonctions arbitraires des
coordonnées de ’espace-temps.

Symétrie finie/infinitésimale
Les symétries finies et infinitésimales ont été définies au paragraphe précédent.

Groupe de symétrie abélien/non abélien

3. Le programme d’Erlangen est un programme de recherche mathématique publié par le mathématicien
allemand Felix Klein en 1872 qui a pour clef de votite, de fonder la géométrie sur les notions d’action de
groupe et d’invariant.
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Si deux transformations sont appliquées successivement et si le résultat ne dépend pas
de leur ordre, ces transformations commutent et le groupe de symétrie est abélien. C’est
le cas des translations d’espace mais pas celui des rotations (sauf dans R?). Inversement,
si deux transformations successives ne commutent pas, le groupe de symétrie est dit non
abélien.

Symétrie interne/d’espace-temps

Une symétrie interne (ou non géométrique) est une transformation d’un champ qui
n’affecte pas le systéme de coordonnées d’espace-temps, tout en changeant les variables
dynamiques du probléme étudié. On peut donc remarquer que les symétries internes et
les symétries d’espace-temps commutent. Une symétrie interne fait intervenir des degrés
de liberté internes, et n’a pas d’interprétation géométrique (au sens ou c’est défini ci-
dessous). La symétrie sous les tranformations de phase en est le plus simple exemple. La
transformation interne globale finie d’un champ scalaire est de la forme :

¢ ¢ =i (1.8)

ou le parameétre « est fini. La variation du champ par la transformation interne globale
mais infinitésimale est de la forme :

66 = —iCo (1.9)
ol le paramétre ¢ est infinitésimal. Elle est représentée par le groupe unitaire a une dimen-
sion U(1).

Les transformations infinitésimales d’espace-temps sur les coordonnées (ou géométriques)
comportent les translations (infinitésimales) :

ocp = —C" 09 (1.10)

dont le groupe est R™, et les transformations de Lorentz, dont le groupe est SO(n — 1,1)
(groupe unimodulaire et pseudo-orthogonal & n dimensions, de la forme SO(p, m) o p est
le nombre de plus et m le nombre de moins de la signature) :

Sad = —Ala¥ 9,0 (1.11)

ou la matrice Al appartient au groupe SO(n — 1, 1).

Cet ensemble (1.10) et (1.11) forme le groupe de Poincaré ou groupe de Lorentz inhomogéne
not¢ ISO(n — 1,1). On peut écrire la transformation (1.10) en utilisant les opérateurs
quantiques notés avec " :

d¢p = —iCHpuod (1.12)
ou p, = —10, est 'opérateur impulsion.
La transformation conforme |81] préserve les angles : cela regroupe les transformations

de Poincaré, la transformation d’échelle (non relativiste) : t — At et 2% — Aa® ou 2
est appelé exposant dynamique (incluant les dilatations (relativistes) : ¥ — Az#) et
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les transformations conformes spéciales, dont le groupe de transformations est isomorphe
a SO(n,2) pour n > 2. Elle est la propriété que possédent certains systémes de paraitre
semblables a eux-mémes en changeant I’échelle d’observation. En physique statistique, on
observe une grande classe de tels systémes au cours d’une transition de phase.

Si la théorie posséde l'invariance par reparamétrisation de 'espace-temps (ou difféo-
morphismes), alors il existe une symétrie d’espace-temps locale encore appelée covariance
générale comme en relativité générale.

Symétrie supérieure (ou de spin élevé)
Pour les théories de champs de spin élevé, il convient de considérer une généralisation des
transformations d’espace-temps faisant intervenir des dérivées supérieures. Par exemple,
comme 'ont fait Berends, Burgers et Van Dam [82], I’écriture (1.12) permet de généraliser
la transformation (1.10) en considérant des puissances supérieures des impulsions p :

Sep = —i P Brp Pt = (— i) TR G, 8,0 (1.13)

ou (H1Fr est un tenseur contravariant symétrique de rang r. Ces transformations infinité-
simales sont parfois appelées “hypertranslations”. Elles ne sont en général pas des symétries
rigides d'un champ de matiére en interaction. En revanche, par exemple, si ¢ est solution
de I'équation de Klein-Gordon alors ¢ + d¢¢ I'est aussi puisque

(O, — m?) ocdp = —i C* P P pp, (O — m?) ¢ = 0.

Il s’aveére que les hypertranslations sont méme des symétries de 'action de Klein-Gordon.
Pour calculer la variation de I’action 6.5, on réalise une succession d’intégrations par parties
et seuls des termes au bord restent, p étant un opérateur hermitien. Cette transformation
est donc bien une symétrie du lagrangien de Klein-Gordon (1.1) mais, en général, elle ne
sera plus symétrie du lagrangien d’interactions. Ce type de symétries faisant intervenir des
dérivées supérieures est appelée symétrie supérieure (ou de spin €élevé).

Transformation géométrique/cinématique/d’ordre élevé
Par définition, les transformations géométriques infinitésimales sont générées par des opé-
rateurs linéaires en les dérivées (cf. équations (1.10) et (1.11)) alors que les transforma-
tions cinématiques sont générées par des opérateurs différentiels d’ordre un (linéaires et
constants en les dérivées) comme par exemple le générateur des boosts galiléens K; (cf.
équation (8.10)). On vient de voir qu'il existe également des transformations d’ordre élevé
qui sont générées par des opérateurs différentiels d’ordre élevé (cf. (1.13)).

Représentation “vraie”/projective /“multiplier”
Une représentation projective (c’est-a-dire & une phase prés) d’un groupe (par exemple celui
de Galilée) peut étre équivalente a une “vraie” représentation (ou mieux, un représentation
“tout court”) d’un groupe plus grand (celui de Bargmann, cf. équation (8.4)). On trouve
également des représentations appelées en anglais “multiplier” qui sont elles & un facteur
prés (plus général qu'une phase, c’est le cas des transformations d’échelle du groupe de
Schrodinger).
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1.1.1.4 Représentation unitaire irréductible

Une particule élémentaire (libre) est identifiée & une représentation unitaire irréductible
(UIR) du groupe d’isométrie de I’espace-temps de fond (supposé stationnaire) autrement
dit le groupe de Poincaré pour ’espace-temps de Minkowski.

Toute UIR du groupe de Poincaré est induite par une représentation du petit groupe.
En relativité, on appelle petit groupe, le sous-groupe des transformations de Lorentz A“g
dont les éléments laissent invariant une quadri-impulsion p® donnée, autrement dit qui
préserve le quadrivecteur moment.

Le cas simple est le cas massif. Il existe alors un référentiel lorentzien dans lequel cette
particule est au repos. Dans ce cas le petit groupe est le groupe des rotations spatiales et
est caractérisé par le spin. Il est représenté par un tenseur complétement symétrique de
trace nulle.

Dans le cas d’une particule de masse nulle au repos p® = 0, le petit groupe est le groupe
de Lorentz homogéne Dans le cas d’une particule de masse nulle se déplacant a la vitesse
de la lumiére, le petit groupe est le groupe des rotations et translations du plan euclidien.

En dimension d’espace-temps n = 4, un réel non négatif (le carré de la masse) et un
nombre naturel (le double du spin ou de I'hélicité) suffisent & caractériser toutes les re-
présentations & nombre fini de composantes. Cependant, ceci n’est plus vrai en dimension
supérieure quelconque car le petit groupe (court, dans le cas de masse nulle) est en général
un groupe spécial orthogonal dont la théorie des représentations unitaires est plus riche
puisqu’elle inclut les champs a symétrie mixte. Par abus de language, pour les représenta-
tions & nombre fini de composantes il est d’usage d’appeler “spin” le nombre de colonnes du
diagramme de Young caractérisant la représentation (de dimension finie par hypothése) du
petit groupe (court). Bargmann et Wigner furent en réalité concernés dans [14] uniquement
par les représentations unitaires irréductibles du groupe de Poincaré & quatre dimensions
d’espace-temps. Dans ce cas, tous les bosons peuvent donc étre représentés par des champs
complétement symétriques.

Par convention, une particule de spin élevé entier sera, ici, toujours représentée par un
tenseur compléetement symétrique.

1.1.2 Théoréme de Noether

L’énoncé informel du théoréme de Noether établi en 1918 & Gottingen (Allemagne) est :

« Si un principe variationnel est laissé invariant par un groupe continu de symétries,
alors il existe au moins une quantité physique associée qui est conservée. »

La réciproque est vraie sous des hypothéses extrémement générales (par exemple en forma-
lisme hamiltonien) : si une quantité physique est conservée dans un phénomeéne physique,
alors il existe une symétrie dans les lois régissant ce phénomeéne.

De maniére plus précise, le lagrangien s’écrit :

L = L(¢, 0u0,0u,0u50, vy Oy --Op, @)
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et 8¢ est une symétrie infinitésimale de Uaction S = [ L si et seulement si
0L = 0Vl = S = /5C£ = terme au bord.

Une symétrie de l'action implique une symétrie des équations de mouvement, mais la
réciproque n’est pas vraie.

Si 0¢¢ est une symétrie infinitésimale de I’action, alors il existe un courant de Noether :

N

-1

() = (—1)! Oups e Do, (5) Doy By ( .
k=11

oL
(0uOy,...0p,_, @

)> —VE(1.14)

I
=)

qui est conservé lorsque les équations du mouvement sont satisfaites :

Bujts =~ 0 (1.15)

Il est important de remarquer que ¢ peut dénoter plusieurs champs ou un champ ayant
plusieurs indices : il y a donc une somme implicite sur les ¢. La correspondance générale
entre symeétries et courants de Noether pour une théorie locale est traité en détails dans [83].
Nous verrons un exemple avec le champ scalaire ¢ et son complexe conjugué ¢* dans le
paragraphe suivant.

De plus, nous noterons j, le courant conservé ne tenant pas compte du parameétre de
la transformation (% car il est fondamental dans I'utilisation de la méthode de Noether :

N (Ca) = Cadil (1.16)

ou l'indice a est quelconque. Pour une transformation de phase, cet indice disparait. Pour
une translation, il devient un indice grec et pour une transformation d’espace-temps d’ordre
r, il devient » — 1 indices grecs.

Pour chaque symétrie, une grandeur physique est conservée cependant il existe en un
sens une autre grandeur qui, elle, n’est pas observable. Par exemple, I'invariance par trans-
lation d’espace implique la conservation de I'impulsion. La position spatiale absolue n’est
par contre pas obervable. Pour la symétrie sous les translations temporelles, 1’énergie est
conservée mais on ne peut pas mesurer le temps absolu. L’invariance sous le changement de
phase d’une fonction d’onde implique la conservation de la charge électrique et fait obstacle
a la mesure de la phase absolue. Pour certaines symétries, les grandeurs conservées sont
moins pertinentes. En effet, pour I'invariance sous les boosts galiléens, la grandeur conser-
vée est la position initiale du centre de masse, ce qui n’apporte pas vraiment d’information
pertinente.

1.1.3 Exemples de courants de Noether

Le théoréme de Noether [79,84, 85| permet de calculer les courants conservés pour les
champs de spin 1 et 2.
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1.1.3.1 Courant de charge

La transformation globale : d¢¢ = —i( ¢ est une symétrie interne du lagrangien de
Klein-Gordon (1.1). La variation du lagrangien de Klein-Gordon est :

SeLxe = Lo — Lxo
1
= =S [0,0" 0 (0:0) + Du(0c8) 06 + 0u(6c0") D"(5c) + m>6" ¢
+m?5c¢* ¢ + m2c 5o .

Une approximation au premier ordre en ¢ permet d’écrire :

ScLre = =(iC0u0" "¢ + iCud* "¢ + m*i( ¢ ¢ — m?i ¢ p) + O(C?)

SN =

donc V* peut étre pris égal a zéro. Le courant de Noether devient alors :

N ILKkG . 0Lk
T =0 gngy T atangry ~
= IGO0 — JiC060"

Le courant de Noether s’exprime par :

1
N o= i (906" — 0.6 0Y)

2
1. .
_ 51@&% (1.17)
= C ju
1
ouj, = =1t qbgjqb* On vérifie facilement que jfLV et j, sont conservés sur la couche de

masse.

Lorsqu’on passe d’une symétrie rigide & une symétrie de jauge, des termes nouveaux
apparaissent et l'action de Klein-Gordon n’est plus invariante. Ceci est corrigé lorsqu’on
réalise le couplage minimal (paragraphe 1.1.4).

1.1.3.2 Tenseur énergie-impulsion

La transformation globale du champ d;¢ = — (* 0,,¢ est une symétrie du lagrangien de
Klein-Gordon (1.1). La transformation est induite par la translation dcz# = 2/* — zt =
(*. La variation infinitésimale nous donne :

ocLre = —%[a,@* M (8¢d) + 0u(6c9™) O + m* ¢* ¢+ m> 59" ]

1
= —5 (00,07 0"0p0 + (P 0,0,0" "¢ — m* (P $7 0y — m* (P Op” ) -
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Le théoréme de Noether nous permet d’en déduire :

VE = (1,08 — mP o).

Cela permet d’exprimer le courant de Noether :

oL = 0L
Ju = 0o 2(00) + ¢ 0 B0 d) +(p < 9") =V,
= CVT,UVcan

ot le tenseur énergie-impulsion “canonique” (ou tenseur de Noether) correspond au courant
Ju (avec a représentant ici v) :

oL
TNVcan = Wi;f) 8V¢ + (¢ e ¢*) - 7]/“’ cKG
1
= 5 [ (196" + m*|6]%) — 20,6 0,)¢"] (1.18)

ot (pv) indique une symétrie selon ces deux indices de poids 1. Le tenseur énergie-impulsion
représente la répartition de la masse, de 'énergie et des contraintes (pressions et cisaille-
ments) dans l'espace-temps. Il n’est pas automatiquement symétrique, ni invariant de
jauge [86].
Il est aisé de vérifier que le courant de Noether et donc le tenseur énergie-impulsion sont
CONServes.

Une autre maniére de définir le tenseur énergie-impulsion est d’améliorer le tenseur
canonique afin de le rendre symétrique (et de pouvoir le coupler a la métrique), c’est le
tenseur de Belinfante qui est plus naturel pour le couplage de spin 2.

En relativité générale (notée parfois RG) et donc en espace-temps de courbure constante,
il est défini de la maniére suivante [86] :

1 5Smatiére

T'U'VRG == W W . (1.19)
Il est conservé et symétrique :
TNVRG - TVNRG'

En espace-temps plat, il définit le tenseur de Rosenfeld T}, :

Tywr = Tuwrelg=n- (1.20)
Pour le champ scalaire, les tenseurs de Belinfante et de Rosenfeld sont égaux [79,88] ce qui
implique T}, =T,

HVR*

Vean

1.1.4 Meéthode de Noether

Dans I’application la plus simple de la méthode de Noether [79], il est important de
vérifier que 1’action libre du champ de matiére posséde une symétrie rigide. L’objectif est

4. appelé principe de jauge
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de « jauger » cette symétrie c’est-a-dire la faire dépendre des coordonnées. A l'aide du
premier théoréme de Noether, on calcule le courant conservé j* qui est lié au courant de
Noether ji; (d’ot le nom de cette méthode) a partir du champ de matiére ¢. Nous couplons
ensuite, et de maniére minimale, ce courant & un champ de jauge. Afin de compenser la
variation de jauge du terme de couplage minimal, il est souvent nécessaire d’induire des
transformations de jauge sur le champ de matiére et par conséquent des symétries rigides
du champ de matiére (comme cas particuliers). La boucle est donc bouclée (figure 1.1).

Symétrie rigide
{Translation globale) Premier théoréme
En particularisant

y B . ML
Svmétrie de jauge Courant conservé

L (Energie, impulsion. contraintes)
{Changement de coordonndes) \ E ! /

Int eractions minimales Couplage minimal

{Gravitation)

FIGURE 1.1 — Méthode de Noether (en bleu) et méthode réellement utilisée (en rouge) pour
le spin 2

Concrétement, on suppose qu’on posséde des champs de jauge de spin entier non nul,
représentant les bosons de jauge (sans masse), qu’on souhaite coupler a la matiére. Le
second théoréme de Noether permet de trouver I'expression du terme de couplage « mini-
mal » entre champs de matiére et de jauge dans le lagrangien & ’ordre le plus bas. Comme
le champ de jauge se transforme sous les symétries locales, il faut que le courant associé au
champ scalaire soit conservé sur la couche de masse du champ de matiére. Nous utilisons
a cette fin le courant conservé j* (lié au courant de Noether ji;). Des exemples précis sont
donnés dans les paragraphes suivants.

Le couplage minimal permet de réinterpréter la méthode de Noether comme une cor-
respondance entre courants conservés et symétries locales.

Notons que la méthode de Noether revue ici n’est qu'un cas trés particulier de la mé-
thode de Noether (voir par exemple [87] et références ci-dedans). Néanmoins nous n’utilise-
rons pas ces techniques générales dans cette thése car nous nous restreindrons au couplage
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minimal entre champs scalaires et champs de jauge de spin élevé.

1.1.4.1 Photon de spin 1

L’exemple le plus basique est le photon de spin 1 associé a la conservation de la charge
et aux transformations de jauge de I’électromagnétisme. Le but est de coupler un champ
de matiére, représenté par un champ scalaire complexe ¢ invariant sous la symétrie interne
globale (1.8), & un champ (de vecteurs) de jauge électromagnétique A,. Le lagrangien de
I’électromagnétisme est :

1 1
Loy = =7 Fu F" = —ZFQ (1.21)

ot le tenseur électromagnétique F,, = 20),4,) (ot [uv] indique une antisymétrie de poids
1 selon ces deux indices) est invariant sous les transformations locales 6¢ A, = 0,((z) et
le lagrangien Ly U'est donc aussi. Le lagrangien initial libre (quadratique) est :

Lo = Lem + Lk -

Sa variation par transformation de jauge d¢¢ = ie((z) ¢ est : 6¢Ly = —edu((x)j* ot e
est la constante de couplage. La méthode de Noether nous suggére de coupler le courant
de charge (1.17) du lagrangien de matiére au champ électromagnétique A,. On retrouve
I'idée que les équations de Maxwell avec sources sont issues du couplage entre le courant j#,
similaire & un courant électrique, et le champ électromagnétique. En observant la variation
du lagrangien modifié¢, une premiére correction (ici d’ordre un en la constante de couplage
e) est additionnée au lagrangien initial pour donner le lagrangien du couplage minimal
(cubique) :
L1 = Ly + eAMj“.

Ce dernier terme compense a 'ordre O(e) la variation du lagrangien £( sous une transfor-
mation de jauge : c’est le terme de couplage minimal.

A cause de la variation du courant de Noether sur la couche de masse, il génére une
variation du lagrangien d’ordre O(e?) : §:L1 = e*|¢|? A, 9"¢. 1l faut donc rajouter un
autre terme afin de compenser ces modifications. Le lagrangien quartique, dont la variation
sera nulle, est :

1
Ly =Ly — ¢ |of A7

ot |¢| correspond au module de ¢. On peut le réécrire de maniére compléte en utilisant la
dérivée covariante D¢ = (0, — ie A,) ¢ -

1 m? 1
= —-F2 - Z_|¢|? - Z|D,o?. 1.22
Lo 1 5 |9 2| el (1.22)

Nous venons de voir qu’il est nécessaire d’aller & I’ordre 2 en la constante de couplage
pour la théorie de spin 1 pour que la nouvelle modification ne contribue plus au courant de
Noether. Pour les théories de spin supérieur, il n’est donc pas évident de trouver le courant
conservé ! Mais cette méthode fonctionne aussi pour la théorie de Yang-Mills (spin 1 non
abélien) et s’arréte également a l'ordre 2.
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1.1.4.2 Graviton de spin 2

Le graviton de spin 2 est associé a la conservation de I’énergie-impulsion et aux difféo-
morphismes de la relativité générale.

Le lagrangien initial est la somme du lagrangien de Klein-Gordon (en espace-temps
plat) (1.1) et de celui d’Einstein-Hilbert :

Lo = Lxe + Lra

L’action de Klein-Gordon en espace courbe devient :

1

Swclé, gl = = [ 50" 0,00,6° + o) Visl 'z (123

et le lagrangien de Klein-Gordon en espace courbe correspond au lagrangien final (& tous
les ordres) :

1

Lo = =5 (9" 000" + m|0) Vo] (124

La métrique linéarisée s’écrit :

Guv = M + Iy (1.25)
Le lagrangien du couplage minimal est donc :

Ly = Lo + hu T

ot TH” est le tenseur de Rosenfeld (1.20).

La variation de la métrique représente les difféomorphismes infinitésimaux :

6(9;11/ = SCg,u,u (1.26)
ou £ est la dérivée de Lie. Sa linéarisation donne :
6Ch,uzx = SCU;W = a,ugl/ + &/Cp (1'27>

Ceci est la transformation de jauge d’un champ libre de spin 2 sans masse. L’invariance de
jauge de £; implique la conservation du tenseur de Rosenfeld 0, T g” ~ 0. Inversement,
la méthode de Noether aurait construit le lagrangien de couplage minimal £; a partir du
tenseur de Noether. Dans le cas de la gravitation, on voit qu’il est nécessaire d’aller a
I'ordre infini en la perturbation A, . Ce processus de reconstruction ne s’arréte donc pas :
il faut donc mieux connaitre le résultat final!

1.1.4.3 Bosons de spins élevés

Les bosons sans masse de spin élevé sont associés a la conservation de courants de rang
supérieur & deux et & des transformations de jauge encore mystérieuses. La variation du
champ tensoriel symétrique de rang r est :

Ochus.ur (®) = 70411 Gy (%) + O(R) (1.28)
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et généralise les deux cas précédents. Le terme d’interaction ou plus précisément le terme
de couplage minimal s’écrit :

L1 — Lo = hpyp jHrr.

L’invariance de jauge est garantie & l'ordre le plus bas si j est bien un courant conservé.
C’est pourquoi les courants conservés sont importants pour construire des interactions
entre matiére et bosons de jauge de spin élevé. Remarquons que dans la théorie des spins
élevés, il est également nécessaire d’aller & I'ordre infini, comme pour la théorie de spin 2.
Mais dans ce cas, le probléme reste ouvert au niveau d’un principe variationnel standard
car la géométrie sous-jacente aux spins élevés est encore mal connue (voir cependant la
proposition [91]). Au niveau des équations du mouvement, le probléme a été résolu par
Vasiliev autour de I'espace d’anti de Sitter (en (3+41) dimensions, il est parvenu a écrire
des interactions cohérentes a tous les ordres au début des années 1990) [30-32] ce qui
n’est pas le cas dans 'espace-temps plat de Minkowski et la réponse est probablement
inexistante.

1.2 Formulation ambiante

Le tableau 1.1 présente les notations des objets de I'espace plat ambiant et celles de
I’espace-temps de courbure constante.

Objet Espace ambiant ]ROD Espace-temps de courbure constante M,,
Coordonnées x4 xh
Scalaire o(X) o(z)
Conjugué dT(X) ¢*(x)
Vecteur Ta(X) tu(x)
Tenseur Ta,. 4, (X) Lo (T)
Metrique GAB ~ NAB Juv
Dérivée covariante Dy Vu
D’Alembertien courbe DE‘) = GABD,Dg Vi =g"V,V,
D’Alembertien ambiant | Op = n4B 9,05 X, =V? + % (h(h+n—-1)—r)

TABLE 1.1 — Dictionnaire Espace ambiant /Espace-temps de courbure constante

1.2.1 Plongement

L’objectif est de calculer les courants conservés dans un espace-temps de courbure
constante. Les espaces-temps de (anti) de Sitter peuvent étre réalisés comme des hyperbo-
loides plongés dans un espace plat auxiliaire (dit « ambiant ») avec une dimension de plus.
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Mais comme il est bien plus facile de faire des calculs en espace-temps plat, on cherche
a établir un dictionnaire (ou une correspondance), appelé construction ambiante entre les
quantités de I'espace-temps de courbure constante (A)dS,, et celles de I’espace plat ambiant
RP avec D = n + 1. Ceci autorise la construction explicite des courants conservés dans
les espaces-temps courbes de (anti) de Sitter a partir des courants connus dans ’espace de
Minkowski.

Pour prendre un exemple simple, la surface d’une sphére est difficile & se représenter
comme un espace courbe & deux dimensions mais on la visualise aisément comme un sous-
espace de l'espace plat ambiant a 3 dimensions.

Soient deux variétés M et N de dimensions m et n (n > m) respectivement avec
des systémes de coordonnées locales z# et X4. Une application lisse i : M — N de M
dans N telle que la matrice jacobienne 9X A/&c“ de la transformation est de rang m
est une tmmersion. Elle est un plongement si, de plus, I’application i est une injection.
Cela signifie qu'une immersion est localement fidéle (c’est-a-dire injective) tandis qu’un
plongement ’est globalement. Intuitivement, I'image d’une immersion peut avoir des auto-
intersections tandis que I'image (M) d’un plongement est une authentique variété, appelée
sous-variété de N'. Par abus de notation, on écrit M C N . La différence n — m s’appelle
la codimension de M dans N et les équations X4 = X A(x”) sont appelées les équations
paramétriques de la sous-variété.

Le théoréme de plongement (respectivement d’immersion) de Hassler Whitney (ma-
thématicien américain) de 1935 [89] dit que toute variété différentielle M de dimension
m € Ny peut étre plongée (respectivement immergée) de fagon lisse dans I'espace eucli-
dien R?™ (donc M est de codimension m) (respectivement dans R?>™~1). Bien qu’il soit
plus aisé de visualiser la géométrie d’une variété donnée a deux dimensions (m = 2) par
plongement dans R? (n = 3), ce n’est cependant pas toujours possible et il faut en général
recourir & R*(2m = 4) si l'on rejette les auto-intersections. La sphére ou le cylindre sont
représentables fidélement en trois dimensions, mais pas la bouteille de Klein, du moins
globalement.

Il est néanmoins possible que la codimension soit plus petite que m (par exemple, les
sphéres M = S™ plongées dans N' = R™*! sont de codimension 1). Quoi qu’il en soit, le
théoréme de Whitney implique que, quoique la notion de variété « abstraite » soit définie de
maniére intrinséque, il n’y a pas de perte de généralité a la concevoir « concrétement » par
plongement (malheureusement, de fagon générique, dans un espace de dimension double,
cependant pour l'exemple de I’espace projectif réel de dimension m = 2¥, la dimension de
I'espace euclidien 2m est optimale.)

Un probléme géométrique difficile est celui du plongement isométrique (qui « conserve
la longueur des courbes ») d’une variété (pseudo-) riemannienne de dimension m donnée
dans un espace plat pseudo-euclidien RPY muni d’une métrique diagonale de signature
(p,q) . Un théoréme de John Nash® (mathématicien et économiste américain) de 1956 [90]
lisse et isométrique dans un espace euclidien R™ de dimension n suffisamment grande. Ce
théoréme a été généralisé par Michael Gromov (mathématicien russe) en 1972 aux variétés

5. Le film “Un homme d’exception (titre original en anglais “A Beautiful Mind*) a été réalisé en 2001
par Ron Howard et est adapté de la biographie de Nash écrite par Sylvia Nasar.
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pseudo-riemanniennes. Lorsqu’elle est munie de la métrique plate, la bouteille de Klein
peut étre plongée isométriquement en 4D. Le tore peut étre plongé en 3D mais pas de
maniére isométrique ; il est nécessaire d’avoir une quatriéme dimension pour cela.

1.2.2 Espaces-temps de courbure constante

Paul Dirac affimait penser géométriquement. Abdus Salam raconte [92] que, & ce sujet, un jour Dirac
lui a posé la question suivante : « Comment te représentes-tu ’espace de de Sitter 7 » Salam répondit :
« J’écris la métrique et alors je réfléchis a propos de la structure des termes dans l’expression. » Dirac
conclut : « Précisément comme je l'imaginais. Tu penses algébriquement (...) Je me représente, sans effort,

I’espace de de Sitter comme une surface & quatre dimensions dans un espace a cinq dimensions. »

La construction par plongement de I’espace-temps de (anti) de Sitter [93,94] est sem-
blable & celle de la sphére S ¢ R3.

Les espaces-temps dS,, et AdS,, sont a symétrie mazrimale c’est-a-dire que leur groupe
d’isométries posséde dix parameétres comme le groupe de Poincaré ou encore que leur cour-
bure est (covariantement) constante.

De maniére plus générale, 1’espace-temps de courbure constante est ici une variété
M,, de dimension n et de signature quelconque, plus concrétement définie par X2 =
nap XA XB = + R? avec le rayon de courbure R # 0 et nap le tenseur métrique plat de
I’espace ambiant et de signature quelconque. On la plonge dans un espace plat ambiant
privé de l'origine R(’)j de dimension D = n+1: M,, C ROD . La région ROD contient M., et est
définie par X2 # 0. Ceci implique une bijection entre les deux systémes de coordonnées :

RY = ]0;+o0[xM, : X s (p 2t

ol X représente les coordonnées cartésiennes dans 1’espace plat ambiant Ré) ,p? = | X2 le
carré de la coordonnée radiale et x les coordonnées sur ’espace-temps de courbure constante
M,,. Cette bijection correspond & un changement de coordonnées entre les cartésiennes et
les « sphériques ».

L’inclusion, qui est infiniment dérivable,
it M, = RY ot — XA (M) (1.29)

fournit les équations paramétriques de M,, pour X? # 0. Elle définit un plongement de
M,, dans R (paragraphe 1.2.1).

L’inclusion n’est pas inversible. Pour le comprendre, on peut se placer sur une sphére S? de
rayon donné p = R. Pour définir un point, il suffit de connaitre deux angles. Inversement,
si 'on est dans I’espace ambiant R3, deux angles définissent une demi-droite et non pas un
point.

Le “pull-back” (signifiant “tirer en arriére”) associé¢ a l'inclusion (1.29) :

L Z(RPY = 2(My)
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est tel qu’a un tenseur dans l’espace ambiant correspond un tenseur dans ’espace-temps
de courbure constante :

oXA1(z) 9XA(2)
Oxm T Qxhkr

Taya(X) = g, () = Ta,..a,(X(2)) (1.30)

2(RY) = {Tay..4,(X)}

représente 1’espace des tenseurs covariants de rang r dans 1’espace ambiant Réj (on note le
champ scalaire dans ’espace ambiant ®) et

%(Mn) = {tulmﬂr (I)}

représente 1’espace des tenseurs covariants de rang r dans l’espace-temps de courbure
constante M,, (on note le champ scalaire dans l'espace-temps de courbure constante ¢).

Cela revient & garder seulement les composantes du vecteur de I’espace ambiant dépendant
des vecteurs de la base de coordonnées de l'espace tangent T, M, au point = & ’espace-
temps courbe M,,. Le « pull-back » n’est pas non plus inversible car tout vecteur de ’espace
ambiant centré sur l'origine et projeté orthogonalement sur une sphére (également centrée
sur l'origine) donne un vecteur nul.

1.2.3 Projection des tenseurs de ’espace plat ambiant sur ’espace-temps
de courbure constante

Nous venons de voir qu’il était possible de trouver le tenseur de l'espace-temps de
courbure constante & partir de son homologue dans I’espace ambiant en faisant un « pull-
back ». Il existe une autre méthode, équivalente mais plus intuitive (et que nous utiliserons
dans la suite de ce document) : la projection des coordonnées (dans laquelle on ignore la
composante radiale p) :

“T L RE 5 M, s X — (X)) (1.31)
et la projection orthogonale des vecteurs sur ’espace tangent :
— —
v — U\ -
Le procédé est le méme que lorsqu’on projette orthogonalement un vecteur de l'espace

ambiant R} sur une sphére S? centrée a 'origine. La méthode de la projection orthogonale
permet de calculer le produit scalaire de deux vecteurs ¥ et 0 :

- -
.wzv.w\\

<y

ol w_\)\ est le projeté orthogonal du vecteur @ sur la droite portant le vecteur ¥ c’est-a-dire

— o, -
que le vecteur w\\ est colinéaire au vecteur v.
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. ) — v.) ) )
Donc on en déduit I'expression du vecteur w \\ = ( — )v. On calcule le compémentaire :
U
— - —
w, = w-— w\\
L U
= W - ==7
v.U
v U\
.U
= Pw.
. . . . v .
On vient ainsi de construire le projecteur P = 1 — —.
.U

De maniére analogue, 'expression du projecteur d’un vecteur de l’espace ambiant donne
son équivalent dans l’espace-temps de courbure constante :

ol 55 est le delta de Kronecker. Nous allons voir dans le paragraphe suivant comment
utiliser ce projecteur.

1.2.4 Dictionnaire Espace plat ambiant /Espace-temps de courbure constante
La projection des vecteurs (et de maniére générale, des tenseurs) impose certaines

conditions.

1.2.4.1 Champs scalaires

Comme nous ’avons vu dans la table 1.1, ¢ représente le champ scalaire dans I'espace-
temps de courbure constante et ® le champ scalaire dans ’espace ambiant. Ils sont liés par
la définition suivante© :

o(a") == @(p,2")|p=r = ®(R, o) = (I)(XA)’XQ::I:RQ' (1.33)

Dans notre cas, il y a une correspondance entre les coordonnées cartésiennes X4 et les
« sphériques » (p, x*). Comme on souhaite faire abstraction de la coordonnée radiale p, les
fonctions ® doivent étre homogénes de degré h (pour des polyndmes, leurs termes sont des
monomes de degré identique h) :

d(AX) = M o(X). (1.34)

6. On fait ici un abus de notation : on écrit ®(X*) = ®(p, ") au lieu de ®(X*) = &’(p, 2*).
De plus, par convention, le signe supérieur se rattachera a l'espace de de Sitter tandis que le signe inférieur
sera lié a 'espace d’anti de Sitter.
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En effet, on prouve la bijection entre champs ¢ sur M,, et champs ® sur RP homogénes
de degré h en utilisant la définition (1.33) :

O(p, k) = @

)h o <R, iw) - (%)h B(XA) (1.35)
)

Il y a donc bien une bijection entre les deux champs scalaires ¢ et ® pour h fixé (mais
quelconque).

L’équation (1.34) implique que X40,® = h® et XA XB940p® = h(h — 1) ®. Enfin, il
est important de noter que pour la sphére, h est pris réel mais que pour les espaces-temps
dSy, h sera complexe. Notons que la construction ambiante est aussi appelée réduction
dimensionnelle radiale en réinterprétant la condition d’homogénéité [95].

1.2.4.2 Champs de vecteurs

Comme nous 'avons déja dit, projeter un vecteur radial de ’espace ambiant ]R% sur
une sphére S? centrée a lorigine donne un vecteur nul. Il n’est donc pas nécessaire de
s’en préoccuper. Pour généraliser cet exemple & un espace-temps quelconque de courbure
constante, on définit la tangentialité. Soit un scalaire :

X% = +R? = X, X4, (1.36)
on dérive par rapport a z* :
ox4
2 X4 o 0. (1.37)
) : 4 0XA
Les vecteurs de la base de coordonnées de 'espace tangent sont e;; = E Ces vecteurs
z

tangents (ou « gradients ») sont le long des surfaces M,, (« équipotentielles ») autrement
dit ils sont « transverses » (orthogonaux a la direction radiale X 4).

A Tlinverse, un vecteur V4(X) est radial (ou longitudinal) s’il est proportionnel a X4
c’est-a~dire V4(X) = X4 U(X) ou U(X) est un scalaire.
ox4
Si le vecteur V4 est radial, alors V,, = B V4 = 0 en vertu de (1.37).
x
Les termes Va(X) = Wa(X) + X4 U(X) seront notés par une relation d’équivalence
Va(X) ~ W4 (X) ce qui revient a supprimer tous les vecteurs radiaux car leur projection

sur ’espace tangent est nulle.
Une maniére d’éliminer les termes radiaux, plus précisément de choisir un représentant dans

la classe d’équivalence, est de projeter ou alors d’imposer la transversalité : si V4 est trans-
verse alors X4 V4(X) = 0 carsi Va(X) = X4U(X) alors X2U(X) =0 = U(X) =0
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car X2 # 0.

Comme les scalaires, les vecteurs doivent étre homogénes de degré h :
VAAX) = M Vy(X)
afin d’avoir une bijection entre champs de vecteurs v,(x) sur M, et champs de vecteurs

transverses V4 (X) de degré d’homogénéité fixé h.

1.2.4.3 Champs de tenseurs

Les tenseurs symétriques sont la généralisation du cas des vecteurs.

Les composantes des tenseurs doivent donc étre tangentes, et donc transverses :
XA Tp, 4,(X) =0 (1.38)
et ce pour tous les indices 4, ce qui revient a projeter (pour chaque indice) le tenseur sur

I’espace tangent.

Les tenseurs doivent étre homogénes de degré h qui peut dépendre du rang r :

Tay.a, AX) = N Ty, 4, (X). (1.39)

Nous sommes parvenu & une correspondance entre les tenseurs (vecteurs et bien sir
scalaires) de ’espace-temps de courbure constante et ceux de I'espace ambiant.

1.2.4.4 Tenseur métrique

Le tenseur métrique courbe (d’ordre 2, homogeéne, tangent) de 1’espace-temps de cour-
bure constante, noté g, est lié a son représentant dans I'espace ambiant, noté G 4p, par
la relation :

oX4 ox5B

y = —_— . 14
In OxHt  OxV Gas (1.40)

Ce que exprime symboliquement par :
g < GaB.

Il est possible d’exprimer le représentant du tenseur métrique courbe G4g dans l'espace
ambiant & partir du tenseur métrique plat de I’espace ambiant (et de signature quelconque)
NAB :

Gap = PiPEnen -
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On en déduit facilement I'expression explicite de Gap :

XaXp
X2

Gap = naB — (1.41)

c’est-a-dire Gap ~ nap en utilisant la relation d’équivalence définie dans le paragraphe
1.2.4.2. De plus, on remarque que GE = Pf.

Enfin, les relations (1.40) et (1.41) impliquent :

oxA oxbB

Quu:WWnAB-

1.2.4.5 Dérivées covariantes

On cherche 'opérateur D4 dans I'espace ambiant correspondant a la dérivée covariante
de I'espace-temps de courbure constante V,, :

Vy <— Dy. (1.42)

Nous allons maintenant construire le représentant D4 de la dérivée covariante V,, a partir
de la dérivée partielle 04 de l'espace ambiant.

D’un scalaire

Pour un scalaire @, les dérivées covariante et partielle sont égales :

Dpd = 049. (1.43)
D’un vecteur

Pour représenter la dérivée covariante d’un vecteur v,, on projette son représentant
ambiant V4, on transporte parallélement le vecteur dans I’espace ambiant (donc avec la
dérivée partielle) puis on re-projette :

D=PodoP.
De maniére explicite, cela donne :
DaVp == PS PE 8c(PE Vi) . (1.44)

Etant donné le nombre de projecteurs, la difficulté est de faire le « produit » de plusieurs
dérivées covariantes.

La dérivée covariante V, est liée a la connezion de Levi-Civita (une connexion affine,
métrique, sans torsion et dont ses composantes sont les symboles de Christoffel). Comme
cette derniére est unique, il suffit de montrer que la dérivée D4 vérifie les trois axiomes
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suivants (vérifiés également par V) pour démontrer la formule (1.44) de la dérivée cova-
riante :

- la reégle de Leibniz ou dérivation : Dg(P1 Py) = Dy(P1). P2 + D1.Da(P2)

- la préservation du tenseur métrique : D4 Gpc = 0

- la nullité de la torsion : [Da, Dp]® = 0

D’un tenseur

On définit la notation suivante permettant de simplifier ’écriture des formules :
B .

Pour trouver la dérivée covariante d’un tenseur, on procéde de la méme fagon que pour un
vecteur, mais en projetant pour chaque indice et en utilisant (1.45) :

DATBL..BT = ,Pg PBDll...PB: 80((PT)D1WDT)

Il est également possible d’exprimer la dérivée covariante de I’espace courbe V, en fonc-
tion de la dérivée partielle de '’espace courbe 9,, comme nous le verrons dans le paragraphe
1.2.5.4.

1.2.4.6 Opérateur d’Alembertien

A partir de (1.42) , il est bon de remarquer la relation d’équivalence entre I'opérateur
d’Alembertien de I'espace-temps de courbure constante V2 = g V.V, et son représen-
tant en espace ambiant DIQ:) = GABD,Dg :

VZ

2
n — Dp.

De plus, il est utile pour la suite de chercher la relation d’équivalence entre I'opérateur
d’Alembertien ” en espace ambiant Op = n% 94 9 et son correspondant en espace-temps
de courbure constante X,, (démonstration en annexe A.1). Pour les scalaires, I’équivalence
est :

V2 ¢+ DHO = [DD)(Qh(h+D2)]<I> (1.46)
et également
1
Op®+— K, ¢ = [V%imh(h—kn—l)}qﬁ. (1.47)

L’opérateur « d’Alembertien » appliqué aux tenseurs symétriques est :

1
Op Tay.a, — Rptyy p = [vi + Yol (h(h +n —1) - r)} tun (1.48)

7. Lorsqu’on travaillera en espace-temps quelconque, la dimension de ’espace-temps dans laquelle on
exprime 'opérateur sera notée en indice.
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1.2.4.7 Synthése

Nous venons de détailler la transformation des objets utiles pour la suite. Une synthése
est présentée dans la table 1.2.

Objet Espace ambiant Espace-temps de courbure constante
Tenseur métrique Gap ~ NAB Guv
Dérivée covariante Da Vi
D’Alembertien « courbe » DIQD = GABD,Dg V% =g"V,V,
D’Alembertien « ambiant » | Op = n*8 9,05 | N, = V2 + % (h(h +n —1)—r)

TABLE 1.2 — Dictionnaire Espace ambiant/Espace-temps de courbure constante

Ces transformations demandent des conditions strictes. Il faut donc veiller a ce qu’elles
soient bien toutes vérifiées lorqu’on fait des calculs.

1.2.5 Quelques applications

Pour illustrer ces outils, nous allons détailler quelques exemples.

1.2.5.1 Harmoniques sphériques S"

Les harmoniques sphériques sont la restriction sur la sphére S™ de polyndémes harmo-
niques et homogénes (de degré [) sur RP. L’opérateur d’Alembertien « ambiant » corres-
pondant, dans le cas euclidien, a I'opérateur laplacien (appelé aussi opérateur de Laplace)
Op = Ap est nul et est équivalent & Kgn :

1
Ken Y] = Agn+ﬁl(l+n—1) Y, =0 (1.49)
1

avec Yy =) ¢ Y™ et Agn = Vén. Cette équation ressemble donc a I’équation de Klein-
m

Gordon (1.2).
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Comme nous venons de le voir, les harmoniques sphériques sont faciles a définir mais
compliquées a écrire. Dans le paragraphe suivant, nous allons décrire un cas similaire dans
un autre espace.

1.2.5.2 Champ scalaire dans (A)dS,
Comme pour les harmoniques sphériques, on souhaite calculer V% 4) danﬁ pour ’espace-

temps (A)dS,, en utilisant (1.46). Cependant, il est impératif d’imposer une condition sur
la partie réelle du degré d’homogénéité [96] :

2—-D D 1—n
h) = =1- == . 1.51
R(h) = = > = — (151)
La partie imaginaire du degré d’homogénéité h est (h) = u.
Dans l'espace-temps de de Sitter, 'opérateur d’Alembertien est donc :
) 1 n—1\*

Pour l'espace-temps d’anti de Sitter, il « suffit » de transformer p en i u. En effet, le signe
de p? est important pour I'unitarité [97] (car il faut que I'espace des solutions de I’équation

d’onde soit un espace de Hilbert) :
1 ((n-1)
2 2
Vaas, + 7z (( 5 > - )] - (1.53)
n—1\?

Le terme 5 est un terme purement géométrique alors que ;ﬂ est le paramétre

DDCI’<—> @Adsn¢ =

sans unité ressemblant & la masse. Les conditions d’homogénéité et de transversalité des
courants contraindront également le terme de masse & cette valeur.

De fagon générale, un champ scalaire « massif » ¢ correspondant & un champ scalaire
harmonique ® obéit a :

1 (n—1\2 2
Xnp = V?A)dsn(ﬁ + 72 ( 5 ) ¢ — ﬁ¢- (1.54)

Lorsque le rayon de courbure R tend vers l'infini, les espaces-temps de (anti) de Sitter
ressemblent & celui de Minkowski. Si on prend la limite de (1.54) ou u — oo et R — oo
avec u/R = m fixé, alors on obtient I’équation d’onde (1.2) d'un champ scalaire de masse
m.
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1.2.5.3 Commutateur de dérivées covariantes : un exemple détaillé

Ce qui suit est un exemple de calcul employant la méthode utilisée dans toute la suite
de ce document. On calcule D4 Dp® :

1 1
D[ADB]@ = B [DADB<I> — DBDA@] = 3 [DA,DB]CI). (1.55)
Tout d’abord :
OuDp® = O (pg]a(@)
Xm;X©
c B]
XB}
h XiaXp h
= 8[1483]@ — FT][AB]@-}- 2h 7(X2)2 (b — FX[B((?A}@

Le premier terme est nul car il est antisymétrique alors que les dérivées partielles com-
mutent. Le second est nul également car la métrique plate doit étre symétrique. Le troisiéme
est nul pour une raison similaire. Il reste donc :

OuDp® = - %X[BaA]CD.
Enfin, on projette ce terme proportionnel & X ; il va donc donner zéro. Le commutateur
est donc nul. Il faut faire attention. Dans tous les cas, les termes longitudinaux ne sont
négligeables qu’a la derniére étape du développement. De plus, on parle de termes longi-
tudinaux seulement lorsqu’ils sont proportionnels au vecteur radial X4 (ayant un indice
libre, jamais un indice contracté).

1.2.5.4 Dérivée covariante d’un vecteur en coordonnées sphériques

Afin d’avoir un exemple concret, ’objectif de cette sous-section est de calculer la dérivée
covariante d’un vecteur en coordonnées sphériques en utilisant les définitions ci-dessus [98]
puis en vérifiant & ’aide de la connexion de Levi-Civita.

En trois dimensions, les coordonnées cartésiennes en fonction des coordonnées sphé-
riques sont :

X =rsinf cosyp
OM = (XY =< Y =rsinfsng
Z =1 cosb

= Xy + Y1y + 215, (1.56)
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L’intervalle d’espace-temps est :

dsgg = dr? + r2do* + r? Sin20d<p2.

La métrique en coordonnées sphériques (p, z#) = (r, 0, ¢) est :

1 0 0
Juv = 0 72 0
0 0 r2sin%6

Les vecteurs tangents orthogonaux sont définis par :

/ —
— 00OM
o= or
.
<8XA>_80M_ . 90M
w ) weoo €0 =
ox Ox a0,
—_ 00OM
Y 8g0
Les vecteurs orthonormés sont définis par :
- _
1, = 97"7“1/2 6—7"):?7")
- -1/2 — 1 —
log= gpp'™ eo = €
L= g’ eg= —— o
v Jee ST ing 4

Les vecteurs orthonormés de la base de coordonnées sphériques en fonction des vecteurs de
la base de coordonnées cartésiennes sont donc :
1, = sinf cosyp 1X + sin @ sin ly + cos 6 1Z

lg = cosb cosgo 1X + cosf s1ng0 1y — sind 1Z
-

l, = —singp 1X + cos ly .

On inverse cette base :

— — — —
lx = sinf cosy 1 + cosf cos 19 —sing 1,
— —
ly = sinf smgp 1 +cost9 sin ¢ 19 +cosp 1,
-

1= cos# 1 — sinf 19
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Soit un vecteur
o — — —
V=Vxlx +W ly +Vz 1z=0" & +0’ e +1° e, ,

— o
si V est transverse (V. OM = 0), alors v" = 0.

On exprime la dérivée covariante d’un vecteur en coordonnées sur la sphére (lettres grecques)
v, & partir du vecteur correspondant en coordonnées cartésiennes (lettres latines) V4 grace
a (1.30) et (1.44). Comme le vecteur V4 est transverse, il n’est pas nécessaire de le projeter
et la composante radiale v, est nulle :

—

v, = €,V
_oxA
I
Les composantes de la dérivée covariante sur la sphére sont :
0X4 0xP
V# Vy = Okt 781‘” DA VB
00X B9
" 9zv Oxr P
o (0XP 9*X5B
= Vi B
ozt \ OxV OxHox”
vy, 0?XB
= — Vi. 1.57
ozt Qxrdzv (157)
On en déduit grace a (1.57) que :
VQUQ = 89119
Vv, = 0pvp, — 1 cosfVy
Vovg = Oypvg — 1 cost) singp Vx — rcost cosp Vy
Vov, = Ogv, — 1 cos sinp Vx — r cost cosp Vy

ou lon a utilise X Vy + YV + ZVy = 0 car X4V, = 0.

Il faut maintenant exprimer Vx, Vy et Vz en fonction de v, vg et v,. Par exemple, calculons
Vv, -

Vv, = 0Opv, — 1 coslVy
— —
= Oyv, —1rcosl V .1z
H

— —
= Oyv, — 1 cosl V .<cos€ 1, — siné 19)

= Opvy — T cos? O v, + cos @ sin vy
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N L —
carvg = V.eg=1V. 1g.
Or v, = 0, donc :
Vv, = Opv, + cost sinf g .

Les dérivées covariantes deviennent finalement :

Vovg = Ogug

Vov, = 0,v, + cosf sinf vy
VQD,UG = asD’U@ — @Ugo
Veup = (901}4)0 - mv@ .

On retrouve ces résultats en calculant la dérivée covariante d’un vecteur a partir de la
connexion de Levi-Civita. Les symboles de Christoffel sont définis par

1
]‘_‘lljp = 79H>\ (8/)9)\1/ + aug)\p - a)\gpz/)

2
c’est-a-dire :
_ .2
F%@ = —7r sin 9
FWP = — cosf sinf
rv, = 1 .
¢0 tan 6

Il est nécessaire d’utiliser la formule :
o
Vo, = 0uvy — Fuu Ve -

Voici un exemple :
Vov, = 00, + sinf cos vy .

On retrouve bien la méme expression !

1.2.5.5 Calcul du commutateur des dérivées covariantes d’un vecteur

On souhaite calculer V[, V,;V, en utilisant la définition du tenseur de Riemann et de
maniére explicite.

Si la torsion est nulle, alors
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Or pour un espace-temps de courbure constante, le tenseur de Riemann vaut :

2
Rp,upo ==+ ﬁ Yolu Gv)o -

En effet, le calcul explicite dans I'espace ambiant (démonstration en annexe A.2) nous
donne :

Vi VulVy = £2 5 g, Vi (1.58)
Donc le tenseur de Ricci vaut :
Rup = 9" Rupo
= i% Gup
et le scalaire de Ricci
R = ¢ Ry
n(n —1)

= 4 2
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Chapitre 2

Quantification de Weyl

Ce chapitre est la traduction littérale de mon troisiéme article se trouvant dans le cha-
pitre 9. En effet, ce formalisme mathématique est utilisé aussi bien en physique relativiste
que dans un contexte non-relativiste pour représenter les opérateurs différentiels quelqu’ils
soient (méme ceux ayant une dépendance temporelle) comme des “polyndémes” usuels mais
dont les variables ne commutent pas dans la mesure ot ’espace de ces polyndémes est muni
d’un produit (dit “étoil¢”) non-commutatif.

Le formalisme de Weyl-Wigner-Gronewold-Moyal [99-103| propose une formulation
“classique” de la mécanique quantique en utilisant des fonctions de ’espace des phases
comme observables et la fonction de Wigner comme un analogue de la fonction de densité
de Liouville.

2.1 Algébres d’Heisenberg et de Weyl

La mécanique classique est basée sur ’algébre commutative des observables classiques,
c’est-a-dire des fonctions réelles f(x,p) sur I'espace des phases T*R™ = R™ x R™, doté¢ du
crochet de Poisson canonique

f.otps = 2L 09 07 99 (2.1)

92t Op;  Op; Oxt

La mécanique quantique est basée sur l'algébre non-commutative associative des obser-
vables quantiques, c’est-a-dire les opérateurs hermitiens F(X, 15) sur ’espace de Hilbert
L?(R™) des fonctions de carré intégrable. L algébre de Weyl A, est I’algébre associative des
observables quantiques qui sont des polyndémes en les positions et les moments. L’algebre
d’Heisenberg b, est 'algébre de Lie des observables quantiques qui sont des polynoémes de
degré un en les positions et les moments, il est engendré par Xt ]5j et un élément central
k1 obéissant & des relations de commutation canoniques

(X', Pj| = ihéid. (2.2)

En termes plus abstraits, 'algébre de Weyl A,, est 1'algébre enveloppante universelle
U(hy,,) de lalgebre de Heisenberg. Le lemme de Schur implique que la valeur propre réelle
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(que nous désignons par le méme symbole /) de I'élément central étiquette les représen-
tations unitaires irréductibles (notées UIR pour I'expression anglaise “unitarity irreducible
represantations”) de l'algébre de Heisenberg. Le théoréme de Stone et von Neumann af-
firme que, & une équivalence prés, il y a une UIR unique de ’algébre de Heisenberg b,, pour
chaque valeur réelle de A # 0. En outre, la représentation correspondante de A, est fidéle,
ce qui légitime I’équivalence entre les définitions abstraites et les réalisations concrétes des
algébres de Heisenberg et Weyl !

2.2 Symboles de Weyl

L’ application de Weyl®> W : f(x,p) — F(X, 15) associe a toute fonction f un opérateur
ordonné de Weyl (c’est-a-dire symétriquement) F' défini par
A 1

Po= kdv F(k,v)eh (kX =0 P) 2.
i [ kv Flev)ed , (2.3)

ot F est la transformée de Fourier® de f sur I’espace de phase complet (en d’autres termes,
sur I’espace des positions et des impulsions)

1 i (b2t — i,
F(k,v) := W/dxdp f(x,p)e n (ki 28 (2.4)

La fonction f(x, p) est appelé le symbole de Weyl de 'opérateur F(X, ].3), qui n’a pas besoin
d’étre sous la forme symétriquement ordonnée. Une belle propriété de ’application de Weyl
(2.3), est qu’elle relie la conjugaison complexe * des symboles a la conjugaison hermitienne
* des opérateurs, W : f*(x,p) — F (X, 15) Par conséquent, l'image d’une fonction réelle
(une observable classique) est un opérateur hermitien (une observable quantique). L’inverse
WL F(X,P) = f(x,p) de I'application de Weyl est appelé 'application de Wigner.
Les relations de commutation canoniques (2.2) entre les opérateurs de position et d’im-
pulsion et la formule de Baker-Campbell-Hausdorff impliquent deux égalités trés utiles :

e%(k’le—’UZPZ) — e—%h’vipi e%kle e—y%vipi 25
— e VP Yo ki X? (2.6)

ou { , } désigne anticommutateur.

D’une part, la combinaison de (2.3) avec (2.6) implique qu’une fagon de réaliser expli-
citement l'application de Weyl se fait par un “ordre anticommutateur” pour la moitié des
variables en regard de leurs conjugués. Par exemple, I'image d’un symbole de Weyl qui est

1. Pour i = 0, les UIR de b,, se réduisent aux UIR unidimensionnelles de ’algébre commutative R™ x
R™ marquées par les valeurs propres x et p des opérateurs X et P. Evidemment, quand A = 0 Dalgébre
A, est réalisée comme algébre commutative des polyndémes f(x,p) sur 'espace des phases.

2. A ne pas confondre avec la transformation de Weyl au sens de la symétrie (voir le chapitre 3).

3. L’application de Weyl est bien définie pour une classe beaucoup plus grande que les fonctions de
carré intégrable, y compris par exemple les fonctions polynomiales, dont les transformées de Fourier, sont
des distributions.



CHAPITRE 2. Quantification de Weyl 63

une série formelle en les moments,

fop) = X

r>0
= 100+ F P+ 5 Py + OGP, 27)

peut étre écrit comme

FEP) = YL (o (fnR) P Py

@07“!27“
= F(X)+§(F1(X)P,~+PZF1( ))
+Z(F”( )Pin—i-QPZ-F”(X)Pj—|—PinF”(X)) + ... (2.8)

D’autre part, I’équation (2.5) implique qu’une maniére d’effectuer explicitement 1’ap-
plication de Wigner est par I'intermédiaire d’une transformation de Fourier du noyau inté-
gral translaté de 'opérateur. Le noyau intégral de I'opérateur F est I’élément de matrice
(x| F'| x') apparaissant dans la représentation de position de I’état F' | 1), comme suit

(x| F| ) = /dx’<xrﬁwx’>w<x'>, (2.9)

ou la fonction d’onde dans l'espace des positions est (x’) := (x' | ¢) et la relation
de complétude [dx’ | x') (x’ |= 1 a été insérée. La définition (2.3) et la relation (2.5)
permettent d’écrire le noyau intégral d’un opérateur en termes du symbole de Weyl,

~ ’ . dp X + X/ 4 (zifx’i)pi
(x| P1x) = [ G r (555 ) o . (210)

A Tlinverse, cela donne une forme explicite de I’application de Wigner
foxp) = [da(x-a/2| F|x+a/2) ciin, (211)
comme suit a partir de I’expression (2.10). Cela montre qu’en effet, les applications de Weyl

et de Wigner sont des bijections entre les espaces vectoriels des observables classiques et
quantiques.

2.3 Produit de Moyal

Le produit de Moyal x est le “pull-back” du produit de composition dans I'algébre des
observables quantiques en rapport a 'application de Weyl W, de telle sorte que

W[f(x,p) * g(x,p)] = F(X,P) G(X,P). (2.12)
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L’application de Wigner (2.11) permet de vérifier que I'expression explicite suivante du
produit de Moyal satisfait la définition (2.12),

Jw[2(22 T2,

2 \ 0zt Op; Op; Ox'

fxg

= f9+ DT gl + O(R), (213)

ou les fleches indiquent sur quel facteur les dérivés doivent agir.

Soit H un opérateur hamiltonien avec le symbole de Weyl correspondant h(x, p) . Dans
le formalisme de Heisenberg, 1’évolution dans le temps d’une observable quantique F' (qui
ne dépend pas explicitement du temps) est régie par I’équation différentielle

[F, H] (2.14)

ou de fagon équivalente en termes de symboles

a1 .,
%_%[f,h] (2.15)

ou [ ¥ | désigne le commutateur de Moyal défini par

[frgl=frg—g*f
| .[h(%? %3)]
=2ifsin|-[=—=—-——=— 1|9

2 \ 0z Op; Op; Ox*
=ih{f. g}lpp. + O, (2.16)

comme on peut le voir & partir de (2.13). Le crochet de Moyal est 1ié au commutateur de
Moyal par

U 0w = 5 [F10]= 1S g}, + O,

Notez que le crochet de Moyal { , }y; . est une déformation du crochet de Poisson
{, }p.pg., et on peut voir que I’équation (2.15) est une perturbation du flux hamiltonien.
Si f(x,p) ou g(x,p) est un polynéme de degré deux, alors leur crochet de Moyal se réduit
a leur crochet de Poisson. Donc lorsque le hamiltonien est quadratique (libre), I’évolution
quantique du symbole de Weyl est identique & son évolution classique.
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Chapitre 3

Résultats

Dans ce chapitre, nous présentons les résultats obtenus dans le premier article en annexe
B. Dans un souci de simplification, les conventions ici sont légérement différentes de celles
de l'article original.

Les espaces-temps concernés sont ceux de courbure constante, soit nulle c’est-a-dire
I'espace-temps plat de Minkowski, soit strictement positive (négative) respectivement ap-
pelés espaces-temps de (anti) de Sitter (A)dS,.

3.1 Courants

3.1.1 Dans ’espace-temps de Minkowski

D’aprés le théoréme de Noether, un courant conservé symétrique de rang » > 1 est un
tenseur réel contravariant symétrique j4* " (z) obéissant a la loi de conservation :

Opy JE - (x) = 0. (3.1)

Une fonction génératrice de courants conservés [104] dans I'espace-temps de Minkowski est
une fonction réelle j(z, p) dans 'espace des phases : 'impulsion p est une variable auxiliaire,

qui vérifie
o 0 .
<8paxl‘> j(x,p) = 0, (3.2)

m

et qui peut s’écrire sous forme de série formelle en I'impulsion :

o0

. 1. ,
J(,p) = D () Py (3.3)
r=0 "

Elle rassemble donc tous les courants, conservés en vertu de (3.2).

Une fonction génératrice peut étre écrite pour un champ de Klein-Gordon ¢(x) comme
suit :

jlz,p) = ¢* (@ —ip) ¢(z + ip) = |p(z — ip)]*. (3.4)
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Elle est manifestement réelle. La condition (3.2) peut étre vérifiée dans ce cas précis, en
montrant que 'opérateur agissant sur la fonction génératrice des courants correspond a
I'opérateur divergence de (3.1) (démonstration en annexe A.3). L’utilisation d’une fonction
génératrice permet de simplifier considérablement les calculs; elle sera particuliérement
utile dans le paragraphe suivant.

L’expression (3.4) en séries de Taylor de I'impulsion méne a une expression explicite
des courants conserves :

B (@ = Y (-1 <T> D Opps () Dpr - Dy () (3.5)
s=0

= @) O D l(2). (3.6)

Ces courants en espace plat (3.5) sont proportionnels a ceux introduits, il y a longtemps,
par Berends, Burgers et van Dam [82]. Divers ensembles explicites de courants conservés
(conformes) sur l'espace-temps de Minkowski ont été fournis dans [105-108]. Le courant
conservé symétrique (3.5) de rang r est bilinéaire en le champ scalaire et contient exacte-
ment 7 dérivés. Les courants de tous rangs sont réels; ainsi, si le champ scalaire est réel,
alors les courants de rang impair sont absents en raison du facteur devant (3.5).

Le courant symétrique conservé de rang deux :
j;su/ = (¢* 8uau¢ + ¢auau¢* - 28(,u¢* 8u)¢)
L e
= 6" 0,0,0

est, sur la couche de masse, distinct du tenseur énergie-impulsion canonique (1.18) par un
courant trivial j', = (N On-11 — 9,8,) |¢]* :

Jpw = 4Ty, + (Muv On-11 — 9,0,) |¢’2
Physiquement, ce courant de rang 2 est donc proportionnel au tenseur énergie-impulsion.

Comme nous 'avons fait dans le paragraphe 1.1.3, nous vérifions, pour le rang trois, que
la transformation d¢c¢ = i ¢ of 0,03¢ est une symétrie rigide du lagrangien de Klein-Gordon
(1.1). Nous trouvons que :

V, = %C;w (00" 8?8%) - m2¢*<a7¢).
On explicite le courant de Noether :
G = 1€ (00056 040" — 0a050" b — Mo 00" 03076 + 12 1 & 05 6]
Comme jiLV = (B8 Ju(ap), alors :
Ju(aB) = (00056 0" — 0a0pd" 0ud — NMua 8V¢*<£8”¢ + m® Npa ¢*gﬁ>¢]-

On peut vérifier que le courant de Noether J';]LV et le tenseur j,,g) sont conservés. A l'aide
de la formule (3.5), le courant symétrique conservé s’écrit simplement :

Jias = 0" 0, 00 Op 6.

. . . . . .t
On peut relier les deux tenseurs j,n5 et ]Zoz,B par un courant trivial Ji(aB)
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3.1.2 Dans l’espace-temps de (anti) de Sitter

Dans cette partie, nous décrirons trés briévement les calculs originaux que j’ai réalisés,
avec Xavier Bekaert, durant la premiére année de mon doctorat.

3.1.2.1 Fonction génératrice et ses subtilités

Comme nous venons de le voir, la fonction génératrice de I'espace-temps plat de Min-
kowski génére des courants conservés dans ce méme espace-temps. Nous souhaitons faire
la méme chose pour I'espace-temps de (anti) de Sitter via la construction ambiante. Plus
précisément, la fonction génératrice de I'espace plat ambiant génére des courants conservés
dans I'espace-temps courbe de (anti) de Sitter.

Gréce au dictionnaire (tables 1.1 et 1.2), la fonction génératrice de courants conservés
dans 'espace plat ambiant :

J(X,P) = (X —iP)®(X +iP). (3.7)
Elle vérifie
o 0
<aX'aP> J(X,P) = 0 (3.8)

lorsque le champ scalaire ambiant ® obéit a ’équation de Klein-Gordon. Si elle était tan-
gente, I'équation (3.8) impliquerait automatiquement DB1.J B,..B, ~ 0. Mais ce n’est pas
le cas. On se doit donc de calculer la divergence dans ’espace ambiant des courants pour
vérifier que la divergence covariante sur l'espace-temps de (anti) de Sitter est bien nulle.
La fonction génératrice des courants ' obéit a

0 0

XA~ 4+ Py— +D—-2)JX,P)=0
( oxAa T gp, T >( )

pour les champs scalaires ambiants homogénes correspondant & des champs scalaires massifs

sur (A)dS,, puisqu’une condition sur la partie réelle du degré d’homogénéité est imposée

(voir démonstration en annexe A.4) et apparait naturellement dans le calcul de 'opérateur

d’Alembertien dans les espaces-temps (A)dS,, (paragraphe 1.2.5)2 :

D 1—n
hJ(rA)dSn = 1—5—\/?1#:72 —VFLlpu (3.9)
implique
hayas, + Paas, = 2- D, (3.10)

et donc I’équation précédente (3.8) est équivalente a la loi de conservation covariante

Vit (z) ~ 0. (3.11)

1. Le degré d’homogénéité en X et en P de J(X, P) vaut donc 2 — D et celui des courants J4,...a, vaut
hr=2—-D—-r=1—-n-—r.

2. Rappelons que, par convention, le signe supérieur se rattache a I’espace de de Sitter tandis que le
signe inférieur est lié a ’espace d’anti de Sitter.
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En d’autres termes, la réduction dimensionnelle radiale de I'interaction de Noether cubique
est valable précisément pour le domaine de masse carré de I'unitarité dans (A)dS,.

La fonction génératrice dans l'espace ambiant définit donc une infinité de courants
conservés pour un champ scalaire libre sur (A)dS,, :

1
r=0 "~
- : s (T .
= ;(—1) <S) Oy - 04, 8% (X) Dy v Oay B(X)
= I3 (X)) = i oN(X) Da,. 00 B(X). (3.12)

Le principal inconvénient de cette expression explicite pour les courants conservés est
qu’ils sont écrits en termes de dérivées partielles ambiantes et qu’il n’est pas facile de la
traduire en terme des dérivées covariantes sur ’espace-temps M,, car elle ne contient que
des dérivées partielles. Le but de la section suivante est d’effectuer cette traduction.

3.1.2.2 Formules explicites des dérivées covariantes

Nous allons exprimer les dérivées partielles ambiantes en fonction des dérivées cova-
riantes pour les quatre premiers rangs (démonstration pour les rangs 2 et 3 en annexe A.5)
afin de pouvoir, par la suite, exprimer les courants :

oA ~ Dy®
h
8,483@ ~ D(ADB)(I) + ﬁﬁAB(I)
3h —2
0A0BOc® ~ D(ADBDC)(I) + X2 W(ABDC)(I)
2(3h—14
04 0B0cOp® ~ D(ADBDDDD)(I) + (‘X—Q)n(ABDC,DD)(I)
3h(h—2
+(X4 )U(AB nep) ® (3.13)

On a exprimé les dérivées partielles comme des polynoémes dépendant des dérivées cova-
riantes et de la métrique plate : 94,...04,, ® = Pol(nap, Dc)®.

Pour obtenir une formule générale des dérivées partielles, on note m le nombre de
dérivées, et on contracte chaque indice avec le vecteur auxiliaire P :

PAPAm G, 0, = (PO)™

P PAmD, . Dy, = (PD)™

PAPBy,p = P2 (3.14)
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Toutes les dérivées partielles sont données par la formule générale suivante :

[m/2] 2\ T
(PO™ =D ¢, <§2> (P.D)"=2r (3.15)

r=0

ot [g] est la partie entiére du nombre rationnel g et les coefficients ¢}, sont donnés par la
formule de récurrence (démonstration en annexe A.6) :

g =ch +mth—m+1)cY (3.16)

et pour m impair, il existe une relation supplémentaire :

cﬁ,’[ff)/? =m(h—m+1) cgln__ll)/Q < ¢, = 0lorsque r >

m + 1
5

0

Le premier coefficient vaut 08 = 1. On peut en déduire que c,,

de m.

= 1 quelque soit la valeur

3.1.2.3 Courants conservés

Les courants conservés sont exprimés par la formule suivante dans I’espace ambiant :

X <P2>lﬂ (P.D)*" %" (P.D) 2% (3.17)

X ( v >Z+J (p-V)* 2" (p.V) . (3.18)

La fonction génératrice ambiante (3.7) de courants conservées (A)dS,, peut étre écrite
de maniére tres explicite en termes de la fonction génératrice des coefficients ¢, :

k/2] 1

c(z,y;h—r) = Z & cg'(h—r) ak=2m y" =1+ y)% exp <ac arctan \/§§3.19)
k=0 m=0 \/g

avec 'aide de

T(X +tP,P) =c(tP-D,t*P*/X?, h—r)T(X,P), V¢t
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: P _ P?
J(X,P) = c<—zP~D XQ,h}A)dSn) <1>T(X)c<zP-D,X2;h(A)dSn> d(X)

= of(x <—1P % Tx2 (AdS) (ZP D )F()Z’ ()dSn> ¢ (X)

)I;Z ;2 D) o(X) (3:20)

<=
= @T(X)c<z'P- D,
ou la propriété c(x1,y;h1)c(x,y;he) = c(x1 + x2,y;h1 + ha) et la formule (3.9) ont été
utilisées. La fonction génératrice ambiante (3.20) permet de trouver la fonction génératrice
suivante des courants conservés

i) = @) (1090 2L 1) (o), (321

La limite plate est retrouvée lorsque R? — oo puisque c(z,y) ~ expx quand y — 0. En
raison de (3.19), le développement

. 1.
J@p) =Y 3" @) P - P (3.22)

r=0

de cette fonction génératrice donne le courant conservé suivant de rang r,

[r/2] m
jﬂ1~~ﬂr (.ZU) =1 E < R2> CT’ g(Ml,“Q st gﬂ2mflﬂ2m ¢ (:U) H2m+1 * ° H/T)Qs(x) ’ (323>

m=0

ou les coefficients ¢ correspondent & h = 1 — n (pour un champ scalaire, 7 = 0). Il est
possible de calculer ces coefficients ], les dérivées covariantes (3.15) et ces courants venant
de (3.23) quel que soit le rang. Les coefficients non-nuls pour m < (n+1)/2 peuvent s’écrire
explicitement ( pour r = 0) :

. oz kN [k k ,
e B F S e ()G G )

7Jn 2m—0 7/71 2m —1=— =0 11 =0
n! (—=1)in-2m
(n—2m) (211 + 1) (2 (ig —il) + 1) (2 (in_gm _'in—Qm—l) + 1) '

X

Par exemple, les premiers coefficients sont :

68 1,

A =1,

=1, =k,
=1, ¢ =3k-2,
g =1

, =23k —4), & =3k(k - 2),
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et les premiéres dérivées s’expriment par :

0A® +— V.o

k
0A0p® <+— V(M Ve £ 2 v @
3k —2
0A0B0c® <+— V(M VVV,,) ¢ £ R2 [ Vp)(ﬁ
23k —4
04 0B0cOp® +— V(# V,,vao) ¢ * (R?) I vao)gf)
3k (k —2)
Tt 9w 9po) ¢- (3.24)

Comme durant mon stage de master 2, la formule de double récurrence (3.16) n’avait pas pu
étre résolue explicitement, j’avais entiérement écrit un programme “Maple” joint en annexe
A.8 afin de pouvoir calculer numériquement ces coefficients, les dérivées covariantes (3.15)
et ainsi trouver les courants a partir de (3.23) quelque soit le rang de maniére directe et
rapide. On retrouve ainsi les premiers courants calculés classiquement (démonstration en
annexe A.7) :

i = 10V

G = e g s

Gy = —i6 0 £ i g6 00
A A VA YA SR L L A A

n? —1

T

(v gpa)¢* (o (325)

Ils sont tous conservés par construction. Nous ’avons aussi vérifié explicitement.

Cette infinité de courants conservés permet de construire un vertex cubique d’interaction
(cohérent & I'ordre non trivial le plus bas) entre un champ scalaire dans (anti) de Sitter et
des champs de jauge de spin entier arbitraire, via le couplage minimal (section 1.1.4.3).

De maniére similaire, des courants conservés sur les espaces de courbure constante
ont été décrits dans [109-113] mais les résultats présents sont plus généraux : d’une part,
les courants (3.12) sont conservés pour tout champ scalaire libre pour n’importe quelle
masse et dans n’importe quelle dimension, tandis que seul le scalaire conforme (c’est-a-
dire le singleton) a été pris en compte dans [111,112] et AdSs était 'espace-temps de fond
dans [109,110] ; d’autre part, 'expression explicite des courants est connue a tous les ordres
de la courbure scalaire, tandis que seule la correction du premier ordre pour l’expression
plate a été fournie dans [111,112]; troisiémement, les courants (3.12) sont conservés sur la
couche de masse dans le sens habituel de (3.11) tandis que ceux de [113] obéissent a la loi
de conservation plus faible introduite par Fronsdal [114]. Bien sir, a proprement parler,
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la troisiéme observation ne doit pas étre comprise comme une perte de généralité dans
les résultats précédents de [113,115]. Nous voulons simplement souligner que les lois de
conservation habituelles pour les courants est une propriété souhaitable, car elle permet
un traitement uniforme des champs de jauge (ir)réductibles, par exemple les champs de
Fronsdal et les triplets, et il pourrait aussi simplifier I’analyse des amplitudes d’échange de
courant.

3.2 Calcul des symboles

Pour commencer, puisque ]ROD et (A)dS,, sont dotés d’une métrique, leur espace res-
pectivement tangent et cotangent peuvent étre identifiés et on peut donc identifier les
“impulsions” avec les “vitesses”, c¢’est-a-dire

Py =napVE et p, = gur”. (3.26)

La fonction génératrice ambiante des champs de jauge H (X, P) est maintenant une fonction
réelle sur T*]Réj telle que

0 0 0
A _ — L =
(X XA PA@PA + 2) H(X,P) =0, <X 8P> H(X,P) =0, (3.27)
et dont les transformations de jauge sont
S H(X,P) = (p(f){) (X, P) + O(H), (3.28)
o €(X, P) est tel que
0 0 0
Ai — _— = - —_ =
(X 5XA PA@PA > e(X,P) =0, <X 8P> e(X,P) =0. (3.29)

Le fibré cotangent T*M,, peut étre vu comme le sous-fibré de T’ *Ré) défini par la relation
quadrique X? = +R? avec la condition de transversalité X4 P4 = 0.

Le produit de Moyal ambiant de deux fonctions lisses sur T*]ROD est défini par

1 0 0
6]_(X,P)*€2(X,P) = 6]_(X7P) exXp <28PA/\8XA> 62(X,P) (330)

ol A est mis pour le produit antisymétrique. Les conditions (3.29) sur €(X, P) sont équi-
valentes a

[X P * eX,P)] =0, [X? * ¢(X,P)] =0 (3.31)
[€1(X,P) ¥ e3(X,P)] := e1(X,P)*xea(X,P) —ex(X,P)xe1(X, P)
19 o
= ¢(X,P)2sinh (2 5P, A 6XA> (X, P)  (3.32)
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représente le commutateur de Moyal ambiant. Les conditions (3.31) exprimées en terme de
I'opérateur hermitien € symbole de Weyl de la fonction €(X, P) préserve le degré d’homo-
généité et commute avec X2. L’évaluation e(x,p) des représentations ambiantes e(X, P)
fournissent un isomorphisme entre ’espace des fonctions lisses sur 7% M,, et le sous-espace
des fonctions lisses sur T*]ROD lesquelles sont soumises & (3.31). En outre, I’espace des sym-
boles obéissant & (3.31) est une sous-algébre de 'algébre de Weyl ambiante. Par conséquent,
le “pull-back” du produit de Moyal sur T*]ROD induit un produit étoilé * sur le fibré cotangent
T*M,, tel que I'ancien isomorphisme devient un isomorphisme des algébres associatives,
comme !’a souligné Bayen, Flato, Fronsdal, Lichnerowicz et Sternheimer dans [116]. Notons
que lalgébre de Lie des fonctions lisses sur 7% M,, dotée du commutateur étoilé correspon-
dant [ ¥ ] est isomorphe a l'algébre de Lie des opérateurs hermitiens (pseudo)différentiels
sur M,,. L’action adjointe de I’algébre de Lie préserve I'espace des symboles de Weyl comme
(3.27) et les transformations de jauge (3.28) peuvent étre écrites comme

S H(X,P) = %[P2 * ¢(X,P)] + O(H). (3.33)

Les fonctions génératrices ambiantes des champs de Killing €(X, P) sont les symboles de
Weyl commutant avec les trois containtes X2, X - P et P? lesquelles générent I’algébre
simplectique sp(2). La (sous-)algébre de Lie de tels symboles est une algébre de Vasiliev
de spin élevé en dehors de la couche de masse®. (voir par exemple [56,117,118] pour une
introduction).

3.3 Vertex cubiques

En utilisant la notation bra-ket pour le champ scalaire ®(X) = (X | @) et &*(X) =
(® | X), la fonction génératrice ambiante J(X, P) des courants (3.7) est la (continuation
analytique de la) transformée de Fourier dans 'espace des moments de l'application de
Wigner associée a 'opérateur densité | ®)( P |, et 'interaction ambiante de Noether

09
OVA OP4

<H|J> = / dDXeXp<
RD

0

> H(X,V)J(X,P) (3.34)
V=P=0

peut étre réécrite sous une forme compacte comme dans [120] :
Si[®,H =< H||J>= (®|H|P) (3.35)
ott H(X, P) est le symbole de Weyl de 'opérateur H.

L’action ambiante de Klein-Gordon

Sol®] = -+ /R dPx (GABaAq>*(X)an>(X) 4

2
peut étre réécrite de la méme fagon que (3.35) :

So[®] = (@[ Ho|®) (3.37)

3. L’algebre de Vasiliev est constituée de toutes les sommes de produits (contrairement aux polynomes,
ils ne commutent pas forcément) en les générateurs conformes dans la représentation du singleton c’est-a-
dire écrit comme des opérateurs différentiels.
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ou l'opérateur Hy est défini par

ﬁozzé[82—;(X-@)(X-@%—D—Q):F(ﬂ;g)T (3.38)

et est la représentation ambiante de 'opérateur cinétique %(Vi&dsn — m?). Le symbole de
Weyl est égal a

Hy(X,P) := % (GABPAPB T <mR)2> _1 <P2 _ X Py T (mR)2> (3.39)

X2 2 X? X2

ol la métrique inverse transverse GAP := A8 — XA X B /X? est la représentation ambiante
de la métrique inverse g" sur (A)dS, . Remarquons que la fonction Hy(X, P) obéit aussi
a (3.27).

Par conséquent, la somme
So[®] + Si[®,H] = (®|Ho+ H|D) (3.40)

est manifestement invariante sous ’action suivante du groupe des opérateurs unitaires sur
(A)ds, :
|®) — U|®), Hy+H — U (Hy+H)U™?, (3.41)

ou l'opérateur unitaire U est généré par 'opérateur hermitien € et ou les scalaires et les
champs de jauge se transforment respectivement dans la représentation fondamentale et
adjointe du groupe des opérateurs unitaires. Notons que ’action de 'opérateur U sur d(X)
est en effet compatible avec la réduction dimensionnelle radiale parce que cet opérateur
unitaire préserve le degré d’homogénéité comme € le fait. Remarquons que si les dérivées
d’ordre élevé sont autorisées, alors la tour infinie de champs de spin élevé devrait étre
incluse pour la consistence des transformations de jauge (3.41) au dela de 'ordre le plus
bas afin que 'algébre des opérateurs soit fermée. L’action adjointe infinitésimale (3.41) de
l’algebre de Lie des opérateurs hermitiens sur (A)dS,,, écrite en terme du symbole de Weyl
H(X, P), méne a la déformation suivante (3.33)

§H(X,P) = [Ho(X,P)+ H(X,P) * ¢«(X,P)] + O(H?). (3.42)

Une fonction génératrice ambiante des champs de Killing €(X, P) est un symbole de Weyl
en X4 Pp), dont l'opérateur correspondant est un produit des générateurs des isométries
X(a0p) de (A)dSy, c’est-a-dire les générateurs de I'algebre de Vasiliev de spin élevé en de-
hors de la couche de masse. Lorsque cette algebre agit sur le module singleton de o(d—1, 2),
les trois contraintes sp(2) mentionnées a la fin de la sous-section 3.2 agissent trivialement.
Le quotient de l'algébre de Vasiliev en dehors de la couche de masse par I'idéal bilatéral
correspondant (engendré par les éléments qui sont la somme des éléments proportionnels &
la contrainte sp(2)) est 'algébre de Vasiliev de spin élevé sur la couche de masse (voir par
exemple [56,117,118| pour plus de détails). La situation est quelque peu différente pour le
module du champ scalaire massif engendré par les fonctions homogénes harmoniques sur
I’espace ambiant de la sous-section 1.2.4.6, parce que le module n’est pas annihilé par les
opérateurs correspondant & X2 et X - P (voir par exemple la section 3 de [121] pour une
discussion sur les algébres des symétries du champ scalaire massif).
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Il est trés tentant de conjecturer que l'action compléte
S[p,h] = Sol¢] + Sil.h] + Sale, h] + O(h?)

devrait étre interprétée commme résultat du fait de jauger des symétries rigides de champ
de matiére scalaire libre, lequel généralise U(1) et les isométries d’(A)dS,, tel que les
symétries locales (3.41) généralisent U(1) local et les difféomorphismes (voir [113,119-122]
et les références ci-dedans pour plus de commentaires sur ce point de vue). Dans tous les
cas, les équations dépliées (sur la couche de masse [56,117,118| et en dehors de la couche
de masse [123,124]) découlent précisément du fait de jauger la méme algebre rigide des
symétries (sur/en dehors de la couche de masse) mais un champ scalaire est inclus dans le
multiplet du champ de jauge.

Pour terminer avec une remarque périphérique, nous tenons a souligner la possibilité
d’avoir un traitement uniforme des champs de jauge et des paramétres de jauge pour les-
quels les deux fonctions génératrices ont un degré d’homogénéité égal en X et en P. Cette
possibilité pourrait s’avérer utile pour les travaux supplémentaires parce que le traitement
permettrait d’utiliser le commutateur étoilé induit sur M, [116] afin d’écrire la forme
intrinséque de la transformation de jauge ambiante (3.33). En outre, un traitement uni-
forme des champs et des paramétres est séduisante dans 'approche du formalisme métrique
puisque leurs fonctions génératrices peuvent étre interprétées toutes les deux comme les
symboles de Weyl des opérateurs hermitiens (pseudo)différentiels sur la variété d’espace-
temps. Concrétement, notons que H (X, P) := X?H (X, P) obéit a

0

0 0
A _ — .
(X 7 PA)H(X,P) 0, (X 5P

S P )H(X, P) =0, (3.43)

comme suit & partir de (3.27). La méme chose vaut pour
(mR)?
X2

2
lequel correspond au symbole de Weyl 3 9" pupy - On peut vérifier que

Ho(X,P) = %XQ <GABPAPB F ) = % (X?P? — (X-P)*F (mR)?) (3.44)

[Ho(X,P) * e(X,P)] = (X2 + i;; : ;;3) (PA94) e(X, P) (3.45)

en utilisant 1’identité
2[X2P? —(X-P)? * ¢(X,P)] = X?4[P? X ¢(X,P)],+[P? * ¢(X,P) |xX?. (3.46)

Par conséquent, le commutateur étoilé entre le champ de fond g"’p,p, d’(A)dS, et toute
fonction e(z, p) sur le fibré cotangent 7%(A)dS,, ci-dessus est égal a

1 990
4 g2 I Opy, Opy

1

5 19" pupy 5 e(w,p)] = <1 +

. ) @#Veep. G

En redéfinissant les champs

1 0o 0

h/(ﬂ%p) = <1 + TRQQ;W %%) h(l“’p)a (348)



76 CHAPITRE 3. Résultats

I’ordre le plus bas de la transformation de jauge
deh(z,v) = (vV'V,) e(z,v) + O(h)

peut étre exprimé directement via le produit étoilé sur (A)dS,

1
55h/(l’,p) = 5 [ngppra; €(x,p)] + O(h,)

en analogie avec (3.33).

(3.49)

(3.50)



Deuxiéme partie

Interactions de spin élevé avec un
champ scalaire de matiére dans un
espace-temps de courbure constante :
fonctions a trois points
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Chapitre 4

Les espaces-temps de courbure
constante

Dans 'ensemble des chapitres de cette deuxiéme partie, la convention de la dimension
de I'espace d’Anti-de Sitter est modifiée par rapport a la premiére partie afin de faciliter
les calculs : nous travaillerons dans 'espace AdSg41, en d’autres termes n = d + 1.

L’univers de (anti) de Sitter (cas particulier d’espace-temps pour lequel la courbure est
constante et non nulle) est la solution la plus symétrique des équations d’Einstein avec
constante cosmologique A respectivement strictement (négative) positive et dans le vide
(c’est-a-dire sans matiére) : T, = 0.

Le modéle de de Sitter est fondamental car c’est le prototype des géométries appa-
raissant dans le cadre de l'inflation cosmique. De plus, les observations ont montré que la
constante cosmologique A n’est pas nulle et que notre univers entrerait vraisemblablement
dans une période inflationnaire. L’espace-temps d’anti de Sitter est utilisé dans certaines
théories modernes de la gravitation (telle que la « supergravité ») ainsi que dans la corres-

pondance AdS/CFT.

4.1 Description en dimension supérieure a deux

Les différents espaces-temps & courbure constante de dimension d 4+ 1 peuvent étre
plongés dans un espace-temps plat ambiant a une dimension supplémentaire D = d 4 2 :
Mgy1 € R¥2. Le lecteur souhaitant approfondir la description de ces espaces pourra
se référer, entres autres, aux articles suivants : [97,125-136]. On classe ici (cf. également
l'article en annexe B) les différents espaces-temps a courbure constante en fonction de la
signature de la métrique de I’espace ambiant :

e Signature euclidienne : Quand le nombre de directions de genre temps (signes

négatifs) dans la signature de la métrique ambiante 1 est égale & zéro (d + 2 signes
positifs), la quadrique X2 = R? est une hypersphére, My 1 = St laquelle peut

1. Rappellons que les lettres majuscules X sont utilisées pour désigner les coordonnées ambiantes tandis
que les lettres minuscules x concernent les coordonnées de ’espace-temps proprement dit.
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étre vue comme la rotation de Wick (R — iR) de l'espace de de Sitter dSg41 (dé-
fini ci-dessous). L’hypersphére est donc parfois appelée espace de de Sitter euclidien

EdSg.4.
e Signature lorentzienne : Quand le nombre de directions de genre temps dans la
signature de la métrique ambiante 1 est égale a un : (—, +, --- +) , deux quadriques
———
d+1
sont possibles :
d+1
X? = —(X°)% + > (X')? = £R”. (4.1)
i=1

La métrique de ces espaces est induite & partir de la métrique ambiante :

d+1
dsparin = —(dX%)% + ) (dX")? (4.2)
=1

et par construction, leur groupe d’isométries est donc O(d+1,1). Les deux quadriques

sont des hyperboloides? :

— Phyperboloide & une nappe X? = +R? est I'espace-temps de de Sitter (cf. figure3
4.1), Mgy1 = dSgs1,

FIGURE 4.1 — L’espace-temps de de Sitter & deux dimensions dSs plongé dans l’espace-
temps de Minkowski & trois dimensions.

— tandis que I'hyperboloide a deux nappes X? = —R? est (les deux copies de) [’espace
hyperbolique (cf. figure 4.2), Mg,1 = Hyq également appelé espace d’anti de Sitter
euclidien EAdS4y1 (car la signature a un signe négatif en moins par rapport a la
signature de l'espace d’anti de Sitter).

e Signature conforme : Quand le nombre de directions de genre temps dans la
signature de la métrique ambiante n est égale a deux : (—, —, +, --- +), une seule
——

d

2. Un cercle dans lespace euclidien se transforme (sous une rotation de Wick) en hyperbole dans
I'espace-temps de Minkowski. De la méme fagon, une hypersphére dans I’espace euclidien se transforme en
hyperboloide dans ’espace-temps de Minkowski.

3. A deux dimensions, les représentations des espaces de de Sitter et d’anti de Sitter sont semblables,
bien qu’orientées différemment.
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FIGURE 4.2 — L’espace-temps hyperbolique & deux dimensions Hs plongé dans un espace
ambiant & trois dimensions.

quadrique est pertinente :

d+1
X =—(X")? — (X" + i(xi)2 = —R*. (4.3)
1=2

Cette hyperboloide a une nappe est I'espace-temps d’anti de Sitter, M1 = AdSg+1,
dont la rotation de Wick redonne (les deux copies de) I’espace hyperbolique précédent
Hg. 1, c’est-a-dire que les deux nappes sont nécessaires pour correspondre a I’ensemble
d’EAdS41.

La métrique est induite & partir de la métrique ambiante :

d+1
dshar = —(dX°)% — (dX1)? + ) (dX")? (4.4)
=2

avec i = 2,..,d + 1 et, par construction, son groupe d’isométries est O(d, 2).

4.2 Cas particuliers & quatre dimensions

Dans cette section, on considére n = d+1 = 4 afin de simplifier les expressions explicites
de la paramétrisation et de la métrique des espaces-temps.

4.2.1 Espace-temps de de Sitter dS,

Pour l'espace de de Sitter & d + 1 = 4 dimensions, on pose :

X% = R sinha'

X' = R coshz? cosz!

X? = R coshz® sinz! cosz?

X3 = R coshz® sinz! sinz? cosz3
X4 = R cosha? sinz! sinx? sinz®

avec X' les coordonnées cartésiennes dans l'espace-temps plat R*! et z* les coordonnées
sur ’hyperboloide.
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Les hypersurfaces d’équation 2° = constante (et en particulier, z° = 0 ce qui implique

X% = 0) sont des hypersphéres S3. De méme, les surfaces d’équations 2° = constante et
r! = constante (en particulier, z° = 0 et 2! = 0 ce qui implique X° = X! = 0) sont des
sphéres S2. Nous avons des cosinus et des sinus hyperboliques dans la premiére colonne &
la place des cosinus et sinus & cause de la signature de 29.

La métrique a quatre dimensions est :
dsig, = R* [—(da®)? + (cosha®)? dsZ;]
ol on retrouve les expressions de la métrique de 'hypersphére unité :
ds3s = (dz')?* + (sina’)dsZ
et de la sphére unité :

ds3. = (dz*)* + (sinz?)? (dz®)?.

4.2.2 Espace-temps d’anti de Sitter AdS,

Pour I'espace-temps d’anti de Sitter & d + 1 = 4 dimensions, on pose :

X% = R cosha? cosa!
X! = R coshz? sinz!
X2 = R sinhz° cos 22
X3 = R sinhz? sin 22 cos 2
X% = R sinha? sinz? sinz?

avec X' les coordonnées dans l'espace-temps plat et 2 les coordonnées sur ’hyperbo-

loide. Ce choix de coordonnées est assez différent des coordonnées pour dS; puisque

20 = constante décrit maintenant une hypersurface S' x S2.

La métrique est :

dsid&l = R? {(ala:o)2 — (cosh:co)2 (al:vl)2 + (sinh:/co)2 [(dw2)2 + (sina:2)2 (da:3)2] }

4.3 Les coordonnées globales et de Poincaré de I’espace hy-
perbolique
Pour AdSg.1, en plus des coordonnées habituelles x et des coordonnées ambiantes X,
il est souvent utile d’utiliser les coordonnées globales (7, 6,€);) :

X% = R coshr cosf

X" = RsinhrQ; (4.5)
X4l = R coshr sinf
d
avec i =1,--- ,d et Y. Q2 = 1 ot ; sont les coordonnées sur 'hypersphére ST (0<ret

=1
0 < 6 < 27). La métrique en coordonnées globales et en dimension quelconque d + 1 est :

dszAde+1 = R?(—cosh®rdf? + dr? + sinh®rdsz, ) (4.6)
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ol dséd,1 est la métrique de I’hypersphére unité de dimension d — 1.

L’analogue euclidien sont les coordonnées globales (7, €2) de ’espace hyperbolique Hy 1.
Sa métrique y prend la forme :

dsIQHId+1 = dr? + R%sinh? (%) dséd. (4.7)

ry\d
Le déterminant de la métrique vaut g = (R2 sinh? E> et sera utilisé ultérieurement pour
calculer le volume d’une boule dans I'espace hyperbolique.

Il est plus facile de visualiser un espace courbe comme ’espace hyperbolique par des
sections plates. Nous allons par la suite nous concentrer sur la nappe supérieure de ’espace
hyperbolique Hy,1 ce qui correspond seulement & une des deux cartes non triviales de
I'espace-temps d’anti de Sitter euclidien EAdSg41 [130]. Les coordonnées les plus utilisées
sont celles de Poincaré?® (z, %) car elles simplifient techniquement les calculs et exhibent
des sections plates de ’espace hyperbolique :

11
2= ==
Xi
1'% (4.8)
xr = *?
X0 xd+1
avec X+ = — les coordonnées du cone de lumiére dans I'espace ambiant® (cf.
. 2 =22 1 7
figure 4.3). On en déduit alors X = (X+, X, X) = <Z+x - x)
z z'
xX- X{l X+
I L 1T
X o
I I \I

FIGURE 4.3 — Des hyperboles avec les axes Xt et X .

4. D’autres coordonnées sont parfois employées telles que les coordonnées globales conformes ou semi-
globales mais nous ne les détaillerons pas ici [125].

d .
5. La quadrique en coordonnées du cone de lumiére est —XT X~ + > (X%)? = —R? et la métrique
i=1

ambiante s’écrit ds? = —dXTdX~ +dX'dX;.
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La métrique de I'espace hyperbolique dans les coordonnées de Poincaré s’écrit de la maniére
suivante :

(4.9)

dz? + (d7)? >
— .

dst,, = R?
Hgy1 P
On voit ainsi que Hy, 1 est conformément plat et que les hypersurfaces z = constante dé-

23 2
crivent des sections plates (horosphéres) R?. On remarque que la métrique gh* = (E) oMY

—2(d+2)
ne dépend pas de z, mais seulement de z et le déterminant est g = det(g,,) = (%) .

Le demi-espace supérieur de Poincaré (“Upper Half Space” en anglais) z > 0 (cf. figure 4.4)
représente la nappe supérieure® de I'hyperboloide. Les géodésiques sont les demi-droites
(au sens euclidien) verticales : 7 = cte (en rouge) et les demi-cercles (au sens euclidien)
perpendiculaires a I'axe des abscisses : z = 0 (en bleu).

2

£

FIGURE 4.4 — Les géodésiques dans le demi-espace supérieur de Poincaré.

Le disque de Poincaré (cf. figure 4.5) est construit a partir du demi-plan supérieur de

—r
X
JH
2
—
(D . [x"]

FIGURE 4.5 — Le disque de Poincaré

Poincaré dans lequel on rejoint les deux extrémités de axe des 7 (pour d = 1), ce qui crée
un point a U'infini po, = (00, 00) défini aussi par X~ = 0. Le bord du disque de Poincaré
(hyperplan z = 0 du demi-espace supérieur de Poincaré et le point a I'infini) correspond
au bord conforme 0H,y1 de l'espace hyperbolique Hgy.

Cette représentation est également utilisée car méme si elle est moins simple a vi-
sualiser (elle ne préserve pas les produits scalaires), elle respecte la topologie de 1’espace

6. L’espace EAdSi11 correspond aux deux nappes de I’hyperboloide et donc aux deux demi-espaces de
Poincaré.
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hyperbolique et donne donc une meilleure intuition globale et qualitative de cet espace (en
particulier les subtilités liées au point a U'infini). Topologiquement, ’espace hyperbolique
Hgi1 = Bgy1 est une boule tandis que son bord conforme OHyz, 1 =2 S% est une hyper-
spheére. Sur la figure 4.5, on constate que l'intérieur du disque de Poincaré correspond au
plan hyperbolique et que le cercle est son bord conforme.

4.4 Distances cordale et géodésique

Dans ces espaces, il est intéressant de calculer différentes grandeurs utilisées dans le
chapitre suivant [47,125,135,137].

La distance géodésique entre deux points A et B de 'espace hyperbolique est analogue
a celle du cercle (cf. figure 4.6) et est noté d4p ou tout simplement d. Elle correspond a la
longueur du segment géodésique reliant A a B.

FIGURE 4.6 — Les distances cordales cap en bleu et géodésiques d4p en rouge sur un cercle
et sur une hyperbole.

L’angle hyperbolique avap entre A et B est défini par analogie avec le cercle :

d
a = asp = %. (4.10)

La distance cordale c4p entre A et B est définie comme la longueur du segment de droite
(la corde) reliant A et B dans l’espace ambiant :

c=cap = ||Xa — Xzl (4.11)

ol X4 sont les coordonnées ambiantes du point A se situant dans I’espace hyperbolique.
Par analogie avec le cercle, on peut facilement voir que X4 - Xp = —R? cosha4p. On en
déduit que

=4 =(Xa— XB)? = 2R*(coshaap — 1) = 2R?* (uap — 1) (4.12)
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avec

1 24425+ (4 — 25)?
= coshaap = 2 = B2ZA(ZB ) . (4.13)

Xa-Xp
R

U = uap —

On a donc les relations utiles pour I'arc hyperbolique :

dap = Rarcoshuap = In (uAB + \/"‘%243 — 1> ) (4.14)

Une autre grandeur (érronément appelée distance cordale dans certaines références)
couramment utilisée est le demi-carré de la distance cordale :
1 1

£ =&ap = 50?43 = R*(uap—1) = §(XA—XB)2- (4.15)

Dans la suite des calculs, le rayon de courbure sera fixé égal a 'unité R = 1.
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Chapitre 5

La correspondance holographique

Ce chapitre fournit une introduction qualitative & la problématique des chapitres sui-
vants : les calculs des propagateurs du champ scalaire et de fonctions & trois points l'in-
cluant. En effet, un objectif futur de cette étude est de tester la correspondance hologra-
phique & l'ordre cubique puis quartique dans les cas trés particulier de fonctions & trois
points entre deux opérateurs primaires scalaires de poids conforme quelconque et un cou-
rant conservé de rang arbitraire, et de fonctions a quatre points entre quatre opérateurs
scalaires.

Dans la correspondance AdS/CFT de spin élevé, une théorie quantique de la gravitation
incluant des spins élevés [15,16,34-36,138| dans I'espace-temps d’anti de Sitter (fortement
courbé c’est-a-dire avec un rayon R petit) est duale a une théorie quantique ordinaire
conforme (CFT pour “conformal field theory”) faiblement couplée!, & une dimension de
moins. Il sera donc nécessaire de comparer notre calcul de la fonction a trois (et quatre)
points dans ’espace-temps d’anti de Sitter a d+ 1 dimensions & celui obtenu dans la théorie
conforme au bord & d dimensions. Avant de présenter les détails techniques dans les deux
chapitres suivants, nous proposons une introduction qualitative en présentant seulement
les concepts principaux a ’aide des diagrammes de Witten.

Dans les diagrammes de Witten qui sont un analogue de ceux de Feynman lorsqu’on se
trouve dans ’espace-temps d’anti de Sitter, le bord conforme de I'espace AdS est représenté
par un cercle tandis que I’espace-temps lui-méme est le disque intérieur (figure 5.1) (comme
expliqué dans la sous-section 4.3).

dAdS

FIGURE 5.1 — L’espace AdS et son bord

1. autrement dit presque libre ce qui implique qu’il y ait une infinité de symeétries.
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Les points de AdS ont pour coordonnées ambiantes X qui correspondent & z = (z, &) dans

X

rl
_,\ 9

FIGURE 5.2 — Les points dans l'intérieur et au bord

les coordonnées de Poincaré et les coordonnées des points au bord sont notés X/ en ambiant

correspondant a 32 (figure 5.2 et table 5.1).

Points Espace AdS441 | Bord conforme : 0AdS 11
Coordonnées ambiantes X X z/
Indices (ambiants) A M
Coordonnées de Poincaré x = (z,7) ,fl;z

TABLE 5.1 — Les points et leurs coordonnées

5.1 Théorie dans AdS

Dans l'espace-temps d’anti de Sitter, on s’intéressera & un champ scalaire de masse m
noté ¢ et ® est son représentant ambiant. La propagation libre d’un tel champ scalaire
est déterminée par le propagateur de Feynman dans AdS représenté par une ligne fléchée

(figure 5.3).

P o

p

FIGURE 5.3 — Le propagateur du champ scalaire dans 'intérieur

La valeur au bord du champ scalaire est ¢o(Z) = lirr(l)(zA ¢(z,%)). Le champ ¢ dans
zZ—r

I'intérieur se transforme comme un champ scalaire ce qui induit comme valeur au bord

une densité conforme ¢y de poids conforme A. On peut interpréter la valeur d’un champ

scalaire ¢(z,Z) en un point de U'intérieur d’AdS comme le résultat de la propagation de sa
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—

valeur au bord ¢g(z’) via ce qui s’appelle un propagateur de Witten qu’on peut représenter
par une ligne fléchée joignant un point de 'intérieur et un point du bord comme sur la
figure 5.4.

FIGURE 5.4 — Le propagateur de Witten du champ scalaire

La théorie, qui sera considérée par la suite, contiendra des champs tensoriels symétriques
dans AdS. Plus précisément, le champ de jauge dans AdS sera noté hy,...,, et Ha,...4, pour
son représentant ambiant. Son propagateur dans AdS sera représenté par une ligne ondulée
comme sur la figure 5.5. De la méme fagon que pour le champ scalaire, sa valeur au bord

H ~h

AVAVAVAVAV

FIGURE 5.5 — Le propagateur d’un champ de jauge dans 'intérieur

est notée hg et on peut lui associer un propagateur de Witten.

Le vertex cubique (3.34) entre deux champs scalaires et un champ de jauge est représenté
par le diagramme de Feynman sur la figure 5.6.

FIGURE 5.6 — Le vertex cubique
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5.2 Théorie conforme des champs

Dans la correspondance AdS/CFT, les diagrammes de Witten du coté AdS sont en
correspondance univoque avec certains diagrammes de Feynman d’une théorie conforme
des champs vivant au bord d’AdS.

Dans la théorie conforme que nous considérons, le seul champ présent est un champ
scalaire de masse nulle et de poids conforme A noté ¢(z') vivant au bord et dont le
propagateur (entre deux points du bord) est représenté par une ligne fléchée fine (figure
5.7).

- 1

FIGURE 5.7 — Le propagateur du champ scalaire au bord

On s’intéressera en particulier aux fonctions de corrélation des courants Oy de la théorie
conforme (donc les courants seront de trace nulle). Puisque ces courants sont bilinéaires en
¢, ils peuvent étre représentés comme dans la figure 5.8.

-E,,
t

FIGURE 5.8 — Le courant bilinéaire au bord

En effet, dans la correspondance AdS/CFT, I'opérateur primaire conforme O (p) =
@2(3;;) est dual au champ scalaire ¢(x) dans AdS et est couple avec sa Valeur au bord
¢o(z}). Dans le cas général de rang s, l'opérateur Os)( ﬁm) o)) est dual
au champ de jauge h(z) dans AdS et est couplé avec sa Valeur au bord hfj* S(acz)

Nous considérerons en particulier les fonctions de corrélations a trois points entre deux

quu‘,- ¥

4%

Qo)

FIGURE 5.9 — Diagramme de Feynman & une boucle de la théorie conforme libre
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opérateurs scalaires (g et un courant conforme O, de rang s qui peuvent étre repreé-
sentées par le diagramme de Feynman & une boucle lorsque la théorie conforme est libre

(figure 5.9).

Les notations des champs sont résumées dans le tableau 5.2.

Espace Espace ambiant | Espace intérieur | Valeur au bord || Théorie conforme au bord
Espace ROD AdS g1 0AdSg11 0AdS 11
Coordonnées XA ot = (z,7) a 7
Champ scalaire o(X) o(x) oo(z) o(2)
Champ de jauge H(X) h(z) ho(z) O(a)

TABLE 5.2 — Dictionnaire Espaces ambiant/intérieur /bord

5.3 Fonction de partition

De fagon plus technique, la correspondance holographique est exprimée par la relation
de Gubser-Klebanov-Polyakov-Witten [126,141]. Elle relie, dans notre cas, la fonction gé-
nératrice des corrélateurs des courants O au bord & la fonction de partition de la théorie
de spin élévé dans l'intérieur AdS pour un probléme de Dirichlet. Plus précisément, on a
I’égalité des intégrales de chemin suivantes :

D¢e—SAds[¢} = Z[¢po] = /Dgpe—SCFT[SO]'*‘fO(‘P)'(bo (5.1)

dlaads = ¢o
ol Syqs et Scpr sont respectivement les actions des théories dans 'intérieur et au bord.

Dans le cas considéré ici, pour le champ scalaire dans AdS, on a a 'ordre quadratique :

1 1
Saasle] = / Az /g [2 9" 09 09 + §m2 ¢
AdS
alors que pour le champ scalaire conforme au bord, I’action & I'ordre quadratique s’exprime
par :

(5.2)

1
/ dz 3 " Oup Oup .
0AdS

Scrrle] = (5.3)

5.4 Perspectives

5.4.1 Fonctions a trois points

Les travaux en cours exposés dans les deux chapitres suivants visent & calculer la fonc-
tion a trois points & partir du vertex cubique obtenu dans la partie précédente et des
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propagateurs de Witten. Concrétement on voudrait calculer le diagramme de Witten de la
figure 5.10 et le comparer au diagramme de la figure 5.9.

FIGURE 5.10 — La fonction & trois points

Il serait également intéressant de généraliser ces résultats pour des triplets de spin
quelconque grace aux vertex sur la couche de masse [41].

5.4.2 Diagrammes d’échanges

Un objectif plus lointain est de réaliser un test de la correspondance holographique
a lordre quartique. Pour cela, il sera nécessaire de calculer la fonction a quatre points
pour quatre champs scalaires. En particulier, on souhaite calculer le diagramme d’échange

i w0

L] [0}

FIGURE 5.11 — Diagramme d’échange

représenté sur la figure 5.11. Il faudra donc connaitre explicitement en formalisme métrique
le propagateur pour des champs de jauge de spin arbitraire s. Une piste potentielle est de
généraliser les travaux sur le propagateur (voir [140] et références ci-dedans). Enfin, il sera
nécessaire de la comparer a la fonction a quatre points de la CFT (cf. figure 5.12).
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i~

n
e

FIGURE 5.12 — Diagramme de Feynman de la CFT
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Chapitre 6

Les propagateurs du champ scalaire

Dans l’ensemble de ce chapitre, on travaillera avec des variétés riemanniennes (au sens
de signature euclidienne) et uniquement avec des champs scalaires. Les propagateurs sont
traités dans différents articles [138,142-147| mais la présentation qui suit consistera a
retrouver tous les résultats indépendamment pas & pas.

6.1 La fonction de Green et le noyau de Poisson

La fonction de Green G est définie de la maniére suivante :
DG=5§ (6.1)

ou D est un opérateur différentiel et  le delta de Dirac. Pour une condition de Dirichlet,
on pose Glgrpm = 0. Le propagateur “intérieur-intérieur” (“bulk-to-bulk” en anglais) ou “de
Feynman” est le pendant lorentzien de la fonction de Green (euclidienne). Nous utiliserons
D = A — m? comme opérateur différentiel. Dans le cas libre, nous obtenons donc

{ (A—m)G = §

Glom = 0 6.2)

ol M est une variété riemannienne et M son bord. Dans cette sous-section, le bord est
compact tandis que dans la suite de ce chapitre, nous travaillerons avec M 1’espace hyper-
bolique dont le bord conforme est & I’infini. On parlera donc de comportement asymptotique
plutét que de valeur au bord.

Le noyau de Poisson K pour les mathématiciens correspond au propagateur “intérieur-
bord” (“bulk-to-boundary” en anglais) ou “de Witten”, pour les physiciens défini par :

{ (A-m*)K = 0

6.3
Klom = 0, (63)

encore avec une condition de Dirichlet.

On peut démontrer que le noyau de Poisson est la dérivée normale sur le bord de la fonction
de Green :

oG

K= %0

(6.4)

oM
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Considérons un champ scalaire sur M obéissant a 1’ équation de Helmholtz' avec source
(A —m?)¢ = j. Afin d’avoir un probléme bien posé, il est nécessaire de fixer une condition
au bord. On utilise ici la condition de Dirichlet, c’est-a-dire qu’on fixe la valeur du champ
scalaire au bord 2

(A—m?)¢ = j
6.5
{ dlom = o (6:5)
ol j est une source et ¢g la valeur au bord du champ scalaire. La solution est unique :
o) = [ dyGla—9) i)+ § Kl ol ds (6.6)
M oM

ouz,y € MetzedM.

6.2 Le propagateur “intérieur-intérieur”

On cherche & calculer la fonction de Green précédente dans ’espace hyperbolique M =
Hgy1-

6.2.1 Equations générales

Le champ scalaire ¢(x) solution de I'équation de Helmholtz avec source et s’annulant sur
le bord (¢g = 0) est la propagation de la source j(y) en un point = de ’espace hyperbolique
Hg41 par le propagateur “intérieur-intérieur” G(x,y)

o(z) = / Glay) j(y) dV (6.7)

Hgq1

ol z et y les coordonnées de deux points dans Hy, 1, et avec un élément de volume dV =
N/ d¥1y oul g est la métrique de Hg, 1. Pour trouver I'expression du propagateur “intérieur-
intérieur”, on doit résoudre 1’équation

1
Vv

ot 6(x — y) est la densité de Dirac “usuelle” dont l'intégrale sur toutes les coordonnées est
normalisée a ['unité. Ce choix de normalisation (et ’annulation de G a l'infini) détermine
de maniére unique la fonction de Green.

(A =m?)G(z,y) = d(z,y) == —=d(z —y) (6.8)

1. Le signe devant m? provient de 1’équation de Klein-Gordon (1.2) aprés une rotation de Wick. Ce-
pendant, ce signe est I'opposé de la forme traditionnelle de I’équation de Helmholtz car seules les valeurs
négatives de m? sont admissibles pour des solutions normalisables.

2. 1l existe également la condition de Neumann qui fixe la valeur de la dérivée du champ scalaire au
bord ou encore la condition mixte.
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6.2.1.1 Cas de masse nulle
Commencons avec la fonction de Green de I’ équation sans masse de Laplace :
AG(z,y) =6(z,y) . (6.9)

L’intégrale sur une boule de dimension d 4 1, de rayon r et centrée sur le point de coor-
données y est :

1
AG(z,y) dV = —d(x —vy) \/§dd+1y
B(Zl B(Zl Ve
= [ (V- V)C(x,y) dV = Sz —y)dHly = 1 (6.10)
J J

puisque le point y est le centre de la boule. Grace au théoréme de la divergence, le terme
de gauche de (6.10) s’écrit :

/(?ﬁ)c;(a:,y) v = / YG(ay) -7 dS (6.11)

Bay1 S?=08(Bys1)

avec I’élément de surface dS = /7y d?ax’ |  étant la métrique sur le bord, 2’ les coordonnées
sur le bord de la boule (une sphére de dimension d), et 7 le vecteur normal & la boule qui
correspond donc a €.

Etant donné que ’espace est isotrope, la fonction de Green ne dépend que de la distance
entre le point d’observation A de coordonnées x et la source B de coordonnées y, c’est-a-
dire de la distance géodésique d4p entre ces deux points. De plus, il est toujours possible
de mettre la source a 'origine par symétrie de translation. La fonction de Green ne dépend

= del(r). On déduit alors
r

I’équation différentielle ordinaire du premier ordre définissant le propagateur d’un champ
scalaire sans masse

donc que de la distance géodésique dap = r donc ?G (x,y)

dG(r)
dr

Aga(r) = 1 (6.12)

ol de dS = Aga est l'aire d'une hypersphére de dimension d et de rayon r et G tend vers
0 a I'infini. Ce type de formulation permet un traitement uniforme des espaces euclidien et
hyperbolique dont on donne les formules d’aire dans la sous-section suivante.

6.2.1.2 Aires et volumes

En espace euclidien R*1, 1" aire” (plus précisemment I’hypervolume) du bord d’une
boule de dimension d + 1 (autrement dit une sphére de dimension d) et de rayon r est

Aga=n-1(r) = 2 rt (6.13)
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v

avec d > 1, que 'on peut redémontrer en dérivant le volume : A = o Le volume vaut
r

71'”/2 n

rg+1)

En espace hyperbolique Hy, 1, 'aire d’une hypersphére de dimension d est

Vga(r) =

7.‘.n/2

Aga(r) = 2 e <R sinth (%))n_l (6.14)

n/2
que I'on redérive a partir de son volume Vp,_, (1) = 217:(”) R™ [ (sinhz)" !dz.
2

O\..::h

6.2.1.3 Cas massif

Pour trouver la constante de normalisation dans le cas de I’équation de Helmholtz (6.8)
(avec une masse non nulle), nous prenons la limite de cette équation avec expression
explicite du propagateur quand r tend vers zéro, c’est-a-dire se ramener au cas ol la masse
est nulle. Une autre méthode consisterait a résoudre I’analogue de ’équation (6.12) :

dG(r)
dr

Aga(r) — m? /0 " G(@) Aga(a)dz = 1 (6.15)

avec le propagateur tendant vers zéro a linfini. Notons que cette équation présente le
défaut d’étre intégro-différentiel, mais elle a I’avantage de prendre en compte le choix de
normalisation de la fonction de Green.

Concrétement on préférera résoudre I’équation homogeéne c’est-a-dire I’équation (6.8)
en x # y, qui s’appelle ’équation de Helmholtz :

(A —m?)G(z,y) =0 (6.16)

et en tenant compte du comportement limite du propagateur “intérieur-intérieur” G lorsque
x et y coincident et lorsqu’ils sont séparés par une distance infinie.

6.2.2 Solution dans I’espace euclidien plat

Considérons Iespace euclidien R+ et rappelons que le laplacien est défini par A¢ =
1

NG

0,(y/9 9" 0,). En coordonnées sphériques, I’équation (6.16) devient

i2+n—1 d
dr? r dr

-— - m2> G(r;m?) =0 (6.17)

et en tenant compte du comportement limite du propagateur “intérieur-intérieur” G en
r=0et r=o00. A savoir :
— quand la distance r tend vers U'infini, le propagateur s’annule (pour n > 2 ou diverge
pour n = 2)
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— quand la distance r tend vers zéro, le propagateur diverge.
Nous allons procéder & la démonstration du cas le plus général, c’est-a-dire dans le cas
massif et en dimension quelconque. Pour cela, il est plus pédagogique de s’intéresser dans
un premier temps aux cas particuliers.

6.2.2.1 Cas de masse nulle

On pose m? = 0.

En dimension deux
Lorsque le nombre de dimensions de ’espace euclidien est n = 2, I’équation est

2
<j ; 15) Gra(r30) = 8(r). (6.18)

La solution s’écrit simplement

Gp=2(r;0) = Ky Inr + Ko (6.19)

1 1
ot K est la constante de normalisation. En utilisant (6.12), K} = —— = — car
Agl (7’ = 1) 21

I'(1) =1 et on peut poser Ko = 0 ce qui donne

1
Gp=2(r;0) = — Inr. (6.20)
27

On remarque que cette fonction ne s’annule pas quand r tend vers I'infini. A deux dimen-
sions, la fonction de Green de 1’équation de Laplace a donc une “divergence infrarouge”.

En dimension supérieure a deux
Dans le cas oil la masse est toujours nulle mais pour un nombre de dimensions quelconque
n=d+ 1 > 2, on obtient

Gn>2(7’;0) = K + Koy (6.21)

rn—2
1
(2—n)Aga(r =1)

avec K1 = et comme précédemment, Ko = 0 car G s’annule a 'infini :
1 T(3) 1

Gn>2(r;0) = (2 _n) 27Tg pn—2"

(6.22)
6.2.2.2 Cas massif
Dans le cas massif, I’équation (6.17) peut s’écrire :

2 & d 2.2 2
r —2+(n—1)rd——mr G(r;m*) =0. (6.23)

dr T
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Rappels sur les fonctions de Hankel
Cette derniére peut étre reliée a I’équation de Hankel de premiére espéce :

d? d
(xzd:p? + z + (2% — VQ)) y(x) = 0. (6.24)
La solution générale est donc
y(z) = Cy HP () + Co HP (x) (6.25)

avec C et Cy deux constantes de normalisation et H” (x) = Jy(x) +1iY,(x) est la fonction
de Hankel avec J, et Y, respectivement les fonctions de Bessel de premiére et de seconde
espéce. La seconde solution oscillant, on pose Cy = 0.

La fonction spéciale de Bessel de premiére espéce J,(x est solution y(z) de I'équation
suivante :

2
[332 % + m% + (2% - 1/2)] y(z) =0 (6.26)

oll v est un nombre complexe, entier ou demi-entier, et s’exprime explicitement par

Ju(z) = (g)y i __ D" (6.27)

= 227 pl (v + p)!

La fonction de Bessel de seconde espéce (appelée aussi fonction de Neumann) s’exprime a
partir de J, :

Ia(z) cos(Am) — J_x(x)

Y, =i - 6.28
(z) e sin(Am) (6.28)
Solution en dimension quelconque
Dans (6.24), on fait le changement de variable x = imr :
r? d—Q + ri + (—m?*r? — 1?) H(l)(imfr) =0 (6.29)
dr? dr v '
puis on pose
HW (imr) = Cr~ G(imr; m?) (6.30)
d’ott
T2i2 + (1 —20&)7“1 + (—m27“2 — 24 a2) Cr@ G(r-mQ) =0 (6.31)
dr? dr 7 ' '

n
Pour r # 0, on identifie les paramétres avec ceux de l'équation (6.23) : a = 1 — 5 et on

prend v = —a pour qu'il soit positif (car n sera toujours supérieur a 2). La solution de
I’équation de départ (6.23) est alors

G(r;m?) = ér*” HW (imer) (6.32)
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m\"” .
avec — = —— o car on doit retouver le cas de masse nulle et quand » — 0 on a :
T

rY H,Sl)(r) — —i—r(y) <zm> r2v,
T 2

En conclusion,

. . v
i (im
Grim®) = —(=—) rVHW(imr). 6.33
o) = (52) v ) (6.33)

Eventuellement, la solution peut étre réécrite sans argument imaginaire en utilisant
les fonctions de Bessel modifiées de premiére espéce I,(x) = i7" Jy,(ixz). De plus, il est

possible de trouver une relation de récurrence reliant la solution en dimension n & celle en
dimension n + 2 [125].

Comme nous venons de le voir, le probléme en espace plat est relativement direct.
Intéressons-nous maintenant & la résolution de cette équation dans I’espace hyperbolique.

6.2.3 Solution dans I’espace hyperbolique
Rappelons que la métrique de 'espace hyperbolique Hy est (4.7) :
dsIZHId+1 = dr® + sinh?(r) ds3, (6.34)

avec le rayon de courbure égale a 'unité R = 1. Le déterminant de la métrique vaut donc
ici g = (sinh?7)%

L’équation de Helmholtz (6.16) s’écrit dans ce cas :

d? d
1 nir) L 2 C2) .
<dr2 + (n — 1) cotanh(r) o T ) G(r;m”) =0 (6.35)
puis en faisant le changement de variables suivant © = ugp = coshr de (4.13), elle
devient :
—(1—u2)d—2 —l—nui —m?) G(u;m?) =0 (6.36)
du? du ’ - '

Un second changement de variable v = nous permet d’obtenir I’équation suivante :

- (v(l — ) j; + (g - nv) % + m2> G(v;m?*) = 0. (6.37)

6.2.3.1 En dimension deux

Un cas particulier de cette équation est ’équation de Legendre de seconde espéce pour
n = 2 dimensions :

2
((1 —u?) % - 2u% + v(v+ 1)) Q.(u) =0 (6.38)
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1 V1+4m?

avec m? = v(v+1),v = _§i 5
espéce. La solution de ce cas particulier est donc

et @, (u) est la fonction de Legendre de seconde

Gn=z(r;m?) = K Q,(coshr) (6.39)

1
K = ——|125]:
avec 5 [125]

Gr—o(r;m?) = —% Q. (coshr). (6.40)

6.2.3.2 En dimension quelconque d + 1

On cherche maintenant a résoudre 1’équation (6.37) dont la forme générale est celle de
I’ équation hypergéométrique :

d? d
(v(l —v) 2 + (c—(a+b+ 1)@)% - ab) y(v) =0. (6.41)
Par identification des coefficients avec (6.37), on peut choisir @ := Ay = A =
d + Vd? + 4m?
+ +am ,b=A—d = A_ avec Ay les poids conformes de I'opérateur dual, et
¢ = 5. On remarque donc que la somme des deux poids conformes vaut A +A_ = d et

qu’il y a une relation entre la masse au carré, le poids conforme et la dimension de 'espace :
m? = A(A —d).

Afin de trouver la solution adaptée a notre probléme (6.37), on s’intéresse au compor-
tement asymptotique & l'infini : le propagateur G doit s’annuler en r = oo. La solution,
en fonction de la variable v, est dans ce cas (formule 15.5.7 de [148]) :

1
Gv) = Cav *oF (a,a—c+1;a—b+1;> (6.42)
v
_A d 1 1
= (Caw o F A,A—§+§;2A—d+1;; (643)

ot Ca est une constante de normalisation et o F (@', b'; ¢/;v") est une fonction hypergéomé-
trique définie par :

SR Vi) = quﬁ (6.44)

n=0
F /
ou (a’), est le symbole de Pochhammer (a),, = W :
a

[o.¢]

L(a +n)T( +n) 2"
F / b/' /. — —_— .
2 1(a, ,C,Z) F(a’)F(b’) Z I‘(Cl+n) n!

(6.45)
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Afin de trouver la constante de normalisation Ca, une identité (15.3.7 de [148]) nous
permet de réécrire notre solution (6.43) avec v comme variable :

INCAINC— 1\ 2
w <—> oF (a1 — +d;1 -V +d5v)  (6.46)

v
D()D(a —b) [ 1\ 22
S () -

G(U) = CAva

+
v

d 1
oud =A b =A— 5 tget ¢ = 2A —d+ 1 sont les coefficients de (6.43).

Pour expliciter la constante de normalisation Ca, on étudie le comportement quand r —
2

. 1 u r r 7.4 A
0.La variable v = 375 tend alors vers — caru = cosh(r) =1+ 51 + a0 + O(r®).

Remarquons que oFy(a”,b";¢";2" =0) = 1;0on a:

TETW —d) [ 12 T —b) [ 1) 2Te 2
o ~ oo [T (1) R ()
I'()T(d — V') NN
F( /) (C/_b/)( U) ( 1)
(

L TEA-dTIT(EY 2\
R VPNV (4) =07,

Ca

ol a la deuxiéme étape nous avons négligé le terme constant devant l'autre terme.

La solution G(r) doit tendre, pour r — 0 vers celle du cas non massif dans I’espace plat
(2 222—1 1
euclidien G(r) e 2(2_(712))%”/27”2_". En utilisant I'(2z) = NG I'(z)T (z—i— 2), on
trouve que la constante de normalisation vaut
(—1)A+1r(a)

Ca = . 6.47
ST riEpA A - DI(A - ) o4

La solution de (6.37) s’écrit finalement :

—[(A) A d 1 |
o= - F{AA-g+ 528 —d+1; — )(6.48
(7}) 7rd/22A+1(A_%)F<A_%)( U) 241 y 2—|—27 + = ( )
ou encore en fonction du demi-carré de la distance cordale £ = —2v souvent utilisé :
—-T(A) A ( d 1 2)
v = Pl AA—S+ 528 —d+ 1 —2 ). (649
(€) Wd/22A+1(A—g)F(A_g)§ o Fy > f (6.49)

6.2.3.3 Comparaison avec la littérature

Bien entendu, on retrouve ce résultat trés souvent dans la littérature mais sous des
formes différentes et la similitude des expressions n’est pas toujours triviale au premier
abord.
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— Dans la référence [135], la seule différence concerne le signe puisque la définition de

G : (A —m?)G = —§ est différente de celle que nous avons prise :
27AT(A) A A A+1 d 1
G = F — A+ 1 - - — 6.50
(77) (2A—d)ﬂ_d/2F(A_g)n 2471 2 5 + 27?72 ( )

1
avec n = —2v+ 1. En identifiant y = — et en utilisant la relation (15.3.20 de [148])
n

1 1 2
o Fy <a,a+ 336 y> = (1—y) 2" F <2a,c - 5;207 1; —7 _\/\§/§> ,  (6.51)

1
puis en posant z = — dans (6.48) et en utilisant la relation (15.3.16 de [148])
v
z\~a 11 1 I
Fi(a,b;2b;2) = (1—7) Fi(Za,=+cabt=———) (652
2Fi(a, b526;2) 2 21<2a2+2“ +2(2—z)2> (6.52)

on retrouve le méme résultat.

— Les résultats cités dans d’Hoker et Freedman [137,149] sont similaires :

274T(A) AR <A A+1
)

“O = Ga —grirra -1 2 2

TA+1— ,¢2> (6.53)
avec ¢ = 1

6.2.4 Solution dans I’espace ambiant

Pour I’espace ambiant, on obtient le résultat suivant a partir de (6.48) :

I'(A) A ( 2A —d+1 4)
G(X1,X9) = c PlA —2A+1—-d;—— | (6.54
(X1, X2) 2Wd/2F<A_%+1)( )2 b 5 2 ) (6:54)
avec ¢ = (X1—X5)? = —4v provenant de (4.12) et (4.15) et en se rappelant que I'(z+1) =
zT(z).

6.3 Le propagateur “intérieur-bord”

6.3.1 Dans ’espace hyperbolique

Intéressons nous maintenant au propagateur “intérieur-bord”. Le champ scalaire dans
I'intérieur (fonction des coordonnées de Poincaré) ¢(z,Z) solution de I’équation de Helm-
holtz est la propagation de sa valeur au bord qbg(a;’ ) par le propagateur “intérieur-bord”
Ka(z,z;2') -

S

6(2,7) = /dnm’qﬁo( N Ka(z 3 20). (6.55)
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Le propagateur “intérieur-bord” est défini, [152|, par I’équation de Helmholtz (6.8) et
son comportement quand le point se situant a l'intérieur tend vers le bord (z — 0) :

X
Ka(e, :d0) — 24D 6(F — ). (6.56)
2

{ (A —m?)Ka(z, _’_;’ 7)= 0

[e=]

A partir de (6.4), un choix de normalisation possible [152] pour I’expression du propagateur
“intérieur-bord” est le suivant :
2A —d

Ka(z1,21;23) = Zlir_>n0 A G(z1,21; 22, 73) . (6.57)
2 2

D’aprés le paragraphe 4.4, la grandeur v peut s’exprimer dans les coordonnées de Poincaré :

1 2 —4z129

v X1 - X9 - (21—22)2+(x_i—x_é)2

(6.58)

ot X7 et X5 sont les coordonnées ambiantes de deux points de 'intérieur.

1
On cherche la limite de — quand un des points est sur le bord Xy — X’ c’est-a-dire
v

1 —4z o
zo — 2 = 0. On a donc la relation = ~ 5 - ! —~5 %2 pour 2] # Z3. Quand la
v 27 + (21 — 73)
coordonnée zy tend vers zéro, la fonction hypergéométrique oF; (dans le propagateur G)
tend vers 1 puisque z1, Z1 et 25 sont fixés.

On obtient donc [137] :

A
Ka(z,&2") = 7Td/2F(A—%l) <22 @ _,)2> . (6.59)

6.3.2 Dans ’espace ambiant

Depuis Dirac [153], il est d’usage d’utiliser le formalisme ambiant également pour dé-
crire le bord conforme de l'espace-temps d’anti de Sitter. Dans le cas de 1’espace hyper-
bolique Hy, 1, cette construction est connue depuis plus longtemps et consiste a décrire le
bord conforme S comme le cone X’ = 0 projectif c’est-a-dire avec la relation d’équiva-

lence X’ ~ AX’ avec A # 0. Une paramétrisation commode est X' = (X/+,X/_,)z/) =

-2 -
(1,2",2"). Rappelons la paramétrisation des coordonnées d’un point de l'intérieur : X =
2, 2 -
= zZ+xc 1 x
(X, X7, X) = ( + ,—,—=). On calcule (X — X")?2 = —1 — 2X - X’ pour en déduire
z z z
2 4z

XX 2r@-ap

On peut écrire le propagateur “intérieur-bord” en coordonnées ambiantes :

T(A) 1

KA(X;X') =
al ) m20(A-9)2x . X))~

(6.60)
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1
résultat similaire a celui de la référence [140] & un facteur de normalisation prés CDARA—d)
On peut réécrire I'expression précédente & 1’aide de la transformée de Mellin :

1 o dt /
KX, X)) = — / T A A XNX 6.61
X = s )G (6.61)

1 1 dt
car —x = —av / — A e7t* comme on peut le vérifier a partir de la forme intégrale de
z I'(A) t

la fonction gamma d’Euler.

La représentation ambiante du propagateur “intérieur-bord” permet d’écrire la forme
ambiante de 1’équation (6.55) :

B(X) = / dX' Ka(X; X') Bo(X") (6.62)

avec Pg(X’) le représentant ambiant de la valeur au bord du champ scalaire.
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Chapitre 7

Les fonctions a trois points

Dans ce chapitre, nous travaillerons avec les coordonnées ambiantes afin de faciliter les
calculs : celles des points de l'espace AdS sont notées X (pour rappel, on fixe le rayon de
courbure de I’espace-temps & I'unité X2 = —1) tandis que celles d'un point du bord 0AdS
sont notées X’ (avec X 72— 0). Les différents points du bord sont différenciés par un indice
X';.

Ce chapitre est largement inspiré de larticle [140| mais le calcul des fonctions a trois
points pour un vertex cubique dans AdS entre deux champs scalaires de masse quelconque
et un champ de jauge de spin entier arbitraire semble original. Il serait intéressant de
pouvoir comparer ce résultat avec I'expression d’une telle fonction & trois points en CFT
entre trois opérateurs primaires, deux scalaires et un courant conservé, sans trace et de
spin quelconque dont la forme est fixée par la symétrie conforme [154].

7.1 Les propagateurs en coordonnées ambiantes pour un ten-
seur de rang quelconque

Pour la suite, il est nécessaire de connaitre I’expression des propagateurs en coordonnées
ambiantes pour un tenseur de rang quelconque, ce qui est connu pour les propagateurs
“Intérieur-bord” [138] mais qui reste un probléme ouvert pour les propagateurs “intérieur-
intérieur” dans le formalisme de Fronsdal (par contre, pour 'expression du propagateur
dans le formalisme de Vasiliev, voir [47]).

7.1.1 Le propagateur ‘“intérieur-bord”

Le progateur “intérieur-bord” pour un champ scalaire a été traité dans la section 6.3.2.

La représentation ambiante du propagateur “intérieur-bord” d’un champ vectoriel (rang
s = 1) permettrait d’écrire la forme ambiante de la valeur du champ comme la propagation
de sa valeur au bord :

VAR = [ X KAY (X X) Vaas(X) (7.1)

avec Vo ar(X') le représentant ambiant de la valeur au bord du champ vectoriel.
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Rappelons que le représentant ambiant du champ vectoriel V4 (X) est tangent X4 VA(X) =
0, de méme pour sa valeur au bord X}, V{4 (X') = 0.

Le progateur “intérieur-bord” du champ vectoriel K %7 /f (X, X') peut donc étre vu comme
la “projection” du progateur “intérieur-bord” d’un champ scalaire (voir par exemple [140]) :

1 > dt :
AM ! _ A +MA —2tX'-X
KAM(x,X") = APTACT) —;l)/o VAR (7.2)

Ay M
AM_X’X

; ou, de fagon contre-intuitive, M est I'indice

avec le projecteur J4M = p

lié au bord et A celui lié a 'intérieur (voir la table 5.1). On peut le réécrire comme 'action
d’un opérateur différentiel du bord sur le propagateur de Witten du champ scalaire [140] :

KAM(x,X") = DMNX',0')Ka,o(X,X') (7.3)
avec l'opérateur différentiel

1 0

DAM x! al — ,AM *X’A ) 7.4
I,A( ) ) n + A 8X§\/I ( )
Pour un champ tensoriel de rang s = 2, le résultat est de la méme forme [140] :
Kﬁ1§2M1M2(X’ X/) — D2A1AA2M1M2(X,,8/) KA70<X7X/) (75)
avec l'opérateur différentiel
1
D£1AA2M1M2(X/,8/) — nAlMl,r]AQMQ + K (nAlMlX/A2 6§w2 + 1 o 2)
X/A1 X’AQ
8 &y . 7.6

A Taide des fonctions génératrices, nous généralisons ce propagateur “intérieur-bord”
)
en formulation ambiante pour un tenseur de spin s :

Kas(X,U; X'\ W) = Das(U; X', 0 W) Kao(X;X") (7.7)
ot nous définissons le polynéme en les variables auxiliaires U (intérieur) et W (bord)
Das(U;s X',0 W) = Wag, - War, Ua, - Ug, DM M(X 0 (78)

dont le coefficient est I'opérateur différentiel recherché

s—1
1 Mo o1 A A 0 0
Dﬁl Ale MS(XI,al) — nAlMl “'nA]MJXI J+1 X/ s (79)
8 = (A); aX’MHI OX .
fd e I'(z+mn)
Dans la formule précédente, le symbole de Pochhammer est utilisé (z), = W et
z

une symétrisation sur les indices A et une autre sur les indices M est implicite. La formule
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(7.9) généralise les formules (7.4) et (7.6). Ce résultat a été obtenu par récurrence et peut
étre résumé sous forme d’un polynéme :

s—1
DaL(U: X", 0, W) = (Al)A(W.U)j (X! TY (W - Oy )* (7.10)
j=0 "7
ss—l WU j
- 0000 S 5 [

Définissons la fonction génératrice de ces opérateurs pour chaque spin s par

DAU; X', 8\ W) = Z iDa.(U; X', 0, W) (7.11)
s=| O
0 1 s—1 ' '
= 5 (W -UY (X' -U)* (W -8x)*7 (7.12)
s=0 ]:0 J

ot A(s) indique que le poids conforme dépend du spin s. Par exemple, pour un champ de
Fronsdal A(s) = d+ s — 2.

7.1.2 Le propagateur “intérieur-intérieur” pour un tenseur de rang quel-
conque

D’apres [140, 150, 151], on peut réécrire le propagateur “intérieur-intérieur” (6.54) au
moyen du produit de deux propagateurs “intérieur-bord” en intégrant sur un point auxiliaire
du bord X’ ainsi que sur un paramétre auxiliaire ¢ (figure 7.1).

FI1GURE 7.1 — Le propagateur “intérieur-intérieur” vu comme une décomposition de deux
propagateurs “intérieur-bord”

Pour un champ scalaire :
100

dC 7 / v/
Gap(X1,X2) = / o7 faole / dx’ / )2 2 XK 2T (7.13)
Sd 0

—100
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~ dt dt _
avec (dt.)? = - $2He s ¢ of

1
~ 27T ()T(=c) (A —

—_

fao(c)

[VlIs®

)2_02'

En partant de (7.13), on obtient le propagateur “intérieur-intérieur” pour un vecteur
(rang 1) :

100 [
d ~ ! rv/
Gﬁﬁ(Xth) = / ﬁcifA,l(C) / dX,/(dtc)Z 26X X1 +2tX"- X5 D%\/l_énMN DJ%V?C(7.14)
—100 0AdS 0

2
2
A
A——] —¢c2
(2-3)
De la méme fagon, pour un tenseur de rang s = 2, il faut remplacer dans 1’équation

précédente [140] :
2
(;l + 1) - 02]
1

NMN — €MiMaNiNy = §(UM1N177M2N2 + 77M1]\72771\/[2N1) - &WM1M277N1N2 '(7-15)

avec fa1(c) = fao(c)

faale) —  faz(c) = faole)

pMA . pMiMzA Ay

Il serait intéressant de pouvoir généraliser ces propriétés pour un spin entier arbitraire.
Cela permettrait sans doute de simplifier d’éventuels calculs de diagrammes d’échange.

7.2 Calcul de la fonction & trois points

Nous souhaitons calculer la fonction a trois points (cf. figure 7.2) pour un (ou des)
champ(s) de spin s entier.

A partir de la formule (3.34), le vertex cubique se note dans l’espace ambiant :

0

0

<H|J> = / dXexp(
Hd+1 U=vV=0

:/ dX H(X,8v)J(X,V)|y_ (7.16)
Hata

avec H la fonction génératrice du champ de jauge et J la fonction génératrice du courant
conservé bilinéaire en le champ ® (U et V des variables auxiliaires ambiantes), et on a
remplacé 'intégrale sur ’espace ambiant par I'intégrale sur ’espace hyperbolique.

Toujours dans un souci de simplification, intéressons-nous uniquement a l’expression
pour un spin s fixé mais quelconque :

si.H) = [ aX B0 Ty (7.17)
d+1
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-7
J“L]

FIGURE 7.2 — Un vertex cubique 0 — 0 — s

ou la seule différence est que le champ de jauge H est maintenant un polyndéme homogéne
en la variable auxiliaire U de degré s.

Rappelons maintenant I’expression de la fonction génératrice du courant ambiant (3.7) :
JX, V) = &(X = V)X + V). (7.18)

ot ®; et @y sont les représentants ambiants de deux champs scalaires donnés par (6.55) :
Bi(X) = [ dX{ K 0(X:X') B04(X') (719)

avec ®o(X’;) le représentant ambiant du champ scalaire sur le bord. Par rapport a (3.7),
on ne tient pas compte dans I’équation (7.18) du nombre complexe i afin de simplifier les
notations, mais le principe des calculs reste bien évidemment le méme. Les poids conformes
associés aux champs scalaires ®; et @4 sont respectivement A; = Ay = Aet Ag =A_ =
d— A.

La fonction génératrice du champ de jauge s’exprime par :

H(X,U) = / AX' 5 Ho(X' 5, 0) K ny o (X, Us X' 5, W), (7.20)
Sd
ou Hy est la valeur au bord (au point X}) de la fonction génératrice du champ de jauge,

Aj le poids conforme associé au champ en ce point, W est la variable auxiliaire associée
au bord S% et Ka,  la fonction génératrice du propagateur “intérieur-bord” (7.7) et (7.11).

L’expression du vertex cubique (7.17) peut s’écrire en terme de la fonction a trois points
0—-0—s:

S{[®, H| = /dX{ dX5dX5 ®01(X' 1) Po2(X'2) Ho(X 5,0 )F (X, W)lw=o (7.21)
ot le représentant ambiant de la fonction & trois points est

F(X[,W) = Da,s (aV;X’g,ag,W)/ dX Kp,o(X;X'3) x
Hgy1

Kpn o X =V X)) Knpo(X + VX'

X

Ny—o - (7.22)
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Nous avons utilisé les équations (7.18), (7.19) et (7.20) ainsi que (7.7).
Le propagateur “intérieur-bord” en coordonnées ambiantes est donné par (6.61). Ainsi
la fonction & trois points s’écrit :

FOXAW) = Dage(0viX'0,06,W) [ dXx (7.23)

Hg41
/ }
0

T et en utilisant 'expression intégrale du propagateur “intérieur-
e

bord” du champ sclaire (6.61). En regroupant les facteurs en fonction des variables d’inté-

X

3 3
HC’i%tiAi exp{—Q [(ZtiX'i> - X — (tQX,2 — thll)‘V
- t; i=1

=1

V=0

—

avec C; =

gration, on obtient :

3 o0
F(XZ,, W) = DA3,5 (8v;X,3,aé,W) HCZ/C?Z tiAi exp [—Q(tQXlg — thll) . V] X
=1 5
3
X / dX exp [—2 (thx’l) -X] (7.24)
Hats i=1 V=0
3
Onpose T = — > t;X'; et Ap = > A;. Une autre identité employée dans [140] permet

i=1 i
d’effectuer l'intégrale en X :

+oo “+o0o
dt@ Ai 27X h AT - 2h dtl Ai T2
o Hgy o

d , . .
avec h = 5 Nous obtenons alors I’expression suivante :

3
Ar —d
F(X[,W) = Days(dv;X'3,8,W) Hcmd/ZF<T2> F(XLt, V)| (7.26)
i=1 V=0
ou
/ oodti A / / 2
f(X[t,V) = — o exp [2(t2 X2 — t1.X71) -V +T7]. (7.27)
0

Pour continuer le calcul, deux directions s’offrent & nous.
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En calculant l’intégrale sur les paramétres ¢; :

Grace au développement de I’exponentielle en série de puissances, la fonction (7.27) de-
vient :

Tdt; A 1 n
fXit, V) = 7th 20XV = 01Xy V)] e (1.28)
0 g n=0

Le terme de la forme (A + B)™ peut étre développé a 'aide du bindéme de Newton :
n B\™
(A4 By = Am 35 (M) <A> don

m=0

m=0

o0 o0 n
1 d n *th, 1 Vv m 2
X! t:, V) — — (to X o - V)" —_— T(7.29
f( 17 nz_:n /t ) 2 2" ) (m)(tQX’QV € ( )
= 0
puis en réorganisant les termes, on obtient :

> 1 - n — X" V™ [ dt; 2
X, V) = — n — 8™ eT7(7.30
FOT) = 3L >Z<m)(;«2.v>/tz (7.30)

m=0 0
On pose
All = Al +m
A, = As+n-—m
AL, = A (7.31)

afin de condenser 'écriture de (7.30) :

i - S (0) () [ o

L’identité de Symanzik est nécessaire pour calculer les intégrales sur ¢ (cité dans [140]) :

OOd A6 1 1 —5.
[ =5 1 repe)™ (7.3
9 1<i<j<3
Al AL - AL
ot les coefficients valent 0;; = + avec k #i et k # j, et X[, = —2X'; - XI.

Dans notre cas, on a

- o Lo nx- () (X VYL
J(Xita, V) Zn V) X'y V ) 2 II re
n=0 1<i<5<3

(7.34)
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avec
n
/13 = di3+m— 5
n
2 = ity
Sy = o3 —m+ g . (7.35)

En factorisant les termes ne dépendant pas des indices de sommation n et m, la fonction
f devient

1 - - & X 2\
Pt V) = L) (X o (g Y L <2<X'2-v> (xra-) ) Tt
o 12423
S\ (X VXN L )
_ r NG . 7.36
9 mz_0<m><X’2'V ) T (7.36)

Enfin, en faisant apparaitre explicitement les indices de somme, la fonction & trois points
(7.26) devient

3
Ap —d\ 1
F(X[,W) = Days (0v;X'5,05 W) []Cin??T (7’2) 5 (X12) 7012 (X1y) ™9 (X55) %
=1
®© 4 / X!, 12\ " n
x Zn!<2(x Q'V)<X12Xé3 1“(512+§>><

n=0
Y XV XL\
szjo(:J (X’;VX?i) F(523_m+g)F(513+m—g>

En principe, pour terminer le calcul, il resterait & appliquer l'opérateur différentiel
Dpy.s (Ov; X' 3,05, W) défini par (7.11). Une autre voie consiste a l'appliquer avant d’ef-
fectuer les intégrales. Quoiqu’il en soit ce n’est pas tant 'expression explicite de la fonction
& trois points qui nous intéresse que sa comparaison avec son analogue dans la théorie
conforme des champs.

(7.37)

V=0

En développant 'opérateur différentiel :

Une autre route consiste a partir de ’équation (7.26) et a développer 'expression de
T2 :
3 Ar —d\ [dt
F(XZ,, W) = DA3,5 (8v;X,3,aé,W) HCZ 7Td/2r <T2_> /tztlAl exp [2(t2X,2 — thll) . V] X
i=1

7

X  exp [tthX/ 1X/ 2+ tlth/ 1X, 3+ 752753X, QX, 3] (738)

‘V=O ’

Puisque la dépendance en V et en X’? est exponentielle, on peut remplacer dans 1'ex-
pression de D, s (Ov; X' 3,05, W) définie par (7.11)
[ 8V par 2(t2X’2 — thll)
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[ aé par tg(thll + th’g),
et on obtient :

/ 5 d/2 Ar —d — 1 dt; Ay / ! \\j
F(x{,w) = [Jci=*T 5 > &) 5 (W -2(t2X 5 — 1 X" 1)) x
i=1 =0 J 0 ¢

X (Xlg . Q(tQX/ 9 — th/ 1))87]'(W . tg(th/ 1+ tQXI 2))87j6T2 . (739)

Ici, il reste & effectuer les intégrales sur les paramétres t;.
Conclusion du calcul :

Nous venons de trouver deux formes explicites de la fonction & trois points entre deux
champs scalaires ¢ et un tenseur de rang quelconque s dans I'espace ambiant. On peut
évidemment sommer sur les spins via 'usage de la fonction génératrice de la fonction a trois
points. La complexité des expressions n’a pas encore permis une comparaison explicite avec
les résultats sur les fonctions a trois points entre deux opérateurs primaires scalaires et un
courant conforme en CFT [154] qui se trouvent sous une forme complétement différente.
Notons que ce résultat s’applique a des dimensions conformes arbitraires pour les deux
champs scalaires tandis que les vérifications [155-157| de la correspondance concernent la
dimension d = 3 et des valeurs bien spécifiques des poids conformes des scalaires. Il serait
également intéressant de généraliser ces résultats pour des triplets de spin quelconque grace
aux vertex sur la couche de masse [41] et de comparer alors avec les résultats récents en
CFT [158].

Un autre objectif est de calculer le diagramme d’échange entre quatre champs scalaires
pour une tour infinie de spins échangés. Pour cela, il nous faut connaitre 1’expression
explicite ambiante du propagateur “intérieur-intérieur” de ces champs de jauge ou bien
on peut espérer simplifier le calcul en utilisant sa décomposition en produits de deux
propagateurs “intérieur-bord” comme montré sur la figure 7.3.

X X X1

J\F "I} J\- rl _"'Lr ll'l

FIGURE 7.3 — Le diagramme d’échange avec la décomposition du propagateur “bord-bord”
en deux propagateurs “intérieur-bord” [140]
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Chapitre 8

Symétries et holographie : de la
physique relativiste a la physique
non-relativiste

Dans ce huitiéme chapitre, je vous exposerai les travaux que j’ai réalisés en collaboration
avec Xavier Bekaert et Sergej Moroz sur un probléme issu de la matiére condensée et le lien
entre physiques relativiste et non-relativiste. Je développerai particuliérement les sections
auxquelles je me suis consacrée, & savoir les symétries de ’équation de Schrodinger libre
et les courants associés (qui sont en majorité issues de la traduction du second article se
trouvant dans le chapitre suivant).

8.1 Symétries non-relativistes

8.1.1 Le groupe de Schrodinger des symétries cinématiques

En termes mathématiques, le principe de Galilée de la relativité est codé dans le groupe
de Galilée. Pour cette raison, la structure de ce groupe joue un role important dans la
physique non relativiste [159]. Dans un espace a d dimensions spatiales, le groupe agit sur
les coordonnées spatiales x et le temps ¢t comme

(t,x) = g(t,x) = (t+ B, Zx + vt + a), (8.1)

ot B € R; v,a € R?et # est une matrice de rotations dans les d dimensions spatiales.
En mécanique quantique, le groupe de Galilée agit par des représentations projectives
sur ’espace de Hilbert des solutions de 1’équation de Schrodinger lorsque le potentiel est
invariant par les translations d’espace et de temps '. En d’autres termes, dans ce cas, toute
solution est transformée en une solution de la forme

P(t,x) = y(g(t,x)) Y (g7 (t,%)) (8.2)

1. Bien sfir, pour une seule particule, le potentiel doit alors étre constant.
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ol 7y est un facteur de phase compatible avec les lois de multiplication du groupe [160].
Par exemple, une fonction d’onde scalaire ¢ décrivant une seule particule de masse m se
transforme sous un boost galiléen pur g, comme

P(t,x) — exp —%n(VQt —2v-x)| ¥(gy ' (¢ x)). (8.3)

La présence du facteur de phase dépendant de la masse dans la loi de transformation
implique une régle de supersélection interdisant la superposition des états de masses diffé-
rentes, connues sous le nom de régle de superselection de Bargmann [161]. Cette régle limite
la dynamique et précise que chaque terme dans le lagrangien de la théorie non-relativiste
invariante sous Galilée doit conserver la masse totale. Pour cette raison, la masse joue le
role d’une charge conservée dans la physique non relativiste.

En élargissant le groupe de Galilée par le biais d’une extension centrale, connue sous
le nom d’opérateur de masse (ou bien opérateur du nombre de particules), nous pouvons
trouver des représentations unitaires [159,160]. L’extension centrale du groupe de Galilée est
parfois appelée le groupe de Bargmann [162]. Son algebre de Lie se compose des generateurs

suivants : la masse M une translation temporelle Pt ; d translations spatiales P; ; d(d2 D)

rotations spatiales Mij et d boosts galiléens Ki. Les commutateurs non triviaux sont

[Mz]7 My = i(5ikf\7jz - 5jk]\/4\il — 0 M A'k + 53‘1]\7@'1@) ,
[Mzg,Kk] = i(5ikf(j — jkf(z‘), [MZJ7Pk] = i(éikﬁj — jkﬁi)7 (8.4)
[P, Kj) = —i6;M, [P, Kj] = —iP;.

Notons que les relations de commutation entre les générateurs de translation et des boosts
galiléens sont les relations de commutation canoniques de l'algébre d’Heisenberg by en d
dimensions spatiales, ot les générateurs des boosts galiléens jouent le réle des opérateurs
position tandis que le role de la constante de Planck réduite est joué par la masse.

Il est remarquable que le groupe des symétries d’espace-temps de ’équation libre de
Schrodinger avec le potentiel chimique nul (c’est-a-dire sans terme constant dans le hamil-
tonien)

(LX) = — 2 (1, x) (8.5)

est plus grand que le groupe de Bargmann si I’on relache la restriction de module unitaire
(|v] = 1) sur le facteur  apparaissant dans la loi de transformation. D’aprés Niederer [163],
nous appelons symétrie cinématique de l’équation de Schridinger toute transformation de
la forme (8.2), ou v est un facteur complexe compatible avec la structure du groupe, qui

envoie des solutions vers des solutions 2.

Tout d’abord, rappelons-nous que la masse est juste une charge et a donc une dimen-
sion d’échelle nulle. Ainsi, le systéme sans interaction n’a pas de paramétre avec dimension
d’échelle non nulle, ce qui implique une symétrie d’échelle supplémentaire. Dans la phy-
sique non relativiste, cette symétrie redimensionne les coordonnées de temps et d’espace

2. Certains mathématiciens appellent ces transformations une représentation “multiplier” (voir para-
graphe 1.1.1.3) du groupe de symétrie.
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différemment
t x
tx) = | —,— |, a€eR 8.6
(00 (3. %) (56)
ce qui correspond a l’exposant critique dynamique z = 2, qui détermine 1’échelle relative
des coordonnées spatiales et temporelles.

Deuxiémement, Niederer trouve dans [163] qu’en plus de la symétrie d’échelle, une
transformation d’inversion discréte 3, qui agit sur I’espace-temps comme >

1 x

(t,X) — E(t,X) = <_t ) t) (87)
est également une symétrie de ’équation de Schrodinger libre. Par la conjugaison d’une
translation temporelle gg et d’une inversion X,

t X
tx) = (7 lgD)(tx) = ( —s , —— 8.8
(0 =+ (70900 = (35 o) (85)
une nouvelle symétrie de I’équation de Schrodinger libre est trouvée [163,164]. Cette trans-
formation est connue sous le nom d’expansion et est 'analogue non-relativiste des trans-
formations conformes spéciales. Notons qu'un boost galiléen gy est la conjuguaison d’une
translation spatiale g, et d’une inversion .

L’extension du groupe de Bargmann par les transformations d’échelle et les expansions
est connue sous le nom de groupe de Schrédinger & d dimensions spatiales, notée Sch(d).
Apparemment, cette structure était déja connue par Jacobi (voir la conclusion de [165]),
mais a été retrouvée aprés lavénement de la mécanique quantique dans [163, 164]. La
structure imbriquée des groupes de Galilée, Bargmann et Schrédinger est illustrée dans la
figure 8.1. Le groupe de Schrédinger est la contrepartie non-relativiste du groupe conforme,
bien que le premier ne peut pas étre obtenu comme la contraction d’Inénu-Wigner de ce
dernier.

Le groupe de Schrodinger est simplement généré par les isométries euclidiennes (ro-
tations et translations spatiales), la translation temporelle, la transformation d’échelle et
I'inversion®. En plus de (8.4), les commutateurs non triviaux de 'algébre de Schrédinger
sch(d) a d dimensions spatiales sont

[P, D) =iP;, [P,,C]=—iK;, [K;D]=-ik;, 59)
[D,C] =2iC, [D,P)=—2iP,, [C,P]=—iD. '

Ensemble, le générateur de translation temporelle ﬁt, le générateur d’échelle D et le
générateur de l’expansion C forme une sous-algebre sl(2,R) de l'algébre de Schrodin-
ger compléte. Ces générateurs commutent avec les générateurs ]\/Zij de la sous-algebre
de rotation o(d). L’algébre de Schrodinger a la structure d’une somme semi-directe :

sch(d) = ba @ (o(d) D sl(2,R)).

3. Elle est ’analogue de la transformation conforme z* — fT; et elle n’est pas définie pour ¢t = 0. Il est

nécessaire de compactifier I’espace usuel, c’est-a-dire de tenir compte des points a l'infini.
4. Les boosts galiléens et les expansions apparaissent naturellement (plus précisément, par l'intermé-
diaire de la conjugaison des translations d’espace-temps et de I'inversion).
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Heisenberg

Boosts galiléens K* sl(2,R)
Translations spatiales P!
Translation temporelle B Galilée
Masse M Bargmann
Dilatation D
Expansion ' Schrodinger

FI1GURE 8.1 — L’algébre de Schrodinger

Enfin, la représentation “standard” de l’algébre de Schrodinger, comme opérateurs dif-
férentiels d’ordre un, agissant sur la fonction d’onde d’une particule ¥(t,x) est

ﬁ 81, ﬁt = i@t, M = m,
M = —Z(xla] .Tjai),
K; =

mx; + it0;,
(8.10)

~ . d
:i<2t8t+x’8i+2>,
mo o

d
t28t+t z'0; + >>+2x.

/_\

8.1.2 L’algébre de Weyl des symétries d’ordre élevé

L’algébre des symétries d’espace-temps de 1’équation de Schrédinger d’une particule
libre est en fait beaucoup plus grande que 'algébre de Schrodinger. Plus précisément, 1’al-
gébre de Weyl est réalisée comme ’algébre de symétries de dimension infinie de I’équation
de Schrodinger libre, comme ca a été souligné dans le travail inspirant [166]. Ici, nous
prouvons que 'algébre de Weyl est 1'algébre mazimale des symétries d’espace-temps de
I’équation de Schrodinger. Dans le contexte actuel, ce résultat peut étre utilisé comme la
contrepartie non-relativiste du théoréme de Eastwood [167] sur 'algébre de symétrie maxi-
male de I'équation de Klein-Gordon de masse nulle (voir par exemple la section 4 de [122]
pour une revue). En conséquence, I’algébre de Weyl (et, éventuellement, son extension a
valeurs matricielles) fournit une algébre non-relativiste de spin élevé qui est ’analogue
précis de 'algébre de Vasiliev (éventuellement étendue) des spins élevés [168].
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8.1.3 L’algébre de symétrie maximale de I’équation de Schrodinger

Afin de donner des énoncés précis et rigoureux analogues & des résultats connus sur
le champ scalaire conforme, nous allons commencer par quelques définitions mimant celles
de [122,167]. Une symétrie de I’équation de Schridinger est un opérateur différentiel linéaire
A\(t, X, ﬁt, f’) tel qu’il existe un opérateur différentiel linéaire B satisfaisant

SA=BS, (8.11)
ot S est I'opérateur de Schrédinger défini par

S:=DP - H, (8.12)

et H est un hamiltonien d’une particule massive non-relativiste prenant la forme habituelle

~ o~ P2 ~
H(X,P — X). 1
XP)=5— + V(X) (5.13)
L’equation de Schrodinger se note
i0n)(t,x) ~ Hip(t,x) = Sp(t,x) ~ 0, (8.14)

ol le symbole de I'égalité “faible” ~ représente une ¢galit¢ valide lorsque I'équation de
Schrodinger est satisfaite. Par définition, toute symétrie A préserve 'espace K erS des
solutions de I’équation de Schrodinger (8.14) : il envoie toute solution 1 vers une solution
Y = ;1\11} La solution générale de I’équation de Schrodinger (8.14) est bien siir

~

P(t,x) = U(t)¢¥(0,x), (8.15)

U(t) = exp(—itH) (8.16)

est 'opérateur d’évolution temporelle. De toute évidence, I’évolution dans le temps

A~ A~

F(t) = U FX,P)U(t) = F(X(1®),P(1t)), (8.17)

de tout opérateur différentiel spatial F ()A(, 13) définit une symeétrie de I’équation de Schro-
dinger dans le sens ci-dessus. Il est clair que F(t (t) envoie des solutions vers des solutions ot
les fonctions d’onde initiales sont liées par lopérateur initial F (0) = F. La condition (8.11)
est satisfaite avec A = B = F(t) puisque i0,F (t) = [H, ﬁ(t)l, qui découle de (8.17). Notons
que (8.17) est I’évolution temporelle inversée (¢ — —t) de F(X,P) dans la représentation
de Heisenberg?.

Une symétrie A est dite triviale si A = OS pour un certain opérateur linéaire 6, car
elle envoie toute solution vers zéro. Une telle symétrie triviale est toujours une symétrie
de I’équation de Schrédinger, car elle obéit a (8.11) avec B =2S0. L’algébre des symétries

5. Notons que dans [78], Pévolution inversée dans le temps dans la représentation de Heisenberg a été
écrite F(—t) afin de souligner ce fait. Ici, nous avons choisi la notation la plus simple F(t) dans le but
d’éviter de surcharger les nombreuses formules ou apparaissent de telles notations.
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triviales forme un idéal a gauche de ’algébre des opérateurs linéaires dotée de la compo-
sition o comme la multiplication. En outre, il existe aussi un idéal a droite dans 'algébre
engendrée par toutes les symétries de ’équation de Schrodinger. Deux symétries ﬁl et ;{2
sont dites équivalentes, si elles différent par une symétrie triviale. La relation d’équivalence
correspondante est désignée par une égalité faible

A\l ~ A\Q < A\l = A2 + 6§ (8.18)

L’algébre de symétrie maximale de [’équation de Schridinger est Ialgébre complexe de
toutes les symétries inéquivalentes de 1’équation de Schrodinger, c’est-a-dire ’algébre de
toutes les symétries quotientée par les idéaux a droite et & gauche des symétries triviales.
Nous allons montrer que pour tout hamiltonien indépendant du temps, l’algébre de symétrie
mazimale de I’équation de Schrédinger pour une particule est isomorphe a Ualgébre de Weyl

des opérateurs différentiels spatiaux®.

8.1.4 La sous-algébre de Schrodinger

Comme il fallait s’y attendre, I’évolution temporelle inversée des observables initiales
couvrent toutes les symétries inéquivalentes de toute équation de Schrodinger. Mais com-
ment l'algébre de Schrodinger sch(d) s’inscrit dans ce résultat 7 Et qu’est-ce qui est si
spécial au sujet de I’évolution libre ?

~

2
Une observation utile est que, lorsque la particule est libre (| H = Hp o = o tous les
m

les opérateurs différentiels (8.10) sont équivalents a des polynémes de degré au plus deux en
les opérateurs d’évolution temporelle des positions et des impulsions. Par exemple, la masse

M = m est le cas dégénéré de degré zéro. En outre, le générateur de translation temporelle
P2

est équivalent au hamiltonien quadratique ﬁt R ﬁfree =5 et les générateurs de rotation
m

peuvent étre écrits comme le moment angulaire ]\/4\1-]- = )?Zf’j -X ]]3@ Pour les autres généra-
teurs, il est plus facile de vérifier d’abord cette propriété au moment ¢t = 0. Les générateurs
des boosts galiléens évalués a t = 0 sont proportionnels aux positions, K Z‘ 0 = mX ¢ tan-
dis que les générateurs d’échelle et d’expansion peuvent étre écrits comme les polynémes
quadratiques, ﬁ‘ 0 = -X 213Z + zg et C } 0 = % X2. Tous ensemble, ces opérateurs dif-
férentiels & t = 0 fournissent une représentation unitaire de 'algébre de Schrédinger sur
I’espace de Hilbert des fonctions d’onde initiales d’une particule. Par conséquent, il en va

de méme des évolutions temporelles (inversées) de ces observables pour chaque hamilto-
p2 p2
t ~ P ~
) = exp(—th)T exp(+iHt) doit
m

nien. Toutefois, 'opérateur dépendant du temps

étre identifié avec le générateur P, dans cette réalisation particuliére de l'algébre de Schro-
dinger, mais elle ne correspond pas au véritable hamiltonien H (sauf quand la particule
est libre) et donc en général, il ne génére pas I’évolution réelle dans le temps de la fonction

6. Pour une fonction d’onde & n composantes, 'algébre de symétrie maximale de I’équation de Schro-
dinger est isomorphe au produit tensoriel entre ’algébre des matrices carrées n x n et 'algébre de Weyl
des opérateurs différentiels spatiaux : M, ® Aq.
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d’onde. Autrement dit, I’évolution dans le temps inversé mentionnée ci-dessus des géné-
rateurs de degré au plus deux sont des symétries (dans le sens de notre définition), ils
satisfont aux relations de commutation de ’algébre de Schrodinger, mais ils n’ont pas une
interprétation physique simple pour un hamiltonien générique.

En général, les transformations engendrées par 1’évolution dans le temps (inversée) de
certaines observables ne sont pas “cinématiques” [169], dans le sens ou elles ne générent
pas des transformations de la forme (8.2). Une transformation cinématique est générée par
un opérateur différentiel linéaire du premier ordre (en particulier, un simple changement
de coordonnées est généré par un champ de vecteurs). Dans ce qui suit, les symétries
de premier ordre de l’équation de Schrédinger seront appelées symétries cinématiques,
tandis que les symétries d’ordre élevé seront désignées par symétries supérieures (suivant
I'usage des mathématiciens). Notons qu’un opérateur différentiel linéaire d’ordre supérieur
ne génére pas une transformation cinématique. Ceci explique pourquoi les symétries d’ordre
supérieur ne sont généralement pas considérées par les physiciens. Cependant, du point de
vue mathématique, I’algébre de Schrodinger est toujours une sous-algébre des symétries de
I’équation de Schrédinger d’une seule particule mais aucune de ses réalisations ne génére
une représentation cinématique du groupe de Schrédinger, a I'exception du cas spécial des
potentiels déterminés par Niederer [35,170]. Comme mentionné ci-dessus, le cas le plus
simple est le hamiltonien libre, oti I’évolution temporelle des opérateurs de position et de
moment est X(t) =X - tP/m et P(t) = P. Dans un tel cas, les opérateurs différentiels
(8.10) peuvent étre réécrits en fonction des positions et des moments dépendant du temps

~ Py P2 _

b~ g = om ~ Hieer M=,

MY = X{(t)PI(t) — XI(t)P(¢),

K" =mX'(t), (8.19)

En outre, une bonne observation de [166,171] est que toutes ces symétries sont équivalentes

a des polynomes de degré deux en les générateurs des boosts galiléens et des translations

(plus précisément, M est de degré zéro, tandis que par deﬁmtlon P et K sont de degré
un). En effet, on peut remplacer partout X( ) — K /m et P( ) — P pour obtenir

ﬁ2
PN—
P om
— K,P; — K;P;
My = ===
. m (8.20)
~ K'P, d
D~ — +i—,
m 2
. K2
C~—.
2m

Cela implique que [’algébre associative des polyndmes en les générateurs des boosts gali-
léens et des translations est isomorphe a 1’ algébre de symétrie maximale de l’équation de
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Symétries cinématiques C Symétries d’ordre élevé

CFT o(d+2,2) C Vasiliev (d+2,2)
U U U
NRCFT sch(d) c Weyl (d)

FIGURE 8.2 — Les symétries cinématiques et d’ordre élevé en théories conformes

Schrodinger libre. En termes plus mathématiques, la réalisation de l'algébre enveloppante
U (5ch(d)) de I'algébre de Schrédinger sur ’espace des solutions de I’équation de Schrodin-
ger d’une particule libre est isomorphe & l'algébre de Weyl Ay des opérateurs différentiels
spatiaux.

Du point de vue de I’holographie, 'identification précise de I’algébre maximale des sy-
métries rigides de la CFT (non-relativiste) est d’une importance primordiale car elle doit
correspondre & des transformations de symétrie préservant le vide de la théorie dans I'inté-
rieur, par exemple dans I’habituel AdS/CFT, le groupe d’isométrie d’AdS est isomorphe au
groupe conforme au bord. Dans la généralisation de la conjecture holographique de [34,35]
en dimension d’espace-temps quelconque, ’algébre de symétrie maximale de 'action de
Klein-Gordon de masse nulle [167] est précisément isomorphe & 'algébre de spin élevé des
équations de Vasiliev [168] qui apparait comme ’algébre préservant la solution d’AdS.
L’algebre de symétrie maximale de ’action de Schrodinger pourrait jouer un réle analogue
dans une version non-relativiste de la gravité de spin élevé (cf. figure 8.2). Cette attente
est assez naturelle compte tenu du fait que la théorie de Vasiliev est formulée dans un
langage dans la formulation “repére”” (a la Cartan) avec une connexion 1-forme prenant
les valeurs dans 1’algébre relativiste de spin élevé qui peut étre remplacée par son analogue
non-relativiste (voir la section suivante).

8.2 Reéduction dimensionnelle lumiére : le cadre de Bargmann

Pour réaliser géométriquement la symétrie de Schrédinger, nous avons d’abord plongé
Palgebre de Schrodinger & d dimensions spatiales sch(d) dans I'algébre conforme relativiste
en d+ 2 dimensions spatio-temporelles O(d+2, 2). Que l'algébre de Schrédinger puisse étre
plongée dans 'algébre conforme relativiste peut se manifester au niveau des équations du
mouvement. Plus concrétement, une technique trés utile (le “cadre de Bargmann” [162,
165,172,173]) est la dérivation de 1’équation libre de Schrodinger & partir de I’équation
de Klein-Gordon de masse nulle par le biais d’'une réduction de Kaluza-Klein dans une
direction nulle.

7. ou “frame-like” en anglais
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8.2.1 Les équations du mouvement : de Klein-Gordon & Schrodinger

Considérons 1’équation de Klein-Gordon de masse nulle dans ’espace-temps de Min-
kowski & d + 2 dimensions® :

d+1

0¥ (z) = -3 U () + Y _ 07T (x) =0. (8.21)

Cette équation est invariante conforme. Définissons les coordonnées du cone de lumiére,

0 d+1
ot = xl:/;f , (8.22)

I’équation de Klein-Gordon devient ?

<_ %% + Z a?) (8.23)

Les coordonnées globales z# = (z7,27,x) ont des indices grecs minuscules qui couvrent

d+2 valeurs, tandis que les coordonnées spatiales 2° = (x) ont des indices latins minuscules
convrant d valeurs différentes 19. Si le champ scalaire relativiste est supposé étre de la forme

U(x) =e ™ o(zt, %), (8.24)

on peut faire l'identification ! 9/0x~ := d_ = —im. Ensuite, 'équation (8.23) a la forme
de I'équation de Schrodinger dans I'espace libre

d
<2im Oy + Y 83) U(z) = 0. (8.25)

=1

La coordonnée du cone de lumiere 7 peut étre identifiée avec le temps ¢t (04 = 0 est la
dérivée temporelle) et 'opérateur zgzl 82-2 est l'opérateur Laplacien A dans I'espace plat,

(2im 0y + A)¥(x) = 0. (8.26)

Gréace a la réduction dimensionnelle (8.24), 'exponentielle peut étre factorisée et nous obte-
nons I’équation du mouvement pour le champ scalaire non-relativiste (8.5). Cette équation
est invariante par le groupe de Schréodinger Sch(d) comme cela a été expliqué dans la sec-
tion précédente. Comme ’équation d’origine de Klein-Gordon a une symétrie conforme,
cela signifie que Sch(d) est un sous-groupe de O(d+2,2).

8. Nous suivons de prés [174] (voir par exemple [172,173] pour plus de détails sur la méthode de
réduction dimensionnelle nulle).
9. Les éléments de la métrique sont définis par ny— = n—4 = —1; n;; = 1 et les autres sont nuls.
10. Dans la suite, I'indice sera souvent laissé implicite pour les coordonnés d’espace-temps xz* = x.
Aucune ambiguité se pose car les coordonnées spatiales sont notées z* = x.
11. De la méme maniére, on abrége 8/0z" en 0.
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8.2.2 L’algébre de symétrie : de ’algébre conforme a celle de Schrédin-
ger

Parlons maintenant explicitement du plongement de I’algébre de Schrodinger dans I’al-
gébre conforme, a la suite de la discussion dans [174]. L’algébre conforme o(d + 2,2) peut
étre définie par les relations de commutation suivantes :

[M;w Mozﬁ] _ ( ,uaMuﬁ + nyﬁM,ua ,u,BMua . nuaMyB%
M/uz pay _ po pr_ vo pi ’
[ P =i(n " ) ) (8.27)
D, PM = —iP*, (D, K" = ik*,
]

[P, K"] = —2i(n"” D + MM),

ol les indices grecs vont de 0 & d + 1, et tous les autres commutateurs sont égaux a 0. Les
symboles “tilde” ~ désignent les générateurs relativistes, nous réservons les symboles cha-
peau” pour les opérateurs non-relativistes. Les générateurs de ’algébre conforme peuvent
étre réalisés comme des opérateurs différentiels d’ordre un agissant sur le champ scalaire
relativiste W(z)

Py = iy, My, = —i(x,0, — £,0,),

_ - 8.28
K, =i <2xu <x”ay + g) — x28M) , D=i (x“@u + g) : (8:28)

Nous identifions le moment du cone de lumiére P+ = (P + P41)/y/2 avec I'opéra-
teur de masse M dans la théorie non relativiste (en accord avec I'identification précédente
0_ = —im). Nous sélectionnons maintenant tous les opérateurs de ’algébre conforme qui
commutent avec ﬁ+, c’est-a-dire qui préservent l'ansatz de Kaluza-Klein (8.24). Manifes-
tement, ces opérateurs forment une sous-algébre, et on peut vérifier que c’est ’algébre de
Schrodinger sch(d) [175]. L’identification est la suivante :

WPt B—P. P-P, 5T
~ -~ . Kt (8.29)
K'=M", D=D+M*'"", C= -
De l’équation (8.27), on constate que les commutateurs entre les opérateurs (8.29) sont
exactement les commutateurs de ’algébre de Schrédinger (8.4) et (8.9). En outre, la réali-
sation (8.10) résulte de (8.28) par I'identification (8.29).

L’algébre de symétrie maximale de I’équation de Klein-Gordon de masse nulle (8.21)
est Ialgébre des polynémes en les générateurs conformes (8.28) modulo les relations d’équi-
valence découlant de I’équation de Klein-Gordon [167]12. L’algébre de symétrie maximale
de 'équation de Schrodinger libre (8.5) est 'algébre des polynomes en les générateurs de
Schrodinger (8.10) modulo les relations d’équivalence provenant de 1’équation de Schro-
dinger. Le plongement similaire & celui décrit ci-dessus tient effectivement au niveau de
l'algébre de symétrie maximale, comme on pouvait s’y attendre : L’algébre de symétrie

12. L’algébre de symétrie maximale de I’action de Klein-Gordon sans masse a été notée par hu(1/sp(2)[d+
2,2]) par Vasiliev dans [168].
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FIiGURE 8.3 — L’algébre de Vasiliev et ses sous-algébres.

maximale de [’équation libre de Schrodinger est isomorphe a la sous-algébre de l’algébre de
symétrie maximale de ’équation de Klein-Gordon de masse nulle, qui commute avec un
générateur de translation dans une direction fizée de genre lumiere.

Sur la figure 8.3, les générateurs surlignés forment de maniére compléte le groupe de
méme couleur ; alors que ceux qui ne le sont pas appartiennent au groupe de la méme couleur
mais celui-ci contient également les générateurs des groupes plus petits. Le symbole Pol
mis pour “polynomes” est un abus de langage car les générateurs ne commutent pas; on
devrait parler plus précisemment de somme de produits.

En d’autres termes, I’algébre de symétrie maximale de ’équation libre de Schrédinger
est isomorphe au centralisateur d’un générateur de translation de genre lumiére donné, a
Pintérieur de 'algébre de symétrie maximale de I’équation de Klein-Gordon de masse nulle.
Par conséquent, un polynéme en les générateurs conformes est équivalent & un polynéme
en les générateurs de Schrodinger si et seulement s’il commute avec P*. Des exemples
évidents sont les polynomes en les générateurs (8.29) de sch(d) qui commutent avec P*. Un
exemple plus intéressant de la propriété précédente est le polynéme o = K Z]3Z —2M +i]/\\/[/+i ,
quadratique en les générateurs de o(d + 2,2). Avec l'aide des relations de commutation
(8.27), on peut vérifier que a commute avec Pt. En faisant usage de (8.10) et (8.28), on
trouve en outre qu’il est équivalent & un polynéme en les générateurs de sch(d) : o =~
M\ij]\//fij +idD + d?/2, comme il se doit.
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Chapitre 9

Résultats

Ce chapitre contient une lettre [78] intitulée “Towards a gravity dual of the unitary
Fermi gas” publiée dans Physical Review D en 2012 et écrite en collaboration avec Xavier
Bekaert et Sergej Moroz. Les idées et les démonstrations ont été développées dans un autre
article intitulé “Symmetries and currents of the ideal and unitary Fermi gases” publié dans
JHEP en annexe C.
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Inspired by the method of null-dimensional reduction and by the holographic correspondence between
Vasiliev’s higher-spin gravity and the critical O(N) model, a bulk dual of the unitary and the ideal

nonrelativistic Fermi gases is proposed.
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I. INTRODUCTION

The quantum many-body problem of a nonrelativistic
two-component Fermi gas with short-range attractive in-
teractions is a long-standing problem in condensed matter
physics. At low temperature, the system is known to be
superfluid and undergoes a smooth crossover from the
Bardeen-Cooper-Schrieffer (BCS) to the Bose-Einstein-
Condensate (BEC) regime as the two-body attraction
is increased (see [1] for reviews). Recent progress in
experimental atomic physics has allowed the study of the
BCS-to-BEC crossover with unprecedented accuracy. The
regime in between BCS and BEC, known as the “‘unitary
Fermi gas,” is of special theoretical interest. The unitary
Fermi gas is strongly coupled and no obvious small pa-
rameter is available precluding the reliable application of a
perturbative expansion.

A characteristic of the unitary Fermi gas in vacuum is its
invariance under scale transformations and, more generally,
under the Schrodinger group of [2]. This nonrelativistic
conformal symmetry of the unitary Fermi gas allowed [3]
to apply the methods of gauge-gravity duality to this system.
While these seminal papers triggered an intensive search for
the holographic duals of various nonrelativistic systems
originating from condensed matter physics, a holographic
description of the unitary fermions still remains tantalizing.
In this work, inspired by the conjectured anti-de Sitter (AdS)
dual of the critical O(N) model [4], we make a next step
towards the gravity dual description of the unitary Fermi gas.

II. UNITARY FERMI GAS AND ITS
LARGE-N EXTENSION

Experimentally, a dilute two-component Fermi gas can
be cooled with lasers to ultralow temperatures close to
absolute zero. Theoretically, this system can be very
well-described as a Fermi gas with two-body contact in-
teractions governed by the microscopic BCS action

S[p; co)] = [dt/dx[ Z 1/ (18 +ZA+ ,u,)q//ﬂ

a=1]

~ o d i | ()

1550-7998/2012/85(10)/106001(5)

106001-1

PACS numbers: 11.25.Tq, 03.75.Ss

where the two species of fermionic atoms of mass m are
represented by the Grassmann fields ¢y and ¢, the chemi-
cal potential by w, and ¢, measures the strength of the
interaction. This model has an internal U(2) symmetry.
Because of the contact nature of the interaction term, in
three spatial dimensions (d = 3) the quantum field theory
defined by the action (1) must be renormalized by trading
the bare interaction parameter ¢, for a low-energy observ-
able: the s-wave scattering length. Experimentally, the
scattering length can be tuned via a Feshbach resonance
by applying an external magnetic field. The unitary regime
corresponds to an infinite scattering length. Hence, in
vacuum (i.e., u = 0) there is no intrinsic length scale in
the unitary regime and the microscopic action (1) is invari-
ant under the Schrodinger symmetry. Most remarkably, the
quantum version of this theory is believed to be an example
of a strongly interacting nonrelativistic conformal field
theory (NRCFT) [5].

Aiming at a semiclassical holographic description, some
large-N extension of the unitary Fermi gas is necessary. A
sensible construction that preserves the pairing structure of
the interaction term was found in [6]. The model with N
“flavors™ is defined by the action

S[;co, N] = fdt[dx[ (za +A+ ,u,)zp
A @

where ¢/ denotes a multiplet of 2NV massive fermions with
components 4 = ¢ with a =1, | and a =1,...,N.
The symbol J represents the symplectic 2N X 2N matrix
Jup = € ®85,,. For N =1, one recovers the original
model (1). The extended model has U(1) X Sp(2N) as an
internal symmetry group. Its subgroup U(2) X O(N),
where U(2) and O(N) transform independently the
“spin” and “flavor” indices (respectively «, B and a, b)
will be central in our proposal. Via a Hubbard-Stratonovich
transformation in the Cooper channel, both theories (1) and
(2) can be reformulated as effective field theories in terms
of a complex scalar field (called dimer in the literature on
the unitary Fermi gas) associated with the Cooper pair

© 2012 American Physical Society
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YTy ~ 1+ ). In the large-N limit the quantum parti-
tion function of (2) is equivalent to the mean field approxi-
mation for (1), as both correspond to the saddle point of the
dimer effective theory.

III. UNITARY FERMI GAS VS
RELATIVISTIC U(N) MODEL

Relativistic scalar O(N) models and their natural com-
plex U(N) extension are well-understood due to their
central role in the physics of critical phenomena. Despite
their different space-time symmetries, the relativistic U(N)
model in D = d + 2-dimensional space-time and the non-
relativistic BCS model in d spatial dimensions have several
features in common. Some of the properties of the models
are compared in the following table:

Models U(N) BCS
Space-time Relativistic Nonrelativistic
Fundamental fields Bosons ¢ Fermions i, )|
Components N complex 2N complex
Internal symmetry U(N) U(1) X Sp(2N)
Quartic interaction (pt- ) Ly - )2
Collective field Particle density Cooper Pair
Pt ¢ by gy
Scale-free m=0 n=0
Critical fixed point Wilson-Fisher Unitary regime

U(N) and BCS models have a similar renormalization
group topology exhibiting a pair of fixed points. Besides
the trivial fixed point, both theories can be tuned to criti-
cality: the Wilson-Fisher fixed point for the massless U(N)
model and the unitary fixed point for the BCS model at
= 0. In the large-N limit, the models at the interacting
fixed point are simply related to their noninteracting coun-
terparts. In particular, by applying the general observation
of [7] to nonrelativistic fermions, one can show that, in the
large-N limit, the free energies of the ideal and the unitary
Fermi gases are related by a Legendre transformation with
respect to the dimer field. Consequently, in this limit the
theory at the two fixed points has the same infinite set of
conserved currents and symmetries, most of which are
broken by 1/N corrections in the interacting theory.
Analogous observation also holds for the relativistic
U(N) model.

One also observes a simple relation between the scaling
dimensions of the collective field at the two fixed points for
both BCS and U(N) models [3,4]

Afree {d BCS model
D —2 U(N)model

3

BCS model (in vacuum)

Aint — 2{ o
U(N)model (N = co limit)

PHYSICAL REVIEW D 85, 106001 (2012)

In contrast to the relativistic U(N) model, due to the
simplicity of the nonrelativistic vacuum, the relation
A" = 2 js exact in the theory of nonrelativistic fermions,
i.e., it receives no 1/N corrections.

The highest of the two scaling dimensions, denoted A .,
is always above the unitarity bound and corresponds to an
infrared (IR)-stable fixed point on the boundary side and to
a standard (Dirichlet) boundary condition on the bulk side.
The lowest dimension, A_, corresponds to an ultraviolet
(UV)-stable fixed point and to an exotic (Neumann) bound-
ary condition. Thus the holographic dual of the boundary
Legendre transformation is a change of boundary condi-
tions on the bulk scalar field. When both dimensions are
above the nonrelativistic unitarity bound, A, = A_ =
d/2, both fixed points are admissible and thus correspond
to different choices of boundary conditions for the same
bulk theory.

The unitary fixed point corresponding to Ai™ is physi-
cally admissible only for 0<d <2 (IR-stable) and
2 <d <4 (UV-stable). Indeed, for d >4 one obtains
Aint = 2 < 4 which violates the unitarity bound for dimers.
Moreover, in d =2 both fixed points merge together
(Afree = 2 = A"y and only the trivial fixed point exists.
The situation can be summarized as:

d A_ Ay Property
0<d<2 Afree Alnt Asymptotic
freedom
d= 2 2 Triviality
2<d<4 At Afree Asymptotic
safety

IV. NULL-DIMENSIONAL REDUCTION

This is an old trick relating mathematically, relativistic
and nonrelativistic theories at tree level (see, e.g., [8]). It is
based on the observation that the d’Alembertian of D =
d + 2-dimensional Minkowski space-time expressed in
light-cone coordinates x* = (x*, x~, x) is proportional
to the Schrodinger operator in d spatial dimensions, mod-
ulo the identification of the null coordinate x* with the
nonrelativistic time and of the null momentum —id_ with
the mass operator. Indeed, the kinetic operator of a rela-
tivistic scalar theory, [0 — M?> = —20,0_ + A — M?,
when acting on eigenmodes of the null momentum,

\I’(X) — e*imx’ 1//(x+, xi), (4)

is proportional to the kinetic Schrodinger operator of a
nonrelativistic theory, id, + A/2m + u, via the identifica-
tion x* = rand M?> = — u/2m. Hence, any solution ¥(x)
of the free Klein-Gordon equation of the form (4) defines a
solution (7, x) of the free Schrodinger equation, and
conversely.

106001-2
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By definition, symmetries map solutions on solutions,
thus the symmetries of the free Schrodinger equation can
be seen as those symmetries of the free Klein-Gordon
equation that commute with a fixed null momentum. For
instance, the Bargmann group (the central extension of the
Galilei group by the mass) and the Schrodinger group (the
Bargmann group enlarged by expansions and scale trans-
formations [2]) are, respectively, the kinematical symmetry
groups of the free Schrodinger equation with and without
chemical potential [9]. They can be viewed as the central-
izers of a given null momentum inside, respectively, the
Poincaré and the conformal group of kinematical symme-
tries of the Klein-Gordon equation with and without mass.

The dimensional reduction explains the similarities be-
tween the large-N critical U(N) model and the unitary
Fermi gas in vacuum. In fact, generally any Lagrangian
invariant under global U(1) phase and Poincaré (confor-
mal) transformations can be consistently reduced to a
Lagrangian preserved by the U(l1) and Bargmann
(Schrodinger) groups. This universal relationship between
relativistic and nonrelativistic field theories in the semi-
classical (i.e., mean field) approximation has maybe not yet
received the attention that it deserves.

V. NONRELATIVISTIC HIGHER-SPIN
SYMMETRIES

A key feature of free conformal field theories (CFTs) is
that their symmetries are enhanced to an infinite-
dimensional higher-spin symmetry algebra. Following the
holographic dictionary, the associated infinite collection of
higher-spin conserved currents should be dual to a tower of
higher-spin gauge fields in the bulk. In particular, the
bilinear singlet sector of a free scalar CFT should be dual
to a Vasiliev theory [10]. Consequently, a crucial step
towards a bulk dual of the ideal Fermi gas is the identi-
fication of symmetries and currents of the nonrelativistic
free fermions as well as their relationship to their relativ-
istic parent. This lengthy analysis will be presented in
detail in [11] and here we only summarize our main results.

A target is the nonrelativistic counterpart of the theorem
of Eastwood [12] identifying the maximal symmetry alge-
bra of the d’Alembert equation in D = d + 2 flat space-
time. The latter infinite-dimensional algebra is denoted
here as “Vasiliev (d + 2,2)”, since it contains the confor-
mal algebra 0(d + 2,2) and is used by Vasiliev as gauge
algebra in his bosonic higher-spin theories on AdS ;5 [13].
Mimicking the definitions of [12], a symmetry generator of
the free Schrodinger equation (with . = 0 from now on),

(ia, +A)¢(n X) =0 §(1,%) = "4/ 4 (0,x), (5)
2m

is a linear differential operator A such that (i9, +
A/2m)A = B(id, + A/2m) for some linear differential
operator B, because then A maps solutions on solutions.
Two generators are equivalent if they only differ by a trivial
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generator of the form A = €(id, + A/2m) for some linear
operator C, ie., A then maps solutions on zero. The
maximal symmetry algebra of the free single-particle
Schrddinger equation is the Lie algebra of all inequivalent
symmetry generators and it is [11]:

(i) isomorphic to the Weyl algebra [14], denoted “Weyl
(d),” of spatial differential operators (i.e., quantum
observables that are polynomials in positions and
momenta) evolved in the time-reversed Heisenberg
picture

A(_l‘) _ e*it(A/Zm)AA(O)efit(Aﬁm)

that manifestly maps any solution (5) to a solution,
(i1) generated algebraically by (taking powers of) the
spatial translation and Galilean boost generators,
Pi=—i0,=P;(—1) and K;=mx;+itd,=mX,(—1)
with canonical commutation relations [K;, ﬁ_i] =
i8;;m,
(iii) embedded in the Vasiliev algebra as the subalgebra
commuting with a given null momentum and con-
tains the Schrodinger algebra $cf(d), as summa-

rized here:
Kinematical C Higher symmetries
CFT o(d +2,2) - Vasiliev (d + 2, 2)
U U U
NRCFT sch(d) c Weyl (d)

where the vertical embedding corresponds to the null-

dimensional reduction, and the horizontal embedding
arises from the fact that the generators of kinematical
symmetries are first-order differential operators while
higher symmetries generators can be higher derivatives.
Notably [15], the Schrodinger algebra is contained in the
Weyl algebra because its generators can be realized as
polynomials of degree two in the spatial translation and
Galilean boost generators.

For an n-component scalar field, these higher-spin
space-time symmetry algebras of the d’Alembert and
Schrédinger equations can be tensored with an internal
1u(n) algebra of Hermitian n X n matrices. The correspond-
ing higher-spin theories then possess 11(n)-valued gauge
fields [13] dual to boundary bilinear currents in the adjoint
representation of U(n) [4].

VI. FERMION BILINEARS AND COUPLING
TO SOURCES

The physical (N = 1) BCS fermions are two-component
Grassmann scalars in the fundamental representation of the
internal symmetry group U(2). Together with the up and
down particle densities, the Cooper pair fits into an adjoint
multiplet of U(2), i.e., the 2 X 2 Hermitian matrix:
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—5” x© YT Y
KO jj‘” iy g )
In the large-N extended theory, these considerations lead
us to focus on the sector of flavor-singlet two-fermion
composite fields in the adjoint representation of U(2).

They are spanned by the U(1)-neutral conserved currents
[16] (no sum over the index a =1, |)

jEu. dy Sab‘//m‘ 3H ﬁlslﬂb (6)
N
and the U(1)-charged symmetric tensors
ki = S Wid, 3,3, T (D)
%,_/

’
For s = r = 0, these composite fields, respectively, repro-
duce the up and down particle densities 3(0) =g,
and the Cooper pair k© = Y1 ). In the holographic
correspondence, the composite operators (6) and (7) should
couple minimally to sources, respectively, denoted by
hg,)] .;, and go ..;,» representing the boundary data of
11(2)-valued bulk gauge fields. With the techniques of
[17], the difference of the free action S[;0, N] and
of the minimal coupling term,

f drdx (O pY 4+ kOl e,

r,s=0

can be rewritten as the quadratic functional [11]

. +A7 Y A
fdrdx\w(’a’ 2 H ¢ )w
o 0, — 2m + Hl

where WT = (¢, ¢/]) defines the two-component Nambu-
Gorkov fermion, A%(X, P) := A (X, —P) and the differ-
ential operators H, and ¢ are related to the respective
sources h, and ¢. This compact rewriting is formally
identical to the Nambu-Gorkov formulation of the BCS
theory except that the chemical potential and the energy
gap are replaced by space-time differential operators. The
effective action can be obtained now via a Gaussian inte-
gration over the fermionic field and is a trace-log func-
tional of the above 2 X 2 matrix. These results can be
reproduced through the null-dimensional reduction of a
free relativistic scalar theory [11].

VII. BULK DUAL

What might be the gravity dual of the unitary Fermi gas?
Keeping the above discussion in mind, we approach this
question by following these steps: (i) unitary fermions at
N = oo are Legendre conjugate to free fermions, (ii) a key
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tool for understanding higher-spin symmetries of free
nonrelativistic fermions is the null-dimensional reduction
of free relativistic Grassmann scalars, (iii) free relativistic
scalar theories are expected to be dual to Vasiliev higher-
spin theories.

Therefore it is tempting to perform the null reduction on
both sides of the relativistic holographic duality, as in [18].
Schematically, our philosophy looks as follows:

Higher-spins on AdSgy3 «— CFT440
1 1

Non-relativistic Higher-spinsg1 <5 NRCFT d

with horizontal arrows denoting holographic correspon-
dence and vertical arrows relating relativistic to nonrelativ-
istic theories via the null reduction. The higher-dimensional
relativistic parents are mere auxiliary tools in our construc-
tion, used at tree level only since they may be sick as
quantum field theories per se. For instance, the CFT violates
the spin-statistics theorem, but this is not a problem since
this theorem does not apply to nonrelativistic theories.

We thus propose that a candidate for the holographic
description of fermions at unitarity is the null reduction of
a Vasiliev higher-spin gravity [19]. More precisely, the
O(N)-invariant sector of the large-N unitary fermions in
d spatial dimensions might be dual to the null reduction of
the Vasiliev bosonic theory [13] on AdS,,; with U(2)
internal symmetry. Scalar fields on AdS,;; admit two
distinct choices of boundary conditions for mass square

2 2
in the interval —(%) <m?<l1- (%) . Since the

complex bulk scalar fields in the higher-spin multiplet
have m?> = —2d, this possibility arises in the intervals 0 <
d <2 and 2 <d <4. In particular, the gravity dual of the
“physical” three-dimensional (d = 3) two-component
(N = 1) UV-stable (A_ = 2) unitary Fermi gas should
be the null-dimensional reduction of Vasiliev theory de-
scribing interacting \W(2)-valued higher-spin gauge fields
on AdS¢ with exotic boundary condition for the bulk scalar
field dual to the Cooper pair. The intimate connection
between the unitary and the ideal Fermi gases together
with the universality of the null-dimensional reduction
method suggest that the holographic dual of the unitary
Fermi gas is within our immediate reach.
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Annexe A

Démonstrations du premier chapitre

A.1 L’expression ambiante du d’Alembertien

A partir des formules de la dérivée covariante pour un scalaire (1.42) et (1.43) :
V¢ Da® = PY 9c®

on cherche I'expression du correspondant en espace ambiant f1p = GA8 Dy Dy du d’Alem-
bertien en espace-temps de courbure constante V% A)dS, = gV, V,

V?A)dsn¢ = gHV v,u Vvp «— Op®P= GABDADB@.

Calculons :
ap® = GABD.Dpd
= G489, Dpd
= G289, (PS 009)
Xp X¢
= G0, <an>— e accp>
— GAB (8A63<I> f %Xc accp)
XAXB
_ AB NAB
- (” < ) (01008 - 7 ho)
AB A v B A v B
AB N nap XX nap X* X
= 040D h® — ———— 0,050 - hd
1 0A0B X2 X2 A0B® + (X2)2
D h(h —1) 1

1
= Op®+ 45 (-Dh — h(h—1) + h)®
1

Finalement, on trouve

1

Vigas, ¢ «— Op® = Op = <z h(D+h-2) @
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et également

Dans l'espace ambiant, on a pour une fonction harmonique homogéne de degré h :

Op®+— K, ¢ = {vi + ih(h +n — 1)} .

RQ

Op® = 0
X409, = hd

_ (2-D
- 2

+iu> o.

Dans l'espace-temps de de Sitter, 'opérateur d’Alembertien se note :

Up®

Op®

Up®

Up®

—

!

!

Nys, ¢ =
NMys, ¢ =

NMas, ¢ =

NMys, ¢ =

1

Vis, + o

Vis, t 53

(
:vgsn—m<”;1—w> (5 +in)] 0
(

h(h+n—1)}¢

1 —n ) 1-n .
+ —— +ip+n-—-1

2

DD@ < ®d5n¢ =

1
Vis, — i <<

A.2 Le commutateur des dérivées covariantes

Calculons dans 'espace ambiant :

Vi Vil V,

[Da,Dp| Vo

= 2Vp,
)

2014

ANA

(P PEo0VE)
D

E

)] ¢

(A1)

X X
~ 2nap ﬁag IpVe — 25{33 nA]CFaDVE + 208 5{33 d40pVe

E

X
= 0 - 2FnC[AaB}VE + 2 G[ABB]VC

E

X
= —255cadpVe + 0

1 1
= —2— o dp(XPVE) + 2

X2

1
= 0+2ﬁ770[AVB}

S

Gea V)

X2

nota o5 Ve
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1
[VM 5 VV} Vp = £2 ? gp[ﬂ VV} . (AQ)

A.3 La conservation des courants

On pose y+ = z =+ v. Tout d’abord, on a :

D= 0)e @4 0)] = 2 ()¢ (a4 v) + bx —v) o (x4 v)
= S )+ o) 5 ).
On en déduit donc (n”P aiv ;ﬁp) [b(z — v) ¢*(z +v)]
= n" { a;,);q;g (x —v) ¢ (z +v)
—l—;j;(x )2 @t o)+ 22 () gj-’: (x +v)
+ ¢(xz —v) afjg;,r(fc + v)}
= {5 )
;;:(y—) g;b-”t (y+) — ;;i_(y_) Sj;@n
i
+ ¢(y-) ajigyi}

Q

0.

A.4 La condition sur le degré d’homogénéité pour la fonction
génératrice de ’espace ambiant

On souhaite calculer la divergence du courant DBy B,..B, €l espace ambiant et trouver
la condition sur le degré d’homogénéité pour qu’elle soit nulle. Le gradient s’écrit :

C Cr
DaJp,..5, ~ 0a|PS ..PS Joy.c,

1
~ 0adB,..B, — TNAB Xcﬁ IB,..B)C -
Par définition, on a :

DB g, B, = GP'DuJp, B,

XAXB1 XC
(nABl — e > (aAJBL-.BT - 7”77A(31X2JBQ.--BT)C> '
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On utilise I'identité suivante :

ra X Iy e =14, X Jp,. o + (r—Vnas, X Jp, pyBiC-

Donc la divergence covariante est :

XA XB1
DBIJBl...BT = (nABl - 3 > X

c c
X <6AJBI...BT ~ 4B <5 JBaBC (r = 1) na, 7 JBg.,.B,«)Blc’>
c
~ 0PI, 5. — P g, el JB,..B.C
XC
—(r = 1)y, el JBs...B)BLC
XA XB1 XC

2 0aJp, . B, + ~2 JBeBiC

Or on suppose que J est un courant conservé de l'espace plat ambiant, 0P Jp, g =~ 0.
De plus, les quatre termes restant sont égaux a :

XC XC XBI C
*DFJBQ...BTC —(r—1) FJBS...BTB2C — ﬁhr JB, B, + ﬁng...BTC
XC

= FJBQWBTC[—D —(r—=1) = hy + 1]

ol h, est le degré d’homogénéité en X du courant J de rang r. Pour la fonction génératrice

(3.17),

h. = h—r+hf

2R(h) — r
d’ou
B Xx¢
D™ Jp,..B, =~ FJBQ...BTC[_D —(r—=1) = 2R(h) — r) + 1]
XC’
= F JBQ...BTC [—D — 2%(h) + 2].

Pour que la divergence covariante du courant soit bien nulle, on pose
—D — 2R(h) + 2 = 0.

Ce qui implique que :

2-D D 1—-n
5 .
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A.5 Les dérivées partielles

Nous allons démontrer les formules des dérivées partielles en fonction des dérivées co-

variantes dans ’espace ambiant.
Pour le rang 2 :

D(aDp) @ DsDg ®
— 9,Dp®
= 9a(P§ 0c ®)
Xp X©¢
- (- 5 e

X
— 04 [an) — Xgm]

h
~ 040 — FUAB(I)

h
0409 ~ D(ADB)(I) + ﬁnAB(I)'

(A4)

Pour le rang 3 :

DaDpDc® ~ 0a(PEPEDpDr®)

Xp XP
- - 5% (e

XCX

h
ﬁnBC‘I)

= 0a [83(%(1) —

Xc XE h

X2 X2

X XP X0 XF
(X2)?

53 npe® —

OpOp® —

h
~ 040B0cP — FUBC 0aP —

XE p
T X xe
h XP
X2 X2

—50E nacpE ® —

+— 6& nap Npe®

h
~ 8A8330<I> — FUBCGA(I) —

h
~ 0A0330<I> - FUBCaAq) -2

Donc la partie symétrisée vaut :

DuDpDey® ~ 9a9p9c® —

XpXP

Xo XF h
3(2 > (3D5E‘I) ~ x2'IpE @)]

XpXP h
E B
206 0p0p® + =5 5

X XP Xc XE h ]

50 nprg P

(X2) X2 UDE‘I)
E b
<z 0B nac OpOr®

D
Xz 56 naB OpOp®

E D

X X
~z N4c 0pOrp® — <z 4B OpOc®

h—1
X2 UA(CGB)(I)

3h—2
=2 NBcOa)®
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3h —2

0A0B0c® ~ D(A 'DB’D0) + TT](AB ac)(I) (A5)

A.6 La formule de récurrence des courants conservés
On a exprimé les dérivées partielles comme un polynéme dépendant des dérivées cova-
riantes et de la métrique ambiante :

04,-..04,, ® = Pol(nap,Dc) ®

ou encore

Un calcul explicite montre que :

(PD) (PO)"® = PYPP PP oc(Ph .. PR 04,04, ®)

~ (PO ® — mpPCPH ...PBmXA;(ZCBl da, Op,...08, ®

~ (PO o —m )I;Z pB2  pBm x4 9, 0p,..08, ®

= (PO)™ o — m)]Z(h — (m — 1)) PB2.. PP 9p,..0p, @
(PD)(PO)"® = (PI)™"® —m )IZ (h —(m —1)) (PO)™ . (A7)

On va utiliser (A.6) pour évaluer les membres de gauche et de droite de cette identité,
ce qui va nous donner une relation de récurrence sur les coefficients cJ,.
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En utilisant deux fois (A.6) pour calculer (P.9)" ! et (P.0)™ ! :

[(m+1)/2] =N
(PD)(PO)™® = Y <X2> (P.D)"H1=2 ¢
r=0
[(m—1)/2] r
P2 T P2 m—1—zr
— g (h=m+1) > o <X2> (P.D)™ 12 &
r=0
[(m+1)/2] =N
r=0
[(m—1)/2] P2 r+1 Ly
—m(h—m+1) ZO S <X2) (P.D) P
[(m+1)/2] 2\ T
— T s m—+1-—2r
— ; < <X2> (P.D) P
[(m+1)/2] P24
—m(h-m+1) > <X2> (P.D)" 172D ¢
q=r+1=1

= 2 (PD)" o
[(m+1)/2]

P2\’
w2 () PR g —mi-m s Do,

X2

r=1

En repartant de (A.6) pour calculer (P.0)", cet opérateur s’exprime aussi par :

[m/2] 2\ T
(P.D)(PO)"® = (PD) Y <> (PD)" " &

m X2
r=0
(m/2] o\ T
T P m—ar
= > (X2> (PD)y" 21 g
r=0
[m/2] P2 r
= &, (PD)" + Y <X2) (P.D)" 21 ¢
r=1

Ceci implique que :

[(m+1)/2]

2\ T
Z (1 —m(h —m +1) -l (;) (P.D)" 12
r=1
[m/2] g\ T
P —ar
= ) d <X2> (PD)™ 241 .
r=1

Les bornes supérieures différent mais une relation de récurrence découle de cette égalité :

‘s

O = g1 —m(h—m+1) ey
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S| dog=cd +mh-m+1)d 1. (A.8)

Pour n impair, une relation supplémentaire apparait :

m + 1

AV — b —m 1)V s 5

m-+1 ., = 0 lorsque r >

A.7 Les courants conservés dans ’espace-temps (A)dS,

Nous allons, a partir des formules des dérivées partielles, calculer les courants conservés
dans P'espace-temps (A)dS,,.
Pour le rang 2 :

Jap = égﬁﬁqﬂ

= $040pP" + 0402 DT — 204, P I P!

= ®DDd' ht d D" + DyDR® B h o pf
= ADB +F77AB + DpDp +ﬁ77AB

— 2D(4® Dp)®'
_ ob ot + 2N ot
~ ODADLD + )GAB<I><I>T
= 6T E + 200
j,uy - ¢ ¢ :l: /LV¢¢ (Ag)

Pour le rang 3 :

Jipc = (I)gﬁl)%ggqﬂ

= ®040p0c®" — 394D 0pIc)®" + 39(40pP )@ — 940p0cP B

3hi —2
= ®D4DpDey®" + Nap ®Dey®' — 3D(4® DD !
ht i t gl i
_3F7](BCDA)(I)(I> + 3D(ADB(I)DC)‘I> + 3ﬁn(AB(I)DC)(I)
3h — 2
—DaDpDc)y® dF — 1ApDcy® @
= ®D4DpDc)d! — D(ADBDC)CI) o' — 3D(4® DDt
6R(h) — 2 6%
+3DuDpdDcy @' + (X)Qn(AB@DC)@T (X) Nap Doy® @
= DDy Deydt + TQW(AB&D_@T
~ DDy Doydt + X Gap ® Dy
5 6§R
Gy = GG £ T 22 G (A.10)
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A.8 Le programme « Maple » pour calculer les courants de
rang élevé

Le programme « Maple » nommé « courant » (pages suivantes) calcule les courants
symétriques conservés & un rang quelconque. En utilisant les notations suivantes : J(r)
désigne le courant de rang 7, ¢ équivaut a ¢* et (P.(D(dg)))™ signifie Eﬁm, HOUS POUVONS
ainsi voir que les résultats des quatre premiers courants sont identiques & ceux calculés
manuellement. Nous avons explicité les calculs jusqu’au rang 8 mais il est bien str possible
d’aller & un rang plus élevé, les seules contraintes étant celles de la mémoire et du temps
nécessaire a l'ordinateur pour faire le calcul.
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># Calcul du courant conservé dans 1l'espace-temps a courbure
constante (de Sitter : X2=R2 ; anti-de Sitter : X2=-R?)
# pour un champ de spin r quelconque courant:=proc(r);
#Calcul des coefficients c(m,r)
rec:=proc(R); # R correspond ici a r
if R>1 then
for A from 2 to R do
f(m):=m*(h-m+1);
init:=c(1)=0;
eqn(1):=c(n+1)=c(m)+f(m);
soln(1):=collect(rsolve({eqn(1),init},c(m)),m);
eqn(A):=c(m+2)=c(m+1)+(m+1)*(h-m)*soln(A-1);
soln(A):=collect(rsolve({eqn(A),init},c(m)),m);
end do;
elif R=1 then
init:=c(1)=0;
eqn(1):=c(m+1)=c(m)+f(m);
soln(1):=collect(rsolve({eqn(1),init},c(m)),m);
else
soln(0):=1;
fi;
end proc ;

Z:=0;

# Calcul du produit des deux coefficients et d'autres termes
utiles par la suite
for s from 0 to r do
for i from 0 to floor(s/2) do
for j from 0 to floor((r-s)/2) do

Z:=Z+1;

cc(s,i,j):=eval(rec(i),m=s)*eval(rec(j),m=(r-s)); # produit
des deux coefficients

Vec[Z]:=cc(s,1,]); # vecteur
contenant le produit des deux coefficients

Vdphi[Z]:=s-2*i; # vecteur
contenant la puissance des dérivées de phi

Vdphiet[Z]:=r-s-2*j; #
vecteur contenant la puissance des dérivées de phi étoile

Vbinom[Z]:=r!/(s!*(r-s)!); # vecteur
contenant les coefficients binomiaux

Vmetriq[z]:=i+j; # vecteur

contenant la puissance de la métrique

# suppression des entiers dans le vecteur contenant le
produit des deux coefficients car ils interviendront seulement
dans le premier terme du courant

if type(Vcc[z],integer) then
Vcc[Z]:=0;
fi;

end do;
end do;
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end do;
for B from 1 to Z do

# vecteur contenant le produit des coefficients binomiaux par le
produit deux coefficients
Vcexbinom[B] :=Vcc[B]*Vbinom[B];

for E from B+1 to Z do

# vecteur rassemblant les coefficients liés aux mémes puissances
des dérivées de phi et phi étoile
if vdphi[E]=Vdphi[B] and Vdphiet[E]=Vdphiet[B] then
Vcexbinom[B] :=Vccxbinom[B]+Vbinom[E] *collect(Vcc[E], h);
Vcc[E]:=0;
fi;

end do;
Vcc[B]:=0;
end do;

# rassemblement des termes ayant la méme puissance de la métrique
for F from 1 to Z do
for E from (F+1) to Z do
if Vmetriq[F]=Vmetriq[E] then
Vcexbinom[E]:=0;
fi;
end do;
end do;

# calcul du premier terme du courant n'ayant pas de coefficients
J:="phi'*(Q.D(dg))~r*conjugate('phi');

# calcul du courant en additionnant les termes un par un
for G from 1 to Z do

J:=J+Vccxbinom[G]* (Q/r2/XN2)AVmetriq[G]*'phi'*(Q.D(dg) ) Vdphiet[G]*
conjugate('phi');
end do;

#affichage du courant
print('J(r)'=3J);
end;






CHAPITRE B. Premier article 151

Annexe B

Premier article

Dans article |76] ci-aprés, deux fautes de frappe (parenthéses manquantes) se sont
glissées dans les équations (3.27) et (3.28) :

V2 (@) < GPC D DeTa, a4, (X) ~

~ [82 — % (X-0)(X-0+4+ D —2)— r)] Tay..a,(X)
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1 Introduction

Principal bundles and Riemannian manifolds provide the right geometrical frameworks
for describing the interactions between gauge fields with respective spin one and two.
However, despite remarkable results on the interactions between higher spin gauge fields
their underlying geometrical and physical first principles remain elusive. Although a higher-
spin generalization of gravity is available through the frame-like formulation of Vasiliev (see
e.g. [1-3] for some reviews) extending the Cartan-Weyl formulation of general relativity,
the first principles analogous to the parallel transport and to the local affine covariance on
the geometrical side, or to the gauge and equivalence principles on the physical side, still
remain mysterious. The latter physical principles, underlying the low-spin interactions, are
best displayed in the minimal couplings between matter and gauge fields, so higher-spin
generalizations thereof might be a proper place to look for inspiration. Specifically, one
will concentrate here on a toy model where matter is represented by a complex scalar field.
This simplest example already proved to highlight most of the key features of the more
intricate general couplings between fields of non-vanishing spins.
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The Noether (i.e. minimal) cubic couplings between a complex scalar matter field and
a collection of higher-spin tensor gauge fields have already been investigated in the metric-
like formulation on Minkowski [4-7] and anti de Sitter [7-10] spacetimes (see also the recent
work [11] in the frame-like formulation). The Noether cubic interaction between a complex
scalar field and a tensor gauge field takes place through a symmetric current, quadratic
in the scalar field and conserved at linearized level. By construction, such models are
consistent from quadratic order in the gauge and matter fields up to cubic couplings of two
scalar and the gauge fields. The present paper may be thought as a first step towards a
complete generalization to any constant curvature spacetime of the results obtained in [6]
on Minkowski spacetime. Our strategy is to derive the non-zero curvature formulas from
the flat spacetime results by performing a so-called “radial dimensional reduction” [12] also
called “ambient space formulation”, i.e. by making use of the usual isometric embedding of
(anti) de Sitter spacetime as a codimension one hyperboloid inside a flat auxilliary space.
The basic idea goes back to an early work of Dirac [13]. In the late seventies, the ambient
formulation had already been used by Fronsdal [14] in the context of higher-spin gauge
theories and, by now, this technique has become standard and has found a large number
of applications in this area (see e.g. [15-24]).

The plan of the paper is as follows: In order to be self contained, the framework
presented in [6] (i.e. the various generating functions relevant for the Noether method in
the case of gauge/matter couplings) is reviewed in section 2, but from a slightly more general
viewpoint (allowing for curved background) suited to the present analysis. In the section 3,
a dictionary between two formulations (the intrinsic and the ambient ones) of fields on non-
zero constant-curvature spacetimes is provided. The treatment is uniform with respect
to the signature and to the sign of the scalar curvature, in order to incorporate both
(anti) de Sitter spacetimes and their Euclidean counterpart, i.e. hyperspheres (hyperbolic
spaces). The infinite set of conserved currents bilinear in a free complex scalar field are
presented in section 4. The corresponding Noether cubic vertex is given in section 5 and is
written in a compact form by making use of Weyl/Wigner symbol calculus, which enables
the explicit computation of the non-Abelian gauge symmetry deformation. In the last
section 6, our main results are summarized. Some possible extensions thereof are also
suggested and motivated. Eventually, the paper ends with an appendix where a technical
proof is presented in details.

2 Noether method

Let Mg be a (pseudo) Riemannian manifold of dimension d endowed with a metric g,,
(Minuscule Greek indices pu, v, ... will take d values and they will be lowered or raised via
the metric or its inverse) and its associated Levi-Civita connection V,, .

A symmetric conserved current of rank r > 1 is a real contravariant symmetric tensor
field j#1-Hr(x) on My obeying to the conservation law

Vi gtttr(x) = 0. (2.1)
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where the “weak equality” symbol &~ stands for “equal on-mass-shell,” i.e. modulo terms
proportional to the Euler-Lagrange equations. A generating function of conserved currents
is a real function j(z,p) on the phase space T* My which is (i) a formal power series in the
momenta and (ii) such that

(g ) o) 0. (22)

This terminology follows from the fact that all the coefficients of order r > 1 in the power
expansion of the generating function

. 1.
i@p) =D (@) P P (2.3)
r>0

are all symmetric conserved currents by means of (2.2).
A symmetric tensor gauge field of rank r > 1 is a real covariant symmetric tensor field
Py ... () o0 Mg whose gauge transformations are of the form [14]

55h#1~~~#r(x) = Tv(msuz---ur)(‘r) + O(h>v (2'4)

where the gauge parameter £,,. ,, _,(2) is a covariant symmetric tensor field of rank r —
1, the round bracket denotes complete symmetrization with weight one, i.e. h¢, ) =
hy,..p, (remark: the tensor is symmetric by hypothesis) and O(h) stands for terms of
order one or more in the gauge fields. For lower ranks r = 1 or 2, the transformation (2.4)
either corresponds to the U(1) gauge transformation of the vector (r = 1) gauge field
or to the linearized diffeomorphisms of the metric (r = 2). By comparison with the
spin-two case, this formulation of higher-spin gauge fields is often called “metric-like” (in
order to draw the distinction with the “frame-like” version where the gauge field is not
completely symmetric). A generating function of gauge fields is a real function h(z,v) on
the configuration space 7'M (i) which is a formal power series in the velocities and (ii)
whose gauge transformations are

0:h(z,v) = (VWV,) e(z,v) + O(h), (2.5)

where e(z,v) is also a formal power series in the velocities. The nomenclature follows from
the fact that all the coefficients of order r > 1 in the power expansion of the generating
function

h(z,v) = Z Tl' Py ...y () 01T (2.6)

r=0

are all symmetric tensor gauge fields due to (2.5) with
1
e(x,v) = Z " Eppo g (X) VHEL0HE (2.7)

In the context of Noether couplings, the “velocities” v* and “momenta”’ p, are in-
terpreted as mere auxiliary variables and can be assumed to be dimensionless. Let us
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introduce a non-degenerate bilinear pairing < || > between smooth functions h(z,v) and
j(x,p) on the configuration and phase spaces respectively,

<nlliz= [ dag exp( 00 )h(:c,v)j(x,p) (2.8)

Mg vk apﬂ

v=p=0

If j and h are (formal) power series of the form (2.3) and (2.6) then the pairing (2.8) can
be interpreted as the series

. 1 .
<hli»=3 /M 42/ g) By () 7 (). (2.9)
: d

=0

Let us denote by i the adjoint operation for the pairing (2.8) in the sense that
< Oh||j>=<h| 0>, (2.10)

where O is an operator acting on the vector space of functions on configuration space (the
double hat stands for “second quantization” in the sense that the operator acts on symbols
of “first quantized” observables). Notice that (v*)* = 9/dp, and Vﬁ = —V, imply the
useful relation

(W V,)F = - (vu 8;)' (2.11)

The matter action is a functional Sp[¢] of some matter fields collectively denoted by ¢ .
The Euler-Lagrange equations of these matter fields is such that there exists some conserved
current j#1#r[p(x)]. The Noether method for introducing interactions is essentially the
“minimal” coupling between a gauge field hy, . ,, (z) and a conserved current j##r[¢(z)]
of the same rank. Accordingly, the Noether interaction between gauge fields and conserved
currents is the functional defined as the pairing between their generating functions

. 1 .
Siot] = <hliz> =Y | [ de il by @@, @)
r>0 d

where (2.9) has been used. Let us assume that there exists a gauge invariant action S[¢, h]
whose power expansion in the gauge fields starts as follows

S[e.h] = Solg) + S1[¢, ] + Sale h] + O(h?). (2.13)
The gauge variation of the Noether interaction (2.12) under (2.5),
5.51[6,h] = < &.h]|j > +O(h), (2.14)

is at least of order one in the gauge fields when the equations of motion for the matter
sector are obeyed,

0:51[¢,h] = O(h), (2.15)
because the properties (2.2) and (2.11) imply that
0
# j>= — >~ 0. .
<<(v VH)8||]>> < el (Vuapu)j>> 0 (2.16)
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Actually, the crucial property (2.15) works term by term since
[ V9] V) @)
d

= = [ 1] (0 V@)~ 0. (2.17)
d

The equation (2.15) implies that the action (2.13) might indeed be gauge-invariant at

lowest order in the gauge fields because the terms in §.51[¢, h] that are proportional to

the Euler-Lagrange equations 0.5/d¢ of the matter sector could be compensated by the

variation 0. Sp[¢] of the matter action under a gauge transformation d.¢ of the matter fields,

independent of the gauge fields h and linear in the matter fields ¢, such that

b-((Solg) + S1l6. k] ) = O(h). (2.18)

This possibility will be assumed from now on.
A Killing tensor field of rank r — 1 > 0 on M, is a real covariant symmetric tensor
field €, 4, () solution of the generalized Killing equation

V(1 pzpir) () = 0. (2.19)

A generating function of Killing fields is a function £(z,v) on the configuration space T My
which is (i) a formal power series in the velocities and (ii) such that (v/V,)e(x,v) = 0.
Then the coefficients in the power series

1
e(z,v) = Z T () v .. ot (2.20)
t>0

are all Killing tensor fields on M . The variation (2.4) of the gauge field vanishes at
lowest order if the gauge parameter is a Killing tensor field. Therefore the corresponding
transformation d:¢ of the matter fields is a rigid symmetry of the matter action Sp[¢]:

6550[¢} = —0e51 [¢v h] ‘} =0, <221)

=0

due to (2.18) and the fact that 0.¢ is independent of the gauge fields. In turn, this
shows that the conserved current j*'#r[¢(z)] must be equal, on-shell and modulo a
trivial conserved current (sometimes called an “improvement”), to the Noether current
associated with the latter rigid symmetry d.¢ of the matter action Sp[¢]. Killing tensor
fields on constant curvature spacetimes and their link with higher-spin gauge theories were
discussed in more details in [25, 26] and references therein.

3 Ambient versus intrinsic formulations

3.1 Constant curvature manifolds

Let RP be the flat space of dimension D > 4 parametrized by Cartesian coordinates X4
(Capital Latin indices A, B, ... will span D values) and endowed with a non-degenerate
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diagonal metric nap that will be used to raise and lower Capital Latin indices. It will be
called the ambient space. The inner product will be denoted as X -Y := nap X4 Y P (and
X? := nap XA XPB). Let My be the non-degenerate quadric of dimension d := D — 1
defined by the equation X? = + R?, where R # 0 is its curvature radius. The sign is fixed
in the previous expression, but the + has been included to deal with both cases at once.
From now on, the + and F symbols in the subsequent formulae will always correspond to
this respective choice of sign. For instance, the (pseudo) Riemannian manifold M, has
constant scalar curvature equal to R = £d(d — 1)/R?.

Let us denote by z* a set of coordinates on M, with length dimension (in the sense
that they scale in the same way as the Cartesian coordinates X4). They will be called
intrinsic coordinates. One considers an isometric smooth embedding

i Mg = RE ot — XA () (3.1)
of the codimension-one quadric M, inside the open submanifold R{? C RP defined by
RY == {X?eRP : +X2>0}. (3.2)

The (pseudo) “spherical” coordinates (p,y*) collect the “radial” coordinate p := /+X?2
together with the dimensionless “angular” coordinates y*(:= x*/R) of the radial projection
of the given point of RY on X? = +1. This coordinate system covers the manifold RE.
The submanifold My C ROD is simply the locus such that p = R.

3.2 Tensor fields

Let X, (Mg) denote the space of smooth rank-r covariant tensor fields t,,. .. (z) on My
and X, (R{)j ) the space of smooth rank-r covariant tensor fields T4, . 4, (X) on ROD , both
with values in R (or C in general). The pull-back

o X(RDY X (My)

_0XM(2) o OXAr ()

TAl...AT(X) — tﬂl...,ur(x) = i : b TAl...Ar (X(l‘)) (33)

is surjective but not injective. However, there exists a nice isomorphism between the space
X, (M) of rank-r tensor fields on M, and the subspace of rank-r tensor on R} that are:

(i) homogeneous of fixed non-zero homogeneity degree (say k € Cp),

Tayoa,(AX) = MNTy 4 (X)),  VAeC. (3.4)

(ii) tangent to the constant p submanifolds, i.e.

XA Ty, a4, (X) =0 (3.5)

This isomorphism was explained in details by Fronsdal in [14] but one may review the
construction as follows:
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The condition (i) is best understood for scalar fields (r = 0) since the condition (ii)
is absent. On the one hand, the restriction to M, maps any function ®(X) on RY to the
function on My given by!

") = ®(p,y")|p—r = ®(R, y") = B(X)|x2—pe . (3.6)

On the other hand, to any function ¢(x) on M, one may associate a homogeneous function
®(X) of degree k on R} given by

Ay Yy — P k AR 4 k n
(XY = @(p,y") = (1) @Ry = (1) oG, (3.7)
whose restriction on My reproduces ¢(y) as in (3.6). This function ®(X) is indeed of
homogeneity degree k in X (or in p),

dAX) = M o(X), (3.8)

since X4 = AX4 is equivalent to o/ = \p and y* = y* (because the dimensionless
angular coordinates do not scale with respect to the Cartesian coordinates X#). The
fancy terminology “radial dimenional reduction” [12] comes from the analogy of (3.7) with
a usual dimensional reduction ansatz along the direction parametrized by z := log(p/R)
since then ®(X4) = exp(kz) ¢(y*) looks like a Fourier mode ansatz (when k is pure
imaginary). More comments on this point will be made further below.

The condition (ii) takes into account the projection of the components of the ambient
tensor T4, . 4,(X) on the coordinate basis 9/0z* on each tangent space through the pull-
back formula (3.3). The standard condition

0X

oo X =0 (3.9)

implies that the kernel of the pull-back (3.3) for ambient vector fields V4(X) is spanned by
the radial vector fields, i.e. such that V4(X) = XA®(X). Therefore, the space of tangent
tensors t,,. ., (z) € Ty Mg at a point ¢ € My of Cartesian coordinates X4 is isomorphic
to the space of ambient tensors T4, 4, (X) € Tq* R(’)j that are tangent to M, at the same
point ¢ € My C ROD or, equivalently, that are are normal to the radial direction, i.e. they
satisfy to (3.5).

The operator of orthogonal projection of ambient vectors on the tangent bundle T'M

is equal to
X4XB
PR =55 % (3.10)
where 52 is the Kronecker delta. Indeed,
XV
(PV)A = vA — x4 X - (PV)=0. (3.11)

X2 ’

'With a slight abuse of notation, we denote by ®(p,z*) the pull-back ® (XA(p, z*)). Moreover, in the
sequel we will also frequently denote by ¢(z*) the function ¢ (y*(z)).
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More generally,
(PT)a,..a, == Py . Py T, 5.,  X(PT)a,..a,.n, =0 (3.12)

From now, all tensors will always be completely symmetric under the permutations of
indices. The leitmotiv of the present paper is to realize the space of symmetric tensor fields
on M, as a (sub)space of homogeneous symmetric tensor fields on ROD . However, three
distinct but equivalent realizations prove to be useful: either the ambient tensors are

1. required to fulfill the condition Xt Ta,. A (X) =0,or
2. projected by hand via the projector P, or
3. seen as equivalence classes of the relation

Tay..a, ~ Tay.a, + X, Uny.a,) - (3.13)

Obviously, the first and second realization are equivalent to each other. The third realiza-
tion is equivalent to the previous ones because the latter merely correspond to a particular
choice of representative.
An important example is the induced metric, i.e. the pull-back of the flat metric nap
which reads in intrinsic coordinates as
oX4A ox”P 0X 00X
I = gpn ggv BT gpn T gav

which will be used to raise and lower the minuscule Greek indices. The induced metric can

(3.14)

be represented by the ambient tensor
XaXp
X2

which is in the image of the projection operator P and obeys to the transversality condition

Gap = PSPEncp = nap — (3.15)

XAG g = 0. Notice that the ambient tensor Gap representing the induced metric g, is

in the same equivalence class as the ambient metric, Gap ~ nap, as it should. Moreover,
B _ DB
G3 = P3.

3.3 Covariant derivatives

The main technical difficulty in the ambient formulation is the translation of ambient partial
derivatives d4 in terms of intrinsic covariant derivatives. In order to overcome this obstacle,
a generating function performing the translation rule is provided in this subsection.

Let V,, be the covariant derivative corresponding to the Levi-Civita connection on the
(pseudo) Riemannian manifold M. Its representative D in the ambient space R{)j is the
operator

D=PodoP. (3.16)

A similar formulation of the covariant derivative in terms of the ambient partial derivative
has been used in [15, 16]. For instance, the covariant derivative Vv, of a vector field v,
on My C ROD is represented in ambient space as

DaVp = PS PR 0c(PE Vi) (3.17)
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Geometrically, the definition (3.17) means that the infinitesimal parallel transportation of
a vector field v, on M, can be performed in ambient space in three steps as follows: firstly,
project on the tangent bundle 7'M, its ambient representative Vy; secondly, infinitesimal
parallel transport the resulting vector with respect to the ambient space metric; finally,
project again the result on T'M,. Algebraically, the first step is the projection (3.11), the
second step is the mere partial derivation d¢, so that the third step indeed gives (3.17). One
may prove algebraically that the definition (3.16) indeed implements the unique Levi-Civita
connection V on M, by checking that D verifies the following three axioms:

- Leibnitz rule:
Da(P1 @) = (Da®1)P2 + 1DaPy <+ V(d1¢2) = (Vud1)p2+01Vuga,  (3.18)

- Metricity: DaGpe = 0 < Vg, =0,
- Torsionlessness: [Da,Dp]® = 0 « [V,,V,]p=0.
More concretely, the definition (3.16) reads in components as
DaTp,..B, == PL PR ... Py 0c(PL! ... Phr T, b.) (3.19)

where the definition (3.12) of the projector P was used. Although this formula provides
a nice way to compute covariant derivatives via mere partial derivations in ambient space,
the intermediate projections quickly become cumbersome when the rank of the tensor or
the number of derivatives becomes large. Fortunately, it is possible to obtain an explicit
formula relating the usual partial derivatives in ambient space to the symmetrized covari-
ant derivatives.

In order to express general formulae in compact terms, a standard trick is to contract
every index with an auxiliary vector, say P4 :

T(X,P) = PA . P Ty, 4. (X),
(P-9)" = PY . PAngy ...0,,,
(P-D)" = P4 .. PYD,, ... Dy,
P2 = PAPByp. (3.20)

One may express recursively the powers of ambient partial derivatives 9 like polynomials
of the covariant derivatives D and the flat metric:

[n/2] 2\ M
(P-O)"T(X,P) = > o ( X2) (P-D)"2m (X, P) (3.21)
m=0

where [¢] is the integer part of the rational number ¢ and the coefficients ¢ should be
determined. The dependence of these coefficients ¢;' on the homogeneity degree k in X
and 7 in P will be left implicit for not overloading the formulae. Notice that, by hypothesis,
™ = 0 when m > (n+1)/2 and ¢ = 1 for all n € N. The equation (3.21) amounts

n
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to the following dictionary between ambient partial derivatives and intrinsic symmetrized
covariant derivatives

A, 04, Ta

[n/2]
+1
— Z < > Giunps -+ Tzmriizm Vizmes - Vi ey oprn) - (3:22)

n+1--»Ar+'n)

In appendix, one shows that the function (analytic near the origin)

oo [n/2]

1 —r
clz,ysk —r) = Z Z ol cn g TEmym = (1 + y)k2 exp (\C/Ey arctan \/y) (3.23)

n=0 m=0

is a generating function for the ¢}’ coefficients. The non-vanishing coefficients for m <
(n + 1)/2 can be written explicitly by identifying the relevant coefficients in the power
expansion (given for r = 0):

. oz k\ [k k ,
#02 E D e () () ()

in —2m=0 in_—2m —1=0 i1=0
% n' (_1)7;n—2m
(n—2m) (221 + 1) (2(22—21)+1) (Q(in—Qm_in—Zm—l) —+ 1)

For instance, the first coefficients are

)

o
<
I

b

1
1
=1, =k,
1
1

, cé 3k — 2,
, =203k —4), & =3k(k-2),

Q
w
I

Therefore (3.22) provides, for instance, the following translation rules:

0P +— V, ¢

k
0P +— Vy, ngiRng(ﬁ
3k —2
Rz Jw V)¢

2 (3k — 4)
Rz VoV

040B0c® +— V(/L V,,Vp) ¢ +
04 0B0cOpP — ViuViVVay ¢ £

3k (k — 2)
+ R4 9(uv 9po) o (324)

Notice that a most compact and useful way to summarize (3.21) is as

T(X +tP,P)=c(tP-D,t*P*/X*; k—r)T(X,P), Vt, (3.25)

~10 -
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as can be seen from the Taylor expansion of

T(X +tP,P) = exp(t P - O)T(X, P) = i 2, (P-9)"T(X, P) (3.26)

n=0

in power series of t.

3.4 Laplace-Beltrami operators

Combining the definitions (3.15) and (3.16) of the last two subsections, one finds that
the Laplace-Beltrami operator V2 = g V.V, is represented in ambient space by
GAB D, Dp. On rank-r symmetric tensor fields, it acts as follows

V2, (x) < GBE D DeTa, 4, (X) ~

~ {az - ;2 (X-0)(X-0+D—2— r)} Ta,..a,(X) (327

as can be checked explicitly. Therefore, the action of the ambient Laplace-Beltrami operator
02 = n*B9,0p on ambient symmetric tensor fields of homogeneity degree k is translated
in intrinsic components as follows

P Tay.a,(X) +— [VQ + 12 k(k+d—-1-— 7")} Ly () (3.28)

R

For scalar fields (r = 0), one recovers the standard formulae for the eigenvalues of the
Laplace-Beltrami operator for the “spherical” harmonics in any dimension. In particular,
when the number of timelike directions in the signature of the ambient metric 7 is equal
to:

e Zero (Euclidean), the quadric X? = R? is a hypersphere, My = 59 which can be seen
as the Wick rotation of the de Sitter spacetime space dS;. A textbook material on
group theory is the fact that the genuine spherical harmonics with fixed homogeneity,

kga =L €N, (3.29)

span unitary irreducible representations of 0 (d+1). These spherical harmonics are the
evaluation ¢(z) on S? of homogeneous harmonic polynomials ®(X) such that (3.7),

2B(X) = 0 ¢ |Aga + ;2 0 +d—1)] é(z) = 0. (3.30)

e One (Lorentzian), the one-sheeted hyperboloid X? = +R? is the de Sitter spacetime,
My = dSg, while the two-sheeted hyperboloid X? = —R? is (two copies of) the
hyperbolic space, My = H?. The unitary irreducible representations of o (1,d) cor-
responding to massive scalar fields have been studied a while ago in [27] and belong
to the principal continuous series. They can be realized as the evaluation ¢(z) on dSy
of homogeneous harmonic functions ®(X) of complex homogeneity degree kqg, € C
such that

D 1—-d

Re(kdsd) =1- 9 = 5 Im(/ﬂdsd) = U, (3.31)

— 11 —
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where p is a parameter with mass dimension. This implies that the wave equation
reads as

2
PB(X) =0+ |V? ! SN R
de R2 2 iu’

e Two (Conformal), the one-sheeted hyperboloid X? = —R? is the anti de Sitter space-

é(x) = 0. (3.32)

time, My = AdS,, whose Wick rotation is the previous (two copies of the) hyperbolic
space H%. The lowest weight unitary irreducible representations of o (2,d — 1) cor-
responding to massive scalar fields on (the universal covering of) AdSy with energy
bounded from below are well known (see e.g. [28] for a nice review). They can be
realized as the evaluation ¢(x) on AdSy of homogeneous harmonic functions ®(X) of
real homogeneity degree kaqg, € R such that

D 1—-d

kags, =1— _ +p= 9

) _— (3.33)

In any case, the corresponding wave equation is
5 ) 1 ((d—1\"
To summarize, the wave equation for a unitary massive scalar field on (A)dSy is

2
VfA)degb(x) = }%2 (i <d2 1) + u2> p(z) = m?o(x), (3.35)

where, as mentioned before the & symbol refers to the corresponding equation X? = +R?.
Thus the unitary bound on the “mass square” (or, better, the eigenvalue of the quadratic
Casimir operator of the isometry algebra) of a scalar field on (A)dSy is determined by the

(mR)® = + (d ) 1>2 +u? >+ (d ) 1>2, (3.36)

inequality

which reproduces the Breitenlohner-Freedman bound [29] in the AdSy case where (naive)
“tachyonic” fields may be unitary and stable. As one can see, the massive scalar field on
AdS; may be obtained as the analytic continuation of the massive scalar fields on dSy
where p (and R) is replaced by —ip (and —iR).

For later purpose, let us denote the ambient scalar field ®7(X) as being the function
on ]R(])j whose homogeneity degree k:z A)dS, is equal to k(4)qs, up to the substitution of u by
—p in (3.31) or (3.33) respectively, and whose evaluation on (A)dSy is equal to ¢*(y), i.e.

#(xY) = o'y = ()" o). (3.37)

This homogeneous function ®f(X) is also harmonic and the complex conjugate ¢*(z) sat-
isfies to the same wave equation (3.35). A compact way to summarize the respective

- 12 —
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Object Ambient space Rg) Constant-curvature spacetime My
Coordinates x4 xH
Scalar P(X) o(x)
Conjugate of(X) o*(x)
Vector Ta(X) tu(x)
Tensor Ta,...a,(X) oy (T)
Metric GaB ~ NaB Juv
Covariant derivative Da Vi
Spacetime Laplacian D? = GAZ D, Dp V2 = g V.V,
Ambient Laplacian 9? = B9, 0p V2 + 1%2 E(k+d—-1)

Table 1. Dictionary Ambient space/Constant-curvature spacetime.

homogeneity degrees on (A)dSy is as follows:

D 1-d
k(ayas, =1 -, +VFlp = +VFLp,

2 2
i B D o 1-d
Flays, =1 = 5 — VFLp = ) VFLp, (3.38)

where, once again, the 4 symbol refers to the corresponding equation X? = +R2. Notice
also the useful identities

2
+ (mR) = - k(A)de(k(A)dsd +d—-1)
_ gt f
= ~Flayas, Flayas, T4 = 1) (3.39)

i
- k(A)dek(A)de .

In the AdS/CFT litterature, the opposite of kaq4s, and desd are usually denoted by A
and A_.

Various ambient/spacetime notations that have been introduced so far are summarized
in the table 1.

3.5 Klein-Gordon action

The quadratic action of a complex massive scalar field on (A4)dSy reads, modulo a boundary
term, as

1

Sold] = — / @2/ | g (§70,6* (@)D 6(x) + m? |p@)F).  (3.40)
2 J(ayas,

It can be rewritten in the ambient formulation where the covariance under all isometries
is manifest,

Solé) = = [ dPX | X7 60X 7 B2) x
x (GABaA<1>T(X) Opd(X) + (mB)?

o <1>T(X)<1>(X)> . (3.41)

—13 -
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In (pseudo) spherical coordinates, the volume form reads as

d°X = dp (g)d iz /) g(2)|, (3.42)

In order to check the equality (3.41), one should rewrite the integral over RY in (pseudo)
spherical coordinates, insert the homogeneity conditions (3.7) and (3.37) as well as the
following relation on the Dirac delta function,

p

1
U Sp—R),  (3.43)

ip—R) =,

| X%20(X2 % R?) = pd(p® ¥ R?) = |
and, finally, integrate over the radial coordinate p from zero to infinity.

There is also an alternative way to obtain the spacetime integral (3.40) in a form where
the covariance under all isometries is manifest: along the lines of the radial dimensional
reduction from massless to massive fields and from flat to curved spacetimes [12], one may
instead remove the Dirac delta 6(p — R) in the integral over the ambient space. With the
help of (3.39) and

GAB 0T (X)9p®(X) = n*P9,0T(X) 0P (X) — Xl,Q (X -9)0T(X) (X -0)®(X), (3.44)

together with (3.42), one can show that

1
Sol®] = -, /RD dP X nAB9,01(X) 0p®(X)
0

= —1/ a’x <GABaAq>T(X)an>(X) +
2 ]Ré)

m 2
(XB;) <I>T(X)<I>(X)) (3.45)

_ R/O dz x Sold]

where the integral over z on the right-hand-side is simply a constant factor (albeit infinite)
Remember that z = log(p/R) and (p/R)* = exp(k z). The analogy of (3.45) with a dimen-
sional reduction along a (non-compact) direction further justified the choice of terminology
“radial dimensional reduction” in [12]. This interpretation is somewhat more natural in
dS; where the radial direction is spacelike (though non-compact) as it should and where
®T is simply the complex conjugate of ®. In this analogy, the parameter p plays the usual
role of the mass for the Fourier factor exp(i p z). The basis of the radial dimensional reduc-
tion technique is the observation that, since the kinetic operator for massless fields on flat
spacetime is scale invariant, the homogeneity condition on the fields is a consistent ansatz.
Moreover, the homogeneity degree must be chosen such that the action on the flat ambient
space is also scale invariant.

3.6 Noether method

The ambient formalism developed above should also be applied to the whole content of the
section 2. In this subsequent, one introduces various definitions dedicated to an ambient
reformulation of section 2, preparing the ground for the next two sections.

— 14 —
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The ambient representative of a symmetric conserved current of rank r > 1, say jHt—Hr,
is an equivalence class J At Ar ~ JAr-Ar 4 x(AigjA2.-4r) of real contravariant homoge-
neous symmetric tensor fields on ROD of homogeneity degree equal to 2 — D — r where one
of the representative obeys to the strict conservation law

Op, JA A (X))~ 0. (3.46)
The homogeneity degree,
(X494 + D — 2 4 r)JA A (X) =0, (3.47)

is chosen such that the equation (3.46) is preserved by the equivalence relation, as can
be checked directly and as will be shown later in a more economical way. This property
implies the covariant conservation law

Dy, JA A (X) = 0. (3.48)

corresponding to (2.1), even though the representative J414r(X) satisfying (3.46) may
not be tangent. An ambient generating function of conserved currents is an equivalence
class

J(X,P) ~ J(X,P) + (X-P)U(X,P) > JAhAr ~ ghdr g x(AigazAr) (3 49)

of real functions on the phase space T*R(j)j which are (i) formal power series in the momenta,
(ii) such that

0 0
x4 P D - 2] J(X,P) = .
(3% e+ Pagpy, + D = 2) JX.P) =0, (350)
xa 9 + Py 2 1 p U(X,P) =0 (3.51)
axXA 0Py ’ ’
and (iii) where one of the representatives obeys to
o 0
<8XA8PA) J(X,P)~0. (3.52)
The commutation relation
0o 0 B A 0
{aXAé)PA’X PB}X 8XA+PA8PA+D (3.53)

implies that, provided the homogeneity condition (3.50) is satisfied (which is consistent
with the radial reduction ansatz), the ambient divergence is well defined on equivalence
classes of currents, i.e.

o 0 o 0
J1 NJ2 — <6XA aPA> J1 ~ (6XA 6PA) JQ, (354)

because [0x - dp, X - P]JU = 0 due to (3.51). Therefore, the current is covariantly diver-
genceless

(DA a?DA) J(X,P) ~ 0 (3.55)

— 15 —
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when (3.50) holds since (3.52) and (3.54) imply (3.55). Thus all the coefficients of order
r > 1 in the power expansion of the generating function

J(X,P) =) :' JAAr(XY Py, L Py (3.56)

r>0

T

are all ambient representative of conserved currents by means of (3.55).

The ambient representative of a symmetric tensor gauge field of rank r > 1, say
hyy..pp (), is a real covariant homogeneous symmetric tangent tensor field Hy,. 4, (X) on
R{)j of homogeneity degree equal to r — 2 whose gauge transformations are of the form

SeHay. .4, (X) = 10a,€4,..4,)(X) + O(H) = rDg,€a,..4,)(X) + O(H), (3.57)

where the gauge parameter €4, 4. ,(X) is a covariant homogeneous symmetric tangent
tensor field on ROD of rank r — 1 and of homogeneity degree » — 1. The homogeneity
degrees are such that the symmetrized gradient of € is tangent, as can be checked by direct
computation, so that dia,€4,...4,)(X) = D4, €4,..4,)(X). An ambient generating function
of gauge fields is a real function H(X, V) on the configuration space TRY (i) which is a
formal power series in the velocities, (ii) such that

0 0 5}
(XA(?XA - VA@VA + 2> H(X,V) =0, <XA8VA> H(X,V) =0, (3.58)

and (iii) whose gauge transformations are
S H(X,V) = (VA4) e(X,V) + O(H) = (VADa) (X, V) + O(H), (3.59)

where €(X, V) is a formal power series in the velocities such that

0

0
A A
<XaA Vo ya

e )e(X,V) =0, (XA 0 >e(X,V) =0. (3.60)

ovA
The commutation relation

0

oy (3.61)

o d o
A B _ A A
[X gvaV aXB} = Xaxa Y

implies that, provided (3.60) is satisfied, then (X -0y )d.H (X,V) = O(H). The coefficients
of order r > 1 in the power expansion of the generating function

1
HX, V) =>" y Hap, A (x)VA . v (3.62)

r=>0 "’

are all ambient representatives of symmetric tensor gauge fields due to (2.5) with

1
e(X,V) = Ztl €aa,(X)VA L vA (3.63)
t=>0
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The non-degenerate bilinear pairing (2.8) between smooth functions h(z, v) and j(x,p)
on the configuration and phase spaces respectively, can be written in terms of the ambient
representatives in a similar fashion to (3.41):

o 9
i> =2 d°X|X2|25(X2F R? H(X X, P
“hllis =2 PXICROCERY o (0 o ) HEIIOCR)|
=2y ! dPX | X2)2 6(X2 F R2) Ha,.a, (X)J4 A (X). (3.64)
r=>0 ! ROD

Another option is to follow the philosophy of the radial dimensional reduction, as in (3.45),

0

0
VA P, (3.65)

<H|J> = / dPX exp < ) H(X,V)J(X,P)
RY

V=P=0

1
=% [ X Haa (0 5 )
T ROD

=0

:R/ dz < h|j>
0

where the integrand of the integral over R{)j on the second line is of homogeneity degree
equal to —D as it should. This shows that if the conserved currents of the matter fields
on a flat spacetime define ambient representatives with the right properties (such as their
degree of homogeneity) then the radial dimensional reduction of the Noether interaction
can be applied:

S0, H] = < H|J>
~ R / dz x Si[6, 1] (3.66)
0

The ambient representative of a Killing tensor field of rank r — 1 > 0 on My is a

covariant homogeneous symmetric tangent tensor field €4, 4, ,(X) on Rg’ of degree r — 1

r—

solution of the generalized Killing equation
J(a,€4,..4,)(X) = 0. (3.67)

An ambient generating function of Killing fields is a function ¢(X, V') on the configuration
space TR(’)D which is a formal power series in X[AVBl .= XxAyB — XBYyA  Then the
coeflicients in the power series

(X, V) = ¢ (X[AVB]) — Z 1

g EAa () VA VA (3.68)
t>0

provide the most general ambient representatives of Killing tensor fields on My (see e.g. [25,
26, 30] for reviews and refs therein).

In the next two sections, these general facts will be applied to the case of a free complex
scalar field.
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4 Comnserved currents

The generating function of conserved currents on the flat ambient space [6] is equal to
J(X,P) = &' (X —iP) ®(X + iP) (4.1)

so that the corresponding ambient conserved currents take the explicit form
-
- T S r
Jay.a,(X) =" (=1) <S> Oay - 0a,01(X)Da,,, ... 04,)®(X)
5=0

— " (X) On ... 90 B(X) (4.2)
where the usual double arrow <5> is defined by
OV = B(940) — (940 . (4.3)

These flat space currents (4.2) are proportional to the ones introduced by Berends, Burgers
and van Dam a long time ago [4]. Various explicit sets of (conformal) conserved currents
on Minkowski spacetime were provided in [31-34]. The symmetric conserved current (4.2)
of rank r is bilinear in the scalar field and contains exactly r derivatives. The currents
of any rank are real thus, if the scalar field is real then the odd rank currents are absent
due to the factor in front of (4.2). The generating function (4.1) verifies (3.52) when
the ambient scalar field ® obeys to the Klein-Gordon equation. Although the ambient
currents (4.2) are not tangent in general, they obey to (3.50) for homogeneous ambient
scalar fields corresponding to massive scalar fields on (A)dSy, since (3.38) implies

t _
kayds, +Fiayas, = 2D, (4.4)

and therefore the previous equation (3.52) is equivalent to the covariant conservation
law (2.1). In other words, the radial dimensional reduction of the cubic Noether inter-
action is valid precisely for the mass-square domain of unitarity in (A)dSy.

The main drawback of the explicit expressions (4.2) for the conserved currents is that
it is written in terms of ambient partial derivatives instead of covariant derivatives, but
the ambient generating function (4.1) of (A)dS; conserved currents can be written very
explicitly in terms of (3.23) with the help of (3.25)

) p? ) p?
J(X,P) = c(—zP~D,—X2 ; kIA)de> i (X) c(zP-D,—X2 ; k:(A)de> d(X)

P2 P2
_ ; A : .
= of(X)e <—2P'%7— Y2 k(A)de) ¢ (’P'B7— X2’ k(A)de> (X)
p2

X Romd
= (I)T(X)C<7,P~ D= o

2 — D> P(X) (4.5)

where the property c(z1,y;ki)c(xa,y;ke) = c(z1 + x2,y; k1 + ko) and (3.38) were used.
The ambient generating function (4.5) translates into the following generating function of
conserved currents

i) = o) e (i T 7T 1) oto) (4.6)
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The flat limit is recovered for R? — oo since c¢(z,y) ~ expx when y — 0. Due to (3.23),
the development (2.3) of this generating function gives the following conserved current of
rank r,

/2] m
. T F1 m *
@) = 13 () G e @O F s Tt @)

m=0

where the coeflicients ¢ correspond to k = 1 — d. It is possible to compute numerically
these coefficients ¢, the covariant derivatives (3.25) and these currents from (4.7) whatever
the rank. For example, we therefore find the first currents, which are all preserved by
construction and which was also verified explicitly, calculated classically:

gu=i6"V .0

jw =0T o g
g =109, T F o xi' - 0,679 ,0
s = 99, F 9,50 £ 21 3,609,500

> —1 .
+3 R4 g(qup0)¢ ¢

Similar conserved currents on constant-curvature spaces were described in [7-9, 35, 36]
but the present results are somewhat more general: firstly, the currents (4.2) are conserved
for any free massive scalar field in any dimension, while only the conformal scalar (i.e. the
singleton) was considered in [8, 9] and AdS3 was the background spacetime in [35, 36];
secondly, the explicit expression of the currents is known at all orders in the scalar
curvature, while only the first order correction to the flat expression was provided in [8, 9];
thirdly, the currents (4.2) are conserved on-shell in the usual sense of (2.1) while the
ones of [7] obey to the weaker conservation law introduced by Fronsdal [14]. Of course,
strictly speaking the third comment should not be understood as a loss of generality in
the previous results of [7, 10]. We simply want to stress that usual conservation laws for
the currents is a desirable property because it allows a uniform treatment of (ir)reducible
gauge fields, e.g. of triplet and Fronsdal fields, and it might also simplify the analysis of
current exchange amplitudes.

5 Noether interactions

As explained in the previous section, the function (4.1) obeys to all properties for an am-
bient generating function of conserved currents, as defined in subsection 3.6. Therefore,
the radial dimensional reduction of the corresponding ambient Noether interaction (3.65)
is consistent and provides the Noether interaction (2.9) on (A)dSy; where the conserved
currents are given by (4.7). An important consequence of this fact is that one can import
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from flat spacetime all relationships (observed in [6]) between the Noether interactions
of a complex scalar field with a collection of symmetric tensor gauge fields. In other
words, the consistency of the radial dimensional reduction implies that one can induce the
Weyl/Wigner technology used in [6] from the flat ambient space RY onto the spacetime
(A)dSy. In this way, one reproduces the ambient approach to the Weyl/Wigner quanti-
zation of the cotangent bundle T* M, of a constant-curvature manifold, which was first
introduced in the seminal papers on deformation quantisation with humor under the name
“a star product is born” [37, 38]. The relevance of the latter approach to higher-spin gauge
theory on (anti) de Sitter spacetime was argued in [30].

5.1 Symbol calculus

Let us become more explicit. To start with, since Réj and (A)dSy are endowed with a
metric, their respective tangent and cotangent spaces may be identified and thus one can
identify “momenta” with “velocities”, e.g.

Piy = nap VB and Pu = Guv"”. (5.1)

The ambient generating function of gauge fields H (X, P) is now a real function on T*RY
such that

0 o B
(XA(?XA ~Pagp + 2) H(X,P) =0, (X. 8P> H(X,P) =0, (52

and whose gauge transformations are

5.H(X,P) = <P~ a(?x) (X, P) + O(H), (5.3)
where (X, P) is such that
0 0 0
A _ = . =
<X oxA PAaPA>e(X,P) 0, (X aP)E(X,P) 0. (5.4)

The cotangent bundle T* M, can be seen as the sub-bundle of RY defined by the quadric
definition X2 = +R? together with the transversality condition X4P4 = 0. As symplectic
manifolds, this embedding corresponds to a reduction with respect to the previous two
constraints.

The ambient Moyal product of two smooth functions on T*R{’ is defined by

179 "o
€1(X, P) xe2(X, P) = € (X, P) exp (2 OP, A 8XA> ea(X, P) (5.5)

where A stands for the antisymmetric product. The conditions (5.4) on (X, P) are equiv-
alent to

[X-P * ¢X,P)] =0, (X2 * ¢(X,P)] = 0. (5.6)
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where

[61(X,P) *,'EQ(X,P)] = 61(X,P)*€2(X,P) —GQ(X,P)*El(X,P)

10 0
= ¢ (X, P)2sinh (2 P, A aXA> ea(X, P) (5.7)

denotes the ambient Moyal commutator. The conditions (5.6) expressed in terms of the
Hermitian operator é the Weyl symbol of which is €(X, P) state that this operator preserves
the homogeneity degree and commutes with X2. The evaluation e(z, p) of the ambient rep-
resentatives (X, P) provides an isomorphism between the space of smooth functions on
T* Mg and the (sub)space of smooth functions on T*RE which are subject to (5.6). More-
over, the space of symbols obeying to (5.6) is a subalgebra of the ambient Weyl algebra.
Therefore the pull-back of the Moyal product on T*RE induces a star product * on the
cotangent bundle T* M, such that the former isomorphism becomes an isomorphism of
associative algebras, as pointed out by Bayen, Flato, Fronsdal, Lichnerowicz and Stern-
heimer in [37, 38]. Notice that the Lie algebra of smooth functions on T*M, endowed
with the corresponding star commutator [ * | is isomorphic to the Lie algebra of Hermitian
(pseudo)differential operators on M. The adjoint action of this Lie algebra preserves the
space of Weyl symbols such that (5.2) and the gauge transformations (5.3) can be written
as

SH(X,P) = ;[PQ * ¢(X,P)] + O(H). (5.8)

The ambient generating functions of Killing fields e(X, P) are Weyl symbols commuting
with the three constraints X2, X - P and P? which generate an sp(2) algebra. The Lie
(sub)algebra of such symbols is the off-shell higher-spin algebra of Vasiliev (see e.g. [1-3]
for reviews).

5.2 Cubic vertex

Using the bra-ket notation for the scalar field ®(X) = (X | @) and ®f(X) = (& | X ), the
ambient generating function J(X, P) of currents (4.1) is the (analytic continuation of the)
Fourier transform over momentum space of the Wigner function associated to the density
operator | @ )( ® | and the ambient Noether interaction (3.65) can be rewritten in a compact
form as [6]

Si[®,H| =< H|J>=(®|H|P) (5.9)

where H(X, P) is the Weyl symbol of the operator H.
The ambient Klein-Gordon action (3.45) can be rewritten along the same lines as

Sol®] = (@] Ho| ) (5.10)
where the operator Hy is defined by

)(1,2 (X 0)(X-0+D—2)7F (”;(]?2

Hy := ; % — (5.11)
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and is the ambient representative of the kinetic operator %(Vidsd — m?). It has Weyl
symbol equal to

Ho(X,P) := ; <GABPAPB T (";(]?2> — ; <P2 - (X)'(f)Q T (”;(]?2) (5.12)

where the transverse inverse metric G4 := nA8 — X4 XB /X2 is the ambient representative
of the inverse metric g"” on (A)dS,; . Remark that the function Hy(X, P) also obeys to (5.2).
Therefore the sum

So[®] + S1[®, H] = (®|Hy+ H|®) (5.13)

is manifestly invariant under the following action of the group of unitary operators on
(A)dSy:
&) — U|®), Hy+H — U (Ho+H) U™, (5.14)

where the unitary operator Uis generated by the Hermitian operator ¢ and where the scalar
and gauge fields respectively transform in the fundamental and adjoint representation of
the group of unitary operators. Notice that the action of the operator U on ®(X) is indeed
consistent with the radial dimensional reduction because this unitary operator preserves
the homogeneity degree as € does. Notice that as long as higher-derivative transformations
are allowed then the infinite tower of higher-spin fields should be included for consistency
of the gauge transformations (5.14) beyond the lowest order. The infinitesimal adjoint
action (5.14) of the Lie algebra of Hermitian operators on (A)dSy, written in terms of the
Weyl symbol H(X, P), leads to the following deformation of (5.8)

§H(X,P) = [Ho(X,P)+ H(X,P) * ¢(X,P)] + O(H?). (5.15)

The ambient generating functions of Killing fields e(X, P) are Weyl symbols that are prod-
uct of X(4Pp), whose corresponding operators are products of the isometry generators
X(40p) of (A)dSy, i.e. generators of the Vasiliev off-shell higher-spin algebra. When the
latter algebra acts on the singleton module of o(d — 1, 2), the three sp(2)-constraints men-
tioned at the end of subsection 5.1 act trivially. The quotient of the Vasiliev off-shell algebra
by the corresponding two-sided ideal (spanned by elements that are sum of elements pro-
portional to a sp(2)-constraint) is the Vasiliev on-shell higher-spin algebra (see e.g. [1-3]
for more details). The situation is somewhat different for the massive scalar field module
spanned by the harmonic homogeneous functions on the ambient space of subsection 3.4,
because this module is not annihilated by the operators corresponding to X2 and X - P (see
e.g. the section 3 of [30] for some discussion on the algebra of symmetries of the massive
scalar field).

It is very tempting to conjecture that the full action (2.13) should be interpreted
as arising from the gauging of the rigid symmetries of the free scalar matter field, which
generalize the U(1) and isometries of (A)dSy, so that the local symmetries (5.14) generalize
the local U(1) and diffeomorphisms (see [5-7, 30] and refs therein for more comments on
this point of view). In any case, the unfolded equations (on-shell [1-3] and off-shell [39, 40])
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precisely arise from the gauging of the same rigid algebra of (on/off shell) symmetries but
the scalar field is included in the gauge field multiplet.

To end up with a side remark, we would like to point out the possibility to have
a uniform treatment of the gauge fields and parameters where both generating functions
have equal homogeneity degree in X and in P. This possibility might prove to be useful for
further works because this treatment allows to make use of the star commutator induced
on My [37, 38] in order to write down the intrinsic form of the gauge transformation (5.8).
Moreover a uniform treatment of fields and parameters is appealing in the metric-like
approach since their generating functions can both be interpreted as Weyl symbols of
Hermitian (pseudo)differential operators on the spacetime manifold. Concretely, notice
that H(X, P) := X2H(X, P) obeys to

d 0 0
A
(X o34 = PAaPA>’H(X,P) =0, (X-ap> H(X,P) =0, (5.16)

as follows from (5.2). The same holds for

Ho(X,P) = ;XQ (GABPAPB T (”;(]?2> = ; (X*P? — (X -P)>¥ (mR)?) (5.17)

which corresponds to the Weyl symbol i§2 9" pupy . One can check that
[Ho(X,P) * ¢(X,P)] = | X* + Lo o (PA94) e(X, P) (5.18)
' ’ ’ 40P OP ’

by making use of the identity
2[X?P? —(X-P)? * ¢(X,P) ] = X?x[P? X ¢(X,P) | + [P? * ¢(X,P) |xX?. (5.19)

Therefore the star commutator between the (A)dS; background field ¢"”p,p, and any
function e(z, p) on the cotangent bundle 7%(A)dS,, above is equal to

1 0 0

H . 2
4 R2 Guv 3}7” 8py> (p vu) E(x,p) (5 0)

1
N (9" pupy ¥ €(z,p)] = <1 +

Therefore, modulo the field redefinition,

1 o 0
b (x,p) = (1 + 4 g2 I o, ap,,) h(z,p), (5.21)

the lowest order of the gauge transformation (2.5) can be expressed directly via the star
product on (A)dSy

1
60 (z,p) = ) (6" pupy ¥ (z,p)] + O(K) (5.22)

in analogy with (5.8).
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6 Conclusion and outlook

The present paper may be thought as a first step towards a generalization to any constant-
curvature spacetime of the results obtained in [6] for a complex scalar field around
Minkowski spacetime, such as the generating functions of conserved currents, of inter-
action vertices, of gauge symmetry deformations and of four-point exchange amplitudes.
Besides the exchange amplitudes, all these results have been generalized here to the case
of non-vanishing curvature. Recently, the results of [6] were considerably extended via
string-based computations by Sagnotti and Taronna [41, 42] and it would be interesting to
investigate the possibility of a radial dimensional reduction of their elegant results, looking
for the analogue of their generating functions to (anti) de Sitter spacetimes. We plan to
return to these issues in the future.

The generating function of the infinite set of conserved currents for a free complex
scalar field on (A)dSy have been obtained from the flat one [6] through a radial dimensional
reduction. For this purpose, an efficient translation rule between ambient partial deriva-
tives and intrinsic (i.e. spacetime) covariant derivatives was developed. The form of the
current generating function on ambient space is identical to the bilocal function introduced
by Fronsdal [14] in order to provide a manifestly covariant realization of the theorem [43]
asserting that the tensor product of two scalar singleton on the conformal boundary decom-
poses as an infinite tower of bulk gauge fields. This similarity is by no mean accidental since
the Flato-Fronsdal theorem is known to be instrumental in the holographic correspondence
between free conformal field theories on the boundary and higher-spin gauge field theories
in the bulk but it might deserve to be investigated further in the ambient formulation.

Through the Noether method, the current generating function allows to write a gener-
ating function of cubic minimal couplings and to determine the corresponding gauge sym-
metry deformations. Our results confirm some previous expectations on the non-Abelian
deformation of the metric-like gauge symmetry as being the group of unitary operators
on the spacetime manifold, thereby generalizing the group of diffeomorphisms. It was
extremely convenient to remove trace constraints on the gauge parameters when reflect-
ing on the non-Abelian symmetries in the metric-like formulation of higher-spin gauge
fields (see e.g. [30] for an extended discussion of this point). As far as the non-Abelian
frame-like formulation is concerned, the analogue of Vasiliev’s unfolded equations in the
unconstrained case are also of interest for studying the off-shell gauge symmetry struc-
ture [39, 40]. Moreover, a slight refinement of the on-shell unfolded equations has been
proposed in [44] following the spirit of the unconstrained approach. The recent frame-like
formalism with weaker trace constraints [45] might also shed some light in these directions.

Notice that, at the order where we worked (at most quadratic dependence in the gauge
fields), it is perfectly consistent to make use of traceful currents in the “minimal” coupling
between gauge fields and currents. However, the quadratic action for the gauge fields will
determine the genuine physical interactions between the matter and gauge fields. Indeed,
the gauge fields may also couple to other fields, dynamical or not (e.g. auxilliary and pure
gauge fields), and these couplings will affect the on-shell structure of the interactions. For
instance, if the quadratic gauge field action is the Fronsdal action [14] then the double-
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trace of the current is automatically extracted out off-shell and the single-trace further
decouples on-shell. It is known since the seminal works of Francia and Sagnotti that the
trace constraints may consistently be removed off-shell from the metric-like quadratic action
in several ways for irreducible gauge fields (see e.g. [46, 47] for some reviews and [24, 48]
for some recent developments). Nevertheless, the trace of the current still decouples on-
shell as it should [24]. For the so-called “triplet” arising from the open string leading
Regge trajectory [46, 47, 49-53] (see also [10, 23]), the situation is more subtle: although
traceful conserved currents can indeed source the symmetric tensor field, only the traceless
component of the currents studied here leads to genuine minimal interactions.? The kth
trace of the current of rank r is a current of rank r — 2k (lower than r) and contains r
derivatives. However, any non-trivial rank-s conserved current built from a scalar field is
known to contain up to s derivatives. Therefore, any trace component of the current is equal
on-shell either to zero or to an “improvement”, i.e. a trivially conserved (or, equivalently,
co-exact) current. Such on-shell trivial currents give rise to non-minimal interactions,
quadratic in the scalar fields and linear in the gauge-invariant higher-spin fieldstrengths.

Finally, the toy model [6] has been used to calculate tree level exchange amplitudes for
the elastic scattering of two scalar particles mediated by an infinite tower of tensor gauge
fields. The AdS; counterparts of Feynman diagrams with four external scalar particles
should be Witten diagrams associated with the four-point correlation function of a singlet
(“single trace”) scalar operator, bilinear in some large component massless scalar field liv-
ing on the conformal boundary, as in [54, 55|. The exact summation of the corresponding
exchange amplitudes for an infinite tower of intermediate tensor gauge fields is possible in
flat spacetime [6] and one might hope to reproduce the analogue of this result in AdSy since
all ingredients are now available in the unconstrained formalism for irreducible gauge fields:
the bulk-to-bulk propagators of symmetric tensor fields can be extracted from [24] and the
relevant cubic vertices have been presented here.® Moreover, the CFT,;_; dual results
are known in closed form, even for the interacting O(N) model in the large N limit [56].
Computing explicitly the AdS; exchange Witten diagram could therefore provide a first
quantitative test of the AdSy/CFTs conjecture of Klebanov and Polyakov [55] at quartic
level, i.e. for four-point correlation functions. Indeed, while impressive quantitative checks
of the correspondence have been performed at the interacting level [57-60], to our knowl-
edge all of them were restricted yet to three-point correlation functions where symmetries
are known to highly constrain the set of possibilities.
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A Technical appendix

Let us consider a homogeneous symmetric tensor of rank r such that (XPop —
E)Ta,.4,(X) = 0 and X4 Ty, 4 (X) = 0. These last two properties together with
the definitions of the projector (3.10) and the equivalence relation (3.13) imply that

Dl Dn El Er
5',4(7731 .. 'PBn cy - 'PCT dp, - - .BD,,LTEL”ET_) ~

1
~ 3,4831 e aB'rLTCl---Cr — X2 n (XDaD) 7]A(Bl 832 e 8Bﬂ,)TC1___C,,, —
1

— X2 r XE 831 . 8BnTE(CQ...CT-7701)A

= 040B, ... 0B, TC,..0p — (k—(n—1))nap, 0B, .- 08 Tcy..or +

1
x2"
1
+ X2 rn8(32 e 8BnTBl)(CQ...Crn01)A

Contracting all indices with an auxiliary vector P and making use of the notations (3.19)
and (3.20), one gets that
n _ n+1 P2
(P-D)(P-O)"T = (P-9) T_nXQ(

The left-hand-side of (A.1) can be expressed by

k—r—(n-1)(P-0)"'T (A1)
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X2
m=0
[n/2] 2\ M
_ 0 +1 —2m+1
= (P-D" 4+ ) o <X2> (P-D)r2mir,

m=1
where (3.21) has been inserted in order to compute (P - 9)". The right-hand-side of (A.1)
can also be reexpressed as follows
2

(P-o)"iT — nl

o k=r=@=D) (P9t T

[(n+1)/2] (PQ

m
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m=1

by making use twice of (3.21) in order to calculate (P - 9)"*! and (P - 9)"~!. These
equations imply that the coefficients ¢]’ are given by the recurrence formula:

Ay = e A nlk—r—n+1l)e] (A-2)

n—1
and for n odd, there is an additional relation:

(nt1)/2 nk—r—mn-+1) 0(7:1)/2 . (A.3)

Cn+1 n

If one considers the ¢)' as the coefficients of a power (a priori formal) series

) =33 Ly, (A4)

n=0 m=0
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one can rewrite the recursion formula (A.2) as an ordinary differential equation
(parametrized by the “constant” y) for the unkown function f(z,y) depending on the
single variable x

(1+2%) § flo) ~ (1+ (k=)o) fay) = 0 (A5)

with the initial condition f(0,y) = 1. The solution of this Cauchy problem is:

flz,y) = (1 + ny)kz exp (;y arctan (\/yac)> . (A.6)

The generating function c(x,y; k) is equal to f(z,y/z?).
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1 Introduction

The quantum many-body problem of a non-relativistic two-component Fermi gas with
short-range attractive interactions is a longstanding problem in condensed matter physics.
At low temperature, the system is known to be superfluid and undergoes a smooth crossover
from the Bardeen-Cooper-Schrieffer (BCS) to the Bose-Einstein-Condensate (BEC) regime
as the two-body attraction is increased (see [1-4] for recent reviews). Considerable progress
in atomic physics in the two last decades allowed to study the BCS to BEC crossover with
unprecedented accuracy. Of special theoretical interest is the regime in between BCS and
BEC known as the unitary Fermi gas.! In three spatial dimensions, the unitary Fermi gas
is intrinsically strongly coupled and no obvious small parameter is available, precluding the
reliable application of a perturbative expansion. In this way, the unitary Fermi gas provides
a great theoretical challenge and requires the development and subsequent applications of
advanced non-perturbative many-body methods.

A special property of the unitary Fermi gas in vacuum (describing few-body physics)
is the invariance of the action under the scale transformations and more generally under
the Schrodinger group of Niederer and Hagen [5, 6]. This group of space-time symmetries
provides a direct non-relativistic analogue of the conformal group. Although the general
proof is still lacking, it is believed that for the unitary Fermi gas there is no conformal
anomaly and thus that the Schrodinger symmetry survives quantisation [7-10]. Motivated
by this, Nishida and Son extended the general methods of conformal field theory (CFT) to
the realm of non-relativistic physics and applied them to the unitary Fermi gas [11, 12].

Due to the non-relativistic conformal symmetry of the unitary Fermi gas in vacuum,
Son, Balasubramanian and McGreevy [13, 14] recently have initiated an attempt to apply
the methods of the gauge-gravity duality to this system. While their seminal papers revived
the interest of mathematical and high-energy physicists toward non-relativistic symmetries,
they mostly triggered an intensive body of research for the putative holographic duals of
various non-relativistic systems originating from condensed matter theory. However the
initial target, i.e. a holographic description of the unitary Fermi gas, remains tantalising
despite several steps forward [15-17]. As mentioned by Son in [13], a possible direction of
investigation is the unitary Fermi gas with U(1) x Sp (2N) symmetry introduced in [18, 19]
(see also [20]) whose gravity dual might be a classical theory in the large-N limit. Notably,
this gravity theory would have an infinite tower of fields with unbounded spin, similar to
the conjectured anti de Sitter (AdS) dual of the critical O(N) model [21]. Interestingly,
an impressive check of this latter conjecture has recently been performed for three-point
correlation functions [22, 23]. These encouraging results strengthen the natural expecta-
tion that this AdS/O(N) model correspondence provides a proper source of inspiration
for an AdS/unitary-fermions correspondence. Our recent letter [24] aims to represent a
further step towards a precise conjecture along these lines. The goal of the present work
is to present in detail some findings about the free and unitary fermions that support our
proposal. Some of these results were already announced in [24] without a proof. Although

'In this regime the two-body low-energy cross section saturates the maximal bound originating from the
unitarity of the S-matrix. This property gives rise to the term “unitary” Fermi gas.
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the body of our paper focuses on the CFT (boundary) side, some comments on the gravity
(bulk) side and the holographic correspondence are in order.

The AdS/O(N) correspondence proposed by Klebanov and Polyakov [21] pursuing
earlier insights of Sezgin and Sundell [25] involves, on the boundary, a multiplet of N
massless scalar fields in the fundamental representation of O(N) with a quartic O(N)-
invariant interaction and, in the bulk, an infinite tower of symmetric tensor gauge fields with
interactions governed by Vasiliev equations [26] (see [27-31] for introduction). The crucial
point in this correspondence is that there is an infinite collection of O(N)-singlet symmetric
currents of all even ranks, bilinear in the boundary scalar field, that precisely matches the
spectrum of the higher-spin gauge theory. These boundary currents are conformal primary
fields and are exactly conserved for the free theory (while only at leading order in 1/N
for the interacting theory) so their bulk duals should indeed be gauge fields. They are
actually the Noether currents of the maximal symmetry algebra of the massless Klein-
Gordon equation [32], that is the infinite-dimensional symmetry algebra of a free conformal
scalar field. This algebra of rigid symmetries is isomorphic to the algebra which is gauged
in the bulk higher-spin theory [26]. A precise statement of the correspondence is that the
generating functional of the connected correlators of the boundary currents is given, in the
large-N limit, by the on-shell classical action of the bulk fields expressed in terms of the
boundary data. In the large-N limit, the generating functionals of the critical theory and
of the free theory are related by a Legendre transformation, which should be dual to a
mere change of boundary conditions for the same bulk theory, as follows from the general
analysis of [33, 34].

So what could be an educated guess for a gravity dual of unitary fermions? We will
turn back to this cardinal issue in the conclusion but, before, let us start by looking for the
non-relativistic analogue of the above-mentioned construction. As was found in [18, 19], a
sensible large-N extension of the unitary Fermi gas has U(1) x Sp (2N) symmetry? and in-
volves a multiplet of 2NV non-relativistic massive fermions transforming in the fundamental
representation of Sp (2N). The general arguments of [34] imply that, in the large-N limit,
the Helmholtz free energies of unitary fermions and of non-interacting fermions are related
by a Legendre transformation. Thus, in this limit the results obtained from the free theory
are of direct interest for the theoretically more challenging critical regime at the unitarity
point. This important observation motivated us to focus in this paper on a collection of
free non-relativistic massive fermions in the fundamental representation of Sp (2N) and to
study its symmetries and currents.

The summary of our main results and the plan of the paper are as follows: In sec-
tion 2, we start with an introduction to the unitary Fermi gas and its large-N extension.
We also present the general arguments of [34] and demonstrate that, in the large-N limit,
the generating functionals of the unitary Fermi gas and of the ideal Fermi gas are re-
lated by a Legendre transformation. In section 3, the maximal symmetry algebra of the
free Schrodinger equation is identified and shown to be isomorphic to the Weyl algebra

2Note that we are following the physicist convention here and define the compact symplectic group as
Sp(2N) := U(2N) N Sp (2N, C). Alternatively, physicists also frequently use the notation USp (2N) while
mathematicians usually refer to this group as Sp ().
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of quantum observables in the time-reversed Heisenberg picture. It provides an infinite-
dimensional extension of the Schrodinger algebra, as was recognised in [35]. In section 4,
an infinite collection of Sp (2N) or O(N) singlet symmetric tensors of all ranks, bilinear
in the fermionic field is obtained from the corresponding relativistic currents through a
dimensional reduction along a light-like direction. In section 5, the coupling of these bilin-
ears to external sources is considered and written in a compact form by making use of the
Weyl quantisation. This allows us to identify the algebra of gauge symmetries with the
algebra of quantum observables with arbitrary time dependence. These symmetries can
be thought as the higher-spin generalisations of the non-relativistic general coordinate and
Weyl symmetries discussed in [36]. In section 6, we summarise our results and review our
proposal [24] of a possible gravity dual of the unitary and the ideal Fermi gases: the O(N)-
singlet bilinear sector of the large-IN extension of the free or unitary fermions in d space
dimensions should be dual to the null-reduction of classical Vasiliev theory on AdSg13 with
u(2)-valued tensor gauge fields of all integer ranks and suitable boundary conditions. In
particular, the bulk dual of the “physical” (i.e. N =1, d = 3) unitary UV-stable Fermi gas
would be the null dimensional reduction of the 1(2) higher-spin gauge theory on AdSs with
the exotic boundary condition for the complex scalar field dual to the Cooper-pair field.

Wherever possible, we will stick to the notations and conventions of [13]. Except in
appendix A, we set i = 1.

2 Unitary Fermi gas and its large-IN extension

2.1 Action and symmetries

Nowadays a dilute two-component Fermi gas near a broad Feshbach resonance can be cooled
with the help of lasers to ultra-low temperatures ~ 1077K, and is studied extensively in
experiments with ultracold atoms. In three spatial dimensions (d = 3) at low densities it
can be very well described by the microscopic action

A
Stose = [a fax | 0 v (104 2 +0) va = coviviven |, @)
a=T,)

where the two species of fermionic atoms of mass m are represented by the Grassmann-odd
fields v+ and 1, while p stands for the chemical potential, and cy measures the micro-
scopic interaction strength. In actual experiments with ultracold gases the two different
components denote different hyperfine eigenstates which we denote here for simplicity by
1 and | but which have nothing to do with genuine spins “up” and “down”.? This action
has an internal U(2) symmetry. Due to the contact nature of the interaction term, the
non-relativistic quantum field theory defined by the action (2.1) must be regularised. This
can be achieved, for example, by introducing a sharp ultraviolet cutoff. Subsequently, the
bare interaction parameter cq is related via renormalisation to a low-energy observable: the

3Note that due to the lack of the spin-statistics theorem for non-relativistic quantum field theories, the
spin of fermions (and thus the number of components) is not constrained [37, 38]. For example, we can
have spinless one-component fermions.
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s-wave scattering length a. The concrete functional relation between ¢y and a depends on
the regularisation scheme and will not be presented here. In this paper we will be mainly
interested in excitations above the vacuum state, i.e. a system at zero temperature and
zero density. For a < 0 there are no bound states in the two-component Fermi gas and
in this range the vacuum corresponds to 1 = 0 (see e.g. [18] for a detailed explanation).

Due to the presence of a universal two-body dimer bound state for a > 0, the chemical

1

potential in vacuum is negative and is related to the scattering length via u = —5-—.

In any case, the only length scale in the renormalised theory in vacuum is given by the
scattering length a.

The non-interacting Fermi gas is obtained for a = 0 which translates into ¢y = 0.
In vacuum it is obviously scale invariant. Another theoretically interesting regime is the
strongly interacting unitary Fermi gas, where a~' = 0. The only length scale defined by
the scattering length drops out in this regime. Hence the classical theory for the unitary
Fermi gas is scale invariant. Although there is no general proof yet, there are numerous
theoretical and experimental evidences collected by now that the quantum unitary Fermi
gas in vacuum is also scale invariant.* More precisely, the action of the unitary Fermi gas is
invariant under the Schrodinger symmetry, which will be introduced in section 3, and the
theory is believed to be an example of a strongly interacting non-relativistic CFT [7, 11].

A sensible large-V extension of the unitary Fermi gas that preserves the pairing struc-
ture of the interaction term was found in [18, 19]. The model with N “fHavors” is defined
by the action

A
StwsenN) = [at [ax |t (10t 5o+ - {0t Tl @2

where 1) denotes a multiplet of 2N massive fermions with components ¢4 = 9% with
a =T, and a = 1,...,N. The symbol J represents the symplectic 2N x 2N matrix
Jap = €ap ® dqp which has the block form J = _01 (1) . For N = 1, one recovers
the original model (2.1), i.e. S[¢;¢0, N = 1] = S[¢;co]. As far as internal symmetries
are concerned, the kinetic term in eq. (2.2) is invariant under U(2N), while the quartic
interaction is invariant under U(1) x Sp (2N, C). As a result, the full interacting theory
is invariant under the intersection of U(2N) with U(1) x Sp (2N, C), which happens to be
U(1) x Sp(2N) (see the footnote in section 1). For N = 1, one finds as mentioned above
U(1) x Sp(2) =2 U(2) as the internal symmetry group, since Sp (2) = SU(2).

The preceding construction introduces a new integer parameter into the theory and
resembles in various respects the structure of the relativistic linear O(N) models. While
the analogy is suggestive, there is an important difference which is worth to be emphasised
already here. On the one hand, in the relativistic O(N) model the internal symmetries of
the free and of the critical theory happen to be the same. On the other hand, the internal

4In other words there is no quantum anomaly associated with the scale transformation. Interestingly,
the unitary Bose gas suffers from a quantum scale anomaly, known in the nuclear and atomic physics as
the Efimov effect. Presence of this anomaly hinders an experimental realisation of a stable unitary Bose
gas in experiments with ultracold quantum gases.
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symmetry of the kinetic part of the action (2.2) is larger than the internal symmetry of
the full action. Thus, the N > 1 extensions of the ideal and of the unitary Fermi gas have
different internal symmetries. This makes the relation between these two theories more
subtle than in the relativistic O(N) case.

Let us finally note that for general N flavors, U(2) x O(N) is a subgroup of U(1) x
Sp(2N). Mathematically, the subgroups U(2) and O(N) are centralisers® of each other
inside U(1) x Sp(2N),5 as they transform independently spin and flavor indices. In the
following, U(2) x O(N) symmetry subgroup will play a central role in the suggestion of the
putative holographic dual of the unitary Fermi gas.

2.2 Ideal and unitary gases as Legendre conjugates

The celebrated BCS theory has taught us that the physical phenomena of superfluidity and
superconductivity have their origin in the condensation of particle-particle Cooper pairs
at low temperature. From this insight, it becomes clear that a proper understanding of
physics of these Cooper pairs is of a central importance for quantum Fermi systems. By
applying the general observation of Gubser and Klebanov on the double trace deformations
of conformal field theories [34] to the large-N extension of the unitary Fermi gas, we
show here that the generating functionals of Cooper pair connected correlators in the non-
interacting and in the unitary Fermi gases are related by a Legendre transformation in the
large N limit (or, similarly, in the mean field approximation).

The following discussion will closely parallel the derivation of Gubser and Klebanov
that was introduced for an infrared relevant double trace deformation of a conformal field
theory like, for example, the relativistic linear O(N) model in three space-time dimensions.
There is one important difference between the relativistic and the non-relativistic problems
of interest that we would like to emphasize here. In the O(N) model , the quartic interaction
term is an infrared relevant perturbation of a free CFT triggering the renormalisation group
flow to approach the infrared stable Wilson-Fisher fixed point. Due to a distinct power
counting in the non-relativistic physics, the four-fermion contact interaction in (2.1) is
infrared irrelevant in the most physically interesting case of three spatial dimensions. This
implies that the Gaussian fixed point is infrared stable and the unitarity fixed point (in
vacuum) is in fact approached in the ultraviolet of the renormalisation group flow.

With a slight abuse of terminology, by “Cooper pair” we mean here the Sp (2N )-singlet
bilinear

k(t,x) =

N

1 1

¢TI0 = S0 Tupv® = D ¥y, (2.3)
a=1

®Let Gy and G2 be two subgroups of G. The subgroup G is the centraliser of Go C G if and only if
G is the largest subgroup of GG such that all its elements commute with all elements of G2. Usually, the
centraliser of G2 C G is denoted by C(G2) (= G1 here). Such a pair of subgroups G1 and G is sometimes
called a Howe dual pair by mathematicians.

5This follows from the fact that Sp (2) x O(N) is a subgroup of Sp (2N) where the subgroups Sp (2) and
O(N) are centralisers of each other. This property plays an important role (though for a different reason)
in the construction of higher-spin algebras [27-31].
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which reproduces the genuine Cooper pair 1) when N = 1. The generating functional
W[ ;co, N] of Cooper-pair connected correlators in the Fermi gas described by (2.2) is
defined by the path integral

expiW[@;co, N|] = /D¢D¢T expiS[Y,@;co, N, (2.4)

where

84, 0;c0,N] = S[t;c0,N] — /dtdx(k@*+k*<p) (2.5)

is the action in the presence of an external charged scalar field ¢ coupled to the Cooper
pair k.

In particular, the free (¢g = 0, infrared fixed point in d = 3) action in the presence of
the source @ reads

Sreel 0] 1= S[0,0:0.N] = [avax o (100 + 5+ 0 = (bo" +70) | |
(2.6)
and is quadratic in the dynamical field ¢ (since the kinetic term and the Cooper pair k
are). This quadratic functional is usually rewritten in a more elegant form by making use

of the Nambu-Gor’kov field
(U
Y = . 2.7
(W (27)

Notice that ¢ and ¥ are not related by a unitary transformation (not even by a linear or
anti-linear transformation) but the canonical anti-commutation relations are preserved. In
terms of the Nambu-Gor’kov field, the quadratic action (2.6) takes the form

00+ (5 + 1) @
Se (W] = [ dtdxwt [T \2m v, 2.8
el ¥-0] = [ i ( O 0 (gt w) =

The generating functional of connected correlators of Cooper pairs in the ideal Fermi
gas is Weeel @ N] := W[@;0,N]. It can easily be evaluated formally since the path
integral (2.4) is Gaussian in such case:

: iét ( M) ¢
W @;N| = —iNTrl 2m = NW (0] 2.9
free[ s V] v og ( ©* id, (2%1 ) free[ ] (2.9)

providing an explicit solution of the infrared stable conformal field theory in d = 3. In
order to prepare the ground for the later discussion, let us already here introduce the field

_ Wheel®]

conjugate to the free field ¢, and the Legendre transformation

Chreelm] = Wieel @] — /dth(cpﬂ*+<p*7r), (2.11)

of the free connected correlator generating functional Wy,...[@].
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In order to relate this to the interacting theory, we use a standard trick: the Hubbard-
Stratonovich transformation which reformulates any system of particles with a two-body
interaction equivalently as a system of particles interacting only via a fluctuating auxiliary
field. More precisely, here one transforms the path integral over the fundamental fermionic
field ¥ with quartic vertex into a Gaussian path integral via the introduction of an auxiliary
complex scalar field ¢ mediating the interaction in the particle-particle channel. This
auxiliary field is called “dimer” in the literature on the unitary Fermi gas. More concretely,
on the right-hand-side of (2.4) one can introduce a Gaussian path integral over the auxiliary
field ¢ to get

expi W[@;co, N] /D‘PD‘PTDd)ch* expi Spg[V, &, @;co, N, (2.12)

where Syrg[¥, ¢, @ ; co, N] is the Hubbard-Stratonovich transformation of the action (2.5).
It is equal to the sum of a chemical-potential like term for the dimer plus the free action
in presence of the source ¢ shifted by the dimer ¢,

4N
Susl¥ 0 @ico N = o [atdx|f + Speeel Yoo+ . (2.13)

In the following, it is convenient to work directly with the shifted dimer field ¢ = & + .
The integral over the dynamical field ¥ in (2.12) can now be evaluated and gives as a result

expi W[@;co, N] x /D(de)* expi S, @ 5 co, N, (2.14)

where the effective action for the dimer field depends linearly on the number N of flavors:
Seffl @, @;c0, N = N Seg[é,@;co] and is the sum of the chemical-potential like term
plus the free effective action for the auxiliary field (2.9)

4
Sulo @3] = / dtdx| 6 — @ + Wieeld]. (2.15)

The linear dependence of the effective action on the parameter N means that 1/N controls
the loop expansion of the dimer effective theory. The large-INV limit allows for a saddle
point approximation of the integral (2.14) over the dimer field:

W@ ;co, N| = N Wmean[®;co] + O(1), (2.16)

where
Wmean[ @ ;co] = Seglo(@), @;co (2.17)

is the celebrated “mean field” approximation of the generating functional of connected
correlators. Notice that in the physically relevant N = 1 case, this term is a priori of the
same order as the 1/N corrections. Nevertheless, the mean field approximation becomes
exact at N = oo, providing an explicit relation between the generating functionals of the
free and interacting theory:

Wmean[ @ ; co] = %/dthW((P) - (P|2 + Wfree[¢((P)]~ (2.18)
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On the right-hand-side of (2.17) and (2.18), the field ¢ depends on the source @ because
it should be understood as the solution of the classical equation of motion

6Seff[¢a (2 CO} o 6Wfree [d)}

Sometimes in this paper, the large-N limit and the mean field approximation will be

- %up _g). (2.19)

loosely said to be equivalent. By this, we mean that the equations (2.18)-(2.19) provide
an approximation for the interacting generating functional which can either be understood
as the leading-order approximation in the large-N limit analogous to the 't Hooft limit in
gauge theories (that is N — oo at fixed ¢p) or as the mean field approximation at fixed N
(say N =1).

Now, two distinct limits of the approximated generating functional (2.18)—(2.19) can
be considered: either a large-co limit in which case the coefficient ¢o/N of the quartic term
in the bare action (2.2) might be kept finite (though possibly small, e.g. in the ultraviolet)
or instead a small-cy limit in which case the coefficient co/N goes to zero, even if N is kept
finite (though possibly large for the validity of the saddle point approximation). In both
cases, one finds that the generating functionals are Legendre conjugates, but expressed
in terms of different rescaled fields in the distinct limits. First, let us consider the limit

co — oo . If one rescales the source ¢ := %(p, then the equation of motion (2.19) becomes

5Wfree [¢]
op*

which means that the shifted dimer field and the rescaled source are exact Legendre con-

= <p+(9<1>, (2.20)

€0

jugates at ¢y = oo. Moreover, the approximated generating functional (2.18) takes the
suggestive form

1
Wanean| 5 sco| = = [ atax(i00" +90) + 5§ [dvaxiol? + Wieelot +0( ).

(2.21)
Comparing with the definitions (2.10)—(2.11), one is lead to the relation
. Cop €0 20 _
cgllinoo { Wmean[4 700} - Z/dt dx || } = Dprecle]- (2.22)

This result is very similar to the calculation performed in [34], the interpretation of which
is very natural in the O(NN) model where the infrared stable Wilson-Fisher fixed point
corresponds to an infinitely large dimensionful coupling. In the non-relativistic Fermi gas
the above derivation is applicable to the spatial dimension d < 2, where the unitary fixed
point is infrared stable.

In d > 2 the unitarity fixed point is ultraviolet stable which in regularisation with a
sharp cutoff corresponds to the limit ¢y — 0. It appears therefore that the limit cg — 0 is
necessary in d > 2 for the unitary Fermi gas.” So let us now consider the limit ¢y — 0 and

7 Note, however, that ¢ — oo in any spatial dimension for the unitary Fermi gas in dimensional
regularisation [12].
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rescale the shifted dimer field ¢ := %qﬁ. If we express the generating functional of the free
theory in terms of the rescaled dimer field,

Wfree[é] = Whee {Céfﬂ ) (2.23)

then the equation of motion (2.19) reads
Direel® _ 4 O(Co) . (2.24)
Thus the source @ and the rescaled dimer qz~5 form a Legendre conjugate pair in the limit

co — 0. In addition, if we express the generating functional of the mean field theory in
terms of the rescaled dimer field,

Wmean[#;co] := Wmean [T&;CO] ) (2.25)

then the relation (2.18) can be written as

Wmean[ﬁz’WO] = f/dtdx(q)gz;*+(p*g5) + é/dtdx|(p|2 + Wfree[(z’(‘P)] + O(co).

(2.26)
Therefore,
. - 4 N
nglo{wmean [ &(9) 30| — . / dtdx|<p|2} = Theclol, (2.27)
with
= . - - W,
Lireel®] = Wieel?] —/dth(cp¢*+<p*¢), (fsr(ffm = 0. (2.28)

Thus, we just demonstrated that, up to a divergent contact term, the unitary Fermi gas in
d > 2 is related to the ideal Fermi gas via a Legendre transformation in the large-/N limit
or, equivalently, in the mean field approximation.

We remark that the intimate relation between the free and unitary fermions in the
large N limit gives rise to a simple relation between the scaling dimensions of the dimer
field at the two fixed points )

Alree L Alnt _ g4 o (2.29)

Since in the free theory Agree = 2Ay = d, this implies Aibnt = 2. The non-trivial fixed
point is physically admissible only for 0 < d < 2 and 2 < d < 4. Indeed, for d > 4
one obtains Aibnt =2< %l which violates the unitarity bound. Moreover, in d = 2 both
fixed points merge together (Agee =2 = Afbnt), and only the trivial fixed point exists.
Remarkably, due to simplicity of the non-relativistic vacuum, the relation (2.29) receives
no 1/N corrections in the theory of non-relativistic fermions and thus is exact.

From the point of view of the holographic duality, the Legendre transformation corre-
sponds to a change of the boundary condition for the bulk scalar dual to the Cooper-pair

~10 -
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field in the same theory in the bulk [33], in agreement with the comments in [13]. More
precisely, the highest of the two scaling dimensions (Agree =d and A%bnt = 2) is denoted
A4 and corresponds to an infrared (IR) stable fixed point on the boundary side and to a
standard (Dirichlet-like) boundary condition on the bulk side, while the lowest dimension,
A_, corresponds to an ultraviolet (UV) stable fixed point and to an exotic (Neumann-like)
boundary condition.

We conclude that, in the large-N limit, the dimer effective theory of the ideal and the
unitary Fermi gases for 0 < d < 4 are related via a Legendre transformation and should
thus share the same set of conserved currents and symmetries.® For this reason, although
we are primarily interested in the unitary Fermi gas in the large N limit, it is sufficient
from now on to focus on the theory of the ideal Fermi gas.

3 Higher symmetries of the Schrodinger equation

3.1 The Schrodinger group of kinematical symmetries

In mathematical terms, the Galilei principle of relativity is encoded in the Galilei group.
For this reason the structure of this group plays an important role in non-relativistic
physics [39]. In d spatial dimensions the group acts on the spatial coordinates x and
time ¢ as

(t,x) = g(t,x) = (t+ 8, Rx+ vt +a), (3.1)

where 8 € R; v,a € R? and R is a rotation matrix in d spatial dimensions. In quantum
mechanics, the Galilei group acts by projective representations on the Hilbert space of
solutions to the Schrodinger equation when the potential is space and time translation
invariant.? In other words, in such case any solution is transformed to a solution of the form

P(t,x) = v(g(t,x) (g (£, %)), (3.2)

where 7 is a phase factor compatible with the group multiplication laws [40]. For example,
a scalar wave function 1 describing a single particle of mass m transforms under a pure
Galilei boost gy as

¥(t,x) — exp —%n(vzt —2v-Xx) 1/)(9;1(157 x)). (3.3)

The presence of the mass-dependent phase factor in the transformation law implies a su-
perselection rule forbidding the superposition of states of different masses, known as the
Bargmann superselection rule [41]. This rule constrains the dynamics and states that ev-
ery term in the Lagrangian of a non-relativistic Galilei-invariant theory must conserve the
total mass. For this reason, the mass plays the role of a conserved charge in non-relativistic
physics.

8For the interacting system, however, most of these symmetries are expected to be broken by 1 /N
corrections.
90f course, for a single particle such a potential must be constant.

— 11 —
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By enlarging the Galilei group through a central extension, known as the mass op-
erator (or alternatively the particle number operator), we can make the representations
unitary [39, 40]. The centrally extended Galilean group is sometimes referred to as the
Bargmann group [42]. Tts Lie algebra consists of the following generators: the mass M:; one

time translation ]5,5; d spatial translations ]%; d(dz_ 1) spatial rotations Mij and d Galilean

boosts R’z The non-trivial commutators are

(M, Mig) = i(8ix My — 83 My — S Mk + 8, M)

[Mij, Ki] = i(0uKj — 6.K3), (Mij, Py] = i(0u Py — 0;.5;)
[Py, Kj] = —idy; M, [P, Kj] = —iP; .

(3.4)
Notice that the commutation relations between the translation and Galilean boost gen-
erators are the canonical commutation relations of the Heisenberg algebra by in d space
dimensions (see appendix A for the definition), where the Galilean boost generators play
the role of the position operators while the role of the reduced Planck constant is played
by the mass.
It is remarkable that the group of space-time symmetries of the free Schrodinger equa-
tion with vanishing chemical potential

10pp(t,x) = —% Y(t,x) (3.5)

is larger than the Bargmann group if one relaxes the restriction of unit module on the
factor appearing in the transformation law. Following Niederer [5], we call kinematical
symmetry of the Schridinger equation any transformation of the form (3.2), where v is a
complex factor compatible with the group structure, that maps solutions to solutions.'®
First, remember that the mass is just a charge and so it has scaling dimension zero.
Thus, the non-interacting system has no parameter with non-vanishing scaling dimension,
which implies an additional scale symmetry. In non-relativistic physics, this symmetry

scales the time and spatial coordinates differently

t x
t,x)—=>—,— ], a € R. 3.6
() (3. %) (3.
This corresponds to the dynamical critical exponent z = 2, which determines the relative
scaling of time and space coordinates.

Second, Niederer found in [5] that, in addition to the scale symmetry, a discrete inver-
sion transformation ¥ which acts on space-time as

1 x

(ta X) - Z(ta X) = <_t ) t) (37)
is also a symmetry of the free Schrodinger equation. By conjugating a time translation gg
via the inversion 3,

1+ 8t 14 Bt

10Mathematicians would call such transformations a “multiplier” representation of the symmetry group.

um»+@*%mww=( boox ) (3.8)

— 12 —



CHAPITRE C. Troisiéme article 197

a new symmetry of the free Schrodinger equation is found [5, 6]. This transformation is
known as expansion and is a non-relativistic analogue of the special conformal transfor-
mations. Note that a Galilean boost g, is conjugate to a spatial translation g, via the
inversion ..

The extension of the Bargmann group by scale transformations and expansions is
known as the Schrédinger group in d spatial dimensions, denoted by Sch(d). Apparently
this structure was known already to Jacobi (see the conclusion of [43]), but was redis-
covered after the advent of quantum mechanics in [5, 6]. The Schrodinger group is the
non-relativistic counterpart of the conformal group, though the former cannot be obtained
as an Inénu-Wigner contraction from the latter. The Schrodinger group is simply generated
by the Euclidean isometries (rotations and spatial translations), the time translations, the
scale transformations and the inversion.!? In addition to (3.4), the non-trivial commutators
of the Schrédinger algebra sch(d) in d spatial dimensions are

[P, D] = [
| = [

Together, the time translation generator P, the scale generator D and the expansion

| = —ik;, (K, D] = —iK;,
] = —2iP, [C, B = —iD.

:U>

3 )

'73> Q>

&, 3.9
é (3.9)

Q> U>
®>

9 )

ISRy

generator C' span a subalgebra 5[(2,R) of the full Schrodinger algebra. These generators
commute with the generators Z\Zfij of the rotation subalgebra o(d). The Schrodinger algebra
has the structure of a semi-direct sum: sch(d) = bq ® (o(d) ® sl(2,R)).

Finally, the “standard” representation of the Schrédinger algebra as differential oper-
ators of order one acting on the one-particle wave function v (t,x) is

b= —io;, b =io,, M =m,

My = —i(z:0; — x;0;),
K; = ma; + itd;, (3.10)
D=i <2tat+:z:iai + g) :

A . d m
o 2 9. e 2
O—Z(t 6t+t(x01+2))+2x.

3.2 The Weyl algebra of higher symmetries

The algebra of space-time symmetries of the free single-particle Schrodinger equation is
actually much larger than the Schrodinger algebra. More precisely, the Weyl algebra (see
appendix A for the definition) is realised as an infinite-dimensional symmetry algebra
of the free Schrodinger equation, as was pointed out in the inspiring work [35]. Here, we
further prove that the Weyl algebra is the mazimal algebra of space-time symmetries of the
Schrodinger equation. In the present context, this result can be used as the non-relativistic
counterpart of the theorem of Eastwood [32] on the maximal symmetry algebra of the

" The Galilean boosts and the expansions come “for free” (more precisely, via conjugation of the space-
time translations by the inversion).
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massless Klein-Gordon equation (see e.g. section 4 of [44] for a review). Accordingly, the
Weyl algebra (and, possibly, its proper matrix-valued extension) provides a non-relativistic
higher-spin algebra which is the precise analogue of Vasiliev’s (possibly extended) higher-
spin algebras [26].

3.2.1 The maximal symmetry algebra of the Schréodinger equation

In order to make precise and rigorous statements analogous to the known results on the
conformal scalar field, let us start with some definitions mimicking the ones of [32, 44]. A
symmetry of the Schrodinger equation is a linear differential operator A(t, X, P, 13) obeying
to the condition

SA=BS, (3.11)

for some linear differential operator B, where S is the Schrédinger operator defined by
S:=P - H, (3.12)

and H is a Hamiltonian of a massive non-relativistic particle taking the usual form

PN P2 ;
H(X,P)= o + V(X). (3.13)
The Schrédinger equation reads
i Ob(t,x) = Hip(t,x) <= Su(t, x) ~ 0, (3.14)

where the “weak equality” symbol ~ stands for an equality valid when the Schrédinger
equation is satisfied. By definition, any symmetry A preserves the space KerS of solutions
to the Schrédinger equation (3.14): it maps any solution 1 to a solution 1)’ = A¢. The
general solution of the Schrédinger equation (3.14) is of course

O(t,x) = Ut)(0,%), (3.15)
where
U(t) = exp(—itH) (3.16)

is the time evolution operator. Obviously, the time evolution
F(t) = U FX,P) U1 (1) = F(X().P(1)), (3.17)

of any spatial differential operator F (X, 15) defines a symmetry of the Schrodinger equation
in the above sense. It is clear that F (t) maps solutions to solutions, where the initial wave
functions are related by the initial operator F'(0) = F. The condition (3.11) is satisfied
with A = B = F(t) since id,F(t) = [H, F(t)], which follows from (3.17). Note that (3.17)

is the inversed (t — —t) time evolution of F(X,P) in the Heisenberg picture.'?

2Notice that in [24], the inversed time evolution in the Heisenberg picture was written F'(—t) in order
to emphasise this fact. Here, we chose the simpler notation F'(t) in order to avoid overloading the many
formulas where such notations appear.
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A symmetry A is said to be trivial if A = OS for some linear operator O because it
maps any solution to zero. Such a trivial symmetry is always a symmetry of the Schrodinger
equation, since it obeys (3.11) with B =2S80. The algebra of trivial symmetries forms a left
ideal in the algebra of linear operators endowed with the composition o as multiplication.
Furthermore, it is also a right ideal in the algebra spanned by all the symmetries of the
Schrodinger equation. Two symmetries Ay and Aj are said to be equivalent if they differ by
a trivial symmetry. The corresponding equivalence relation is denoted by a weak equality

Al ~ AQ <~ Al = 1212 + Og (3.18)

The maximal symmetry algebra of the Schridinger equation is the complex algebra of all
inequivalent symmetries of the Schrodinger equation, i.e. the algebra of all symmetries
quotiented by the two-sided ideal of trivial symmetries. Let us show that for any time-
independent Hamiltonian the mazimal symmetry algebra of the single-particle Schrodinger
equation is isomorphic to the Weyl algebra of spatial differential operators.'®

The proof goes in three steps: Let A(t X, P, P ) be a symmetry of the Schrodinger
equation. Firstly, one remarks that it is equivalent to a representative independent of the

time translation generator:
A(t X, Pt, ) A’(t X P) (3.19)

because one may assume that the operator A has been ordered in such a way that all
the operators Pt are on the right. Thus each Pt can be traded for H since Pt ~ H.
Secondly, one observes that the representative A’ must commute with the Schrodinger
operator S. Indeed, the representative A is also a symmetry, so it must obey to the
condition S A’ = B’ S which is equivalent to
[S,A)= (B - 4)5. (3.20)
As follows from the definition (3.12) of the Schrédinger operator, the left-hand-side of this
equation is equal to
(S, A = io, A" — [H, A (3.21)
where the time derivative acts on the explicit time dependence of the operator A (t, X, f’)
In order to compare the left and right hand sides of eq. (3.20), let us assume that each
side is ordered as before. On the one hand, the left-hand-side of eq. (3.20) is given by
the expression (3 21) which does not depend on P; since both the Hamiltonian A and the
representatlve A’ do not. On the other hand, the right-hand-side of eq. (3.20) explicitly
depends on P, due to the presence of the Schrédinger operator S = P, — H. Therefore cach
side must vanish separately, which means that the commutator between A" and S is zero.

Thirdly, this commutation relation implies that the representative A’ is the (inversed) time
evolution of a spatial differential operator

A, X, P) = Ut) A0, X, P)UL(1). (3.22)

This becomes clear from the commutation relation (3.21) which is the Schrédinger equation
in the (time reversed) Heisenberg picture. O

BFor an n-component wave function, the maximal symmetry algebra of the Schrédinger equation is
isomorphic to the tensor product between the algebra of n x n square matrices and the Weyl algebra of
spatial differential operators: M, ® Aq4.
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3.2.2 The Schrodinger subalgebra

As should be expected, the reversed time evolution of the initial observables span all
the inequivalent symmetries of any Schrodinger equation. But how does the Schrédinger
algebra sch(d) fits into this result? And what is so special about the free evolution?

A useful observation is that, when the particle is free (f[ = gfree = %) all the
differential operators (3.10) are equivalent to polynomials at most of degree two in the
time-evolved operators of positions and momenta. For instance, the mass M = m is the
degenerate case of degree zero. Moreover, the time translation generator is equivalent to
the quadratic Hamiltonian P, ~ ﬁfree = % and the rotation generators can be written
as the angular momentum MZ—]— = Xil% — iji. For the other generators, it is easier to
first verify this property at time ¢ = 0. The Galilean boost generators evaluated at t = 0
are proportional to the positions, A z| 0 = mX?" while the scale and expansion generators
can be written as the quadratic polynomials, D|t:0 = —XP + id/2 and C’|t:0 =7 X2,
All together, these differential operators at ¢ = 0 provide a unitary representation of the
Schrodinger algebra on the Hilbert space of initial one-particle wave functions. Therefore,

so does the (reversed) time evolutions of these observables for any Hamiltonian. However,

the time-dependent operator P;n(f) = exp(—iﬁt)% exp(4+iHt) must be identified with

the generator P, in this particular realisation of the Schrodinger algebra, but it does not

correspond to the genuine Hamiltonian H (except when the particle is free) and thus in
general it will not generate the genuine time evolution of the wave function. In other words,
the reversed time evolution of the above-mentioned generators of degree at most two are
symmetries (in the sense of our definition), they satisfy to the commutation relations of
the Schrodinger algebra, but they do not have any simple physical interpretation for a
generic Hamiltonian.

In general, the transformations generated by the (reversed) time evolution of some
observables are not “kinematical” [45], in the sense that they do not generate transforma-
tions of the form (3.2). A kinematical transformation is generated by a first-order linear
differential operator (in particular, a mere change of coordinates is generated by a vec-
tor field). In the following, the first-order symmetries of the Schrédinger equation will
be called kinematical symmetries, while the higher-order symmetries will be denoted by
higher symmetries (following the usage of mathematicians). Note that a higher-order lin-
ear differential operator does not generate a kinematical transformation. This explains
why higher symmetries are usually not considered by physicists. Nevertheless from the
mathematical perspective, the Schrodinger algebra is always a subalgebra of symmetries
of any one-particle Schrédinger equation but none of its realisation generate a kinematical
representation of the Schrodinger group, except for the special cases of potentials deter-
mined by Niederer [46]. As mentioned above, the simplest case is the free Hamiltonian,
where the time evolution of the position and momentum operators is X(t) = X — tP/m
and P(t) = P. In such case, the differential operators (3.10) can be rewritten in terms of
the time evolved positions and momenta,

s Pty P?

Py~ = = Heroe s

L A=
2m 2m s
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MY = X'(t)PI(t) — X7 (t)P'(t),

K'=mX'(t), (3.23)
D~ XA + iy,

A - T /\2

O 2 X21).

Furthermore, a nice observation of [35, 47] is that all these symmetries are equivalent to
polynomials of degree two in the Galilean boost and translation generators (more precisely,
M is of degree zero while by definition P and K are of degree one). Indeed, one may replace
everywhere X(t) — K/m and P(t) — P to get

. 2

o I AZ 4 (3.24)
m 2’

. K2

C%%.

This implies that the associative algebra of polynomials in the Galilean boost and transla-
tion generators is isomorphic to the maximal symmetry algebra of the free single-particle
Schrodinger equation. In more mathematical terms, the realisation of the enveloping alge-
bra U (5ch(d)) of the Schrodinger algebra on the space of solutions to the free one-particle
Schrodinger equation is isomorphic to the Weyl algebra Ay of spatial differential operators.

The proof is straightforward: As was already observed, the Galilean boost and trans-
lation generators play in the Schrodinger algebra a role equivalent to the positions and
momenta in the Heisenberg algebra. Therefore, by themselves they generate algebraically
the whole Weyl algebra A; which has been shown to be isomorphic to the maximal symme-
try algebra of the Schrodinger equation. The other generators of the Schrodinger algebra
are functions of the Galilean boost and translation generators, so they cannot produce
anything extra. O

3.2.3 The maximal symmetry algebra of the Schrédinger action

One should scrutinise the issue of Hermiticity of the symmetries. This is important at the
level of the action principle and also for the unitarity of the representations. Let T stands
for the spatial Hermitian conjugation with respect to the spatial Hermitian form

(| 0) = [ dxvi(ex) a(e.x). (3.25)
on the Hilbert space L2(R?) of square-integrable functions, e.g. (X)7 = X and (P)! = B;.
As usual, the scalar product (3.25) is time-independent for wave functions ¢ and 19 which
are solutions of the Schrédinger equation, as in (3.15). The Weyl algebra of quantum
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observables is the real form of the complex Weyl algebra spanned by the spatial differential
operators that are Hermitian. All Schrodinger algebra generators (3.24) at time ¢t = 0
are quantum observables. However, notice that the generators (3.10) containing a time
derivative (i.e. the generators of time translations, scale transformations and expansions)
are, in general, not Hermitian with respect to the spatial conjugation. Actually, the spatial
conjugate of the time derivative is not well defined since one is not allowed to integrate it by
part in (3.25). The apparent paradox can be solved if one restricts the domain of definition
of the generators to wave functions which are solutions of the Schrodinger operator, because
then the generators are equivalent to the observables (3.23).

The spatial Hermitian conjugation can be extend to space-time differential operators.
The space-time Hermitian conjugation will be denoted by the same symbol T although it
is the Hermitian conjugation with respect to the space-time Hermitian form

(%1 | g2) = /dt<w1 | g2} = /dtdxwat,x)wxum, (3.26)

such that tf = ¢ and (]%)Jf = P, However, the scale and expansion generators in the
standard representation (3.10) are not Hermitian with respect to the space-time conjuga-
tion, Dt = D + 2i and CT = € + 2itd,. Nevertheless, all the generators are equivalent to
Hermitian operators (with respect to both conjugations), when the Schrodinger equation
is satisfied, as can be seen from (3.23).

The Schridinger action for a non-relativistic massive field described by the Schrédinger
equation (3.14) can be written as the quadratic form

Sl = (v |5 ]v), (3.27)

where the Schrodinger operator (3.12) is Hermitian with respect to the space-time conju-
gation, St =S. The Euler-Lagrange equation extremising the quadratic action is of course
the Schrodinger equation (3.14). A symmetry of the Schrédinger action is an invertible
linear operator u preserving the quadratic form (3.27). In other words,

usu =35. (3.28)

A symmetry generator of the Schridinger action is a linear differential operator A which
is self-adjoint with respect to the quadratic form (3.27) in the sense that (¢ | S | Ay) =
(A | S| ). More concretely,

SA=A'S. (3.29)

Any symmetry generator A defines a symmetry U = e of the Schrodinger action. The
maximal algebra of symmetries of Schridinger action is the real Lie algebra of symmetry
generators of the quadratic action endowed with ¢ times the commutator as Lie bracket,
quotiented by the ideal of trivial symmetries. One can show that the Weyl algebra of

quantum observables is the mazimal symmetry algebra of the Schridinger action.™

HMFor an n-component wave function, the maximal symmetry algebra of the Schrédinger action is isomor-
phic to the tensor product of the algebra of Hermitian n x n matrices with the Weyl algebra of quantum
observables: u(n) ® Aq(R).
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The proof goes as follows: Firstly, any symmetry generator A of the Schrodinger
action is a symmetry of the Schrodinger equation with B = Af in the condition (3.11), due
to (3.29). Secondly, we have seen previously that any symmetry of the Schrodinger equation
is equivalent to a representative which is function only of the translation and Galilean
boost generators. Such a representative automatically commutes with the Schrodinger
operator S. Thirdly, any symmetry of the quadratic action that commutes with S must be
Hermitian with respect to the space-time conjugation, A = At as can be seen from (3.29).
Consequently, the representative must be Hermitian, i.e. a quantum observable. ]

From the point of view of holography, the precise identification of the maximal algebra
of rigid symmetries of the (non-relativistic) CFT is of prime importance since it should
correspond to the symmetry transformations preserving the vacuum of the bulk theory,
e.g. in the usual AdS/CFT the isometry group of AdS is isomorphic to the conformal
group of the boundary. In the generalisation of the holography conjecture of [21, 25]
to any spacetime dimension, the maximal symmetry algebra of the massless Klein-Gordon
action [32] is precisely isomorphic to the higher-spin algebra of Vasiliev equations [26] which
appears as the algebra preserving the AdS solution. The maximal symmetry algebra of the
Schrodinger action could play an analogous role in a non-relativistic version of higher-spin
gravity. This expectation is rather natural given the fact that Vasiliev theory is formulated
in a frame-like language (a4 la Cartan) with a connection one-form taking values in the
relativistic higher-spin algebra which can be replaced by its non-relativistic analogue (see

next section).

4 Light-like dimensional reduction of currents

4.1 Bargmann framework

To realise geometrically the Schrodinger symmetry, we first embed the Schrodinger algebra
in d spatial dimensions sch(d) into the relativistic conformal algebra in d + 2 space-time
dimensions O(d+2,2). That the Schrodinger algebra can be embedded into the relativistic
conformal algebra can be made manifest at the level of the equations of motion. More con-
cretely, an old trick (the so-called “Bargmann framework” [42, 43, 48, 49]) is the derivation
of the free Schrodinger equation from the massless Klein-Gordon equation via a Kaluza-
Klein reduction along a null direction.

4.1.1 Equations of motion: from Klein-Gordon to Schrédinger

Consider the massless Klein-Gordon equation in d+ 2-dimensional Minkowski space-time,'®
d+1

O (x) = —030(z) + Y 07U(z) =0. (4.1)
i=1

This equation is conformally invariant. Defining the light-cone coordinates,
0 4 pd+1
=222 (4.2)
V2

15We follow closely [13] (see e.g. [48, 49] for more details on the method of null dimensional reduction).
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the Klein-Gordon equation becomes!'6

d
(28383 + ; a?) U(z) = 0. (4.3)

The global coordinates z# = (2, 27, x) have minuscule Greek indices which will span d+ 2
values while the spatial coordinates z* = (x) have minuscule latin indices which will span
d different values.!” If the relativistic scalar field is assumed to be of the form

U(x) = e ™ ozt %), (4.4)

one can make the identification'® 9/0x~ := d_ = —im. Then the equation (4.3) has the
form of the Schrodinger equation in free space

d
<2im 0+ > 83) U(z) =0. (4.5)

i=1

The light-cone coordinate z can be identified with the time ¢ (04 = 0; is the time

derivative) and the operator Z 2 is the Laplacian operator A in flat space,

(2tm Oy + A)¥(z) = 0. (4.6)

Thanks to the dimensional reduction (4.4), the exponential can be factorised and we obtain
the equation of motion for the non-relativistic scalar field (3.5). This equation is invari-
ant under the Schrédinger group Sch(d) as was explained in the previous section. Since
the original Klein-Gordon equation has conformal symmetry, this means that Sch(d) is a
subgroup of O(d+2,2).

4.1.2 Symmetry algebra: from conformal to Schrodinger

Let us now discuss the embedding of the Schrodinger algebra into the conformal algebra
explicitly, following the discussion in [13]. The conformal algebra o(d + 2, 2) can be defined
by the following commutation relations:

[M’“’ Maﬁ] ( pe yrvB + nVﬁMua _ nuﬁMua _ nvaMuﬁ)’
N, P = iy P~ P,
[D, P*] = —iP*, [D, K*] =iK",
[P" K”] —2i(n mD + M‘“’)

(4.7)

where Greek indices run from 0 to d+1, and all other commutators are equal to 0. The tilde
symbols denote relativistic generators; we reserve hatted symbols for the non-relativistic

16The elements of the metric are defined by n+— = 17—y = —1; 7;; = 1 and the others are zero.

n the sequel, the index will often be left implicit for the space-time coordinates = = . No ambiguity
arises since the spatial coordinates are written z* = x.

81n the same way, we denote 9/dz" by 9.
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operators. The conformal algebra generators can be realised as differential operators of
order one acting on the relativistic scalar field U(z)

P, = —id,, M,y = —i(2,0, — 2,0,),
. d - d (4.8)
K,=1 (210” (x”(‘)l, + 2) — xQ(:)ﬂ) , D =i (x“aﬂ + 2) .
We identify the light-cone momentum P+ = (P? 4+ P4+1)/1/2 with the mass operator
M in the non-relativistic theory (in agreement with the previous identification _ = —im).

We now select all operators in the conformal algebra that commute with P*, i.e. which
preserve the Kaluza-Klein ansatz (4.4). Clearly these operators form a subalgebra, and one
may check that it is the Schrodinger algebra sch(d) [50]. The identification is as follows:

N=Pt. B=P P=P NI =NV,
o o Kt (4.9)
Ki=M* — D=D+M, C==

From eq. (4.7), one finds that the commutators between the operators (4.9) are exactly the
Schrodinger algebra commutators (3.4) and (3.9). Furthermore, the realisation (3.10) fol-
lows from (4.8) via the identification (4.9). The maximal symmetry algebra of the massless
Klein-Gordon equation (4.1) is the algebra of polynomials in the conformal generators (4.8)
modulo the equivalence relations following from the Klein-Gordon equation [32].1? The
maximal symmetry algebra of the free Schrodinger equation (3.5) is the algebra of poly-
nomials in the Schrédinger generators (3.10) modulo the equivalence relations following
from the Schrodinger equation. The embedding similar to the one described above actu-
ally holds at the level of maximal symmetry algebra, as could be expected: The mazimal
symmetry algebra of the free Schrddinger equation is isomorphic to the subalgebra of the
maximal symmetry algebra of the massless Klein-Gordon equation, that commutes with a
translation generator in a fived light-like direction.

The proof is direct: The free Schrodinger equation is equivalent to a system of two
equations: the massless Klein-Gordon equation (0¥ = 0 and the null reduction Pty =
mW . Therefore, the maximal symmetry algebra of the Schrédinger equation is isomorphic
to the maximal symmetry algebra of the previous system of equations. [

In other words, the maximal symmetry algebra of the free Schrédinger equation is
isomorphic to the centraliser of a given light-like translation generator inside the maximal
symmetry algebra of the massless Klein-Gordon equation. Therefore, a polynomial in the
conformal generators is equivalent to a polynomial in the Schrodinger generators if and
only if it commutes with P*. Obvious examples are the polynomial in the generators (4.9)
of sch(d) which do commute with P*. A more interesting example of the previous property
is the polynomial v = K*P; — 2M 1M, , quadratic in the generators of o(d+ 2,2). With
the help of the commutation relations (4.7), one can check that a commutes with P*. By
making use of (3.10) and (4.8), one further finds that it is equivalent to a polynomial in
the generators of sch(d): a ~ MY M;; + idD + d?/2.

¥ The maximal symmetry algebra of the massless Klein-Gordon action was denoted by hu(1/sp(2)[d+2, 2])
by Vasiliev in [26].
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4.2 Generalities on the currents
4.2.1 Currents: from relativistic to non-relativistic ones

A relativistic symmetric conserved current of rank r > 1 is a real contravariant symmetric
tensor field C*#r(x) obeying to the conservation law

B, 117 () & 0, (4.10)

where the “weak equality” symbol &~ stands for “equal on-mass-shell,” i.e. modulo terms
proportional to the equations of motion. A generating function of relativistic conserved
currents [51] is a real function C(x;p) on space-time phase-space which is (i) a formal
power series in the “momenta” p,,

1
Clasp) = Y — O (@) Py - P (4.11)

r=0
and which is (ii) such that

( 09 ) Cla;p) = 0. (4.12)

dut Opy

The terminology follows from the fact that all the coefficients of order r > 1 in the power
expansion (4.11) of the generating function are symmetric tensors which are all conserved,
since (4.10) follows from expanding eq. (4.12) in power series. In flat space-time, the indices
of the “momenta” p, can be raised with the Minkowski metric. Hence, one may define the
bilocal function

o =0, (s £0) 92 (o 14), "

which is a generating function of relativistic conserved currents for any pair of functions
¥, and Uy satisfying the Klein-Gordon equation, as can be checked by direct computation
(c.f. [51] for more details).

In order to look for the proper implementation of the Bargmann framework in the
case of conserved currents, one should write the conservation law (4.10) of the relativistic
conserved currents C*1-#r(x) in the light-cone coordinates,

QpCHitir=t p §_CmH b=t 4 GO () (4.14)

If the components C~H1"Fr=1 of the relativistic currents are independent of = or even
vanish, then the relativistic conservation law (4.14) embodies a collection of non-relativistic
conservation laws of the type (with s > )

atC+i14..7;571+..4+_..._ + 5iCii1"'i”’1+"'+_"'_ ~0. (415)

since J4 is identified with 0;. As one can see, the extra light-cone directions with respect
to the spatial ones imply that a single relativistic current actually generates a collection of
(not necessarily independent) non-relativistic currents.

— 922 —



CHAPITRE C. Troisiéme article 207

By analogy with the relativistic definitions, one will call the following function on
space-time phase-space

c(t,x;p;,p) = Clat =t,a7 =0,x;p" = —ps,p~ =0,p) (4.16)

the generating function of non-relativistic “currents” obtained from the generating func-
tion C(x,p) of relativistic currents. For the bilocal generating function (4.13), the ex-
pression (4.16) together with the dimensional reduction ansatz (4.4) lead to the following
generating function of non-relativistic symmetric “currents”

c(t,x:p;, p) = 1 (t— 2pm><+2p) o <t+ o PuX = 2p> : (4.17)

The non-relativistic symmetric “currents” ¢(® % can now be defined from

1 e r
c(t,xip,p) = chmh (%) piy - pis (p)" (4.18)

5

The word “current” is a slight abuse of terminology here since these symmetric tensors
cla) iy may not be conserved, even if the tensors C*1#r(z) are.?’ For instance, thanks
to the dimensional reduction ansatz,

Uy (z) = e ™% gy (zF,x), Wolz) =e 2% ghy(zt,x), (4.19)
the generating function of relativistic currents can be written as
C’(x;p) _ efi(mlerz)aE_Jr%(mlfmz)p_C«(‘T+7 T~ =0,x ;p+,p7 =0, p) , (420)

which is independent of x~ if and only if m; + mo = 0. Notably the non-relativistic
“currents” generated by (4.17) will thus only be conserved when m; + mg = 0. The
explicit expressions of these currents will be given in the next subsection for the cases
which are relevant for the present paper.

The symmetric tensor ¢(") 1% of rank s is said to be of level r. As explained below
in detail on some specific examples, the bilinears of non-vanishing level r # 0 generated
by (4.17) are not genuinely independent. Indeed, these bilinears contain time derivatives
of the field which can be traded for spatial derivatives via the equation of motion. Conse-
quently, one might scrutinise on the generating function

c(t,x;pe =0,p) = Y1 (t,x-i—;p) P2 <t,X—;P) ; (4.21)
of non-relativistic “currents”, ¢(0) i (t,x), of vanishing level as can be seen from evalu-
ating (4.18) at p; = 0. The function (4.21) is local in time but bilocal in space. When
|mq| = |ma, it can be interpreted physically as a composite field, at instant ¢, made of two
particles with the same mass, described respectively by 11 (¢, x1) and 12 (t, x2). Accordingly,
in (4.21) the coordinate x correspond to the center of mass position. For x; # x3 # X,

20For this reason, to avoid confusion in the following we will call them bilinears.
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the two bodies have a non-vanishing relative orbital angular momentum which may be
reinterpreted as the spin of the two-body composite. More technically, this reinterpreta-
tion corresponds to the decomposition of the generating function in terms of tensor fields
0t (¢ x) of “spin” s. In fact, considering bilinears of any spin is very natural in the
study of general pairing.

4.2.2 Singlet bilinears

By analogy with the simplest prescription of Klebanov and Polyakov in [21], one might
focus on the bilinears in the 1 which are singlets of the internal symmetry group, i.e.
U(1) x Sp(2N) here. For the unitary Fermi gas, however, the Cooper pair is the main
object of interest and it is charged under U(1), so one prefers to slightly relax the previ-
ous requirement.

One option is to consider all the bilinears which are singlets of Sp (2N). Remember that
A = p®® where the indices take values as a =1,] and a = 1, ..., N while the orthogonal
and symplectic metrics are 64p = dog ® 6y and Jap = €43 @ dqp. Essentially, there are
only two independent ways to construct Sp (2N)-singlets out of two multiplets 11 and 9
transforming in the fundamental representation of Sp (2N): either as the Hermitian form
1/11%2 = 14045105 of U(2N) or as the symplectic form 11 Jv = 1\ Japp® of Sp (2N, C).
Only the Hermitian form is invariant under U(1).

The restriction to the Sp (2N )-invariant sector appears natural for the large-N ex-
tension of the Fermi gas but is questionable for the physical (N = 1) Fermi gas with
internal symmetry group U(2) = U(1) x Sp(2). Motivated by this remark and the ex-
istence of the embedding U(2) x O(N) C U(1) x Sp(2N), one may consider instead
the larger sector of flavor (i.e. O(INV)) singlet bilinears. Essentially, there is only one
way to construct O(N)-singlets out of multiplets transforming in the fundamental rep-
resentation of O(N): via the scalar product. However, this provides three independent
O(N)-singlets since the multiplets ¥ are complex: either as the two (up or down) Her-
mitian forms TG = 146,05 *® (no sum on the index a) or as the symplectic form
Y1y = ¢1a’aea56ab1/)§ *® Again, only the Hermitian forms are invariant under U(1). Notice
that the two Hermitian forms and the symplectic form together reconstruct the Hermitian
form of U(2). This is in agreement with the analogue of the generalised prescription of
Klebanov and Polyakov in [21] since one focuses on the bilinears in ¢ which are in the
adjoint representation of the unitary group U(2), the internal symmetry of the physical
unitary Fermi gas.

In both cases, there exists two types of singlet generating functions: the corresponding
bilinears are either neutral or charged with respect to the U(1) group associated with mass
conservation. The charged bilinears transform in massive representations (of mass 2m) of
the Schrodinger algebra, while the neutral bilinears carry massless representations. We
refer the reader to appendix B for a detailed discussion devoted to the unitary irreducible
representations (UIRs) of the Schrodinger algebra.
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4.3 Singlet bilinears of the symplectic subgroup
4.3.1 Neutral bilinears

Following the above discussion, we impose that?!
U, =0 Wy=" (4.22)
in (4.13) such that m; = —m and mg = m in order to construct a real current generating

function denoted by J:
t ‘ B L B, 1
v <w+2p>\ll<x 2p> v <x+2p>5AB\I/ <a: 2p>
i \11 i
[\I/ <z2p>} \If<x2p> = J*(z;p). (4.23)

This relativistic parent obeys the law of conservation (4.12). The corresponding con-

J(z;p)

served currents, satisfying (4.10) and (4.14), were introduced by Berends, Burgers and
vanDam [52] long time ago and more recently were summarised in a generating function
in [51]. Using (4.11), one sees that they take the explicit form:

T (@) = <—;)r§(—1)8 (:) A -+ OV (@) Dy - Dy V()
- <_;) O MR 10 (4.24)

where the usual notation <5> is defined by
DI = B(9,V) — (5,8)V.

The symmetric conserved current (4.24) of rank r is bilinear in the scalar field and contains
exactly r derivatives. The currents of odd rank are absent if the field is a real Grassmann-
even scalar.

After expressing the corresponding currents in terms of the non-relativistic field by
making use of the dimensional reduction ansatz (4.4),

-\ s
7 g g
Ttz m@ = Gt (<5) 00 T B Bl 029)
T q T
one can check that they do not depend on x™: Jy, ... () = Jup. . (¢,%x). In addition,

there is a relation of recurrence J_,,..,, = —mJy,..,,. From the last remark and the
equation (4.14), the conservation law of neutral currents becomes:

Q

- 8+J—u1-..m71 (x) + 8i']iﬂl~~-#r71 ()

0
= mOyJyy () + 8iJiu1~-ur_1 (z) = 0. (4.26)

Q

2 The auxiliary relativistic scalar field ¥ that we use here is Grassmann-odd and (¥; Wo)" = wf ol
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One can check even more simply all these properties in terms of the generating function.
Due to the definitions (4.23) and (4.4), one obtains:

J(z;p) = e ™ j(t,x;pi, P) (4.27)

where the generating function of non-relativistic neutral currents is

since p; = p_ = —pT . The conservation law is
o 0 0 0
=99 5 L Y ) J(ap) =0 4.29
< o+ op- T axzapﬂ> (z:p) (4.29)
since J(x; p) does not depend on x~, which becomes
0 o 0
— -— | j(t,x; R 4.
<m8t+axlapl)](7xvpt7p) 0 ( 30)

when expressed in terms of the generating function of non-relativistic neutral currents
via (4.27). The neutral non-relativistic conserved currents which are generated as
in (4.18) read

S\ TS
=y () Ve B B EBuex s

T

and are related to the relativisitic neutral currents as follows:

i1

Th i — (@) = (1) M) (8x) (4.32)
N—— S~——
T q

Let us give few examples in order to make contact with the standard conserved currents
of low rank. The “current” of rank zero is the number density n

J =3O =yl (t,x)(t,x) =n. (4.33)
For rank one, the relativistic current is expressed by
i

Jula) =~ ¥ (@) 5,0 () (4.34)

and it leads to the mass density p, the energy density
e = - autoiy (4.35)
2m
and the momentum density j; (our notations and conventions are as in [11, 13]):
Jt = mji® = mylt,x)9t,x) = mn = p
Jm =0 = Lt x) B gt x) ~ € — L An (4.36)

. Z H .
GO = iyt %) 9] ¥t x) = i

&
I
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The relevant law of conservation is the continuity equation: 0;p + 9;j° ~ 0. Notice that

E = /dxe ~ /dxj(l) (4.37)

modulo a boundary term. For rank two, one obtains:

the total energy is given by

Jule) =~ 0 () 0, 5w () (4.38)

which leads to

T =m0 = m? it x) (t,x) = m*n = mp
Jt= =m0 = %mz/ﬂt(t,x)ﬁw(t,x) ~ me — 4An
T =mi® = —imut(t,%) 8 v(t,x) = mji
J =0 = L% 9 6t x) )
J7 =30 = 1gt(,%) 9 9 p(t,x) = mj<+ Laom
T =4y = —iW(t,X)EE}w(t?X) = mlly; — 1(9:9; — ;5 A)n
where 1
Ji = =5 (010 + 0,90 (4.40)
is the energy current and
I = %(aﬂzﬁ dpb + 00T 9ip) — ﬁaﬁ An (4.41)

©)
ij
physically equivalent since they differ only by a trivially conserved current. The supple-

is the stress tensor in the conventions of [11, 13]. The conserved currents j;;’ and II;; are

mentary laws of conservation are:

{@e—l—@i a0, (4.42)

8tji + 8]‘Hij ~0.

4.3.2 Charged bilinears

In order to construct the second type of currents which are singlets bilinears of Sp (2N),
one chooses

Uy =0y =0 (4.43)

and the components are contracted by the symplectic matrix J/2. The generating function
of such charged currents is denoted by K and given by

1 7 )
K(x;p) = §\IJA <x+2p> Jap ¥P <x—2p) (4.44)
1
= Z—'K“L“‘”(w)pm Dy -
=
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Notice that it is an even function in the momenta, K (x; p) = K (x, —p), thus only relativistic
charged currents of even rank are non-vanishing. It leads to the relativistic charged currents

Ky () = % (—é) > (=1 C) JaB Oy, - - 00, V(@) Oy - 0y VP (2)
s=0
:% <_;> Tap VA @) O .. 5 0P (). (4.45)

Like the neutral currents, the relativistic charged currents are conserved. However, the
corresponding charged non-relativistic bilinears are not conserved, because the relativistic
ones depend on z~. Indeed,

K(z;p) = e "™ k(t,x;p, p)- (4.46)

As one can see, the generating function in this case does not depend on p~. Therefore the

conservation law becomes

_ 0 0 9 9
Ox— Opt Oxt OpJ

) K(x;p) = 0. (4.47)
The generating function of non-relativistic charged bilinears is:

1 7 ) 7 7
k(t,x;p:,p) = 57//14 (t - §Pt7X+ 2p> Jap® <t + 5 Pox— 2P> . (4.48)

It is not conserved but nevertheless satisfies

0 o 0
<—2im — + > E(t,x;pi,p) =0, (4.49)
as follows from (4.46)—(4.47). The non-relativistic charged bilinears read

k)

i1

_1\r i r+s
(1.3 = 1 (2) Lap 0 () 855 BB x) (450)

and are related to the relativistic charged currents as follows:

Ky i@ = (=1)7e2me 10 (1 x). (4.51)
N——

r

The non-relativistic charged bilinears satisfy
2im k"D (¢, x) + 0k . (t,x)~0. (4.52)

11 s Jt1ts

For rank zero, one gets the Cooper pair (2.3)

K™ =0) = kO = 2920 Las (6, %) = k. (4.53)
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For charged bilinears of rank two, one finds:

K™z~ =0) =0
Kt (xz==0) =0
Kt (z==0) =0
K=(a= = 0) = k®(t,x) = ~L0ap A (t,x) 5 Bt x) oy
K =0) = V(%) = +5 Tap v 9 9 97 (6,%)
Kiyla~™ =0) = k(£ = —3Tas (%) 0, 0 v2(t.%).
These bilinears are not conserved but instead obey:
0k~ 2im k(2
- . (4.55)
{ ik 2 2im kM7,

4.3.3 Traceless condition

Since the massless scalar fields are conformally symmetric, one may expect to get infinitely
many traceless conserved currents, while the Berends-Burgers-vanDam currents generated
from (4.13) are not traceless, even on-shell: 83 C(z;p) % 0. From the representation point
of view, it is important that the relativistic currents are traceless in order to have irreducible
conformal primary fields. The massless Klein-Gordon equations for U1 and ¥y imply the
conservation condition, (9 - 0p) C(z;p) =~ 0 for the bilocal generating function (4.13), as
well as another on-shell condition:

2 1o )
(—8p+48x C(x;p) =0, (4.56)

which relates trace of the Berends-Burgers-vanDam currents to their d’Alembertian. For
example, eq. (4.56) at p = 0 for the generating function of neutral currents reads

a1
NI =2y It + 6,09 ~ i aJg, (4.57)
which relates the trace of the rank-two current J*¥ to the d’Alembertian of the scalar J.
The relativistic eq. (4.57) leads to the non-relativistic relation

—2mjM + 6,509 ~ — OO (4.58)

W~ =

which, in turn, gives

3 d
— 2+ 611V =~ ~im An, (4.59)

due to (4.33), (4.39) and (4.41). This implies the standard relationship between the total
energy and the pressure valid both for ideal and unitary Fermi gases [11, 13]:

/dxnz ~ 2F, (4.60)
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modulo a boundary term. Notice that the analogue of the relativistic eq. (4.57) for the
charged currents leads to the non-relativistic relation

B ARLIS 1(4miat +A)k, (4.61)

e

as can be checked using (4.54).
Due to the second on-shell condition (4.56), one can construct a generating function

C(z;p) of relativistic currents that are conserved and traceless on-shell [53]:
85 C(z;p) =0, (05 - 8,) C(x5p) ~ 0. (4.62)

This can be achieved by acting with a differential operator Pyia(p, d;) on the generating
function of currents

C(a;p) = Paya(p, 0:) C(z;p) .- (4.63)
The conservation of both C' and C requires that P49 commutes with 9, -8, on-shell. If we
construct Py, o as a power series in the transversal projector 7 (p, d;) := [p? 02— (p-0.)%] /4,
then the conservation condition is satisfied since 0, - 0,7 = 70, - 9,. The tracelessness
condition, 812, Pasa(p, 0:) C(xz;p) = 0 can be solved recursively and the operator Pyio is
determined by these conditions (up to a constant factor) [53]:

Para(p. 0n) = ~ (W(W%)) , (4.64)
* n;] nl(—p- 8, — 93, \4

where (a), = I'(a + n)/T'(a) is the Pochhammer symbol. More concretely, if one applies
this formula to the currents of spin two, it leads to the traceless current:

Cuv(z) = Cpu(z) + ﬁ (0u0y — nwO)C(x). (4.65)

Due to (4.27), one can express the action of the two operators p - d, and m on the
neutral current generating function as

0 ;0
. . _ + _ - % .

(p-0p)J(:p) = <p gpr Pt api> J(z;p), (4.66)

J(z:p) 1( i 9 )A + 9 0 2J( ), (4.67)

mJ(x;p) = = D' — 2p_ — , D), .
p 4 pip pP—-D+ p pyes p Ot €p

since J(z;p) does not depend on z~. This is helpful for writing the neutral traceless
current generating function J leading, after evaluating at p~ = 0, to the non-relativistic

generating function

o0

} 1

J(tvxaptvp) = - P X
,; nt42n(—py gy — pf a(zi — G

n

X ((pipi)A — (=pe O + ' 31')2) j(t,x;pt,p). (4.68)
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Notably, this function generates currents which satisfy the non-relativistic version of the
traceless condition

0 0 0\ -
—2m— + " —— ) j(t,x; ~ 0. 4.69
( mapt + aplap]>j(7xvpt7p) ( )
For instance, for rank two we get a simple relation

—2mj® 4 6,570 ~ 0 (4.70)

to be contrasted with (4.58). Notice that this shows that the higher-level r > 0 neutral
currents j(") are proportional to traces of currents of level zero 7).
The formula analogous to (4.68) for the charged bilinears is very similar

(o]

E(t,x:pup) = )

n=0

1
o] e d—3
n!42”(—pt pr p a2 )n

X ((pipi)(—ﬁlim@t +A) = (=pt O + p' 8¢)2)nk(t,><;pt,p)-

X (4.71)

Notice that, since all the components K+ vanish, the charged non-relativistic bilinears

are spatially traceless: 5¢jl}(“)ij“' ~ 0 to be contrasted with e.g. (4.61). Remarkably,
(0)

i1
which are actually non-relativistic conformal primary fields?? (such as the scalar Cooper-

the generating function & gives rise to the non-relativistic spatially traceless tensors k

pair field) while the higher-level ones k‘l(:")
from eq. (4.52).

i for r > 0 are their descendants as can be seen
4.4 Singlet bilinears of the orthogonal subgroup

Since the Sp (2N)-singlet bilinears have been investigated above in much detail and the
O(N)-singlet bilinears are their natural extension, the presentation of the latter bilinears
will be brief.

The neutral relativistic currents are now split in up and down ones, as one chooses
in (4.13)

Uy = (v, Ty = v (4.72)

with a =1, ] and the O(N)-flavor components are contracted by the identity matrix. The
generating functions of such neutral relativistic currents are denoted by J<,

i i . i . i
got (x+2p> e <1’2p> =y <x+2p> Sap TP (12p>

{‘I’O‘ (1‘— ;pHT e (x— ;p> =J"(z;p), (4.73)

where there is no sum over the index o.

J*(z;p)

For the charged currents, one chooses

U= -0, Uy = U, (4.74)

22For a definition of a non-relativistic conformal primary field see appendix B.
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and the O(NN)-vector components are again contracted by the identity matrix. The gener-
ating function of such charged relativistic currents will be denoted by K, e.g.

K(z;p) = -V <x+2p) 5ab\IJ$ <x—2p) = v ($—2p> (5(11,‘1@ (ﬂc+2p> . (4.75)

Notice that the analogous generating function with up and down subscripts exchanged is
not independent, more precisely it is equal to —K(z; —p).

We will not write explicitly the corresponding non-relativistic bilinears and generat-
ing functions j, (t,x;pe, p) and k(¢,x;pt, p), since all the corresponding formulas are the
straightforward analogues of the ones in the previous subsections. We just notice that the
scalar bilinears j, (t,x;pr = 0,p = 0) = ny(t,x) are the density fields of the up and down
fermions, while k(¢,x;p; = 0,p = 0) = k(t,x) denotes the complex Cooper-pair field. Two
real fields and one complex field precisely match the entries of a 2 x 2 Hermitian matrix.
For instance, at rank and level zero

_+(0) 1 (0 —al¥ . .
iy k _ ) — o B 4.76
<k<o>* j<f>) (wz-w; vy ' o

This collection of O(N)-singlet bilinears of all ranks and levels appears to be very natural
for our proposal of the gravity dual of the unitary Fermi gas [24].

5 Coupling to background fields

The generating functional Wy..o[h, @ ; N] of connected correlators of Sp (2N )-singlet bi-
linears in the non-interacting Fermi gas described by the quadratic action

St N) 1= S[ie0 = 0,N] = [ dtdxut <z‘at by u) v, (5.1)
is defined by the path integral
expi Weeol b @ N] = /DwaT expi Sgreelt b, @ N, (5.2)
where
Streel ¥ by @3 N] i= Spae[¥; N (5.3)
CX o [ gD i)
5=

is the free action in the presence of Sp (2N )-invariant external tensor fields, hg.)._is and
(r)

®;,...;.» coupled respectively to the neutral and charged bilinears, jmiis and graeis,
In other words, the Sp (2N)-invariant bilinears are minimally coupled to the background
) (r)

1

fields which share the same properties, i.e. all hg ;. are real and ¢ are complex and

vanish for odd rank s. Here and below, we will refrain from writing explicitly the similar

formulas for the O(N)-singlet bilinears j,(; Jiris and ki ds coupling respectively to the
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background fields hf:)als and cpglr)zs for all ranks. The collection of such fields will also be
referred to as h and ¢ for short in order to cover the general case at once. The Sp (2N)-
invariant background correspond to the particular case: hy = h) and momentum-even @
generating functions.

The functional (5.3) is quadratic in the dynamical field ¥ (since the kinetic term and the
bilinears are), therefore the path integral (5.2) can easily be evaluated formally since it is a
Gaussian integral. In order to write the generating functional of connected correlators in a
compact form, one should start by writing (5.3) manifestly as a quadratic form. This can be
done elegantly via the Weyl quantisation (reviewed in appendix A) performed on the space-
time phase-space, following the same procedure as in the relativistic case [51, 53]. In other
words, the canonical commutation relations (A.2) must be supplemented by [Pt , T | =1,
where T denotes the operators corresponding to multiplication by the time coordinate .23

Let us stress that all the steps performed in the subsection 2.2 can be adapted to
apply in the presence of background tensor fields as well, because the external fields of
non-vanishing rank do not play any role in these specific manipulations (only the scalar
fields such as the Cooper pair and the dimer are pertinent in that case). In other words,
the interacting and the non-interacting Fermi gases in the presence of background fields
are still related, in the mean field approximation, by a Legendre transformation over the
(properly shifted and/or rescaled) scalar charged dimer field.

5.1 Quadratic functional

The free action (5.1) in the absence of background can of course be written as a Schrédinger
action (3.27)

Sfree[¢§N] = (1/} | gfree | 1#) = 04B (1/)14 ‘ Sfree I 1/13)7 (5'4)

where the operator

S =P — Hpoe (5.5)
is the Schrodinger operator (3.12) for the free Hamiltonian gfree = P2/2m. The crucial
observation of this section is that even the minimal coupling terms in (5.3) can be explicitly
written as a quadratic functional via integrations by part. Let us perform this rewriting
in the generic case, i.e. let us consider the following minimal coupling

> o / dtdx ") (t,x) fOR (1 x) (5.6)
7,520

between a collection of external symmetric tensor fields fi(;),,is and the non-

relativistic bilinears

1 —

T+s
e (t,x) = (~1)" <2> ¥ (t,x) 0 E) é?;...&:w(tx)

i1

1 S T
= 2r+s wl(t,x) Pt e Pt Pi1 --~Pi5¢2(t,x) (57)

r

23If not specified, the notations and definitions in this section are the straightforward extension of the
ones in appendix A.
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defined by (4.17)—(4.18). The main idea is to integrate by parts all momentum operators
acting on v inside (5.6), in order to have all operators acting on 5. One may con-
vince oneself that taking into account the ordering and the change of signs will result in
the equality

/ dtdx e, (t,x) O (1,x) (5.8)

_ 1
T or+ts

/dtdx wl(t7x){"' {f(r)il...iS(T7X)’ fjt}’ T Pt}v Pil}a T lsis}’wQ(t’X)

where { , } denotes the anticommutator and implicitly r operators B appear in the above
formula. Therefore, the minimal coupling (5.6) can be rewritten in a compact form as the

quadratic functional

1 . o R
Ejﬁa/ﬁWQbﬁwa“wwo=WHFww (5.9)
S et
where the curly bra-ket notation for the space-time Hermitian form has been introduced
in (3.26) and the space-time differential operator F' is given by

it sl ‘Sl 2 R » 1 (r)ir...is (P ¥ » D » »
F(T,X; P, P) = Zo W{ {f (T,X), B}, -+, B}, Pad, oo Pigt
r,5=
(5.10)
As explained in appendix A, this means that the generating function

fltxipep) = Y =

O X by (1) (5.11)

of symmetric tensor fields is the Weyl symbol of the operator (5.10).
Therefore, one finds that the free action in the presence of Sp (2N)-invariant back-
ground fields, i.e. (5.3), can be written manifestly as a quadratic form

A 1
Sfree Y3k @3 N] = ap (0" | S [97) + S Tap | (04 | @[ 95 — | o [vP)],

5.12
where the operator S is the Schrodinger operator (3.12) | )
S=P —H =St — Hyp - (5.13)

defined in terms of the Hamiltonian
H = Hypo + Hypy - (5.14)

The operators I:Iint and @ are the images under the Weyl map of the generating functions
of the background fields h(t,x;p, p) and @(t,x; p;, p) respectively.

More generally, the free action in the presence of O(N)-invariant background fields can
be written as follows:

Strecl ¥l @ N = (g | Sy [ ¢y) + (4, | Sy [ 4y)
@ | @1 U]) + (W] | 6T [vr), (5.15)
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where the flavor indices have been left implicit and the two (up and down) Schrédinger
operators S, are built from the corresponding interaction Hamiltonians ha(t,x;pt, P).

Let us elaborate on some physical interpretations of this rewriting by concentrating
first on the simplest case where there is no coupling to the charged fields (¢ = 0). As
can be seen from (5.12), the free action in the presence of only U(1) x Sp (2N )-invariant
background fields can be rewritten as a Schrédinger action (3.27) where the Hamiltonian
is of the form (5.14), i.e. the usual potential term V' (¢,x) is replaced by a general function
on space-time phase-space h(t,x;p;, p). In particular, a scalar background field h(t,x)
coupling to the particle density n(t,x) can obviously be interpreted as a position- and
time-dependent external potential term in a standard Schrodinger action.

In the more general case where the charged sources are present, another suggestive
way of interpreting (5.12)—(5.15) is by casting it in the Nambu-Gor’kov form. In order to
write (5.12) in terms of the Nambu-Gor’kov field (2.7), it is necessary to perform integra-
tions by part in the term (¢ | 5’¢ | 1) of (5.15). This can be formalised by introducing

the operation ™ defined by F7(T,X; P,,P) := F(T,X; —F;, —P) such that

(Y1 | Flg) = — (93 | FT [ ¥]). (5.16)

Notice that the minus sign in (5.16) arises because the fundamental fields are Grassmann
odd and the complex conjugation appears in accordance to the definition of the space-time
Hermitian form (3.26).2 The fact that the neutral (charged) Sp (2N )-invariant generating
function is a real (respectively, momentum-even) function translates into the fact that the
operator Hj,; (resp. @) is Hermitian: ﬁi]Lnt = ﬁint (resp. 7-symmetric: @7 = @). The
latter properties together with (5.16) imply the following relations

54 (W™ | S| 9P) = bap (W | S| ¥2) — dap (¥ | ST | 97), (5.17)
Jap W] @ [ 5%) = 20, (08| @ | vb), (5.18)
Jap W [ @7 [ ¢F) = =26, (v | @1 | ¥h). (5.19)

The relations (5.18)—(5.19) show that (5.12) is indeed a particular case of (5.15) (remember
that for the Sp (2N )-invariant background ST =8 = S) More generally, the properties
of the O(N)-invariant generating functions translate into H}, = H,. The relation (5.17)
allows to rewrite the quadratic functional (5.15) in the compact form of a Schrédinger
action in terms of the Nambu-Gor’kov field (2.7)

. S ¢
Stree ¥ h, @ N = (V]S | VW) = /dtdx\w <©§ SI) v, (5.20)

where the Schrodinger operator is the 2 X 2 matrix

S Sr @
S=1["71 2. 5.21
(w* —SI) o

-

T

2Mathematically, the operation 7 is a linear antiautomorphism of the Weyl algebra. The operation

must be contrasted with the Hermitian conjugation T which is an antilinear antiautomorphism obeying to

(1 | F [ 2) = (2 | FT [ 1)".
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This suggestive rewriting is one of the main results of this section, because it allows many
further insights. The Schrédinger matrix-operator S= Sfree — ﬂint is the difference of the
free Schrodinger 2 x 2 matrix-operator

; p-£2 0
Stree = < . 2 Pt N P (5.22)
2m
and the interaction Hamiltonian
t P
Hint = ( R ) (5.23)
® _HIint

containing the background fields. As one can see, the free action in the presence of general
background fields can be rewritten in a form which generalises (2.8) in the sense that,
in the 2 x 2 matrix, the free Schrédinger operators 9, + (% + p) on the diagonal are
replaced by the most general ones and the field ¢ is replaced by a general differential
operator @. Notice that the Schréodinger matrix-operator (5.21) is Hermitian with respect
to the simultaneous combination of matrix and space-time Hermitan conjugations. For
notational simplicity, this operation will also be denoted by ' since no ambiguity arises.
This Hermiticity property of (5.21) can be made manifest in terms of Pauli matrices:

S‘:iatO’o*']:[, ﬁ:ﬁ000+ﬁ101+ﬁ202+ﬁ303, (5.24)
since the coefficients

1
)

A A . 1, . - T, . . 1, .~
Ho=5(H—H]), Hi=-5(6+¢"), Ho=-5(0—0"), Hs= (H+H]), (5.25)
are all space-time Hermitian operators. It is important to stress that in the particular case
of a Sp (2N)-invariant background the operators H; (i =1,2,3) are T-symmetric while H,

is a T-antisymmetric operator:

Hf = —-Hy,, Hf =H;, (i=1,2,3). (5.26)
More generally, in the presence of an O(N)-invariant background the free action takes the
form of a Schrodinger action with the most general 2 x 2 Hermitian matrix-operator. As
we demonstrate in the following, these differences between Sp (2N)- and O(N)-invariant
backgrounds play an important role in the correct identification of the gauge symmetry
algebra and of a putative dual bulk spectrum.

The generating functional (5.2) of connected correlators of singlet bilinears in the non-
interacting Fermi gas can now be evaluated formally due to the quadratic form of (5.20):

Wireelhs @3 N] = —iN Tr logS =: N Whiealhs @] (5.27)

where S is given by (5.21). A crude but standard (BCS theory) approximation of such
a complicated object would be to evaluate it in the case where the background fields are
constant in space-time and momentum coordinates (in which case only the correlators of the
number-density and of the Cooper-pair are evaluated). Another possible approximation
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is the assumption that the background fields are weak in which case one might start a
perturbative expansion in powers of the background fields along the lines of [53]. Notice
that the trace in the functional (5.27) corresponds to an integral over the energy and
momentum flowing along the fermion loop. This functional can be obtained as a light-like
dimensional reduction from its higher-dimensional relativistic counterpart by fixing, in the
integral over the corresponding relativistic momentum, one of the light-like component to
be equal to m instead of integrating over it.

Finally, since the Schrédinger matrix-operator S is Hermitian, it is formally diagonal-
isable via a generalised unitary Bogolioubov transformation ¥ +— W/ = U~ | in the sense
that 8" = UtSU = (id; + H})) 0o + H} 3. In general, the operators Hj) and Hj depend on
both background fields h and . In terms of the new quasi-particle field ¥/, the quadratic
form (5.20) can be written as a sum of two Schrodinger actions:

Streel ¥’ 1, @ N] = Z (W | S [ W), (5.28)
a=T,]

Physically, this means that the free action in the presence of background fields describes (up
and down) quasi-particles governed respectively by two Hamiltonian operators depending
on both background fields h and ¢. Again, this is nothing but a natural generalisation of
the BCS theory.

5.2 Gauge and rigid symmetries

This subsection is devoted to the analysis of the gauge symmetries of the free classical
action (in the presence of background fields) and of the corresponding effective action.
Due to the simple expression of these actions (respectively, “quadratic form” and “trace-
log”), their symmetries are manifest. These symmetries are important because, as usual,
the gauge invariance of the effective action encodes the Ward-Takahashi identities (here, on
the connected correlators of bilinears). The algebraic structure and physical interpretation
of these symmetries will be addressed in more details in the next subsection.
Note that any quadratic functional such as (5.20) is formally invariant if
a transformation,
Yty (5.29)

of the field ¥ in the fundamental representation of invertible matrix-operators U~' is
compensated by a suitable transformation,

S—utsu, (5.30)

of the Hermitian Schrodinger matrix-operator (5.21). These finite transformations of S
correspond to gauge transformations of the background fields, as will be shown explicitly
below. Physically, this means that the group of invertible 2 x 2 matrix-operators can be
interpreted as the group of gauge symmetries of the free classical action Sp.q0[%, 1, @ ; N]
in the presence of a general O(N)-invariant background. The corresponding infinitesimal
transformations span the Lie algebra of 2 x 2 matrix-operators. This Lie algebra of in-
finitesimal gauge symmetries is nothing else but the complex algebra My(C) @ Ag41(C),
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i.e. the tensor product of the algebra My of 2 x 2 matrices and the Weyl algebra Ag4q of
space-time operators (both algebras are over C).

On the other hand, any trace functional such as (5.27) is formally invariant under
the subgroup of unitary matrix-operators (LA{Jr = L?*l), because the Schrodinger matrix-
operator S transforms in the adjoint representation

S—u'tsu, (5.31)

of this subgroup. The generating functional W...[ h, @ ; N] of connected correlators arises
from integrating out the fundamental fields W. More precisely, it arises from one-loop
diagrams for the fermions and it can be interpreted as the background effective action of the
free theory. Physically, the symmetries (5.31) of the O(N)-invariant background effective
action Wfree[ h, @ ; N] can be interpreted as the subset of gauge symmetries of the classical
action which remain manifestly preserved at quantum level. The other transformations
are in general anomalous because the trace in (5.27) is only invariant under the adjoint
transformation (5.31), hence not always under (5.30).2> As one can see, formally the group
of unitary matrix-operators may always be preserved at quantum level in the present
construction. The corresponding algebra of infinitesimal transformations is the real Lie
algebra of Hermitian 2 x 2 matrix-operators. As was explicitly shown in eq. (5.24), this
real algebra is spanned by the linear combinations of sigma matrices with coefficients in
the real Weyl algebra, hence it isomorphic to u(2) @ Ag41(R), i.e. the tensor product of
the algebra u(2) of Hermitian 2 x 2 matrices and the Weyl algebra of Hermitian operators
(both algebras are over R).2

In order to describe the gauge symmetries (5.30) more explicitly, let us consider in-
finitesimal transformations near the identity: U = 1+iA where the infinitesimal generator
Aisa general 2 X 2 matrix-operator expressed in the form

A= (&T bT> . (5.32)
& —ai

The space-time operators ay, a,, b and ¢ are infinitesimal gauge parameters. The infinites-
imal version of (5.30) now reads

6S = i(SA - ATS). (5.33)

Since the free Schrodinger matrix-operator Sfree is kept fixed in the variation of the total

Schrédinger matrix-operator S = Sfree Hmt’ one obtains 6§ = —5Hmt =i(SA -
At S) which decomposes as
Hing = 1 (A" Spee — Strec A) + i (Hing A — ATH; ). (5.34)

2’However, since the trace in (5.20) implicitly requires a regularisation in order to be well defined, notice
that its finite or its logarithmically divergent parts may admit more symmetries than the full regularised
effective action (c.f. [53] for more comments in the relativistic case).

26Tn more abstract terms, the algebra M2 (C) ® Aqg41(C) is Zo-graded with respect to the eigenvalues 41
of the Hermitian conjugation T. A real form of this complex algebra is the subalgebra of Hermitian 2 x 2
matrix-operators (elements of eigenvalue +1).
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Although the term of degree one in ﬁint in eq. (5.34) is crucial for having exact symmetries
of the action, for the sake of simplicity in the following subsection we will concentrate on
the term of degree zero in order to discuss the interpretation of the gauge symmetries.

In terms of the corresponding Weyl symbols, the transformation (5.34) reads

oM(tx3p1p) = 1 (A (£,%5p1,D) * Spree — Stree * AltX;p1,p) ) (5.35)

+1 (H(t,X;pt,p) *x A(t,x;p, p) — A*(t,x;p1, P) * H(LX;pt,p)),

where
hi(t,x;pe, ) @(t,x;pt, P)
H(t,x;pt,p) = (5.36)
(p(tvx;ptvp) 7hi(t7x,7pt77p)
is the Weyl symbol of the interaction Hamiltonian matrix-operator ﬁintv
t,x; b(t,x;
Altxipop) = [ “bxiep) - BxipoP) (537
c(t,x;pt,p) —ay(t,x;—ps, —p)

is the Weyl symbol of the infinitesimal matrix-operator /l, and * stands for the Moyal
product on the space-time phase-space (c.f. appendix A) defined by

lz'(%? 99 93 %3)]
* = exp | = ,

ot o " op 0 T 9w By Op; 0 (5.38)

2

where the left and right arrows indicate on which side the corresponding derivative acts.
The above Weyl symbols (5.36)—(5.37) should be interpreted as generating functions of
symmetric tensor fields via the corresponding analogue of the power series expansion in
momenta (5.11). In other words, the infinitesimal gauge transformation (5.35) can be
written explicitly in terms of tensor fields only but the resulting expression would be rather
complicated in complete generality. For the sake of simplicity, in the following subsection
this will be done only to the lowest zeroth order in the background fields.

What is the relation of the gauge symmetries of the free action in the presence of back-
ground fields and the rigid symmetries of the Schrodinger action investigated in section 37
As can be seen from the conditions (3.28) and (3.29) defining, respectively, the symmetries
of the Schrédinger action and their generators, they can be seen as gauge symmetries of
the free action preserving the background fields, e.g. 67—2th = 0. In the absence of any
background field (h = @ = 0 « ﬁint = 0), the classical action (5.3) reduces to the free
Schrédinger action (5.1). Therefore the symmetries of the free Schrodinger action can be
seen as the subalgebra of gauge symmetries that preserve the absence of background fields.
The maximal symmetry algebra of the free Schrodinger action for two-component wave
functions has been identified in subsection 3.2.3 with the real Lie algebra u(2) ® A4(R)
of quantum observables. Physically, this means that the algebra u(2) ® Agzyq of 2 x 2
Hermitian space-time operators can be seen as arising from gauging the algebra u(2) ® Ay
of rigid symmetries via the Noether procedure, c.f. the minimal coupling (5.3). As usual
in non-relativistic physics, the gauging amounts to an arbitrary dependence on the time
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coordinate t. Here, one adds an arbitrary dependence on the time momentum P = id,
of the transformation parameters. However, only the arbitrary time dependence is gen-
uinely non-trivial because, on-shell, any time derivative can be traded for the Laplacian.
A related subtlety is that the charged non-relativistic bilinears are not Noether currents
since they are not conserved. Thus, strictly speaking, the coupling (5.3) to external fields
is not a pure minimal coupling a la Noether. As will be seen in the next subsection, the
pseudo “conservation laws” of the charged bilinears are thus not associated with genuine
rigid symmetries. Their related local symmetries simply allow to get rid of the charged
background fields ") with level » > 0, as is consistent with the fact that the bilinears
k) with 7 > 0 are descendants. A somewhat similar result is actually true even for the
neutral background fields and currents.

As a side remark, let us notice that the restriction to the Sp (2N )-invariant background
fields subsector is a consistent truncation. However, it seems that the corresponding non-
relativistic higher-spin algebra has no relativistic parent algebra. Let us describe in some
details the subalgebra of symmetries related to the restriction to the Sp (2N )-invariant sub-
sector. In order to describe this subtle subalgebra, some algebraic technology is needed.
More precisely the operation 7, defined on the algebra of space-time operators in subsec-
tion 5.1, can be extended to a linear antiautomorphism of the algebra of matrix-operators
by defining

oy =00, 0 =—0;, (i=1,23). (5.39)

The algebras of 2 x 2 matrices and of space-time operators are Zo-graded with respect to
the eigenvalues £1 of 7 and decompose as: u(2) = u(1) @ sp(2) (since og is of eigenvalue
+1 and the Pauli matrices o; are of eigenvalues —1) and Agy1 = AJV{" & Agfld (where
even/odd refer to the momentum parity). The eigenvalue —1 of this antiautomorphism
correspond to the property (5.26). The corresponding real subalgebra of 2 x 2 matrix-
operators is isomorphic to (u(1) ® Agg{i) @ (sp(2) ® AYT™). As one can clearly see,
this subalgebra for the Sp (2N)-invariant subsector is much more complicated than the
corresponding algebra of infinitesimal gauge transformations, u(2) ® Agy1, for the O(N)-
invariant sector. Moreover, the operation 7 seems to have no counterpart in the relativistic
construction of Vasiliev [26]. This provides a strong motivation for focusing on the flavor-

invariant (i.e. O(N)-invariant) bilinears when looking for a bulk dual.

5.3 Gauge symmetries to lowest order

Since, as any operator, the infinitesimal gauge parameter A in eq. (5.32) is the sum of
a Hermitian and an anti-Hermitian operator, it is enough to consider these two cases of
gauge parameters separately.

If the operator-matrix A is Hermitian, it becomes

(i b _
A=| - .| =A (5.40)
(bT —ai)
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where the operators a4 and a; are Hermitian. Then we obtain that (5.34) can be written as

5H1nt 0P . [Pt— aﬂ [Pta]_*{PQ b}
6ot —0HT T t 2 7t ;o (541)
® lint [Ptvb] +*{P b} [Pt +2maa¢]
modulo the linear term in the backgrounds which will always be dropped from now on.
This transformation is equivalent to the following infinitesimal transformation:

§H

mt

2
deﬂ (5.42)

2m

for the (up and down) interaction Hamiltonians, and
L iy a
5§ = —i[P b + —{P*b 5.43
b = —ilPb + 5 (P20} (5.43)

for the off-diagonal term. The transformation (5.42) reads in terms of the corresponding
Weyl symbols

2 1 .
Sh(t,x5p1,p) = —i | Pt — o aa(tX;pt?p)} = <§t + o 82;2‘) a®(t,x;pt, p)

2m
(5.44)
where * stands for the Moyal product (5.38) on the space-time phase space. The above

Weyl symbols should be interpreted as generating functions of symmetric tensor fields via
the corresponding analogue of the power series expansion in momenta (5.11). This leads
to the following gauge transformations at order zero in the neutral background fields

575, = 0l + 0

i 1112 z)

(5.45)

where the round bracket stands for the symmetrisation over all indices with weight one,
e.g. N(i..iy) = hiy...i;. These gauge symmetries of the neutral background fields are thus
the pendant of the conservation laws of the neutral currents encoded in (4.30). These
symmetries indeed leave invariant the minimal coupling terms on-shell, as can be checked
explicitly by integrating by parts and making use of the conservation laws. The gauge
symmetries, in the case of neutral background field such that hy = h, generalise to higher
spins the non-relativistic general-coordinate symmetries discussed in [13].27 Similarly, the
infinitesimal transformations corresponding to (5.43) can also be written in terms of the
Weyl symbols as

do(t,x;p, p) = —i [pt % b(t,X;pt,p)] + 2L {p2 % b(t7X;pt7p)}

(at + ;(I) )) b(t,x: pr, D). (5.46)

2TExplicitly, the dictionary between notations of [13] and ours is: Ag = — h(o) +55 (d (‘3 —6i;A)h O ¢
AR - LgghWi A = —hl” &= —n® Bi= —mh", hyy = -m hgg” and ¢~ = —1a®, & =al?,
&= —aM, Employing these identifications we recover the gauge transformations of [13] to zeroth order in

the background fields. More precisely, we find a higher-spin generalisation of transformations of [13] since
only transformations which originate from the relativistic spin one and two gauge transformations were
considered in [13].
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This leads to the following gauge transformations at order zero in the charged back-
ground fields

5o = (9= LA pn, 4 BE=D s 4o 5.47

Piyiiy = t— I igois T T Qliniigeiy) ( . )
These transformations actually correspond to the tracelessness-like condition for the
charged currents k, i.e. of the type (4.61). If we instead had made use of the trace-
less currents k, then the above transformation would take the simpler form of a Weyl
(r) _is(s—1) 7(r)

ipois = Té(ilizb%mis) . Such kind of higher-spin generalisations of

linearised Weyl transformations appear in conformal higher-spin gravity [54].

transformation d@

If the matrix-operator A is anti-Hermitian, it is of the form

. (e od

where the operators ¢+ and ¢ are Hermitian. Then we obtain that (5.34) can be written as
. . . . o .
<5HT:1TDt ({(p ) _ < . {Apt _éjim? CAT} . {Ptad}_zlm?[PQad]> (549)
0QT  —0H 3 {P,d} + 5= (P2 dT) —{P + 45, ¢}

which is equivalent to the following infinitesimal transformation:

. . P2
for the (up and down) interaction Hamiltonians, and
P 1 - A
6¢ ={P,d} — —[P*.d]. 51
& ={Pi,dy— o [P*.d) (551)

This leads to the following gauge transformations at order zero in the background fields

T —1 1 1 r
Sh =2ty —~ (4 A —s(s - 1)5(i1i2c§3?_?‘is)> (5.52)
and ;
(r) o (r—1) 1S5 (r)
0@; g, = 271dj g+ — iy Ay - (5.53)

The first important observation to be made is that the first term in these transformations
for level r # 0 is of Stuckelberg type and therefore allows to get rid (at this order in the
background expansion) of all tensor fields of non-vanishing level » > 0. This is natural
since the bilinears to which they couple are not independent: the neutral (respectively,
charged) bilinears of the non-vanishing level r > 0 are traces (respectively, descendants) of
the ones with » = 0. One should be careful that it is not clear whether this gauge choice
is accessible at non-linear level. In addition, the non-vanishing levels are useful for the clo-
sure of the non-Abelian gauge algebra. Moreover, these Stuckelberg-like transformations
might be anomalous at quantum level. In any case, the second terms in the transforma-
tions (5.52)—(5.53) are more familiar: they correspond respectively to Weyl-like (Fradkin-
Tseytlin’s) transformations of the neutral tensor fields and to Maxwell-like (Fronsdal’s)
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transformations of the charged tensor fields. They correspond respectively to the trace-like
(or pseudo-conservation) conditions on the neutral (or charged) bilinears (4.69) (or (4.49) ).
The gauge symmetries (5.52), in the case of neutral background field such that hy = hy,
generalise to higher spins the non-relativistic Weyl symmetries discussed in [36].
Let us stress that it is very useful to make use of the traceless currents k, because

the transformations (5(@2(-;)“13 take a simpler form for the part independent of the back-

ground fields. However, thoe explicit form of the non-linear completion would be much
more complicated, which is why we refrained from making direct use of them in this sec-
tion. Nevertheless, one should observe that the scalar charged background field at level
zero, i.e. the dimer ¢ = @©) coupling to the Cooper pair, transforms linearly under the
symmetries. More precisely, 6@(® is linear in the background field. This property should
be useful to write the symmetry transformations of the Legendre transform I'[h, @ ; N]
of the background effective action We.oalh, @ ; N] with respect to the dimer. Anyway,
at leading order in 1/N, the bulk dual of the ideal and of the unitary Fermi gases has
the same symmetries. Only the 1/N corrections are expected to break the higher-spin

symmetries [55].

6 Conclusion and outlook

Recent advances in holographic duality motivated us to investigate the symmetries and
the currents of non-relativistic free fermions. Since in the large-N limit the unitary and
free Fermi gases are Legendre conjugate of each other, our studies might be useful for a
better understanding of the strongly-coupled many-body problem of unitary fermions. We
identified the maximal symmetry algebra of the free single-particle Schrodinger equation
with the Weyl algebra of quantum observables. This higher-spin algebra is an infinite-
dimensional extension of the well-studied Schrodinger algebra. Further, by applying the
light-like dimensional reduction to relativistic Noether currents we constructed the infinite
collection of non-relativistic “currents” bilinear in the elementary fermions. In addition,
the formalism of Weyl quantisation allowed us to express the minimal coupling of these
bilinears to background sources in a compact way. The final result is formally identical to
the Nambu-Gor’kov formulation of the BCS theory except that the chemical potential and
the Cooper-pair source are replaced by space-time differential operators.

One of the leitmotives behind our work is the null reduction method, advocated as
“Bargmann framework” in [42, 43, 48, 49], which allows to obtain non-relativistic structures
from given relativistic ones. The other way around, i.e. anull lift (or “oxydation”) of a given
non-relativistic structure to its higher-dimensional relativistic counterpart, is sometimes
called an “Eisenhart lift”. One should stress that the higher-dimensional counterpart
of a consistent non-relativistic field theory may be sick as a relativistic quantum field
theory per se. For instance, the spin-statistics theorem does not apply to non-relativistic
theories so it may be violated in the Eisenhart lift. Therefore, in general the relativistic
higher-dimensional theory should be understood as an auxiliary tool.?® The results of

2In any case, a priori the Eisenhart lift should not be trusted beyond tree level. Nevertheless, this
restriction might be overcome by working with the quantum effective action since then all Feynman diagrams
become trees (written in terms of full propagators and of proper vertices).

43 -



228

CHAPITRE C. Troisiéme article

the present paper demonstrate the usefulness of the Eisenhart lift for the free and the
unitary Fermi gases.

The Bargmann framework might also apply to the holographic duality in the sense
that the AdS/CFT correspondence might lead to the AdS/unitary fermions correspon-
dence upon null reduction, along the lines of [56-58] and as proposed in [24]. In these
proposals, the background bulk geometry is an asymptotically AdS space-time (rather than
the Schrédinger manifold, as proposed in [13, 14]) possessing a nowhere vanishing covari-
antly constant null vector field.?? The isometry group of AdS is broken to the Schrédinger
subgroup by the dimensional reduction itself. A nice property of this approach is that
if the dimensional reduction is performed on both sides of the correspondence, then the
validity of the holographic duality between the pair of relativistic parent theories would
ensure the duality between the pair of reduced non-relativistic theories, at least in the
large-N limit. Notice that, in this picture, the reduced holographic duality should be be-
tween a non-relativistic conformal field theory living on the boundary of a Newton-Cartan
space-time and a non-relativistic gravity theory in its interior. Indeed, the reduction of
vacuum Einstein equations along a non-vanishing covariantly-constant (or at least Killing)
null vector field leads to the Newton-Cartan equations describing in a geometric fashion
the non-relativistic gravity theory of Newton [42, 59].

So, with these various results in mind, let us come back to our original question: What
18 an educated guess for a gravity dual of unitary and free fermions? On the boundary side,
the Bargmann framework allowed us to understand the higher-spin symmetries of the free
fermions and to obtain from the relativistic massless Grassmann-odd scalar free theory the
corresponding currents and couplings to background sources. Our results closely resemble
the boundary data in the AdS/O(N) correspondence mentioned in the introduction.?® On
the bulk side, one might thus speculate that the null reduction of a higher-spin gauge
theory would be a natural candidate. Assuming that the Bargmann framework can be
applied to both sides of the correspondence, the gravity dual of the ideal and unitary
Fermi gases should be a non-relativistic higher-spin gravity theory obtained directly from
Vasiliev equations upon light-like reduction.! Looking in the catalogue of Vasiliev theories
in any dimension [26], one can see that the flavor-singlet bilinear sector of the large-N
extension of the unitary fermions in d space dimension should be dual to the null-reduction
of classical Vasiliev theory on AdSgs with u(2)-valued tensor gauge fields of all integer
ranks.3? Therefore, one is led to speculate that the bulk dual of the “physical” (i.e. N =1,
d = 3) unitary UV-stable Fermi gas might be the null dimensional reduction of the u(2)
higher-spin gauge theory on AdSg with the exotic (A_ = 2) boundary condition for the
complex scalar field dual to the Cooper-pair field [24].

29Such space-times would be called asymptotically AdS Bargmann manifolds in the terminology of [42].
They can somehow be interpreted physically as gravitational waves propagating in AdS with parallel rays.

30Interestingly, an Euclidean Sp (2N) vector model with anticommuting scalars has recently been con-
jectured to be dual to Vasiliev’s higher-spin gravity on de Sitter space [60].

31 An alternative, more along the lines of [13, 14], would be to look for a natural embedding of the
Schrodinger manifold as a natural background for some (possibly modified) version of Vasiliev equations.

32The corresponding higher-spin algebra was denoted by bhu(2/sp(2)[d + 2,2] ) in [26]. It is isomorphic to
the product between u(2) and the higher-spin algebra hu(1/sp(2)[d + 2,2] ).
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These speculations are supported by our results on the large-IN extension of the ideal
and the unitary Fermi gases, so let us summarise them with emphasis on their relevance
for the above proposal: In section 2, it was demonstrated that, in the large-N limit, the
generating functionals of the unitary Fermi gas and of the ideal Fermi gas are related by
a Legendre transformation. Therefore the corresponding Fermi gases can be dual to the
same bulk theory for two distinct choices of boundary conditions, as in the conjecture [21]
(and its generalisation to higher dimensions). The corresponding scaling dimensions of the
Cooper-pair field was found to be precisely in agreement with the mass-square m? = —2d
of the AdSy3 scalar field in Vasiliev higher-spin multiplet [26]. The holographic degener-
acy is admissible in the range 0 < d < 4 in agreement with the field theory prediction. In
section 3 the maximal symmetry algebra of the free Schrodinger action was identified and
in section 4 it was shown that it originates from the maximal symmetry algebra of the free
massless Klein-Gordon action via light-like dimensional reduction. Since the identification
of the proper higher-spin algebras is a crucial step in the construction of higher-spin gravi-
ties of Vasiliev, the embedding of the non-relativistic higher-spin algebra into its relativistic
parent (as the centraliser of a given light-like momentum) provides a strong evidence for
the consistency of the dimensional reduction of Vasiliev equations. More precisely, we
believe that the techniques of the light-like dimensional reduction for Einstein gravity in
the frame formalism, developed in [59], must have a natural higher-spin extension since
Vasiliev gravity is based on a frame-like formalism a la Cartan where, in the fiber, the AdS
isometry algebra for usual gravity is replaced by the higher-spin algebra. For the relativis-
tic conjecture [21, 25], the validity of the holographic dictionary at the kinematical level
(i.e. two-point functions) between bilinear boundary currents and bulk gauge fields in any
dimension and for any integer spin is actually a corollary of the Flato-Fronsdal theorem
and its generalisation [61, 62]. The above embedding of the non-relativistic higher-spin
algebra into its relativistic parent combined with the Flato-Fronsdal theorem automati-
cally validates the holographic dictionary proposed above between O(N)-singlet bilinears
in the non-relativistic fields on the boundary, constructed in section 4, and u(2)-valued
symmetric tensor gauge fields of all integer spins in the bulk. In section 5, the generat-
ing functional of connected correlators of O(N)-singlet bilinears for the non-interacting
Fermi gas was computed explicitly together with the non-relativistic conformal higher-
spin Ward identities. According to the Gubser-Klebanov-Polyakov-Witten prescription,
the generating functional should be equal to the on-shell bulk higher-spin action with pre-
scribed boundary conditions while the Ward identities should be dual to the asymptotic
remnant of bulk higher-spin gauge transformations. In the large-NV limit, these properties
would follow directly from the light-like dimensional reduction if the parent relativistic
duality [21, 25] is valid.

In order to test these ideas explicitly in the bulk, various issues need to be investi-
gated: Firstly, one should clarify how concretely the higher-spin unitary representations
of the Schrodinger group also describe free higher-spin fields in the bulk. Secondly, the
non-relativistic analogues of the Flato-Fronsdal theorem [61, 62] and of the Vasiliev equa-
tions [26] should be spelled out. These interesting open problems may prove to be chal-
lenging exercises to perform explicitly but one should stress that they are ensured to be
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well posed problems because their answers have to follow from their known relativistic
counterparts via the light-like dimensional reduction, since the latter is well defined and
consistent. Both at the kinematical and dynamical level, this consistency is ensured by
our embedding of the non-relativistic higher-spin algebra into its relativistic parent as the
centraliser of a given light-like momentum.

Endowed with these results, one could try to perform non-trivial tests of the conjecture,
presumably along the lines of the encouraging results of Giombi and Yin in AdSy [22, 23].
So far most tests of the higher-spin AdS/CFT correspondence have been restricted to
bulk dimensions D < 4, because Vasiliev theory is technically simpler in these dimensions
(due to the use of twistors, see e.g. [63] for a review). For this reason, technically it
might be easier to check whether the null reduction of u(2) Vasiliev theory around AdSy
with the standard (A} = 2) boundary condition is dual to the d = 1 scale-invariant
“unitary” IR-stable two-component Fermi gas. Remarkably, the latter is well-understood
as it corresponds to an infinite repulsion between “up” and “down” fermions and thus
is equivalent to the non-interacting one-component Fermi gas with the same density (see
e.g. [64] and references therein).

A possible angle of attack toward a derivation of the holographic duality would be to
parallel the strategy of Douglas, Mazzucato and Razamat [65]. More precisely, one might
consider the exact renormalisation group equation for the regularised generating functional
describing free fermions in the presence of a higher-spin background. The corresponding
higher-spin sources flow under the renormalisation group and one may look for a suggestive
rewriting of their scale evolution as a radial evolution of higher-spin bulk fields.

The relative simplicity of the non-relativistic higher-spin algebra and of the null reduc-
tion method supports the optimistic view that the holographic dual of unitary fermions is
an accessible goal worth investigating.

Note added.?® After the present work was completed and submitted to arXiv, we were
informed that it has some overlap with results obtained in the context of the Sp (2d, R)-
covariant unfolded equations initiated in [66]. In particular, the isomorphism between the
maximal symmetry algebra of the free Schrédinger equation and the Weyl algebra of spatial
differential operators follows as a corollary?® from the general results on global symmetries
of unfolded equations upon the identification of the spatial coordinates with the twistor
variables of [66] and of the time3® coordinate with the trace of the matrix coordinates of [66].
Moreover, the structure (4.21) of the generating function of non-relativistic bilinear currents
of vanishing level is a particular instance of the “generalised stress tensor” of [67]. Bilinear
current generating functions constructed in terms of two different solutions with opposite
signs of the Planck constant, identified with the mass here, were presented before in [69].

33We are grateful to M.A. Vasiliev for calling these points to our attention and for his useful explanations.

34See e.g. the subsection 2.1 of [67] for a review of the general argument and its application to the case
relevant here.

3%Notice that the latter identification of a “time” coordinate among the sp(2d, R) matrix coordinates was
motivated in [68] (see e.g. the subsection 2.2 of [67] for a concise review of this point).
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A Weyl quantisation

The Weyl-Wigner-Grénewold-Moyal formalism [70-74] offers a classical-like formulation of
quantum mechanics using phase space functions as observables and the Wigner function
as an analogue of the Liouville density function.

Classical mechanics is based on the commutative algebra of classical observables, i.e.
real functions f(x,p) on the phase space T*R? = R? x R% endowed with the canonical
Poisson bracket

of 99 Of 9y

{fag}P.B. = %3771 - 37171% (A'l)

Quantum mechanics is based on the non-commutative associative algebra of quantum
observables, i.e. Hermitian operators F(X,P) on the Hilbert space L2(R?) of square-
integrable functions. The Weyl algebra A, is the associative algebra of quantum observ-
ables that are polynomials in the positions and momenta. The Heisenberg algebra by is
the Lie algebra of quantum observables that are polynomials of degree one in the positions
and momenta, it is spanned by Xt Pj and a central element A obeying to the canonical
commutation relations

(X', Pj] = ihd}. (A.2)
In more abstract terms, the Weyl algebra A, is the universal enveloping algebra U (h4) of
the Heisenberg algebra. The Schur lemma implies that the real eigenvalue (which we denote
by the same symbol /i) of the central element labels the UIRs of the Heisenberg algebra.
The theorem of Stone and von Neumann asserts that, up to equivalence, there is a unique
UIR of the Heisenberg algebra b, for each real value of i # 0. Moreover, the corresponding
representation of Ay is faithful, which legitimates the equivalence between the abstract
definitions and the concrete realisations of the Heisenberg and Weyl algebras.?%
The Weyl map W : f(x,p) — F(fL 15) associates to any function f a Weyl(i.e.
symmetric)-ordered operator F defined by

1 i X i P
F = W/dkdv f(k,v)eh(le PL)a (A3)

>

36For i = 0, the UIRs of hg reduce to the one-dimensional UIRs of the commutative algebra R? x R®*
labeled by the eigenvalues x and p of the operators X and P. Obviously, when i = 0 the algebra A, is
realised as the commutative algebra of polynomials f(x,p) on phase space.
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where F is the Fourier transform®” of f over the whole phase space (in other words, over
position and momentum spaces)

1 il at—vip,
F(k,v) = iy /dxdp fx,p)e il Pi) (A.4)
The function f(x,p) is called the Weyl symbol of the operator F(X, f’) which need not be
in the symmetric-ordered form. A nice property of the Weyl map (A.3) is that it relates

* of symbols to the Hermitian conjugation T of operators, W :

the complex conjugation
f*(x,p) = F1(X,P). Consequently, the image of a real function (a classical observable)
is a Hermitian operator (a quantum observable). The inverse W' : F(X,P) — f(x,p) of
the Weyl map is called the Wigner map.

The canonical commutation relations (A.2) between the position and momentum op-

erators and the Baker-Campbell-Hausdorff formula imply two very useful equalities:

6%(1%)2’71;1?1) — e*%vi Ai 6%]{}1)2' efﬁvipi (A'5)
— e {h Fephki X (A.6)

where { , } denotes the anticommutator.

On the one hand, combining (A.3) with (A.6) implies that one way to explicitly perform
the Weyl map is via some “anticommutator ordering” for half of the variables with respect
to their conjugates. For instance, the image of a Weyl symbol which is a formal power
series in the momenta,

f(x.p) = Z%f“"'ir(x)iﬂn o

r=0
= J0) + Fpi + 5 ) s + O6Y), (A7)
can be written as
PXP) = 3 o o {5 (X) B} e B

= F(X) + 3 (FR)P; + P F(X))
1
1

(FI(X)P;P; + 2P, FI(X)P; + P,P; F9(X)) + ... (A.S8)

On the other hand, eq. (A.5) implies that one way to explicitly perform the Wigner
map is via a Fourier transformation of the “point shifted” integral kernel of the operator.
The integral kernel of an operator F' is the matrix element (x | F' | x') appearing in the
position representation of the state a | ¥) as follows

(x| F|p) = /dx/<x|ﬁ|x/>¢<x’>, (A.9)

3"The Weyl map is well defined for a much larger class than square integrable functions, including for
instance the polynomial functions, Fourier transforms of which are distributions.
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where the wave function in position space is ¥ (x’) := (x’ | v ) and the completeness relation
[dx' | x') (x' | =1 has been inserted. The definition (A.3) and the relation (A.5) enable
to write the integral kernel of an operator in terms of its Weyl symbol,

. dp x4+ x i (zioali)p;
y T°=T ") Pi
(x| F|x") /(27rh)d f( 5 ,p) eh . (A.10)

Conversely, this provides an explicit form of the Wigner map
fop) = [da(x-a/2| Fx+a/2) b, (A1)

as follows from the expression (A.10). This shows that indeed the Weyl and Wigner maps
are bijections between the vector spaces of classical and quantum observables.

The Moyal product  is the pull-back of the composition product in the algebra of
quantum observables with respect to the Weyl map W, such that

W[f(X,p) * g(x, p)] = F(X,P) G<X7f)) (A'12)

The Wigner map (A.11) allows to check that the following explicit expression of the Moyal
product satisfies the definition (A.12),

. — = —
f*g:fexp[m (68_83)] ,

2 \ Oz Op;  Op; Ox'
ih
= fg+ 5 {f, apm. +OM), (A.13)

where the arrows indicate on which factor the derivatives should act.

Let H be a Hamiltonian operator with the corresponding Weyl symbol h(x,p). In the
Heisenberg picture, the time evolution of a quantum observable a (which does not depend
explicitly on time) is governed by the differential equation

dF 1 . -

— = — |FH A14

= (B ) (A14)
or equivalently in terms of symbols

df 1

— = —|f*h A.15

where [ ¥ | denotes the Moyal commutator defined by

[fygl=fxg—gx*f

T
A 2 \ Ozt Op;  Op; Ox' g

=ih{f. g}pp. + O, (A.16)

as can be seen from (A.13). The Moyal bracket is related to the Moyal commutator by

(7. 0. = = 1F19]={F 9o + O)
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Note that the Moyal bracket { , },; . is a deformation of the Poisson bracket { , }p g,
and one can see that the equation (A.15) is a perturbation of the Hamiltonian flow. If
either f(x,p) or g(x,p) is a polynomial of degree two, then their Moyal bracket reduces to
their Poisson bracket. So when the Hamiltonian is quadratic (free) the quantum evolution
of a Weyl symbol is identical to its classical evolution.

B Representations of the Schrodinger algebra

Besides the free Schrodinger theory, there are known examples of interacting theories which
preserve the Schrodinger symmetry at quantum level. Nishida and Son called them “non-
relativistic conformal field theories” (NRCFT) and made an important step towards a
systematic understanding of this class of theories [11, 12].3% In this appendix, we review
their basic results and investigate the structure of the unitary irreducible representations
(UIR) of the Schrodinger algebra.

In close analogy with relativistic conformal field theories, it is useful to introduce
primary operators® in NRCFT [11]. A local primary operator @(Lx) has a well defined
“spin” sg, scaling dimension Ag and mass number Mg. In other words, it carries an
irreducible representation of the rotation algebra o(d) and it is an eigenvector of the scaling
and mass operators.’® For a scalar primary O with s =0 (to which we restrict our
attention here for the sake of simplicity), this means

[D,0] = —iA;0, [M,0] = M0, (B.1)

where O = @(t = 0,x = 0). By definition, a primary operator O must also commute with
IAQ and C
[K;,0)=0, [C,0]=0. (B.2)

Most importantly, from the primary operator O one can build a representation®! of the
Schrodinger algebra. Specifically, the primary operator is the lowest weight operator as it
has the lowest scaling dimension in the representation. The descendants are constructed by
taking spatial and temporal derivatives of the primary operator 0. Using the Schrédinger
algebra it is possible to show that the generators P; and H form a pair of canonical creation
operators which increase the scaling dimension by one and two units respectively.

The commutation relation

[P, Kj) = —idi; M (B.3)
suggests that —ikj plays the role of a canonical annihilation operator as it decreases the
scaling dimension by one unit. Actually, this is only true for the massive representations
(with Mg # 0). The descendants are thus higher weight operators in a massive representa-
tion. The massless case is special since [P;, K] = 0, and thus all Galilean boost generators

38See also earlier important works of Henkel and Unterberger [75, 76] on this subject.

3901 quasiprimary in the language of [75, 76]

“OFor d > 3, the irreducible representations of the rotation algebra o(d) are characterised by Young
diagrams rather than a single half-integer. By “spin”, one should understand the collection of labels
characterising uniquely the representation.

“Imore precisely, a “Verma module” in mathematical jargon
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Figure 1. Massive unitary irreducible representation of the Schrodinger algebra: The primary is
represented by a full square, while descendants are depicted as solid circles.

K ; commute with all “descendants” generated by b, Notably, there are operators in the
massless representation which are both descendants and primaries. This implies that the
structures of the massive and massless representations are very different and they will be
discussed separately in the following.

In a similar fashion, the commutation relation

[H,C) =iD (B.4)

hints that iC' plays the role of an annihilation operator as it always decreases the scaling
dimension by two units.*?> Indeed, due to the unitarity bound (Ag > % > 0) the right-
hand-side of eq. (B.4) is never zero. Thus, for the pair H and C' there is no analogous
subtlety which we encountered for the pair P, and K j in the particular case of Mg = 0.

After this general discussion we are ready to construct explicitly a massive UIR of
the Schrodinger algebra on the basis of a primary 0. In general, the representation is
characterised by the scaling dimension Ay, spin sg and mass number Mg # 0. Its structure
is schematically illustrated in figure 1 which makes the irreducibility of the representation
manifest. We must mention that figure 1 is in fact oversimplified since pl and Ki do not
commute with H and €' and thus some arrows corresponding to the action of K; and C on
descendants are not shown explicitly.

The operator/state correspondence of [11, 12]*3 provides a very interesting alternative
viewpoint on the massive representations. According to this correspondence the operators
(the primary and descendants) of a NRCFT are mapped onto energy states of the same
system placed in an external harmonic potential (with some frequency w). In particular,
the primary operator corresponds to the ground state of the system of mass Mg (i.e.

with particle number Ng = %) with the internal angular momentum sg. The ground

“2In order to obtain the canonical commutation relation, the operators H and iC must be properly
renormalised (see [8-10] for details).
43Gee also [8-10, 77] for the earlier quantum-mechanical formulation of this correspondence.
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state in the trap reads ’1/)0> = e’H/“’(?)|O) and has the energy related to the scaling
dimension of the primary via F' = wAg. In this picture, descendants of the NRCFT
simply correspond to the excited states. Specifically, the towers generated by P; (see
horizontal lines in figure 1) are mapped into excitations of the center-of-mass motion in
the harmonic trap. Indeed the oscillator energy spectrum is equidistant with the spacing w
which matches precisely with the NRCFT result mentioned above. Explicitly, the center-
of-mass excitations of the trapped system are constructed by acting repeatedly with the
creation operators QZ =1 ( L —l—z\/ojf(l) on the ground state ’1/)6 > On the other

V2 \Vw
hand, one can also excite the internal motion (so called breathing modes) in the harmonic

potential which is mapped into the towers generated by H in the NRCFT (see vertical

lines in figure 1). Due to scale invariance the energy spectrum of breathing modes is also

equidistant with the spacing 2w [8-10]. The proper operator that excites the breathing
At AT

modes turns out to be Bf = LT — %7 where LT = % (% —wC — 2[7) Note that the
O

pairs of operators QI, QAl and BT, B commute with each other, since they act on different
degrees of freedom. Finally, we mention that the operator/state correspondence makes the
unitarity of the massive representation manifest, because it maps the representation onto
a Hilbert space of the Ng-particle problem in a harmonic trap.

The light-like dimensional reduction method also provides a complementary perspec-
tive on the massive representations. Indeed, the restriction of relativistic conformal pri-
maries to some proper subset of components leads to non-relativistic conformal primaries
(with the other components being descendants). To clarify this, let us remind the definition
of a primary operator in a relativistic CFT: a local primary operator @(x) has a well defined
“spin” s and scaling dimension Ag. In other words, it carries an irreducible representation
of the Lorentz algebra o(d + 1, 1) spanned by the generators MM and it is an eigenvector
of the dilatation operator D: [D,0] = —iAéé where O = O(z = 0). By definition, a
relativistic primary operator O must also commute with the conformal boost generators
K et (K s O] = 0. Furthermore, the dimensional reduction ansatz requires to consider an
eigenvector of a null translation operator: [P*, @] = M@(’) This ansatz implies that the
non-relativistic operator @(t,x) = (5($+ =t,2~ = 0,x) has mass My = Mg. Moreover,
the identification (4.9) together with the fact that O commutes with all conformal boost
generators implies that O commutes with the expansion generator C. Now comes a crucial
additional ansatz: let us assume that O further commutes with the generators M*~ which
is equivalent to the fact that all the components Ot vanish. As the result, the purely
spatial components @iliz"'(t,x) span a non-relativistic primary with spin sz = sz and
scaling dimension Ay = Ag, while the other components O~ ~""2 (£, x) are descendants.
This can be verified via the identification (4.9), the previously stated commutations and
the branching rules for the restriction of o(d + 1,1) to o(d). As a corollary, this property
ensures that the charged bilinears k(0% (¢, x) (see section 4 for their definition) are local
non-relativistic primary operators.

Another useful perspective on the massive representations of the Schrodinger algebra
is the so-called “standard” realisation of the generators. Actually, for spinning massive
particles, the space-time differential operators (3.10) correspond to the “orbital” part of
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the generators which must be supplemented by a “spinning” (or “internal”) part spanning
an irreducible representation of the subalgebra o(d) @ s[(2,R). As was mentioned in the
subsection 3.1, the translation and Galilean boost generators P; and K7 together with the
mass operator span the Heisenberg subalgebra by C sch(d). The theorem of Stone and von
Neumann (see appendix A) implies that, given the mass m, there is a unique UIR of the
Heisenberg subalgebra. The authors of [47] proved that any massive representation of the
Schrodinger algebra is equivalent to the following realisation of the remaining generators

. P2 .
=—+4+L_
t 2m+ 9
. K;Pj - K;P, .
My = — 2+ Ly,
f(“m ; (B.5)
D=—-"""4i-+ L,
m 2
A A2 A
C=—+1L
2m+ +

where the operators Iiij, I:i and Ly commute with all the other generators and provide
a representation of o(d) @ sl(2,R) with usual notations. In a sense, the latter operators
correspond to the “spinning” or “internal” part of the generators while the “orbital” part
is entirely built out of the translation and boost generators. In order to have an irreducible
representation of sch(d), the internal part of the representation of o(d) @ sl(2,R) should
be irreducible, so it is characterised by spin and scaling dimension (for lowest weight
representations). Therefore, one recovers in a different way the results obtained from the
non-relativistic conformal field theory techniques.

Let us now turn to massless representations of the Schrodinger algebra. As emphasized
above, they have a distinct structure and are not so well understood. The representation
containing e.g. the non-relativistic currents jg??..% (see section 4 for their definition) has a
form of a pyramid and is illustrated in figure 2.** The density operator j(© = n is a non-
relativistic primary, but not a descendant. On the other har(l(g, the operators 0, - - - 05, j ©)

are both primaries and descendants. The spatial currents j; * ; ~are neither primaries nor

descendants. As is clear from figure 2, this representation is not irreducible. Formally,
(0)

one can generate the full representation starting from the current j; ”, with n — oo.
The operator/state correspondence cannot be applied in a straightforward fashion to the

normal-ordered neutral currents as they act trivially on the vacuum state.

In the AdS/CFT correspondence, a special role is played by the very exceptional
irreducible representations of the Poincaré group that can be lifted to representations of
the conformal group. They are called “singletons” and describe dynamical elementary
fields living on the conformal boundary of AdS. So an important question is: which UIRs
of the Bargmann group can be extended to representations of the Schrodinger group?
The massive (sometimes called “physical”) representations of the Bargmann group are

44We are thankful to S. Golkar and D.T. Son for presenting this to us.
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Figure 2. Massless representation of the Schrodinger algebra: The operators are depicted as solid
circles.

classified (see e.g. [37, 38]) by the mass, the “spin” and the so-called internal energy®>
corresponding to the fact that in non-relativistic physics there is no privileged zero of
the energy. One can see that all the massive representations of the Bargmann group with
vanishing internal energy can be extended to representations of the Schrédinger group.
Indeed, conformal invariance requires that the internal energy must vanish because it is
not preserved by scale transformations. Physically the internal energy may always be put
to zero.*0 In order to complete the proof, one simply verifies that one may associate, to any
representation of zero internal energy, a representation of the Schrodinger group (as follows
from the above discussion). The only massive representations of the Schrodinger algebra
with vanishing internal energy are those for which the UIR of the s[(2,R) subalgebra
on the internal (i.e. spinning) degrees of freedom is trivial. Furthermore, looking at
the classification of the UIRs of the Schrodinger group [45], one can see that the massive
representations are the only non-trivial unitary irreducible representations of the Bargmann
group that can be obtained as restrictions of the Schrodinger group. In a sense, the analogue
of the singleton representations of the Poincaré and conformal groups is identified with
the massive representations (with zero internal energy) of the Bargmann and Schrédinger
groups.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License which permits any use, distribution and reproduction in any medium,

provided the original author(s) and source are credited.
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Résumé :

La théorie des spins élevés est le domaine de la physique théorique au centre de cette
thése. Le contexte général de la naissance de cette théorie est présentée dans 'introduction.

La premiére partie est axée sur les ingrédients (méthode de Noether, fonctions géné-
ratrices et formalisme ambiant) permettant la construction de vertex cubiques entre un
champ scalaire de matiére et un champ de jauge de spin élevé dans un espace-temps a
courbure constante a partir des courants conservés en espace-temps plat.

Dans un second temps, nous préparons les éléments pour un futur test de la correspon-
dance holographique a I'ordre cubique voire quartique en la constante de couplage. Plus
précisément, nous révisons en détail le calcul de certains propagateurs, ce qui nous méne a
calculer les fonctions & trois points impliquant deux scalaires.

La derniére partie, bien que concernant toujours ’holographie des spins élevés, traite
de la physique non-relativiste. Les symétries et les courants d’un gaz parfait/unitaire de
Fermi y sont étudiés. Le lien entre physiques relativiste et non-relativiste est obtenue gréce
a la réduction dimensionnelle de Bargmann.

Mots clés :

Symeétries, méthode de Noether, courants conservés, espace-temps de courbure constante,
formalisme ambiant, holographie, correspondance AdS/CFT, spins élevés, gaz unitaire de
Fermi

Abstract :

The higher spin theory is the field of theoretical physics at the center of this thesis.
The general context of the birth of this theory is presenting in the introduction.

The first part focuses on the ingredients (Noether method, generating functions and
ambient formalism) for the construction of cubic vertices between a scalar matter field and
a higher spin gauge field in a constant curvature space-time from conserved currents in flat
space-time.

In a second step, we prepare the around for a future test of the holographic correspon-
dence in the cubic or quartic order in the coupling constant. More specifically, we review
in detail the computation of some propagators, which leads us to calculate three-point
functions involving two scalars.

The last part, although always on the higher spin holography, deals with non-relativistic
physics. Symmetries and currents of an ideal or unitary Fermi gas are studied. The link
between relativistic and non-relativistic physics is obtained by Bargmann dimensional re-
duction.

Keywords :

Symmetries, Noether method, conserved currents, spacetime of constant curvature,
ambient formalism, holography, AdS/CFT correspondence, higher spin, unitary Fermi gas



