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Theory. Université François Rabelais - Tours, 2012. French. <tel-00797863>

HAL Id: tel-00797863

https://tel.archives-ouvertes.fr/tel-00797863

Submitted on 7 Mar 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
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émanant des établissements d’enseignement et de
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Résumé

La théorie des spins élevés est le domaine de la physique théorique au centre de cette
thèse.

Outre une introduction présentant le contexte général de la naissance de cette théo-
rie, ce manuscrit de thèse regroupe trois études récentes dans ce domaine. Une attention
particulière sera portée aux symétries, aux courants et à l’holographie.

La première partie est axée sur les ingrédients permettant la construction de vertex
cubiques entre un champ scalaire de matière et un champ de jauge de spin élevé dans un
espace-temps à courbure constante. La méthode de Noether indique comment construire
ces interactions à partir des courants conservés, dont on peut condenser l’écriture en utili-
sant les fonctions génératrices. Le formalisme ambiant est le principal aspect de ce calcul
puisqu’il le facilite et en permet la simplification.

Dans un second temps, nous préparons les éléments pour un futur test de la correspon-
dance holographique à l’ordre cubique voire quartique en la constante de couplage. Plus
précisément, nous révisons en détail le calcul de certains propagateurs, ce qui nous mène à
calculer les fonctions à trois points impliquant deux champs scalaires.

La dernière partie, bien que concernant toujours l’holographie des spins élevés, traite
de la physique non-relativiste. Les symétries et les courants d’un gaz parfait/unitaire de
Fermi y sont étudiés. En particulier, nous prouvons que l’algèbre maximale de symétrie
de l’équation de Schrödinger est l’algèbre de Weyl. Le lien entre physiques relativiste et
non-relativiste est obtenu grâce à la réduction dimensionnelle de Bargmann. L’holographie
des spins élevés non relativistes est également évoquée.

Mots clés : Symétries, méthode de Noether, courants conservés, espace-temps de cour-
bure constante, formalisme ambiant, holographie, correspondance AdS/CFT, spins élevés,
gaz parfait/unitaire de Fermi.
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Abstract

The higher spin theory is the field of theoretical physics at the center of this thesis.
Besides an introduction presenting the general context of the birth of this theory, this

PhD thesis consists of three recent studies in this area. Particular attention will be paid to
symmetries, currents and holography.

The first part focuses on the ingredients for the construction of cubic vertices between
a scalar matter field and a higher spin gauge field in a constant curvature space-time.
Noether’s method describes how to build the interactions from conserved currents, whose
writing may be condensed using generating functions. Ambient formalism is the main
aspect of this calculation since it allows simplification.

In a second step, we prepare the around for a future test of the holographic correspon-
dence in the cubic or quartic order in the coupling constant. More specifically, we review
in detail the computation of some propagators, which leads us to calculate three-point
functions involving two scalar fields.

The last part, although always on the higher spin holography, deals with non-relativistic
physics. Symmetries and currents of an ideal or unitary Fermi gas are studied. In particular,
we prove that the maximal symmetry algebra of Schrödinger equation is the Weyl alge-
bra. The link between relativistic and non-relativistic physics is obtained by Bargmann’s
dimensional reduction. The higher spin nonrelativistic holography is also discussed.

Keywords : Symmetries, Noether method, conserved currents, spacetime of constant
curvature, ambient formalism, holography, AdS/CFT correspondence, higher spin, ideal/
unitary Fermi gas.
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NOTATIONS 17

Notations

- Φ : champ scalaire dans l’espace ambiant
- φ : champ scalaire dans l’intérieur de l’espace-temps de courbure constante (par exemple
l’espace d’anti de Sitter AdS)
- φ0 : valeur du champ scalaire au bord d’AdS
- ϕ : champ scalaire dans la théorie conforme des champs au bord d’AdS

- XA : coordonnées cartésiennes ambiantes d’un point d’AdS
- xµ : coordonnées d’un point d’AdS
- x = (z, ~x) : coordonnées de Poincaré d’un point d’AdS
- X ′ : coordonnées ambiantes d’un point du bord
- ~x′ : coordonnées d’un point du bord

- ∆ : poids ou dimension conforme (symbole parfois utilisé pour le laplacien)
- n : dimensions d’AdS (pour la première partie de cette thèse)
- d+ 1 : dimensions d’AdS (pour la seconde partie de cette thèse)

- := : égalité de définition
- ≈ : égalité faible (égalité sur la couche de masse, c’est-à-dire utilisée dans une équation
qui est vérifiée seulement lorsque les équations de mouvement le sont également)
- ∼ : équivalence entre deux termes à un terme radial près
- ←→ : correspondance entre objets de l’espace-temps de courbure constante et objets de
l’espace ambiant

- L : densité lagrangienne ou lagrangien
- L0 : lagrangien initial libre (on dit aussi quadratique) dans le couplage champ de ma-
tière/champ de jauge
- L1 : lagrangien du couplage minimal (cubique)
- L2 : lagrangien à l’ordre supérieur (quartique)

- δ̃ζ : variation totale (des coordonnées et du champ) de paramètre infinitésimal ζ
- δζ : variation de paramètre infinitésimal ζ soit des coordonnées d’espace-temps soit du
champ seulement
- O(xn) : terme d’ordre n en x
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- Sn : sphère à n dimensions
-Mn : variété (ou hypersurface) de dimension n de courbure constante
- (A)dSn : espace-temps de (d’anti) de Sitter de dimension n
- EAdSn : espace d’anti de Sitter euclidien de dimension n
- Hn : espace hyperbolique de dimension n
- RD : espace plat ambiant à D = n + 1 dimensions
- RD0 : espace plat ambiant à D dimensions, privé de l’origine

- tµ1...µr : tenseur covariant d’ordre r dans l’espace-temps de courbure constante
- TA1...Ar : tenseur covariant d’ordre r dans l’espace ambiant
- Tµν : tenseur énergie-impulsion

- (AB) : symétrie selon ces deux indices de poids 1 ; T(AB) =
1

2
(TAB + TBA)

- [AB] : antisymétrie selon ces deux indices de poids 1 ; T[AB] =
1

2
(TAB − TBA)

- ηµν : tenseur métrique plat de l’espace-temps de Minkowski
- gµν : tenseur métrique de l’espace-temps de courbure constante
- GAB : représentation du tenseur métrique courbe en espace ambiant
- ηAB : tenseur métrique plat de l’espace ambiant et de signature quelconque
- PBA : projecteur d’un vecteur de l’espace ambiant sur l’espace-temps de courbure constante

- ∂µ : dérivée partielle dans l’espace-temps plat minkowskien
- ∂A : dérivée partielle dans l’espace plat ambiant
- φ
←→
∂µφ

∗ = φ∂µφ
∗ − ∂µφφ

∗

- ∇µ : dérivée covariante en espace-temps de courbure constante
- DA : représentation de la dérivée covariante en espace ambiant

-∇2
n = gµν ∇µ∇ν : opérateur d’Alembertien en espace-temps de courbure constante (Dans

le cas riemannien, il s’appelle opérateur de Laplace-Beltrami ou laplacien de connexion.)
- �n = ηµν∂µ∂ν : opérateur d’Alembertien en espace-temps plat de Minkowski
- �D = ηAB∂A∂B : opérateur d’Alembertien en espace plat ambiant
- D2

D = GAB DADB : représentation de l’opérateur d’Alembertien dans l’espace ambiant
- �n : correspondant en espace-temps de courbure constante de l’opérateur d’Alembertien
en espace ambiant

- j : courant dans AdS
- J : courant dans l’espace ambiant
- jCFT : courant dans la CFT bilinéaire en ϕ
- jNµ : courant de Noether conservé
- jµ : défini par jNµ (ζa) = ζa j

a
µ : courant conservé ne tenant pas compte du paramètre

constant ζa de la transformation globale
- jsµ1···µr : courant symétrique
- jtµ : courant trivial
- j(x, p) : fonction génératrice des courants dans l’espace-temps de Minkowski ou dans
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l’espace-temps de courbure constante
- J(X,P ) : fonction génératrice des courants dans l’espace ambiant

- h : champ de jauge dans AdS
- H : champ de jauge dans l’ambiant
- h0 : valeur du champ de jauge au bord d’AdS
- O(s) : opérateur conforme

- k : degré d’homogénéité
- R : rayon de courbure
- R : scalaire de Ricci
- Rµν : tenseur de Ricci
- Rµνρσ : tenseur de Riemann
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Chapitre 0

Introduction

Ce chapitre introductif décrira de manière très succinte le contexte dans lequel est
apparue l’étude des particules de spin élevé, et tentera de motiver les problèmes étudiés
dans ma thèse.

Deux précisions préalables semblent fondamentales. D’une part, la complexité de la
longue histoire et des résultats techniques dans ce domaine ne m’a pas permis d’approfondir
toutes les directions évoquées ci-dessous ; seule une vue d’ensemble est proposée. D’autre
part, il m’est évidemment impossible de faire référence à l’ensemble de la vaste littérature
sur le domaine. Le domaine des spins élevés a connu un développement particulièrement
important lors de la dernière décennie. Seules quelques références à des revues, notes de
cours, ou articles originaux seront citées ici afin que le lecteur, qui souhaite explorer un
sujet précis, puisse avoir une base de documentation.

On distinguera les spins “bas” ou “usuels” qualifiant ceux inférieurs ou égaux à deux
tandis qu’on réservera le terme de spin “élevé” (malgré l’expression anglaise “higher spin”
signifiant littéralement spin supérieur”) pour les spins supérieurs ou égaux à 5/2.

0.1 Historique et introduction aux particules de spin élevé

Sur le plan expérimental, jusque dans les années 40, seuls l’électron, le proton, le neu-
tron, le muon, leurs antiparticules et le photon étaient observés. Puis le nombre de parti-
cules observées commença à augmenter rapidement à partir des années 50. Cependant la
plupart de ces particules massives, dont certaines sont précisément de spin élevé, ne sont
pas élémentaires ; ce sont des états excités appelés résonances hadroniques. La physique
des particules repose aujourd’hui sur le modèle standard basé sur le champ de jauge non
abélien de Yang-Mills [1]. Les particules élémentaires connues aujourd’hui sont les fermions
constituants de la matière et possédant un spin 1/2 tels les leptons et les quarks, et les
bosons médiateurs des interactions 1 électromagnétique (photon) et nucléaires (faible : bo-
sons Z, W± et forte : gluons). Une particule semblable au boson de Brout-Englert-Higgs
(particule de spin 0) semble avoir été découverte très récemment au Large Hadron Collider

1. La théorie des perturbations permet de voir la force entre deux particules comme un échange d’autres
particules, appelées bosons médiateurs.
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(LHC) de Genève [2,3]. D’un point de vue théorique, le graviton, particule de masse nulle
et de spin 2, serait médiateur de la gravité et représenterait les fluctuations de la métrique
autour d’un espace-temps de fond. Bien que l’on ait observé une pléthore de particules
composites massives de spin élevé (hadrons), à ce jour aucune particule élémentaire de
spin élevé (et même de spin supérieur à un) n’a été observée.

Sur le plan théorique, la naissance des spins élevés remonte aux années 1930 grâce à Ma-
jorana [4], dont les travaux passèrent inaperçus pendant plusieurs décennies avant d’être
à l’origine de nombreuses avancées en physique théorique et en théorie des groupes [5].
La formulation de l’électromagnétisme par Maxwell en 1865 dans [6] est à l’origine de la
relativité restreinte d’Einstein en 1905 [7]. Très tôt après la naissance de la mécanique
quantique (explicitée en 1926 par Schrödinger sous la forme d’équation d’onde), les physi-
ciens ont souhaité écrire des équations d’ondes relativistes linéaires et décrivant donc des
particules libres. En effet, en théorie quantique des champs, on associe à chaque particule
une fonction d’onde (un champ) et la propagation d’une particule libre est décrite par
une équation d’onde. Au début, seules les équations d’ondes pour des particules de spin 0
(l’équation de Klein-Gordon décrivant un champ scalaire (massif ou non) date de 1926), de
spin 1/2 (massives nommées fermions, comme l’électron, écrites par Dirac en 1928 [8]), de
spin 1 (non massives comme le photon, représentées par l’équation de Maxwell et massives
décrites par l’équation de Proca en 1929-1930), de spin 2 (baptisées gravitons dont le com-
portement est décrit par l’équation de Pauli-Fierz en 1939 [9]) et de spin 3/2 (équation de
Rarita-Schwinger en 1941 [10]) étaient connues. Dirac en 1936 [11] puis Fierz et Pauli en
1939 [9,12] (pour ne citer que les plus célèbres) généralisèrent ces équations et introduirent
les équations décrivant une particule massive de spin fixé et arbitraire.

Les travaux de Wigner lièrent la physique théorique et la théorie des groupes. En
effet, dans un langage moderne, on peut dire qu’il montra que les règles de la mécanique
quantique et de la relativité restreinte impliquent la correspondance entre une particule
élémentaire libre et une représentation unitaire irréductible (notée UIR pour l’équivalent
anglais “unitary irreducible representation”) d’un groupe d’isométries de l’espace-temps de
fond (supposé stationnaire). Le programme de Wigner se propose d’étudier et de classer
toutes les représentations unitaires irréductibles des groupes d’isométries des espaces-temps
à symétrie maximale. Wigner dans [13] s’intéressa au groupe de Poincaré (cas particulier,
dont l’invariance est celle de la relativité restreinte) dans l’espace-temps de Minkowski à
quatre dimensions. Puis vint le programme de Bargmann et Wigner qui vise à associer
à chaque UIR, une équation relativiste des champs [14]. Dans les années 60-70, Fronsdal
généralisa ces deux programmes aux espaces-temps de (anti) de Sitter à quatre dimensions
[17, 18] et ce fut étendu aux dimensions supérieures par Ferrara et Fronsdal au début des
années 2000 [19].

Le programme de Fierz-Pauli, visant à écrire les lagrangiens correspondants aux équa-
tions d’onde, ne fut achevé qu’en 1974 par Singh et Hagen [20], pour les champs massifs
sur Minkowski en dimension quatre, tandis que la limite de masse nulle de leurs lagran-
giens fut ensuite étudiée par Fronsdal (pour les bosons) [21] et Fang et Fronsdal (pour les
fermions) [22] (dans le formalisme métrique).

Le programme de Fronsdal débuté en 1978 [21] vise à construire une théorie de jauge de
champs de spins élevés en interactions. Les conditions d’une théorie de jauge de spin élevé
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interactive cohérente est d’avoir une limite correcte pour les champs libres (c’est-à-dire
sans fantômes) et une symétrie de jauge de spin élevé non abélienne et non brisée.
Ces dernières conditions sont difficiles à satisfaire puisque, dans la théorie de diffusion
(consistant à étudier la collision entre plusieurs particules incidentes), on doit préserver
l’unitarité (autrement dit la conservation de la somme des probabilités) de la matrice de
diffusion S (exprimant l’amplitude des processus). C’est particulièrement le cas lorsqu’on
étudie des particules de masse nulle en espace-temps plat. Par exemple, à partir du lagran-
gien libre en espace-temps de Minkowski, on souhaite coupler le champ scalaire de matière
à un champ de jauge. Le couplage minimal à un champ de jauge vectoriel ne pose pas
de problème et redonne “l’électrodynamique scalaire”. On peut aussi reconstruire la relati-
vité générale par la méthode de Noether à partir de l’introduction perturbative de vertex
d’interactions ordre par ordre en la perturbation de la métrique à partir de l’équation de
Pauli-Fierz en espace plat couplée au tenseur-énergie-impulsion d’un champ scalaire, même
si ce processus est infini lorsqu’on remplace les dérivées usuelles par des dérivées covariantes
dans le lagrangien du champ scalaire [23]. Quant aux spins élevés, différents théorèmes “no-
go” suggèrent qu’il n’existe pas de solutions à ce problème en espace-temps plat (cf. [24]
et les références de cet article). Un obstacle est le problème d’Aragone-Deser [25, 26] car
l’invariance de jauge covariantisée ne reste pas nécessairement une symétrie du lagrangien
quadratique covariantisé.
Un autre exemple est le théorème “no-go” de Coleman-Mandula démontré en 1967 [27], qui
contraint les symétries d’une matrice S interactive. Un corollaire est qu’il n’existerait pas
de symétrie asymptotique de spin élevé.
Différentes solutions ont été envisagées afin de surmonter cette difficulté. D’une part il
semble nécessaire d’introduire une infinité de champs (en dimension quatre et plus). D’autre
part, le théorème de Coleman-Mandula ne s’applique pas dans un fond vide avec une
constante cosmologique non nulle d’où l’intérêt des espaces-temps de (anti) de Sitter où le
problème d’Aragone-Deser peut être contourné.
En effet, Fradkin et Vasiliev ont montré, en utilisant la procédure de Noether (qui est
une méthode perturbative) qu’à partir du lagrangien quadratique dans AdS, il existe des
interactions cohérentes de champ de jauge de spin élevé avec un champ de jauge de spin
deux représentant la gravité au premier ordre non trivial cubique [28]. Ceci est loin d’être
trivial car il faut rajouter des termes pour compenser le problème apparent d’Aragone-
Deser. Ils ont ensuite pu construire des couplages cubiques incluant tous les spins à la
fin des années 1980 [29]. Puis Vasiliev est parvenu à écrire des interactions cohérentes à
tous les ordres au niveau des équations du mouvement au début des années 1990 en (3+1)
dimensions [30–32].

Une des motivations de départ pour l’étude des spins élevés est un des principaux
problème actuel en physique théorique : quantifier la gravité. La théorie de Yang-Mills
(non abélienne de spin 1) est renormalisable car elle ne contient qu’une dérivée dans le
vertex cubique et sa constante de couplage est sans dimension. Ce n’est pas le cas de la
relativité générale, pouvant être vue comme une théorie de jauge non-abélienne pour un
champ de masse nulle et de spin 2, qui contient deux dérivées dans le vertex cubique et
dont la constante de couplage n’est pas adimensionnée (constante de Newton). Pour un
spin élevé s, on peut montrer qu’un vertex cubique contient au moins s dérivées, le degré
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de divergence ultraviolette augmente donc avec le spin. Cependant lorsqu’on considère
la tour infinie de spin, la sommation pourrait amener à une convergence des corrections
quantiques. Ainsi Fradkin a spéculé dans [33] que la théorie de jauge des spins élevés
puisse être une théorie quantique finie incluant un champ de masse nulle et de spin deux,
et donc en ce sens la gravité. De façon similaire, la théorie des cordes fournit un exemple de
théorie finie de champs massifs de spin élevé avec des interactions cohérentes. La masse au
carré d’une particule y est proportionnelle à la tension de la corde et au spin. La théories
des cordes (massive) et celle de Vasiliev (sans masse) sont les seuls exemples connus de
théories cohérentes d’interaction de particules de spin élevé (en dimension supérieure ou
égale à quatre). La théorie des spins élevés de Vasiliev (non massive) pourrait donc être
une limite quand la tension de la corde tend vers zéro. Autrement dit, une supposition est
que la masse des champs en théorie des cordes serait générée par une brisure spontanée de
la symétrie de jauge associée à un champ non massif de spin élevé. Mieux comprendre la
théorie des spins élevés permettrait ainsi de mieux analyser les propriétés quantiques de la
théorie des cordes et éventuellement de résoudre le problème de la barrière de spin deux.

Une motivation plus récente provient de la correspondance holographique AdS/CFT
qui a été présentée en 1997-1998 par Gubser, Klebanov, Maldacena, Polyakov et Witten.
Elle lie une théorie quantique de la gravitation dans l’espace-temps d’anti de Sitter et
une théorie quantique ordinaire conforme à une dimension de moins. Un des exemples les
plus simples de dualité holographique seraient celui où la théorie “gravitationnelle” serait
celle de Vasiliev dans AdS à quatre dimensions duale à une théorie conforme des champs
à trois dimensions : le modèle O(N) libre [34] ou critique [35] (ou encore le modèle de
Gross-Neveu [36]).

Pour résumer, l’étude de la théorie des spins élevés fut initialement motivée par l’ob-
servation de particules massives de spin élevé (même si non élémentaires). Aujourd’hui la
question ouverte de la quantification de la gravité motive l’attention portée à cette théorie
de jauge de spin élevé qui pourrait contenir la gravitation. Qui plus est, la théorie de jauge
des spins élevés pourrait être une limite de la théorie des cordes et sa meilleure compréhen-
sion permettrait ainsi de mieux appréhender cette dernière. Par ailleurs, le récent dévelop-
pement de l’holographie relance l’intérêt pour les spins élevés qui est devenu un domaine
très actif où il existe de nombreux articles de revue. Dernièrement de nombreuses contri-
butions au volume spécial "Higher Spin Theories and AdS/CFT" de J. Phys. A édité par
M. R. Gaberdiel and M. Vasiliev ont été publiées sur Arxiv [37–48]. Les comptes-rendus du
colloque Solvay [49] constitue un outil pédagogique utile pour se familiariser avec le sujet.
On peut également mentionner, par ordre chronologique, les compte-rendus de conférence,
notes de cours ou synthèses suivants [50–74] ainsi que le mémoire d’habilitation à diriger
les recherches (en français) de X. Bekaert [75].

0.2 Plan

Ce manuscrit de thèse se divise en trois parties : après une rapide introduction histo-
rique à la théorie des spins élevés, je développerai, à partir de mon premier article [76], les
interactions de spin élevé avec un champ scalaire de matière dans un espace-temps de cour-
bure constante basées sur l’explicitation des fonctions génératrices des courants conservés
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et du couplage cubique. La seconde partie résume des travaux en cours de réalisation dans
l’objectif de faire un premier test quantitatif de la correspondance holographique AdS/CFT
à l’ordre quartique en la constante de couplage en dimension arbitraire. La dernière par-
tie, bien que concernant toujours l’holographie des spins élevés, est axée sur la physique
non-relativiste. Après avoir déterminé les symétries et courants d’un gaz parfait/unitaire de
Fermi (issues du troisième article [77]), je rappelerai une proposition du dual gravitationnel
d’un gaz de Fermi unitaire [78].
Des annexes viennent compléter ce manuscrit. Tout d’abord, les démonstrations des étapes
importantes des résultats présentés dans la première partie sont détaillées. Puis mon pre-
mier article associé à ces travaux est présenté. Enfin, mon troisième article développe les
idées et les démonstrations décrites dans la troisième partie.

La convention d’Einstein est utilisée ici et tout au long de ce rapport. On pose la célérité
de la lumière c égale à l’unité.





Première partie

Interactions de spin élevé avec un
champ scalaire de matière dans un

espace-temps de courbure constante :
fonctions génératrices des courants
conservés et du couplage cubique
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La première partie de cette thèse est basée sur mon premier article publié avec mon
directeur de thèse Xavier Bekaert suite à mon stage de master 2 (voir annexe B).

Le principal objectif de ce travail a été l’obtention de l’infinité de courants conservés
(de rang arbitraire), bilinéaires en le champ scalaire libre, en espace-temps de courbure
constante à partir des travaux réalisés en espace-temps plat issus de l’étude des symétries
et du théorème de Noether. L’écriture de ces courants se simplifie lors de l’utilisation de
fonctions génératrices et de l’extension des champs physiques dans un espace plat auxilliaire
(dit “ambiant”) ayant une dimension en plus. Elle s’effectue grâce à deux outils :
• La construction ambiante, c’est-à-dire celle d’un dictionnaire entre les objets de l’es-

pace plat ambiant et ceux de l’espace-temps de courbure constante, est le fondement de ce
calcul original.
• La méthode de Noether indique ensuite comment construire, dans une théorie de

jauge, les interactions (qui se traduisent par le terme de couplage minimal) véhiculées par
les bosons médiateurs (ici sans masse et de spin entier quelconque). Nous nous sommes
restreints à la construction des vertex d’interactions cubiques.

Le plan de la première partie est le suivant : le premier chapitre est une introduction
(parfois de niveau élémentaire destinée à des étudiants de master et permettant de fixer les
notations) à la méthode de Noether et à la formulation ambiante. Dans le second chapitre, la
quantification de Weyl est développée car elle est aussi bien utilisée en physique relativiste
que dans un contexte non-relativiste (c.f. la troisième partie). Enfin, le troisième chapitre
contient les résultats, à savoir les courants conservés, les calculs des symboles et les vertex
cubiques.
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Chapitre 1

Boîte à outils

1.1 Méthode de Noether

Le premier théorème de Noether permet, à partir des symétries continues de l’action,
de retrouver les grandeurs conservées associées. Bien après la publication de ce théorème,
les physiciens élaborèrent une méthode qui porte aussi son nom. Elle indique, par exemple,
comment construire, dans une théorie de jauge, des interactions véhiculées par des parti-
cules sans masse nommées bosons médiateurs. Elle donne également la possibilité de « jau-
ger », c’est-à-dire de faire dépendre des coordonnées d’espace-temps, les symétries rigides
de la théorie étudiée. L’interaction entre une particule de matière et le photon de spin 1
en est le plus simple exemple et donne lieu à l’électromagnétisme. Il est possible de faire
le même travail pour la gravitation qui est représentée par la particule de spin 2 baptisée
graviton. Quant aux cas de spin supérieur à deux et appelés spins élevés, le problème reste
encore ouvert mais ce domaine a, récemment, connu de nombreux développements. Lors-
qu’on étudie le cas du champ scalaire complexe libre, il apparait une infinité de courants
conservés de rang arbitraire dans l’espace-temps de Minkowski. Pour plusieurs raisons que
nous évoquerons plus loin, un des objectifs de cette thèse est de construire et d’expliciter
les courants conservés dans les espaces-temps de courbure constante (mais non nulle) tels
que la solution cosmologique dite de (anti) de Sitter.

1.1.1 Pré-requis

Le premier théorème de Noether fournit une correspondance univoque entre symé-
tries continues globales et lois de conservation. Lorsqu’on parle de lois de conservation, on
pense souvent à la conservation de l’énergie au cours du temps. L’invariance d’une théorie
par translation dans l’espace implique que la quantité de mouvement (ou impulsion) est
conservée et que la position spatiale n’est pas absolue. L’invariance par rotation dans l’es-
pace implique que le moment angulaire est conservé et que l’orientation spatiale n’est pas
absolue.

Le second théorème de Noether fournit une correspondance entre symétries locales et
identités sur les équations du mouvement. A partir de maintenant, quand nous parlerons
du « théorème de Noether », nous utiliserons le premier théorème de Noether comme il est
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d’usage de le faire en physique.

Nous allons voir comment exprimer les symétries des champs scalaires en terme des
variations infinitésimales. Et avant d’énoncer le théorème en question, nous préciserons les
différentes symétries (globale/locale, discrète/continue, finie/infinitésimale, interne/d’es-
pace-temps, de spin élevé etc.) ainsi que les transformations géométrique/cinématique/d’or-
dre élevé et les représentations “vraie”/projective/“multiplier”.

1.1.1.1 Formalisme lagrangien du champ scalaire : le lagrangien de Klein-
Gordon

Le champ scalaire

Pour introduire les notations et la terminologie, nous allons consacrer un paragraphe au
formalisme lagrangien du champ scalaire. Le champ scalaire (autrement dit une fonction
des coordonnées d’espace-temps 1) φ(x) décrit des particules de masse m de spin nul et
modélise ici la matière 2. Il possède un nombre infini de degrés de liberté. De plus, s’il est
complexe, il représente une particule chargée. (Si le champ scalaire était réel, il n’y aurait
pas de distinction de charge entre particules et anti-particules.) Lorsqu’il est libre, le champ
(et l’action du champ) possède un nombre infini de symétries.
Le lagrangien peut dépendre du champ, de ses dérivées et des coordonnées d’espace-temps
mais nous considérerons ici qu’il ne dépend pas explicitement de ces dernières pour préserver
la symétrie sous les translations : L = L(φ, ∂µφ, ∂µ∂νφ, ...). L’évolution du champ scalaire
est représentée par le lagrangien de Klein-Gordon :

LKG(φ, ∂µφ) = − 1

2
|∂µφ|2 −

m2

2
|φ|2 (1.1)

où |φ|2 = φ∗(x)φ(x) est le module au carré du champ scalaire complexe φ(x).
Sa propagation est décrite par l’équation d’Euler-Lagrange :

∂µ

(
∂LKG
∂(∂µφ)

)
− ∂LKG

∂φ
= 0

appelée, dans ce cas, équation de Klein-Gordon (1926) :

(�n − m2)φ = 0 (1.2)

où �n = ηµν∂µ ∂ν est l’opérateur d’Alembertien (on dit aussi opérateur d’onde) et on
utilise la convention −+ · · ·+ pour la signature de la métrique plate de Minkowski.

Si une équation est vérifiée seulement lorque les équations du mouvement sont satisfaites
(c’est-à-dire que la condition de couche de masse p2 = m2 est vérifiée), on note cela par une
égalité faible symbolisée par ≈ à la place de l’égalité stricte =. Les indices minuscules (grecs

1. On écrira l’argument du champ scalaire seulement lorsqu’il y aura une ambiguïté.
2. En réalité, la matière usuelle est représentée par des champs spinoriels.
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et latins) prennent les valeurs de 0 à n − 1. Afin de simplifier au maximum les formules,
nous nous servirons régulièrement de la notation suivante φ

←→
∂µφ

∗ = φ∂µφ
∗ − ∂µφφ

∗.

1.1.1.2 Variations finies et infinitésimales

Des coordonnées
Une transformation finie des coordonnées d’espace-temps s’exprime par :

xµ → x′µ = fµ(xν) (1.3)

où f est une fonction. Par la suite, nous utiliserons x pour désigner les composantes xµ.
Une transformation infinitésimale et proche de l’identité est de la forme :

xµ → x′µ = xµ + ζµ(x) (1.4)

où ζµ(x) est le paramètre infinitésimal (ou d’ordre 1) de la transformation. La variation
infinitésimale des coordonnées d’espace-temps peut ainsi être définie par :

δζx
µ := x′µ − xµ = ζµ(x) . (1.5)

Lorsque le paramètre de la transformation ζµ ne dépend pas des coordonnées x c’est-à-
dire que la même transformation est effectuée en tous les points de l’espace-temps, ce type
de symétrie est qualifiée de rigide, on dit aussi globale.
Il arrive parfois qu’une théorie admette une symétrie bien plus grande et autorise à effectuer
des transformations différentes en chaque point de l’espace-temps. Lorsque ce phénomène
se produit, la symétrie est dite de jauge, ou encore locale. Les symétries de jauge jouent un
rôle essentiel dans le “modèle standard” et les tentatives actuelles d’unification des différents
types d’interactions.
L’électromagnétisme est une théorie de jauge. En effet, les équations de Maxwell sont
inchangées lorsque le potentiel électrique V est modifié par la dérivée par rapport au
temps d’une fonction arbitraire V − ∂tf et que simultanément le potentiel vecteur ~A est
modifié par le gradient de cette même fonction ~A + ~∇f . Si cette fonction f varie selon
le temps et l’espace, alors en chaque point on effectue bien une transformation différente.
Pourtant les équations restent inchangées et les conclusions physiques restent les mêmes.
L’électromagnétisme est donc un exemple de théorie de jauge.

D’un champ
Appliquons ceci à un champ scalaire. Il est laissé invariant par une transformation

“totale” :
φ′(x′) = φ(x)

c’est-à-dire par une transformation du champ combinée à celle d’espace-temps. La variation
totale est définie par :

δ̃ζφ(x) = φ′(x′)− φ(x) = 0 . (1.6)

La variation du champ seul [79] correspond à un terme de transport :

δζφ(x) = φ′(x)− φ(x) = − ζν(x) ∂νφ(x) + O(ζ 2) . (1.7)
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1.1.1.3 Différents types de symétries

En toute généralité, une symétrie peut toujours être définie de façon mathématique
comme une action de groupe sur un ensemble d’objets 3. En géométrie, une figure possède
une symétrie si elle est laissée invariante par une transformation géométrique. Deux figures
géométriques sont congruentes si on peut trouver une relation d’équivalence entre les deux.
Par exemple, les isométries sont des symétries conservant les produits scalaires (et donc
les angles et les distances). La symétrie en physique englobe une notion plus générale
qu’en géométrie classique : c’est une transformation (pas forcément géométrique) qui laisse
la forme des lois de la nature (par exemple l’intégrale d’action) invariante. Toute notion
de symétrie est fondée sur une hypothèse selon laquelle certaines grandeurs ne sont pas
indépendantes de l’observateur.

Les principes d’invariance jouent un rôle crucial dans la recherche des lois régissant des
phénomènes nouvellement découverts puisqu’ils en restreignent sévèrement le cadre, voire
les suggèrent. D’autres types de charges (que la charge électrique) ont été découvertes dans
le monde des particules (leptoniques, baryoniques, etc.), qui obéissent aussi à des lois de
conservation strictes. Le théorème de Noether peut s’appliquer à l’envers et permet de
relier ces lois de conservation à des principes de symétrie.

Symétrie globale/locale
Les symétries globales et locales ont été définies au paragraphe précédent.

Symétrie discrète/continue
Une symétrie est dite discrète lorsque l’ensemble des transformations correspondantes

constitue un groupe discret. Il existe des symétries de conjugaison de charge, de parité
et d’inversion du temps qui permettent d’exprimer le théorème CPT affirmant que toute
théorie quantique relativiste doit être invariante sous le produit de ces trois symétries.

De façon intuitive, une symétrie est continue lorsque les paramètres qui la déterminent
varient de façon continue. C’est seulement dans ce cas que l’on peut parler de variations
infinitésimales. De manière précise, une symétrie est dite continue lorsque l’ensemble des
transformations correspondantes constitue un groupe infini (c’est-à-dire un ensemble avec
un nombre infini d’éléments et une structure de groupe) : un groupe de Lie [80].
Les transformations rigides correspondent à un groupe de Lie de dimension finie au sens
où il y a un nombre fini de paramètres, tandis que les symétries locales correspondent à
un groupe de Lie de dimension infinie car il faut se donner des fonctions arbitraires des
coordonnées de l’espace-temps.

Symétrie finie/infinitésimale
Les symétries finies et infinitésimales ont été définies au paragraphe précédent.

Groupe de symétrie abélien/non abélien

3. Le programme d’Erlangen est un programme de recherche mathématique publié par le mathématicien
allemand Felix Klein en 1872 qui a pour clef de voûte, de fonder la géométrie sur les notions d’action de
groupe et d’invariant.
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Si deux transformations sont appliquées successivement et si le résultat ne dépend pas
de leur ordre, ces transformations commutent et le groupe de symétrie est abélien. C’est
le cas des translations d’espace mais pas celui des rotations (sauf dans R2). Inversement,
si deux transformations successives ne commutent pas, le groupe de symétrie est dit non
abélien.

Symétrie interne/d’espace-temps
Une symétrie interne (ou non géométrique) est une transformation d’un champ qui

n’affecte pas le système de coordonnées d’espace-temps, tout en changeant les variables
dynamiques du problème étudié. On peut donc remarquer que les symétries internes et
les symétries d’espace-temps commutent. Une symétrie interne fait intervenir des degrés
de liberté internes, et n’a pas d’interprétation géométrique (au sens où c’est défini ci-
dessous). La symétrie sous les tranformations de phase en est le plus simple exemple. La
transformation interne globale finie d’un champ scalaire est de la forme :

φ → φ′ = e−iα φ (1.8)

où le paramètre α est fini. La variation du champ par la transformation interne globale
mais infinitésimale est de la forme :

δζφ = − i ζ φ (1.9)

où le paramètre ζ est infinitésimal. Elle est représentée par le groupe unitaire à une dimen-
sion U(1).

Les transformations infinitésimales d’espace-temps sur les coordonnées (ou géométriques)
comportent les translations (infinitésimales) :

δζφ = − ζµ ∂µφ (1.10)

dont le groupe est Rn, et les transformations de Lorentz, dont le groupe est SO(n − 1, 1)
(groupe unimodulaire et pseudo-orthogonal à n dimensions, de la forme SO(p,m) où p est
le nombre de plus et m le nombre de moins de la signature) :

δΛφ = −Λµν x
ν ∂µφ (1.11)

où la matrice Λµν appartient au groupe SO(n− 1, 1).
Cet ensemble (1.10) et (1.11) forme le groupe de Poincaré ou groupe de Lorentz inhomogène
noté ISO(n − 1, 1). On peut écrire la transformation (1.10) en utilisant les opérateurs
quantiques notés avecˆ:

δζφ = − i ζµ p̂µφ (1.12)

où p̂µ = − i ∂µ est l’opérateur impulsion.

La transformation conforme [81] préserve les angles : cela regroupe les transformations
de Poincaré, la transformation d’échelle (non relativiste) : t → λz t et xi → λxi où z
est appelé l’exposant dynamique (incluant les dilatations (relativistes) : xµ → λxµ) et
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les transformations conformes spéciales, dont le groupe de transformations est isomorphe
à SO(n, 2) pour n > 2. Elle est la propriété que possèdent certains systèmes de paraître
semblables à eux-mêmes en changeant l’échelle d’observation. En physique statistique, on
observe une grande classe de tels systèmes au cours d’une transition de phase.

Si la théorie possède l’invariance par reparamétrisation de l’espace-temps (ou difféo-
morphismes), alors il existe une symétrie d’espace-temps locale encore appelée covariance
générale comme en relativité générale.

Symétrie supérieure (ou de spin élevé)
Pour les théories de champs de spin élevé, il convient de considérer une généralisation des
transformations d’espace-temps faisant intervenir des dérivées supérieures. Par exemple,
comme l’ont fait Berends, Burgers et Van Dam [82], l’écriture (1.12) permet de généraliser
la transformation (1.10) en considérant des puissances supérieures des impulsions p̂ :

δζφ = − i ζµ1...µr p̂µ1 ...p̂µrφ = (− i)r+ 1 ζµ1...µr ∂µ1 ... ∂µrφ (1.13)

où ζµ1...µr est un tenseur contravariant symétrique de rang r. Ces transformations infinité-
simales sont parfois appelées “hypertranslations”. Elles ne sont en général pas des symétries
rigides d’un champ de matière en interaction. En revanche, par exemple, si φ est solution
de l’équation de Klein-Gordon alors φ + δζφ l’est aussi puisque

(�n − m2) δζφ = − i ζµ1...µr p̂µ1 ...p̂µr (�n − m2)φ ≈ 0 .

Il s’avère que les hypertranslations sont même des symétries de l’action de Klein-Gordon.
Pour calculer la variation de l’action δζS, on réalise une succession d’intégrations par parties
et seuls des termes au bord restent, p̂ étant un opérateur hermitien. Cette transformation
est donc bien une symétrie du lagrangien de Klein-Gordon (1.1) mais, en général, elle ne
sera plus symétrie du lagrangien d’interactions. Ce type de symétries faisant intervenir des
dérivées supérieures est appelée symétrie supérieure (ou de spin élevé).

Transformation géométrique/cinématique/d’ordre élevé
Par définition, les transformations géométriques infinitésimales sont générées par des opé-
rateurs linéaires en les dérivées (cf. équations (1.10) et (1.11)) alors que les transforma-
tions cinématiques sont générées par des opérateurs différentiels d’ordre un (linéaires et
constants en les dérivées) comme par exemple le générateur des boosts galiléens K̂i (cf.
équation (8.10)). On vient de voir qu’il existe également des transformations d’ordre élevé
qui sont générées par des opérateurs différentiels d’ordre élevé (cf. (1.13)).

Représentation “vraie”/projective/“multiplier”
Une représentation projective (c’est-à-dire à une phase près) d’un groupe (par exemple celui
de Galilée) peut être équivalente à une “vraie” représentation (ou mieux, un représentation
“tout court”) d’un groupe plus grand (celui de Bargmann, cf. équation (8.4)). On trouve
également des représentations appelées en anglais “multiplier” qui sont elles à un facteur
près (plus général qu’une phase, c’est le cas des transformations d’échelle du groupe de
Schrödinger).
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1.1.1.4 Représentation unitaire irréductible

Une particule élémentaire (libre) est identifiée à une représentation unitaire irréductible
(UIR) du groupe d’isométrie de l’espace-temps de fond (supposé stationnaire) autrement
dit le groupe de Poincaré pour l’espace-temps de Minkowski.

Toute UIR du groupe de Poincaré est induite par une représentation du petit groupe.
En relativité, on appelle petit groupe, le sous-groupe des transformations de Lorentz Λαβ
dont les éléments laissent invariant une quadri-impulsion pα donnée, autrement dit qui
préserve le quadrivecteur moment.

Le cas simple est le cas massif. Il existe alors un référentiel lorentzien dans lequel cette
particule est au repos. Dans ce cas le petit groupe est le groupe des rotations spatiales et
est caractérisé par le spin. Il est représenté par un tenseur complètement symétrique de
trace nulle.

Dans le cas d’une particule de masse nulle au repos pα = 0, le petit groupe est le groupe
de Lorentz homogène Dans le cas d’une particule de masse nulle se déplaçant à la vitesse
de la lumière, le petit groupe est le groupe des rotations et translations du plan euclidien.

En dimension d’espace-temps n = 4, un réel non négatif (le carré de la masse) et un
nombre naturel (le double du spin ou de l’hélicité) suffisent à caractériser toutes les re-
présentations à nombre fini de composantes. Cependant, ceci n’est plus vrai en dimension
supérieure quelconque car le petit groupe (court, dans le cas de masse nulle) est en général
un groupe spécial orthogonal dont la théorie des représentations unitaires est plus riche
puisqu’elle inclut les champs à symétrie mixte. Par abus de language, pour les représenta-
tions à nombre fini de composantes il est d’usage d’appeler “spin” le nombre de colonnes du
diagramme de Young caractérisant la représentation (de dimension finie par hypothèse) du
petit groupe (court). Bargmann et Wigner furent en réalité concernés dans [14] uniquement
par les représentations unitaires irréductibles du groupe de Poincaré à quatre dimensions
d’espace-temps. Dans ce cas, tous les bosons peuvent donc être représentés par des champs
complètement symétriques.

Par convention, une particule de spin élevé entier sera, ici, toujours représentée par un
tenseur complètement symétrique.

1.1.2 Théorème de Noether

L’énoncé informel du théorème de Noether établi en 1918 à Göttingen (Allemagne) est :

« Si un principe variationnel est laissé invariant par un groupe continu de symétries,
alors il existe au moins une quantité physique associée qui est conservée. »
La réciproque est vraie sous des hypothèses extrêmement générales (par exemple en forma-
lisme hamiltonien) : si une quantité physique est conservée dans un phénomène physique,
alors il existe une symétrie dans les lois régissant ce phénomène.

De manière plus précise, le lagrangien s’écrit :

L = L(φ, ∂µφ, ∂µ1∂µ2φ, ..., ∂µ1 ...∂µpφ)
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et δζφ est une symétrie infinitésimale de l’action S =
∫
L si et seulement si

δζL = ∂µV
µ ⇐⇒ δζS =

∫
δζL = terme au bord .

Une symétrie de l’action implique une symétrie des équations de mouvement, mais la
réciproque n’est pas vraie.

Si δζφ est une symétrie infinitésimale de l’action, alors il existe un courant de Noether :

jµN (ζ) :=
∑

k=1

k−1∑

l=0

(−1)l ∂νl+1
...∂νk−1

(δζφ) ∂ν1 ...∂νl

(
∂L

∂(∂µ∂ν1 ...∂νk−1
φ)

)
− V µ (1.14)

qui est conservé lorsque les équations du mouvement sont satisfaites :

∂µj
µ
N ≈ 0 (1.15)

Il est important de remarquer que φ peut dénoter plusieurs champs ou un champ ayant
plusieurs indices : il y a donc une somme implicite sur les φ. La correspondance générale
entre symétries et courants de Noether pour une théorie locale est traité en détails dans [83].
Nous verrons un exemple avec le champ scalaire φ et son complexe conjugué φ∗ dans le
paragraphe suivant.

De plus, nous noterons jµ le courant conservé ne tenant pas compte du paramètre de
la transformation ζa car il est fondamental dans l’utilisation de la méthode de Noether :

jNµ (ζa) = ζa j
a
µ (1.16)

où l’indice a est quelconque. Pour une transformation de phase, cet indice disparait. Pour
une translation, il devient un indice grec et pour une transformation d’espace-temps d’ordre
r, il devient r − 1 indices grecs.

Pour chaque symétrie, une grandeur physique est conservée cependant il existe en un
sens une autre grandeur qui, elle, n’est pas observable. Par exemple, l’invariance par trans-
lation d’espace implique la conservation de l’impulsion. La position spatiale absolue n’est
par contre pas obervable. Pour la symétrie sous les translations temporelles, l’énergie est
conservée mais on ne peut pas mesurer le temps absolu. L’invariance sous le changement de
phase d’une fonction d’onde implique la conservation de la charge électrique et fait obstacle
à la mesure de la phase absolue. Pour certaines symétries, les grandeurs conservées sont
moins pertinentes. En effet, pour l’invariance sous les boosts galiléens, la grandeur conser-
vée est la position initiale du centre de masse, ce qui n’apporte pas vraiment d’information
pertinente.

1.1.3 Exemples de courants de Noether

Le théorème de Noether [79, 84, 85] permet de calculer les courants conservés pour les
champs de spin 1 et 2.
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1.1.3.1 Courant de charge

La transformation globale : δζφ = − i ζ φ est une symétrie interne du lagrangien de
Klein-Gordon (1.1). La variation du lagrangien de Klein-Gordon est :

δζLKG = L′KG − LKG
= − 1

2

[
∂µφ

∗ ∂µ(δζφ) + ∂µ(δζφ
∗) ∂µφ + ∂µ(δζφ

∗) ∂µ(δζφ) + m2φ∗δζφ

+m2δζφ
∗φ + m2δζφ

∗δζφ
]
.

Une approximation au premier ordre en ζ permet d’écrire :

δζLKG =
1

2

(
i ζ ∂µφ

∗ ∂µφ + i ζ ∂µφ
∗ ∂µφ + m2 i ζ φ∗φ − m2 i ζ φ∗φ

)
+O(ζ2)

= 0

donc V µ peut être pris égal à zéro. Le courant de Noether devient alors :

jNµ = δζφ
∂LKG
∂(∂µφ)

+ δζφ
∗ ∂LKG
∂(∂µφ∗)

− Vµ

=
1

2
i ζ φ ∂µφ

∗ − 1

2
i ζ ∂µφφ

∗ .

Le courant de Noether s’exprime par :

jNµ =
1

2
i ζ (φ∂µφ

∗ − ∂µφφ
∗)

=
1

2
i ζ φ
←→
∂µφ

∗ (1.17)

= ζ jµ

où jµ =
1

2
i φ
←→
∂µφ

∗. On vérifie facilement que jNµ et jµ sont conservés sur la couche de
masse.

Lorsqu’on passe d’une symétrie rigide à une symétrie de jauge, des termes nouveaux
apparaissent et l’action de Klein-Gordon n’est plus invariante. Ceci est corrigé lorsqu’on
réalise le couplage minimal (paragraphe 1.1.4).

1.1.3.2 Tenseur énergie-impulsion

La transformation globale du champ δζφ = − ζµ ∂µφ est une symétrie du lagrangien de
Klein-Gordon (1.1). La transformation est induite par la translation δζxµ = x′µ − xµ =
ζµ. La variation infinitésimale nous donne :

δζLKG = − 1

2

[
∂µφ

∗ ∂µ(δζφ) + ∂µ(δζφ
∗) ∂µφ + m2 φ∗ δζφ+ m2 δζφ

∗φ
]

= − 1

2

(
ζρ ∂µφ

∗ ∂µ∂ρφ + ζρ ∂µ∂ρφ
∗ ∂µφ − m2 ζρ φ∗ ∂ρφ − m2 ζρ ∂ρφ

∗ φ
)
.
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Le théorème de Noether nous permet d’en déduire :

V µ = − 1

2
ζµ
(
|∂ρφ|2 − m2 |φ|2

)
.

Cela permet d’exprimer le courant de Noether :

jNµ = δζφ
∂LKG
∂(∂µφ)

+ δζφ
←→
∂ν

∂LKG
∂(∂µ∂νφ)

+ (φ ↔ φ∗) − Vµ

= ζν Tµν can

où le tenseur énergie-impulsion “canonique” (ou tenseur de Noether) correspond au courant
jaµ (avec a représentant ici ν) :

Tµνcan :=
∂LKG
∂(∂µφ)

∂νφ + (φ↔ φ∗) − ηµν LKG

=
1

2

[
ηµν

(
|∂ρφ|2 + m2 |φ|2

)
− 2 ∂(µφ∂ν)φ

∗] (1.18)

où (µν) indique une symétrie selon ces deux indices de poids 1. Le tenseur énergie-impulsion
représente la répartition de la masse, de l’énergie et des contraintes (pressions et cisaille-
ments) dans l’espace-temps. Il n’est pas automatiquement symétrique, ni invariant de
jauge [86].
Il est aisé de vérifier que le courant de Noether et donc le tenseur énergie-impulsion sont
conservés.

Une autre manière de définir le tenseur énergie-impulsion est d’améliorer le tenseur
canonique afin de le rendre symétrique (et de pouvoir le coupler à la métrique), c’est le
tenseur de Belinfante qui est plus naturel pour le couplage de spin 2.

En relativité générale (notée parfois RG) et donc en espace-temps de courbure constante,
il est défini de la manière suivante [86] :

TµνRG =
1√
|g|

δSmatière
δgµν

. (1.19)

Il est conservé et symétrique :
TµνRG = TνµRG .

En espace-temps plat, il définit le tenseur de Rosenfeld TµνR :

TµνR = TµνRG | g= η . (1.20)

Pour le champ scalaire, les tenseurs de Belinfante et de Rosenfeld sont égaux [79,88] ce qui
implique Tµνcan = TµνR .

1.1.4 Méthode de Noether

Dans l’application la plus simple de la méthode de Noether [79], il est important de
vérifier que l’action libre du champ de matière possède une symétrie rigide. L’objectif 4 est

4. appelé principe de jauge
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de « jauger » cette symétrie c’est-à-dire la faire dépendre des coordonnées. A l’aide du
premier théorème de Noether, on calcule le courant conservé jµ qui est lié au courant de
Noether jµN (d’où le nom de cette méthode) à partir du champ de matière φ. Nous couplons
ensuite, et de manière minimale, ce courant à un champ de jauge. Afin de compenser la
variation de jauge du terme de couplage minimal, il est souvent nécessaire d’induire des
transformations de jauge sur le champ de matière et par conséquent des symétries rigides
du champ de matière (comme cas particuliers). La boucle est donc bouclée (figure 1.1).

Figure 1.1 – Méthode de Noether (en bleu) et méthode réellement utilisée (en rouge) pour
le spin 2

Concrètement, on suppose qu’on possède des champs de jauge de spin entier non nul,
représentant les bosons de jauge (sans masse), qu’on souhaite coupler à la matière. Le
second théorème de Noether permet de trouver l’expression du terme de couplage « mini-
mal » entre champs de matière et de jauge dans le lagrangien à l’ordre le plus bas. Comme
le champ de jauge se transforme sous les symétries locales, il faut que le courant associé au
champ scalaire soit conservé sur la couche de masse du champ de matière. Nous utilisons
à cette fin le courant conservé jµ (lié au courant de Noether jµN ). Des exemples précis sont
donnés dans les paragraphes suivants.

Le couplage minimal permet de réinterpréter la méthode de Noether comme une cor-
respondance entre courants conservés et symétries locales.

Notons que la méthode de Noether revue ici n’est qu’un cas très particulier de la mé-
thode de Noether (voir par exemple [87] et références ci-dedans). Néanmoins nous n’utilise-
rons pas ces techniques générales dans cette thèse car nous nous restreindrons au couplage
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minimal entre champs scalaires et champs de jauge de spin élevé.

1.1.4.1 Photon de spin 1

L’exemple le plus basique est le photon de spin 1 associé à la conservation de la charge
et aux transformations de jauge de l’électromagnétisme. Le but est de coupler un champ
de matière, représenté par un champ scalaire complexe φ invariant sous la symétrie interne
globale (1.8), à un champ (de vecteurs) de jauge électromagnétique Aµ. Le lagrangien de
l’électromagnétisme est :

LEM = −1

4
Fµν F

µν = −1

4
F 2 (1.21)

où le tenseur électromagnétique Fµν = 2 ∂[µAν] (où [µν] indique une antisymétrie de poids
1 selon ces deux indices) est invariant sous les transformations locales δζAµ = ∂µζ(x) et
le lagrangien LEM l’est donc aussi. Le lagrangien initial libre (quadratique) est :

L0 = LEM + LKG .

Sa variation par transformation de jauge δζφ = i e ζ(x)φ est : δζL0 = − e ∂µζ(x) jµ où e
est la constante de couplage. La méthode de Noether nous suggère de coupler le courant
de charge (1.17) du lagrangien de matière au champ électromagnétique Aµ. On retrouve
l’idée que les équations de Maxwell avec sources sont issues du couplage entre le courant jµ,
similaire à un courant électrique, et le champ électromagnétique. En observant la variation
du lagrangien modifié, une première correction (ici d’ordre un en la constante de couplage
e) est additionnée au lagrangien initial pour donner le lagrangien du couplage minimal
(cubique) :

L1 = L0 + eAµ j
µ .

Ce dernier terme compense à l’ordre O(e) la variation du lagrangien L0 sous une transfor-
mation de jauge : c’est le terme de couplage minimal.

A cause de la variation du courant de Noether sur la couche de masse, il génère une
variation du lagrangien d’ordre O(e2) : δζL1 = e2 |φ|2Aµ ∂µζ. Il faut donc rajouter un
autre terme afin de compenser ces modifications. Le lagrangien quartique, dont la variation
sera nulle, est :

L2 = L1 −
1

2
e2 |φ|2A2

où |φ| correspond au module de φ. On peut le réécrire de manière complète en utilisant la
dérivée covariante Dµφ = (∂µ − ieAµ)φ :

L2 = −1

4
F 2 − m2

2
|φ|2 − 1

2
|Dµφ|2 . (1.22)

Nous venons de voir qu’il est nécessaire d’aller à l’ordre 2 en la constante de couplage
pour la théorie de spin 1 pour que la nouvelle modification ne contribue plus au courant de
Noether. Pour les théories de spin supérieur, il n’est donc pas évident de trouver le courant
conservé ! Mais cette méthode fonctionne aussi pour la théorie de Yang-Mills (spin 1 non
abélien) et s’arrête également à l’ordre 2.



CHAPITRE 1. Boîte à outils 43

1.1.4.2 Graviton de spin 2

Le graviton de spin 2 est associé à la conservation de l’énergie-impulsion et aux difféo-
morphismes de la relativité générale.

Le lagrangien initial est la somme du lagrangien de Klein-Gordon (en espace-temps
plat) (1.1) et de celui d’Einstein-Hilbert :

L0 = LKG + LRG
L’action de Klein-Gordon en espace courbe devient :

SKG[φ, g] = −
∫

1

2

(
gµν ∂µφ∂νφ

∗ + m2 |φ|2
)√
|g| dnx (1.23)

et le lagrangien de Klein-Gordon en espace courbe correspond au lagrangien final (à tous
les ordres) :

L∞ = − 1

2

(
gµν ∂µφ∂νφ

∗ + m2 |φ|2
)√
|g| (1.24)

La métrique linéarisée s’écrit :

gµν = ηµν + hµν (1.25)

Le lagrangien du couplage minimal est donc :

L1 = L0 + hµν T
µν
R

où TµνR est le tenseur de Rosenfeld (1.20).
La variation de la métrique représente les difféomorphismes infinitésimaux :

δζgµν = Lζgµν (1.26)

où L est la dérivée de Lie. Sa linéarisation donne :

δζhµν = Lζηµν = ∂µζν + ∂νζµ (1.27)

Ceci est la transformation de jauge d’un champ libre de spin 2 sans masse. L’invariance de
jauge de L1 implique la conservation du tenseur de Rosenfeld ∂µ T

µν
R ≈ 0. Inversement,

la méthode de Noether aurait construit le lagrangien de couplage minimal L1 à partir du
tenseur de Noether. Dans le cas de la gravitation, on voit qu’il est nécessaire d’aller à
l’ordre infini en la perturbation hµν . Ce processus de reconstruction ne s’arrête donc pas :
il faut donc mieux connaitre le résultat final !

1.1.4.3 Bosons de spins élevés

Les bosons sans masse de spin élevé sont associés à la conservation de courants de rang
supérieur à deux et à des transformations de jauge encore mystérieuses. La variation du
champ tensoriel symétrique de rang r est :

δζhµ1...µr(x) = r ∂(µ1ζµ2...µr)(x) + O(h) (1.28)
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et généralise les deux cas précédents. Le terme d’interaction ou plus précisément le terme
de couplage minimal s’écrit :

L1 − L0 = hµ1...µr j
µ1...µr .

L’invariance de jauge est garantie à l’ordre le plus bas si j est bien un courant conservé.
C’est pourquoi les courants conservés sont importants pour construire des interactions
entre matière et bosons de jauge de spin élevé. Remarquons que dans la théorie des spins
élevés, il est également nécessaire d’aller à l’ordre infini, comme pour la théorie de spin 2.
Mais dans ce cas, le problème reste ouvert au niveau d’un principe variationnel standard
car la géométrie sous-jacente aux spins élevés est encore mal connue (voir cependant la
proposition [91]). Au niveau des équations du mouvement, le problème a été résolu par
Vasiliev autour de l’espace d’anti de Sitter (en (3+1) dimensions, il est parvenu à écrire
des interactions cohérentes à tous les ordres au début des années 1990) [30–32] ce qui
n’est pas le cas dans l’espace-temps plat de Minkowski et la réponse est probablement
inexistante.

1.2 Formulation ambiante

Le tableau 1.1 présente les notations des objets de l’espace plat ambiant et celles de
l’espace-temps de courbure constante.

Objet Espace ambiant RD0 Espace-temps de courbure constanteMn

Coordonnées XA xµ

Scalaire Φ(X) φ(x)

Conjugué Φ†(X) φ∗(x)

Vecteur TA(X) tµ(x)

Tenseur TA1...Ar(X) tµ1...µr(x)

Metrique GAB ∼ ηAB gµν

Dérivée covariante DA ∇µ
D’Alembertien courbe D2

D = GAB DADB ∇2
n = gµν ∇µ∇ν

D’Alembertien ambiant �D = ηAB ∂A ∂B �n = ∇2 ± 1

R2
(h (h + n − 1)− r)

Table 1.1 – Dictionnaire Espace ambiant/Espace-temps de courbure constante

1.2.1 Plongement

L’objectif est de calculer les courants conservés dans un espace-temps de courbure
constante. Les espaces-temps de (anti) de Sitter peuvent être réalisés comme des hyperbo-
loïdes plongés dans un espace plat auxiliaire (dit « ambiant ») avec une dimension de plus.
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Mais comme il est bien plus facile de faire des calculs en espace-temps plat, on cherche
à établir un dictionnaire (ou une correspondance), appelé construction ambiante entre les
quantités de l’espace-temps de courbure constante (A)dSn et celles de l’espace plat ambiant
RD avec D = n + 1. Ceci autorise la construction explicite des courants conservés dans
les espaces-temps courbes de (anti) de Sitter à partir des courants connus dans l’espace de
Minkowski.

Pour prendre un exemple simple, la surface d’une sphère est difficile à se représenter
comme un espace courbe à deux dimensions mais on la visualise aisément comme un sous-
espace de l’espace plat ambiant à 3 dimensions.

Soient deux variétés M et N de dimensions m et n (n > m) respectivement avec
des systèmes de coordonnées locales xµ et XA. Une application lisse i : M → N de M
dans N telle que la matrice jacobienne ∂XA/∂xµ de la transformation est de rang m
est une immersion. Elle est un plongement si, de plus, l’application i est une injection.
Cela signifie qu’une immersion est localement fidèle (c’est-à-dire injective) tandis qu’un
plongement l’est globalement. Intuitivement, l’image d’une immersion peut avoir des auto-
intersections tandis que l’image i(M) d’un plongement est une authentique variété, appelée
sous-variété de N . Par abus de notation, on écritM ⊂ N . La différence n−m s’appelle
la codimension de M dans N et les équations XA = XA(xµ) sont appelées les équations
paramétriques de la sous-variété.

Le théorème de plongement (respectivement d’immersion) de Hassler Whitney (ma-
thématicien américain) de 1935 [89] dit que toute variété différentielle M de dimension
m ∈ N0 peut être plongée (respectivement immergée) de façon lisse dans l’espace eucli-
dien R2m (donc M est de codimension m) (respectivement dans R2m−1). Bien qu’il soit
plus aisé de visualiser la géométrie d’une variété donnée à deux dimensions (m = 2) par
plongement dans R3 (n = 3), ce n’est cependant pas toujours possible et il faut en général
recourir à R4(2m = 4) si l’on rejette les auto-intersections. La sphère ou le cylindre sont
représentables fidèlement en trois dimensions, mais pas la bouteille de Klein, du moins
globalement.

Il est néanmoins possible que la codimension soit plus petite que m (par exemple, les
sphèresM = Sm plongées dans N = Rm+1 sont de codimension 1). Quoi qu’il en soit, le
théorème de Whitney implique que, quoique la notion de variété « abstraite » soit définie de
manière intrinsèque, il n’y a pas de perte de généralité à la concevoir « concrètement » par
plongement (malheureusement, de façon générique, dans un espace de dimension double,
cependant pour l’exemple de l’espace projectif réel de dimension m = 2k, la dimension de
l’espace euclidien 2m est optimale.)

Un problème géométrique difficile est celui du plongement isométrique (qui « conserve
la longueur des courbes ») d’une variété (pseudo-) riemannienne de dimension m donnée
dans un espace plat pseudo-euclidien Rp,q muni d’une métrique diagonale de signature
(p, q) . Un théorème de John Nash 5 (mathématicien et économiste américain) de 1956 [90]
affirme que toute vrièiété riemannienne lisse de dimension m peut être plongée de façon
lisse et isométrique dans un espace euclidien Rn de dimension n suffisamment grande. Ce
théorème a été généralisé par Michael Gromov (mathématicien russe) en 1972 aux variétés

5. Le film “Un homme d’exception“ (titre original en anglais “A Beautiful Mind“) a été réalisé en 2001
par Ron Howard et est adapté de la biographie de Nash écrite par Sylvia Nasar.
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pseudo-riemanniennes. Lorsqu’elle est munie de la métrique plate, la bouteille de Klein
peut être plongée isométriquement en 4D. Le tore peut être plongé en 3D mais pas de
manière isométrique ; il est nécessaire d’avoir une quatrième dimension pour cela.

1.2.2 Espaces-temps de courbure constante

Paul Dirac affimait penser géométriquement. Abdus Salam raconte [92] que, à ce sujet, un jour Dirac
lui a posé la question suivante : « Comment te représentes-tu l’espace de de Sitter ? » Salam répondit :
« J’écris la métrique et alors je réfléchis à propos de la structure des termes dans l’expression. » Dirac
conclut : « Précisément comme je l’imaginais. Tu penses algébriquement (...) Je me représente, sans effort,
l’espace de de Sitter comme une surface à quatre dimensions dans un espace à cinq dimensions. »

La construction par plongement de l’espace-temps de (anti) de Sitter [93, 94] est sem-
blable à celle de la sphère S2 ⊂ R3.

Les espaces-temps dSn et AdSn sont à symétrie maximale c’est-à-dire que leur groupe
d’isométries possède dix paramètres comme le groupe de Poincaré ou encore que leur cour-
bure est (covariantement) constante.

De manière plus générale, l’espace-temps de courbure constante est ici une variété
Mn de dimension n et de signature quelconque, plus concrètement définie par X2 =
ηABX

AXB = ±R2 avec le rayon de courbure R 6= 0 et ηAB le tenseur métrique plat de
l’espace ambiant et de signature quelconque. On la plonge dans un espace plat ambiant
privé de l’origine RD0 de dimensionD = n+1 :Mn ⊂ RD0 . La région RD0 contientMn et est
définie par X2 6= 0. Ceci implique une bijection entre les deux systèmes de coordonnées :

RD0 ←→ ]0; +∞[×Mn : XA ←→ (ρ, xµ)

où X représente les coordonnées cartésiennes dans l’espace plat ambiant RD0 , ρ2 = |X|2 le
carré de la coordonnée radiale et x les coordonnées sur l’espace-temps de courbure constante
Mn. Cette bijection correspond à un changement de coordonnées entre les cartésiennes et
les « sphériques ».

L’inclusion, qui est infiniment dérivable,

i : Mn ↪→ RD0 : xµ 7−→ XA(xµ) (1.29)

fournit les équations paramétriques de Mn pour X2 6= 0. Elle définit un plongement de
Mn dans RD (paragraphe 1.2.1).
L’inclusion n’est pas inversible. Pour le comprendre, on peut se placer sur une sphère S2 de
rayon donné ρ = R. Pour définir un point, il suffit de connaitre deux angles. Inversement,
si l’on est dans l’espace ambiant R3

0, deux angles définissent une demi-droite et non pas un
point.

Le “pull-back” (signifiant “tirer en arrière”) associé à l’inclusion (1.29) :

i∗ : Xr(RD0 ) → Xr(Mn)
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est tel qu’à un tenseur dans l’espace ambiant correspond un tenseur dans l’espace-temps
de courbure constante :

TA1...Ar(X) 7−→ tµ1...µr(x) =
∂XA1(x)

∂xµ1
...
∂XAr(x)

∂xµr
TA1...Ar(X(x)) (1.30)

où
Xr(RD0 ) = {TA1...Ar(X)}

représente l’espace des tenseurs covariants de rang r dans l’espace ambiant RD0 (on note le
champ scalaire dans l’espace ambiant Φ) et

Xr(Mn) = {tµ1...µr(x)}

représente l’espace des tenseurs covariants de rang r dans l’espace-temps de courbure
constanteMn (on note le champ scalaire dans l’espace-temps de courbure constante φ).
Cela revient à garder seulement les composantes du vecteur de l’espace ambiant dépendant
des vecteurs de la base de coordonnées de l’espace tangent TxMn au point x à l’espace-
temps courbeMn. Le « pull-back » n’est pas non plus inversible car tout vecteur de l’espace
ambiant centré sur l’origine et projeté orthogonalement sur une sphère (également centrée
sur l’origine) donne un vecteur nul.

1.2.3 Projection des tenseurs de l’espace plat ambiant sur l’espace-temps
de courbure constante

Nous venons de voir qu’il était possible de trouver le tenseur de l’espace-temps de
courbure constante à partir de son homologue dans l’espace ambiant en faisant un « pull-
back ». Il existe une autre méthode, équivalente mais plus intuitive (et que nous utiliserons
dans la suite de ce document) : la projection des coordonnées (dans laquelle on ignore la
composante radiale ρ) :

“i−1” : RD0 → Mn : X 7−→ “x(X)” (1.31)

et la projection orthogonale des vecteurs sur l’espace tangent :

~v 7−→ −→
v \\ .

Le procédé est le même que lorsqu’on projette orthogonalement un vecteur de l’espace
ambiant R3

0 sur une sphère S2 centrée à l’origine. La méthode de la projection orthogonale
permet de calculer le produit scalaire de deux vecteurs ~v et ~w :

~v . ~w = ~v .
−→
w \\

où −→w \\ est le projeté orthogonal du vecteur ~w sur la droite portant le vecteur ~v c’est-à-dire
que le vecteur −→w \\ est colinéaire au vecteur ~v.



48 CHAPITRE 1. Boîte à outils

Donc on en déduit l’expression du vecteur
−→
w \\=

(~v . ~w)

~v2
~v. On calcule le compémentaire :

−→
w⊥ = ~w− −→

w \\

= ~w − ~v . ~w

~v .~v
~v

=

(
1 − ~v ~v.

~v .~v

)
~w (1.32)

= P ~w .

On vient ainsi de construire le projecteur P = 1 − ~v ~v.

~v .~v
.

De manière analogue, l’expression du projecteur d’un vecteur de l’espace ambiant donne
son équivalent dans l’espace-temps de courbure constante :

PBA = δBA −
XAX

B

X2

où δBA est le delta de Kronecker. Nous allons voir dans le paragraphe suivant comment
utiliser ce projecteur.

1.2.4 Dictionnaire Espace plat ambiant/Espace-temps de courbure constante

La projection des vecteurs (et de manière générale, des tenseurs) impose certaines
conditions.

1.2.4.1 Champs scalaires

Comme nous l’avons vu dans la table 1.1, φ représente le champ scalaire dans l’espace-
temps de courbure constante et Φ le champ scalaire dans l’espace ambiant. Ils sont liés par
la définition suivante 6 :

φ(xµ) := Φ(ρ, xµ)|ρ=R = Φ(R, xµ) = Φ(XA)|X2 =±R2 . (1.33)

Dans notre cas, il y a une correspondance entre les coordonnées cartésiennes XA et les
« sphériques » (ρ, xµ). Comme on souhaite faire abstraction de la coordonnée radiale ρ, les
fonctions Φ doivent être homogènes de degré h (pour des polynômes, leurs termes sont des
monômes de degré identique h) :

Φ(λX) = λh Φ(X) . (1.34)

6. On fait ici un abus de notation : on écrit Φ(XA) = Φ(ρ, xµ) au lieu de Φ(XA) = Φ′(ρ, xµ).
De plus, par convention, le signe supérieur se rattachera à l’espace de de Sitter tandis que le signe inférieur
sera lié à l’espace d’anti de Sitter.



CHAPITRE 1. Boîte à outils 49

En effet, on prouve la bijection entre champs φ sur Mn et champs Φ sur RD homogènes
de degré h en utilisant la définition (1.33) :

Φ(ρ, xµ) = Φ
( ρ
R
R, xµ

)
= Φ

( ρ
R
XA
)

=
( ρ
R

)h
Φ

(
R,

R

ρ
xµ
)

=
( ρ
R

)h
Φ(XA) (1.35)

=
( ρ
R

)h
φ

(
R

ρ
xµ
)
.

Il y a donc bien une bijection entre les deux champs scalaires φ et Φ pour h fixé (mais
quelconque).
L’équation (1.34) implique que XA∂AΦ = hΦ et XAXB ∂A ∂BΦ = h (h − 1) Φ. Enfin, il
est important de noter que pour la sphère, h est pris réel mais que pour les espaces-temps
dSn, h sera complexe. Notons que la construction ambiante est aussi appelée réduction
dimensionnelle radiale en réinterprétant la condition d’homogénéité [95].

1.2.4.2 Champs de vecteurs

Comme nous l’avons déjà dit, projeter un vecteur radial de l’espace ambiant R3
0 sur

une sphère S2 centrée à l’origine donne un vecteur nul. Il n’est donc pas nécessaire de
s’en préoccuper. Pour généraliser cet exemple à un espace-temps quelconque de courbure
constante, on définit la tangentialité. Soit un scalaire :

X2 = ±R2 = XAX
A , (1.36)

on dérive par rapport à xµ :

2XA
∂XA

∂xµ
= 0 . (1.37)

Les vecteurs de la base de coordonnées de l’espace tangent sont eAµ =
∂XA

∂xµ
. Ces vecteurs

tangents (ou « gradients ») sont le long des surfacesMn (« équipotentielles ») autrement
dit ils sont « transverses » (orthogonaux à la direction radiale XA).
A l’inverse, un vecteur VA(X) est radial (ou longitudinal) s’il est proportionnel à XA

c’est-à-dire VA(X) = XA U(X) où U(X) est un scalaire.

Si le vecteur VA est radial, alors Vµ =
∂XA

∂xµ
VA = 0 en vertu de (1.37).

Les termes VA(X) = WA(X) + XA U(X) seront notés par une relation d’équivalence
VA(X) ∼ WA(X) ce qui revient à supprimer tous les vecteurs radiaux car leur projection
sur l’espace tangent est nulle.
Une manière d’éliminer les termes radiaux, plus précisément de choisir un représentant dans
la classe d’équivalence, est de projeter ou alors d’imposer la transversalité : si VA est trans-
verse alors XA VA(X) = 0 car si VA(X) = XA U(X) alors X2 U(X) = 0 ⇒ U(X) = 0
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car X2 6= 0.

Comme les scalaires, les vecteurs doivent être homogènes de degré h :

VA(λX) = λh VA(X)

afin d’avoir une bijection entre champs de vecteurs vµ(x) sur Mn et champs de vecteurs
transverses VA(X) de degré d’homogénéité fixé h.

1.2.4.3 Champs de tenseurs

Les tenseurs symétriques sont la généralisation du cas des vecteurs.
Les composantes des tenseurs doivent donc être tangentes, et donc transverses :

XAi TA1...Ar(X) = 0 (1.38)

et ce pour tous les indices i, ce qui revient à projeter (pour chaque indice) le tenseur sur
l’espace tangent.

Les tenseurs doivent être homogènes de degré h qui peut dépendre du rang r :

TA1...Ar(λX) = λh TA1...Ar(X) . (1.39)

Nous sommes parvenu à une correspondance entre les tenseurs (vecteurs et bien sûr
scalaires) de l’espace-temps de courbure constante et ceux de l’espace ambiant.

1.2.4.4 Tenseur métrique

Le tenseur métrique courbe (d’ordre 2, homogène, tangent) de l’espace-temps de cour-
bure constante, noté gµν , est lié à son représentant dans l’espace ambiant, noté GAB, par
la relation :

gµν =
∂XA

∂xµ
∂XB

∂xν
GAB . (1.40)

Ce que exprime symboliquement par :

gµν ←→ GAB .

Il est possible d’exprimer le représentant du tenseur métrique courbe GAB dans l’espace
ambiant à partir du tenseur métrique plat de l’espace ambiant (et de signature quelconque)
ηAB :

GAB = PCA PDB ηCD .
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On en déduit facilement l’expression explicite de GAB :

GAB = ηAB −
XAXB

X2
(1.41)

c’est-à-dire GAB ∼ ηAB en utilisant la relation d’équivalence définie dans le paragraphe
1.2.4.2. De plus, on remarque que GBA = PBA .
Enfin, les relations (1.40) et (1.41) impliquent :

gµν =
∂XA

∂xµ
∂XB

∂xν
ηAB .

1.2.4.5 Dérivées covariantes

On cherche l’opérateur DA dans l’espace ambiant correspondant à la dérivée covariante
de l’espace-temps de courbure constante ∇µ :

∇µ ←→ DA . (1.42)

Nous allons maintenant construire le représentant DA de la dérivée covariante ∇µ à partir
de la dérivée partielle ∂A de l’espace ambiant.

D’un scalaire

Pour un scalaire Φ, les dérivées covariante et partielle sont égales :

DAΦ = ∂AΦ . (1.43)

D’un vecteur

Pour représenter la dérivée covariante d’un vecteur vµ, on projette son représentant
ambiant VA, on transporte parallèlement le vecteur dans l’espace ambiant (donc avec la
dérivée partielle) puis on re-projette :

D = P ◦ ∂ ◦ P .

De manière explicite, cela donne :

DAVB := PCA PDB ∂C(PED VE) . (1.44)

Etant donné le nombre de projecteurs, la difficulté est de faire le « produit » de plusieurs
dérivées covariantes.

La dérivée covariante ∇µ est liée à la connexion de Levi-Civita (une connexion affine,
métrique, sans torsion et dont ses composantes sont les symboles de Christoffel). Comme
cette dernière est unique, il suffit de montrer que la dérivée DA vérifie les trois axiomes



52 CHAPITRE 1. Boîte à outils

suivants (vérifiés également par ∇µ) pour démontrer la formule (1.44) de la dérivée cova-
riante :
- la règle de Leibniz ou dérivation : DA(Φ1 Φ2) = DA(Φ1).Φ2 + Φ1.DA(Φ2)
- la préservation du tenseur métrique : DAGBC = 0
- la nullité de la torsion : [DA,DB]Φ = 0

D’un tenseur

On définit la notation suivante permettant de simplifier l’écriture des formules :

(PT )A1...Ar := PB1
A1
...PBrAr TB1...Br . (1.45)

Pour trouver la dérivée covariante d’un tenseur, on procède de la même façon que pour un
vecteur, mais en projetant pour chaque indice et en utilisant (1.45) :

DATB1...Br := PCA PD1
B1
...PDrBr ∂C

(
(PT )D1...Dr

)

Il est également possible d’exprimer la dérivée covariante de l’espace courbe ∇µ en fonc-
tion de la dérivée partielle de l’espace courbe ∂µ comme nous le verrons dans le paragraphe
1.2.5.4.

1.2.4.6 Opérateur d’Alembertien

A partir de (1.42) , il est bon de remarquer la relation d’équivalence entre l’opérateur
d’Alembertien de l’espace-temps de courbure constante ∇2

n = gµν ∇µ∇ν et son représen-
tant en espace ambiant D2

D = GAB DADB :

∇2
n ←→ D2

D .

De plus, il est utile pour la suite de chercher la relation d’équivalence entre l’opérateur
d’Alembertien 7 en espace ambiant �D = ηAB ∂A ∂B et son correspondant en espace-temps
de courbure constante �n (démonstration en annexe A.1). Pour les scalaires, l’équivalence
est :

∇2
n φ←→ D2

DΦ =

[
�D −

1

X2
h (h + D − 2)

]
Φ (1.46)

et également

�D Φ←→ �n φ =

[
∇2
n ±

1

R2
h (h + n − 1)

]
φ . (1.47)

L’opérateur « d’Alembertien » appliqué aux tenseurs symétriques est :

�D TA1...Ar ←→ �n tµ1...µr =

[
∇2
n ±

1

R2

(
h (h + n − 1) − r

)]
tµ1...µr (1.48)

7. Lorsqu’on travaillera en espace-temps quelconque, la dimension de l’espace-temps dans laquelle on
exprime l’opérateur sera notée en indice.
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1.2.4.7 Synthèse

Nous venons de détailler la transformation des objets utiles pour la suite. Une synthèse
est présentée dans la table 1.2.

Objet Espace ambiant Espace-temps de courbure constante

Tenseur métrique GAB ∼ ηAB gµν

Dérivée covariante DA ∇µ

D’Alembertien « courbe » D2
D = GAB DADB ∇2

n = gµν ∇µ∇ν

D’Alembertien « ambiant » �D = ηAB ∂A ∂B �n = ∇2
n ±

1

R2
(h (h + n − 1)− r)

Table 1.2 – Dictionnaire Espace ambiant/Espace-temps de courbure constante

Ces transformations demandent des conditions strictes. Il faut donc veiller à ce qu’elles
soient bien toutes vérifiées lorqu’on fait des calculs.

1.2.5 Quelques applications

Pour illustrer ces outils, nous allons détailler quelques exemples.

1.2.5.1 Harmoniques sphériques Sn

Les harmoniques sphériques sont la restriction sur la sphère Sn de polynômes harmo-
niques et homogènes (de degré l) sur RD. L’opérateur d’Alembertien « ambiant » corres-
pondant, dans le cas euclidien, à l’opérateur laplacien (appelé aussi opérateur de Laplace)
�D = ∆D est nul et est équivalent à �Sn :

�Sn Yl =

[
∆Sn +

1

R2
l(l + n − 1)

]
Yl = 0 (1.49)

⇒ ∆SnYl = − 1

R2
l(l + n − 1)Yl (1.50)

avec Yl =
∑
m
cm Y

m
l et ∆Sn = ∇2

Sn . Cette équation ressemble donc à l’équation de Klein-

Gordon (1.2).
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Comme nous venons de le voir, les harmoniques sphériques sont faciles à définir mais
compliquées à écrire. Dans le paragraphe suivant, nous allons décrire un cas similaire dans
un autre espace.

1.2.5.2 Champ scalaire dans (A)dSn

Comme pour les harmoniques sphériques, on souhaite calculer ∇2
(A)dSn

φ pour l’espace-
temps (A)dSn en utilisant (1.46). Cependant, il est impératif d’imposer une condition sur
la partie réelle du degré d’homogénéité [96] :

<(h) =
2 − D

2
= 1 − D

2
=

1− n
2

. (1.51)

La partie imaginaire du degré d’homogénéité h est =(h) = µ.

Dans l’espace-temps de de Sitter, l’opérateur d’Alembertien est donc :

�D Φ←→ �dSn φ =

[
∇2
dSn −

1

R2

((
n − 1

2

)2

+ µ2

)]
φ . (1.52)

Pour l’espace-temps d’anti de Sitter, il « suffit » de transformer µ en i µ. En effet, le signe
de µ2 est important pour l’unitarité [97] (car il faut que l’espace des solutions de l’équation
d’onde soit un espace de Hilbert) :

�D Φ←→ �AdSn φ =

[
∇2
AdSn +

1

R2

((
n − 1

2

)2

− µ2

)]
φ . (1.53)

Le terme
(
n − 1

2

)2

est un terme purement géométrique alors que µ2 est le paramètre

sans unité ressemblant à la masse. Les conditions d’homogénéité et de transversalité des
courants contraindront également le terme de masse à cette valeur.

De façon générale, un champ scalaire « massif » φ correspondant à un champ scalaire
harmonique Φ obéit à :

�nφ = ∇2
(A)dSn

φ ∓ 1

R2

(
n − 1

2

)2

φ − µ2

R2
φ . (1.54)

Lorsque le rayon de courbure R tend vers l’infini, les espaces-temps de (anti) de Sitter
ressemblent à celui de Minkowski. Si on prend la limite de (1.54) où µ → ∞ et R → ∞
avec µ/R = m fixé, alors on obtient l’équation d’onde (1.2) d’un champ scalaire de masse
m.
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1.2.5.3 Commutateur de dérivées covariantes : un exemple détaillé

Ce qui suit est un exemple de calcul employant la méthode utilisée dans toute la suite
de ce document. On calcule D[ADB]Φ :

D[ADB]Φ =
1

2
[DADBΦ − DBDAΦ] =

1

2
[DA,DB]Φ . (1.55)

Tout d’abord :

∂[ADB]Φ = ∂[A

(
PCB]∂CΦ

)

= ∂[A

((
δCB] −

XB]X
C

X2

)
∂CΦ

)

= ∂[A

(
∂B]Φ − h

XB]

X2
Φ

)

= ∂[A∂B]Φ −
h

X2
η[AB] Φ + 2h

X[AXB]

(X2)2
Φ − h

X2
X[B∂A]Φ

Le premier terme est nul car il est antisymétrique alors que les dérivées partielles com-
mutent. Le second est nul également car la métrique plate doit être symétrique. Le troisième
est nul pour une raison similaire. Il reste donc :

∂[ADB]Φ = − h

X2
X[B∂A]Φ .

Enfin, on projette ce terme proportionnel à X ; il va donc donner zéro. Le commutateur
est donc nul. Il faut faire attention. Dans tous les cas, les termes longitudinaux ne sont
négligeables qu’à la dernière étape du développement. De plus, on parle de termes longi-
tudinaux seulement lorsqu’ils sont proportionnels au vecteur radial XA (ayant un indice
libre, jamais un indice contracté).

1.2.5.4 Dérivée covariante d’un vecteur en coordonnées sphériques

Afin d’avoir un exemple concret, l’objectif de cette sous-section est de calculer la dérivée
covariante d’un vecteur en coordonnées sphériques en utilisant les définitions ci-dessus [98]
puis en vérifiant à l’aide de la connexion de Levi-Civita.

En trois dimensions, les coordonnées cartésiennes en fonction des coordonnées sphé-
riques sont :

−→
OM = (XA) =





X = r sin θ cosϕ
Y = r sin θ sinϕ
Z = r cos θ

= X
−→
1X + Y

−→
1Y + Z

−→
1Z . (1.56)
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L’intervalle d’espace-temps est :

ds2
S3 = dr2 + r2 dθ2 + r2 sin2 θ dϕ2 .

La métrique en coordonnées sphériques (ρ, xµ) = (r, θ, ϕ) est :

gµν =




1 0 0
0 r2 0
0 0 r2 sin2 θ


 .

Les vecteurs tangents orthogonaux sont définis par :

(
∂XA

∂xµ

)
=

∂
−→
OM

∂xµ
=





−→
er =

∂
−→
OM

∂r

−→
eθ =

∂
−→
OM

∂θ

−→
eϕ =

∂
−→
OM

∂ϕ
.

Les vecteurs orthonormés sont définis par :




−→
1r = g

−1/2
rr

−→
er =

−→
er

−→
1θ = g

−1/2
θθ

−→
eθ =

1

r

−→
eθ

−→
1ϕ = g

−1/2
ϕϕ

−→
eϕ =

1

r sin θ

−→
eϕ .

Les vecteurs orthonormés de la base de coordonnées sphériques en fonction des vecteurs de
la base de coordonnées cartésiennes sont donc :




−→
1r = sin θ cosϕ

−→
1X + sin θ sinϕ

−→
1Y + cos θ

−→
1Z

−→
1θ = cos θ cosϕ

−→
1X + cos θ sinϕ

−→
1Y − sin θ

−→
1Z

−→
1ϕ = − sinϕ

−→
1X + cosϕ

−→
1Y .

On inverse cette base :



−→
1X = sin θ cosϕ

−→
1r + cos θ cosϕ

−→
1θ − sinϕ

−→
1ϕ

−→
1Y = sin θ sinϕ

−→
1r + cos θ sinϕ

−→
1θ + cosϕ

−→
1ϕ

−→
1Z = cos θ

−→
1r − sin θ

−→
1θ .
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Soit un vecteur

~V = VX
−→
1X +VY

−→
1Y +VZ

−→
1Z = vr

−→
er + vθ

−→
eθ + vϕ

−→
eϕ ,

si ~V est transverse (~V .
−→
OM = 0), alors vr = 0.

On exprime la dérivée covariante d’un vecteur en coordonnées sur la sphère (lettres grecques)
vν à partir du vecteur correspondant en coordonnées cartésiennes (lettres latines) VA grâce
à (1.30) et (1.44). Comme le vecteur VA est transverse, il n’est pas nécessaire de le projeter
et la composante radiale vr est nulle :

vν = ~eν .~V

=
∂XA

∂xν
VA .

Les composantes de la dérivée covariante sur la sphère sont :

∇µ vν =
∂XA

∂xµ
∂XB

∂xν
DA VB

=
∂XB

∂xν
∂

∂xµ
VB

=
∂

∂xµ

(
∂XB

∂xν
VB

)
− ∂2XB

∂xµ∂xν
VB

=
∂vν
∂xµ

− ∂2XB

∂xµ∂xν
VB . (1.57)

On en déduit grâce à (1.57) que :




∇θvθ = ∂θvθ
∇ϕvϕ = ∂ϕvϕ − r cos θ VZ
∇ϕvθ = ∂ϕvθ − r cos θ sinϕVX − r cosθ cosϕVY
∇θvϕ = ∂θvϕ − r cos θ sinϕVX − r cos θ cosϕVY

où l’on a utilisé X VX + Y VY + Z VZ = 0 car XAVA = 0.

Il faut maintenant exprimer VX , VY et VZ en fonction de vr, vθ et vϕ. Par exemple, calculons
∇ϕvϕ :

∇ϕvϕ = ∂ϕvϕ − r cos θ VZ

= ∂ϕvϕ − r cos θ
−→
V .

−→
1Z

= ∂ϕvϕ − r cos θ
−→
V .

(
cos θ

−→
1r − sin θ

−→
1θ

)

= ∂ϕvϕ − r cos2 θ vr + cos θ sin θ vθ
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car vθ = ~V .
−→
eθ = r ~V .

−→
1θ .

Or vr = 0, donc :
∇ϕvϕ = ∂ϕvϕ + cos θ sin θ vθ .

Les dérivées covariantes deviennent finalement :




∇θvθ = ∂θvθ
∇ϕvϕ = ∂ϕvϕ + cos θ sin θ vθ

∇ϕvθ = ∂ϕvθ −
1

tan θ
vϕ

∇θvϕ = ∂θvϕ −
1

tan θ
vϕ .

On retrouve ces résultats en calculant la dérivée covariante d’un vecteur à partir de la
connexion de Levi-Civita. Les symboles de Christoffel sont définis par

Γµνρ =
1

2
gµλ (∂ρgλν + ∂νgλρ − ∂λgρν)

c’est-à-dire :




Γrϕϕ = − r sin2 θ

Γθϕϕ = − cos θ sin θ

Γϕϕθ =
1

tan θ
.

Il est nécessaire d’utiliser la formule :

∇µvν = ∂µvν − Γαµν vα .

Voici un exemple :
∇ϕ vϕ = ∂ϕvϕ + sin θ cos θ vθ .

On retrouve bien la même expression !

1.2.5.5 Calcul du commutateur des dérivées covariantes d’un vecteur

On souhaite calculer ∇[µ∇ν] Vρ en utilisant la définition du tenseur de Riemann et de
manière explicite.

Si la torsion est nulle, alors

∇[µ∇ν] Vρ =
1

2
Rµνρσ V σ .
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Or pour un espace-temps de courbure constante, le tenseur de Riemann vaut :

Rµνρσ = ± 2

R2
gρ[µ gν]σ .

En effet, le calcul explicite dans l’espace ambiant (démonstration en annexe A.2) nous
donne :

[∇µ,∇ν ]Vρ = ± 2
1

R2
gρ[µ Vν] . (1.58)

Donc le tenseur de Ricci vaut :

Rµρ := gνσRµνρσ
= ±n− 1

R2
gµρ

et le scalaire de Ricci

R := gµρRµρ
= ± n(n− 1)

R2
.
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Chapitre 2

Quantification de Weyl

Ce chapitre est la traduction littérale de mon troisième article se trouvant dans le cha-
pitre 9. En effet, ce formalisme mathématique est utilisé aussi bien en physique relativiste
que dans un contexte non-relativiste pour représenter les opérateurs différentiels quelqu’ils
soient (même ceux ayant une dépendance temporelle) comme des “polynômes” usuels mais
dont les variables ne commutent pas dans la mesure où l’espace de ces polynômes est muni
d’un produit (dit “étoilé”) non-commutatif.

Le formalisme de Weyl-Wigner-Grönewold-Moyal [99–103] propose une formulation
“classique” de la mécanique quantique en utilisant des fonctions de l’espace des phases
comme observables et la fonction de Wigner comme un analogue de la fonction de densité
de Liouville.

2.1 Algèbres d’Heisenberg et de Weyl

La mécanique classique est basée sur l’algèbre commutative des observables classiques,
c’est-à-dire des fonctions réelles f(x,p) sur l’espace des phases T ∗Rn ∼= Rn×Rn∗, doté du
crochet de Poisson canonique

{f, g}P.B. =
∂f

∂xi
∂g

∂pi
− ∂f

∂pi

∂g

∂xi
. (2.1)

La mécanique quantique est basée sur l’algèbre non-commutative associative des obser-
vables quantiques, c’est-à-dire les opérateurs hermitiens F̂ (X̂, P̂) sur l’espace de Hilbert
L2(Rn) des fonctions de carré intégrable. L’algèbre de Weyl An est l’algèbre associative des
observables quantiques qui sont des polynômes en les positions et les moments. L’algèbre
d’Heisenberg hn est l’algèbre de Lie des observables quantiques qui sont des polynômes de
degré un en les positions et les moments, il est engendré par X̂i, P̂j et un élément central
~ 1̂ obéissant à des relations de commutation canoniques

[ X̂i , P̂j ] = i~ δij 1̂. (2.2)

En termes plus abstraits, l’algèbre de Weyl An est l’algèbre enveloppante universelle
U(hn) de l’algèbre de Heisenberg. Le lemme de Schur implique que la valeur propre réelle
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(que nous désignons par le même symbole ~) de l’élément central étiquette les représen-
tations unitaires irréductibles (notées UIR pour l’expression anglaise “unitarity irreducible
represantations”) de l’algèbre de Heisenberg. Le théorème de Stone et von Neumann af-
firme que, à une équivalence près, il y a une UIR unique de l’algèbre de Heisenberg hn pour
chaque valeur réelle de ~ 6= 0. En outre, la représentation correspondante de An est fidèle,
ce qui légitime l’équivalence entre les définitions abstraites et les réalisations concrètes des
algèbres de Heisenberg et Weyl 1.

2.2 Symboles de Weyl

L’application de Weyl 2 W : f(x,p) 7→ F̂ (X̂, P̂) associe à toute fonction f un opérateur
ordonné de Weyl (c’est-à-dire symétriquement) F̂ défini par

F̂ :=
1

(2π~)n

∫
dk dv F(k,v) e

i
~ ( ki X̂

i− vi P̂i) , (2.3)

où F est la transformée de Fourier 3 de f sur l’espace de phase complet (en d’autres termes,
sur l’espace des positions et des impulsions)

F(k,v) :=
1

(2π~)n

∫
dx dp f(x,p) e−

i
~ ( ki x

i− vi pi) . (2.4)

La fonction f(x,p) est appelé le symbole de Weyl de l’opérateur F̂ (X̂, P̂), qui n’a pas besoin
d’être sous la forme symétriquement ordonnée. Une belle propriété de l’application de Weyl
(2.3), est qu’elle relie la conjugaison complexe ∗ des symboles à la conjugaison hermitienne
∗ des opérateurs, W : f∗(x,p) 7→ F̂ ∗(X̂, P̂). Par conséquent, l’image d’une fonction réelle
(une observable classique) est un opérateur hermitien (une observable quantique). L’inverse
W−1 : F̂ (X̂, P̂) 7→ f(x,p) de l’application de Weyl est appelé l’application de Wigner.

Les relations de commutation canoniques (2.2) entre les opérateurs de position et d’im-
pulsion et la formule de Baker-Campbell-Hausdorff impliquent deux égalités très utiles :

e
i
~ ( ki X̂

i− vi P̂i) = e−
i
2~ v

i P̂i e
i
~ ki X̂

i
e−

i
2~ v

i P̂i (2.5)

= e−
i
2~ v

i { P̂i, } e
i
~ ki X̂

i
(2.6)

où { , } désigne l’anticommutateur.
D’une part, la combinaison de (2.3) avec (2.6) implique qu’une façon de réaliser expli-

citement l’application de Weyl se fait par un “ordre anticommutateur” pour la moitié des
variables en regard de leurs conjugués. Par exemple, l’image d’un symbole de Weyl qui est

1. Pour ~ = 0, les UIR de hn se réduisent aux UIR unidimensionnelles de l’algèbre commutative Rn ×
Rn∗marquées par les valeurs propres x et p des opérateurs X̂ et P̂. Évidemment, quand ~ = 0 l’algèbre
An est réalisée comme l’algèbre commutative des polynômes f(x,p) sur l’espace des phases.

2. A ne pas confondre avec la transformation de Weyl au sens de la symétrie (voir le chapitre 3).
3. L’application de Weyl est bien définie pour une classe beaucoup plus grande que les fonctions de

carré intégrable, y compris par exemple les fonctions polynomiales, dont les transformées de Fourier, sont
des distributions.
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une série formelle en les moments,

f(x,p) =
∑

r>0

1

r!
f i1...ir(x) pi1 . . . pir

= f(x) + f i(x) pi +
1

2
f ij(x) pipj + O(p3) , (2.7)

peut être écrit comme

F̂ (X̂, P̂) =
∑

r>0

1

r! 2r
{ · · · {f i1...ir(X̂) , P̂i1} , · · · , P̂ir}

= F̂ (X̂) +
1

2

(
F̂ i(X̂) P̂i + P̂i F̂

i(X̂)
)

+
1

4

(
F̂ ij(X̂) P̂iP̂j + 2 P̂i F̂

ij(X̂) P̂j + P̂iP̂j F̂
ij(X̂)

)
+ . . . . (2.8)

D’autre part, l’équation (2.5) implique qu’une manière d’effectuer explicitement l’ap-
plication de Wigner est par l’intermédiaire d’une transformation de Fourier du noyau inté-
gral translaté de l’opérateur. Le noyau intégral de l’opérateur F̂ est l’élément de matrice
〈x | F̂ | x′〉 apparaissant dans la représentation de position de l’état F̂ | ψ 〉, comme suit

〈x | F̂ | ψ 〉 =

∫
dx′ 〈x | F̂ | x′ 〉 ψ(x′) , (2.9)

où la fonction d’onde dans l’espace des positions est ψ(x′) := 〈x′ | ψ 〉 et la relation
de complétude

∫
dx′ | x′ 〉 〈x′ |= 1̂ a été insérée. La définition (2.3) et la relation (2.5)

permettent d’écrire le noyau intégral d’un opérateur en termes du symbole de Weyl,

〈x | F̂ | x′ 〉 =

∫
dp

(2π~)n
f
( x + x′

2
, p
)
e
i
~ (xi−x′ i) pi . (2.10)

A l’inverse, cela donne une forme explicite de l’application de Wigner

f(x,p) =

∫
dq 〈x− q/2 | F̂ | x + q/2 〉 e i~ qi pi , (2.11)

comme suit à partir de l’expression (2.10). Cela montre qu’en effet, les applications de Weyl
et de Wigner sont des bijections entre les espaces vectoriels des observables classiques et
quantiques.

2.3 Produit de Moyal

Le produit de Moyal ? est le “pull-back” du produit de composition dans l’algèbre des
observables quantiques en rapport à l’application de Weyl W , de telle sorte que

W
[
f(x,p) ? g(x,p)

]
= F̂ (X̂, P̂) Ĝ(X̂, P̂) . (2.12)
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L’application de Wigner (2.11) permet de vérifier que l’expression explicite suivante du
produit de Moyal satisfait la définition (2.12),

f ? g = f exp

[
i ~
2

( ←−
∂

∂xi

−→
∂

∂pi
−
←−
∂

∂pi

−→
∂

∂xi

)]
g

= f g +
i ~
2
{f , g}P.B. +O(~2), (2.13)

où les flèches indiquent sur quel facteur les dérivés doivent agir.
Soit Ĥ un opérateur hamiltonien avec le symbole de Weyl correspondant h(x,p) . Dans

le formalisme de Heisenberg, l’évolution dans le temps d’une observable quantique F̂ (qui
ne dépend pas explicitement du temps) est régie par l’équation différentielle

dF̂

dt
=

1

i ~
[F̂ , Ĥ] (2.14)

ou de façon équivalente en termes de symboles

df

dt
=

1

i ~
[ f ?, h ] (2.15)

où [ ?, ] désigne le commutateur de Moyal défini par

[ f ?, g ] := f ? g − g ? f

= 2 i f sin

[
~
2

( ←−
∂

∂xi

−→
∂

∂pi
−
←−
∂

∂pi

−→
∂

∂xi

)]
g

= i ~ { f , g }P.B. + O(~2) , (2.16)

comme on peut le voir à partir de (2.13). Le crochet de Moyal est lié au commutateur de
Moyal par

{ f , g }M.B. :=
1

i ~
[ f ?, g ] = { f , g }P.B. +O(~).

Notez que le crochet de Moyal { , }M.B. est une déformation du crochet de Poisson
{ , }P.B., et on peut voir que l’équation (2.15) est une perturbation du flux hamiltonien.
Si f(x,p) ou g(x,p) est un polynôme de degré deux, alors leur crochet de Moyal se réduit
à leur crochet de Poisson. Donc lorsque le hamiltonien est quadratique (libre), l’évolution
quantique du symbole de Weyl est identique à son évolution classique.
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Chapitre 3

Résultats

Dans ce chapitre, nous présentons les résultats obtenus dans le premier article en annexe
B. Dans un souci de simplification, les conventions ici sont légèrement différentes de celles
de l’article original.

Les espaces-temps concernés sont ceux de courbure constante, soit nulle c’est-à-dire
l’espace-temps plat de Minkowski, soit strictement positive (négative) respectivement ap-
pelés espaces-temps de (anti) de Sitter (A)dSn.

3.1 Courants

3.1.1 Dans l’espace-temps de Minkowski

D’après le théorème de Noether, un courant conservé symétrique de rang r > 1 est un
tenseur réel contravariant symétrique jµ1...µrs (x) obéissant à la loi de conservation :

∂µ1 j
µ1...µr
s (x) ≈ 0 . (3.1)

Une fonction génératrice de courants conservés [104] dans l’espace-temps de Minkowski est
une fonction réelle j(x, p) dans l’espace des phases : l’impulsion p est une variable auxiliaire,
qui vérifie

(
∂

∂pµ
.
∂

∂xµ

)
j(x, p) ≈ 0 , (3.2)

et qui peut s’écrire sous forme de série formelle en l’impulsion :

j(x, p) =

∞∑

r=0

1

r!
jµ1...µrs (x) pµ1 ...pµr . (3.3)

Elle rassemble donc tous les courants, conservés en vertu de (3.2).

Une fonction génératrice peut être écrite pour un champ de Klein-Gordon φ(x) comme
suit :

j(x, p) = φ∗ (x − i p) φ (x + i p) = |φ (x − i p)|2 . (3.4)
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Elle est manifestement réelle. La condition (3.2) peut être vérifiée dans ce cas précis, en
montrant que l’opérateur agissant sur la fonction génératrice des courants correspond à
l’opérateur divergence de (3.1) (démonstration en annexe A.3). L’utilisation d’une fonction
génératrice permet de simplifier considérablement les calculs ; elle sera particulièrement
utile dans le paragraphe suivant.

L’expression (3.4) en séries de Taylor de l’impulsion mène à une expression explicite
des courants conservés :

jsµ1...µr(x) = ir
r∑

s=0

(−1)s
(
r

s

)
∂(µ1 ... ∂µsφ

∗(x) ∂µs+1 ... ∂µr)φ(x) (3.5)

= ir φ∗(x)
←→
∂µ1 ...

←→
∂µrφ(x) . (3.6)

Ces courants en espace plat (3.5) sont proportionnels à ceux introduits, il y a longtemps,
par Berends, Burgers et van Dam [82]. Divers ensembles explicites de courants conservés
(conformes) sur l’espace-temps de Minkowski ont été fournis dans [105–108]. Le courant
conservé symétrique (3.5) de rang r est bilinéaire en le champ scalaire et contient exacte-
ment r dérivés. Les courants de tous rangs sont réels ; ainsi, si le champ scalaire est réel,
alors les courants de rang impair sont absents en raison du facteur devant (3.5).

Le courant symétrique conservé de rang deux :

jsµν = i2
(
φ∗ ∂µ∂νφ + φ∂µ∂νφ

∗ − 2 ∂(µφ
∗ ∂ν)φ

)

= −φ∗←→∂µ
←→
∂ν φ

est, sur la couche de masse, distinct du tenseur énergie-impulsion canonique (1.18) par un
courant trivial jtµν = (ηµν �n−1,1 − ∂µ∂ν) |φ|2 :

jsµν ≈ − 4Tµνcan + (ηµν �n−1,1 − ∂µ∂ν) |φ|2 .
Physiquement, ce courant de rang 2 est donc proportionnel au tenseur énergie-impulsion.

Comme nous l’avons fait dans le paragraphe 1.1.3, nous vérifions, pour le rang trois, que
la transformation δζφ = i ζαβ ∂α∂βφ est une symétrie rigide du lagrangien de Klein-Gordon
(1.1). Nous trouvons que :

Vµ =
1

2
ζµβ (∂ρφ

∗←→∂β∂ρφ − m2φ∗
←→
∂βφ) .

On explicite le courant de Noether :

jNµ = i ζαβ [∂α∂βφ∂µφ
∗ − ∂α∂βφ

∗∂µφ − ηµα ∂νφ
∗←→∂β ∂νφ + m2 ηµα φ

∗←→∂βφ]

Comme jNµ = ζαβ jµ(αβ), alors :

jµ(αβ) = i [∂α∂βφ∂µφ
∗ − ∂α∂βφ

∗∂µφ − ηµα ∂νφ
∗←→∂β ∂νφ + m2 ηµα φ

∗←→∂βφ] .

On peut vérifier que le courant de Noether jNµ et le tenseur jµ(αβ) sont conservés. A l’aide
de la formule (3.5), le courant symétrique conservé s’écrit simplement :

jsµαβ = i3 φ∗
←→
∂µ
←→
∂α
←→
∂β φ .

On peut relier les deux tenseurs jµαβ et jsµαβ par un courant trivial jtµ(αβ).
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3.1.2 Dans l’espace-temps de (anti) de Sitter

Dans cette partie, nous décrirons très brièvement les calculs originaux que j’ai réalisés,
avec Xavier Bekaert, durant la première année de mon doctorat.

3.1.2.1 Fonction génératrice et ses subtilités

Comme nous venons de le voir, la fonction génératrice de l’espace-temps plat de Min-
kowski génère des courants conservés dans ce même espace-temps. Nous souhaitons faire
la même chose pour l’espace-temps de (anti) de Sitter via la construction ambiante. Plus
précisément, la fonction génératrice de l’espace plat ambiant génère des courants conservés
dans l’espace-temps courbe de (anti) de Sitter.

Grâce au dictionnaire (tables 1.1 et 1.2), la fonction génératrice de courants conservés
dans l’espace plat ambiant :

J(X,P ) = Φ†(X − iP )Φ(X + iP ) . (3.7)

Elle vérifie
(
∂

∂X
.
∂

∂P

)
J(X,P ) ≈ 0 (3.8)

lorsque le champ scalaire ambiant Φ obéit à l’équation de Klein-Gordon. Si elle était tan-
gente, l’équation (3.8) impliquerait automatiquement DB1JB1...Br ≈ 0. Mais ce n’est pas
le cas. On se doit donc de calculer la divergence dans l’espace ambiant des courants pour
vérifier que la divergence covariante sur l’espace-temps de (anti) de Sitter est bien nulle.
La fonction génératrice des courants 1 obéit à

(
XA ∂

∂XA
+ PA

∂

∂PA
+ D − 2

)
J(X,P ) = 0

pour les champs scalaires ambiants homogènes correspondant à des champs scalaires massifs
sur (A)dSn, puisqu’une condition sur la partie réelle du degré d’homogénéité est imposée
(voir démonstration en annexe A.4) et apparaît naturellement dans le calcul de l’opérateur
d’Alembertien dans les espaces-temps (A)dSn (paragraphe 1.2.5) 2 :

h†(A)dSn
= 1 − D

2
−
√
∓1 µ =

1− n
2
−
√
∓1 µ (3.9)

implique
h(A)dSn + h†(A)dSn

= 2−D , (3.10)

et donc l’équation précédente (3.8) est équivalente à la loi de conservation covariante

∇µ1jµ1... µr(x) ≈ 0 . (3.11)

1. Le degré d’homogénéité en X et en P de J(X,P ) vaut donc 2−D et celui des courants JA1···Ar vaut
hr = 2−D − r = 1− n− r.

2. Rappelons que, par convention, le signe supérieur se rattache à l’espace de de Sitter tandis que le
signe inférieur est lié à l’espace d’anti de Sitter.
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En d’autres termes, la réduction dimensionnelle radiale de l’interaction de Noether cubique
est valable précisément pour le domaine de masse carré de l’unitarité dans (A)dSn.

La fonction génératrice dans l’espace ambiant définit donc une infinité de courants
conservés pour un champ scalaire libre sur (A)dSn :

J(X,P ) =
∞∑

r=0

1

r!
JA1..Ar
s (X)PA1 ... PAr

= ir
r∑

s=0

(−1)s
(
r

s

)
∂(A1

... ∂AsΦ
∗(X) ∂As+1 ... ∂Ar)Φ(X)

⇒ JsA1...Ar(X) = ir Φ†(X)
←→
∂A1 ...

←→
∂ArΦ(X) . (3.12)

Le principal inconvénient de cette expression explicite pour les courants conservés est
qu’ils sont écrits en termes de dérivées partielles ambiantes et qu’il n’est pas facile de la
traduire en terme des dérivées covariantes sur l’espace-tempsMn car elle ne contient que
des dérivées partielles. Le but de la section suivante est d’effectuer cette traduction.

3.1.2.2 Formules explicites des dérivées covariantes

Nous allons exprimer les dérivées partielles ambiantes en fonction des dérivées cova-
riantes pour les quatre premiers rangs (démonstration pour les rangs 2 et 3 en annexe A.5)
afin de pouvoir, par la suite, exprimer les courants :

∂AΦ ∼ DA Φ

∂A ∂BΦ ∼ D(ADB)Φ +
h

X2
ηAB Φ

∂A ∂B∂CΦ ∼ D(ADBDC) Φ +
3h− 2

X2
η(AB DC)Φ

∂A ∂B∂C∂DΦ ∼ D(ADBDDDD) Φ +
2 (3h− 4)

X2
η(AB DCDD)Φ

+
3h (h− 2)

X4
η(AB ηCD) Φ (3.13)

...

On a exprimé les dérivées partielles comme des polynômes dépendant des dérivées cova-
riantes et de la métrique plate : ∂A1 ...∂Am Φ = Pol(ηAB,DC)Φ.

Pour obtenir une formule générale des dérivées partielles, on note m le nombre de
dérivées, et on contracte chaque indice avec le vecteur auxiliaire P :

PA1 ...PAm ∂A1 ...∂Am = (P.∂)m

PA1 ...PAmDA1 ...DAm = (P.D)m

PAPB ηAB = P 2 . (3.14)
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Toutes les dérivées partielles sont données par la formule générale suivante :

(P.∂)m =

[m/2]∑

r=0

crm

(
P 2

X2

)r
(P.D)m−2r (3.15)

où [q] est la partie entière du nombre rationnel q et les coefficients crm sont donnés par la
formule de récurrence (démonstration en annexe A.6) :

crm+1 = crm + m (h−m+ 1) cr−1
m−1 (3.16)

et pour m impair, il existe une relation supplémentaire :

c
(m+1)/2
m+1 = m(h−m+ 1) c

(m−1)/2
m−1 ⇔ crm = 0 lorsque r > m + 1

2
.

Le premier coefficient vaut c0
0 = 1. On peut en déduire que c0

m = 1 quelque soit la valeur
de m.

3.1.2.3 Courants conservés

Les courants conservés sont exprimés par la formule suivante dans l’espace ambiant :

PA1 ...PAr JA1...Ar = ir
r∑

s=0

[s/2]∑

i=0

[(r−s)/2]∑

j=0

(−1)s
(
r

s

)
cis c

j
r−s ×

×
(
P 2

X2

)i+j
(P.D)s−2iΦ† (P.D)r−s−2jΦ (3.17)

et dans l’espace-temps de courbure constante :

pµ1 ...pµr jµ1...µr = ir
r∑

s=0

[s/2]∑

i=0

[(r−s)/2]∑

j=0

(−1)s
(
r

s

)
cis c

j
r−s ×

×
(

p2

±R2

)i+j
(p.∇)s−2iφ∗ (p.∇)r−s−2jφ . (3.18)

La fonction génératrice ambiante (3.7) de courants conservées (A)dSn peut être écrite
de manière très explicite en termes de la fonction génératrice des coefficients crm :

c(x, y;h− r) =

∞∑

k=0

[k/2]∑

m=0

1

k!
cmk (h− r)xk−2m ym = (1 + y)

h−r
2 exp

(
x√
y

arctan
√
y

)
(3.19)

avec l’aide de

T (X + t P , P ) = c(t P · D , t2 P 2/X2 ; h− r)T (X,P ) , ∀t :
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J(X,P ) = c

(
−iP · D , P

2

X2
; h†(A)dSn

)
Φ†(X) c

(
iP · D , P

2

X2
; h(A)dSn

)
Φ(X)

= Φ†(X) c

(
−iP · ←−D ,

P 2

X2
; h†(A)dSn

)
c

(
i P · −→D ,

P 2

X2
; h(A)dSn

)
Φ(X)

= Φ†(X) c

(
i P · ←→D ,

P 2

X2
; 2−D

)
Φ(X) (3.20)

où la propriété c(x1, y ;h1)c(x2, y ;h2) = c(x1 + x2, y ;h1 + h2) et la formule (3.9) ont été
utilisées. La fonction génératrice ambiante (3.20) permet de trouver la fonction génératrice
suivante des courants conservés

j (x, p) = φ∗(x) c

(
i pµ
←→∇ µ ,±

gµνp
µpν

R2
; 1− n

)
φ(x) . (3.21)

La limite plate est retrouvée lorsque R2 → ∞ puisque c(x, y) ∼ expx quand y → 0. En
raison de (3.19), le développement

j(x, p) =
∑

r>0

1

r!
jµ1... µr(x) pµ1 . . . pµr (3.22)

de cette fonction génératrice donne le courant conservé suivant de rang r,

jµ1...µr(x) = i r
[r/2]∑

m=0

( ±1

R2

)m
cmr g(µ1µ2 . . . gµ2m−1µ2m φ

∗(x)
←→∇ µ2m+1 . . .

←→∇ µr)φ(x) , (3.23)

où les coefficients cmr correspondent à h = 1 − n (pour un champ scalaire, r = 0). Il est
possible de calculer ces coefficients cmr , les dérivées covariantes (3.15) et ces courants venant
de (3.23) quel que soit le rang. Les coefficients non-nuls pourm < (n+1)/2 peuvent s’écrire
explicitement ( pour r = 0) :

cmn =
m∑

in− 2m=0

in− 2m∑

in− 2m−1=0

...

i2∑

i1=0

1

(m− in−2m)!

(
k

2

)(
k

2
− 1

)
. . .

(
k

2
−m+ in−2m + 1

)
×

× n!

(n− 2m)!

(−1)in− 2m

(2 i1 + 1) (2 (i2 − i1) + 1) ... (2 (in− 2m − in− 2m−1) + 1)
.

Par exemple, les premiers coefficients sont :

c0
0 = 1 ,
c0

1 = 1 ,
c0

2 = 1 , c1
2 = k ,

c0
3 = 1 , c1

3 = 3k − 2 ,
c0

4 = 1 , c1
4 = 2 (3k − 4) , c2

4 = 3k (k − 2) ,
... ... ...
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et les premières dérivées s’expriment par :

∂AΦ ←→ ∇µ φ

∂A ∂BΦ ←→ ∇(µ∇ν)φ ±
k

R2
gµν φ

∂A ∂B∂CΦ ←→ ∇(µ∇ν∇ρ) φ ±
3k − 2

R2
g(µν ∇ρ)φ

∂A ∂B∂C∂DΦ ←→ ∇(µ∇ν∇ρ∇σ) φ ±
2 (3k − 4)

R2
g(µν ∇ρ∇σ)φ

+
3k (k − 2)

R4
g(µν gρσ) φ . (3.24)

...

Comme durant mon stage de master 2, la formule de double récurrence (3.16) n’avait pas pu
être résolue explicitement, j’avais entièrement écrit un programme “Maple” joint en annexe
A.8 afin de pouvoir calculer numériquement ces coefficients, les dérivées covariantes (3.15)
et ainsi trouver les courants à partir de (3.23) quelque soit le rang de manière directe et
rapide. On retrouve ainsi les premiers courants calculés classiquement (démonstration en
annexe A.7) :

jsµ = i φ∗
←→∇µφ

jsµν = −φ∗←→∇µ
←→∇ν φ ±

1 − n

R2
gµν φ

∗ φ

jsµνρ = −i φ∗←→∇µ
←→∇ν
←→∇ρ φ ± i

1 − 3n

R2
g(µν φ

∗←→∇ρ) φ

jsµνρσ = φ∗
←→∇µ
←→∇ν
←→∇ρ
←→∇σ φ ± 2

1 + 3n

R2
g(µν φ

∗←→∇ρ
←→∇σ)φ

+ 3
n2 − 1

R4
g(µν gρσ)φ

∗ φ (3.25)

...

Ils sont tous conservés par construction. Nous l’avons aussi vérifié explicitement.
Cette infinité de courants conservés permet de construire un vertex cubique d’interaction
(cohérent à l’ordre non trivial le plus bas) entre un champ scalaire dans (anti) de Sitter et
des champs de jauge de spin entier arbitraire, via le couplage minimal (section 1.1.4.3).

De manière similaire, des courants conservés sur les espaces de courbure constante
ont été décrits dans [109–113] mais les résultats présents sont plus généraux : d’une part,
les courants (3.12) sont conservés pour tout champ scalaire libre pour n’importe quelle
masse et dans n’importe quelle dimension, tandis que seul le scalaire conforme (c’est-à-
dire le singleton) a été pris en compte dans [111,112] et AdS3 était l’espace-temps de fond
dans [109,110] ; d’autre part, l’expression explicite des courants est connue à tous les ordres
de la courbure scalaire, tandis que seule la correction du premier ordre pour l’expression
plate a été fournie dans [111,112] ; troisièmement, les courants (3.12) sont conservés sur la
couche de masse dans le sens habituel de (3.11) tandis que ceux de [113] obéissent à la loi
de conservation plus faible introduite par Fronsdal [114]. Bien sûr, à proprement parler,
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la troisième observation ne doit pas être comprise comme une perte de généralité dans
les résultats précédents de [113, 115]. Nous voulons simplement souligner que les lois de
conservation habituelles pour les courants est une propriété souhaitable, car elle permet
un traitement uniforme des champs de jauge (ir)réductibles, par exemple les champs de
Fronsdal et les triplets, et il pourrait aussi simplifier l’analyse des amplitudes d’échange de
courant.

3.2 Calcul des symboles

Pour commencer, puisque RD0 et (A)dSn sont dotés d’une métrique, leur espace res-
pectivement tangent et cotangent peuvent être identifiés et on peut donc identifier les
“impulsions” avec les “vitesses”, c’est-à-dire

PA = ηAB V
B et pµ = gµνv

ν . (3.26)

La fonction génératrice ambiante des champs de jaugeH(X,P ) est maintenant une fonction
réelle sur T ∗RD0 telle que

(
XA ∂

∂XA
− PA

∂

∂PA
+ 2

)
H(X,P ) = 0 ,

(
X · ∂

∂P

)
H(X,P ) = 0 , (3.27)

et dont les transformations de jauge sont

δεH(X,P ) =

(
P · ∂

∂X

)
ε(X,P ) + O(H) , (3.28)

où ε(X,P ) est tel que
(
XA ∂

∂XA
− PA

∂

∂PA

)
ε(X,P ) = 0 ,

(
X · ∂

∂P

)
ε(X,P ) = 0 . (3.29)

Le fibré cotangent T ∗Mn peut être vu comme le sous-fibré de T ∗RD0 défini par la relation
quadrique X2 = ±R2 avec la condition de transversalité XAPA = 0.

Le produit de Moyal ambiant de deux fonctions lisses sur T ∗RD0 est défini par

ε1(X,P ) ? ε2(X,P ) = ε1(X,P ) exp

(
1

2

←−−
∂

∂PA
∧
−−−→
∂

∂XA

)
ε2(X,P ) (3.30)

où ∧ est mis pour le produit antisymétrique. Les conditions (3.29) sur ε(X,P ) sont équi-
valentes à

[X · P F, ε(X,P )] = 0 , [X2 F, ε(X,P )] = 0 (3.31)

où

[ε1(X,P ) F, ε2(X,P ) ] := ε1(X,P ) ? ε2(X,P )− ε2(X,P ) ? ε1(X,P )

= ε1(X,P ) 2 sinh

(
1

2

←−−
∂

∂PA
∧
−−−→
∂

∂XA

)
ε2(X,P ) (3.32)
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représente le commutateur de Moyal ambiant. Les conditions (3.31) exprimées en terme de
l’opérateur hermitien ε̂ symbole de Weyl de la fonction ε(X,P ) préserve le degré d’homo-
généité et commute avec X2. L’évaluation ε(x, p) des représentations ambiantes ε(X,P )
fournissent un isomorphisme entre l’espace des fonctions lisses sur T ∗Mn et le sous-espace
des fonctions lisses sur T ∗RD0 lesquelles sont soumises à (3.31). En outre, l’espace des sym-
boles obéissant à (3.31) est une sous-algèbre de l’algèbre de Weyl ambiante. Par conséquent,
le “pull-back” du produit de Moyal sur T ∗RD0 induit un produit étoilé ∗ sur le fibré cotangent
T ∗Mn tel que l’ancien isomorphisme devient un isomorphisme des algèbres associatives,
comme l’a souligné Bayen, Flato, Fronsdal, Lichnerowicz et Sternheimer dans [116]. Notons
que l’algèbre de Lie des fonctions lisses sur T ∗Mn dotée du commutateur étoilé correspon-
dant [ ∗, ] est isomorphe à l’algèbre de Lie des opérateurs hermitiens (pseudo)différentiels
surMn. L’action adjointe de l’algèbre de Lie préserve l’espace des symboles de Weyl comme
(3.27) et les transformations de jauge (3.28) peuvent être écrites comme

δεH(X,P ) =
1

2
[P 2 F, ε(X,P )] + O(H) . (3.33)

Les fonctions génératrices ambiantes des champs de Killing ε(X,P ) sont les symboles de
Weyl commutant avec les trois containtes X2, X · P et P 2 lesquelles génèrent l’algèbre
simplectique sp(2). La (sous-)algèbre de Lie de tels symboles est une algèbre de Vasiliev
de spin élevé en dehors de la couche de masse 3. (voir par exemple [56, 117, 118] pour une
introduction).

3.3 Vertex cubiques

En utilisant la notation bra-ket pour le champ scalaire Φ(X) = 〈X | Φ 〉 et Φ∗(X) =
〈Φ | X 〉, la fonction génératrice ambiante J(X,P ) des courants (3.7) est la (continuation
analytique de la) transformée de Fourier dans l’espace des moments de l’application de
Wigner associée à l’opérateur densité |Φ 〉〈Φ |, et l’interaction ambiante de Noether

� H ‖ J � :=

∫

RD0
dDX exp

(
∂

∂V A

∂

∂PA

)
H(X,V ) J(X,P )

∣∣∣∣
V=P=0

(3.34)

peut être réécrite sous une forme compacte comme dans [120] :

S1[Φ, H] = � H ‖ J � = 〈Φ | Ĥ |Φ 〉 (3.35)

où H(X,P ) est le symbole de Weyl de l’opérateur Ĥ.
L’action ambiante de Klein-Gordon

S0[Φ] = −1

2

∫

RD0
dDX

(
GAB∂AΦ∗(X) ∂BΦ(X) ± (mR)2

X2
Φ∗(X)Φ(X)

)
(3.36)

peut être réécrite de la même façon que (3.35) :

S0[Φ] = 〈Φ | Ĥ0 |Φ 〉 (3.37)

3. L’algèbre de Vasiliev est constituée de toutes les sommes de produits (contrairement aux polynômes,
ils ne commutent pas forcément) en les générateurs conformes dans la représentation du singleton c’est-à-
dire écrit comme des opérateurs différentiels.
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où l’opérateur Ĥ0 est défini par

Ĥ0 :=
1

2

[
∂2 − 1

X2
(X · ∂) (X · ∂ + D − 2)∓ (mR)2

X2

]
(3.38)

et est la représentation ambiante de l’opérateur cinétique 1
2(∇2

AdSn
− m2). Le symbole de

Weyl est égal à

H0(X,P ) :=
1

2

(
GABPAPB ∓

(mR)2

X2

)
=

1

2

(
P 2 − (X · P )2

X2
∓ (mR)2

X2

)
(3.39)

où la métrique inverse transverse GAB := ηAB−XAXB/X2 est la représentation ambiante
de la métrique inverse gµν sur (A)dSn . Remarquons que la fonction H0(X,P ) obéit aussi
à (3.27).

Par conséquent, la somme

S0[Φ] + S1[Φ, H] = 〈Φ | Ĥ0 + Ĥ |Φ 〉 (3.40)

est manifestement invariante sous l’action suivante du groupe des opérateurs unitaires sur
(A)dSn :

|Φ 〉 −→ Û |Φ 〉 , Ĥ0 + Ĥ −→ Û (Ĥ0 + Ĥ) Û−1 , (3.41)

où l’opérateur unitaire Û est généré par l’opérateur hermitien ε̂ et où les scalaires et les
champs de jauge se transforment respectivement dans la représentation fondamentale et
adjointe du groupe des opérateurs unitaires. Notons que l’action de l’opérateur Û sur Φ(X)
est en effet compatible avec la réduction dimensionnelle radiale parce que cet opérateur
unitaire préserve le degré d’homogénéité comme ε̂ le fait. Remarquons que si les dérivées
d’ordre élevé sont autorisées, alors la tour infinie de champs de spin élevé devrait être
incluse pour la consistence des transformations de jauge (3.41) au delà de l’ordre le plus
bas afin que l’algèbre des opérateurs soit fermée. L’action adjointe infinitésimale (3.41) de
l’algèbre de Lie des opérateurs hermitiens sur (A)dSn, écrite en terme du symbole de Weyl
H(X,P ), mène à la déformation suivante (3.33)

δεH(X,P ) = [H0(X,P ) +H(X,P ) F, ε(X,P )] + O(H2) . (3.42)

Une fonction génératrice ambiante des champs de Killing ε(X,P ) est un symbole de Weyl
en X[APB], dont l’opérateur correspondant est un produit des générateurs des isométries
X[A∂B] de (A)dSn, c’est-à-dire les générateurs de l’algèbre de Vasiliev de spin élevé en de-
hors de la couche de masse. Lorsque cette algèbre agit sur le module singleton de o(d−1, 2),
les trois contraintes sp(2) mentionnées à la fin de la sous-section 3.2 agissent trivialement.
Le quotient de l’algèbre de Vasiliev en dehors de la couche de masse par l’idéal bilatéral
correspondant (engendré par les éléments qui sont la somme des éléments proportionnels à
la contrainte sp(2)) est l’algèbre de Vasiliev de spin élevé sur la couche de masse (voir par
exemple [56,117,118] pour plus de détails). La situation est quelque peu différente pour le
module du champ scalaire massif engendré par les fonctions homogènes harmoniques sur
l’espace ambiant de la sous-section 1.2.4.6, parce que le module n’est pas annihilé par les
opérateurs correspondant à X2 et X · P (voir par exemple la section 3 de [121] pour une
discussion sur les algèbres des symétries du champ scalaire massif).
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Il est très tentant de conjecturer que l’action complète

S [φ, h] = S0[φ] + S1[φ, h] + S2[φ, h2] + O(h3)

devrait être interprétée commme résultat du fait de jauger des symétries rigides de champ
de matière scalaire libre, lequel généralise U(1) et les isométries d’(A)dSn, tel que les
symétries locales (3.41) généralisent U(1) local et les difféomorphismes (voir [113,119–122]
et les références ci-dedans pour plus de commentaires sur ce point de vue). Dans tous les
cas, les équations dépliées (sur la couche de masse [56, 117, 118] et en dehors de la couche
de masse [123, 124]) découlent précisément du fait de jauger la même algèbre rigide des
symétries (sur/en dehors de la couche de masse) mais un champ scalaire est inclus dans le
multiplet du champ de jauge.

Pour terminer avec une remarque périphérique, nous tenons à souligner la possibilité
d’avoir un traitement uniforme des champs de jauge et des paramètres de jauge pour les-
quels les deux fonctions génératrices ont un degré d’homogénéité égal en X et en P . Cette
possibilité pourrait s’avérer utile pour les travaux supplémentaires parce que le traitement
permettrait d’utiliser le commutateur étoilé induit sur Mn [116] afin d’écrire la forme
intrinsèque de la transformation de jauge ambiante (3.33). En outre, un traitement uni-
forme des champs et des paramètres est séduisante dans l’approche du formalisme métrique
puisque leurs fonctions génératrices peuvent être interprétées toutes les deux comme les
symboles de Weyl des opérateurs hermitiens (pseudo)différentiels sur la variété d’espace-
temps. Concrètement, notons que H(X,P ) := X2H(X,P ) obéit à

(
XA ∂

∂XA
− PA

∂

∂PA

)
H(X,P ) = 0 ,

(
X · ∂

∂P

)
H(X,P ) = 0 , (3.43)

comme suit à partir de (3.27). La même chose vaut pour

H0(X,P ) =
1

2
X2

(
GABPAPB ∓

(mR)2

X2

)
=

1

2

(
X2 P 2 − (X · P )2 ∓ (mR)2

)
(3.44)

lequel correspond au symbole de Weyl
±R2

2
gµνpµpν . On peut vérifier que

[H0(X,P ) F, ε(X,P ) ] =

(
X2 +

1

4

∂

∂P
· ∂
∂P

)
(PA∂A) ε(X,P ) (3.45)

en utilisant l’identité

2 [X2 P 2 − (X ·P )2 F, ε(X,P ) ] = X2?[P 2 F, ε(X,P ) ] ,+ [P 2 F, ε(X,P ) ]?X2 . (3.46)

Par conséquent, le commutateur étoilé entre le champ de fond gµνpµpν d’(A)dSn et toute
fonction ε(x, p) sur le fibré cotangent T ∗(A)dSn ci-dessus est égal à

1

2
[ gµνpµpν ∗, ε(x, p) ] =

(
1 ± 1

4R2
gµν

∂

∂pµ

∂

∂pν

)
(pµ∇µ) ε(x, p) . (3.47)

En redéfinissant les champs

h′(x, p) =

(
1 ± 1

4R2
gµν

∂

∂pµ

∂

∂pν

)
h(x, p) , (3.48)



76 CHAPITRE 3. Résultats

l’ordre le plus bas de la transformation de jauge

δεh(x, v) = (vµ∇µ) ε(x, v) + O(h) (3.49)

peut être exprimé directement via le produit étoilé sur (A)dSn

δεh
′(x, p) =

1

2
[ gµνpµpν ?, ε(x, p) ] + O(h′) (3.50)

en analogie avec (3.33).



Deuxième partie

Interactions de spin élevé avec un
champ scalaire de matière dans un

espace-temps de courbure constante :
fonctions à trois points
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Chapitre 4

Les espaces-temps de courbure
constante

Dans l’ensemble des chapitres de cette deuxième partie, la convention de la dimension
de l’espace d’Anti-de Sitter est modifiée par rapport à la première partie afin de faciliter
les calculs : nous travaillerons dans l’espace AdSd+1, en d’autres termes n = d+ 1.

L’univers de (anti) de Sitter (cas particulier d’espace-temps pour lequel la courbure est
constante et non nulle) est la solution la plus symétrique des équations d’Einstein avec
constante cosmologique Λ respectivement strictement (négative) positive et dans le vide
(c’est-à-dire sans matière) : Tµν = 0.

Le modèle de de Sitter est fondamental car c’est le prototype des géométries appa-
raissant dans le cadre de l’inflation cosmique. De plus, les observations ont montré que la
constante cosmologique Λ n’est pas nulle et que notre univers entrerait vraisemblablement
dans une période inflationnaire. L’espace-temps d’anti de Sitter est utilisé dans certaines
théories modernes de la gravitation (telle que la « supergravité ») ainsi que dans la corres-
pondance AdS/CFT.

4.1 Description en dimension supérieure à deux

Les différents espaces-temps à courbure constante de dimension d + 1 peuvent être
plongés dans un espace-temps plat ambiant à une dimension supplémentaire D = d + 2 :
Md+1 ⊂ Rd+2. Le lecteur souhaitant approfondir la description de ces espaces pourra
se référer, entres autres, aux articles suivants : [97, 125–136]. On classe ici (cf. également
l’article en annexe B) les différents espaces-temps à courbure constante en fonction de la
signature de la métrique de l’espace ambiant :
• Signature euclidienne : Quand le nombre de directions de genre temps (signes

négatifs) dans la signature de la métrique ambiante η est égale à zéro (d + 2 signes
positifs), la quadrique 1 X2 = R2 est une hypersphère, Md+1 = Sd+1, laquelle peut

1. Rappellons que les lettres majuscules X sont utilisées pour désigner les coordonnées ambiantes tandis
que les lettres minuscules x concernent les coordonnées de l’espace-temps proprement dit.
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être vue comme la rotation de Wick (R → iR) de l’espace de de Sitter dSd+1 (dé-
fini ci-dessous). L’hypersphère est donc parfois appelée espace de de Sitter euclidien
EdSd+1.
• Signature lorentzienne : Quand le nombre de directions de genre temps dans la

signature de la métrique ambiante η est égale à un : (−, +, · · · +︸ ︷︷ ︸
d+1

) , deux quadriques

sont possibles :

X2 = −(X0)2 +
d+1∑

i=1

(Xi)2 = ±R2 . (4.1)

La métrique de ces espaces est induite à partir de la métrique ambiante :

ds2
Rd+1,1 = −(dX0)2 +

d+1∑

i=1

(dXi)2 (4.2)

et par construction, leur groupe d’isométries est donc O(d+1, 1). Les deux quadriques
sont des hyperboloïdes 2 :
– l’hyperboloïde à une nappe X2 = +R2 est l’espace-temps de de Sitter (cf. figure 3

4.1),Md+1 = dSd+1,

Figure 4.1 – L’espace-temps de de Sitter à deux dimensions dS2 plongé dans l’espace-
temps de Minkowski à trois dimensions.

– tandis que l’hyperboloïde à deux nappes X2 = −R2 est (les deux copies de) l’espace
hyperbolique (cf. figure 4.2),Md+1 = Hd+1 également appelé espace d’anti de Sitter
euclidien EAdSd+1 (car la signature a un signe négatif en moins par rapport à la
signature de l’espace d’anti de Sitter).

• Signature conforme : Quand le nombre de directions de genre temps dans la
signature de la métrique ambiante η est égale à deux : (−, −, +, · · · +︸ ︷︷ ︸

d

), une seule

2. Un cercle dans l’espace euclidien se transforme (sous une rotation de Wick) en hyperbole dans
l’espace-temps de Minkowski. De la même façon, une hypersphère dans l’espace euclidien se transforme en
hyperboloïde dans l’espace-temps de Minkowski.

3. A deux dimensions, les représentations des espaces de de Sitter et d’anti de Sitter sont semblables,
bien qu’orientées différemment.
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Figure 4.2 – L’espace-temps hyperbolique à deux dimensions H2 plongé dans un espace
ambiant à trois dimensions.

quadrique est pertinente :

X2 = − (X0)2 − (X1)2 +

d+1∑

i=2

(Xi)2 = −R2 . (4.3)

Cette hyperboloïde à une nappe est l’espace-temps d’anti de Sitter,Md+1 = AdSd+1,
dont la rotation de Wick redonne (les deux copies de) l’espace hyperbolique précédent
Hd+1, c’est-à-dire que les deux nappes sont nécessaires pour correspondre à l’ensemble
d’EAdSd+1.
La métrique est induite à partir de la métrique ambiante :

ds2
Rd,2 = −(dX0)2 − (dX1)2 +

d+1∑

i=2

(dXi)2 (4.4)

avec i = 2, .., d+ 1 et, par construction, son groupe d’isométries est O(d, 2).

4.2 Cas particuliers à quatre dimensions

Dans cette section, on considère n = d+1 = 4 afin de simplifier les expressions explicites
de la paramétrisation et de la métrique des espaces-temps.

4.2.1 Espace-temps de de Sitter dS4

Pour l’espace de de Sitter à d+ 1 = 4 dimensions, on pose :





X0 = R sinhx0

X1 = R coshx0 cosx1

X2 = R coshx0 sinx1 cosx2

X3 = R coshx0 sinx1 sinx2 cosx3

X4 = R coshx0 sinx1 sinx2 sinx3

avec Xi les coordonnées cartésiennes dans l’espace-temps plat R4,1 et xi les coordonnées
sur l’hyperboloïde.
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Les hypersurfaces d’équation x0 = constante (et en particulier, x0 = 0 ce qui implique
X0 = 0) sont des hypersphères S3. De même, les surfaces d’équations x0 = constante et
x1 = constante (en particulier, x0 = 0 et x1 = 0 ce qui implique X0 = X1 = 0) sont des
sphères S2. Nous avons des cosinus et des sinus hyperboliques dans la première colonne à
la place des cosinus et sinus à cause de la signature de x0.
La métrique à quatre dimensions est :

ds2
dS4

= R2
[
−(dx0)2 + (coshx0)2 ds2

S3
]

où on retrouve les expressions de la métrique de l’hypersphère unité :

ds2
S3 = (dx1)2 + (sinx1)2ds2

S2

et de la sphère unité :

ds2
S2 = (dx2)2 + (sinx2)2 (dx3)2 .

4.2.2 Espace-temps d’anti de Sitter AdS4

Pour l’espace-temps d’anti de Sitter à d+ 1 = 4 dimensions, on pose :




X0 = R coshx0 cosx1

X1 = R coshx0 sinx1

X2 = R sinhx0 cosx2

X3 = R sinhx0 sinx2 cosx3

X4 = R sinhx0 sinx2 sinx3

avec Xi les coordonnées dans l’espace-temps plat et xi les coordonnées sur l’hyperbo-
loïde. Ce choix de coordonnées est assez différent des coordonnées pour dS4 puisque
x0 = constante décrit maintenant une hypersurface S1 × S2.
La métrique est :

ds2
AdS4

= R2
{

(dx0)2 − (coshx0)2 (dx1)2 + (sinhx0)2
[
(dx2)2 + (sinx2)2 (dx3)2

] }
.

4.3 Les coordonnées globales et de Poincaré de l’espace hy-
perbolique

Pour AdSd+1, en plus des coordonnées habituelles x et des coordonnées ambiantes X,
il est souvent utile d’utiliser les coordonnées globales (r, θ,Ωi) :





X0 = R cosh r cos θ
X i = R sinh rΩi

Xd+1 = R cosh r sin θ
(4.5)

avec i = 1, · · · , d et
d∑
i=1

Ω2
i = 1 où Ωi sont les coordonnées sur l’hypersphère Sd (0 ≤ r et

0 ≤ θ ≤ 2π). La métrique en coordonnées globales et en dimension quelconque d+ 1 est :

ds2
AdSd+1

= R2 (− cosh2 r dθ2 + dr2 + sinh2 r ds2
Sd−1) (4.6)
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où ds2
Sd−1 est la métrique de l’hypersphère unité de dimension d− 1.

L’analogue euclidien sont les coordonnées globales (r,Ω) de l’espace hyperbolique Hd+1.
Sa métrique y prend la forme :

ds2
Hd+1

= dr2 + R2 sinh2
( r
R

)
ds2

Sd . (4.7)

Le déterminant de la métrique vaut g =
(
R2 sinh2 r

R

)d
et sera utilisé ultérieurement pour

calculer le volume d’une boule dans l’espace hyperbolique.
Il est plus facile de visualiser un espace courbe comme l’espace hyperbolique par des

sections plates. Nous allons par la suite nous concentrer sur la nappe supérieure de l’espace
hyperbolique Hd+1 ce qui correspond seulement à une des deux cartes non triviales de
l’espace-temps d’anti de Sitter euclidien EAdSd+1 [130]. Les coordonnées les plus utilisées
sont celles de Poincaré 4 (z, ~x) car elles simplifient techniquement les calculs et exhibent
des sections plates de l’espace hyperbolique :





z =
1

R

1

X−

~x =
1

R

~X

X−

(4.8)

avec X± =
X0 ±Xd+1

R2
les coordonnées du cône de lumière dans l’espace ambiant 5 (cf.

figure 4.3). On en déduit alors X = (X+, X−, ~X) =

(
z2 + ~x2

z
,

1

z
,
~x

z

)
.

Figure 4.3 – Des hyperboles avec les axes X+ et X−.

4. D’autres coordonnées sont parfois employées telles que les coordonnées globales conformes ou semi-
globales mais nous ne les détaillerons pas ici [125].

5. La quadrique en coordonnées du cône de lumière est −X+X− +
d∑
i=1

(Xi)2 = −R2 et la métrique

ambiante s’écrit ds2 = − dX+ dX− + dXidXi.
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La métrique de l’espace hyperbolique dans les coordonnées de Poincaré s’écrit de la manière
suivante :

ds2
Hd+1

= R2

(
dz2 + (d~x)2

z2

)
. (4.9)

On voit ainsi que Hd+1 est conformément plat et que les hypersurfaces z = constante dé-

crivent des sections plates (horosphères) Rd. On remarque que la métrique gµν =
( z
R

)2
δµν

ne dépend pas de x, mais seulement de z et le déterminant est g = det(gµν) =
( z
R

)−2(d+2)
.

Le demi-espace supérieur de Poincaré (“Upper Half Space” en anglais) z > 0 (cf. figure 4.4)
représente la nappe supérieure 6 de l’hyperboloïde. Les géodésiques sont les demi-droites
(au sens euclidien) verticales : −→x = cte (en rouge) et les demi-cercles (au sens euclidien)
perpendiculaires à l’axe des abscisses : z = 0 (en bleu).

Figure 4.4 – Les géodésiques dans le demi-espace supérieur de Poincaré.

Le disque de Poincaré (cf. figure 4.5) est construit à partir du demi-plan supérieur de

Figure 4.5 – Le disque de Poincaré

Poincaré dans lequel on rejoint les deux extrémités de l’axe des −→x (pour d = 1), ce qui crée
un point à l’infini p∞ = (∞,∞) défini aussi par X− = 0. Le bord du disque de Poincaré
(l’hyperplan z = 0 du demi-espace supérieur de Poincaré et le point à l’infini) correspond
au bord conforme ∂Hd+1 de l’espace hyperbolique Hd+1.

Cette représentation est également utilisée car même si elle est moins simple à vi-
sualiser (elle ne préserve pas les produits scalaires), elle respecte la topologie de l’espace

6. L’espace EAdSd+1 correspond aux deux nappes de l’hyperboloïde et donc aux deux demi-espaces de
Poincaré.
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hyperbolique et donne donc une meilleure intuition globale et qualitative de cet espace (en
particulier les subtilités liées au point à l’infini). Topologiquement, l’espace hyperbolique
Hd+1

∼= Bd+1 est une boule tandis que son bord conforme ∂Hd+1
∼= Sd est une hyper-

sphère. Sur la figure 4.5, on constate que l’intérieur du disque de Poincaré correspond au
plan hyperbolique et que le cercle est son bord conforme.

4.4 Distances cordale et géodésique

Dans ces espaces, il est intéressant de calculer différentes grandeurs utilisées dans le
chapitre suivant [47,125,135,137].

La distance géodésique entre deux points A et B de l’espace hyperbolique est analogue
à celle du cercle (cf. figure 4.6) et est noté dAB ou tout simplement d. Elle correspond à la
longueur du segment géodésique reliant A à B.

Figure 4.6 – Les distances cordales cAB en bleu et géodésiques dAB en rouge sur un cercle
et sur une hyperbole.

L’angle hyperbolique αAB entre A et B est défini par analogie avec le cercle :

α = αAB =
dAB
R

. (4.10)

La distance cordale cAB entre A et B est définie comme la longueur du segment de droite
(la corde) reliant A et B dans l’espace ambiant :

c = cAB = ||XA − XB|| (4.11)

où XA sont les coordonnées ambiantes du point A se situant dans l’espace hyperbolique.
Par analogie avec le cercle, on peut facilement voir que XA ·XB = −R2 coshαAB. On en
déduit que

c2 = c2
AB = (XA − XB)2 = 2R2 (coshαAB − 1) = 2R2 (uAB − 1) (4.12)
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avec

u = uAB = −XA ·XB

R2
= coshαAB =

1

R2

z2
A + z2

B + ( ~xA − ~xB)2

2zAzB
. (4.13)

On a donc les relations utiles pour l’arc hyperbolique :

dAB = R arcoshuAB = ln

(
uAB +

√
u2
AB − 1

)
. (4.14)

Une autre grandeur (érronément appelée distance cordale dans certaines références)
couramment utilisée est le demi-carré de la distance cordale :

ξ = ξAB =
1

2
c2
AB = R2(uAB − 1) =

1

2
(XA −XB)2 . (4.15)

Dans la suite des calculs, le rayon de courbure sera fixé égal à l’unité R = 1.
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Chapitre 5

La correspondance holographique

Ce chapitre fournit une introduction qualitative à la problématique des chapitres sui-
vants : les calculs des propagateurs du champ scalaire et de fonctions à trois points l’in-
cluant. En effet, un objectif futur de cette étude est de tester la correspondance hologra-
phique à l’ordre cubique puis quartique dans les cas très particulier de fonctions à trois
points entre deux opérateurs primaires scalaires de poids conforme quelconque et un cou-
rant conservé de rang arbitraire, et de fonctions à quatre points entre quatre opérateurs
scalaires.

Dans la correspondance AdS/CFT de spin élevé, une théorie quantique de la gravitation
incluant des spins élevés [15,16,34–36,138] dans l’espace-temps d’anti de Sitter (fortement
courbé c’est-à-dire avec un rayon R petit) est duale à une théorie quantique ordinaire
conforme (CFT pour “conformal field theory”) faiblement couplée 1, à une dimension de
moins. Il sera donc nécessaire de comparer notre calcul de la fonction à trois (et quatre)
points dans l’espace-temps d’anti de Sitter à d+1 dimensions à celui obtenu dans la théorie
conforme au bord à d dimensions. Avant de présenter les détails techniques dans les deux
chapitres suivants, nous proposons une introduction qualitative en présentant seulement
les concepts principaux à l’aide des diagrammes de Witten.

Dans les diagrammes de Witten qui sont un analogue de ceux de Feynman lorsqu’on se
trouve dans l’espace-temps d’anti de Sitter, le bord conforme de l’espace AdS est représenté
par un cercle tandis que l’espace-temps lui-même est le disque intérieur (figure 5.1) (comme
expliqué dans la sous-section 4.3).

Figure 5.1 – L’espace AdS et son bord

1. autrement dit presque libre ce qui implique qu’il y ait une infinité de symétries.
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Les points de AdS ont pour coordonnées ambiantes X qui correspondent à x = (z, ~x) dans

Figure 5.2 – Les points dans l’intérieur et au bord

les coordonnées de Poincaré et les coordonnées des points au bord sont notés X ′i en ambiant
correspondant à ~x′i (figure 5.2 et table 5.1).

Points Espace AdSd+1 Bord conforme : ∂AdSd+1

Coordonnées ambiantes X X ′i

Indices (ambiants) A M

Coordonnées de Poincaré x = (z, ~x) ~x′i

Table 5.1 – Les points et leurs coordonnées

5.1 Théorie dans AdS

Dans l’espace-temps d’anti de Sitter, on s’intéressera à un champ scalaire de masse m
noté φ et Φ est son représentant ambiant. La propagation libre d’un tel champ scalaire
est déterminée par le propagateur de Feynman dans AdS représenté par une ligne fléchée
(figure 5.3).

Figure 5.3 – Le propagateur du champ scalaire dans l’intérieur

La valeur au bord du champ scalaire est φ0(~x) = lim
z→0

(z∆ φ(z, ~x)). Le champ φ dans
l’intérieur se transforme comme un champ scalaire ce qui induit comme valeur au bord
une densité conforme φ0 de poids conforme ∆. On peut interpréter la valeur d’un champ
scalaire φ(z, ~x) en un point de l’intérieur d’AdS comme le résultat de la propagation de sa
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valeur au bord φ0(~x′) via ce qui s’appelle un propagateur de Witten qu’on peut représenter
par une ligne fléchée joignant un point de l’intérieur et un point du bord comme sur la
figure 5.4.

Figure 5.4 – Le propagateur de Witten du champ scalaire

La théorie, qui sera considérée par la suite, contiendra des champs tensoriels symétriques
dans AdS. Plus précisément, le champ de jauge dans AdS sera noté hµ1···µs et HA1···As pour
son représentant ambiant. Son propagateur dans AdS sera représenté par une ligne ondulée
comme sur la figure 5.5. De la même façon que pour le champ scalaire, sa valeur au bord

Figure 5.5 – Le propagateur d’un champ de jauge dans l’intérieur

est notée h0 et on peut lui associer un propagateur de Witten.
Le vertex cubique (3.34) entre deux champs scalaires et un champ de jauge est représenté
par le diagramme de Feynman sur la figure 5.6.

Figure 5.6 – Le vertex cubique
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5.2 Théorie conforme des champs

Dans la correspondance AdS/CFT, les diagrammes de Witten du côté AdS sont en
correspondance univoque avec certains diagrammes de Feynman d’une théorie conforme
des champs vivant au bord d’AdS.

Dans la théorie conforme que nous considérons, le seul champ présent est un champ
scalaire de masse nulle et de poids conforme ∆ noté ϕ(x′) vivant au bord et dont le
propagateur (entre deux points du bord) est représenté par une ligne fléchée fine (figure
5.7).

Figure 5.7 – Le propagateur du champ scalaire au bord

On s’intéressera en particulier aux fonctions de corrélation des courants O(s) de la théorie
conforme (donc les courants seront de trace nulle). Puisque ces courants sont bilinéaires en
ϕ, ils peuvent être représentés comme dans la figure 5.8.

Figure 5.8 – Le courant bilinéaire au bord

En effet, dans la correspondance AdS/CFT, l’opérateur primaire conforme O(0)(ϕ) =

ϕ2(~x′i) est dual au champ scalaire φ(x) dans AdS et est couplé avec sa valeur au bord
φ0(~x′i). Dans le cas général de rang s, l’opérateur O(s)(ϕ) ∝ ϕ(~x′i)

←→
∂µ1 · · ·

←→
∂µsϕ(~x′i) est dual

au champ de jauge h(x) dans AdS et est couplé avec sa valeur au bord hµ1···µs0 (~x′i).
Nous considérerons en particulier les fonctions de corrélations à trois points entre deux

Figure 5.9 – Diagramme de Feynman à une boucle de la théorie conforme libre
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opérateurs scalaires O(0) et un courant conforme O(s) de rang s qui peuvent être repré-
sentées par le diagramme de Feynman à une boucle lorsque la théorie conforme est libre
(figure 5.9).

Les notations des champs sont résumées dans le tableau 5.2.

Espace Espace ambiant Espace intérieur Valeur au bord Théorie conforme au bord

Espace RD0 AdSd+1 ∂AdSd+1 ∂AdSd+1

Coordonnées XA xµ = (z, ~x) ~x′ ~x′

Champ scalaire Φ(X) φ(x) φ0(x) ϕ(~x′)

Champ de jauge H(X) h(x) h0(~x′) O(~x′)

Table 5.2 – Dictionnaire Espaces ambiant/intérieur/bord

5.3 Fonction de partition

De façon plus technique, la correspondance holographique est exprimée par la relation
de Gubser-Klebanov-Polyakov-Witten [126, 141]. Elle relie, dans notre cas, la fonction gé-
nératrice des corrélateurs des courants O au bord à la fonction de partition de la théorie
de spin élévé dans l’intérieur AdS pour un problème de Dirichlet. Plus précisément, on a
l’égalité des intégrales de chemin suivantes :∫

φ|∂AdS =φ0

Dφ e−SAdS [φ] = Z[φ0] =

∫
Dϕe−SCFT [ϕ] +

∫
O(ϕ)·φ0 (5.1)

où SAdS et SCFT sont respectivement les actions des théories dans l’intérieur et au bord.
Dans le cas considéré ici, pour le champ scalaire dans AdS, on a à l’ordre quadratique :

SAdS [φ] =

∫

AdS

dd+1x
√
g

[
1

2
gµν ∂µφ∂νφ +

1

2
m2 φ2

]
(5.2)

alors que pour le champ scalaire conforme au bord, l’action à l’ordre quadratique s’exprime
par :

SCFT [ϕ] =

∫

∂AdS

ddx
1

2
ηµν ∂µϕ∂νϕ . (5.3)

5.4 Perspectives

5.4.1 Fonctions à trois points

Les travaux en cours exposés dans les deux chapitres suivants visent à calculer la fonc-
tion à trois points à partir du vertex cubique obtenu dans la partie précédente et des
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propagateurs de Witten. Concrètement on voudrait calculer le diagramme de Witten de la
figure 5.10 et le comparer au diagramme de la figure 5.9.

Figure 5.10 – La fonction à trois points

Il serait également intéressant de généraliser ces résultats pour des triplets de spin
quelconque grâce aux vertex sur la couche de masse [41].

5.4.2 Diagrammes d’échanges

Un objectif plus lointain est de réaliser un test de la correspondance holographique
à l’ordre quartique. Pour cela, il sera nécessaire de calculer la fonction à quatre points
pour quatre champs scalaires. En particulier, on souhaite calculer le diagramme d’échange

Figure 5.11 – Diagramme d’échange

représenté sur la figure 5.11. Il faudra donc connaitre explicitement en formalisme métrique
le propagateur pour des champs de jauge de spin arbitraire s. Une piste potentielle est de
généraliser les travaux sur le propagateur (voir [140] et références ci-dedans). Enfin, il sera
nécessaire de la comparer à la fonction à quatre points de la CFT (cf. figure 5.12).
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Figure 5.12 – Diagramme de Feynman de la CFT
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Chapitre 6

Les propagateurs du champ scalaire

Dans l’ensemble de ce chapitre, on travaillera avec des variétés riemanniennes (au sens
de signature euclidienne) et uniquement avec des champs scalaires. Les propagateurs sont
traités dans différents articles [138, 142–147] mais la présentation qui suit consistera à
retrouver tous les résultats indépendamment pas à pas.

6.1 La fonction de Green et le noyau de Poisson

La fonction de Green G est définie de la manière suivante :

DG = δ (6.1)

où D est un opérateur différentiel et δ le delta de Dirac. Pour une condition de Dirichlet,
on pose G|∂M = 0. Le propagateur “intérieur-intérieur” (“bulk-to-bulk” en anglais) ou “de
Feynman” est le pendant lorentzien de la fonction de Green (euclidienne). Nous utiliserons
D = ∆−m2 comme opérateur différentiel. Dans le cas libre, nous obtenons donc

{
(∆−m2)G = δ

G|∂M = 0
(6.2)

oùM est une variété riemannienne et ∂M son bord. Dans cette sous-section, le bord est
compact tandis que dans la suite de ce chapitre, nous travaillerons avecM l’espace hyper-
bolique dont le bord conforme est à l’infini. On parlera donc de comportement asymptotique
plutôt que de valeur au bord.

Le noyau de Poisson K pour les mathématiciens correspond au propagateur “intérieur-
bord” (“bulk-to-boundary” en anglais) ou “de Witten”, pour les physiciens défini par :

{
(∆−m2)K = 0

K|∂M = δ ,
(6.3)

encore avec une condition de Dirichlet.
On peut démontrer que le noyau de Poisson est la dérivée normale sur le bord de la fonction
de Green :

K =
∂G

∂n

∣∣∣∣
∂M

. (6.4)



96 CHAPITRE 6. Les propagateurs du champ scalaire

Considérons un champ scalaire surM obéissant à l’équation de Helmholtz 1 avec source
(∆−m2)φ = j. Afin d’avoir un problème bien posé, il est nécessaire de fixer une condition
au bord. On utilise ici la condition de Dirichlet, c’est-à-dire qu’on fixe la valeur du champ
scalaire au bord 2

{
(∆−m2)φ = j

φ|∂M = φ0
(6.5)

où j est une source et φ0 la valeur au bord du champ scalaire. La solution est unique :

φ(x) =

∫

M

dy G(x− y) j(y) +

∮

∂M

K(x; z)φ0(z) dz (6.6)

où x, y ∈M et z ∈ ∂M.

6.2 Le propagateur “intérieur-intérieur”

On cherche à calculer la fonction de Green précédente dans l’espace hyperboliqueM =
Hd+1.

6.2.1 Equations générales

Le champ scalaire φ(x) solution de l’équation de Helmholtz avec source et s’annulant sur
le bord (φ0 = 0) est la propagation de la source j(y) en un point x de l’espace hyperbolique
Hd+1 par le propagateur “intérieur-intérieur” G(x, y)

φ(x) =

∫

Hd+1

G(x, y) j(y) dV (6.7)

où x et y les coordonnées de deux points dans Hd+1, et avec un élément de volume dV =√
g dd+1y où g est la métrique de Hd+1. Pour trouver l’expression du propagateur “intérieur-

intérieur”, on doit résoudre l’équation

(∆−m2)G(x, y) = δ(x, y) :=
1√
g
δ(x− y) (6.8)

où δ(x− y) est la densité de Dirac “usuelle” dont l’intégrale sur toutes les coordonnées est
normalisée à l’unité. Ce choix de normalisation (et l’annulation de G à l’infini) détermine
de manière unique la fonction de Green.

1. Le signe devant m2 provient de l’équation de Klein-Gordon (1.2) après une rotation de Wick. Ce-
pendant, ce signe est l’opposé de la forme traditionnelle de l’équation de Helmholtz car seules les valeurs
négatives de m2 sont admissibles pour des solutions normalisables.

2. Il existe également la condition de Neumann qui fixe la valeur de la dérivée du champ scalaire au
bord ou encore la condition mixte.
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6.2.1.1 Cas de masse nulle

Commençons avec la fonction de Green de l’équation sans masse de Laplace :

∆G(x, y) = δ(x, y) . (6.9)

L’intégrale sur une boule de dimension d + 1, de rayon r et centrée sur le point de coor-
données y est :

∫

Bd+1

∆G(x, y) dV =

∫

Bd+1

1√
g
δ(x− y)

√
g dd+1y

⇒
∫

Bd+1

(
−→∇ · −→∇)G(x, y) dV =

∫

Bd+1

δ(x− y) dd+1y = 1 (6.10)

puisque le point y est le centre de la boule. Grâce au théorème de la divergence, le terme
de gauche de (6.10) s’écrit :

∫

Bd+1

(
−→∇ · −→∇)G(x, y) dV =

∫

Sd = ∂(Bd+1)

−→∇G(x, y) · −→n dS (6.11)

avec l’élément de surface dS =
√
γ ddx′, γ étant la métrique sur le bord, x′ les coordonnées

sur le bord de la boule (une sphère de dimension d), et ~n le vecteur normal à la boule qui
correspond donc à ~er.

Etant donné que l’espace est isotrope, la fonction de Green ne dépend que de la distance
entre le point d’observation A de coordonnées x et la source B de coordonnées y, c’est-à-
dire de la distance géodésique dAB entre ces deux points. De plus, il est toujours possible
de mettre la source à l’origine par symétrie de translation. La fonction de Green ne dépend

donc que de la distance géodésique dAB = r donc
−→∇G(x, y) ·−→n =

dG(r)

dr
. On déduit alors

l’équation différentielle ordinaire du premier ordre définissant le propagateur d’un champ
scalaire sans masse

dG(r)

dr
ASd(r) = 1 (6.12)

où
∫
Sd dS = ASd est l’aire d’une hypersphère de dimension d et de rayon r et G tend vers

0 à l’infini. Ce type de formulation permet un traitement uniforme des espaces euclidien et
hyperbolique dont on donne les formules d’aire dans la sous-section suivante.

6.2.1.2 Aires et volumes

En espace euclidien Rd+1, l’“aire” (plus précisemment l’hypervolume) du bord d’une
boule de dimension d+ 1 (autrement dit une sphère de dimension d) et de rayon r est

ASd=n−1(r) = 2
πn/2

Γ(n2 )
rn−1 (6.13)
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avec d > 1, que l’on peut redémontrer en dérivant le volume : A =
dV

dr
. Le volume vaut

VSd(r) =
πn/2

Γ(n2 + 1)
rn.

En espace hyperbolique Hd+1, l’aire d’une hypersphère de dimension d est

ASd(r) = 2
πn/2

Γ(n2 )

(
R sinh

( r
R

))n−1
(6.14)

que l’on redérive à partir de son volume VBn=d+1
(r) = 2

πn/2

Γ(n2 )
Rn

r
R∫

0

(sinhx)n−1 dx.

6.2.1.3 Cas massif

Pour trouver la constante de normalisation dans le cas de l’équation de Helmholtz (6.8)
(avec une masse non nulle), nous prenons la limite de cette équation avec l’expression
explicite du propagateur quand r tend vers zéro, c’est-à-dire se ramener au cas où la masse
est nulle. Une autre méthode consisterait à résoudre l’analogue de l’équation (6.12) :

dG(r)

dr
ASd(r)−m2

∫ r

0
G(x)ASd(x)dx = 1 (6.15)

avec le propagateur tendant vers zéro à l’infini. Notons que cette équation présente le
défaut d’être intégro-différentiel, mais elle a l’avantage de prendre en compte le choix de
normalisation de la fonction de Green.

Concrètement on préférera résoudre l’équation homogène c’est-à-dire l’équation (6.8)
en x 6= y, qui s’appelle l’équation de Helmholtz :

(∆−m2)G(x, y) = 0 (6.16)

et en tenant compte du comportement limite du propagateur “intérieur-intérieur” G lorsque
x et y coïncident et lorsqu’ils sont séparés par une distance infinie.

6.2.2 Solution dans l’espace euclidien plat

Considérons l’espace euclidien Rd+1 et rappelons que le laplacien est défini par ∆φ =
1√
g
∂µ(
√
g gµν ∂ν). En coordonnées sphériques, l’équation (6.16) devient

(
d2

dr2
+
n− 1

r

d

dr
− m2

)
G(r;m2) = 0 (6.17)

et en tenant compte du comportement limite du propagateur “intérieur-intérieur” G en
r = 0 et r =∞. A savoir :

– quand la distance r tend vers l’infini, le propagateur s’annule (pour n > 2 ou diverge
pour n = 2)
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– quand la distance r tend vers zéro, le propagateur diverge.
Nous allons procéder à la démonstration du cas le plus général, c’est-à-dire dans le cas
massif et en dimension quelconque. Pour cela, il est plus pédagogique de s’intéresser dans
un premier temps aux cas particuliers.

6.2.2.1 Cas de masse nulle

On pose m2 = 0.

En dimension deux
Lorsque le nombre de dimensions de l’espace euclidien est n = 2, l’équation est

(
d2

dr2
+

1

r

d

dr

)
Gn=2(r; 0) = δ(r) . (6.18)

La solution s’écrit simplement

Gn=2(r; 0) = K1 ln r +K2 (6.19)

où K1 est la constante de normalisation. En utilisant (6.12), K1 =
1

AS1(r = 1)
=

1

2π
car

Γ(1) = 1 et on peut poser K2 = 0 ce qui donne

Gn=2(r; 0) =
1

2π
ln r . (6.20)

On remarque que cette fonction ne s’annule pas quand r tend vers l’infini. A deux dimen-
sions, la fonction de Green de l’équation de Laplace a donc une “divergence infrarouge”.

En dimension supérieure à deux
Dans le cas où la masse est toujours nulle mais pour un nombre de dimensions quelconque
n = d+ 1 > 2, on obtient

Gn>2(r; 0) = K1
1

rn−2
+ K2 (6.21)

avec K1 =
1

(2− n)ASd(r = 1)
et comme précédemment, K2 = 0 car G s’annule à l’infini :

Gn>2(r; 0) =
1

(2− n)

Γ(n2 )

2π
n
2

1

rn−2
. (6.22)

6.2.2.2 Cas massif

Dans le cas massif, l’équation (6.17) peut s’écrire :
(
r2 d2

dr2
+ (n− 1) r

d

dr
− m2r2

)
G(r;m2) = 0 . (6.23)
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Rappels sur les fonctions de Hankel
Cette dernière peut être reliée à l’équation de Hankel de première espèce :

(
x2 d2

dx2
+ x

d

dx
+ (x2 − ν2)

)
y(x) = 0 . (6.24)

La solution générale est donc

y(x) = C1H
(1)
ν (x) + C2H

(2)
ν (x) (6.25)

avec C1 et C2 deux constantes de normalisation etH(1)
ν (x) = Jν(x) + iYν(x) est la fonction

de Hankel avec Jν et Yν respectivement les fonctions de Bessel de première et de seconde
espèce. La seconde solution oscillant, on pose C2 = 0.
La fonction spéciale de Bessel de première espèce Jν(x est solution y(x) de l’équation
suivante :

[
x2 d2

dx2
+ x

d

dx
+ (x2 − ν2)

]
y(x) = 0 (6.26)

où ν est un nombre complexe, entier ou demi-entier, et s’exprime explicitement par

Jν(x) =
(x

2

)ν ∞∑

p=0

(−1)p

22p p! (ν + p)!
x2p . (6.27)

La fonction de Bessel de seconde espèce (appelée aussi fonction de Neumann) s’exprime à
partir de Jν :

Yν(x) := lim
λ→ν

Jλ(x) cos(λπ) − J−λ(x)

sin(λπ)
. (6.28)

Solution en dimension quelconque
Dans (6.24), on fait le changement de variable x = imr :

(
r2 d2

dr2
+ r

d

dr
+ (−m2r2 − ν2)

)
H(1)
ν (imr) = 0 (6.29)

puis on pose
H(1)
ν (imr) = C r−αG(imr;m2) (6.30)

d’où
(
r2 d2

dr2
+ (1− 2α)r

d

dr
+ (−m2r2 − ν2 + α2)

)
C r−αG(r;m2) = 0 . (6.31)

Pour r 6= 0, on identifie les paramètres avec ceux de l’équation (6.23) : α = 1 − n

2
et on

prend ν = −α pour qu’il soit positif (car n sera toujours supérieur à 2). La solution de
l’équation de départ (6.23) est alors

G(r;m2) =
1

C
r−ν H(1)

ν (imr) (6.32)
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avec
1

C
= − i

4

(
im

2π

)ν
car on doit retouver le cas de masse nulle et quand r → 0 on a :

r−ν H(1)
ν (r)→ −iΓ(ν)

π

(
im

2

)−ν
r−2ν .

En conclusion,

G(r;m2) = − i
4

(
im

2π

)ν
r−ν H(1)

ν (imr) . (6.33)

Eventuellement, la solution peut être réécrite sans argument imaginaire en utilisant
les fonctions de Bessel modifiées de première espèce In(x) = i−n Jn(ix). De plus, il est
possible de trouver une relation de récurrence reliant la solution en dimension n à celle en
dimension n+ 2 [125].

Comme nous venons de le voir, le problème en espace plat est relativement direct.
Intéressons-nous maintenant à la résolution de cette équation dans l’espace hyperbolique.

6.2.3 Solution dans l’espace hyperbolique

Rappelons que la métrique de l’espace hyperbolique Hd+1 est (4.7) :

ds2
Hd+1

= dr2 + sinh2(r) ds2
Sd (6.34)

avec le rayon de courbure égale à l’unité R = 1. Le déterminant de la métrique vaut donc
ici g = (sinh2 r)d.

L’équation de Helmholtz (6.16) s’écrit dans ce cas :
(
d2

dr2
+ (n− 1) cotanh(r)

d

dr
− m2

)
G(r;m2) = 0 (6.35)

puis en faisant le changement de variables suivant u = uAB = cosh r de (4.13), elle
devient : (

−(1− u2)
d2

du2
+ nu

d

du
− m2

)
G(u;m2) = 0 . (6.36)

Un second changement de variable v =
1 − u

2
nous permet d’obtenir l’équation suivante :

−
(
v(1− v)

d2

dv2
+
(n

2
− n v

) d

dv
+ m2

)
G(v;m2) = 0 . (6.37)

6.2.3.1 En dimension deux

Un cas particulier de cette équation est l’équation de Legendre de seconde espèce pour
n = 2 dimensions :

(
(1− u2)

d2

du2
− 2u

d

du
+ ν(ν + 1)

)
Qν(u) = 0 (6.38)
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avec m2 = ν(ν+1), ν = −1

2
±
√

1 + 4m2

2
et Qν(u) est la fonction de Legendre de seconde

espèce. La solution de ce cas particulier est donc

Gn=2(r;m2) = KQν(cosh r) (6.39)

avec K = − 1

2π
[125] :

Gn=2(r;m2) = − 1

2π
Qν(cosh r) . (6.40)

6.2.3.2 En dimension quelconque d+ 1

On cherche maintenant à résoudre l’équation (6.37) dont la forme générale est celle de
l’équation hypergéométrique :

(
v(1− v)

d2

dv2
+ (c− (a+ b+ 1)v)

d

dv
− ab

)
y(v) = 0 . (6.41)

Par identification des coefficients avec (6.37), on peut choisir a := ∆+ := ∆ =

d +
√
d2 + 4m2

2
, b = ∆ − d = ∆− avec ∆± les poids conformes de l’opérateur dual, et

c = n
2 . On remarque donc que la somme des deux poids conformes vaut ∆ + ∆− = d et

qu’il y a une relation entre la masse au carré, le poids conforme et la dimension de l’espace :
m2 = ∆(∆− d).

Afin de trouver la solution adaptée à notre problème (6.37), on s’intéresse au compor-
tement asymptotique à l’infini : le propagateur G doit s’annuler en r = ∞. La solution,
en fonction de la variable v, est dans ce cas (formule 15.5.7 de [148]) :

G(v) = C∆ v
−a

2F1

(
a, a− c+ 1; a− b+ 1;

1

v

)
(6.42)

= C∆ v
−∆

2F1

(
∆,∆− d

2
+

1

2
; 2∆− d+ 1 ;

1

v

)
(6.43)

où C∆ est une constante de normalisation et 2F1(a′, b′; c′; v′) est une fonction hypergéomé-
trique définie par :

2F1(a′, b′; c′; v′) =
∞∑

n=0

(a′)n(b′)n
(c′)n

v′n

n!
(6.44)

où (a′)n est le symbole de Pochhammer (a′)n =
Γ(a′ + n)

Γ(a′)
:

2F1(a′, b′; c′; z′) =
Γ(c′)

Γ(a′) Γ(b′)

∞∑

n=0

Γ(a′ + n)Γ(b′ + n)

Γ(c′ + n)

z′n

n!
. (6.45)
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Afin de trouver la constante de normalisation C∆, une identité (15.3.7 de [148]) nous
permet de réécrire notre solution (6.43) avec v comme variable :

G(v) = C∆v
−∆

[
Γ(c′)Γ(b′ − a′)
Γ(b′)Γ(c′ − a′)

(
−1

v

)−∆

2F1(a′, 1− c′ + a′; 1− b′ + a′; v) (6.46)

+
Γ(c′)Γ(a′ − b′)
Γ(a′)Γ(c′ − b′)

(
−1

v

)−∆+ d
2
− 1

2

2F1(b′, 1− c′ + b′; 1− a′ + b′; v)

]

où a′ = ∆, b′ = ∆− d

2
+

1

2
et c′ = 2∆− d+ 1 sont les coefficients de (6.43).

Pour expliciter la constante de normalisation C∆, on étudie le comportement quand r →
0.La variable v =

1

2
− u

2
tend alors vers −r

2

4
car u = cosh(r) = 1 +

r2

2!
+
r4

4!
+ O(r4).

Remarquons que 2F1(a′′, b′′; c′′; z′′ = 0) = 1 ; on a :

G(v) ∼ C∆ v
−∆

[
Γ(c′)Γ(b′ − a′)
Γ(b′)Γ(c′ − a′)

(
−1

v

)−∆

+
Γ(c′)Γ(a′ − b′)
Γ(a′)Γ(c′ − b′)

(
−1

v

)−∆+ d
2
− 1

2

]

∼ C∆
Γ(c′)Γ(a′ − b′)
Γ(a′)Γ(c′ − b′) (−v)

1−d
2 (−1)−∆

∼ C∆
Γ(2∆− d+ 1)Γ(d−1

2 )

Γ(∆)Γ(∆− d
2 + 1

2)

(
r2

4

) 1−d
2

(−1)−∆ ,

où à la deuxième étape nous avons négligé le terme constant devant l’autre terme.
La solution G(r) doit tendre, pour r → 0 vers celle du cas non massif dans l’espace plat

euclidien G(r) →
r→0

Γ(n2 )

2(2− n)πn/2
r2−n. En utilisant Γ(2z) =

22z−1

√
π

Γ(z) Γ

(
z +

1

2

)
, on

trouve que la constante de normalisation vaut

C∆ =
(−1)∆+1Γ(∆)

πd/2 22∆+1 (∆− d
2) Γ(∆− d

2)
. (6.47)

La solution de (6.37) s’écrit finalement :

G(v) =
−Γ(∆)

πd/2 2∆+1 (∆− d
2) Γ(∆− d

2)
(−2v)−∆

2F1

(
∆,∆− d

2
+

1

2
; 2∆− d+ 1;

1

v

)
(6.48)

ou encore en fonction du demi-carré de la distance cordale ξ = −2v souvent utilisé :

G(ξ) =
−Γ(∆)

πd/2 2∆+1 (∆− d
2) Γ(∆− d

2)
ξ−∆

2F1

(
∆,∆− d

2
+

1

2
; 2∆− d+ 1; −2

ξ

)
. (6.49)

6.2.3.3 Comparaison avec la littérature

Bien entendu, on retrouve ce résultat très souvent dans la littérature mais sous des
formes différentes et la similitude des expressions n’est pas toujours triviale au premier
abord.
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– Dans la référence [135], la seule différence concerne le signe puisque la définition de
G : (∆−m2)G = −δ est différente de celle que nous avons prise :

G(η) =
2−∆ Γ(∆)

(2∆ − d)πd/2 Γ(∆− d
2)
η−∆

2F1

(
∆

2
,
∆ + 1

2
; ∆ + 1− d

2
;

1

η2

)
(6.50)

avec η = −2v+ 1. En identifiant y =
1

η2
et en utilisant la relation (15.3.20 de [148])

2F1

(
a, a+

1

2
; c; y

)
= (1−√y)−2a

2F1

(
2a, c− 1

2
; 2c− 1;− 2

√
y

1−√y

)
, (6.51)

puis en posant z =
1

v
dans (6.48) et en utilisant la relation (15.3.16 de [148])

2F1(a, b; 2b; z) =
(

1− z

2

)−a
2F1

(
1

2
a,

1

2
+

1

2
a; b+

1

2
;

z2

(2− z)2

)
(6.52)

on retrouve le même résultat.

– Les résultats cités dans d’Hoker et Freedman [137,149] sont similaires :

G(ζ) =
2−∆ Γ(∆)

(2∆ − d)πd/2 Γ(∆− d
2)
ζ∆

2F1

(
∆

2
,
∆ + 1

2
; ∆ + 1− d

2
; ζ2

)
(6.53)

avec ζ =
1

η
.

6.2.4 Solution dans l’espace ambiant

Pour l’espace ambiant, on obtient le résultat suivant à partir de (6.48) :

G(X1, X2) =
Γ(∆)

2πd/2 Γ(∆− d
2 + 1)

(c2)−∆
2F1

(
∆,

2∆− d+ 1

2
; 2∆ + 1− d;− 4

c2

)
(6.54)

avec c2 = (X1−X2)2 = −4v provenant de (4.12) et (4.15) et en se rappelant que Γ(x+1) =
xΓ(x).

6.3 Le propagateur “intérieur-bord”

6.3.1 Dans l’espace hyperbolique

Intéressons nous maintenant au propagateur “intérieur-bord”. Le champ scalaire dans
l’intérieur (fonction des coordonnées de Poincaré) φ(z, ~x) solution de l’équation de Helm-
holtz est la propagation de sa valeur au bord φ0(~x′) par le propagateur “intérieur-bord”
K∆(z, x;x′) :

φ(z, ~x) =

∫
dnx′ φ0(~x′)K∆(z, ~x; ~x′) . (6.55)
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Le propagateur “intérieur-bord” est défini, [152], par l’équation de Helmholtz (6.8) et
son comportement quand le point se situant à l’intérieur tend vers le bord (z → 0) :

{
(∆−m2)K∆(z, ~x; ~x′) = 0

K∆(z, ~x; ~x′) −→
z→0

zd−∆ δ(~x− ~x′) . (6.56)

A partir de (6.4), un choix de normalisation possible [152] pour l’expression du propagateur
“intérieur-bord” est le suivant :

K∆(z1, ~x1; ~x2) = lim
z2→0

2∆− d
z∆

2

G(z1, ~x1; z2, ~x2) . (6.57)

D’après le paragraphe 4.4, la grandeur v peut s’exprimer dans les coordonnées de Poincaré :

1

v
=

2

X1 ·X2
=

−4z1z2

(z1 − z2)2 + ( ~x1 − ~x2)2
(6.58)

où X1 et X2 sont les coordonnées ambiantes de deux points de l’intérieur.

On cherche la limite de
1

v
quand un des points est sur le bord X2 → X ′ c’est-à-dire

z2 → z′ = 0. On a donc la relation
1

v
∼ −4z1

z2
1 + ( ~x1 − ~x2)2

z2 pour ~x1 6= ~x2. Quand la

coordonnée z2 tend vers zéro, la fonction hypergéométrique 2F1 (dans le propagateur G)
tend vers 1 puisque z1, ~x1 et ~x2 sont fixés.
On obtient donc [137] :

K∆(z, ~x; ~x′) =
Γ(∆)

πd/2 Γ(∆− d
2)

(
z

z2 + (~x− ~x′)2

)∆

. (6.59)

6.3.2 Dans l’espace ambiant

Depuis Dirac [153], il est d’usage d’utiliser le formalisme ambiant également pour dé-
crire le bord conforme de l’espace-temps d’anti de Sitter. Dans le cas de l’espace hyper-
bolique Hd+1, cette construction est connue depuis plus longtemps et consiste à décrire le
bord conforme Sd comme le cône X ′2 = 0 projectif c’est-à-dire avec la relation d’équiva-
lence X ′ ∼ λX ′ avec λ 6= 0. Une paramétrisation commode est X ′ = (X

′+, X
′−, ~X ′) =

(1, ~x′
2
, ~x′). Rappelons la paramétrisation des coordonnées d’un point de l’intérieur : X =

(X+, X−, ~X) = (
z2 + ~x2

z
,

1

z
,
~x

z
). On calcule (X − X ′)2 = −1 − 2X · X ′ pour en déduire

2

−X ·X ′ =
4z

z2 + (~x− ~x′)2
.

On peut écrire le propagateur “intérieur-bord” en coordonnées ambiantes :

K∆(X;X ′) =
Γ(∆)

πd/2 Γ(∆− d
2)

1

(2X ·X ′)∆
(6.60)
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résultat similaire à celui de la référence [140] à un facteur de normalisation près
1

(−1)∆(2∆− d)
.

On peut réécrire l’expression précédente à l’aide de la transformée de Mellin :

K∆(X,X ′) =
1

πd/2 Γ(∆− d
2)

∫ ∞

0

dt

t
t∆ e−2tX′·X (6.61)

car
1

z∆
=

1

Γ(∆)

∫
dt

t
t∆ e−t z comme on peut le vérifier à partir de la forme intégrale de

la fonction gamma d’Euler.
La représentation ambiante du propagateur “intérieur-bord” permet d’écrire la forme

ambiante de l’équation (6.55) :

Φ(X) =

∫
dX ′K∆(X;X ′ ) Φ0(X ′ ) (6.62)

avec Φ0(X ′ ) le représentant ambiant de la valeur au bord du champ scalaire.
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Chapitre 7

Les fonctions à trois points

Dans ce chapitre, nous travaillerons avec les coordonnées ambiantes afin de faciliter les
calculs : celles des points de l’espace AdS sont notées X (pour rappel, on fixe le rayon de
courbure de l’espace-temps à l’unité X2 = −1) tandis que celles d’un point du bord ∂AdS
sont notées X ′ (avec X ′2 = 0). Les différents points du bord sont différenciés par un indice
X ′i.

Ce chapitre est largement inspiré de l’article [140] mais le calcul des fonctions à trois
points pour un vertex cubique dans AdS entre deux champs scalaires de masse quelconque
et un champ de jauge de spin entier arbitraire semble original. Il serait intéressant de
pouvoir comparer ce résultat avec l’expression d’une telle fonction à trois points en CFT
entre trois opérateurs primaires, deux scalaires et un courant conservé, sans trace et de
spin quelconque dont la forme est fixée par la symétrie conforme [154].

7.1 Les propagateurs en coordonnées ambiantes pour un ten-
seur de rang quelconque

Pour la suite, il est nécessaire de connaître l’expression des propagateurs en coordonnées
ambiantes pour un tenseur de rang quelconque, ce qui est connu pour les propagateurs
“intérieur-bord” [138] mais qui reste un problème ouvert pour les propagateurs “intérieur-
intérieur” dans le formalisme de Fronsdal (par contre, pour l’expression du propagateur
dans le formalisme de Vasiliev, voir [47]).

7.1.1 Le propagateur “intérieur-bord”

Le progateur “intérieur-bord” pour un champ scalaire a été traité dans la section 6.3.2.
La représentation ambiante du propagateur “intérieur-bord” d’un champ vectoriel (rang

s = 1) permettrait d’écrire la forme ambiante de la valeur du champ comme la propagation
de sa valeur au bord :

V A(X) =

∫
dX ′KAM

∆,1 (X;X ′ )V0M (X ′ ) (7.1)

avec V0M (X ′ ) le représentant ambiant de la valeur au bord du champ vectoriel.
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Rappelons que le représentant ambiant du champ vectoriel V A(X) est tangentXA V
A(X) =

0, de même pour sa valeur au bord X ′M VM
0 (X ′) = 0.

Le progateur “intérieur-bord” du champ vectorielKMA
∆, 1 (X,X ′) peut donc être vu comme

la “projection” du progateur “intérieur-bord” d’un champ scalaire (voir par exemple [140]) :

KAM
∆, 1 (X,X ′) =

1

πd/2 Γ(∆− d
2)

∫ ∞

0

dt

t
t∆ JMA e−2tX′·X (7.2)

avec le projecteur J AM = ηAM − X ′AXM

X ′ ·X où, de façon contre-intuitive, M est l’indice
lié au bord et A celui lié à l’intérieur (voir la table 5.1). On peut le réécrire comme l’action
d’un opérateur différentiel du bord sur le propagateur de Witten du champ scalaire [140] :

KAM
∆, 1 (X,X ′) = DMA

1,∆ (X ′, ∂′)K∆, 0(X,X ′) (7.3)

avec l’opérateur différentiel

DAM
1,∆ (X ′, ∂′) = ηAM +

1

∆
X ′A

∂

∂X ′M
. (7.4)

Pour un champ tensoriel de rang s = 2, le résultat est de la même forme [140] :

KA1A2M1M2
∆, 2 (X,X ′) = DA1A2M1M2

2,∆ (X ′, ∂′)K∆, 0(X,X ′) (7.5)

avec l’opérateur différentiel

DA1A2M1M2
2,∆ (X ′, ∂′) = ηA1M1ηA2M2 +

1

∆

(
ηA1M1X ′A2 ∂′M2

+ 1↔ 2
)

+
X ′A1 X ′A2

∆ (∆ + 1)
∂′M1

∂′M2
. (7.6)

A l’aide des fonctions génératrices, nous généralisons ce propagateur “intérieur-bord”
en formulation ambiante pour un tenseur de spin s :

K∆,s(X,U ;X ′ ,W ) = D∆,s(U ;X ′ , ∂′,W )K∆,0(X;X ′ ) (7.7)

où nous définissons le polynôme en les variables auxiliaires U (intérieur) et W (bord)

D∆,s(U ;X ′, ∂′ ,W ) = WM1 · · ·WMs UA1 · · ·UAs DA1···AsM1···Ms
∆,s (X ′ , ∂′) (7.8)

dont le coefficient est l’opérateur différentiel recherché

DA1···AsM1···Ms
∆,s (X ′ , ∂′) =

s−1∑

j=0

1

(∆)j
ηA1M1 · · · ηAjMjX ′ Aj+1 · · ·X ′ As ∂

∂X ′Mj+1

· · · ∂

∂X ′Ms

.(7.9)

Dans la formule précédente, le symbole de Pochhammer est utilisé (z)n =
Γ(z + n)

Γ(z)
et

une symétrisation sur les indices A et une autre sur les indices M est implicite. La formule



CHAPITRE 7. Les fonctions à trois points 109

(7.9) généralise les formules (7.4) et (7.6). Ce résultat a été obtenu par récurrence et peut
être résumé sous forme d’un polynôme :

D∆,s(U ;X ′ , ∂′,W ) =
s−1∑

j=0

1

(∆)j
(W · U)j (X ′ · U)s−j (W · ∂X′ )s−j (7.10)

=
[
(X ′ · U) (W · ∂X′ )

]s s−1∑

j=0

1

(∆)j

[
W · U

(X ′ · U) (W · ∂X′ )

]j
.

Définissons la fonction génératrice de ces opérateurs pour chaque spin s par

D∆(U ;X ′ , ∂′,W ) =
∞∑

s=0

1

s!
D∆,s(U ;X ′ , ∂′,W ) (7.11)

=
∞∑

s=0

1

s!

s−1∑

j=0

1

(∆(s))j
(W · U)j (X ′ · U)s−j (W · ∂X′ )s−j (7.12)

où ∆(s) indique que le poids conforme dépend du spin s. Par exemple, pour un champ de
Fronsdal ∆(s) = d+ s− 2.

7.1.2 Le propagateur “intérieur-intérieur” pour un tenseur de rang quel-
conque

D’après [140, 150, 151], on peut réécrire le propagateur “intérieur-intérieur” (6.54) au
moyen du produit de deux propagateurs “intérieur-bord” en intégrant sur un point auxiliaire
du bord X ′ ainsi que sur un paramètre auxiliaire c (figure 7.1).

Figure 7.1 – Le propagateur “intérieur-intérieur” vu comme une décomposition de deux
propagateurs “intérieur-bord”

Pour un champ scalaire :

G∆,0(X1, X2) =

i∞∫

−i∞

dc

2πi
f∆,0(c)

∫

Sd

dX ′
∞∫

0

(dt̃c)
2 e2tX′·X1 + 2t̄X′·X2 (7.13)
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avec (dt̃c)
2 =

dt

t

dt̄

t̄
t
d
2

+c t̄
d
2
−c et

f∆,0(c) =
1

2πd Γ(c)Γ(−c)
1

(∆− d
2)2 − c2

.

En partant de (7.13), on obtient le propagateur “intérieur-intérieur” pour un vecteur
(rang 1) :

GAB∆,1(X1, X2) =

i∞∫

−i∞

dc

2πi
f∆,1(c)

∫

∂AdS

dX ′
∞∫

0

(dt̃c)
2 e2tX′·X1 + 2t̄X′·X2 DMA

d
2

+c
ηMN D

NB
d
2
−c(7.14)

avec f∆,1(c) = f∆,0(c)

(
d

2

)2

− c2

(
∆− d

2

)2

− c2

.

De la même façon, pour un tenseur de rang s = 2, il faut remplacer dans l’équation
précédente [140] :

f∆,1(c) → f∆,2(c) = f∆,0(c)

[(
d

2
+ 1

)2

− c2

]

DMA → DM1M2A1A2

ηMN → εM1M2N1N2 =
1

2
(ηM1N1ηM2N2 + ηM1N2ηM2N1) − 1

d
ηM1M2ηN1N2 .(7.15)

Il serait intéressant de pouvoir généraliser ces propriétés pour un spin entier arbitraire.
Cela permettrait sans doute de simplifier d’éventuels calculs de diagrammes d’échange.

7.2 Calcul de la fonction à trois points

Nous souhaitons calculer la fonction à trois points (cf. figure 7.2) pour un (ou des)
champ(s) de spin s entier.

A partir de la formule (3.34), le vertex cubique se note dans l’espace ambiant :

� H ‖ J � :=

∫

Hd+1

dX exp

(
∂

∂UA
∂

∂VA

)
H(X,U) J(X,V )

∣∣∣∣
U=V=0

=

∫

Hd+1

dX H(X, ∂V ) J(X,V )|V=0 (7.16)

avec H la fonction génératrice du champ de jauge et J la fonction génératrice du courant
conservé bilinéaire en le champ Φ (U et V des variables auxiliaires ambiantes), et on a
remplacé l’intégrale sur l’espace ambiant par l’intégrale sur l’espace hyperbolique.

Toujours dans un souci de simplification, intéressons-nous uniquement à l’expression
pour un spin s fixé mais quelconque :

Ss1[Φ, H] :=

∫

Hd+1

dX H(X, ∂V ) J(X,V )|U=V=0 (7.17)
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Figure 7.2 – Un vertex cubique 0− 0− s

où la seule différence est que le champ de jauge H est maintenant un polynôme homogène
en la variable auxiliaire U de degré s.

Rappelons maintenant l’expression de la fonction génératrice du courant ambiant (3.7) :

J(X,V ) = Φ1(X − V ) Φ2(X + V ) . (7.18)

où Φ1 et Φ2 sont les représentants ambiants de deux champs scalaires donnés par (6.55) :

Φi(X) =

∫
dX ′iK∆i,0(X;X ′ i) Φ0,i(X

′
i) (7.19)

avec Φ0(X ′ i) le représentant ambiant du champ scalaire sur le bord. Par rapport à (3.7),
on ne tient pas compte dans l’équation (7.18) du nombre complexe i afin de simplifier les
notations, mais le principe des calculs reste bien évidemment le même. Les poids conformes
associés aux champs scalaires Φ1 et Φ2 sont respectivement ∆1 = ∆+ = ∆ et ∆2 = ∆− =
d−∆.

La fonction génératrice du champ de jauge s’exprime par :

H(X,U) =

∫

Sd

dX ′ 3 H0(X ′ 3, ∂W )K∆3,s(X,U ;X ′ 3,W )
∣∣
W=0

(7.20)

où H0 est la valeur au bord (au point X ′3) de la fonction génératrice du champ de jauge,
∆3 le poids conforme associé au champ en ce point, W est la variable auxiliaire associée
au bord Sd et K∆3,s la fonction génératrice du propagateur “intérieur-bord” (7.7) et (7.11).

L’expression du vertex cubique (7.17) peut s’écrire en terme de la fonction à trois points
0− 0− s :

Ss1[Φ, H] =

∫
dX ′1 dX

′
2 dX

′
3 Φ0,1(X ′ 1) Φ0,2(X ′ 2)H0(X ′ 3, ∂W )F (X ′i,W )|W=0 (7.21)

où le représentant ambiant de la fonction à trois points est

F (X ′i,W ) = D∆3,s

(
∂V ;X ′ 3, ∂′3,W

) ∫

Hd+1

dX K∆3,0(X;X ′ 3)×

× K∆1,0(X − V ;X ′ 1)K∆2,0(X + V ;X ′ 2)
∣∣
V=0

. (7.22)
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Nous avons utilisé les équations (7.18), (7.19) et (7.20) ainsi que (7.7).
Le propagateur “intérieur-bord” en coordonnées ambiantes est donné par (6.61). Ainsi

la fonction à trois points s’écrit :

F (X ′i,W ) = D∆3,s

(
∂V ;X ′ 3, ∂′3,W

) ∫

Hd+1

dX × (7.23)

×
∞∫

0

3∏

i=1

Ci
dti
ti
t∆i
i exp

{
−2

[(
3∑

i=1

tiX
′
i

)
·X − (t2X

′
2 − t1X

′
1) · V

]}∣∣∣∣∣∣
V=0

avec Ci =
1

π
d
2 Γ(∆i − d

2)
et en utilisant l’expression intégrale du propagateur “intérieur-

bord” du champ sclaire (6.61). En regroupant les facteurs en fonction des variables d’inté-
gration, on obtient :

F (X ′i,W ) = D∆3,s

(
∂V ;X ′ 3, ∂′3,W

) 3∏

i=1

Ci

∞∫

0

dti
ti
t∆i
i exp

[
−2(t2X

′
2 − t1X

′
1) · V

]
×

×
∫

Hd+1

dX exp

[
−2

(
3∑

i=1

tiX
′
i

)
·X
]∣∣∣∣∣
V=0

. (7.24)

On pose T = −
3∑
i=1

tiX
′
i et ∆T =

∑
i

∆i. Une autre identité employée dans [140] permet

d’effectuer l’intégrale en X :

+∞∫

0

∏

i

(
dti
ti
t∆i

) ∫

Hd+1

dX e2T ·X = πhΓ

(
∆T − 2h

2

) +∞∫

0

∏

i

(
dti
ti
t∆i

)
eT

2
(7.25)

avec h =
d

2
. Nous obtenons alors l’expression suivante :

F (X ′i,W ) = D∆3,s

(
∂V ;X ′ 3, ∂′3,W

) 3∏

i=1

Ci π
d/2 Γ

(
∆T − d

2

)
f(X ′i, ti, V )

∣∣∣∣∣
V=0

(7.26)

où

f(X ′i, ti, V ) =

∞∫

0

dti
ti
t∆i
i exp

[
2(t2X

′
2 − t1X

′
1) · V + T 2

]
. (7.27)

Pour continuer le calcul, deux directions s’offrent à nous.
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En calculant l’intégrale sur les paramètres ti :
Grâce au développement de l’exponentielle en série de puissances, la fonction (7.27) de-
vient :

f(X ′i, ti, V ) =

∞∫

0

dti
ti
t∆i
i

∞∑

n=0

1

n!

[
2(t2X

′
2 · V − t1X

′
1 · V )

]n
eT

2
. (7.28)

Le terme de la forme (A + B)n peut être développé à l’aide du binôme de Newton :

(A+B)n = An
n∑

m=0

(
n
m

)(B
A

)m
, d’où

f(X ′i, ti, V ) =
∞∑

n=0

1

n!
2n
∞∫

0

dti
ti
t∆i
i (t2X

′
2 · V )n

n∑

m=0

(
n

m

)(−t1X ′ 1 · V
t2X ′ 2 · V

)m
eT

2
(7.29)

puis en réorganisant les termes, on obtient :

f(X ′i, ti, V ) =
∞∑

n=0

1

n!
2n(X ′ 2 · V )n

n∑

m=0

(
n

m

)(−X ′ 1 · V
X ′ 2 · V

)m ∞∫

0

dti
ti
t∆i
i tm1 t

n−m
2 eT

2
(7.30)

On pose

∆′1 = ∆1 +m

∆′2 = ∆2 + n−m
∆′3 = ∆3 (7.31)

afin de condenser l’écriture de (7.30) :

f(X ′i, ti, V ) =
∞∑

n=0

1

n!
2n(X ′ 2 · V )n

n∑

m=0

(
n

m

)(−X ′ 1 · V
X ′ 2 · V

)m ∞∫

0

dti
ti
t
∆′i
i eT

2
. (7.32)

L’identité de Symanzik est nécessaire pour calculer les intégrales sur t (cité dans [140]) :

∞∫

0

dti
ti
t
∆′i
i eT

2
=

1

2

∏

16i<j63

Γ(δ′ij)(X
′
ij)
−δ′ij (7.33)

où les coefficients valent δ′ij =
∆′i + ∆′j −∆′k

2
avec k 6= i et k 6= j, et X ′ij = −2X ′ i ·X ′j .

Dans notre cas, on a

f(X ′i, ti, V ) =

∞∑

n=0

1

n!
2n(X ′ 2 · V )n

n∑

m=0

(
n

m

)(−X ′ 1 · V
X ′ 2 · V

)m 1

2

∏

16i<j63

Γ(δ′ij)(X
′
ij)
−δ′ij

(7.34)
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avec

δ′13 = δ13 +m− n

2

δ′12 = δ12 +
n

2

δ′23 = δ23 −m+
n

2
. (7.35)

En factorisant les termes ne dépendant pas des indices de sommation n etm, la fonction
f devient

f(X ′i, ti, V ) =
1

2
(X ′12)−δ12(X ′13)−δ13(X ′23)−δ23

∞∑

n=0

1

n!

(
2(X ′ 2 · V )

(
X ′13

X ′12X
′
23

)1/2
)n

Γ(δ′12)×

×
n∑

m=0

(
n

m

)(−X ′ 1 · V
X ′ 2 · V

X ′23

X ′13

)m
Γ(δ′13)Γ(δ′23) . (7.36)

Enfin, en faisant apparaitre explicitement les indices de somme, la fonction à trois points
(7.26) devient

F (X ′i,W ) = D∆3,s

(
∂V ;X ′ 3, ∂′3,W

) 3∏

i=1

Ci π
d/2 Γ

(
∆T − d

2

)
1

2
(X ′12)−δ12(X ′13)−δ13(X ′23)−δ23 ×

×
∞∑

n=0

1

n!

(
2(X ′ 2 · V )

(
X ′13

X ′12X
′
23

)1/2
)n

Γ
(
δ12 +

n

2

)
×

×
n∑

m=0

(
n

m

)(−X ′ 1 · V
X ′ 2 · V

X ′23

X ′13

)m
Γ
(
δ23 −m+

n

2

)
Γ
(
δ13 +m− n

2

) ∣∣∣∣∣
V=0

. (7.37)

En principe, pour terminer le calcul, il resterait à appliquer l’opérateur différentiel
D∆3,s (∂V ;X ′ 3, ∂′3,W ) défini par (7.11). Une autre voie consiste à l’appliquer avant d’ef-
fectuer les intégrales. Quoiqu’il en soit ce n’est pas tant l’expression explicite de la fonction
à trois points qui nous intéresse que sa comparaison avec son analogue dans la théorie
conforme des champs.

En développant l’opérateur différentiel :
Une autre route consiste à partir de l’équation (7.26) et à développer l’expression de

T 2 :

F (X ′i,W ) = D∆3,s

(
∂V ;X ′ 3, ∂′3,W

) 3∏

i=1

Ci π
d/2 Γ

(
∆T − d

2

) ∞∫

0

dti
ti
t∆i
i exp

[
2(t2X

′
2 − t1X

′
1) · V

]
×

× exp
[
t1t2X

′
1X
′
2 + t1t3X

′
1X
′
3 + t2t3X

′
2X
′
3

]∣∣
V=0

. (7.38)

Puisque la dépendance en V et en X ′3 est exponentielle, on peut remplacer dans l’ex-
pression de D∆3,s (∂V ;X ′ 3, ∂′3,W ) définie par (7.11)
• ∂V par 2(t2X

′
2 − t1X ′ 1)
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• ∂′3 par t3(t1X
′
1 + t2X

′
2),

et on obtient :

F (X ′i,W ) =
3∏

i=1

Ci π
d/2 Γ

(
∆T − d

2

) s−1∑

j=0

1

(∆3)j

∞∫

0

dti
ti
t∆i
i (W · 2(t2X

′
2 − t1X

′
1))j ×

× (X ′ 3 · 2(t2X
′
2 − t1X

′
1))s−j(W · t3(t1X

′
1 + t2X

′
2))s−jeT

2
. (7.39)

Ici, il reste à effectuer les intégrales sur les paramètres ti.
Conclusion du calcul :
Nous venons de trouver deux formes explicites de la fonction à trois points entre deux

champs scalaires φ et un tenseur de rang quelconque s dans l’espace ambiant. On peut
évidemment sommer sur les spins via l’usage de la fonction génératrice de la fonction à trois
points. La complexité des expressions n’a pas encore permis une comparaison explicite avec
les résultats sur les fonctions à trois points entre deux opérateurs primaires scalaires et un
courant conforme en CFT [154] qui se trouvent sous une forme complètement différente.
Notons que ce résultat s’applique à des dimensions conformes arbitraires pour les deux
champs scalaires tandis que les vérifications [155–157] de la correspondance concernent la
dimension d = 3 et des valeurs bien spécifiques des poids conformes des scalaires. Il serait
également intéressant de généraliser ces résultats pour des triplets de spin quelconque grâce
aux vertex sur la couche de masse [41] et de comparer alors avec les résultats récents en
CFT [158].

Un autre objectif est de calculer le diagramme d’échange entre quatre champs scalaires
pour une tour infinie de spins échangés. Pour cela, il nous faut connaitre l’expression
explicite ambiante du propagateur “intérieur-intérieur” de ces champs de jauge ou bien
on peut espérer simplifier le calcul en utilisant sa décomposition en produits de deux
propagateurs “intérieur-bord” comme montré sur la figure 7.3.

Figure 7.3 – Le diagramme d’échange avec la décomposition du propagateur “bord-bord”
en deux propagateurs “intérieur-bord” [140]
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Chapitre 8

Symétries et holographie : de la
physique relativiste à la physique
non-relativiste

Dans ce huitième chapitre, je vous exposerai les travaux que j’ai réalisés en collaboration
avec Xavier Bekaert et Sergej Moroz sur un problème issu de la matière condensée et le lien
entre physiques relativiste et non-relativiste. Je développerai particulièrement les sections
auxquelles je me suis consacrée, à savoir les symétries de l’équation de Schrödinger libre
et les courants associés (qui sont en majorité issues de la traduction du second article se
trouvant dans le chapitre suivant).

8.1 Symétries non-relativistes

8.1.1 Le groupe de Schrödinger des symétries cinématiques

En termes mathématiques, le principe de Galilée de la relativité est codé dans le groupe
de Galilée. Pour cette raison, la structure de ce groupe joue un rôle important dans la
physique non relativiste [159]. Dans un espace à d dimensions spatiales, le groupe agit sur
les coordonnées spatiales x et le temps t comme

(t,x)→ g(t,x) = (t+ β,Rx + vt+ a), (8.1)

où β ∈ R ; v,a ∈ Rd et R est une matrice de rotations dans les d dimensions spatiales.
En mécanique quantique, le groupe de Galilée agit par des représentations projectives
sur l’espace de Hilbert des solutions de l’équation de Schrödinger lorsque le potentiel est
invariant par les translations d’espace et de temps 1. En d’autres termes, dans ce cas, toute
solution est transformée en une solution de la forme

ψ(t,x)→ γ
(
g(t,x)

)
ψ
(
g−1(t,x)

)
, (8.2)

1. Bien sûr, pour une seule particule, le potentiel doit alors être constant.
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où γ est un facteur de phase compatible avec les lois de multiplication du groupe [160].
Par exemple, une fonction d’onde scalaire ψ décrivant une seule particule de masse m se
transforme sous un boost galiléen pur gv comme

ψ(t,x)→ exp

[
− im

2
(v2t− 2v · x)

]
ψ
(
g−1
v (t,x)

)
. (8.3)

La présence du facteur de phase dépendant de la masse dans la loi de transformation
implique une règle de supersélection interdisant la superposition des états de masses diffé-
rentes, connues sous le nom de règle de superselection de Bargmann [161]. Cette règle limite
la dynamique et précise que chaque terme dans le lagrangien de la théorie non-relativiste
invariante sous Galilée doit conserver la masse totale. Pour cette raison, la masse joue le
rôle d’une charge conservée dans la physique non relativiste.

En élargissant le groupe de Galilée par le biais d’une extension centrale, connue sous
le nom d’opérateur de masse (ou bien opérateur du nombre de particules), nous pouvons
trouver des représentations unitaires [159,160]. L’extension centrale du groupe de Galilée est
parfois appelée le groupe de Bargmann [162]. Son algèbre de Lie se compose des générateurs
suivants : la masse M̂ ; une translation temporelle P̂t ; d translations spatiales P̂i ;

d(d−1)
2

rotations spatiales M̂ij et d boosts galiléens K̂i . Les commutateurs non triviaux sont

[M̂ij , M̂kl] = i(δikM̂jl − δjkM̂il − δilM̂jk + δjlM̂ik) ,

[M̂ij , K̂k] = i(δikK̂j − δjkK̂i) , [M̂ij , P̂k] = i(δikP̂j − δjkP̂i) ,
[P̂i, K̂j ] = −iδijM̂, [P̂t, K̂j ] = −iP̂j .

(8.4)

Notons que les relations de commutation entre les générateurs de translation et des boosts
galiléens sont les relations de commutation canoniques de l’algèbre d’Heisenberg hd en d
dimensions spatiales, où les générateurs des boosts galiléens jouent le rôle des opérateurs
position tandis que le rôle de la constante de Planck réduite est joué par la masse.

Il est remarquable que le groupe des symétries d’espace-temps de l’équation libre de
Schrödinger avec le potentiel chimique nul (c’est-à-dire sans terme constant dans le hamil-
tonien)

i ∂tψ(t,x) = − ∆

2m
ψ(t,x) (8.5)

est plus grand que le groupe de Bargmann si l’on relâche la restriction de module unitaire
(|γ| = 1) sur le facteur γ apparaissant dans la loi de transformation. D’après Niederer [163],
nous appelons symétrie cinématique de l’équation de Schrödinger toute transformation de
la forme (8.2), où γ est un facteur complexe compatible avec la structure du groupe, qui
envoie des solutions vers des solutions 2.

Tout d’abord, rappelons-nous que la masse est juste une charge et a donc une dimen-
sion d’échelle nulle. Ainsi, le système sans interaction n’a pas de paramètre avec dimension
d’échelle non nulle, ce qui implique une symétrie d’échelle supplémentaire. Dans la phy-
sique non relativiste, cette symétrie redimensionne les coordonnées de temps et d’espace

2. Certains mathématiciens appellent ces transformations une représentation “multiplier” (voir para-
graphe 1.1.1.3) du groupe de symétrie.
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différemment
(t,x)→

(
t

α2
,
x

α

)
, α ∈ R (8.6)

ce qui correspond à l’exposant critique dynamique z = 2, qui détermine l’échelle relative
des coordonnées spatiales et temporelles.

Deuxièmement, Niederer trouve dans [163] qu’en plus de la symétrie d’échelle, une
transformation d’inversion discrète Σ, qui agit sur l’espace-temps comme 3

(t,x)→ Σ(t,x) =

(
−1

t
,
x

t

)
(8.7)

est également une symétrie de l’équation de Schrödinger libre. Par la conjugaison d’une
translation temporelle gβ et d’une inversion Σ,

(t,x)→ (Σ−1gβΣ)(t,x) =

(
t

1 + βt
,

x

1 + βt

)
(8.8)

une nouvelle symétrie de l’équation de Schrödinger libre est trouvée [163,164]. Cette trans-
formation est connue sous le nom d’expansion et est l’analogue non-relativiste des trans-
formations conformes spéciales. Notons qu’un boost galiléen gv est la conjuguaison d’une
translation spatiale ga et d’une inversion Σ.

L’extension du groupe de Bargmann par les transformations d’échelle et les expansions
est connue sous le nom de groupe de Schrödinger à d dimensions spatiales, notée Sch(d).
Apparemment, cette structure était déjà connue par Jacobi (voir la conclusion de [165]),
mais a été retrouvée après l’avènement de la mécanique quantique dans [163, 164]. La
structure imbriquée des groupes de Galilée, Bargmann et Schrödinger est illustrée dans la
figure 8.1. Le groupe de Schrödinger est la contrepartie non-relativiste du groupe conforme,
bien que le premier ne peut pas être obtenu comme la contraction d’Inönu-Wigner de ce
dernier.

Le groupe de Schrödinger est simplement généré par les isométries euclidiennes (ro-
tations et translations spatiales), la translation temporelle, la transformation d’échelle et
l’inversion 4. En plus de (8.4), les commutateurs non triviaux de l’algèbre de Schrödinger
sch(d) à d dimensions spatiales sont

[P̂i, D̂] = iP̂i , [P̂i, Ĉ] = −iK̂i , [K̂i, D̂] = −iK̂i ,

[D̂, Ĉ] = 2iĈ , [D̂, P̂t] = −2iP̂t , [Ĉ, P̂t] = −iD̂ .
(8.9)

Ensemble, le générateur de translation temporelle P̂t, le générateur d’échelle D̂ et le
générateur de l’expansion Ĉ forme une sous-algèbre sl(2,R) de l’algèbre de Schrödin-
ger complète. Ces générateurs commutent avec les générateurs M̂ij de la sous-algèbre
de rotation o(d). L’algèbre de Schrödinger a la structure d’une somme semi-directe :
sch(d) = hd B

(
o(d)⊕ sl(2,R)

)
.

3. Elle est l’analogue de la transformation conforme xµ → xµ

x2
et elle n’est pas définie pour t = 0. Il est

nécessaire de compactifier l’espace usuel, c’est-à-dire de tenir compte des points à l’infini.
4. Les boosts galiléens et les expansions apparaissent naturellement (plus précisément, par l’intermé-

diaire de la conjugaison des translations d’espace-temps et de l’inversion).
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Figure 8.1 – L’algèbre de Schrödinger

Enfin, la représentation “standard” de l’algèbre de Schrödinger, comme opérateurs dif-
férentiels d’ordre un, agissant sur la fonction d’onde d’une particule ψ(t,x) est

P̂i = −i∂i, P̂t = i∂t, M̂ = m,

M̂ij = −i(xi∂j − xj∂i),
K̂i = mxi + it∂i,

D̂ = i

(
2 t ∂t + xi∂i +

d

2

)
,

Ĉ = i

(
t2∂t + t

(
xi∂i +

d

2

))
+
m

2
x2.

(8.10)

8.1.2 L’algèbre de Weyl des symétries d’ordre élevé

L’algèbre des symétries d’espace-temps de l’équation de Schrödinger d’une particule
libre est en fait beaucoup plus grande que l’algèbre de Schrödinger. Plus précisément, l’al-
gèbre de Weyl est réalisée comme l’algèbre de symétries de dimension infinie de l’équation
de Schrödinger libre, comme ca a été souligné dans le travail inspirant [166]. Ici, nous
prouvons que l’algèbre de Weyl est l’algèbre maximale des symétries d’espace-temps de
l’équation de Schrödinger. Dans le contexte actuel, ce résultat peut être utilisé comme la
contrepartie non-relativiste du théorème de Eastwood [167] sur l’algèbre de symétrie maxi-
male de l’équation de Klein-Gordon de masse nulle (voir par exemple la section 4 de [122]
pour une revue). En conséquence, l’algèbre de Weyl (et, éventuellement, son extension à
valeurs matricielles) fournit une algèbre non-relativiste de spin élevé qui est l’analogue
précis de l’algèbre de Vasiliev (éventuellement étendue) des spins élevés [168].
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8.1.3 L’algèbre de symétrie maximale de l’équation de Schrödinger

Afin de donner des énoncés précis et rigoureux analogues à des résultats connus sur
le champ scalaire conforme, nous allons commencer par quelques définitions mimant celles
de [122,167]. Une symétrie de l’équation de Schrödinger est un opérateur différentiel linéaire
Â(t, X̂, P̂t, P̂) tel qu’il existe un opérateur différentiel linéaire B̂ satisfaisant

Ŝ Â = B̂ Ŝ , (8.11)

où Ŝ est l’opérateur de Schrödinger défini par

Ŝ := P̂t − Ĥ , (8.12)

et Ĥ est un hamiltonien d’une particule massive non-relativiste prenant la forme habituelle

Ĥ(X̂, P̂) =
P̂2

2m
+ V (X̂) . (8.13)

L’equation de Schrödinger se note

i ∂tψ(t,x) ≈ Ĥψ(t,x) ⇐⇒ Ŝψ(t,x) ≈ 0, (8.14)

où le symbole de l’égalité “faible” ≈ représente une égalité valide lorsque l’équation de
Schrödinger est satisfaite. Par définition, toute symétrie Â préserve l’espace KerŜ des
solutions de l’équation de Schrödinger (8.14) : il envoie toute solution ψ vers une solution
ψ′ = Âψ. La solution générale de l’équation de Schrödinger (8.14) est bien sûr

ψ(t,x) = Û(t)ψ(0,x) , (8.15)

où
Û(t) = exp(−itĤ) (8.16)

est l’opérateur d’évolution temporelle. De toute évidence, l’évolution dans le temps

F̂ (t) = Û(t) F̂ (X̂, P̂) Û−1(t) = F̂
(
X̂(t), P̂(t)

)
, (8.17)

de tout opérateur différentiel spatial F̂ (X̂, P̂) définit une symétrie de l’équation de Schrö-
dinger dans le sens ci-dessus. Il est clair que F̂ (t) envoie des solutions vers des solutions où
les fonctions d’onde initiales sont liées par l’opérateur initial F̂ (0) = F̂ . La condition (8.11)
est satisfaite avec Â = B̂ = F̂ (t) puisque i∂tF̂ (t) = [Ĥ, F̂ (t)], qui découle de (8.17). Notons
que (8.17) est l’évolution temporelle inversée (t → −t) de F̂ (X̂, P̂) dans la représentation
de Heisenberg 5.

Une symétrie Â est dite triviale si Â = ÔŜ pour un certain opérateur linéaire Ô, car
elle envoie toute solution vers zéro. Une telle symétrie triviale est toujours une symétrie
de l’équation de Schrödinger, car elle obéit à (8.11) avec B̂ = ŜÔ. L’algèbre des symétries

5. Notons que dans [78], l’évolution inversée dans le temps dans la représentation de Heisenberg a été
écrite F̂ (−t) afin de souligner ce fait. Ici, nous avons choisi la notation la plus simple F̂ (t) dans le but
d’éviter de surcharger les nombreuses formules où apparaissent de telles notations.
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triviales forme un idéal à gauche de l’algèbre des opérateurs linéaires dotée de la compo-
sition ◦ comme la multiplication. En outre, il existe aussi un idéal à droite dans l’algèbre
engendrée par toutes les symétries de l’équation de Schrödinger. Deux symétries Â1 et Â2

sont dites équivalentes, si elles diffèrent par une symétrie triviale. La relation d’équivalence
correspondante est désignée par une égalité faible

Â1 ≈ Â2 ⇐⇒ Â1 = Â2 + ÔŜ . (8.18)

L’algèbre de symétrie maximale de l’équation de Schrödinger est l’algèbre complexe de
toutes les symétries inéquivalentes de l’équation de Schrödinger, c’est-à-dire l’algèbre de
toutes les symétries quotientée par les idéaux à droite et à gauche des symétries triviales.
Nous allons montrer que pour tout hamiltonien indépendant du temps, l’algèbre de symétrie
maximale de l’équation de Schrödinger pour une particule est isomorphe à l’algèbre de Weyl
des opérateurs différentiels spatiaux 6.

8.1.4 La sous-algèbre de Schrödinger

Comme il fallait s’y attendre, l’évolution temporelle inversée des observables initiales
couvrent toutes les symétries inéquivalentes de toute équation de Schrödinger. Mais com-
ment l’algèbre de Schrödinger sch(d) s’inscrit dans ce résultat ? Et qu’est-ce qui est si
spécial au sujet de l’évolution libre ?

Une observation utile est que, lorsque la particule est libre

(
Ĥ = Ĥfree =

P̂ 2

2m

)
tous les

les opérateurs différentiels (8.10) sont équivalents à des polynômes de degré au plus deux en
les opérateurs d’évolution temporelle des positions et des impulsions. Par exemple, la masse
M̂ = m est le cas dégénéré de degré zéro. En outre, le générateur de translation temporelle

est équivalent au hamiltonien quadratique P̂t ≈ Ĥfree =
P̂ 2

2m
et les générateurs de rotation

peuvent être écrits comme le moment angulaire M̂ij = X̂iP̂j−X̂jP̂i. Pour les autres généra-
teurs, il est plus facile de vérifier d’abord cette propriété au moment t = 0. Les générateurs
des boosts galiléens évalués à t = 0 sont proportionnels aux positions, K̂i

∣∣
t=0

= mX̂i, tan-
dis que les générateurs d’échelle et d’expansion peuvent être écrits comme les polynômes

quadratiques, D̂
∣∣
t=0

= −X̂iP̂i + i
d

2
et Ĉ

∣∣
t=0

=
m

2
X̂2. Tous ensemble, ces opérateurs dif-

férentiels à t = 0 fournissent une représentation unitaire de l’algèbre de Schrödinger sur
l’espace de Hilbert des fonctions d’onde initiales d’une particule. Par conséquent, il en va
de même des évolutions temporelles (inversées) de ces observables pour chaque hamilto-

nien. Toutefois, l’opérateur dépendant du temps
P̂ 2(t)

2m
= exp(−iĤt) P̂

2

2m
exp(+iĤt) doit

être identifié avec le générateur P̂t dans cette réalisation particulière de l’algèbre de Schrö-
dinger, mais elle ne correspond pas au véritable hamiltonien Ĥ (sauf quand la particule
est libre) et donc en général, il ne génère pas l’évolution réelle dans le temps de la fonction

6. Pour une fonction d’onde à n composantes, l’algèbre de symétrie maximale de l’équation de Schrö-
dinger est isomorphe au produit tensoriel entre l’algèbre des matrices carrées n × n et l’algèbre de Weyl
des opérateurs différentiels spatiaux : Mn ⊗Ad.
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d’onde. Autrement dit, l’évolution dans le temps inversé mentionnée ci-dessus des géné-
rateurs de degré au plus deux sont des symétries (dans le sens de notre définition), ils
satisfont aux relations de commutation de l’algèbre de Schrödinger, mais ils n’ont pas une
interprétation physique simple pour un hamiltonien générique.

En général, les transformations engendrées par l’évolution dans le temps (inversée) de
certaines observables ne sont pas “cinématiques” [169], dans le sens où elles ne génèrent
pas des transformations de la forme (8.2). Une transformation cinématique est générée par
un opérateur différentiel linéaire du premier ordre (en particulier, un simple changement
de coordonnées est généré par un champ de vecteurs). Dans ce qui suit, les symétries
de premier ordre de l’équation de Schrödinger seront appelées symétries cinématiques,
tandis que les symétries d’ordre élevé seront désignées par symétries supérieures (suivant
l’usage des mathématiciens). Notons qu’un opérateur différentiel linéaire d’ordre supérieur
ne génère pas une transformation cinématique. Ceci explique pourquoi les symétries d’ordre
supérieur ne sont généralement pas considérées par les physiciens. Cependant, du point de
vue mathématique, l’algèbre de Schrödinger est toujours une sous-algèbre des symétries de
l’équation de Schrödinger d’une seule particule mais aucune de ses réalisations ne génère
une représentation cinématique du groupe de Schrödinger, à l’exception du cas spécial des
potentiels déterminés par Niederer [35, 170]. Comme mentionné ci-dessus, le cas le plus
simple est le hamiltonien libre, où l’évolution temporelle des opérateurs de position et de
moment est X̂(t) = X̂ − t P̂/m et P̂(t) = P̂. Dans un tel cas, les opérateurs différentiels
(8.10) peuvent être réécrits en fonction des positions et des moments dépendant du temps

P̂t ≈
P̂ 2(t)

2m
=
P̂ 2

2m
= Ĥfree , M̂ = m,

M̂ ij = X̂i(t)P̂ j(t)− X̂j(t)P̂ i(t),

K̂i = mX̂i(t),

D̂ ≈ −X̂i(t)P̂i(t) + i
d

2
,

Ĉ ≈ m

2
X̂2(t).

(8.19)

En outre, une bonne observation de [166,171] est que toutes ces symétries sont équivalentes
à des polynômes de degré deux en les générateurs des boosts galiléens et des translations
(plus précisément, M̂ est de degré zéro, tandis que par définition P̂ et K̂ sont de degré
un). En effet, on peut remplacer partout X̂(t)→ K̂/m et P̂(t)→ P̂ pour obtenir

P̂t ≈
P̂ 2

2m
,

M̂ij =
K̂iP̂j − K̂jP̂i

m
,

D̂ ≈ −K̂
iP̂i
m

+ i
d

2
,

Ĉ ≈ K̂2

2m
.

(8.20)

Cela implique que l’algèbre associative des polynômes en les générateurs des boosts gali-
léens et des translations est isomorphe à l’ algèbre de symétrie maximale de l’équation de



126
CHAPITRE 8. Symétries et holographie : de la physique relativiste à la physique

non-relativiste

Symétries cinématiques ⊂ Symétries d’ordre élevé
CFT o(d+ 2, 2) ⊂ Vasiliev (d+2,2)
∪ ∪ ∪

NRCFT sch(d) ⊂ Weyl (d)

Figure 8.2 – Les symétries cinématiques et d’ordre élevé en théories conformes

Schrödinger libre. En termes plus mathématiques, la réalisation de l’algèbre enveloppante
U
(
sch(d)

)
de l’algèbre de Schrödinger sur l’espace des solutions de l’équation de Schrödin-

ger d’une particule libre est isomorphe à l’algèbre de Weyl Ad des opérateurs différentiels
spatiaux.

Du point de vue de l’holographie, l’identification précise de l’algèbre maximale des sy-
métries rigides de la CFT (non-relativiste) est d’une importance primordiale car elle doit
correspondre à des transformations de symétrie préservant le vide de la théorie dans l’inté-
rieur, par exemple dans l’habituel AdS/CFT, le groupe d’isométrie d’AdS est isomorphe au
groupe conforme au bord. Dans la généralisation de la conjecture holographique de [34,35]
en dimension d’espace-temps quelconque, l’algèbre de symétrie maximale de l’action de
Klein-Gordon de masse nulle [167] est précisément isomorphe à l’algèbre de spin élevé des
équations de Vasiliev [168] qui apparaît comme l’algèbre préservant la solution d’AdS.
L’algèbre de symétrie maximale de l’action de Schrödinger pourrait jouer un rôle analogue
dans une version non-relativiste de la gravité de spin élevé (cf. figure 8.2). Cette attente
est assez naturelle compte tenu du fait que la théorie de Vasiliev est formulée dans un
langage dans la formulation “repère” 7 (à la Cartan) avec une connexion 1-forme prenant
les valeurs dans l’algèbre relativiste de spin élevé qui peut être remplacée par son analogue
non-relativiste (voir la section suivante).

8.2 Réduction dimensionnelle lumière : le cadre de Bargmann

Pour réaliser géométriquement la symétrie de Schrödinger, nous avons d’abord plongé
l’algèbre de Schrödinger à d dimensions spatiales sch(d) dans l’algèbre conforme relativiste
en d+ 2 dimensions spatio-temporelles O(d+2, 2). Que l’algèbre de Schrödinger puisse être
plongée dans l’algèbre conforme relativiste peut se manifester au niveau des équations du
mouvement. Plus concrètement, une technique très utile (le “cadre de Bargmann” [162,
165, 172, 173]) est la dérivation de l’équation libre de Schrödinger à partir de l’équation
de Klein-Gordon de masse nulle par le biais d’une réduction de Kaluza-Klein dans une
direction nulle.

7. ou “frame-like” en anglais
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8.2.1 Les équations du mouvement : de Klein-Gordon à Schrödinger

Considérons l’équation de Klein-Gordon de masse nulle dans l’espace-temps de Min-
kowski à d+ 2 dimensions 8 :

2Ψ(x) ≡ −∂2
0Ψ(x) +

d+1∑

i=1

∂2
i Ψ(x) = 0. (8.21)

Cette équation est invariante conforme. Définissons les coordonnées du cône de lumière,

x± =
x0 ± xd+1

√
2

, (8.22)

l’équation de Klein-Gordon devient 9

(
−2

∂

∂x−
∂

∂x+
+

d∑

i=1

∂2
i

)
Ψ(x) = 0. (8.23)

Les coordonnées globales xµ = (x+, x−,x) ont des indices grecs minuscules qui couvrent
d+2 valeurs, tandis que les coordonnées spatiales xi = (x) ont des indices latins minuscules
convrant d valeurs différentes 10. Si le champ scalaire relativiste est supposé être de la forme

Ψ(x) = e−imx
−
ψ(x+,x) , (8.24)

on peut faire l’identification 11 ∂/∂x− := ∂− = −im. Ensuite, l’équation (8.23) a la forme
de l’équation de Schrödinger dans l’espace libre

(
2im∂+ +

d∑

i=1

∂2
i

)
Ψ(x) = 0. (8.25)

La coordonnée du cône de lumière x+ peut être identifiée avec le temps t (∂+ = ∂t est la
dérivée temporelle) et l’opérateur

∑d
i=1 ∂

2
i est l’opérateur Laplacien ∆ dans l’espace plat,

(2im∂t + ∆)Ψ(x) = 0. (8.26)

Grâce à la réduction dimensionnelle (8.24), l’exponentielle peut être factorisée et nous obte-
nons l’équation du mouvement pour le champ scalaire non-relativiste (8.5). Cette équation
est invariante par le groupe de Schrödinger Sch(d) comme cela a été expliqué dans la sec-
tion précédente. Comme l’équation d’origine de Klein-Gordon a une symétrie conforme,
cela signifie que Sch(d) est un sous-groupe de O(d+2, 2).

8. Nous suivons de près [174] (voir par exemple [172, 173] pour plus de détails sur la méthode de
réduction dimensionnelle nulle).

9. Les éléments de la métrique sont définis par η+− = η−+ = −1; ηij = 1 et les autres sont nuls.
10. Dans la suite, l’indice sera souvent laissé implicite pour les coordonnés d’espace-temps xµ ≡ x.

Aucune ambiguïté se pose car les coordonnées spatiales sont notées xi ≡ x.
11. De la même manière, on abrège ∂/∂x+ en ∂+.
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8.2.2 L’algèbre de symétrie : de l’algèbre conforme à celle de Schrödin-
ger

Parlons maintenant explicitement du plongement de l’algèbre de Schrödinger dans l’al-
gèbre conforme, à la suite de la discussion dans [174]. L’algèbre conforme o(d+ 2, 2) peut
être définie par les relations de commutation suivantes :

[M̃µν , M̃αβ] = i(ηµαM̃νβ + ηνβM̃µα − ηµβM̃να − ηναM̃µβ),

[M̃µν , P̃α] = i(ηµαP̃ ν − ηναP̃µ),

[D̃, P̃µ] = −iP̃µ, [D̃, K̃µ] = iK̃µ,

[P̃µ, K̃ν ] = −2i(ηµνD̃ + M̃µν),

(8.27)

où les indices grecs vont de 0 à d+ 1, et tous les autres commutateurs sont égaux à 0. Les
symboles “tilde” ∼ désignent les générateurs relativistes, nous réservons les symboles cha-
peau ̂ pour les opérateurs non-relativistes. Les générateurs de l’algèbre conforme peuvent
être réalisés comme des opérateurs différentiels d’ordre un agissant sur le champ scalaire
relativiste Ψ(x)

P̃µ = −i∂µ, M̃µν = −i(xµ∂ν − xν∂µ),

K̃µ = i

(
2xµ

(
xν∂ν +

d

2

)
− x2∂µ

)
, D̃ = i

(
xµ∂µ +

d

2

)
.

(8.28)

Nous identifions le moment du cône de lumière P̃+ = (P̃ 0 + P̃ d+1)/
√

2 avec l’opéra-
teur de masse M̂ dans la théorie non relativiste (en accord avec l’identification précédente
∂− = −im). Nous sélectionnons maintenant tous les opérateurs de l’algèbre conforme qui
commutent avec P̃+, c’est-à-dire qui préservent l’ansatz de Kaluza-Klein (8.24). Manifes-
tement, ces opérateurs forment une sous-algèbre, et on peut vérifier que c’est l’algèbre de
Schrödinger sch(d) [175]. L’identification est la suivante :

M̂ = P̃+, P̂t = P̃−, P̂ i = P̃ i, M̂ ij = M̃ ij ,

K̂i = M̃ i+, D̂ = D̃ + M̃+−, Ĉ =
K̃+

2
.

(8.29)

De l’équation (8.27), on constate que les commutateurs entre les opérateurs (8.29) sont
exactement les commutateurs de l’algèbre de Schrödinger (8.4) et (8.9). En outre, la réali-
sation (8.10) résulte de (8.28) par l’identification (8.29).

L’algèbre de symétrie maximale de l’équation de Klein-Gordon de masse nulle (8.21)
est l’algèbre des polynômes en les générateurs conformes (8.28) modulo les relations d’équi-
valence découlant de l’équation de Klein-Gordon [167] 12. L’algèbre de symétrie maximale
de l’équation de Schrödinger libre (8.5) est l’algèbre des polynômes en les générateurs de
Schrödinger (8.10) modulo les relations d’équivalence provenant de l’équation de Schrö-
dinger. Le plongement similaire à celui décrit ci-dessus tient effectivement au niveau de
l’algèbre de symétrie maximale, comme on pouvait s’y attendre : L’algèbre de symétrie

12. L’algèbre de symétrie maximale de l’action de Klein-Gordon sans masse a été notée par hu(1/sp(2)[d+
2, 2]) par Vasiliev dans [168].
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Figure 8.3 – L’algèbre de Vasiliev et ses sous-algèbres.

maximale de l’équation libre de Schrödinger est isomorphe à la sous-algèbre de l’algèbre de
symétrie maximale de l’équation de Klein-Gordon de masse nulle, qui commute avec un
générateur de translation dans une direction fixée de genre lumière.

Sur la figure 8.3, les générateurs surlignés forment de manière complète le groupe de
même couleur ; alors que ceux qui ne le sont pas appartiennent au groupe de la même couleur
mais celui-ci contient également les générateurs des groupes plus petits. Le symbole Pol
mis pour “polynômes” est un abus de langage car les générateurs ne commutent pas ; on
devrait parler plus précisemment de somme de produits.

En d’autres termes, l’algèbre de symétrie maximale de l’équation libre de Schrödinger
est isomorphe au centralisateur d’un générateur de translation de genre lumière donné, à
l’intérieur de l’algèbre de symétrie maximale de l’équation de Klein-Gordon de masse nulle.
Par conséquent, un polynôme en les générateurs conformes est équivalent à un polynôme
en les générateurs de Schrödinger si et seulement s’il commute avec P̃+. Des exemples
évidents sont les polynômes en les générateurs (8.29) de sch(d) qui commutent avec P̃+. Un
exemple plus intéressant de la propriété précédente est le polynôme α = K̃iP̃i−2M̃+iM̃+i ,
quadratique en les générateurs de o(d + 2, 2). Avec l’aide des relations de commutation
(8.27), on peut vérifier que α commute avec P̃+. En faisant usage de (8.10) et (8.28), on
trouve en outre qu’il est équivalent à un polynôme en les générateurs de sch(d) : α ≈
M̂ ijM̂ij + idD̂ + d2/2, comme il se doit.
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Chapitre 9

Résultats

Ce chapitre contient une lettre [78] intitulée “Towards a gravity dual of the unitary
Fermi gas” publiée dans Physical Review D en 2012 et écrite en collaboration avec Xavier
Bekaert et Sergej Moroz. Les idées et les démonstrations ont été développées dans un autre
article intitulé “Symmetries and currents of the ideal and unitary Fermi gases” publié dans
JHEP en annexe C.



Towards a gravity dual of the unitary Fermi gas

Xavier Bekaert,1 Elisa Meunier,1 and Sergej Moroz2,3
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Inspired by the method of null-dimensional reduction and by the holographic correspondence between

Vasiliev’s higher-spin gravity and the critical OðNÞ model, a bulk dual of the unitary and the ideal

nonrelativistic Fermi gases is proposed.
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I. INTRODUCTION

The quantum many-body problem of a nonrelativistic
two-component Fermi gas with short-range attractive in-
teractions is a long-standing problem in condensed matter
physics. At low temperature, the system is known to be
superfluid and undergoes a smooth crossover from the
Bardeen-Cooper-Schrieffer (BCS) to the Bose-Einstein-
Condensate (BEC) regime as the two-body attraction
is increased (see [1] for reviews). Recent progress in
experimental atomic physics has allowed the study of the
BCS-to-BEC crossover with unprecedented accuracy. The
regime in between BCS and BEC, known as the ‘‘unitary
Fermi gas,’’ is of special theoretical interest. The unitary
Fermi gas is strongly coupled and no obvious small pa-
rameter is available precluding the reliable application of a
perturbative expansion.

A characteristic of the unitary Fermi gas in vacuum is its
invariance under scale transformations and, more generally,
under the Schrödinger group of [2]. This nonrelativistic
conformal symmetry of the unitary Fermi gas allowed [3]
to apply themethods of gauge-gravity duality to this system.
While these seminal papers triggered an intensive search for
the holographic duals of various nonrelativistic systems
originating from condensed matter physics, a holographic
description of the unitary fermions still remains tantalizing.
In this work, inspired by the conjectured anti-de Sitter (AdS)
dual of the critical OðNÞ model [4], we make a next step
towards thegravity dual description of the unitary Fermi gas.

II. UNITARY FERMI GAS AND ITS
LARGE-N EXTENSION

Experimentally, a dilute two-component Fermi gas can
be cooled with lasers to ultralow temperatures close to
absolute zero. Theoretically, this system can be very
well-described as a Fermi gas with two-body contact in-
teractions governed by the microscopic BCS action

S½c ; c0� ¼
Z

dt
Z

dx

� X
�¼";#

c �
�

�
i@t þ �

2m
þ�

�
c �

� c0c
�
# c

�
" c "c #

�
; (1)

where the two species of fermionic atoms of mass m are
represented by the Grassmann fields c " and c #, the chemi-

cal potential by �, and c0 measures the strength of the
interaction. This model has an internal Uð2Þ symmetry.
Because of the contact nature of the interaction term, in
three spatial dimensions (d ¼ 3) the quantum field theory
defined by the action (1) must be renormalized by trading
the bare interaction parameter c0 for a low-energy observ-
able: the s-wave scattering length. Experimentally, the
scattering length can be tuned via a Feshbach resonance
by applying an external magnetic field. The unitary regime
corresponds to an infinite scattering length. Hence, in
vacuum (i.e., � ¼ 0) there is no intrinsic length scale in
the unitary regime and the microscopic action (1) is invari-
ant under the Schrödinger symmetry. Most remarkably, the
quantum version of this theory is believed to be an example
of a strongly interacting nonrelativistic conformal field
theory (NRCFT) [5].
Aiming at a semiclassical holographic description, some

large-N extension of the unitary Fermi gas is necessary. A
sensible construction that preserves the pairing structure of
the interaction term was found in [6]. The model with N
‘‘flavors’’ is defined by the action

S½c ; c0; N� ¼
Z

dt
Z

dx

�
c y

�
i@t þ �

2m
þ�

�
c

� c0
4N

jc TJc j2
�
; (2)

where c denotes a multiplet of 2N massive fermions with
components c A ¼ c a

� with � ¼" , # and a ¼ 1; . . . ; N.
The symbol J represents the symplectic 2N � 2N matrix
JAB ¼ ��� � �ab. For N ¼ 1, one recovers the original
model (1). The extended model has Uð1Þ � Spð2NÞ as an
internal symmetry group. Its subgroup Uð2Þ �OðNÞ,
where Uð2Þ and OðNÞ transform independently the
‘‘spin’’ and ‘‘flavor’’ indices (respectively �, � and a, b)
will be central in our proposal. Via a Hubbard-Stratonovich
transformation in the Cooper channel, both theories (1) and
(2) can be reformulated as effective field theories in terms
of a complex scalar field (called dimer in the literature on
the unitary Fermi gas) associated with the Cooper pair
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c TJc � c " � c #. In the large-N limit the quantum parti-

tion function of (2) is equivalent to the mean field approxi-
mation for (1), as both correspond to the saddle point of the
dimer effective theory.

III. UNITARY FERMI GAS VS
RELATIVISTIC UðNÞ MODEL

Relativistic scalar OðNÞ models and their natural com-
plex UðNÞ extension are well-understood due to their
central role in the physics of critical phenomena. Despite
their different space-time symmetries, the relativisticUðNÞ
model in D ¼ dþ 2-dimensional space-time and the non-
relativistic BCSmodel in d spatial dimensions have several
features in common. Some of the properties of the models
are compared in the following table:

Models UðNÞ BCS

Space-time Relativistic Nonrelativistic

Fundamental fields Bosons � Fermions c ", c #
Components N complex 2N complex

Internal symmetry UðNÞ Uð1Þ � Spð2NÞ
Quartic interaction ð�y ��Þ2 jc " � c #j2
Collective field Particle density

�y ��
Cooper Pair

c " � c #
Scale-free m ¼ 0 � ¼ 0

Critical fixed point Wilson-Fisher Unitary regime

UðNÞ and BCS models have a similar renormalization
group topology exhibiting a pair of fixed points. Besides
the trivial fixed point, both theories can be tuned to criti-
cality: the Wilson-Fisher fixed point for the massless UðNÞ
model and the unitary fixed point for the BCS model at
� ¼ 0. In the large-N limit, the models at the interacting
fixed point are simply related to their noninteracting coun-
terparts. In particular, by applying the general observation
of [7] to nonrelativistic fermions, one can show that, in the
large-N limit, the free energies of the ideal and the unitary
Fermi gases are related by a Legendre transformation with
respect to the dimer field. Consequently, in this limit the
theory at the two fixed points has the same infinite set of
conserved currents and symmetries, most of which are
broken by 1=N corrections in the interacting theory.
Analogous observation also holds for the relativistic
UðNÞ model.

One also observes a simple relation between the scaling
dimensions of the collective field at the two fixed points for
both BCS and UðNÞ models [3,4]

�free ¼
�
d BCSmodel

D� 2 UðNÞmodel

�int ¼ 2

�
BCSmodel ðin vacuumÞ
UðNÞmodel ðN ¼ 1 limitÞ

(3)

In contrast to the relativistic UðNÞ model, due to the
simplicity of the nonrelativistic vacuum, the relation
�int ¼ 2 is exact in the theory of nonrelativistic fermions,
i.e., it receives no 1=N corrections.
The highest of the two scaling dimensions, denoted �þ,

is always above the unitarity bound and corresponds to an
infrared (IR)-stable fixed point on the boundary side and to
a standard (Dirichlet) boundary condition on the bulk side.
The lowest dimension, ��, corresponds to an ultraviolet
(UV)-stable fixed point and to an exotic (Neumann) bound-
ary condition. Thus the holographic dual of the boundary
Legendre transformation is a change of boundary condi-
tions on the bulk scalar field. When both dimensions are
above the nonrelativistic unitarity bound, �þ � �� �
d=2, both fixed points are admissible and thus correspond
to different choices of boundary conditions for the same
bulk theory.
The unitary fixed point corresponding to �int is physi-

cally admissible only for 0< d< 2 (IR-stable) and
2< d< 4 (UV-stable). Indeed, for d > 4 one obtains
�int ¼ 2< d

2 which violates the unitarity bound for dimers.

Moreover, in d ¼ 2 both fixed points merge together
(�free ¼ 2 ¼ �int) and only the trivial fixed point exists.
The situation can be summarized as:

d �� �þ Property

0< d< 2 �free �int Asymptotic

freedom

d ¼ 2 2 2 Triviality

2< d< 4 �int �free Asymptotic

safety

IV. NULL-DIMENSIONAL REDUCTION

This is an old trick relating mathematically, relativistic
and nonrelativistic theories at tree level (see, e.g., [8]). It is
based on the observation that the d’Alembertian of D ¼
dþ 2-dimensional Minkowski space-time expressed in
light-cone coordinates x� ¼ ðxþ; x�; xiÞ is proportional
to the Schrödinger operator in d spatial dimensions, mod-
ulo the identification of the null coordinate xþ with the
nonrelativistic time and of the null momentum �i@� with
the mass operator. Indeed, the kinetic operator of a rela-
tivistic scalar theory, h�M2 ¼ �2@þ@� þ��M2,
when acting on eigenmodes of the null momentum,

�ðxÞ ¼ e�imx�c ðxþ; xiÞ; (4)

is proportional to the kinetic Schrödinger operator of a
nonrelativistic theory, i@t þ �=2mþ�, via the identifica-
tion xþ ¼ t and M2 ¼ ��=2m. Hence, any solution �ðxÞ
of the free Klein-Gordon equation of the form (4) defines a
solution c ðt;xÞ of the free Schrödinger equation, and
conversely.
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By definition, symmetries map solutions on solutions,
thus the symmetries of the free Schrödinger equation can
be seen as those symmetries of the free Klein-Gordon
equation that commute with a fixed null momentum. For
instance, the Bargmann group (the central extension of the
Galilei group by the mass) and the Schrödinger group (the
Bargmann group enlarged by expansions and scale trans-
formations [2]) are, respectively, the kinematical symmetry
groups of the free Schrödinger equation with and without
chemical potential [9]. They can be viewed as the central-
izers of a given null momentum inside, respectively, the
Poincaré and the conformal group of kinematical symme-
tries of the Klein-Gordon equation with and without mass.

The dimensional reduction explains the similarities be-
tween the large-N critical UðNÞ model and the unitary
Fermi gas in vacuum. In fact, generally any Lagrangian
invariant under global Uð1Þ phase and Poincaré (confor-
mal) transformations can be consistently reduced to a
Lagrangian preserved by the Uð1Þ and Bargmann
(Schrödinger) groups. This universal relationship between
relativistic and nonrelativistic field theories in the semi-
classical (i.e., mean field) approximation has maybe not yet
received the attention that it deserves.

V. NONRELATIVISTIC HIGHER-SPIN
SYMMETRIES

A key feature of free conformal field theories (CFTs) is
that their symmetries are enhanced to an infinite-
dimensional higher-spin symmetry algebra. Following the
holographic dictionary, the associated infinite collection of
higher-spin conserved currents should be dual to a tower of
higher-spin gauge fields in the bulk. In particular, the
bilinear singlet sector of a free scalar CFT should be dual
to a Vasiliev theory [10]. Consequently, a crucial step
towards a bulk dual of the ideal Fermi gas is the identi-
fication of symmetries and currents of the nonrelativistic
free fermions as well as their relationship to their relativ-
istic parent. This lengthy analysis will be presented in
detail in [11] and here we only summarize our main results.

A target is the nonrelativistic counterpart of the theorem
of Eastwood [12] identifying the maximal symmetry alge-
bra of the d’Alembert equation in D ¼ dþ 2 flat space-
time. The latter infinite-dimensional algebra is denoted
here as ‘‘Vasiliev (dþ 2,2)’’, since it contains the confor-
mal algebra oðdþ 2; 2Þ and is used by Vasiliev as gauge
algebra in his bosonic higher-spin theories onAdSdþ3 [13].
Mimicking the definitions of [12], a symmetry generator of
the free Schrödinger equation (with � ¼ 0 from now on),�

i@tþ �

2m

�
c ðt;xÞ¼0, c ðt;xÞ¼eitð�=2mÞc ð0;xÞ; (5)

is a linear differential operator Â such that ði@t þ
�=2mÞÂ ¼ B̂ði@t þ �=2mÞ for some linear differential

operator B̂, because then Â maps solutions on solutions.
Two generators are equivalent if they only differ by a trivial

generator of the form Â ¼ Ĉði@t þ �=2mÞ for some linear

operator Ĉ, i.e., Â then maps solutions on zero. The
maximal symmetry algebra of the free single-particle
Schrödinger equation is the Lie algebra of all inequivalent
symmetry generators and it is [11]:
(i) isomorphic to the Weyl algebra [14], denoted ‘‘Weyl

(d),’’ of spatial differential operators (i.e., quantum
observables that are polynomials in positions and
momenta) evolved in the time-reversed Heisenberg
picture

Âð�tÞ ¼ e�itð�=2mÞÂð0Þe�itð�=2mÞ

that manifestly maps any solution (5) to a solution,
(ii) generated algebraically by (taking powers of) the

spatial translation and Galilean boost generators,

P̂i¼�i@i¼P̂ið�tÞ and K̂i¼mxiþit@i¼mX̂ið�tÞ
with canonical commutation relations ½K̂i; P̂j� ¼
i�ijm,

(iii) embedded in the Vasiliev algebra as the subalgebra
commuting with a given null momentum and con-
tains the Schrödinger algebra schðdÞ, as summa-
rized here:

Kinematical 	 Higher symmetries

CFT oðdþ 2; 2Þ 	 Vasiliev (dþ 2, 2)
[ [ [
NRCFT schðdÞ 	 Weyl (d)

where the vertical embedding corresponds to the null-
dimensional reduction, and the horizontal embedding
arises from the fact that the generators of kinematical
symmetries are first-order differential operators while
higher symmetries generators can be higher derivatives.
Notably [15], the Schrödinger algebra is contained in the
Weyl algebra because its generators can be realized as
polynomials of degree two in the spatial translation and
Galilean boost generators.
For an n-component scalar field, these higher-spin

space-time symmetry algebras of the d’Alembert and
Schrödinger equations can be tensored with an internal
uðnÞ algebra of Hermitian n� nmatrices. The correspond-
ing higher-spin theories then possess uðnÞ-valued gauge
fields [13] dual to boundary bilinear currents in the adjoint
representation of UðnÞ [4].

VI. FERMION BILINEARS AND COUPLING
TO SOURCES

The physical (N ¼ 1) BCS fermions are two-component
Grassmann scalars in the fundamental representation of the
internal symmetry group Uð2Þ. Together with the up and
down particle densities, the Cooper pair fits into an adjoint
multiplet of Uð2Þ, i.e., the 2� 2 Hermitian matrix:
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�jð0Þ
" kð0Þ

kð0Þ� jð0Þ
#

0
@

1
A :¼ �c �

" � c " c " � c #
c �

# � c �
" c �

# � c #

 !
:

In the large-N extended theory, these considerations lead
us to focus on the sector of flavor-singlet two-fermion
composite fields in the adjoint representation of Uð2Þ.
They are spanned by the Uð1Þ-neutral conserved currents
[16] (no sum over the index � ¼" , # )

j ðrÞ
�i1���is ¼ �abc

a�
� @

$
t � � � @$t|fflfflfflffl{zfflfflfflffl}

r

@
$
i1 � � � @

$
isc

b
� (6)

and the Uð1Þ-charged symmetric tensors

k ðrÞ
i1���is ¼ �abc

a
" @
$
t � � � @$t|fflfflfflffl{zfflfflfflffl}

r

@
$
i1 � � � @

$
isc

b
# : (7)

For s ¼ r ¼ 0, these composite fields, respectively, repro-

duce the up and down particle densities jð0Þ
� ¼ c �

� � c �

and the Cooper pair kð0Þ ¼ c " � c #. In the holographic

correspondence, the composite operators (6) and (7) should
couple minimally to sources, respectively, denoted by

hðrÞ�i1���is and ’ðrÞ
i1���is , representing the boundary data of

uð2Þ-valued bulk gauge fields. With the techniques of
[17], the difference of the free action S½c ; 0; N� and
of the minimal coupling term,X

r;s�0

Z
dtdxðjðrÞi1���ishðrÞi1���is þ kðrÞi1���is�’ðrÞ

i1���is þ c:c:Þ;

can be rewritten as the quadratic functional [11]Z
dtdx�y i@t þ �

2m � Ĥ" ’̂

’̂y i@t � �
2m þ Ĥ�

#

 !
�;

where�T ¼ ðc "; c �
# Þ defines the two-component Nambu-

Gorkov fermion, Ĥ�
�ðX̂; P̂Þ :¼ Ĥ�ðX̂;�P̂Þ and the differ-

ential operators Ĥ� and ’̂ are related to the respective
sources h� and ’. This compact rewriting is formally
identical to the Nambu-Gorkov formulation of the BCS
theory except that the chemical potential and the energy
gap are replaced by space-time differential operators. The
effective action can be obtained now via a Gaussian inte-
gration over the fermionic field and is a trace-log func-
tional of the above 2� 2 matrix. These results can be
reproduced through the null-dimensional reduction of a
free relativistic scalar theory [11].

VII. BULK DUAL

What might be the gravity dual of the unitary Fermi gas?
Keeping the above discussion in mind, we approach this
question by following these steps: (i) unitary fermions at
N ¼ 1 are Legendre conjugate to free fermions, (ii) a key

tool for understanding higher-spin symmetries of free
nonrelativistic fermions is the null-dimensional reduction
of free relativistic Grassmann scalars, (iii) free relativistic
scalar theories are expected to be dual to Vasiliev higher-
spin theories.
Therefore it is tempting to perform the null reduction on

both sides of the relativistic holographic duality, as in [18].
Schematically, our philosophy looks as follows:

with horizontal arrows denoting holographic correspon-
dence and vertical arrows relating relativistic to nonrelativ-
istic theories via the null reduction. The higher-dimensional
relativistic parents are mere auxiliary tools in our construc-
tion, used at tree level only since they may be sick as
quantumfield theories per se. For instance, the CFT violates
the spin-statistics theorem, but this is not a problem since
this theorem does not apply to nonrelativistic theories.
We thus propose that a candidate for the holographic

description of fermions at unitarity is the null reduction of
a Vasiliev higher-spin gravity [19]. More precisely, the
OðNÞ-invariant sector of the large-N unitary fermions in
d spatial dimensions might be dual to the null reduction of
the Vasiliev bosonic theory [13] on AdSdþ3 with Uð2Þ
internal symmetry. Scalar fields on AdSdþ3 admit two
distinct choices of boundary conditions for mass square

in the interval �
�
dþ2
2

�
2
<m2 < 1�

�
dþ2
2

�
2
. Since the

complex bulk scalar fields in the higher-spin multiplet
have m2 ¼ �2d, this possibility arises in the intervals 0<
d< 2 and 2< d< 4. In particular, the gravity dual of the
‘‘physical’’ three-dimensional (d ¼ 3) two-component
(N ¼ 1) UV-stable (�� ¼ 2) unitary Fermi gas should
be the null-dimensional reduction of Vasiliev theory de-
scribing interacting uð2Þ-valued higher-spin gauge fields
onAdS6 with exotic boundary condition for the bulk scalar
field dual to the Cooper pair. The intimate connection
between the unitary and the ideal Fermi gases together
with the universality of the null-dimensional reduction
method suggest that the holographic dual of the unitary
Fermi gas is within our immediate reach.
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Annexe A

Démonstrations du premier chapitre

A.1 L’expression ambiante du d’Alembertien

A partir des formules de la dérivée covariante pour un scalaire (1.42) et (1.43) :

∇µ φ←→ DAΦ = PCA ∂CΦ

on cherche l’expression du correspondant en espace ambiant�D = GAB DADB du d’Alem-
bertien en espace-temps de courbure constante ∇2

(A)dSn
= gµν ∇µ∇ν :

∇2
(A)dSn

φ = gµν ∇µ∇νφ ←→ �D Φ = GAB DADB Φ .

Calculons :

�DΦ = GAB DADBΦ

= GAB∂ADBΦ

= GAB∂A (PCB ∂CΦ)

= GAB∂A

(
∂BΦ − XBX

C

X2
∂CΦ

)

= GAB
(
∂A∂BΦ − ηAB

X2
XC ∂CΦ

)

=

(
ηAB − XAXB

X2

) (
∂A∂BΦ − ηAB

X2
hΦ
)

= ηAB∂A∂BΦ − ηABηAB
X2

hΦ − XAXB

X2
∂A∂BΦ +

ηABX
AXB

(X2)2
hΦ

= �DΦ − D

X2
hΦ − h(h− 1)

X2
Φ +

1

X2
hΦ

= �DΦ +
1

X2
(−Dh − h (h− 1) + h) Φ

�DΦ ∼ �DΦ − 1

X2
h (D + h − 2) Φ .

Finalement, on trouve

∇2
(A)dSn

φ ←→ �DΦ =

[
�D −

1

X2
h (D + h − 2)

]
Φ
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et également

�D Φ←→ �n φ =

[
∇2
n ±

1

R2
h (h + n − 1)

]
φ .

Dans l’espace ambiant, on a pour une fonction harmonique homogène de degré h :

�DΦ = 0

XA ∂AΦ = hΦ

=

(
2 − D

2
+ i µ

)
Φ .

Dans l’espace-temps de de Sitter, l’opérateur d’Alembertien se note :

�D Φ ←→ �dSn φ =

[
∇2
dSn +

1

R2
h (h + n − 1)

]
φ

�D Φ ←→ �dSn φ =

[
∇2
dSn +

1

R2

(
1 − n

2
+ i µ

)(
1 − n

2
+ i µ + n − 1

)]
φ

�D Φ ←→ �dSn φ =

[
∇2
dSn −

1

R2

(
n − 1

2
− i µ

) (
n − 1

2
+ i µ

)]
φ

�D Φ ←→ �dSn φ =

[
∇2
dSn −

1

R2

((
n − 1

2

)2

+ µ2

)]
φ

�D Φ ←→ �dSn φ =

[
∇2
dSn −

1

R2

((
n − 1

2

)2

+ µ2

)]
φ . (A.1)

A.2 Le commutateur des dérivées covariantes

Calculons dans l’espace ambiant :

[∇µ, ∇ν ]Vρ = 2∇[µ∇ν] Vρ

l
[DA ,DB] VC = 2 ∂[A

(
PDB] PEC ∂DVE

)

∼ 2 η[AB]
XD

X2
δEC ∂DVE − 2 δD[B ηA]C

XE

X2
∂DVE + 2 δEC δ

D
[B ∂A]∂DVE

= 0 − 2
XE

X2
ηC[A ∂B]VE + 2 ∂[A∂B]VC

= − 2
XE

X2
ηC[A ∂B]VE + 0

= − 2
1

X2
ηC[A ∂B](X

EVE) + 2
1

X2
ηC[A δ

E
B] VE

= 0 + 2
1

X2
ηC[A VB]

∼ 2
1

X2
GC[A VB]
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[∇µ ,∇ν ]Vρ = ± 2
1

R2
gρ[µ Vν] . (A.2)

A.3 La conservation des courants

On pose y± = x± v. Tout d’abord, on a :

∂

∂xρ
[φ(x− v)φ∗(x+ v)] =

∂φ

∂xρ
(x− v)φ∗(x+ v) + φ(x− v)

∂φ∗

∂xρ
(x+ v)

=
∂φ

∂yρ−
(y−)φ∗(y+) + φ(y−)

∂φ∗

∂yρ+
(y+) .

On en déduit donc
(
ηνρ

∂

∂vν
∂

∂xρ

)
[φ(x− v)φ∗(x+ v)]

= ηνρ
{

∂2φ

∂vν∂yρ−
(x− v)φ∗(x+ v)

+
∂φ

∂yρ−
(x− v)

∂φ∗

∂vν
(x+ v) +

∂φ

∂vν
(x− v)

∂φ∗

∂yρ+
(x+ v)

+ φ(x− v)
∂2φ∗

∂vν∂yρ+
(x+ v)

}

= ηνρ
{
− ∂2φ

∂yν−∂y
ρ
−

(y−)φ∗(y+)

+
∂φ

∂yρ−
(y−)

∂φ∗

∂yν+
(y+) − ∂φ

∂yν−
(y−)

∂φ∗

∂yρ+
(y+)

+ φ(y−)
∂2φ∗

∂yν+∂y
ρ
+

}

≈ 0 .

A.4 La condition sur le degré d’homogénéité pour la fonction
génératrice de l’espace ambiant

On souhaite calculer la divergence du courant DB1JB1...Br en espace ambiant et trouver
la condition sur le degré d’homogénéité pour qu’elle soit nulle. Le gradient s’écrit :

DAJB1...Br ∼ ∂A

[
PC1
B1
...PCrBr JC1...Cr

]

∼ ∂AJB1...Br − r ηA(B1
XC 1

X2
JB2...Br)C .

Par définition, on a :

DB1JB1...Br = GAB1DAJB1...Br

=

(
ηAB1 − XAXB1

X2

) (
∂AJB1...Br − r ηA(B1

XC

X2
JB2...Br)C

)
.
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On utilise l’identité suivante :

r ηA(B1
XC JB2...Br)C = ηAB1 X

C JB2...BrC + (r − 1)ηA(B2
XC JB3...Br)B1C .

Donc la divergence covariante est :

DB1JB1...Br =

(
ηAB1 − XAXB1

X2

)
×

×
(
∂AJB1...Br − ηAB1

XC

X2
JB2...BrC − (r − 1) ηA(B2

XC

X2
JB3...Br)B1C

)

∼ ∂B1JB1...Br − ηAB1 ηAB1

XC

X2
JB2...BrC

− (r − 1) ηAB1 ηA(B2

XC

X2
JB3...Br)B1C

− X
AXB1

X2
∂AJB1...Br +

XC

X2
JB2...BrC .

Or on suppose que J est un courant conservé de l’espace plat ambiant, ∂B1JB1...Br ≈ 0.
De plus, les quatre termes restant sont égaux à :

−D XC

X2
JB2...BrC − (r − 1)

XC

X2
JB3...BrB2C −

XB1

X2
hr JB1...Br +

XC

X2
JB2...BrC

=
XC

X2
JB2...BrC [−D − (r − 1) − hr + 1]

où hr est le degré d’homogénéité en X du courant J de rang r. Pour la fonction génératrice
(3.17),

hr = h − r + h†

= 2<(h) − r

d’où

DB1JB1...Br ≈
XC

X2
JB2... Br C [−D − (r − 1) − (2<(h) − r) + 1]

=
XC

X2
JB2... Br C [−D − 2<(h) + 2] .

Pour que la divergence covariante du courant soit bien nulle, on pose

−D − 2<(h) + 2 = 0 .

Ce qui implique que :

<(h) =
2 − D

2
= 1 − D

2
=

1− n
2

. (A.3)
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A.5 Les dérivées partielles

Nous allons démontrer les formules des dérivées partielles en fonction des dérivées co-
variantes dans l’espace ambiant.
Pour le rang 2 :

D(ADB) Φ = DADB Φ

= ∂ADB Φ

= ∂A(PCB ∂C Φ)

= ∂A

[(
δCB −

XBX
C

X2

)
∂CΦ

]

= ∂A

[
∂BΦ − XB

X2
hΦ

]

∼ ∂A∂BΦ − h

X2
ηAB Φ

∂A ∂BΦ ∼ D(ADB)Φ +
h

X2
ηAB Φ . (A.4)

Pour le rang 3 :

DADBDCΦ ∼ ∂A(PDB PEC DD DEΦ)

= ∂A

[(
δDB −

XBX
D

X2

)(
δEC −

XC X
E

X2

)(
∂D∂EΦ − h

X2
ηDE Φ

)]

= ∂A

[
∂B∂CΦ − h

X2
ηBC Φ − XC X

E

X2
δDB ∂D∂EΦ

+
XC X

E

X2

h

X2
δDB ηDEΦ − XBX

D

X2
δEC ∂D∂EΦ +

XBX
D

X2

h

X2
δEC ηDE Φ

+
XBX

DXC X
E

(X2)2
∂D∂EΦ − XBX

DXC X
E

(X2)2

h

X2
ηDEΦ

]

∼ ∂A∂B∂CΦ − h

X2
ηBC ∂AΦ − XE

X2
δDB ηAC ∂D∂EΦ

+
XE

X2

h

X2
δDB ηAC ηDE Φ − XD

X2
δEC ηAB ∂D∂EΦ

+
h

X2

XD

X2
δEC ηAB ηDEΦ

∼ ∂A∂B∂CΦ − h

X2
ηBC∂AΦ − XE

X2
ηAC ∂B∂EΦ− XD

X2
ηAB ∂D∂CΦ

∼ ∂A∂B∂CΦ − h

X2
ηBC∂AΦ − 2

h− 1

X2
ηA(C∂B)Φ .

Donc la partie symétrisée vaut :

D(ADBDC)Φ ∼ ∂A∂B∂CΦ − 3h− 2

X2
η(BC∂A)Φ
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∂A∂B∂CΦ ∼ D(ADBDC) +
3h− 2

X2
η(AB ∂C)Φ . (A.5)

A.6 La formule de récurrence des courants conservés

On a exprimé les dérivées partielles comme un polynôme dépendant des dérivées cova-
riantes et de la métrique ambiante :

∂A1 ...∂Am Φ = Pol(ηAB,DC) Φ

ou encore

(P.∂)m Φ = Polm

(
P 2

X2
, P.D

)

=

[m/2]∑

r=0

crm

(
P 2

X2

)r
(P.D)m−2r Φ . (A.6)

Un calcul explicite montre que :

(P.D) (P.∂)mΦ = PC PB1 ... PBm ∂C(PA1
B1
...PAmBm ∂A1 ...∂Am Φ)

∼ (P.∂)m+1 Φ − mPC PB1 ... PBm
XA1 ηCB1

X2
∂A1 ∂B2 ...∂Bm Φ

∼ (P.∂)m+1 Φ − m
P 2

X2
PB2 ... PBm XA1 ∂A1 ∂B2 ...∂Bm Φ

= (P.∂)m+1 Φ − m
P 2

X2
(h − (m − 1))PB2 ... PBm ∂B2 ...∂Bm Φ

(P.D) (P.∂)m Φ = (P.∂)m+1 Φ − m
P 2

X2
(h− (m− 1)) (P.∂)m−1 Φ . (A.7)

On va utiliser (A.6) pour évaluer les membres de gauche et de droite de cette identité,
ce qui va nous donner une relation de récurrence sur les coefficients crm.
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En utilisant deux fois (A.6) pour calculer (P.∂)m+1 et (P.∂)m−1 :

(P.D) (P.∂)m Φ =

[(m+1)/2]∑

r=0

crm+1

(
P 2

X2

)r
(P.D)m+1−2r Φ

−mP 2

X2
(h−m+ 1)

[(m−1)/2]∑

r=0

crm−1

(
P 2

X2

)r
(P.D)m−1−2r Φ

=

[(m+1)/2]∑

r=0

crm+1

(
P 2

X2

)r
(P.D)m+1−2r Φ

−m (h−m+ 1)

[(m−1)/2]∑

r=0

crm−1

(
P 2

X2

)r+1

(P.D)m−1−2r Φ

=

[(m+1)/2]∑

r=0

crn+1

(
P 2

X2

)r
(P.D)m+1−2r Φ

−m (h−m+ 1)

[(m+1)/2]∑

q=r+1=1

cq−1
m−1

(
P 2

X2

)q
(P.D)m−1−2(q−1) Φ

= c0
m (P.D)m+1 Φ

+

[(m+1)/2]∑

r=1

(
P 2

X2

)r
(P.D)m+1−2r [crm+1 −m(h−m+ 1) cr−1

m−1] Φ .

En repartant de (A.6) pour calculer (P.∂)n, cet opérateur s’exprime aussi par :

(P.D) (P.∂)m Φ = (P.D)

[m/2]∑

r=0

crm

(
P 2

X2

)r
(P.D)m−2r Φ

=

[m/2]∑

r=0

crm

(
P 2

X2

)r
(P.D)m−2r+1 Φ

= c0
m (P.D)m+1 +

[m/2]∑

r=1

crn

(
P 2

X2

)r
(P.D)m−2r+1 Φ .

Ceci implique que :

[(m+1)/2]∑

r=1

[crm+1 −m(h−m+ 1) cr−1
m−1]

(
P 2

X2

)r
(P.D)m+1−2r Φ

=

[m/2]∑

r=1

crn

(
P 2

X2

)r
(P.D)m−2r+1 Φ .

Les bornes supérieures diffèrent mais une relation de récurrence découle de cette égalité :

crm = crm+1 −m(h−m+ 1) cr−1
m−1
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⇔ crm+1 = crm + m(h−m+ 1) cr−1
m−1 . (A.8)

Pour n impair, une relation supplémentaire apparait :

c
(m+1)/2
m+1 = m(h−m+ 1) c

(m−1)/2
m−1 ⇔ crm = 0 lorsque r > m + 1

2
.

A.7 Les courants conservés dans l’espace-temps (A)dSn

Nous allons, à partir des formules des dérivées partielles, calculer les courants conservés
dans l’espace-temps (A)dSn.
Pour le rang 2 :

JsAB = Φ
←→
∂A
←→
∂B Φ†

= Φ ∂A∂BΦ† + ∂A∂BΦ Φ† − 2 ∂(AΦ ∂B)Φ
†

= ΦDADBΦ† +
h†

X2
ηAB Φ Φ† + DADBΦ Φ† +

h

X2
ηAB Φ Φ†

− 2D(AΦDB)Φ
†

= Φ
←→DA
←→DB Φ† +

2<(h)

X2
ηAB Φ Φ†

∼ Φ
←→DA
←→DB Φ† +

2<(h)

X2
GAB Φ Φ†

jsµν = φ
←→∇µ
←→∇ν φ∗ ±

2<(h)

R2
gµν φφ

∗ . (A.9)

Pour le rang 3 :

JsABC = Φ
←→
∂A
←→
∂B
←→
∂C Φ†

= Φ∂A∂B∂CΦ† − 3 ∂(AΦ ∂B∂C)Φ
† + 3 ∂(A∂BΦ ∂C)Φ

† − ∂A∂B∂CΦ Φ†

= ΦD(ADBDC)Φ
† +

3h† − 2

X2
η(AB ΦDC)Φ

† − 3D(AΦDBDC)Φ
†

− 3
h†

X2
η(BC DA)Φ Φ† + 3D(ADBΦDC)Φ

† + 3
h

X2
η(AB ΦDC)Φ

†

−D(ADBDC)Φ Φ† − 3h− 2

X2
η(ABDC)Φ Φ†

= ΦD(ADBDC)Φ
† − D(ADBDC)Φ Φ† − 3D(AΦDBDC)Φ

†

+ 3D(ADBΦDC)Φ
† +

6<(h)− 2

X2
η(AB ΦDC)Φ

† − 6<(h)− 2

X2
η(AB DC)Φ Φ†

= Φ
←→D(A
←→DB
←→DC)Φ

† +
6<(h)− 2

X2
η(AB Φ

←→DC)Φ
†

∼ Φ
←→D(A
←→DB
←→DC)Φ

† +
6<(h)− 2

X2
G(AB Φ

←→DC)Φ
†

jsµνρ = φ
←→∇(µ
←→∇ν
←→∇ρ)φ

∗ ± 6<(h)− 2

R2
g(µν φ

←→∇ρ)φ
∗ . (A.10)
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A.8 Le programme « Maple » pour calculer les courants de
rang élevé

Le programme « Maple » nommé « courant » (pages suivantes) calcule les courants
symétriques conservés à un rang quelconque. En utilisant les notations suivantes : J(r)

désigne le courant de rang r, φ équivaut à φ∗ et (P.(D(dg)))m signifie
←−−→
(P.D)m, nous pouvons

ainsi voir que les résultats des quatre premiers courants sont identiques à ceux calculés
manuellement. Nous avons explicité les calculs jusqu’au rang 8 mais il est bien sûr possible
d’aller à un rang plus élevé, les seules contraintes étant celles de la mémoire et du temps
nécessaire à l’ordinateur pour faire le calcul.



> # Calcul du courant conservé dans l'espace-temps à courbure 
constante (de Sitter : X²=R² ; anti-de Sitter : X²=-R²)
 # pour un champ de spin r quelconque courant:=proc(r);
    #Calcul des coefficients c(m,r)
     rec:=proc(R); # R correspond ici à r  
      if R>1 then
         for A from 2 to R do
           f(m):=m*(h-m+1);
           init:=c(1)=0;
           eqn(1):=c(n+1)=c(m)+f(m);
           soln(1):=collect(rsolve({eqn(1),init},c(m)),m);
           eqn(A):=c(m+2)=c(m+1)+(m+1)*(h-m)*soln(A-1);
           soln(A):=collect(rsolve({eqn(A),init},c(m)),m);
         end do;
       elif R=1 then
         init:=c(1)=0;
         eqn(1):=c(m+1)=c(m)+f(m);
         soln(1):=collect(rsolve({eqn(1),init},c(m)),m);
       else 
         soln(0):=1;
       fi;
     end proc ;

Z:=0;

# Calcul du produit des deux coefficients et d'autres termes 
utiles par la suite
for s from 0 to r do
  for i from 0 to floor(s/2) do
    for j from 0 to floor((r-s)/2) do
      Z:=Z+1;
      cc(s,i,j):=eval(rec(i),m=s)*eval(rec(j),m=(r-s));  # produit 
des deux coefficients
      Vcc[Z]:=cc(s,i,j);                                 # vecteur 
contenant le produit des deux coefficients
      Vdphi[Z]:=s-2*i;                                   # vecteur 
contenant la puissance des dérivées de phi
      Vdphiet[Z]:=r-s-2*j;                                # 
vecteur contenant la puissance des dérivées de phi étoile
      Vbinom[Z]:=r!/(s!*(r-s)!);                         # vecteur 
contenant les coefficients binomiaux
      Vmetriq[Z]:=i+j;                                   # vecteur 
contenant la puissance de la métrique  

     # suppression des entiers dans le vecteur contenant le 
produit des deux coefficients car ils interviendront seulement     
dans le premier terme du courant
     if type(Vcc[Z],integer) then 
       Vcc[Z]:=0;
     fi;
    
    end do;
  end do;
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end do;

for B from 1 to Z do

# vecteur contenant le produit des coefficients binomiaux par le 
produit deux coefficients 
Vccxbinom[B]:=Vcc[B]*Vbinom[B];

 for E from B+1 to Z do

  # vecteur rassemblant les coefficients liés aux mêmes puissances 
des dérivées de phi et phi étoile
  if Vdphi[E]=Vdphi[B] and Vdphiet[E]=Vdphiet[B] then
    Vccxbinom[B]:=Vccxbinom[B]+Vbinom[E]*collect(Vcc[E],h);
    Vcc[E]:=0;
  fi;

 end do;

Vcc[B]:=0;

end do;

# rassemblement des termes ayant la même puissance de la métrique
for F from 1 to Z do
  for E from (F+1) to Z do
    if Vmetriq[F]=Vmetriq[E] then
      Vccxbinom[E]:=0;
    fi;
  end do;
end do;

# calcul du premier terme du courant n'ayant pas de coefficients
J:='phi'*(Q.D(dg))^r*conjugate('phi');

# calcul du courant en additionnant les termes un par un
for G from 1 to Z do 
  
J:=J+Vccxbinom[G]*(Q^2/X^2)^Vmetriq[G]*'phi'*(Q.D(dg))^Vdphiet[G]*
conjugate('phi');
end do;

#affichage du courant
print('J(r)'=J);
end;
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Annexe B

Premier article

Dans l’article [76] ci-après, deux fautes de frappe (parenthèses manquantes) se sont
glissées dans les équations (3.27) et (3.28) :

∇2tµ1...µr(x)←→ GBC DB DCTA1...Ar(X) ∼

∼
[
∂2 − 1

X2

(
(X · ∂)

(
X · ∂ + D − 2

)
− r

)]
TA1...Ar(X)

∂2 TA1...Ar(X) ←→
[
∇2 ± 1

R2

(
k (k + d − 1) − r

)]
tµ1...µr(x) .



J
H
E
P
1
1
(
2
0
1
0
)
1
1
6

Published for SISSA by Springer

Received: August 27, 2010

Revised: November 5, 2010

Accepted: November 10, 2010

Published: November 24, 2010

Higher spin interactions with scalar matter on

constant curvature spacetimes: conserved current and

cubic coupling generating functions

Xavier Bekaert and Elisa Meunier
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1 Introduction

Principal bundles and Riemannian manifolds provide the right geometrical frameworks

for describing the interactions between gauge fields with respective spin one and two.

However, despite remarkable results on the interactions between higher spin gauge fields

their underlying geometrical and physical first principles remain elusive. Although a higher-

spin generalization of gravity is available through the frame-like formulation of Vasiliev (see

e.g. [1–3] for some reviews) extending the Cartan-Weyl formulation of general relativity,

the first principles analogous to the parallel transport and to the local affine covariance on

the geometrical side, or to the gauge and equivalence principles on the physical side, still

remain mysterious. The latter physical principles, underlying the low-spin interactions, are

best displayed in the minimal couplings between matter and gauge fields, so higher-spin

generalizations thereof might be a proper place to look for inspiration. Specifically, one

will concentrate here on a toy model where matter is represented by a complex scalar field.

This simplest example already proved to highlight most of the key features of the more

intricate general couplings between fields of non-vanishing spins.

– 1 –
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The Noether (i.e. minimal) cubic couplings between a complex scalar matter field and

a collection of higher-spin tensor gauge fields have already been investigated in the metric-

like formulation on Minkowski [4–7] and anti de Sitter [7–10] spacetimes (see also the recent

work [11] in the frame-like formulation). The Noether cubic interaction between a complex

scalar field and a tensor gauge field takes place through a symmetric current, quadratic

in the scalar field and conserved at linearized level. By construction, such models are

consistent from quadratic order in the gauge and matter fields up to cubic couplings of two

scalar and the gauge fields. The present paper may be thought as a first step towards a

complete generalization to any constant curvature spacetime of the results obtained in [6]

on Minkowski spacetime. Our strategy is to derive the non-zero curvature formulas from

the flat spacetime results by performing a so-called “radial dimensional reduction” [12] also

called “ambient space formulation”, i.e. by making use of the usual isometric embedding of

(anti) de Sitter spacetime as a codimension one hyperboloid inside a flat auxilliary space.

The basic idea goes back to an early work of Dirac [13]. In the late seventies, the ambient

formulation had already been used by Fronsdal [14] in the context of higher-spin gauge

theories and, by now, this technique has become standard and has found a large number

of applications in this area (see e.g. [15–24]).

The plan of the paper is as follows: In order to be self contained, the framework

presented in [6] (i.e. the various generating functions relevant for the Noether method in

the case of gauge/matter couplings) is reviewed in section 2, but from a slightly more general

viewpoint (allowing for curved background) suited to the present analysis. In the section 3,

a dictionary between two formulations (the intrinsic and the ambient ones) of fields on non-

zero constant-curvature spacetimes is provided. The treatment is uniform with respect

to the signature and to the sign of the scalar curvature, in order to incorporate both

(anti) de Sitter spacetimes and their Euclidean counterpart, i.e. hyperspheres (hyperbolic

spaces). The infinite set of conserved currents bilinear in a free complex scalar field are

presented in section 4. The corresponding Noether cubic vertex is given in section 5 and is

written in a compact form by making use of Weyl/Wigner symbol calculus, which enables

the explicit computation of the non-Abelian gauge symmetry deformation. In the last

section 6, our main results are summarized. Some possible extensions thereof are also

suggested and motivated. Eventually, the paper ends with an appendix where a technical

proof is presented in details.

2 Noether method

Let Md be a (pseudo) Riemannian manifold of dimension d endowed with a metric gµν
(Minuscule Greek indices µ, ν, . . . will take d values and they will be lowered or raised via

the metric or its inverse) and its associated Levi-Civita connection ∇µ .

A symmetric conserved current of rank r > 1 is a real contravariant symmetric tensor

field j µ1... µr (x) onMd obeying to the conservation law

∇µ1j
µ1... µr (x) ≈ 0 . (2.1)

– 2 –
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where the “weak equality” symbol ≈ stands for “equal on-mass-shell,” i.e. modulo terms

proportional to the Euler-Lagrange equations. A generating function of conserved currents

is a real function j(x, p) on the phase space T ∗Md which is (i) a formal power series in the

momenta and (ii) such that (
∇µ

∂

∂pµ

)
j(x, p) ≈ 0 . (2.2)

This terminology follows from the fact that all the coefficients of order r > 1 in the power

expansion of the generating function

j(x, p) =
∑

r>0

1

r!
jµ1... µr (x) pµ1 . . . pµr (2.3)

are all symmetric conserved currents by means of (2.2).

A symmetric tensor gauge field of rank r > 1 is a real covariant symmetric tensor field

hµ1...µr(x) onMd whose gauge transformations are of the form [14]

δεhµ1...µr(x) = r∇(µ1
εµ2...µr)(x) + O(h) , (2.4)

where the gauge parameter εµ1...µr−1(x) is a covariant symmetric tensor field of rank r −
1, the round bracket denotes complete symmetrization with weight one, i.e. h(µ1...µr) =

hµ1...µr (remark: the tensor is symmetric by hypothesis) and O(h) stands for terms of

order one or more in the gauge fields. For lower ranks r = 1 or 2 , the transformation (2.4)

either corresponds to the U(1) gauge transformation of the vector (r = 1) gauge field

or to the linearized diffeomorphisms of the metric (r = 2). By comparison with the

spin-two case, this formulation of higher-spin gauge fields is often called “metric-like” (in

order to draw the distinction with the “frame-like” version where the gauge field is not

completely symmetric). A generating function of gauge fields is a real function h(x, v) on

the configuration space TMd (i) which is a formal power series in the velocities and (ii)

whose gauge transformations are

δεh(x, v) = (vµ∇µ) ε(x, v) + O(h) , (2.5)

where ε(x, v) is also a formal power series in the velocities. The nomenclature follows from

the fact that all the coefficients of order r > 1 in the power expansion of the generating

function

h(x, v) =
∑

r>0

1

r!
hµ1... µr (x) v

µ1 . . . vµr (2.6)

are all symmetric tensor gauge fields due to (2.5) with

ε(x, v) =
∑

t>0

1

t!
εµ1... µt(x) v

µ1 . . . vµt . (2.7)

In the context of Noether couplings, the “velocities” vµ and “momenta” pν are in-

terpreted as mere auxiliary variables and can be assumed to be dimensionless. Let us

– 3 –
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introduce a non-degenerate bilinear pairing ≪ ‖ ≫ between smooth functions h(x, v) and

j(x, p) on the configuration and phase spaces respectively,

≪ h ‖ j ≫ :=

∫

Md

ddx
√
| g| exp

(
∂

∂vµ
∂

∂pµ

)
h(x, v) j(x, p)

∣∣∣∣
v=p=0

. (2.8)

If j and h are (formal) power series of the form (2.3) and (2.6) then the pairing (2.8) can

be interpreted as the series

≪ h ‖ j ≫ =
∑

r>0

1

r!

∫

Md

ddx
√
| g| hµ1...µr(x) j

µ1...µr (x) . (2.9)

Let us denote by ‡ the adjoint operation for the pairing (2.8) in the sense that

≪ ˆ̂
Oh ‖ j ≫=≪ h ‖ ˆ̂

O‡ j ≫ , (2.10)

where
ˆ̂
O is an operator acting on the vector space of functions on configuration space (the

double hat stands for “second quantization” in the sense that the operator acts on symbols

of “first quantized” observables). Notice that (vµ)‡ = ∂/∂pµ and ∇‡
µ = −∇µ imply the

useful relation

(vµ∇µ)
‡ = −

(
∇µ

∂

∂pµ

)
. (2.11)

The matter action is a functional S0[φ] of some matter fields collectively denoted by φ .

The Euler-Lagrange equations of these matter fields is such that there exists some conserved

current jµ1...µr [φ(x) ] . The Noether method for introducing interactions is essentially the

“minimal” coupling between a gauge field hµ1...µr(x) and a conserved current jµ1...µr [φ(x) ]

of the same rank. Accordingly, the Noether interaction between gauge fields and conserved

currents is the functional defined as the pairing between their generating functions

S1[φ, h] := ≪ h ‖ j ≫ =
∑

r>0

1

r!

∫

Md

ddx
√
| g| hµ1...µr(x) j

µ1...µr (x) , (2.12)

where (2.9) has been used. Let us assume that there exists a gauge invariant action S[φ, h]

whose power expansion in the gauge fields starts as follows

S [φ, h] = S0[φ] + S1[φ, h] + S2[φ, h] + O(h3) . (2.13)

The gauge variation of the Noether interaction (2.12) under (2.5),

δεS1[φ, h] = ≪ δεh ‖ j ≫ +O(h) , (2.14)

is at least of order one in the gauge fields when the equations of motion for the matter

sector are obeyed,

δεS1[φ, h] ≈ O(h) , (2.15)

because the properties (2.2) and (2.11) imply that

≪
(
vµ∇µ

)
ε ‖ j ≫= − ≪ ε ‖

(
∇µ

∂

∂pµ

)
j ≫ ≈ 0 . (2.16)
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Actually, the crucial property (2.15) works term by term since

∫

Md

ddx
√
| g| ∇µ1εµ2...µr (x) j

µ1...µr(x)

= −
∫

Md

ddx
√
| g| εµ2...µr (x)∇µ1j

µ1...µr(x) ≈ 0 . (2.17)

The equation (2.15) implies that the action (2.13) might indeed be gauge-invariant at

lowest order in the gauge fields because the terms in δεS1[φ, h] that are proportional to

the Euler-Lagrange equations δS0/δφ of the matter sector could be compensated by the

variation δεS0[φ] of the matter action under a gauge transformation δεφ of the matter fields,

independent of the gauge fields h and linear in the matter fields φ , such that

δε

(
S0[φ] + S1[φ, h]

)
= O(h) . (2.18)

This possibility will be assumed from now on.

A Killing tensor field of rank r − 1 > 0 on Md is a real covariant symmetric tensor

field εµ1...µr−1(x) solution of the generalized Killing equation

∇(µ1
εµ2...µr)(x) = 0 . (2.19)

A generating function of Killing fields is a function ε(x, v) on the configuration space TMd

which is (i) a formal power series in the velocities and (ii) such that (vµ∇µ)ε(x, v) = 0 .

Then the coefficients in the power series

ε(x, v) =
∑

t>0

1

t!
εµ1...µt(x) v

µ1 . . . vµt (2.20)

are all Killing tensor fields on Md . The variation (2.4) of the gauge field vanishes at

lowest order if the gauge parameter is a Killing tensor field. Therefore the corresponding

transformation δεφ of the matter fields is a rigid symmetry of the matter action S0[φ] :

δεS0[φ] = − δεS1[φ, h]
∣∣
h=0

= 0 , (2.21)

due to (2.18) and the fact that δεφ is independent of the gauge fields. In turn, this

shows that the conserved current jµ1...µr [φ(x) ] must be equal, on-shell and modulo a

trivial conserved current (sometimes called an “improvement”), to the Noether current

associated with the latter rigid symmetry δεφ of the matter action S0[φ] . Killing tensor

fields on constant curvature spacetimes and their link with higher-spin gauge theories were

discussed in more details in [25, 26] and references therein.

3 Ambient versus intrinsic formulations

3.1 Constant curvature manifolds

Let RD be the flat space of dimension D > 4 parametrized by Cartesian coordinates XA

(Capital Latin indices A,B, . . . will span D values) and endowed with a non-degenerate
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diagonal metric ηAB that will be used to raise and lower Capital Latin indices. It will be

called the ambient space. The inner product will be denoted as X ·Y := ηAB XA Y B (and

X2 := ηAB XAXB). Let Md be the non-degenerate quadric of dimension d := D − 1

defined by the equation X2 = ±R2 , where R 6= 0 is its curvature radius. The sign is fixed

in the previous expression, but the ± has been included to deal with both cases at once.

From now on, the ± and ∓ symbols in the subsequent formulae will always correspond to

this respective choice of sign. For instance, the (pseudo) Riemannian manifold Md has

constant scalar curvature equal to R = ± d(d− 1)/R2.

Let us denote by xµ a set of coordinates on Md with length dimension (in the sense

that they scale in the same way as the Cartesian coordinates XA). They will be called

intrinsic coordinates. One considers an isometric smooth embedding

i : Md →֒ RD
0 : xµ 7−→ XA(xµ) (3.1)

of the codimension-one quadricMd inside the open submanifold RD
0 ⊂ RD defined by

RD
0 := {XA ∈ RD : ±X2 > 0 } . (3.2)

The (pseudo) “spherical” coordinates (ρ, yµ) collect the “radial” coordinate ρ :=
√
±X2

together with the dimensionless “angular” coordinates yµ(:= xµ/R) of the radial projection

of the given point of RD
0 on X2 = ±1. This coordinate system covers the manifold RD

0 .

The submanifoldMd ⊂ RD
0 is simply the locus such that ρ = R.

3.2 Tensor fields

Let Xr(Md) denote the space of smooth rank-r covariant tensor fields tµ1...µr(x) on Md

and Xr(RD
0 ) the space of smooth rank-r covariant tensor fields TA1...Ar(X) on RD

0 , both

with values in R (or C in general). The pull-back

i∗ : Xr(RD
0 ) → Xr(Md)

: TA1...Ar(X) 7−→ tµ1...µr(x) =
∂XA1(x)

∂xµ1
· · · ∂X

Ar(x)

∂xµr
TA1...Ar (X(x)) (3.3)

is surjective but not injective. However, there exists a nice isomorphism between the space

Xr(Md) of rank-r tensor fields onMd and the subspace of rank-r tensor on RD
0 that are:

(i) homogeneous of fixed non-zero homogeneity degree (say k ∈ C0),

TA1...Ar(λX) = λk TA1...Ar(X) , ∀λ ∈ C0 . (3.4)

(ii) tangent to the constant ρ submanifolds, i.e.

XAi TA1...Ai...Ar(X) = 0 (3.5)

This isomorphism was explained in details by Fronsdal in [14] but one may review the

construction as follows:
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The condition (i) is best understood for scalar fields (r = 0) since the condition (ii)

is absent. On the one hand, the restriction toMd maps any function Φ(X) on RD
0 to the

function onMd given by1

φ(yµ) = Φ(ρ, yµ)|ρ=R = Φ(R, yµ) = Φ(XA)|X2=R2 . (3.6)

On the other hand, to any function φ(x) onMd one may associate a homogeneous function

Φ(X) of degree k on RD
0 given by

Φ(XA) = Φ(ρ, yµ) =
( ρ

R

)k
Φ (R, yµ) =

( ρ

R

)k
φ (yµ) , (3.7)

whose restriction on Md reproduces φ(y) as in (3.6). This function Φ(X) is indeed of

homogeneity degree k in X (or in ρ),

Φ(λX) = λk Φ(X) , (3.8)

since X ′A = λXA is equivalent to ρ′ = λρ and y′µ = yµ (because the dimensionless

angular coordinates do not scale with respect to the Cartesian coordinates XA). The

fancy terminology “radial dimenional reduction” [12] comes from the analogy of (3.7) with

a usual dimensional reduction ansatz along the direction parametrized by z := log(ρ/R)

since then Φ(XA) = exp(kz)φ(yµ) looks like a Fourier mode ansatz (when k is pure

imaginary). More comments on this point will be made further below.

The condition (ii) takes into account the projection of the components of the ambient

tensor TA1...Ar(X) on the coordinate basis ∂/∂xµ on each tangent space through the pull-

back formula (3.3). The standard condition

∂X

∂xµ
· X = 0 (3.9)

implies that the kernel of the pull-back (3.3) for ambient vector fields V A(X) is spanned by

the radial vector fields, i.e. such that V A(X) = XAΦ(X). Therefore, the space of tangent

tensors tµ1...µr(x) ∈ T ∗
qMd at a point q ∈ Md of Cartesian coordinates XA is isomorphic

to the space of ambient tensors TA1...Ar(X) ∈ T ∗
q RD

0 that are tangent to Md at the same

point q ∈ Md ⊂ RD
0 or, equivalently, that are are normal to the radial direction, i.e. they

satisfy to (3.5).

The operator of orthogonal projection of ambient vectors on the tangent bundle TMd

is equal to

PB
A = δBA −

XAX
B

X2
(3.10)

where δBA is the Kronecker delta. Indeed,

(PV )A = V A − X · V
X2

XA , X · (PV ) = 0 . (3.11)

1With a slight abuse of notation, we denote by Φ(ρ, xµ) the pull-back Φ
`

XA(ρ, xµ)
´

. Moreover, in the

sequel we will also frequently denote by φ(xµ) the function φ (yµ(x)).
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More generally,

(PT )A1...Ar := PB1
A1

. . . PBr
Ar

TB1...Br , XAi(PT )A1...Ai...Ar = 0 (3.12)

From now, all tensors will always be completely symmetric under the permutations of

indices. The leitmotiv of the present paper is to realize the space of symmetric tensor fields

on Md as a (sub)space of homogeneous symmetric tensor fields on RD
0 . However, three

distinct but equivalent realizations prove to be useful: either the ambient tensors are

1. required to fulfill the condition XA1 TA1...Ar(X) = 0, or

2. projected by hand via the projector P, or

3. seen as equivalence classes of the relation

TA1...Ar ∼ TA1...Ar + X(A1
UA2...Ar) . (3.13)

Obviously, the first and second realization are equivalent to each other. The third realiza-

tion is equivalent to the previous ones because the latter merely correspond to a particular

choice of representative.

An important example is the induced metric, i.e. the pull-back of the flat metric ηAB

which reads in intrinsic coordinates as

gµν =
∂XA

∂xµ
∂XB

∂xν
ηAB =

∂X

∂xµ
· ∂X
∂xν

, (3.14)

which will be used to raise and lower the minuscule Greek indices. The induced metric can

be represented by the ambient tensor

GAB = PC
A PD

B ηCD = ηAB −
XAXB

X2
(3.15)

which is in the image of the projection operator P and obeys to the transversality condition

XAGAB = 0. Notice that the ambient tensor GAB representing the induced metric gµν is

in the same equivalence class as the ambient metric, GAB ∼ ηAB , as it should. Moreover,

GB
A = PB

A .

3.3 Covariant derivatives

The main technical difficulty in the ambient formulation is the translation of ambient partial

derivatives ∂A in terms of intrinsic covariant derivatives. In order to overcome this obstacle,

a generating function performing the translation rule is provided in this subsection.

Let ∇µ be the covariant derivative corresponding to the Levi-Civita connection on the

(pseudo) Riemannian manifold Md. Its representative D in the ambient space RD
0 is the

operator

D = P ◦ ∂ ◦ P . (3.16)

A similar formulation of the covariant derivative in terms of the ambient partial derivative

has been used in [15, 16]. For instance, the covariant derivative ∇µvν of a vector field vµ
onMd ⊂ RD

0 is represented in ambient space as

DAVB := PC
A PD

B ∂C(PE
D VE) (3.17)
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Geometrically, the definition (3.17) means that the infinitesimal parallel transportation of

a vector field vµ onMd can be performed in ambient space in three steps as follows: firstly,

project on the tangent bundle TMd its ambient representative VA; secondly, infinitesimal

parallel transport the resulting vector with respect to the ambient space metric; finally,

project again the result on TMd. Algebraically, the first step is the projection (3.11), the

second step is the mere partial derivation ∂C , so that the third step indeed gives (3.17). One

may prove algebraically that the definition (3.16) indeed implements the unique Levi-Civita

connection ∇ onMd by checking that D verifies the following three axioms:

- Leibnitz rule:

DA(Φ1 Φ2) = (DAΦ1)Φ2 + Φ1DAΦ2 ↔ ∇µ(φ1φ2) = (∇µφ1)φ2+φ1∇µφ2 , (3.18)

- Metricity: DAGBC = 0 ↔ ∇µgνρ = 0 ,

- Torsionlessness: [DA,DB ]Φ = 0 ↔ [∇µ,∇ν ]φ = 0 .

More concretely, the definition (3.16) reads in components as

DATB1...Br := PC
A PD1

B1
. . .PDr

Br
∂C
(
PE1
D1

. . . PEr
Dr

TE1...Er

)
(3.19)

where the definition (3.12) of the projector P was used. Although this formula provides

a nice way to compute covariant derivatives via mere partial derivations in ambient space,

the intermediate projections quickly become cumbersome when the rank of the tensor or

the number of derivatives becomes large. Fortunately, it is possible to obtain an explicit

formula relating the usual partial derivatives in ambient space to the symmetrized covari-

ant derivatives.

In order to express general formulae in compact terms, a standard trick is to contract

every index with an auxiliary vector, say PA :

T (X,P ) = PA1 . . . PAr TA1...Ar(X) ,

(P · ∂)n = PA1 . . . PAn ∂A1 . . . ∂An ,

(P · D)n = PA1 . . . PAnD(A1
. . .DAn) ,

P 2 = PAPB ηAB . (3.20)

One may express recursively the powers of ambient partial derivatives ∂ like polynomials

of the covariant derivatives D and the flat metric:

(P · ∂)n T (X,P ) =

[n/2]∑

m=0

cmn

(
P 2

X2

)m

(P · D)n−2m T (X,P ) (3.21)

where [q] is the integer part of the rational number q and the coefficients cmn should be

determined. The dependence of these coefficients cmn on the homogeneity degree k in X

and r in P will be left implicit for not overloading the formulae. Notice that, by hypothesis,

cmn = 0 when m > (n + 1)/2 and c0n = 1 for all n ∈ N. The equation (3.21) amounts
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to the following dictionary between ambient partial derivatives and intrinsic symmetrized

covariant derivatives

∂(A1
. . . ∂AnTAn+1...Ar+n) ←→

←→
[n/2]∑

m=0

cmn

( ±1
R2

)m

g(µ1µ2
. . . gµ2m−1µ2m ∇µ2m+1 . . .∇µn tµn+1...µr+n) . (3.22)

In appendix, one shows that the function (analytic near the origin)

c(x, y; k − r) =
∞∑

n=0

[n/2]∑

m=0

1

n!
cmn xn−2m ym = (1 + y)

k−r
2 exp

(
x√
y
arctan

√
y

)
(3.23)

is a generating function for the cmn coefficients. The non-vanishing coefficients for m <

(n + 1)/2 can be written explicitly by identifying the relevant coefficients in the power

expansion (given for r = 0):

cmn =
m∑

in− 2m=0

in− 2m∑

in− 2m−1=0

. . .

i2∑

i1=0

1

(m− in−2m)!

(
k

2

)(
k

2
−1
)
. . .

(
k

2
−m+ in−2m + 1

)
×

× n!

(n− 2m)!

(−1)in− 2m

(2 i1 + 1) (2 (i2 − i1) + 1) . . . (2 (in− 2m − in− 2m−1) + 1)
.

For instance, the first coefficients are

c00 = 1 ,

c01 = 1 ,

c02 = 1 , c12 = k ,

c03 = 1 , c13 = 3k − 2 ,

c04 = 1 , c14 = 2 (3k − 4) , c24 = 3k (k − 2) ,

. . . . . . . . .

Therefore (3.22) provides, for instance, the following translation rules:

∂AΦ ←→ ∇µ φ

∂A ∂BΦ ←→ ∇(µ∇ν)φ ±
k

R2
gµν φ

∂A ∂B∂CΦ ←→ ∇(µ∇ν∇ρ) φ ±
3k − 2

R2
g(µν ∇ρ)φ

∂A ∂B∂C∂DΦ ←→ ∇(µ∇ν∇ρ∇σ) φ ±
2 (3k − 4)

R2
g(µν ∇ρ∇σ)φ

+
3k (k − 2)

R4
g(µν gρσ) φ (3.24)

...

Notice that a most compact and useful way to summarize (3.21) is as

T (X + t P , P ) = c(t P · D , t2 P 2/X2 ; k − r)T (X,P ) , ∀t , (3.25)
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as can be seen from the Taylor expansion of

T (X + tP, P ) = exp(t P · ∂)T (X,P ) =

∞∑

n=0

tn

n!
(P · ∂)nT (X,P ) (3.26)

in power series of t.

3.4 Laplace-Beltrami operators

Combining the definitions (3.15) and (3.16) of the last two subsections, one finds that

the Laplace-Beltrami operator ∇2 = gµν ∇µ∇ν is represented in ambient space by

GAB DADB . On rank-r symmetric tensor fields, it acts as follows

∇2tµ1...µr(x)←→ GBC DB DCTA1...Ar(X) ∼

∼
[
∂2 − 1

X2
(X · ∂) (X · ∂ + D − 2 − r)

]
TA1...Ar(X) (3.27)

as can be checked explicitly. Therefore, the action of the ambient Laplace-Beltrami operator

∂2 = ηAB∂A∂B on ambient symmetric tensor fields of homogeneity degree k is translated

in intrinsic components as follows

∂2 TA1...Ar(X) ←→
[
∇2 ± 1

R2
k (k + d − 1 − r)

]
tµ1...µr(x) . (3.28)

For scalar fields (r = 0), one recovers the standard formulae for the eigenvalues of the

Laplace-Beltrami operator for the “spherical” harmonics in any dimension. In particular,

when the number of timelike directions in the signature of the ambient metric η is equal

to:

• Zero (Euclidean), the quadricX2 = R2 is a hypersphere,Md = Sd, which can be seen

as the Wick rotation of the de Sitter spacetime space dSd. A textbook material on

group theory is the fact that the genuine spherical harmonics with fixed homogeneity,

kSd = ℓ ∈ N , (3.29)

span unitary irreducible representations of o (d+1). These spherical harmonics are the

evaluation φ(x) on Sd of homogeneous harmonic polynomials Φ(X) such that (3.7),

∂2 Φ(X) = 0 ←→
[
∆Sd +

1

R2
ℓ (ℓ + d − 1)

]
φ(x) = 0 . (3.30)

• One (Lorentzian), the one-sheeted hyperboloid X2 = +R2 is the de Sitter spacetime,

Md = dSd, while the two-sheeted hyperboloid X2 = −R2 is (two copies of) the

hyperbolic space, Md = Hd. The unitary irreducible representations of o (1, d) cor-

responding to massive scalar fields have been studied a while ago in [27] and belong

to the principal continuous series. They can be realized as the evaluation φ(x) on dSd

of homogeneous harmonic functions Φ(X) of complex homogeneity degree kdSd
∈ C

such that

Re(kdSd
) = 1 − D

2
=

1− d

2
, Im (kdSd

) = µ , (3.31)
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where µ is a parameter with mass dimension. This implies that the wave equation

reads as

∂2 Φ(X) = 0 ←→
[
∇2

dSd
− 1

R2

((
d − 1

2

)2

+ µ2

)]
φ(x) = 0 . (3.32)

• Two (Conformal), the one-sheeted hyperboloid X2 = −R2 is the anti de Sitter space-

time,Md = AdSd, whose Wick rotation is the previous (two copies of the) hyperbolic

space Hd. The lowest weight unitary irreducible representations of o (2, d − 1) cor-

responding to massive scalar fields on (the universal covering of) AdSd with energy

bounded from below are well known (see e.g. [28] for a nice review). They can be

realized as the evaluation φ(x) on AdSd of homogeneous harmonic functions Φ(X) of

real homogeneity degree kAdSd
∈ R such that

kAdSd
= 1 − D

2
+ µ =

1− d

2
+ µ . (3.33)

In any case, the corresponding wave equation is

∂2 Φ(X) = 0 ←→
[
∇2

AdSd
+

1

R2

((
d − 1

2

)2

− µ2

)]
φ(x) = 0 . (3.34)

To summarize, the wave equation for a unitary massive scalar field on (A)dSd is

∇2
(A)dSd

φ(x) =
1

R2

(
±
(
d − 1

2

)2

+ µ2

)
φ(x) = m2 φ(x) , (3.35)

where, as mentioned before the ± symbol refers to the corresponding equation X2 = ±R2.

Thus the unitary bound on the “mass square” (or, better, the eigenvalue of the quadratic

Casimir operator of the isometry algebra) of a scalar field on (A)dSd is determined by the

inequality
(
mR

)2
:= ±

(
d − 1

2

)2

+ µ2 > ±
(
d − 1

2

)2

, (3.36)

which reproduces the Breitenlohner-Freedman bound [29] in the AdSd case where (naive)

“tachyonic” fields may be unitary and stable. As one can see, the massive scalar field on

AdSd may be obtained as the analytic continuation of the massive scalar fields on dSd

where µ (and R) is replaced by −iµ (and −iR).

For later purpose, let us denote the ambient scalar field Φ†(X) as being the function

on RD
0 whose homogeneity degree k†(A)dSd

is equal to k(A)dSd
up to the substitution of µ by

−µ in (3.31) or (3.33) respectively, and whose evaluation on (A)dSd is equal to φ∗(y), i.e.

Φ†(XA) = Φ†(ρ, yµ) =
( ρ

R

)k†
φ∗(yµ) . (3.37)

This homogeneous function Φ†(X) is also harmonic and the complex conjugate φ∗(x) sat-
isfies to the same wave equation (3.35). A compact way to summarize the respective
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Object Ambient space RD
0 Constant-curvature spacetimeMd

Coordinates XA xµ

Scalar Φ(X) φ(x)

Conjugate Φ†(X) φ∗(x)

Vector TA(X) tµ(x)

Tensor TA1...Ar(X) tµ1...µr (x)

Metric GAB ∼ ηAB gµν

Covariant derivative DA ∇µ

Spacetime Laplacian D2 = GAB DADB ∇2 = gµν ∇µ∇ν

Ambient Laplacian ∂2 = ηAB ∂A ∂B ∇2 ± 1
R2 k (k + d − 1)

Table 1. Dictionary Ambient space/Constant-curvature spacetime.

homogeneity degrees on (A)dSd is as follows:

k(A)dSd
= 1 − D

2
+
√
∓1 µ =

1− d

2
+
√
∓1 µ ,

k†(A)dSd
= 1 − D

2
−
√
∓1 µ =

1− d

2
−
√
∓1 µ , (3.38)

where, once again, the ± symbol refers to the corresponding equation X2 = ±R2. Notice

also the useful identities

±
(
mR

)2
= − k(A)dSd

(k(A)dSd
+ d − 1)

= − k†(A)dSd
(k†(A)dSd

+ d − 1) , (3.39)

= k†(A)dSd
k(A)dSd

.

In the AdS/CFT litterature, the opposite of kAdSd
and k†AdSd

are usually denoted by ∆+

and ∆−.
Various ambient/spacetime notations that have been introduced so far are summarized

in the table 1.

3.5 Klein-Gordon action

The quadratic action of a complex massive scalar field on (A)dSd reads, modulo a boundary

term, as

S0[φ] = −
1

2

∫

(A)dSd

ddx
√
| g|
(
gµν∂µφ

∗(x)∂νφ(x) + m2 |φ(x)|2
)
. (3.40)

It can be rewritten in the ambient formulation where the covariance under all isometries

is manifest,

S0[φ] = −
∫

RD
0

dDX |X2| 12 δ(X2 ∓R2)×

×
(
GAB∂AΦ

†(X) ∂BΦ(X) ± (mR)2

X2
Φ†(X)Φ(X)

)
. (3.41)
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In (pseudo) spherical coordinates, the volume form reads as

dDX = dρ
( ρ

R

)d
ddx

√
| g(x)| , (3.42)

In order to check the equality (3.41), one should rewrite the integral over RD
0 in (pseudo)

spherical coordinates, insert the homogeneity conditions (3.7) and (3.37) as well as the

following relation on the Dirac delta function,

|X2| 12 δ(X2 ∓R2) = ρ δ(ρ2 ∓R2) =
ρ

|ρ+R| δ(ρ − R) =
1

2
δ(ρ − R) , (3.43)

and, finally, integrate over the radial coordinate ρ from zero to infinity.

There is also an alternative way to obtain the spacetime integral (3.40) in a form where

the covariance under all isometries is manifest: along the lines of the radial dimensional

reduction from massless to massive fields and from flat to curved spacetimes [12], one may

instead remove the Dirac delta δ(ρ− R) in the integral over the ambient space. With the

help of (3.39) and

GAB∂AΦ
†(X) ∂BΦ(X) = ηAB∂AΦ

†(X) ∂BΦ(X) − 1

X2
(X · ∂)Φ†(X) (X · ∂)Φ(X) , (3.44)

together with (3.42), one can show that

S0[Φ] := −
1

2

∫

RD
0

dDX ηAB∂AΦ
†(X) ∂BΦ(X)

= −1

2

∫

RD
0

dDX

(
GAB∂AΦ

†(X) ∂BΦ(X) ± (mR)2

X2
Φ†(X)Φ(X)

)
(3.45)

= R

∫ ∞

0
dz × S0[φ]

where the integral over z on the right-hand-side is simply a constant factor (albeit infinite)

Remember that z = log(ρ/R) and (ρ/R)k = exp(k z). The analogy of (3.45) with a dimen-

sional reduction along a (non-compact) direction further justified the choice of terminology

“radial dimensional reduction” in [12]. This interpretation is somewhat more natural in

dSd where the radial direction is spacelike (though non-compact) as it should and where

Φ† is simply the complex conjugate of Φ. In this analogy, the parameter µ plays the usual

role of the mass for the Fourier factor exp(i µ z). The basis of the radial dimensional reduc-

tion technique is the observation that, since the kinetic operator for massless fields on flat

spacetime is scale invariant, the homogeneity condition on the fields is a consistent ansatz.

Moreover, the homogeneity degree must be chosen such that the action on the flat ambient

space is also scale invariant.

3.6 Noether method

The ambient formalism developed above should also be applied to the whole content of the

section 2. In this subsequent, one introduces various definitions dedicated to an ambient

reformulation of section 2, preparing the ground for the next two sections.
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The ambient representative of a symmetric conserved current of rank r > 1, say jµ1... µr ,

is an equivalence class J A1... Ar ∼ JA1...Ar + X(A1UA2...Ar) of real contravariant homoge-

neous symmetric tensor fields on RD
0 of homogeneity degree equal to 2−D − r where one

of the representative obeys to the strict conservation law

∂A1J
A1... Ar(X) ≈ 0 . (3.46)

The homogeneity degree,

(XA∂A + D − 2 + r)JA1...Ar(X) = 0 , (3.47)

is chosen such that the equation (3.46) is preserved by the equivalence relation, as can

be checked directly and as will be shown later in a more economical way. This property

implies the covariant conservation law

DA1J
A1... Ar(X) ≈ 0 . (3.48)

corresponding to (2.1), even though the representative JA1... Ar(X) satisfying (3.46) may

not be tangent. An ambient generating function of conserved currents is an equivalence

class

J(X,P ) ∼ J(X,P ) + (X ·P )U(X,P ) ⇐⇒ JA1...Ar ∼ JA1...Ar + r X(A1UA2...Ar) . (3.49)

of real functions on the phase space T ∗RD
0 which are (i) formal power series in the momenta,

(ii) such that
(
XA ∂

∂XA
+ PA

∂

∂PA
+ D − 2

)
J(X,P ) = 0 , (3.50)

(
XA ∂

∂XA
+ PA

∂

∂PA
+ D

)
U(X,P ) = 0 , (3.51)

and (iii) where one of the representatives obeys to
(

∂

∂XA

∂

∂PA

)
J(X,P ) ≈ 0 . (3.52)

The commutation relation
[

∂

∂XA

∂

∂PA
, XBPB

]
= XA ∂

∂XA
+ PA

∂

∂PA
+ D (3.53)

implies that, provided the homogeneity condition (3.50) is satisfied (which is consistent

with the radial reduction ansatz), the ambient divergence is well defined on equivalence

classes of currents, i.e.

J1 ∼ J2 =⇒
(

∂

∂XA

∂

∂PA

)
J1 ∼

(
∂

∂XA

∂

∂PA

)
J2 , (3.54)

because [∂X · ∂P , X · P ]U = 0 due to (3.51). Therefore, the current is covariantly diver-

genceless (
DA

∂

∂PA

)
J(X,P ) ≈ 0 (3.55)
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when (3.50) holds since (3.52) and (3.54) imply (3.55). Thus all the coefficients of order

r > 1 in the power expansion of the generating function

J(X,P ) =
∑

r>0

1

r!
JA1... Ar(X)PA1 . . . PAr (3.56)

are all ambient representative of conserved currents by means of (3.55).

The ambient representative of a symmetric tensor gauge field of rank r > 1, say

hµ1...µr(x), is a real covariant homogeneous symmetric tangent tensor field HA1...Ar(X) on

RD
0 of homogeneity degree equal to r − 2 whose gauge transformations are of the form

δǫHA1...Ar(X) = r ∂(A1
ǫA2...Ar)(X) + O(H) = rD(A1

ǫA2...Ar)(X) + O(H) , (3.57)

where the gauge parameter ǫA1...Ar−1(X) is a covariant homogeneous symmetric tangent

tensor field on RD
0 of rank r − 1 and of homogeneity degree r − 1. The homogeneity

degrees are such that the symmetrized gradient of ǫ is tangent, as can be checked by direct

computation, so that ∂(A1
ǫA2...Ar)(X) = D(A1

ǫA2...Ar)(X). An ambient generating function

of gauge fields is a real function H(X,V ) on the configuration space TRD
0 (i) which is a

formal power series in the velocities, (ii) such that

(
XA ∂

∂XA
− V A ∂

∂V A
+ 2

)
H(X,V ) = 0 ,

(
XA ∂

∂V A

)
H(X,V ) = 0 , (3.58)

and (iii) whose gauge transformations are

δǫH(X,V ) =
(
V A∂A

)
ǫ(X,V ) + O(H) =

(
V ADA

)
ǫ(X,V ) + O(H) , (3.59)

where ǫ(X,V ) is a formal power series in the velocities such that

(
XA ∂

∂XA
− V A ∂

∂V A

)
ǫ(X,V ) = 0 ,

(
XA ∂

∂V A

)
ǫ(X,V ) = 0 . (3.60)

The commutation relation

[
XA ∂

∂V A
, V B ∂

∂XB

]
= XA ∂

∂XA
− V A ∂

∂V A
, (3.61)

implies that, provided (3.60) is satisfied, then (X ·∂V )δǫH(X,V ) = O(H). The coefficients

of order r > 1 in the power expansion of the generating function

H(X,V ) =
∑

r>0

1

r!
HA1... Ar(x)V

A1 . . . V Ar (3.62)

are all ambient representatives of symmetric tensor gauge fields due to (2.5) with

ǫ(X,V ) =
∑

t>0

1

t!
ǫA1...At(X)V A1 . . . V At . (3.63)
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The non-degenerate bilinear pairing (2.8) between smooth functions h(x, v) and j(x, p)

on the configuration and phase spaces respectively, can be written in terms of the ambient

representatives in a similar fashion to (3.41):

≪ h ‖ j ≫ := 2

∫

RD
0

dDX|X2| 12 δ(X2 ∓R2) exp

(
∂

∂V A

∂

∂PA

)
H(X,V )J(X,P )

∣∣∣∣
V=P=0

= 2
∑

r>0

1

r!

∫

RD
0

dDX |X2| 12 δ(X2 ∓R2) HA1...Ar(X)J A1...Ar(X) . (3.64)

Another option is to follow the philosophy of the radial dimensional reduction, as in (3.45),

≪ H ‖J ≫ :=

∫

RD
0

dDX exp

(
∂

∂V A

∂

∂PA

)
H(X,V )J(X,P )

∣∣∣∣
V=P=0

(3.65)

=
∑

r>0

1

r!

∫

RD
0

dDX HA1...Ar(X)J A1...Ar(X)

= R

∫ ∞

0
dz ≪ h ‖ j ≫

where the integrand of the integral over RD
0 on the second line is of homogeneity degree

equal to −D as it should. This shows that if the conserved currents of the matter fields

on a flat spacetime define ambient representatives with the right properties (such as their

degree of homogeneity) then the radial dimensional reduction of the Noether interaction

can be applied:

S1[Φ,H] := ≪ H ‖J ≫

= R

∫ ∞

0
dz × S1[φ, h] (3.66)

The ambient representative of a Killing tensor field of rank r − 1 > 0 on Md is a

covariant homogeneous symmetric tangent tensor field ǫA1...Ar−1(X) on RD
0 of degree r− 1

solution of the generalized Killing equation

∂(A1
ǫA2...Ar)(X) = 0 . (3.67)

An ambient generating function of Killing fields is a function ǫ(X,V ) on the configuration

space TRD
0 which is a formal power series in X [AV B] := XAV B − XBV A. Then the

coefficients in the power series

ǫ(X,V ) = ǫ
(
X [AV B]

)
=
∑

t>0

1

t!
ǫA1...At(X)V A1 . . . V At (3.68)

provide the most general ambient representatives of Killing tensor fields onMd (see e.g. [25,

26, 30] for reviews and refs therein).

In the next two sections, these general facts will be applied to the case of a free complex

scalar field.
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4 Conserved currents

The generating function of conserved currents on the flat ambient space [6] is equal to

J(X,P ) = Φ† (X − i P ) Φ (X + i P ) (4.1)

so that the corresponding ambient conserved currents take the explicit form

JA1...Ar(X) = i r
r∑

s=0

(−1)s
(
r

s

)
∂(A1

. . . ∂AsΦ
†(X) ∂As+1 . . . ∂Ar)Φ(X)

= i r Φ†(X)
←→
∂A1 . . .

←→
∂ArΦ(X) (4.2)

where the usual double arrow
←→
∂ is defined by

Φ
←→
∂AΨ := Φ(∂AΨ) − (∂AΦ)Ψ . (4.3)

These flat space currents (4.2) are proportional to the ones introduced by Berends, Burgers

and van Dam a long time ago [4]. Various explicit sets of (conformal) conserved currents

on Minkowski spacetime were provided in [31–34]. The symmetric conserved current (4.2)

of rank r is bilinear in the scalar field and contains exactly r derivatives. The currents

of any rank are real thus, if the scalar field is real then the odd rank currents are absent

due to the factor in front of (4.2). The generating function (4.1) verifies (3.52) when

the ambient scalar field Φ obeys to the Klein-Gordon equation. Although the ambient

currents (4.2) are not tangent in general, they obey to (3.50) for homogeneous ambient

scalar fields corresponding to massive scalar fields on (A)dSd, since (3.38) implies

k(A)dSd
+ k†(A)dSd

= 2−D , (4.4)

and therefore the previous equation (3.52) is equivalent to the covariant conservation

law (2.1). In other words, the radial dimensional reduction of the cubic Noether inter-

action is valid precisely for the mass-square domain of unitarity in (A)dSd.

The main drawback of the explicit expressions (4.2) for the conserved currents is that

it is written in terms of ambient partial derivatives instead of covariant derivatives, but

the ambient generating function (4.1) of (A)dSd conserved currents can be written very

explicitly in terms of (3.23) with the help of (3.25)

J(X,P ) = c

(
− i P · D ,−P 2

X2
; k†(A)dSd

)
Φ†(X) c

(
i P · D ,−P 2

X2
; k(A)dSd

)
Φ(X)

= Φ†(X) c

(
− i P · ←−D ,−P 2

X2
; k†(A)dSd

)
c

(
i P · −→D ,−P 2

X2
; k(A)dSd

)
Φ(X)

= Φ†(X) c

(
i P · ←→D ,−P 2

X2
; 2−D

)
Φ(X) (4.5)

where the property c(x1, y ; k1)c(x2, y ; k2) = c(x1 + x2, y ; k1 + k2) and (3.38) were used.

The ambient generating function (4.5) translates into the following generating function of

conserved currents

j (x, p) = φ∗(x) c
(
i pµ
←→∇ µ ,∓

gµνp
µpν

R2
; 1− d

)
φ(x) (4.6)
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The flat limit is recovered for R2 → ∞ since c(x, y) ∼ expx when y → 0. Due to (3.23),

the development (2.3) of this generating function gives the following conserved current of

rank r,

jµ1...µr(x) = i r
[r/2]∑

m=0

( ∓1
R2

)m

cmr g(µ1µ2
. . . gµ2m−1µ2m φ∗(x)

←→∇ µ2m+1 . . .
←→∇ µr)φ(x) , (4.7)

where the coefficients cmr correspond to k = 1 − d. It is possible to compute numerically

these coefficients cmr , the covariant derivatives (3.25) and these currents from (4.7) whatever

the rank. For example, we therefore find the first currents, which are all preserved by

construction and which was also verified explicitly, calculated classically:

jµ = i φ∗←→∇ µφ

jµν = −φ∗←→∇ µ
←→∇ ν φ ±

1 − d

R2
gµν φ

∗ φ

jµνρ = − i φ∗←→∇ (µ
←→∇ ν
←→∇ ρ) φ ± i

1 − 3d

R2
g(µν φ

∗←→∇ ρ) φ

jµνρσ = φ∗←→∇ (µ
←→∇ ν
←→∇ ρ
←→∇ σ) φ ± 2

1 + 3d

R2
g(µν φ

∗←→∇ ρ
←→∇ σ)φ

+3
d2 − 1

R4
g(µν gρσ)φ

∗ φ

...

Similar conserved currents on constant-curvature spaces were described in [7–9, 35, 36]

but the present results are somewhat more general: firstly, the currents (4.2) are conserved

for any free massive scalar field in any dimension, while only the conformal scalar (i.e. the

singleton) was considered in [8, 9] and AdS3 was the background spacetime in [35, 36];

secondly, the explicit expression of the currents is known at all orders in the scalar

curvature, while only the first order correction to the flat expression was provided in [8, 9];

thirdly, the currents (4.2) are conserved on-shell in the usual sense of (2.1) while the

ones of [7] obey to the weaker conservation law introduced by Fronsdal [14]. Of course,

strictly speaking the third comment should not be understood as a loss of generality in

the previous results of [7, 10]. We simply want to stress that usual conservation laws for

the currents is a desirable property because it allows a uniform treatment of (ir)reducible

gauge fields, e.g. of triplet and Fronsdal fields, and it might also simplify the analysis of

current exchange amplitudes.

5 Noether interactions

As explained in the previous section, the function (4.1) obeys to all properties for an am-

bient generating function of conserved currents, as defined in subsection 3.6. Therefore,

the radial dimensional reduction of the corresponding ambient Noether interaction (3.65)

is consistent and provides the Noether interaction (2.9) on (A)dSd where the conserved

currents are given by (4.7). An important consequence of this fact is that one can import
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from flat spacetime all relationships (observed in [6]) between the Noether interactions

of a complex scalar field with a collection of symmetric tensor gauge fields. In other

words, the consistency of the radial dimensional reduction implies that one can induce the

Weyl/Wigner technology used in [6] from the flat ambient space RD
0 onto the spacetime

(A)dSd. In this way, one reproduces the ambient approach to the Weyl/Wigner quanti-

zation of the cotangent bundle T ∗Md of a constant-curvature manifold, which was first

introduced in the seminal papers on deformation quantisation with humor under the name

“a star product is born” [37, 38]. The relevance of the latter approach to higher-spin gauge

theory on (anti) de Sitter spacetime was argued in [30].

5.1 Symbol calculus

Let us become more explicit. To start with, since RD
0 and (A)dSd are endowed with a

metric, their respective tangent and cotangent spaces may be identified and thus one can

identify “momenta” with “velocities”, e.g.

PA = ηAB V B and pµ = gµνv
ν . (5.1)

The ambient generating function of gauge fields H(X,P ) is now a real function on T ∗RD
0

such that

(
XA ∂

∂XA
− PA

∂

∂PA
+ 2

)
H(X,P ) = 0 ,

(
X · ∂

∂P

)
H(X,P ) = 0 , (5.2)

and whose gauge transformations are

δǫH(X,P ) =

(
P · ∂

∂X

)
ǫ(X,P ) + O(H) , (5.3)

where ǫ(X,P ) is such that

(
XA ∂

∂XA
− PA

∂

∂PA

)
ǫ(X,P ) = 0 ,

(
X · ∂

∂P

)
ǫ(X,P ) = 0 . (5.4)

The cotangent bundle T ∗Md can be seen as the sub-bundle of RD
0 defined by the quadric

definition X2 = ±R2 together with the transversality condition XAPA = 0. As symplectic

manifolds, this embedding corresponds to a reduction with respect to the previous two

constraints.

The ambient Moyal product of two smooth functions on T ∗RD
0 is defined by

ǫ1(X,P ) ⋆ ǫ2(X,P ) = ǫ1(X,P ) exp

(
1

2

←−−
∂

∂PA
∧
−−−→
∂

∂XA

)
ǫ2(X,P ) (5.5)

where ∧ stands for the antisymmetric product. The conditions (5.4) on ǫ(X,P ) are equiv-

alent to

[X · P ⋆, ǫ(X,P )] = 0 , [X2 ⋆, ǫ(X,P )] = 0 . (5.6)
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where

[ǫ1(X,P ) ⋆, ǫ2(X,P ) ] := ǫ1(X,P ) ⋆ ǫ2(X,P )− ǫ2(X,P ) ⋆ ǫ1(X,P )

= ǫ1(X,P ) 2 sinh

(
1

2

←−−
∂

∂PA
∧
−−−→
∂

∂XA

)
ǫ2(X,P ) (5.7)

denotes the ambient Moyal commutator. The conditions (5.6) expressed in terms of the

Hermitian operator ǫ̂ the Weyl symbol of which is ǫ(X,P ) state that this operator preserves

the homogeneity degree and commutes with X2. The evaluation ε(x, p) of the ambient rep-

resentatives ǫ(X,P ) provides an isomorphism between the space of smooth functions on

T ∗Md and the (sub)space of smooth functions on T ∗RD
0 which are subject to (5.6). More-

over, the space of symbols obeying to (5.6) is a subalgebra of the ambient Weyl algebra.

Therefore the pull-back of the Moyal product on T ∗RD
0 induces a star product ∗ on the

cotangent bundle T ∗Md such that the former isomorphism becomes an isomorphism of

associative algebras, as pointed out by Bayen, Flato, Fronsdal, Lichnerowicz and Stern-

heimer in [37, 38]. Notice that the Lie algebra of smooth functions on T ∗Md endowed

with the corresponding star commutator [ ∗, ] is isomorphic to the Lie algebra of Hermitian

(pseudo)differential operators onMd. The adjoint action of this Lie algebra preserves the

space of Weyl symbols such that (5.2) and the gauge transformations (5.3) can be written

as

δǫH(X,P ) =
1

2
[P 2 ⋆, ǫ(X,P )] + O(H) . (5.8)

The ambient generating functions of Killing fields ǫ(X,P ) are Weyl symbols commuting

with the three constraints X2, X · P and P 2 which generate an sp(2) algebra. The Lie

(sub)algebra of such symbols is the off-shell higher-spin algebra of Vasiliev (see e.g. [1–3]

for reviews).

5.2 Cubic vertex

Using the bra-ket notation for the scalar field Φ(X) = 〈X | Φ 〉 and Φ†(X) = 〈Φ | X 〉, the
ambient generating function J(X,P ) of currents (4.1) is the (analytic continuation of the)

Fourier transform over momentum space of the Wigner function associated to the density

operator |Φ 〉〈Φ | and the ambient Noether interaction (3.65) can be rewritten in a compact

form as [6]

S1[Φ,H] = ≪ H ‖J ≫ = 〈Φ | Ĥ |Φ 〉 (5.9)

where H(X,P ) is the Weyl symbol of the operator Ĥ.

The ambient Klein-Gordon action (3.45) can be rewritten along the same lines as

S0[Φ] = 〈Φ | Ĥ0 |Φ 〉 (5.10)

where the operator Ĥ0 is defined by

Ĥ0 :=
1

2

[
∂2 − 1

X2
(X · ∂) (X · ∂ + D − 2)∓ (mR)2

X2

]
(5.11)
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and is the ambient representative of the kinetic operator 1
2 (∇2

AdSd
− m2). It has Weyl

symbol equal to

H0(X,P ) :=
1

2

(
GABPAPB ∓

(mR)2

X2

)
=

1

2

(
P 2 − (X · P )2

X2
∓ (mR)2

X2

)
(5.12)

where the transverse inverse metric GAB := ηAB−XAXB/X2 is the ambient representative

of the inverse metric gµν on (A)dSd . Remark that the functionH0(X,P ) also obeys to (5.2).

Therefore the sum

S0[Φ] + S1[Φ,H] = 〈Φ | Ĥ0 + Ĥ |Φ 〉 (5.13)

is manifestly invariant under the following action of the group of unitary operators on

(A)dSd:

|Φ 〉 −→ Û |Φ 〉 , Ĥ0 + Ĥ −→ Û (Ĥ0 + Ĥ) Û−1 , (5.14)

where the unitary operator Û is generated by the Hermitian operator ǫ̂ and where the scalar

and gauge fields respectively transform in the fundamental and adjoint representation of

the group of unitary operators. Notice that the action of the operator Û on Φ(X) is indeed

consistent with the radial dimensional reduction because this unitary operator preserves

the homogeneity degree as ǫ̂ does. Notice that as long as higher-derivative transformations

are allowed then the infinite tower of higher-spin fields should be included for consistency

of the gauge transformations (5.14) beyond the lowest order. The infinitesimal adjoint

action (5.14) of the Lie algebra of Hermitian operators on (A)dSd, written in terms of the

Weyl symbol H(X,P ), leads to the following deformation of (5.8)

δǫH(X,P ) = [H0(X,P ) +H(X,P ) ⋆, ǫ(X,P )] + O(H2) . (5.15)

The ambient generating functions of Killing fields ǫ(X,P ) are Weyl symbols that are prod-

uct of X[APB], whose corresponding operators are products of the isometry generators

X[A∂B] of (A)dSd, i.e. generators of the Vasiliev off-shell higher-spin algebra. When the

latter algebra acts on the singleton module of o(d− 1, 2), the three sp(2)-constraints men-

tioned at the end of subsection 5.1 act trivially. The quotient of the Vasiliev off-shell algebra

by the corresponding two-sided ideal (spanned by elements that are sum of elements pro-

portional to a sp(2)-constraint) is the Vasiliev on-shell higher-spin algebra (see e.g. [1–3]

for more details). The situation is somewhat different for the massive scalar field module

spanned by the harmonic homogeneous functions on the ambient space of subsection 3.4,

because this module is not annihilated by the operators corresponding to X2 and X ·P (see

e.g. the section 3 of [30] for some discussion on the algebra of symmetries of the massive

scalar field).

It is very tempting to conjecture that the full action (2.13) should be interpreted

as arising from the gauging of the rigid symmetries of the free scalar matter field, which

generalize the U(1) and isometries of (A)dSd, so that the local symmetries (5.14) generalize

the local U(1) and diffeomorphisms (see [5–7, 30] and refs therein for more comments on

this point of view). In any case, the unfolded equations (on-shell [1–3] and off-shell [39, 40])

– 22 –

174 CHAPITRE B. Premier article



J
H
E
P
1
1
(
2
0
1
0
)
1
1
6

precisely arise from the gauging of the same rigid algebra of (on/off shell) symmetries but

the scalar field is included in the gauge field multiplet.

To end up with a side remark, we would like to point out the possibility to have

a uniform treatment of the gauge fields and parameters where both generating functions

have equal homogeneity degree in X and in P . This possibility might prove to be useful for

further works because this treatment allows to make use of the star commutator induced

onMd [37, 38] in order to write down the intrinsic form of the gauge transformation (5.8).

Moreover a uniform treatment of fields and parameters is appealing in the metric-like

approach since their generating functions can both be interpreted as Weyl symbols of

Hermitian (pseudo)differential operators on the spacetime manifold. Concretely, notice

that H(X,P ) := X2H(X,P ) obeys to

(
XA ∂

∂XA
− PA

∂

∂PA

)
H(X,P ) = 0 ,

(
X · ∂

∂P

)
H(X,P ) = 0 , (5.16)

as follows from (5.2). The same holds for

H0(X,P ) =
1

2
X2

(
GABPAPB ∓

(mR)2

X2

)
=

1

2

(
X2 P 2 − (X · P )2 ∓ (mR)2

)
(5.17)

which corresponds to the Weyl symbol ±R2

2 gµνpµpν . One can check that

[H0(X,P ) ⋆, ǫ(X,P ) ] =

(
X2 +

1

4

∂

∂P
· ∂

∂P

)
(PA∂A) ǫ(X,P ) (5.18)

by making use of the identity

2 [X2 P 2 − (X ·P )2 ⋆, ǫ(X,P ) ] = X2 ⋆ [P 2 ⋆, ǫ(X,P ) ] + [P 2 ⋆, ǫ(X,P ) ] ⋆X2 . (5.19)

Therefore the star commutator between the (A)dSd background field gµνpµpν and any

function ε(x, p) on the cotangent bundle T ∗(A)dSn above is equal to

1

2
[ gµνpµpν ∗, ε(x, p) ] =

(
1 ± 1

4R2
gµν

∂

∂pµ

∂

∂pν

)
(pµ∇µ) ε(x, p) . (5.20)

Therefore, modulo the field redefinition,

h′(x, p) =

(
1 ± 1

4R2
gµν

∂

∂pµ

∂

∂pν

)
h(x, p) , (5.21)

the lowest order of the gauge transformation (2.5) can be expressed directly via the star

product on (A)dSd

δεh
′(x, p) =

1

2
[ gµνpµpν ⋆, ε(x, p) ] + O(h′) (5.22)

in analogy with (5.8).
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6 Conclusion and outlook

The present paper may be thought as a first step towards a generalization to any constant-

curvature spacetime of the results obtained in [6] for a complex scalar field around

Minkowski spacetime, such as the generating functions of conserved currents, of inter-

action vertices, of gauge symmetry deformations and of four-point exchange amplitudes.

Besides the exchange amplitudes, all these results have been generalized here to the case

of non-vanishing curvature. Recently, the results of [6] were considerably extended via

string-based computations by Sagnotti and Taronna [41, 42] and it would be interesting to

investigate the possibility of a radial dimensional reduction of their elegant results, looking

for the analogue of their generating functions to (anti) de Sitter spacetimes. We plan to

return to these issues in the future.

The generating function of the infinite set of conserved currents for a free complex

scalar field on (A)dSd have been obtained from the flat one [6] through a radial dimensional

reduction. For this purpose, an efficient translation rule between ambient partial deriva-

tives and intrinsic (i.e. spacetime) covariant derivatives was developed. The form of the

current generating function on ambient space is identical to the bilocal function introduced

by Fronsdal [14] in order to provide a manifestly covariant realization of the theorem [43]

asserting that the tensor product of two scalar singleton on the conformal boundary decom-

poses as an infinite tower of bulk gauge fields. This similarity is by no mean accidental since

the Flato-Fronsdal theorem is known to be instrumental in the holographic correspondence

between free conformal field theories on the boundary and higher-spin gauge field theories

in the bulk but it might deserve to be investigated further in the ambient formulation.

Through the Noether method, the current generating function allows to write a gener-

ating function of cubic minimal couplings and to determine the corresponding gauge sym-

metry deformations. Our results confirm some previous expectations on the non-Abelian

deformation of the metric-like gauge symmetry as being the group of unitary operators

on the spacetime manifold, thereby generalizing the group of diffeomorphisms. It was

extremely convenient to remove trace constraints on the gauge parameters when reflect-

ing on the non-Abelian symmetries in the metric-like formulation of higher-spin gauge

fields (see e.g. [30] for an extended discussion of this point). As far as the non-Abelian

frame-like formulation is concerned, the analogue of Vasiliev’s unfolded equations in the

unconstrained case are also of interest for studying the off-shell gauge symmetry struc-

ture [39, 40]. Moreover, a slight refinement of the on-shell unfolded equations has been

proposed in [44] following the spirit of the unconstrained approach. The recent frame-like

formalism with weaker trace constraints [45] might also shed some light in these directions.

Notice that, at the order where we worked (at most quadratic dependence in the gauge

fields), it is perfectly consistent to make use of traceful currents in the “minimal” coupling

between gauge fields and currents. However, the quadratic action for the gauge fields will

determine the genuine physical interactions between the matter and gauge fields. Indeed,

the gauge fields may also couple to other fields, dynamical or not (e.g. auxilliary and pure

gauge fields), and these couplings will affect the on-shell structure of the interactions. For

instance, if the quadratic gauge field action is the Fronsdal action [14] then the double-
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trace of the current is automatically extracted out off-shell and the single-trace further

decouples on-shell. It is known since the seminal works of Francia and Sagnotti that the

trace constraints may consistently be removed off-shell from the metric-like quadratic action

in several ways for irreducible gauge fields (see e.g. [46, 47] for some reviews and [24, 48]

for some recent developments). Nevertheless, the trace of the current still decouples on-

shell as it should [24]. For the so-called “triplet” arising from the open string leading

Regge trajectory [46, 47, 49–53] (see also [10, 23]), the situation is more subtle: although

traceful conserved currents can indeed source the symmetric tensor field, only the traceless

component of the currents studied here leads to genuine minimal interactions.2 The kth

trace of the current of rank r is a current of rank r − 2k (lower than r) and contains r

derivatives. However, any non-trivial rank-s conserved current built from a scalar field is

known to contain up to s derivatives. Therefore, any trace component of the current is equal

on-shell either to zero or to an “improvement”, i.e. a trivially conserved (or, equivalently,

co-exact) current. Such on-shell trivial currents give rise to non-minimal interactions,

quadratic in the scalar fields and linear in the gauge-invariant higher-spin fieldstrengths.

Finally, the toy model [6] has been used to calculate tree level exchange amplitudes for

the elastic scattering of two scalar particles mediated by an infinite tower of tensor gauge

fields. The AdSd counterparts of Feynman diagrams with four external scalar particles

should be Witten diagrams associated with the four-point correlation function of a singlet

(“single trace”) scalar operator, bilinear in some large component massless scalar field liv-

ing on the conformal boundary, as in [54, 55]. The exact summation of the corresponding

exchange amplitudes for an infinite tower of intermediate tensor gauge fields is possible in

flat spacetime [6] and one might hope to reproduce the analogue of this result in AdSd since

all ingredients are now available in the unconstrained formalism for irreducible gauge fields:

the bulk-to-bulk propagators of symmetric tensor fields can be extracted from [24] and the

relevant cubic vertices have been presented here.3 Moreover, the CFTd−1 dual results

are known in closed form, even for the interacting O(N) model in the large N limit [56].

Computing explicitly the AdSd exchange Witten diagram could therefore provide a first

quantitative test of the AdS4/CFT3 conjecture of Klebanov and Polyakov [55] at quartic

level, i.e. for four-point correlation functions. Indeed, while impressive quantitative checks

of the correspondence have been performed at the interacting level [57–60], to our knowl-

edge all of them were restricted yet to three-point correlation functions where symmetries

are known to highly constrain the set of possibilities.
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A Technical appendix

Let us consider a homogeneous symmetric tensor of rank r such that (XB∂B −
k)TA1...Ar(X) = 0 and XA1 TA1...Ar(X) = 0. These last two properties together with

the definitions of the projector (3.10) and the equivalence relation (3.13) imply that

∂A

(
PD1
B1

. . .PDn
Bn
PE1
C1

. . .PEr
Cr

∂D1 . . . ∂DnTE1...Er

)
∼

∼ ∂A∂B1 . . . ∂BnTC1...Cr −
1

X2
n (XD∂D) ηA(B1

∂B2 . . . ∂Bn)TC1...Cr −

− 1

X2
r XE ∂B1 . . . ∂BnTE(C2...Cr

ηC1)A

= ∂A∂B1 . . . ∂BnTC1...Cr −
1

X2
n
(
k − (n− 1)

)
ηA(B1

∂B2 . . . ∂Bn)TC1...Cr +

+
1

X2
r n ∂(B2

. . . ∂BnTB1)(C2...Cr
ηC1)A

Contracting all indices with an auxiliary vector P and making use of the notations (3.19)

and (3.20), one gets that

(P · D) (P · ∂)nT = (P · ∂)n+1 T − n
P 2

X2

(
k − r − (n− 1)

)
(P · ∂)n−1 T (A.1)

The left-hand-side of (A.1) can be expressed by

(P · D) (P · ∂)n T = (P · D)
[n/2]∑

m=0

cmn

(
P 2

X2

)r

(P · D)n−2r T

= c0n (P · D)n+1 +

[n/2]∑

m=1

cmn

(
P 2

X2

)m

(P · D)n−2m+1 T .

where (3.21) has been inserted in order to compute (P · ∂)n. The right-hand-side of (A.1)

can also be reexpressed as follows

(P · ∂)n+1 T − n
P 2

X2
(k − r − (n− 1)) (P · ∂)n−1 T

= c0n (P · D)n+1 T +

[(n+1)/2]∑

m=1

(
P 2

X2

)m

(P · D)n+1−2m [cmn+1 − n(k − r − n+ 1) cm−1
n−1 ]T .

by making use twice of (3.21) in order to calculate (P · ∂)n+1 and (P · ∂)n−1. These

equations imply that the coefficients cmn are given by the recurrence formula:

cmn+1 = cmn + n (k − r − n+ 1) cm−1
n−1 (A.2)

and for n odd, there is an additional relation:

c
(n+1)/2
n+1 = n(k − r − n+ 1) c

(n−1)/2
n−1 . (A.3)

If one considers the cmn as the coefficients of a power (a priori formal) series

f(x; y) =

∞∑

n=0

∞∑

m=0

1

n!
cmn xn ym , (A.4)
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one can rewrite the recursion formula (A.2) as an ordinary differential equation

(parametrized by the “constant” y) for the unkown function f(x, y) depending on the

single variable x

(1 + x2 y)
d

dx
f(x, y) −

(
1 + (k − r)xy

)
f(x, y) = 0 (A.5)

with the initial condition f(0, y) = 1. The solution of this Cauchy problem is:

f(x, y) = (1 + y x2)
k−r
2 exp

(
1√
y
arctan (

√
y x)

)
. (A.6)

The generating function c(x, y; k) is equal to f(x, y/x2).
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1 Introduction

The quantum many-body problem of a non-relativistic two-component Fermi gas with

short-range attractive interactions is a longstanding problem in condensed matter physics.

At low temperature, the system is known to be superfluid and undergoes a smooth crossover

from the Bardeen-Cooper-Schrieffer (BCS) to the Bose-Einstein-Condensate (BEC) regime

as the two-body attraction is increased (see [1–4] for recent reviews). Considerable progress

in atomic physics in the two last decades allowed to study the BCS to BEC crossover with

unprecedented accuracy. Of special theoretical interest is the regime in between BCS and

BEC known as the unitary Fermi gas.1 In three spatial dimensions, the unitary Fermi gas

is intrinsically strongly coupled and no obvious small parameter is available, precluding the

reliable application of a perturbative expansion. In this way, the unitary Fermi gas provides

a great theoretical challenge and requires the development and subsequent applications of

advanced non-perturbative many-body methods.

A special property of the unitary Fermi gas in vacuum (describing few-body physics)

is the invariance of the action under the scale transformations and more generally under

the Schrödinger group of Niederer and Hagen [5, 6]. This group of space-time symmetries

provides a direct non-relativistic analogue of the conformal group. Although the general

proof is still lacking, it is believed that for the unitary Fermi gas there is no conformal

anomaly and thus that the Schrödinger symmetry survives quantisation [7–10]. Motivated

by this, Nishida and Son extended the general methods of conformal field theory (CFT) to

the realm of non-relativistic physics and applied them to the unitary Fermi gas [11, 12].

Due to the non-relativistic conformal symmetry of the unitary Fermi gas in vacuum,

Son, Balasubramanian and McGreevy [13, 14] recently have initiated an attempt to apply

the methods of the gauge-gravity duality to this system. While their seminal papers revived

the interest of mathematical and high-energy physicists toward non-relativistic symmetries,

they mostly triggered an intensive body of research for the putative holographic duals of

various non-relativistic systems originating from condensed matter theory. However the

initial target, i.e. a holographic description of the unitary Fermi gas, remains tantalising

despite several steps forward [15–17]. As mentioned by Son in [13], a possible direction of

investigation is the unitary Fermi gas with U(1)×Sp (2N) symmetry introduced in [18, 19]

(see also [20]) whose gravity dual might be a classical theory in the large-N limit. Notably,

this gravity theory would have an infinite tower of fields with unbounded spin, similar to

the conjectured anti de Sitter (AdS) dual of the critical O(N) model [21]. Interestingly,

an impressive check of this latter conjecture has recently been performed for three-point

correlation functions [22, 23]. These encouraging results strengthen the natural expecta-

tion that this AdS/O(N) model correspondence provides a proper source of inspiration

for an AdS/unitary-fermions correspondence. Our recent letter [24] aims to represent a

further step towards a precise conjecture along these lines. The goal of the present work

is to present in detail some findings about the free and unitary fermions that support our

proposal. Some of these results were already announced in [24] without a proof. Although

1In this regime the two-body low-energy cross section saturates the maximal bound originating from the

unitarity of the S-matrix. This property gives rise to the term “unitary” Fermi gas.
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the body of our paper focuses on the CFT (boundary) side, some comments on the gravity

(bulk) side and the holographic correspondence are in order.

The AdS/O(N) correspondence proposed by Klebanov and Polyakov [21] pursuing

earlier insights of Sezgin and Sundell [25] involves, on the boundary, a multiplet of N

massless scalar fields in the fundamental representation of O(N) with a quartic O(N)-

invariant interaction and, in the bulk, an infinite tower of symmetric tensor gauge fields with

interactions governed by Vasiliev equations [26] (see [27–31] for introduction). The crucial

point in this correspondence is that there is an infinite collection of O(N)-singlet symmetric

currents of all even ranks, bilinear in the boundary scalar field, that precisely matches the

spectrum of the higher-spin gauge theory. These boundary currents are conformal primary

fields and are exactly conserved for the free theory (while only at leading order in 1/N

for the interacting theory) so their bulk duals should indeed be gauge fields. They are

actually the Noether currents of the maximal symmetry algebra of the massless Klein-

Gordon equation [32], that is the infinite-dimensional symmetry algebra of a free conformal

scalar field. This algebra of rigid symmetries is isomorphic to the algebra which is gauged

in the bulk higher-spin theory [26]. A precise statement of the correspondence is that the

generating functional of the connected correlators of the boundary currents is given, in the

large-N limit, by the on-shell classical action of the bulk fields expressed in terms of the

boundary data. In the large-N limit, the generating functionals of the critical theory and

of the free theory are related by a Legendre transformation, which should be dual to a

mere change of boundary conditions for the same bulk theory, as follows from the general

analysis of [33, 34].

So what could be an educated guess for a gravity dual of unitary fermions? We will

turn back to this cardinal issue in the conclusion but, before, let us start by looking for the

non-relativistic analogue of the above-mentioned construction. As was found in [18, 19], a

sensible large-N extension of the unitary Fermi gas has U(1)×Sp (2N) symmetry2 and in-

volves a multiplet of 2N non-relativistic massive fermions transforming in the fundamental

representation of Sp (2N). The general arguments of [34] imply that, in the large-N limit,

the Helmholtz free energies of unitary fermions and of non-interacting fermions are related

by a Legendre transformation. Thus, in this limit the results obtained from the free theory

are of direct interest for the theoretically more challenging critical regime at the unitarity

point. This important observation motivated us to focus in this paper on a collection of

free non-relativistic massive fermions in the fundamental representation of Sp (2N) and to

study its symmetries and currents.

The summary of our main results and the plan of the paper are as follows: In sec-

tion 2, we start with an introduction to the unitary Fermi gas and its large-N extension.

We also present the general arguments of [34] and demonstrate that, in the large-N limit,

the generating functionals of the unitary Fermi gas and of the ideal Fermi gas are re-

lated by a Legendre transformation. In section 3, the maximal symmetry algebra of the

free Schrödinger equation is identified and shown to be isomorphic to the Weyl algebra

2Note that we are following the physicist convention here and define the compact symplectic group as

Sp (2N) := U(2N) ∩ Sp (2N,C). Alternatively, physicists also frequently use the notation USp (2N) while

mathematicians usually refer to this group as Sp (N).
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of quantum observables in the time-reversed Heisenberg picture. It provides an infinite-

dimensional extension of the Schrödinger algebra, as was recognised in [35]. In section 4,

an infinite collection of Sp (2N) or O(N) singlet symmetric tensors of all ranks, bilinear

in the fermionic field is obtained from the corresponding relativistic currents through a

dimensional reduction along a light-like direction. In section 5, the coupling of these bilin-

ears to external sources is considered and written in a compact form by making use of the

Weyl quantisation. This allows us to identify the algebra of gauge symmetries with the

algebra of quantum observables with arbitrary time dependence. These symmetries can

be thought as the higher-spin generalisations of the non-relativistic general coordinate and

Weyl symmetries discussed in [36]. In section 6, we summarise our results and review our

proposal [24] of a possible gravity dual of the unitary and the ideal Fermi gases: the O(N)-

singlet bilinear sector of the large-N extension of the free or unitary fermions in d space

dimensions should be dual to the null-reduction of classical Vasiliev theory on AdSd+3 with

u(2)-valued tensor gauge fields of all integer ranks and suitable boundary conditions. In

particular, the bulk dual of the “physical” (i.e. N = 1, d = 3) unitary UV-stable Fermi gas

would be the null dimensional reduction of the u(2) higher-spin gauge theory on AdS6 with

the exotic boundary condition for the complex scalar field dual to the Cooper-pair field.

Wherever possible, we will stick to the notations and conventions of [13]. Except in

appendix A, we set ~ = 1.

2 Unitary Fermi gas and its large-N extension

2.1 Action and symmetries

Nowadays a dilute two-component Fermi gas near a broad Feshbach resonance can be cooled

with the help of lasers to ultra-low temperatures ∼ 10−9K, and is studied extensively in

experiments with ultracold atoms. In three spatial dimensions (d = 3) at low densities it

can be very well described by the microscopic action

S[ψ ; c0] =

∫
dt

∫
dx


 ∑

α=↑,↓
ψ∗
α

(
i∂t +

∆

2m
+ µ

)
ψα − c0 ψ

∗
↓ψ

∗
↑ψ↑ψ↓


 , (2.1)

where the two species of fermionic atoms of mass m are represented by the Grassmann-odd

fields ψ↑ and ψ↓, while µ stands for the chemical potential, and c0 measures the micro-

scopic interaction strength. In actual experiments with ultracold gases the two different

components denote different hyperfine eigenstates which we denote here for simplicity by

↑ and ↓ but which have nothing to do with genuine spins “up” and “down”.3 This action

has an internal U(2) symmetry. Due to the contact nature of the interaction term, the

non-relativistic quantum field theory defined by the action (2.1) must be regularised. This

can be achieved, for example, by introducing a sharp ultraviolet cutoff. Subsequently, the

bare interaction parameter c0 is related via renormalisation to a low-energy observable: the

3Note that due to the lack of the spin-statistics theorem for non-relativistic quantum field theories, the

spin of fermions (and thus the number of components) is not constrained [37, 38]. For example, we can

have spinless one-component fermions.
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s-wave scattering length a. The concrete functional relation between c0 and a depends on

the regularisation scheme and will not be presented here. In this paper we will be mainly

interested in excitations above the vacuum state, i.e. a system at zero temperature and

zero density. For a 6 0 there are no bound states in the two-component Fermi gas and

in this range the vacuum corresponds to µ = 0 (see e.g. [18] for a detailed explanation).

Due to the presence of a universal two-body dimer bound state for a > 0, the chemical

potential in vacuum is negative and is related to the scattering length via µ = − 1
2ma2

.

In any case, the only length scale in the renormalised theory in vacuum is given by the

scattering length a.

The non-interacting Fermi gas is obtained for a = 0 which translates into c0 = 0.

In vacuum it is obviously scale invariant. Another theoretically interesting regime is the

strongly interacting unitary Fermi gas, where a−1 = 0. The only length scale defined by

the scattering length drops out in this regime. Hence the classical theory for the unitary

Fermi gas is scale invariant. Although there is no general proof yet, there are numerous

theoretical and experimental evidences collected by now that the quantum unitary Fermi

gas in vacuum is also scale invariant.4 More precisely, the action of the unitary Fermi gas is

invariant under the Schrödinger symmetry, which will be introduced in section 3, and the

theory is believed to be an example of a strongly interacting non-relativistic CFT [7, 11].

A sensible large-N extension of the unitary Fermi gas that preserves the pairing struc-

ture of the interaction term was found in [18, 19]. The model with N “flavors” is defined

by the action

S[ψ ; c0, N ] =

∫
dt

∫
dx

[
ψ†
(
i∂t +

∆

2m
+ µ

)
ψ − c0

4N

∣∣ψT Jψ
∣∣2
]
, (2.2)

where ψ denotes a multiplet of 2N massive fermions with components ψA = ψα,a with

α = ↑, ↓ and a = 1, . . . , N . The symbol J represents the symplectic 2N × 2N matrix

JAB = ǫαβ ⊗ δab which has the block form J =

(
0 1

−1 0

)
. For N = 1, one recovers

the original model (2.1), i.e. S[ψ ; c0, N = 1] = S[ψ ; c0]. As far as internal symmetries

are concerned, the kinetic term in eq. (2.2) is invariant under U(2N), while the quartic

interaction is invariant under U(1) × Sp (2N,C). As a result, the full interacting theory

is invariant under the intersection of U(2N) with U(1)× Sp (2N,C), which happens to be

U(1) × Sp (2N) (see the footnote in section 1). For N = 1, one finds as mentioned above

U(1)× Sp (2) ∼= U(2) as the internal symmetry group, since Sp (2) ∼= SU(2).

The preceding construction introduces a new integer parameter into the theory and

resembles in various respects the structure of the relativistic linear O(N) models. While

the analogy is suggestive, there is an important difference which is worth to be emphasised

already here. On the one hand, in the relativistic O(N) model the internal symmetries of

the free and of the critical theory happen to be the same. On the other hand, the internal

4In other words there is no quantum anomaly associated with the scale transformation. Interestingly,

the unitary Bose gas suffers from a quantum scale anomaly, known in the nuclear and atomic physics as

the Efimov effect. Presence of this anomaly hinders an experimental realisation of a stable unitary Bose

gas in experiments with ultracold quantum gases.
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symmetry of the kinetic part of the action (2.2) is larger than the internal symmetry of

the full action. Thus, the N > 1 extensions of the ideal and of the unitary Fermi gas have

different internal symmetries. This makes the relation between these two theories more

subtle than in the relativistic O(N) case.

Let us finally note that for general N flavors, U(2) × O(N) is a subgroup of U(1) ×
Sp (2N). Mathematically, the subgroups U(2) and O(N) are centralisers5 of each other

inside U(1) × Sp (2N),6 as they transform independently spin and flavor indices. In the

following, U(2)×O(N) symmetry subgroup will play a central role in the suggestion of the

putative holographic dual of the unitary Fermi gas.

2.2 Ideal and unitary gases as Legendre conjugates

The celebrated BCS theory has taught us that the physical phenomena of superfluidity and

superconductivity have their origin in the condensation of particle-particle Cooper pairs

at low temperature. From this insight, it becomes clear that a proper understanding of

physics of these Cooper pairs is of a central importance for quantum Fermi systems. By

applying the general observation of Gubser and Klebanov on the double trace deformations

of conformal field theories [34] to the large-N extension of the unitary Fermi gas, we

show here that the generating functionals of Cooper pair connected correlators in the non-

interacting and in the unitary Fermi gases are related by a Legendre transformation in the

large N limit (or, similarly, in the mean field approximation).

The following discussion will closely parallel the derivation of Gubser and Klebanov

that was introduced for an infrared relevant double trace deformation of a conformal field

theory like, for example, the relativistic linear O(N) model in three space-time dimensions.

There is one important difference between the relativistic and the non-relativistic problems

of interest that we would like to emphasize here. In theO(N) model , the quartic interaction

term is an infrared relevant perturbation of a free CFT triggering the renormalisation group

flow to approach the infrared stable Wilson-Fisher fixed point. Due to a distinct power

counting in the non-relativistic physics, the four-fermion contact interaction in (2.1) is

infrared irrelevant in the most physically interesting case of three spatial dimensions. This

implies that the Gaussian fixed point is infrared stable and the unitarity fixed point (in

vacuum) is in fact approached in the ultraviolet of the renormalisation group flow.

With a slight abuse of terminology, by “Cooper pair” we mean here the Sp (2N)-singlet

bilinear

k(t,x) :=
1

2
ψT Jψ =

1

2
ψA JAB ψB =

N∑

a=1

ψ↑, a ψ↓, a , (2.3)

5Let G1 and G2 be two subgroups of G. The subgroup G1 is the centraliser of G2 ⊆ G if and only if

G1 is the largest subgroup of G such that all its elements commute with all elements of G2. Usually, the

centraliser of G2 ⊆ G is denoted by C(G2) (= G1 here). Such a pair of subgroups G1 and G2 is sometimes

called a Howe dual pair by mathematicians.
6This follows from the fact that Sp (2)×O(N) is a subgroup of Sp (2N) where the subgroups Sp (2) and

O(N) are centralisers of each other. This property plays an important role (though for a different reason)

in the construction of higher-spin algebras [27–31].
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which reproduces the genuine Cooper pair ψ↑ψ↓ when N = 1. The generating functional

W [ϕ ; c0, N ] of Cooper-pair connected correlators in the Fermi gas described by (2.2) is

defined by the path integral

exp iW [ϕ ; c0, N ] =

∫
DψDψ† exp i S[ψ ,ϕ ; c0, N ] , (2.4)

where

S[ψ ,ϕ ; c0, N ] := S[ψ ; c0, N ] −
∫
dt dx

(
kϕ∗ + k∗ϕ

)
(2.5)

is the action in the presence of an external charged scalar field ϕ coupled to the Cooper

pair k.

In particular, the free (c0 = 0, infrared fixed point in d = 3) action in the presence of

the source ϕ reads

Sfree[ψ ,ϕ] := S[ψ ,ϕ ; 0, N ] =

∫
dt dx

[
ψ†
(
i∂t +

∆

2m
+ µ

)
ψ −

(
kϕ∗ + k∗ϕ

) ]
,

(2.6)

and is quadratic in the dynamical field ψ (since the kinetic term and the Cooper pair k

are). This quadratic functional is usually rewritten in a more elegant form by making use

of the Nambu-Gor’kov field

Ψ =

(
ψ↑
ψ∗
↓

)
. (2.7)

Notice that ψ and Ψ are not related by a unitary transformation (not even by a linear or

anti-linear transformation) but the canonical anti-commutation relations are preserved. In

terms of the Nambu-Gor’kov field, the quadratic action (2.6) takes the form

Sfree[Ψ ,ϕ] =

∫
dt dxΨ†

(
i∂t + ( ∆

2m + µ) ϕ

ϕ∗ i∂t − ( ∆
2m + µ)

)
Ψ . (2.8)

The generating functional of connected correlators of Cooper pairs in the ideal Fermi

gas is Wfree[ϕ ;N ] := W [ϕ ; 0, N ]. It can easily be evaluated formally since the path

integral (2.4) is Gaussian in such case:

Wfree[ϕ ;N ] = −iN Tr log

(
i∂t + ( ∆

2m + µ) ϕ

ϕ∗ i∂t − ( ∆
2m + µ)

)
=: N Wfree[ϕ ] (2.9)

providing an explicit solution of the infrared stable conformal field theory in d = 3. In

order to prepare the ground for the later discussion, let us already here introduce the field

π :=
δWfree[ϕ]

δϕ∗ . (2.10)

conjugate to the free field ϕ, and the Legendre transformation

Γfree[π ] := Wfree[ϕ] −
∫
dt dx

(
ϕπ∗ +ϕ∗ π

)
, (2.11)

of the free connected correlator generating functional Wfree[ϕ].
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In order to relate this to the interacting theory, we use a standard trick: the Hubbard-

Stratonovich transformation which reformulates any system of particles with a two-body

interaction equivalently as a system of particles interacting only via a fluctuating auxiliary

field. More precisely, here one transforms the path integral over the fundamental fermionic

field Ψ with quartic vertex into a Gaussian path integral via the introduction of an auxiliary

complex scalar field φ mediating the interaction in the particle-particle channel. This

auxiliary field is called “dimer” in the literature on the unitary Fermi gas. More concretely,

on the right-hand-side of (2.4) one can introduce a Gaussian path integral over the auxiliary

field φ to get

exp iW [ϕ ; c0, N ] ∝
∫
DΨDΨ†DφDφ∗ exp i SHS[Ψ ,φ ,ϕ ; c0, N ] , (2.12)

where SHS[Ψ ,φ ,ϕ ; c0, N ] is the Hubbard-Stratonovich transformation of the action (2.5).

It is equal to the sum of a chemical-potential like term for the dimer plus the free action

in presence of the source ϕ shifted by the dimer φ,

SHS[Ψ ,φ ,ϕ ; c0, N ] :=
4N

c0

∫
dt dx |φ|2 + Sfree[Ψ ,ϕ+ φ] . (2.13)

In the following, it is convenient to work directly with the shifted dimer field φ = φ + ϕ.

The integral over the dynamical field Ψ in (2.12) can now be evaluated and gives as a result

exp iW [ϕ ; c0, N ] ∝
∫
DφDφ∗ exp i Seff[φ ,ϕ ; c0, N ] , (2.14)

where the effective action for the dimer field depends linearly on the number N of flavors:

Seff[φ ,ϕ ; c0, N ] = N Seff[φ ,ϕ ; c0] and is the sum of the chemical-potential like term

plus the free effective action for the auxiliary field (2.9)

Seff[φ ,ϕ ; c0] :=
4

c0

∫
dt dx |φ−ϕ|2 + Wfree[φ] . (2.15)

The linear dependence of the effective action on the parameter N means that 1/N controls

the loop expansion of the dimer effective theory. The large-N limit allows for a saddle

point approximation of the integral (2.14) over the dimer field:

W [ϕ ; c0, N ] = N Wmean[ϕ ; c0] + O(1) , (2.16)

where

Wmean[ϕ ; c0] := Seff[φ(ϕ) ,ϕ ; c0] (2.17)

is the celebrated “mean field” approximation of the generating functional of connected

correlators. Notice that in the physically relevant N = 1 case, this term is a priori of the

same order as the 1/N corrections. Nevertheless, the mean field approximation becomes

exact at N = ∞, providing an explicit relation between the generating functionals of the

free and interacting theory:

Wmean[ϕ ; c0] =
4

c0

∫
dt dx |φ(ϕ)−ϕ|2 + Wfree[φ(ϕ)] . (2.18)
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On the right-hand-side of (2.17) and (2.18), the field φ depends on the source ϕ because

it should be understood as the solution of the classical equation of motion

δSeff[φ ,ϕ ; c0]

δφ∗
= 0 =⇒ δWfree[φ]

δφ∗
=

4

c0
(ϕ− φ) . (2.19)

Sometimes in this paper, the large-N limit and the mean field approximation will be

loosely said to be equivalent. By this, we mean that the equations (2.18)–(2.19) provide

an approximation for the interacting generating functional which can either be understood

as the leading-order approximation in the large-N limit analogous to the ’t Hooft limit in

gauge theories (that is N →∞ at fixed c0) or as the mean field approximation at fixed N

(say N = 1).

Now, two distinct limits of the approximated generating functional (2.18)–(2.19) can

be considered: either a large-c0 limit in which case the coefficient c0/N of the quartic term

in the bare action (2.2) might be kept finite (though possibly small, e.g. in the ultraviolet)

or instead a small-c0 limit in which case the coefficient c0/N goes to zero, even if N is kept

finite (though possibly large for the validity of the saddle point approximation). In both

cases, one finds that the generating functionals are Legendre conjugates, but expressed

in terms of different rescaled fields in the distinct limits. First, let us consider the limit

c0 →∞ . If one rescales the source ϕ := 4
c0
ϕ, then the equation of motion (2.19) becomes

δWfree[φ]

δφ∗
= ϕ+O

(
1

c0

)
, (2.20)

which means that the shifted dimer field and the rescaled source are exact Legendre con-

jugates at c0 = ∞. Moreover, the approximated generating functional (2.18) takes the

suggestive form

Wmean

[
c0ϕ

4
; c0

]
= −

∫
dt dx

(
ϕφ∗ + ϕ∗φ

)
+
c0
4

∫
dt dx |ϕ|2 + Wfree[φ(ϕ)] +O

(
1

c0

)
.

(2.21)

Comparing with the definitions (2.10)–(2.11), one is lead to the relation

lim
c0→∞

{
Wmean

[
c0ϕ

4
; c0

]
− c0

4

∫
dt dx |ϕ |2

}
= Γfree[ϕ] . (2.22)

This result is very similar to the calculation performed in [34], the interpretation of which

is very natural in the O(N) model where the infrared stable Wilson-Fisher fixed point

corresponds to an infinitely large dimensionful coupling. In the non-relativistic Fermi gas

the above derivation is applicable to the spatial dimension d < 2, where the unitary fixed

point is infrared stable.

In d > 2 the unitarity fixed point is ultraviolet stable which in regularisation with a

sharp cutoff corresponds to the limit c0 → 0. It appears therefore that the limit c0 → 0 is

necessary in d > 2 for the unitary Fermi gas.7 So let us now consider the limit c0 → 0 and

7 Note, however, that c0 → ∞ in any spatial dimension for the unitary Fermi gas in dimensional

regularisation [12].
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rescale the shifted dimer field φ̃ := 4
c0
φ. If we express the generating functional of the free

theory in terms of the rescaled dimer field,

W̃free[ φ̃ ] := Wfree

[
c0
4
φ̃

]
, (2.23)

then the equation of motion (2.19) reads

δW̃free[φ̃]

δφ̃∗
= ϕ+O

(
c0

)
. (2.24)

Thus the source ϕ and the rescaled dimer φ̃ form a Legendre conjugate pair in the limit

c0 → 0 . In addition, if we express the generating functional of the mean field theory in

terms of the rescaled dimer field,

W̃mean[ φ̃ ; c0 ] := Wmean

[
c0
4
φ̃ ; c0

]
, (2.25)

then the relation (2.18) can be written as

W̃mean

[
φ̃ ; c0

]
= −

∫
dt dx

(
ϕ φ̃∗ +ϕ∗φ̃

)
+

4

c0

∫
dt dx |ϕ|2 + W̃free[φ̃(ϕ)] + O

(
c0

)
.

(2.26)

Therefore,

lim
c0→0

{
W̃mean

[
φ̃(ϕ) ; c0

]
− 4

c0

∫
dt dx |ϕ |2

}
= Γ̃free[ϕ] , (2.27)

with

Γ̃free[ϕ] := W̃free[φ̃]−
∫
dt dx

(
ϕ φ̃∗ +ϕ∗φ̃

)
,

δW̃free[φ]

δφ̃∗
= ϕ. (2.28)

Thus, we just demonstrated that, up to a divergent contact term, the unitary Fermi gas in

d > 2 is related to the ideal Fermi gas via a Legendre transformation in the large-N limit

or, equivalently, in the mean field approximation.

We remark that the intimate relation between the free and unitary fermions in the

large N limit gives rise to a simple relation between the scaling dimensions of the dimer

field at the two fixed points

∆free
φ +∆int

φ = d+ 2. (2.29)

Since in the free theory ∆free
φ = 2∆ψ = d, this implies ∆int

φ = 2. The non-trivial fixed

point is physically admissible only for 0 < d < 2 and 2 < d < 4. Indeed, for d > 4

one obtains ∆int
φ = 2 < d

2 which violates the unitarity bound. Moreover, in d = 2 both

fixed points merge together (∆free
φ = 2 = ∆int

φ ), and only the trivial fixed point exists.

Remarkably, due to simplicity of the non-relativistic vacuum, the relation (2.29) receives

no 1/N corrections in the theory of non-relativistic fermions and thus is exact.

From the point of view of the holographic duality, the Legendre transformation corre-

sponds to a change of the boundary condition for the bulk scalar dual to the Cooper-pair
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field in the same theory in the bulk [33], in agreement with the comments in [13]. More

precisely, the highest of the two scaling dimensions (∆free
φ = d and ∆int

φ = 2) is denoted

∆+ and corresponds to an infrared (IR) stable fixed point on the boundary side and to a

standard (Dirichlet-like) boundary condition on the bulk side, while the lowest dimension,

∆−, corresponds to an ultraviolet (UV) stable fixed point and to an exotic (Neumann-like)

boundary condition.

We conclude that, in the large-N limit, the dimer effective theory of the ideal and the

unitary Fermi gases for 0 < d < 4 are related via a Legendre transformation and should

thus share the same set of conserved currents and symmetries.8 For this reason, although

we are primarily interested in the unitary Fermi gas in the large N limit, it is sufficient

from now on to focus on the theory of the ideal Fermi gas.

3 Higher symmetries of the Schrödinger equation

3.1 The Schrödinger group of kinematical symmetries

In mathematical terms, the Galilei principle of relativity is encoded in the Galilei group.

For this reason the structure of this group plays an important role in non-relativistic

physics [39]. In d spatial dimensions the group acts on the spatial coordinates x and

time t as

(t,x)→ g(t,x) = (t+ β,Rx+ vt+ a), (3.1)

where β ∈ R; v,a ∈ Rd and R is a rotation matrix in d spatial dimensions. In quantum

mechanics, the Galilei group acts by projective representations on the Hilbert space of

solutions to the Schrödinger equation when the potential is space and time translation

invariant.9 In other words, in such case any solution is transformed to a solution of the form

ψ(t,x)→ γ
(
g(t,x)

)
ψ
(
g−1(t,x)

)
, (3.2)

where γ is a phase factor compatible with the group multiplication laws [40]. For example,

a scalar wave function ψ describing a single particle of mass m transforms under a pure

Galilei boost gv as

ψ(t,x)→ exp

[
− im

2
(v2t− 2v · x)

]
ψ
(
g−1
v (t,x)

)
. (3.3)

The presence of the mass-dependent phase factor in the transformation law implies a su-

perselection rule forbidding the superposition of states of different masses, known as the

Bargmann superselection rule [41]. This rule constrains the dynamics and states that ev-

ery term in the Lagrangian of a non-relativistic Galilei-invariant theory must conserve the

total mass. For this reason, the mass plays the role of a conserved charge in non-relativistic

physics.

8For the interacting system, however, most of these symmetries are expected to be broken by 1/N

corrections.
9Of course, for a single particle such a potential must be constant.
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By enlarging the Galilei group through a central extension, known as the mass op-

erator (or alternatively the particle number operator), we can make the representations

unitary [39, 40]. The centrally extended Galilean group is sometimes referred to as the

Bargmann group [42]. Its Lie algebra consists of the following generators: the mass M̂ ; one

time translation P̂t ; d spatial translations P̂i ;
d(d−1)

2 spatial rotations M̂ij and d Galilean

boosts K̂i . The non-trivial commutators are

[M̂ij , M̂kl] = i(δikM̂jl − δjkM̂il − δilM̂jk + δjlM̂ik) ,

[M̂ij , K̂k] = i(δikK̂j − δjkK̂i) , [M̂ij , P̂k] = i(δikP̂j − δjkP̂i) ,
[P̂i, K̂j ] = −iδijM̂, [P̂t, K̂j ] = −iP̂j .

(3.4)

Notice that the commutation relations between the translation and Galilean boost gen-

erators are the canonical commutation relations of the Heisenberg algebra hd in d space

dimensions (see appendix A for the definition), where the Galilean boost generators play

the role of the position operators while the role of the reduced Planck constant is played

by the mass.

It is remarkable that the group of space-time symmetries of the free Schrödinger equa-

tion with vanishing chemical potential

i ∂tψ(t,x) = −
∆

2m
ψ(t,x) (3.5)

is larger than the Bargmann group if one relaxes the restriction of unit module on the

factor appearing in the transformation law. Following Niederer [5], we call kinematical

symmetry of the Schrödinger equation any transformation of the form (3.2), where γ is a

complex factor compatible with the group structure, that maps solutions to solutions.10

First, remember that the mass is just a charge and so it has scaling dimension zero.

Thus, the non-interacting system has no parameter with non-vanishing scaling dimension,

which implies an additional scale symmetry. In non-relativistic physics, this symmetry

scales the time and spatial coordinates differently

(t,x)→
(
t

α2
,
x

α

)
, α ∈ R. (3.6)

This corresponds to the dynamical critical exponent z = 2, which determines the relative

scaling of time and space coordinates.

Second, Niederer found in [5] that, in addition to the scale symmetry, a discrete inver-

sion transformation Σ which acts on space-time as

(t,x)→ Σ(t,x) =

(
−1

t
,
x

t

)
(3.7)

is also a symmetry of the free Schrödinger equation. By conjugating a time translation gβ
via the inversion Σ,

(t,x)→ (Σ−1gβΣ)(t,x) =

(
t

1 + βt
,

x

1 + βt

)
(3.8)

10Mathematicians would call such transformations a “multiplier” representation of the symmetry group.
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a new symmetry of the free Schrödinger equation is found [5, 6]. This transformation is

known as expansion and is a non-relativistic analogue of the special conformal transfor-

mations. Note that a Galilean boost gv is conjugate to a spatial translation ga via the

inversion Σ.

The extension of the Bargmann group by scale transformations and expansions is

known as the Schrödinger group in d spatial dimensions, denoted by Sch(d). Apparently

this structure was known already to Jacobi (see the conclusion of [43]), but was redis-

covered after the advent of quantum mechanics in [5, 6]. The Schrödinger group is the

non-relativistic counterpart of the conformal group, though the former cannot be obtained

as an Inönu-Wigner contraction from the latter. The Schrödinger group is simply generated

by the Euclidean isometries (rotations and spatial translations), the time translations, the

scale transformations and the inversion.11 In addition to (3.4), the non-trivial commutators

of the Schrödinger algebra sch(d) in d spatial dimensions are

[P̂i, D̂] = iP̂i , [P̂i, Ĉ] = −iK̂i , [K̂i, D̂] = −iK̂i ,

[D̂, Ĉ] = 2iĈ , [D̂, P̂t] = −2iP̂t , [Ĉ, P̂t] = −iD̂ .
(3.9)

Together, the time translation generator P̂t, the scale generator D̂ and the expansion

generator Ĉ span a subalgebra sl(2,R) of the full Schrödinger algebra. These generators

commute with the generators M̂ij of the rotation subalgebra o(d). The Schrödinger algebra

has the structure of a semi-direct sum: sch(d) = hd B
(
o(d)⊕ sl(2,R)

)
.

Finally, the “standard” representation of the Schrödinger algebra as differential oper-

ators of order one acting on the one-particle wave function ψ(t,x) is

P̂i = −i∂i, P̂t = i∂t, M̂ = m,

M̂ij = −i(xi∂j − xj∂i),

K̂i = mxi + it∂i,

D̂ = i

(
2 t ∂t + xi∂i +

d

2

)
,

Ĉ = i

(
t2∂t + t

(
xi∂i +

d

2

))
+
m

2
x2.

(3.10)

3.2 The Weyl algebra of higher symmetries

The algebra of space-time symmetries of the free single-particle Schrödinger equation is

actually much larger than the Schrödinger algebra. More precisely, the Weyl algebra (see

appendix A for the definition) is realised as an infinite-dimensional symmetry algebra

of the free Schrödinger equation, as was pointed out in the inspiring work [35]. Here, we

further prove that the Weyl algebra is the maximal algebra of space-time symmetries of the

Schrödinger equation. In the present context, this result can be used as the non-relativistic

counterpart of the theorem of Eastwood [32] on the maximal symmetry algebra of the

11The Galilean boosts and the expansions come “for free” (more precisely, via conjugation of the space-

time translations by the inversion).
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massless Klein-Gordon equation (see e.g. section 4 of [44] for a review). Accordingly, the

Weyl algebra (and, possibly, its proper matrix-valued extension) provides a non-relativistic

higher-spin algebra which is the precise analogue of Vasiliev’s (possibly extended) higher-

spin algebras [26].

3.2.1 The maximal symmetry algebra of the Schrödinger equation

In order to make precise and rigorous statements analogous to the known results on the

conformal scalar field, let us start with some definitions mimicking the ones of [32, 44]. A

symmetry of the Schrödinger equation is a linear differential operator Â(t, X̂, P̂t, P̂) obeying

to the condition

Ŝ Â = B̂ Ŝ , (3.11)

for some linear differential operator B̂, where Ŝ is the Schrödinger operator defined by

Ŝ := P̂t − Ĥ , (3.12)

and Ĥ is a Hamiltonian of a massive non-relativistic particle taking the usual form

Ĥ(X̂, P̂) =
P̂2

2m
+ V (X̂) . (3.13)

The Schrödinger equation reads

i ∂tψ(t,x) ≈ Ĥψ(t,x) ⇐⇒ Ŝψ(t,x) ≈ 0, (3.14)

where the “weak equality” symbol ≈ stands for an equality valid when the Schrödinger

equation is satisfied. By definition, any symmetry Â preserves the space KerŜ of solutions

to the Schrödinger equation (3.14): it maps any solution ψ to a solution ψ′ = Âψ. The

general solution of the Schrödinger equation (3.14) is of course

ψ(t,x) = Û(t)ψ(0,x) , (3.15)

where

Û(t) = exp(−itĤ) (3.16)

is the time evolution operator. Obviously, the time evolution

F̂ (t) = Û(t) F̂ (X̂, P̂) Û−1(t) = F̂
(
X̂(t), P̂(t)

)
, (3.17)

of any spatial differential operator F̂ (X̂, P̂) defines a symmetry of the Schrödinger equation

in the above sense. It is clear that F̂ (t) maps solutions to solutions, where the initial wave

functions are related by the initial operator F̂ (0) = F̂ . The condition (3.11) is satisfied

with Â = B̂ = F̂ (t) since i∂tF̂ (t) = [Ĥ, F̂ (t)], which follows from (3.17). Note that (3.17)

is the inversed (t→ −t) time evolution of F̂ (X̂, P̂) in the Heisenberg picture.12

12Notice that in [24], the inversed time evolution in the Heisenberg picture was written F̂ (−t) in order

to emphasise this fact. Here, we chose the simpler notation F̂ (t) in order to avoid overloading the many

formulas where such notations appear.
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A symmetry Â is said to be trivial if Â = ÔŜ for some linear operator Ô because it

maps any solution to zero. Such a trivial symmetry is always a symmetry of the Schrödinger

equation, since it obeys (3.11) with B̂ = ŜÔ. The algebra of trivial symmetries forms a left

ideal in the algebra of linear operators endowed with the composition ◦ as multiplication.

Furthermore, it is also a right ideal in the algebra spanned by all the symmetries of the

Schrödinger equation. Two symmetries Â1 and Â2 are said to be equivalent if they differ by

a trivial symmetry. The corresponding equivalence relation is denoted by a weak equality

Â1 ≈ Â2 ⇐⇒ Â1 = Â2 + ÔŜ . (3.18)

The maximal symmetry algebra of the Schrödinger equation is the complex algebra of all

inequivalent symmetries of the Schrödinger equation, i.e. the algebra of all symmetries

quotiented by the two-sided ideal of trivial symmetries. Let us show that for any time-

independent Hamiltonian the maximal symmetry algebra of the single-particle Schrödinger

equation is isomorphic to the Weyl algebra of spatial differential operators.13

The proof goes in three steps: Let Â(t, X̂, P̂t, P̂) be a symmetry of the Schrödinger

equation. Firstly, one remarks that it is equivalent to a representative independent of the

time translation generator:

Â(t, X̂, P̂t, P̂) ≈ Â′(t, X̂, P̂) , (3.19)

because one may assume that the operator Â has been ordered in such a way that all

the operators P̂t are on the right. Thus each P̂t can be traded for Ĥ since P̂t ≈ Ĥ.

Secondly, one observes that the representative Â′ must commute with the Schrödinger

operator Ŝ. Indeed, the representative Â′ is also a symmetry, so it must obey to the

condition Ŝ Â′ = B̂′ Ŝ which is equivalent to

[Ŝ, Â′] = (B̂′ − Â′) Ŝ. (3.20)

As follows from the definition (3.12) of the Schrödinger operator, the left-hand-side of this

equation is equal to

[Ŝ, Â′] = i∂tÂ
′ − [Ĥ, Â′] (3.21)

where the time derivative acts on the explicit time dependence of the operator Â′(t, X̂, P̂).

In order to compare the left and right hand sides of eq. (3.20), let us assume that each

side is ordered as before. On the one hand, the left-hand-side of eq. (3.20) is given by

the expression (3.21) which does not depend on P̂t since both the Hamiltonian Ĥ and the

representative Â′ do not. On the other hand, the right-hand-side of eq. (3.20) explicitly

depends on P̂t due to the presence of the Schrödinger operator Ŝ = P̂t− Ĥ. Therefore each

side must vanish separately, which means that the commutator between Â′ and Ŝ is zero.

Thirdly, this commutation relation implies that the representative Â′ is the (inversed) time

evolution of a spatial differential operator

Â′(t, X̂, P̂) = Û(t) Â′(0, X̂, P̂) Û−1(t) . (3.22)

This becomes clear from the commutation relation (3.21) which is the Schrödinger equation

in the (time reversed) Heisenberg picture.

13For an n-component wave function, the maximal symmetry algebra of the Schrödinger equation is

isomorphic to the tensor product between the algebra of n × n square matrices and the Weyl algebra of

spatial differential operators: Mn ⊗Ad.
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3.2.2 The Schrödinger subalgebra

As should be expected, the reversed time evolution of the initial observables span all

the inequivalent symmetries of any Schrödinger equation. But how does the Schrödinger

algebra sch(d) fits into this result? And what is so special about the free evolution?

A useful observation is that, when the particle is free (Ĥ = Ĥfree = P̂ 2

2m) all the

differential operators (3.10) are equivalent to polynomials at most of degree two in the

time-evolved operators of positions and momenta. For instance, the mass M̂ = m is the

degenerate case of degree zero. Moreover, the time translation generator is equivalent to

the quadratic Hamiltonian P̂t ≈ Ĥfree = P̂ 2

2m and the rotation generators can be written

as the angular momentum M̂ij = X̂iP̂j − X̂jP̂i. For the other generators, it is easier to

first verify this property at time t = 0. The Galilean boost generators evaluated at t = 0

are proportional to the positions, K̂i
∣∣
t=0

= mX̂i while the scale and expansion generators

can be written as the quadratic polynomials, D̂
∣∣
t=0

= −X̂iP̂i + id/2 and Ĉ
∣∣
t=0

= m
2 X̂

2.

All together, these differential operators at t = 0 provide a unitary representation of the

Schrödinger algebra on the Hilbert space of initial one-particle wave functions. Therefore,

so does the (reversed) time evolutions of these observables for any Hamiltonian. However,

the time-dependent operator P̂ 2(t)
2m = exp(−iĤt) P̂ 2

2m exp(+iĤt) must be identified with

the generator P̂t in this particular realisation of the Schrödinger algebra, but it does not

correspond to the genuine Hamiltonian Ĥ (except when the particle is free) and thus in

general it will not generate the genuine time evolution of the wave function. In other words,

the reversed time evolution of the above-mentioned generators of degree at most two are

symmetries (in the sense of our definition), they satisfy to the commutation relations of

the Schrödinger algebra, but they do not have any simple physical interpretation for a

generic Hamiltonian.

In general, the transformations generated by the (reversed) time evolution of some

observables are not “kinematical” [45], in the sense that they do not generate transforma-

tions of the form (3.2). A kinematical transformation is generated by a first-order linear

differential operator (in particular, a mere change of coordinates is generated by a vec-

tor field). In the following, the first-order symmetries of the Schrödinger equation will

be called kinematical symmetries, while the higher-order symmetries will be denoted by

higher symmetries (following the usage of mathematicians). Note that a higher-order lin-

ear differential operator does not generate a kinematical transformation. This explains

why higher symmetries are usually not considered by physicists. Nevertheless from the

mathematical perspective, the Schrödinger algebra is always a subalgebra of symmetries

of any one-particle Schrödinger equation but none of its realisation generate a kinematical

representation of the Schrödinger group, except for the special cases of potentials deter-

mined by Niederer [46]. As mentioned above, the simplest case is the free Hamiltonian,

where the time evolution of the position and momentum operators is X̂(t) = X̂ − t P̂/m

and P̂(t) = P̂. In such case, the differential operators (3.10) can be rewritten in terms of

the time evolved positions and momenta,

P̂t ≈
P̂ 2(t)

2m
=
P̂ 2

2m
= Ĥfree , M̂ = m,
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M̂ ij = X̂i(t)P̂ j(t)− X̂j(t)P̂ i(t),

K̂i = mX̂i(t), (3.23)

D̂ ≈ −X̂i(t)P̂i(t) + i
d

2
,

Ĉ ≈ m

2
X̂2(t).

Furthermore, a nice observation of [35, 47] is that all these symmetries are equivalent to

polynomials of degree two in the Galilean boost and translation generators (more precisely,

M̂ is of degree zero while by definition P̂ and K̂ are of degree one). Indeed, one may replace

everywhere X̂(t)→ K̂/m and P̂(t)→ P̂ to get

P̂t ≈
P̂ 2

2m
,

M̂ij =
K̂iP̂j − K̂jP̂i

m
,

D̂ ≈ −K̂
iP̂i
m

+ i
d

2
,

Ĉ ≈ K̂2

2m
.

(3.24)

This implies that the associative algebra of polynomials in the Galilean boost and transla-

tion generators is isomorphic to the maximal symmetry algebra of the free single-particle

Schrödinger equation. In more mathematical terms, the realisation of the enveloping alge-

bra U
(
sch(d)

)
of the Schrödinger algebra on the space of solutions to the free one-particle

Schrödinger equation is isomorphic to the Weyl algebra Ad of spatial differential operators.
The proof is straightforward: As was already observed, the Galilean boost and trans-

lation generators play in the Schrödinger algebra a role equivalent to the positions and

momenta in the Heisenberg algebra. Therefore, by themselves they generate algebraically

the whole Weyl algebra Ad which has been shown to be isomorphic to the maximal symme-

try algebra of the Schrödinger equation. The other generators of the Schrödinger algebra

are functions of the Galilean boost and translation generators, so they cannot produce

anything extra.

3.2.3 The maximal symmetry algebra of the Schrödinger action

One should scrutinise the issue of Hermiticity of the symmetries. This is important at the

level of the action principle and also for the unitarity of the representations. Let † stands

for the spatial Hermitian conjugation with respect to the spatial Hermitian form

〈ψ1 | ψ2 〉 :=
∫
dxψ∗

1(t,x)ψ2(t,x) , (3.25)

on the Hilbert space L2(Rd) of square-integrable functions, e.g. (X̂i)† = X̂i and (P̂i)
† = P̂i.

As usual, the scalar product (3.25) is time-independent for wave functions ψ1 and ψ2 which

are solutions of the Schrödinger equation, as in (3.15). The Weyl algebra of quantum
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observables is the real form of the complex Weyl algebra spanned by the spatial differential

operators that are Hermitian. All Schrödinger algebra generators (3.24) at time t = 0

are quantum observables. However, notice that the generators (3.10) containing a time

derivative (i.e. the generators of time translations, scale transformations and expansions)

are, in general, not Hermitian with respect to the spatial conjugation. Actually, the spatial

conjugate of the time derivative is not well defined since one is not allowed to integrate it by

part in (3.25). The apparent paradox can be solved if one restricts the domain of definition

of the generators to wave functions which are solutions of the Schrödinger operator, because

then the generators are equivalent to the observables (3.23).

The spatial Hermitian conjugation can be extend to space-time differential operators.

The space-time Hermitian conjugation will be denoted by the same symbol † although it

is the Hermitian conjugation with respect to the space-time Hermitian form

(ψ1 | ψ2 ) =

∫
dt 〈ψ1 | ψ2 〉 :=

∫
dt dxψ∗

1(t,x)ψ2(t,x) , (3.26)

such that t† = t and (P̂t)
† = P̂t. However, the scale and expansion generators in the

standard representation (3.10) are not Hermitian with respect to the space-time conjuga-

tion, D̂† = D̂ + 2i and Ĉ† = Ĉ + 2it∂t. Nevertheless, all the generators are equivalent to

Hermitian operators (with respect to both conjugations), when the Schrödinger equation

is satisfied, as can be seen from (3.23).

The Schrödinger action for a non-relativistic massive field described by the Schrödinger

equation (3.14) can be written as the quadratic form

S[ψ] = (ψ | Ŝ | ψ ) , (3.27)

where the Schrödinger operator (3.12) is Hermitian with respect to the space-time conju-

gation, Ŝ† = Ŝ. The Euler-Lagrange equation extremising the quadratic action is of course

the Schrödinger equation (3.14). A symmetry of the Schrödinger action is an invertible

linear operator Û preserving the quadratic form (3.27). In other words,

Û† Ŝ Û = Ŝ . (3.28)

A symmetry generator of the Schrödinger action is a linear differential operator Â which

is self-adjoint with respect to the quadratic form (3.27) in the sense that (ψ | Ŝ | Âψ ) =

( Âψ | Ŝ | ψ ). More concretely,

Ŝ Â = Â†Ŝ . (3.29)

Any symmetry generator Â defines a symmetry Û = eiÂ of the Schrödinger action. The

maximal algebra of symmetries of Schrödinger action is the real Lie algebra of symmetry

generators of the quadratic action endowed with i times the commutator as Lie bracket,

quotiented by the ideal of trivial symmetries. One can show that the Weyl algebra of

quantum observables is the maximal symmetry algebra of the Schrödinger action.14

14For an n-component wave function, the maximal symmetry algebra of the Schrödinger action is isomor-

phic to the tensor product of the algebra of Hermitian n × n matrices with the Weyl algebra of quantum

observables: u(n)⊗Ad(R).

– 18 –

202 CHAPITRE C. Troisième article



J
H
E
P
0
2
(
2
0
1
2
)
1
1
3

The proof goes as follows: Firstly, any symmetry generator Â of the Schrödinger

action is a symmetry of the Schrödinger equation with B̂ = Â† in the condition (3.11), due

to (3.29). Secondly, we have seen previously that any symmetry of the Schrödinger equation

is equivalent to a representative which is function only of the translation and Galilean

boost generators. Such a representative automatically commutes with the Schrödinger

operator Ŝ. Thirdly, any symmetry of the quadratic action that commutes with Ŝ must be

Hermitian with respect to the space-time conjugation, Â = Â†, as can be seen from (3.29).

Consequently, the representative must be Hermitian, i.e. a quantum observable.

From the point of view of holography, the precise identification of the maximal algebra

of rigid symmetries of the (non-relativistic) CFT is of prime importance since it should

correspond to the symmetry transformations preserving the vacuum of the bulk theory,

e.g. in the usual AdS/CFT the isometry group of AdS is isomorphic to the conformal

group of the boundary. In the generalisation of the holography conjecture of [21, 25]

to any spacetime dimension, the maximal symmetry algebra of the massless Klein-Gordon

action [32] is precisely isomorphic to the higher-spin algebra of Vasiliev equations [26] which

appears as the algebra preserving the AdS solution. The maximal symmetry algebra of the

Schrödinger action could play an analogous role in a non-relativistic version of higher-spin

gravity. This expectation is rather natural given the fact that Vasiliev theory is formulated

in a frame-like language (à la Cartan) with a connection one-form taking values in the

relativistic higher-spin algebra which can be replaced by its non-relativistic analogue (see

next section).

4 Light-like dimensional reduction of currents

4.1 Bargmann framework

To realise geometrically the Schrödinger symmetry, we first embed the Schrödinger algebra

in d spatial dimensions sch(d) into the relativistic conformal algebra in d + 2 space-time

dimensions O(d+2, 2). That the Schrödinger algebra can be embedded into the relativistic

conformal algebra can be made manifest at the level of the equations of motion. More con-

cretely, an old trick (the so-called “Bargmann framework” [42, 43, 48, 49]) is the derivation

of the free Schrödinger equation from the massless Klein-Gordon equation via a Kaluza-

Klein reduction along a null direction.

4.1.1 Equations of motion: from Klein-Gordon to Schrödinger

Consider the massless Klein-Gordon equation in d+2-dimensional Minkowski space-time,15

�Ψ(x) ≡ −∂20Ψ(x) +
d+1∑

i=1

∂2iΨ(x) = 0. (4.1)

This equation is conformally invariant. Defining the light-cone coordinates,

x± =
x0 ± xd+1

√
2

, (4.2)

15We follow closely [13] (see e.g. [48, 49] for more details on the method of null dimensional reduction).
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the Klein-Gordon equation becomes16

(
−2 ∂

∂x−
∂

∂x+
+

d∑

i=1

∂2i

)
Ψ(x) = 0. (4.3)

The global coordinates xµ = (x+, x−,x) have minuscule Greek indices which will span d+2

values while the spatial coordinates xi = (x) have minuscule latin indices which will span

d different values.17 If the relativistic scalar field is assumed to be of the form

Ψ(x) = e−imx
−
ψ(x+,x) , (4.4)

one can make the identification18 ∂/∂x− := ∂− = −im. Then the equation (4.3) has the

form of the Schrödinger equation in free space

(
2im∂+ +

d∑

i=1

∂2i

)
Ψ(x) = 0. (4.5)

The light-cone coordinate x+ can be identified with the time t (∂+ = ∂t is the time

derivative) and the operator
∑d

i=1 ∂
2
i is the Laplacian operator ∆ in flat space,

(2im∂t +∆)Ψ(x) = 0. (4.6)

Thanks to the dimensional reduction (4.4), the exponential can be factorised and we obtain

the equation of motion for the non-relativistic scalar field (3.5). This equation is invari-

ant under the Schrödinger group Sch(d) as was explained in the previous section. Since

the original Klein-Gordon equation has conformal symmetry, this means that Sch(d) is a

subgroup of O(d+2, 2).

4.1.2 Symmetry algebra: from conformal to Schrödinger

Let us now discuss the embedding of the Schrödinger algebra into the conformal algebra

explicitly, following the discussion in [13]. The conformal algebra o(d+2, 2) can be defined

by the following commutation relations:

[M̃µν , M̃αβ ] = i(ηµαM̃νβ + ηνβM̃µα − ηµβM̃να − ηναM̃µβ),

[M̃µν , P̃α] = i(ηµαP̃ ν − ηναP̃µ),
[D̃, P̃µ] = −iP̃µ, [D̃, K̃µ] = iK̃µ,

[P̃µ, K̃ν ] = −2i(ηµνD̃ + M̃µν),

(4.7)

where Greek indices run from 0 to d+1, and all other commutators are equal to 0. The tilde

symbols denote relativistic generators; we reserve hatted symbols for the non-relativistic

16The elements of the metric are defined by η+− = η−+ = −1; ηij = 1 and the others are zero.
17In the sequel, the index will often be left implicit for the space-time coordinates xµ ≡ x. No ambiguity

arises since the spatial coordinates are written xi ≡ x.
18In the same way, we denote ∂/∂x+ by ∂+.
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operators. The conformal algebra generators can be realised as differential operators of

order one acting on the relativistic scalar field Ψ(x)

P̃µ = −i∂µ, M̃µν = −i(xµ∂ν − xν∂µ),

K̃µ = i

(
2xµ

(
xν∂ν +

d

2

)
− x2∂µ

)
, D̃ = i

(
xµ∂µ +

d

2

)
.

(4.8)

We identify the light-cone momentum P̃+ = (P̃ 0 + P̃ d+1)/
√
2 with the mass operator

M̂ in the non-relativistic theory (in agreement with the previous identification ∂− = −im).

We now select all operators in the conformal algebra that commute with P̃+, i.e. which

preserve the Kaluza-Klein ansatz (4.4). Clearly these operators form a subalgebra, and one

may check that it is the Schrödinger algebra sch(d) [50]. The identification is as follows:

M̂ = P̃+, P̂t = P̃−, P̂ i = P̃ i, M̂ ij = M̃ ij ,

K̂i = M̃ i+, D̂ = D̃ + M̃+−, Ĉ =
K̃+

2
.

(4.9)

From eq. (4.7), one finds that the commutators between the operators (4.9) are exactly the

Schrödinger algebra commutators (3.4) and (3.9). Furthermore, the realisation (3.10) fol-

lows from (4.8) via the identification (4.9). The maximal symmetry algebra of the massless

Klein-Gordon equation (4.1) is the algebra of polynomials in the conformal generators (4.8)

modulo the equivalence relations following from the Klein-Gordon equation [32].19 The

maximal symmetry algebra of the free Schrödinger equation (3.5) is the algebra of poly-

nomials in the Schrödinger generators (3.10) modulo the equivalence relations following

from the Schrödinger equation. The embedding similar to the one described above actu-

ally holds at the level of maximal symmetry algebra, as could be expected: The maximal

symmetry algebra of the free Schrödinger equation is isomorphic to the subalgebra of the

maximal symmetry algebra of the massless Klein-Gordon equation, that commutes with a

translation generator in a fixed light-like direction.

The proof is direct: The free Schrödinger equation is equivalent to a system of two

equations: the massless Klein-Gordon equation �Ψ = 0 and the null reduction P̃+Ψ =

mΨ . Therefore, the maximal symmetry algebra of the Schrödinger equation is isomorphic

to the maximal symmetry algebra of the previous system of equations.

In other words, the maximal symmetry algebra of the free Schrödinger equation is

isomorphic to the centraliser of a given light-like translation generator inside the maximal

symmetry algebra of the massless Klein-Gordon equation. Therefore, a polynomial in the

conformal generators is equivalent to a polynomial in the Schrödinger generators if and

only if it commutes with P̃+. Obvious examples are the polynomial in the generators (4.9)

of sch(d) which do commute with P̃+. A more interesting example of the previous property

is the polynomial α = K̃iP̃i − 2M̃+iM̃+i , quadratic in the generators of o(d+ 2, 2). With

the help of the commutation relations (4.7), one can check that α commutes with P̃+. By

making use of (3.10) and (4.8), one further finds that it is equivalent to a polynomial in

the generators of sch(d): α ≈ M̂ ijM̂ij + idD̂ + d2/2.

19The maximal symmetry algebra of the massless Klein-Gordon action was denoted by hu(1/sp(2)[d+2, 2])

by Vasiliev in [26].
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4.2 Generalities on the currents

4.2.1 Currents: from relativistic to non-relativistic ones

A relativistic symmetric conserved current of rank r > 1 is a real contravariant symmetric

tensor field Cµ1...µr(x) obeying to the conservation law

∂µ1C
µ1...µr(x) ≈ 0 , (4.10)

where the “weak equality” symbol ≈ stands for “equal on-mass-shell,” i.e. modulo terms

proportional to the equations of motion. A generating function of relativistic conserved

currents [51] is a real function C(x; p) on space-time phase-space which is (i) a formal

power series in the “momenta” pµ

C(x; p) =
∑

r>0

1

r!
Cµ1...µr(x) pµ1 . . . pµr , (4.11)

and which is (ii) such that (
∂

∂xµ
∂

∂pµ

)
C(x; p) ≈ 0 . (4.12)

The terminology follows from the fact that all the coefficients of order r > 1 in the power

expansion (4.11) of the generating function are symmetric tensors which are all conserved,

since (4.10) follows from expanding eq. (4.12) in power series. In flat space-time, the indices

of the “momenta” pµ can be raised with the Minkowski metric. Hence, one may define the

bilocal function

C(x; p) = Ψ1

(
x+

i

2
p

)
Ψ2

(
x− i

2
p

)
, (4.13)

which is a generating function of relativistic conserved currents for any pair of functions

Ψ1 and Ψ2 satisfying the Klein-Gordon equation, as can be checked by direct computation

(c.f. [51] for more details).

In order to look for the proper implementation of the Bargmann framework in the

case of conserved currents, one should write the conservation law (4.10) of the relativistic

conserved currents Cµ1...µr(x) in the light-cone coordinates,

∂+C
+µ1···µr−1 + ∂−C−µ1···µr−1 + ∂iC

iµ1···µr−1 ≈ 0 . (4.14)

If the components C−µ1···µr−1 of the relativistic currents are independent of x− or even

vanish, then the relativistic conservation law (4.14) embodies a collection of non-relativistic

conservation laws of the type (with s > r)

∂tC
+i1···is−1+···+−···− + ∂iC

i i1···is−1+···+−···− ≈ 0 . (4.15)

since ∂+ is identified with ∂t. As one can see, the extra light-cone directions with respect

to the spatial ones imply that a single relativistic current actually generates a collection of

(not necessarily independent) non-relativistic currents.
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By analogy with the relativistic definitions, one will call the following function on

space-time phase-space

c(t,x ; pt,p) := C(x+ = t, x− = 0,x ; p+ = −pt, p− = 0,p) (4.16)

the generating function of non-relativistic “currents” obtained from the generating func-

tion C(x, p) of relativistic currents. For the bilocal generating function (4.13), the ex-

pression (4.16) together with the dimensional reduction ansatz (4.4) lead to the following

generating function of non-relativistic symmetric “currents”

c(t,x ; pt,p) = ψ1

(
t− i

2
pt,x+

i

2
p

)
ψ2

(
t+

i

2
pt,x−

i

2
p

)
. (4.17)

The non-relativistic symmetric “currents” c(a) i1···ib can now be defined from

c(t,x ; pt,p) =
∑

r,s

1

r! s!
c(r) i1···is(t,x) pi1 · · · pis (pt)r . (4.18)

The word “current” is a slight abuse of terminology here since these symmetric tensors

c(a) i1···ib may not be conserved, even if the tensors Cµ1...µr(x) are.20 For instance, thanks

to the dimensional reduction ansatz,

Ψ1(x) = e−im1x−ψ1(x
+,x) , Ψ2(x) = e−im2x−ψ2(x

+,x) , (4.19)

the generating function of relativistic currents can be written as

C(x; p) = e−i(m1+m2)x−+ 1
2
(m1−m2)p−C(x+, x− = 0,x ; p+, p− = 0,p) , (4.20)

which is independent of x− if and only if m1 + m2 = 0. Notably the non-relativistic

“currents” generated by (4.17) will thus only be conserved when m1 + m2 = 0. The

explicit expressions of these currents will be given in the next subsection for the cases

which are relevant for the present paper.

The symmetric tensor c(r) i1···is of rank s is said to be of level r. As explained below

in detail on some specific examples, the bilinears of non-vanishing level r 6= 0 generated

by (4.17) are not genuinely independent. Indeed, these bilinears contain time derivatives

of the field which can be traded for spatial derivatives via the equation of motion. Conse-

quently, one might scrutinise on the generating function

c(t,x ; pt = 0,p) = ψ1

(
t,x+

i

2
p

)
ψ2

(
t,x− i

2
p

)
, (4.21)

of non-relativistic “currents”, c(0) i1···is(t,x), of vanishing level as can be seen from evalu-

ating (4.18) at pt = 0. The function (4.21) is local in time but bilocal in space. When

|m1| = |m2|, it can be interpreted physically as a composite field, at instant t, made of two

particles with the same mass, described respectively by ψ1(t,x1) and ψ2(t,x2). Accordingly,

in (4.21) the coordinate x correspond to the center of mass position. For x1 6= x2 6= x,

20For this reason, to avoid confusion in the following we will call them bilinears.
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the two bodies have a non-vanishing relative orbital angular momentum which may be

reinterpreted as the spin of the two-body composite. More technically, this reinterpreta-

tion corresponds to the decomposition of the generating function in terms of tensor fields

c(0) i1···is(t,x) of “spin” s. In fact, considering bilinears of any spin is very natural in the

study of general pairing.

4.2.2 Singlet bilinears

By analogy with the simplest prescription of Klebanov and Polyakov in [21], one might

focus on the bilinears in the ψ which are singlets of the internal symmetry group, i.e.

U(1) × Sp (2N) here. For the unitary Fermi gas, however, the Cooper pair is the main

object of interest and it is charged under U(1), so one prefers to slightly relax the previ-

ous requirement.

One option is to consider all the bilinears which are singlets of Sp (2N). Remember that

ψA = ψα,a where the indices take values as α = ↑, ↓ and a = 1, . . . , N while the orthogonal

and symplectic metrics are δAB = δαβ ⊗ δab and JAB = ǫαβ ⊗ δab. Essentially, there are

only two independent ways to construct Sp (2N)-singlets out of two multiplets ψ1 and ψ2

transforming in the fundamental representation of Sp (2N): either as the Hermitian form

ψ†
1ψ2 = ψ∗A

1 δABψ
B
2 of U(2N) or as the symplectic form ψ1Jψ2 = ψA1 JABψB2 of Sp (2N,C).

Only the Hermitian form is invariant under U(1).

The restriction to the Sp (2N)-invariant sector appears natural for the large-N ex-

tension of the Fermi gas but is questionable for the physical (N = 1) Fermi gas with

internal symmetry group U(2) ∼= U(1) × Sp (2). Motivated by this remark and the ex-

istence of the embedding U(2) × O(N) ⊂ U(1) × Sp (2N), one may consider instead

the larger sector of flavor (i.e. O(N) ) singlet bilinears. Essentially, there is only one

way to construct O(N)-singlets out of multiplets transforming in the fundamental rep-

resentation of O(N): via the scalar product. However, this provides three independent

O(N)-singlets since the multiplets ψα are complex: either as the two (up or down) Her-

mitian forms ψα1
†ψα2 = ψ∗α, a

1 δabψ
α, b
2 (no sum on the index α) or as the symplectic form

ψ1Jψ2 = ψα, a1 ǫαβδabψ
β, b
2 . Again, only the Hermitian forms are invariant under U(1). Notice

that the two Hermitian forms and the symplectic form together reconstruct the Hermitian

form of U(2). This is in agreement with the analogue of the generalised prescription of

Klebanov and Polyakov in [21] since one focuses on the bilinears in ψ which are in the

adjoint representation of the unitary group U(2), the internal symmetry of the physical

unitary Fermi gas.

In both cases, there exists two types of singlet generating functions: the corresponding

bilinears are either neutral or charged with respect to the U(1) group associated with mass

conservation. The charged bilinears transform in massive representations (of mass 2m) of

the Schrödinger algebra, while the neutral bilinears carry massless representations. We

refer the reader to appendix B for a detailed discussion devoted to the unitary irreducible

representations (UIRs) of the Schrödinger algebra.
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4.3 Singlet bilinears of the symplectic subgroup

4.3.1 Neutral bilinears

Following the above discussion, we impose that21

Ψ1 = Ψ† ; Ψ2 = Ψ (4.22)

in (4.13) such that m1 = −m and m2 = m in order to construct a real current generating

function denoted by J :

J(x; p) = Ψ†
(
x+

i

2
p

)
Ψ

(
x− i

2
p

)
= ΨA∗

(
x+

i

2
p

)
δABΨ

B

(
x− i

2
p

)

=

[
Ψ

(
x− i

2
p

)]†
Ψ

(
x− i

2
p

)
= J∗(x; p) . (4.23)

This relativistic parent obeys the law of conservation (4.12). The corresponding con-

served currents, satisfying (4.10) and (4.14), were introduced by Berends, Burgers and

vanDam [52] long time ago and more recently were summarised in a generating function

in [51]. Using (4.11), one sees that they take the explicit form:

Jµ1...µr(x) =

(
− i
2

) r r∑

s=0

(−1)s
(
r

s

)
∂(µ1 . . . ∂µsΨ

†(x) ∂µs+1 . . . ∂µr)Ψ(x)

=

(
− i
2

) r

Ψ†(x)
←→
∂µ1 . . .

←→
∂µrΨ(x) (4.24)

where the usual notation
←→
∂ is defined by

Φ
←→
∂µΨ := Φ(∂µΨ) − (∂µΦ)Ψ .

The symmetric conserved current (4.24) of rank r is bilinear in the scalar field and contains

exactly r derivatives. The currents of odd rank are absent if the field is a real Grassmann-

even scalar.

After expressing the corresponding currents in terms of the non-relativistic field by

making use of the dimensional reduction ansatz (4.4),

J+ . . .+︸ ︷︷ ︸
r

i1...is− . . .−︸ ︷︷ ︸
q

(x) = (−m)q
(
− i
2

)r+s
ψ†(t,x)

←→
∂t . . .

←→
∂t︸ ︷︷ ︸

r

←→
∂i1 . . .

←→
∂isψ(t,x) , (4.25)

one can check that they do not depend on x−: Jµ1···µr(x) = Jµ1···µr(t,x). In addition,

there is a relation of recurrence J−µ1···µr = −mJµ1···µr . From the last remark and the

equation (4.14), the conservation law of neutral currents becomes:

− ∂+J−µ1...µr−1(x) + ∂iJiµ1...µr−1(x) ≈ 0

⇒ m∂+Jµ1...µr−1(x) + ∂iJiµ1...µr−1(x) ≈ 0 . (4.26)

21The auxiliary relativistic scalar field Ψ that we use here is Grassmann-odd and (Ψ1 Ψ2)
† = Ψ†

2 Ψ
†
1.
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One can check even more simply all these properties in terms of the generating function.

Due to the definitions (4.23) and (4.4), one obtains:

J(x; p) = e−mp
−
j(t,x; pt,p) (4.27)

where the generating function of non-relativistic neutral currents is

j(t,x ; pt,p) = ψ†
(
t− i

2
pt,x+

i

2
p

)
ψ

(
t+

i

2
pt,x−

i

2
p

)
. (4.28)

since pt = p− = −p+ . The conservation law is
(
− ∂

∂x+
∂

∂p−
+ δij

∂

∂xi
∂

∂pj

)
J(x; p) ≈ 0 (4.29)

since J(x; p) does not depend on x−, which becomes
(
m

∂

∂t
+

∂

∂xi
∂

∂pi

)
j(t,x ; pt,p) ≈ 0 (4.30)

when expressed in terms of the generating function of non-relativistic neutral currents

via (4.27). The neutral non-relativistic conserved currents which are generated as

in (4.18) read

j
(r)
i1···is(t,x) = (−1)r

(
− i
2

)r+s
ψ†(t,x)

←→
∂t · · ·

←→
∂t︸ ︷︷ ︸

r

←→
∂i1 · · ·

←→
∂isψ(t,x) (4.31)

and are related to the relativisitic neutral currents as follows:

J+ . . .+︸ ︷︷ ︸
r

i1...is− . . .−︸ ︷︷ ︸
q

(x) = (−1)r+qmq j
(r)
i1···is(t,x) . (4.32)

Let us give few examples in order to make contact with the standard conserved currents

of low rank. The “current” of rank zero is the number density n

J = j(0) = ψ†(t,x)ψ(t,x) = n . (4.33)

For rank one, the relativistic current is expressed by

Jµ(x) = −
i

2
Ψ†(x)

←→
∂µΨ(x) (4.34)

and it leads to the mass density ρ, the energy density

ǫ =
1

2m
∂iψ

†∂iψ (4.35)

and the momentum density ji (our notations and conventions are as in [11, 13]):




J+ = mj(0) = mψ†(t,x)ψ(t,x) = mn = ρ

J− = j(1) = i
2 ψ

†(t,x)
←→
∂t ψ(t,x) ≈ ǫ − 1

4m∆n

Ji = j
(0)
i = − i

2 ψ
†(t,x)

←→
∂i ψ(t,x) = j i .

(4.36)
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The relevant law of conservation is the continuity equation: ∂tρ + ∂ij
i ≈ 0 . Notice that

the total energy is given by

E =

∫
dx ǫ ≈

∫
dx j(1) (4.37)

modulo a boundary term. For rank two, one obtains:

Jµν(x) = −
1

4
Ψ†(x)

←→
∂µ
←→
∂νΨ(x) (4.38)

which leads to




J++ = m2j(0) = m2 ψ†(t,x)ψ(t,x) = m2 n = mρ

J+− = mj(1) = i
2 mψ†(t,x)

←→
∂t ψ(t,x) ≈ mǫ − 1

4m∆n

J+
i = mj

(0)
i = − i

2mψ†(t,x)
←→
∂i ψ(t,x) = mji

J−− = j(2) = −1
4ψ

†(t,x)
←→
∂t
←→
∂t ψ(t,x)

J−
i = j

(1)
i = 1

4ψ
†(t,x)

←→
∂t
←→
∂i ψ(t,x) = mjǫi +

1
4∂i∂tn

Jij = j
(0)
ij = − 1

4ψ
†(t,x)

←→
∂i
←→
∂j ψ(t,x) = mΠij − 1

4( ∂i∂j − δij ∆)n

(4.39)

where

jǫi = −
1

2m
(∂tψ

†∂iψ + ∂iψ
†∂tψ) (4.40)

is the energy current and

Πij =
1

2m
(∂iψ

† ∂jψ + ∂jψ
† ∂iψ) −

1

4m
δij ∆n (4.41)

is the stress tensor in the conventions of [11, 13]. The conserved currents j
(0)
ij and Πij are

physically equivalent since they differ only by a trivially conserved current. The supple-

mentary laws of conservation are:

{
∂tǫ+ ∂ij

ǫ i ≈ 0 ,

∂tj
i + ∂jΠ

ij ≈ 0 .
(4.42)

4.3.2 Charged bilinears

In order to construct the second type of currents which are singlets bilinears of Sp (2N),

one chooses

Ψ1 = Ψ2 = Ψ (4.43)

and the components are contracted by the symplectic matrix J/2. The generating function

of such charged currents is denoted by K and given by

K(x; p) =
1

2
ΨA

(
x+

i

2
p

)
JAB ΨB

(
x− i

2
p

)
(4.44)

=
∑

r>0

1

r!
Kµ1... µr(x) pµ1 . . . pµr .
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Notice that it is an even function in the momenta,K(x; p) = K(x,−p), thus only relativistic

charged currents of even rank are non-vanishing. It leads to the relativistic charged currents

Kµ1... µr(x) =
1

2

(
− i
2

) r r∑

s=0

(−1)s
(
r

s

)
JAB ∂(µ1 . . . ∂µsΨ

A(x) ∂µs+1 . . . ∂µr)Ψ
B(x)

=
1

2

(
− i
2

) r

JAB ΨA(x)
←→
∂µ1 . . .

←→
∂µrΨ

B(x) . (4.45)

Like the neutral currents, the relativistic charged currents are conserved. However, the

corresponding charged non-relativistic bilinears are not conserved, because the relativistic

ones depend on x−. Indeed,

K(x; p) = e−2imx− k(t,x ; pt,p) . (4.46)

As one can see, the generating function in this case does not depend on p−. Therefore the

conservation law becomes

(
− ∂

∂x−
∂

∂p+
+ δij

∂

∂xi
∂

∂pj

)
K(x; p) ≈ 0 . (4.47)

The generating function of non-relativistic charged bilinears is:

k(t,x ; pt,p) =
1

2
ψA
(
t− i

2
pt,x+

i

2
p

)
JAB ψB

(
t+

i

2
pt,x−

i

2
p

)
. (4.48)

It is not conserved but nevertheless satisfies

(
−2im ∂

∂pt
+

∂

∂xi
∂

∂pi

)
k(t,x ; pt,p) ≈ 0 , (4.49)

as follows from (4.46)–(4.47). The non-relativistic charged bilinears read

k
(r)
i1···is(t,x) =

(−1)r
2

(
− i
2

)r+s
JAB ψA(t,x)

←→
∂t · · ·

←→
∂t︸ ︷︷ ︸

r

←→
∂i1 · · ·

←→
∂isψ

B(t,x) (4.50)

and are related to the relativistic charged currents as follows:

K+ . . .+︸ ︷︷ ︸
r

i1...is(x) = (−1)re−2imx− k
(r)
i1···is(t,x) . (4.51)

The non-relativistic charged bilinears satisfy

2imk
(r+1)
i1···is (t,x) + ∂jk

(r)
ji1···is(t,x) ≈ 0 . (4.52)

For rank zero, one gets the Cooper pair (2.3)

K(x− = 0) = k(0) =
1

2
ψA(t,x) JAB ψB(t,x) = k . (4.53)
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For charged bilinears of rank two, one finds:





K++(x− = 0) = 0

K+−(x− = 0) = 0

K+i(x− = 0) = 0

K−−(x− = 0) = k(2)(t,x) = −1
8JAB ψ

A(t,x)
←→
∂t
←→
∂t ψ

B(t,x)

K−
i (x

− = 0) = k
(1)
i (t,x) = +1

8 JAB ψ
A(t,x)

←→
∂t
←→
∂i ψ

B(t,x)

Kij(x
− = 0) = k

(0)
ij (t,x) = −1

8 JAB ψ
A(t,x)

←→
∂i
←→
∂j ψ

B(t,x) .

(4.54)

These bilinears are not conserved but instead obey:

{
∂ik

(1)i ≈ 2imk(2)

∂ik
(0)ij ≈ 2imk(1)j .

(4.55)

4.3.3 Traceless condition

Since the massless scalar fields are conformally symmetric, one may expect to get infinitely

many traceless conserved currents, while the Berends-Burgers-vanDam currents generated

from (4.13) are not traceless, even on-shell: ∂2p C(x; p) 6≈ 0 . From the representation point

of view, it is important that the relativistic currents are traceless in order to have irreducible

conformal primary fields. The massless Klein-Gordon equations for Ψ1 and Ψ2 imply the

conservation condition, (∂x · ∂p)C(x; p) ≈ 0 for the bilocal generating function (4.13), as

well as another on-shell condition:
(
−∂2p +

1

4
∂2x

)
C(x; p) ≈ 0 , (4.56)

which relates trace of the Berends-Burgers-vanDam currents to their d’Alembertian. For

example, eq. (4.56) at p = 0 for the generating function of neutral currents reads

ηµνJ
µν = 2η+−J+− + δijJ

ij ≈ 1

4
�J , (4.57)

which relates the trace of the rank-two current Jµν to the d’Alembertian of the scalar J .

The relativistic eq. (4.57) leads to the non-relativistic relation

− 2mj(1) + δijj
(0)ij ≈ 1

4
�j(0) , (4.58)

which, in turn, gives

− 2ǫ+ δijΠ
ij ≈ − d

4m
∆n , (4.59)

due to (4.33), (4.39) and (4.41). This implies the standard relationship between the total

energy and the pressure valid both for ideal and unitary Fermi gases [11, 13]:

∫
dxΠii ≈ 2E , (4.60)
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modulo a boundary term. Notice that the analogue of the relativistic eq. (4.57) for the

charged currents leads to the non-relativistic relation

δijk
(0)ij ≈ 1

4
(4mi∂t +∆) k , (4.61)

as can be checked using (4.54).

Due to the second on-shell condition (4.56), one can construct a generating function

C̄(x; p) of relativistic currents that are conserved and traceless on-shell [53]:

∂2p C̄(x; p) ≈ 0 , (∂x · ∂p) C̄(x; p) ≈ 0 . (4.62)

This can be achieved by acting with a differential operator Pd+2(p, ∂x) on the generating

function of currents

C̄(x; p) = Pd+2(p, ∂x)C(x; p) . (4.63)

The conservation of both C̄ and C requires that Pd+2 commutes with ∂x ·∂p on-shell. If we
construct Pd+2 as a power series in the transversal projector π(p, ∂x) := [p2 ∂2x−(p·∂x)2]/4 ,
then the conservation condition is satisfied since ∂x · ∂p π = π ∂x · ∂p . The tracelessness

condition, ∂2p Pd+2(p, ∂x)C(x; p) ≈ 0 can be solved recursively and the operator Pd+2 is

determined by these conditions (up to a constant factor) [53]:

Pd+2(p, ∂x) :=
∞∑

n=0

1

n! (−p · ∂p − d−3
2 )n

(
1

4
π(p, ∂x)

)n
, (4.64)

where (a)n = Γ(a + n)/Γ(a) is the Pochhammer symbol. More concretely, if one applies

this formula to the currents of spin two, it leads to the traceless current:

C̄µν(x) = Cµν(x) +
1

4(d+ 1)
(∂µ∂ν − ηµν�)C(x) . (4.65)

Due to (4.27), one can express the action of the two operators p · ∂p and π on the

neutral current generating function as

(p · ∂p)J(x; p) =

(
p+

∂

∂p+
− mp− + pi

∂

∂pi

)
J(x; p) , (4.66)

πJ(x; p) =
1

4

[(
pip

i − 2p−p+
)
∆−

(
p+

∂

∂x+
+ pi

∂

∂xi

)2
]
J(x; p) , (4.67)

since J(x; p) does not depend on x−. This is helpful for writing the neutral traceless

current generating function J leading, after evaluating at p− = 0, to the non-relativistic

generating function

j̄(t,x ; pt,p) =
∞∑

n=0

1

n! 42n(−pt ∂
∂pt
− pi ∂

∂pi
− d−3

2 )n
×

×
(
(pip

i)∆ −
(
−pt ∂t + pi ∂i

)2)n
j(t,x ; pt,p) . (4.68)
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Notably, this function generates currents which satisfy the non-relativistic version of the

traceless condition
(
−2m ∂

∂pt
+ δij

∂

∂pi
∂

∂pj

)
j̄(t,x ; pt,p) ≈ 0 . (4.69)

For instance, for rank two we get a simple relation

− 2mj̄(1) + δij j̄
(0)
ij ≈ 0 (4.70)

to be contrasted with (4.58). Notice that this shows that the higher-level r > 0 neutral

currents j̄(r)... are proportional to traces of currents of level zero j̄(0)... .

The formula analogous to (4.68) for the charged bilinears is very similar

k̄(t,x ; pt,p) =
∞∑

n=0

1

n! 42n(−pt ∂
∂pt
− pi ∂

∂pi
− d−3

2 )n
× (4.71)

×
(
(pip

i)(−4im∂t +∆) −
(
−pt ∂t + pi ∂i

)2 )n
k(t,x ; pt,p) .

Notice that, since all the components K+··· vanish, the charged non-relativistic bilinears

are spatially traceless: δij k̄
(a)ij··· ≈ 0 to be contrasted with e.g. (4.61). Remarkably,

the generating function k̄ gives rise to the non-relativistic spatially traceless tensors k̄
(0)
i1...ir

which are actually non-relativistic conformal primary fields22 (such as the scalar Cooper-

pair field) while the higher-level ones k
(r)
i1...ir

for r > 0 are their descendants as can be seen

from eq. (4.52).

4.4 Singlet bilinears of the orthogonal subgroup

Since the Sp (2N)-singlet bilinears have been investigated above in much detail and the

O(N)-singlet bilinears are their natural extension, the presentation of the latter bilinears

will be brief.

The neutral relativistic currents are now split in up and down ones, as one chooses

in (4.13)

Ψ1 = (Ψα)† , Ψ2 = Ψα (4.72)

with α = ↑ , ↓ and the O(N)-flavor components are contracted by the identity matrix. The

generating functions of such neutral relativistic currents are denoted by J α,

J α(x; p) = Ψα†
(
x+

i

2
p

)
Ψα

(
x− i

2
p

)
= Ψα,a∗

(
x+

i

2
p

)
δabΨ

α,b

(
x− i

2
p

)

=

[
Ψα

(
x− i

2
p

)]†
Ψα

(
x− i

2
p

)
= J α∗(x; p) , (4.73)

where there is no sum over the index α.

For the charged currents, one chooses

Ψ1 = −Ψ↓ , Ψ2 = Ψ↑ (4.74)

22For a definition of a non-relativistic conformal primary field see appendix B.
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and the O(N)-vector components are again contracted by the identity matrix. The gener-

ating function of such charged relativistic currents will be denoted by K, e.g.

K(x; p) = −Ψa
↓

(
x+

i

2
p

)
δabΨ

b
↑

(
x− i

2
p

)
= Ψa

↑

(
x− i

2
p

)
δabΨ

b
↓

(
x+

i

2
p

)
. (4.75)

Notice that the analogous generating function with up and down subscripts exchanged is

not independent, more precisely it is equal to −K(x;−p).
We will not write explicitly the corresponding non-relativistic bilinears and generat-

ing functions jα(t,x ; pt,p) and k(t,x ; pt,p), since all the corresponding formulas are the

straightforward analogues of the ones in the previous subsections. We just notice that the

scalar bilinears jα(t,x ; pt = 0,p = 0) = nα(t,x) are the density fields of the up and down

fermions, while k(t,x ; pt = 0,p = 0) = k(t,x) denotes the complex Cooper-pair field. Two

real fields and one complex field precisely match the entries of a 2 × 2 Hermitian matrix.

For instance, at rank and level zero

(
−j(0)↑ k(0)

k(0)∗ j
(0)
↓

)
=

(
−ψ∗

↑ · ψ↑ ψ↑ · ψ↓
ψ∗
↓ · ψ∗

↑ ψ∗
↓ · ψ↓

)
= Ψα · Ψ∗β . (4.76)

This collection of O(N)-singlet bilinears of all ranks and levels appears to be very natural

for our proposal of the gravity dual of the unitary Fermi gas [24].

5 Coupling to background fields

The generating functional Wfree[h,ϕ ;N ] of connected correlators of Sp (2N)-singlet bi-

linears in the non-interacting Fermi gas described by the quadratic action

Sfree[ψ ;N ] := S[ψ ; c0 = 0, N ] =

∫
dt dxψ†

(
i∂t +

∆

2m
+ µ

)
ψ , (5.1)

is defined by the path integral

exp iWfree[h ,ϕ ;N ] =

∫
DψDψ† exp i Sfree[ψ , h ,ϕ ;N ] , (5.2)

where

Sfree[ψ , h ,ϕ ;N ] := Sfree[ψ ;N ] (5.3)

−
∑

r,s>0

1

r! s!

∫
dt dx

(
j(r)i1··· is h(r)i1··· is + k(r)i1··· is∗ϕ(r)

i1··· is + k(r)i1··· isϕ(r)∗
i1··· is

)

is the free action in the presence of Sp (2N)-invariant external tensor fields, h
(r)
i1··· is and

ϕ
(r)
i1···is , coupled respectively to the neutral and charged bilinears, j(r)i1··· is and k(r)i1··· is .

In other words, the Sp (2N)-invariant bilinears are minimally coupled to the background

fields which share the same properties, i.e. all h
(r)
i1··· is are real and ϕ

(r)
i1···is are complex and

vanish for odd rank s. Here and below, we will refrain from writing explicitly the similar

formulas for the O(N)-singlet bilinears j
(r)i1··· is
α and k(r)i1··· is coupling respectively to the
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background fields h
(r)α
i1··· is and ϕ

(r)
i1···is for all ranks. The collection of such fields will also be

referred to as h and ϕ for short in order to cover the general case at once. The Sp (2N)-

invariant background correspond to the particular case: h↑ = h↓ and momentum-even ϕ

generating functions.

The functional (5.3) is quadratic in the dynamical field ψ (since the kinetic term and the

bilinears are), therefore the path integral (5.2) can easily be evaluated formally since it is a

Gaussian integral. In order to write the generating functional of connected correlators in a

compact form, one should start by writing (5.3) manifestly as a quadratic form. This can be

done elegantly via the Weyl quantisation (reviewed in appendix A) performed on the space-

time phase-space, following the same procedure as in the relativistic case [51, 53]. In other

words, the canonical commutation relations (A.2) must be supplemented by [ P̂t , T̂ ] = i,

where T̂ denotes the operators corresponding to multiplication by the time coordinate t.23

Let us stress that all the steps performed in the subsection 2.2 can be adapted to

apply in the presence of background tensor fields as well, because the external fields of

non-vanishing rank do not play any role in these specific manipulations (only the scalar

fields such as the Cooper pair and the dimer are pertinent in that case). In other words,

the interacting and the non-interacting Fermi gases in the presence of background fields

are still related, in the mean field approximation, by a Legendre transformation over the

(properly shifted and/or rescaled) scalar charged dimer field.

5.1 Quadratic functional

The free action (5.1) in the absence of background can of course be written as a Schrödinger

action (3.27)

Sfree[ψ ;N ] = (ψ | Ŝfree | ψ) = δAB (ψA | Ŝfree | ψB) , (5.4)

where the operator

Ŝ = P̂t − Ĥfree , (5.5)

is the Schrödinger operator (3.12) for the free Hamiltonian Ĥfree = P̂2/2m. The crucial

observation of this section is that even the minimal coupling terms in (5.3) can be explicitly

written as a quadratic functional via integrations by part. Let us perform this rewriting

in the generic case, i.e. let us consider the following minimal coupling

∑

r,s>0

1

r! s!

∫
dt dx c

(r)
i1··· is(t,x) f

(r)i1··· is(t,x) (5.6)

between a collection of external symmetric tensor fields f
(r)
i1··· is and the non-

relativistic bilinears

c
(r)
i1···is(t,x) = (−1)r

(
− i
2

)r+s
ψ1(t,x)

←→
∂t · · ·

←→
∂t︸ ︷︷ ︸

r

←→
∂i1 · · ·

←→
∂isψ2(t,x)

=
1

2r+s
ψ1(t,x)

←→̂
Pt · · ·

←→̂
Pt︸ ︷︷ ︸

r

←→̂
Pi1 · · ·

←→̂
Pisψ2(t,x) (5.7)

23If not specified, the notations and definitions in this section are the straightforward extension of the

ones in appendix A.
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defined by (4.17)–(4.18). The main idea is to integrate by parts all momentum operators

acting on ψ1 inside (5.6), in order to have all operators acting on ψ2. One may con-

vince oneself that taking into account the ordering and the change of signs will result in

the equality
∫
dt dx c

(r)
i1··· is(t,x) f

(r)i1··· is(t,x) (5.8)

=
1

2r+s

∫
dt dx ψ1(t,x) { · · · {f (r)i1...is(T̂, X̂) , P̂t} , · · · , P̂t} , P̂i1} , · · · , P̂is}ψ2(t,x)

where { , } denotes the anticommutator and implicitly r operators P̂t appear in the above

formula. Therefore, the minimal coupling (5.6) can be rewritten in a compact form as the

quadratic functional

∑

r,s>0

1

r! s!

∫
dt dx c

(r)
i1··· is(t,x) f

(r)i1··· is(t,x) = (ψ∗
1 | F̂ | ψ2) (5.9)

where the curly bra-ket notation for the space-time Hermitian form has been introduced

in (3.26) and the space-time differential operator F̂ is given by

F̂ (T̂ , X̂; P̂t, P̂) =
∑

r,s>0

1

r! s! 2r+s
{ · · · {f (r)i1...is(T̂, X̂) , P̂t} , · · · , P̂t} , P̂i1} , · · · , P̂is} .

(5.10)

As explained in appendix A, this means that the generating function

f(t,x ; pt,p) =
∑

r,s

1

r! s!
f (r) i1···is(t,x) pi1 · · · pis (pt)r (5.11)

of symmetric tensor fields is the Weyl symbol of the operator (5.10).

Therefore, one finds that the free action in the presence of Sp (2N)-invariant back-

ground fields, i.e. (5.3), can be written manifestly as a quadratic form

Sfree[ψ , h ,ϕ ;N ] = δAB (ψA | Ŝ | ψB) +
1

2
JAB

[
(ψA | ϕ̂ | ψB∗) − (ψA∗ | ϕ̂† | ψB)

]
,

(5.12)

where the operator Ŝ is the Schrödinger operator (3.12)

Ŝ = P̂t − Ĥ = Ŝfree − Ĥint , (5.13)

defined in terms of the Hamiltonian

Ĥ = Ĥfree + Ĥint . (5.14)

The operators Ĥint and ϕ̂ are the images under the Weyl map of the generating functions

of the background fields h(t,x ; pt,p) and ϕ(t,x ; pt,p) respectively.

More generally, the free action in the presence of O(N)-invariant background fields can

be written as follows:

Sfree[ψ , h ,ϕ ;N ] = (ψ↑ | Ŝ↑ | ψ↑) + (ψ↓ | Ŝ↓ | ψ↓)

+ (ψ↑ | ϕ̂ | ψ∗
↓) + (ψ∗

↓ | ϕ̂† | ψ↑) , (5.15)
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where the flavor indices have been left implicit and the two (up and down) Schrödinger

operators Ŝα are built from the corresponding interaction Hamiltonians hα(t,x ; pt,p).

Let us elaborate on some physical interpretations of this rewriting by concentrating

first on the simplest case where there is no coupling to the charged fields (ϕ = 0). As

can be seen from (5.12), the free action in the presence of only U(1) × Sp (2N)-invariant

background fields can be rewritten as a Schrödinger action (3.27) where the Hamiltonian

is of the form (5.14), i.e. the usual potential term V (t,x) is replaced by a general function

on space-time phase-space h(t,x ; pt,p). In particular, a scalar background field h(t,x)

coupling to the particle density n(t,x) can obviously be interpreted as a position- and

time-dependent external potential term in a standard Schrödinger action.

In the more general case where the charged sources are present, another suggestive

way of interpreting (5.12)–(5.15) is by casting it in the Nambu-Gor’kov form. In order to

write (5.12) in terms of the Nambu-Gor’kov field (2.7), it is necessary to perform integra-

tions by part in the term (ψ↓ | Ŝ↓ | ψ↓) of (5.15). This can be formalised by introducing

the operation τ defined by F̂ τ (T̂ , X̂; P̂t, P̂) := F̂ (T̂ , X̂;−P̂t,−P̂) such that

(ψ1 | F̂ | ψ2 ) = − (ψ∗
2 | F̂ τ | ψ∗

1 ) . (5.16)

Notice that the minus sign in (5.16) arises because the fundamental fields are Grassmann

odd and the complex conjugation appears in accordance to the definition of the space-time

Hermitian form (3.26).24 The fact that the neutral (charged) Sp (2N)-invariant generating

function is a real (respectively, momentum-even) function translates into the fact that the

operator Hint (resp. ϕ̂) is Hermitian: Ĥ†
int = Ĥint (resp. τ -symmetric: ϕ̂τ = ϕ̂). The

latter properties together with (5.16) imply the following relations

δAB (ψA | Ŝ | ψB) = δab (ψ
a
↑ | Ŝ | ψb↑) − δab (ψ

a∗
↓ | Ŝτ | ψb∗↓ ) , (5.17)

JAB (ψA | ϕ̂ | ψB∗) = 2 δab (ψ
a
↑ | ϕ̂ | ψb∗↓ ) , (5.18)

JAB (ψA∗ | ϕ̂† | ψB) = − 2 δab (ψ
a∗
↓ | ϕ̂† | ψb↑) . (5.19)

The relations (5.18)–(5.19) show that (5.12) is indeed a particular case of (5.15) (remember

that for the Sp (2N)-invariant background Ŝ↑ = Ŝ↓ = Ŝ). More generally, the properties

of the O(N)-invariant generating functions translate into H†
α = Hα. The relation (5.17)

allows to rewrite the quadratic functional (5.15) in the compact form of a Schrödinger

action in terms of the Nambu-Gor’kov field (2.7)

Sfree[Ψ , h ,ϕ ;N ] = (Ψ | Ŝ | Ψ ) =

∫
dt dxΨ†

(
Ŝ↑ ϕ̂

ϕ̂† −Ŝτ↓

)
Ψ , (5.20)

where the Schrödinger operator is the 2× 2 matrix

Ŝ =

(
Ŝ↑ ϕ̂

ϕ̂† −Ŝτ↓

)
. (5.21)

24Mathematically, the operation τ is a linear antiautomorphism of the Weyl algebra. The operation τ

must be contrasted with the Hermitian conjugation † which is an antilinear antiautomorphism obeying to

(ψ1 | F̂ | ψ2) = (ψ2 | F̂ † | ψ1)
∗ .
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This suggestive rewriting is one of the main results of this section, because it allows many

further insights. The Schrödinger matrix-operator Ŝ = Ŝfree−Ĥint is the difference of the
free Schrödinger 2× 2 matrix-operator

Ŝfree =

(
P̂t − P̂ 2

2m 0

0 P̂t +
P̂ 2

2m

)
(5.22)

and the interaction Hamiltonian

Ĥint =

(
Ĥ↑ int ϕ̂

ϕ̂† −Ĥτ
↓ int

)
(5.23)

containing the background fields. As one can see, the free action in the presence of general

background fields can be rewritten in a form which generalises (2.8) in the sense that,

in the 2 × 2 matrix, the free Schrödinger operators i∂t ± ( ∆
2m + µ) on the diagonal are

replaced by the most general ones and the field ϕ is replaced by a general differential

operator ϕ̂. Notice that the Schrödinger matrix-operator (5.21) is Hermitian with respect

to the simultaneous combination of matrix and space-time Hermitan conjugations. For

notational simplicity, this operation will also be denoted by † since no ambiguity arises.

This Hermiticity property of (5.21) can be made manifest in terms of Pauli matrices:

Ŝ = i∂t σ0 − Ĥ , Ĥ = Ĥ0 σ0 + Ĥ1 σ1 + Ĥ2 σ2 + Ĥ3 σ3 , (5.24)

since the coefficients

Ĥ0 =
1

2
(Ĥ↑−Ĥτ

↓ ) , Ĥ1 = −
1

2
(ϕ̂+ϕ̂†) , Ĥ2 = −

i

2
(ϕ̂−ϕ̂†) , Ĥ3 =

1

2
(Ĥ↑+Ĥ

τ
↓ ) , (5.25)

are all space-time Hermitian operators. It is important to stress that in the particular case

of a Sp (2N)-invariant background the operators Ĥi (i = 1, 2, 3) are τ -symmetric while Ĥ0

is a τ -antisymmetric operator:

Ĥτ
0 = −Ĥ0 , Ĥτ

i = Ĥi , (i = 1, 2, 3) . (5.26)

More generally, in the presence of an O(N)-invariant background the free action takes the

form of a Schrödinger action with the most general 2 × 2 Hermitian matrix-operator. As

we demonstrate in the following, these differences between Sp (2N)- and O(N)-invariant

backgrounds play an important role in the correct identification of the gauge symmetry

algebra and of a putative dual bulk spectrum.

The generating functional (5.2) of connected correlators of singlet bilinears in the non-

interacting Fermi gas can now be evaluated formally due to the quadratic form of (5.20):

Wfree[h,ϕ ;N ] = −iN Tr log Ŝ =: N Wfree[h,ϕ ] (5.27)

where Ŝ is given by (5.21). A crude but standard (BCS theory) approximation of such

a complicated object would be to evaluate it in the case where the background fields are

constant in space-time and momentum coordinates (in which case only the correlators of the

number-density and of the Cooper-pair are evaluated). Another possible approximation
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is the assumption that the background fields are weak in which case one might start a

perturbative expansion in powers of the background fields along the lines of [53]. Notice

that the trace in the functional (5.27) corresponds to an integral over the energy and

momentum flowing along the fermion loop. This functional can be obtained as a light-like

dimensional reduction from its higher-dimensional relativistic counterpart by fixing, in the

integral over the corresponding relativistic momentum, one of the light-like component to

be equal to m instead of integrating over it.

Finally, since the Schrödinger matrix-operator Ŝ is Hermitian, it is formally diagonal-

isable via a generalised unitary Bogolioubov transformation Ψ 7→ Ψ ′ = Û−1Ψ , in the sense

that Ŝ ′ = Û†ŜÛ = (i∂t + Ĥ ′
0)σ0 + Ĥ ′

3 σ3. In general, the operators Ĥ ′
0 and Ĥ ′

3 depend on

both background fields h and ϕ. In terms of the new quasi-particle field Ψ ′, the quadratic

form (5.20) can be written as a sum of two Schrödinger actions:

Sfree[ψ
′ , h ,ϕ ;N ] =

∑

α=↑, ↓
(Ψα′ | Ŝ′

α | Ψα′) . (5.28)

Physically, this means that the free action in the presence of background fields describes (up

and down) quasi-particles governed respectively by two Hamiltonian operators depending

on both background fields h and ϕ. Again, this is nothing but a natural generalisation of

the BCS theory.

5.2 Gauge and rigid symmetries

This subsection is devoted to the analysis of the gauge symmetries of the free classical

action (in the presence of background fields) and of the corresponding effective action.

Due to the simple expression of these actions (respectively, “quadratic form” and “trace-

log”), their symmetries are manifest. These symmetries are important because, as usual,

the gauge invariance of the effective action encodes the Ward-Takahashi identities (here, on

the connected correlators of bilinears). The algebraic structure and physical interpretation

of these symmetries will be addressed in more details in the next subsection.

Note that any quadratic functional such as (5.20) is formally invariant if

a transformation,

Ψ −→ Û−1 Ψ , (5.29)

of the field Ψ in the fundamental representation of invertible matrix-operators Û−1 is

compensated by a suitable transformation,

Ŝ −→ Û†Ŝ Û , (5.30)

of the Hermitian Schrödinger matrix-operator (5.21). These finite transformations of Ŝ
correspond to gauge transformations of the background fields, as will be shown explicitly

below. Physically, this means that the group of invertible 2 × 2 matrix-operators can be

interpreted as the group of gauge symmetries of the free classical action Sfree[ψ , h ,ϕ ;N ]

in the presence of a general O(N)-invariant background. The corresponding infinitesimal

transformations span the Lie algebra of 2 × 2 matrix-operators. This Lie algebra of in-

finitesimal gauge symmetries is nothing else but the complex algebra M2(C) ⊗ Ad+1(C),
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i.e. the tensor product of the algebra M2 of 2× 2 matrices and the Weyl algebra Ad+1 of

space-time operators (both algebras are over C).
On the other hand, any trace functional such as (5.27) is formally invariant under

the subgroup of unitary matrix-operators (Û† = Û−1), because the Schrödinger matrix-

operator Ŝ transforms in the adjoint representation

Ŝ −→ Û−1Ŝ Û , (5.31)

of this subgroup. The generating functional Wfree[h,ϕ ;N ] of connected correlators arises

from integrating out the fundamental fields Ψ. More precisely, it arises from one-loop

diagrams for the fermions and it can be interpreted as the background effective action of the

free theory. Physically, the symmetries (5.31) of the O(N)-invariant background effective

action Wfree[h,ϕ ;N ] can be interpreted as the subset of gauge symmetries of the classical

action which remain manifestly preserved at quantum level. The other transformations

are in general anomalous because the trace in (5.27) is only invariant under the adjoint

transformation (5.31), hence not always under (5.30).25 As one can see, formally the group

of unitary matrix-operators may always be preserved at quantum level in the present

construction. The corresponding algebra of infinitesimal transformations is the real Lie

algebra of Hermitian 2 × 2 matrix-operators. As was explicitly shown in eq. (5.24), this

real algebra is spanned by the linear combinations of sigma matrices with coefficients in

the real Weyl algebra, hence it isomorphic to u(2) ⊗ Ad+1(R), i.e. the tensor product of

the algebra u(2) of Hermitian 2× 2 matrices and the Weyl algebra of Hermitian operators

(both algebras are over R).26

In order to describe the gauge symmetries (5.30) more explicitly, let us consider in-

finitesimal transformations near the identity: Û = 1̂+ iÂ where the infinitesimal generator

Â is a general 2× 2 matrix-operator expressed in the form

Â =

(
â↑ b̂

ĉ −âτ↓

)
. (5.32)

The space-time operators â↑, â↓, b̂ and ĉ are infinitesimal gauge parameters. The infinites-

imal version of (5.30) now reads

δŜ = i ( Ŝ Â − Â† Ŝ) . (5.33)

Since the free Schrödinger matrix-operator Ŝfree is kept fixed in the variation of the total

Schrödinger matrix-operator Ŝ = Ŝfree − Ĥint, one obtains δ Ŝ = − δĤint = i ( Ŝ Â −
Â† Ŝ ) which decomposes as

δĤint = i ( Â† Ŝfree − Ŝfree Â ) + i ( Ĥint Â − Â† Ĥint ) . (5.34)

25However, since the trace in (5.20) implicitly requires a regularisation in order to be well defined, notice

that its finite or its logarithmically divergent parts may admit more symmetries than the full regularised

effective action (c.f. [53] for more comments in the relativistic case).
26In more abstract terms, the algebra M2(C)⊗Ad+1(C) is Z2-graded with respect to the eigenvalues ±1

of the Hermitian conjugation †. A real form of this complex algebra is the subalgebra of Hermitian 2 × 2

matrix-operators (elements of eigenvalue +1).
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Although the term of degree one in Ĥint in eq. (5.34) is crucial for having exact symmetries

of the action, for the sake of simplicity in the following subsection we will concentrate on

the term of degree zero in order to discuss the interpretation of the gauge symmetries.

In terms of the corresponding Weyl symbols, the transformation (5.34) reads

δH(t,x ; pt,p) = i
(
A∗(t,x ; pt,p) ⋆ Sfree − Sfree ⋆ A(t,x ; pt,p)

)
(5.35)

+ i
(
H(t,x ; pt,p) ⋆ A(t,x ; pt,p) − A∗(t,x ; pt,p) ⋆ H(t,x ; pt,p)

)
,

where

H(t,x ; pt,p) =

(
h↑(t,x ; pt,p) ϕ(t,x ; pt,p)

ϕ(t,x ; pt,p) −h↓(t,x ;−pt,−p)

)
(5.36)

is the Weyl symbol of the interaction Hamiltonian matrix-operator Ĥint,

A(t,x ; pt,p) =

(
a↑(t,x ; pt,p) b(t,x ; pt,p)

c(t,x ; pt,p) −a↓(t,x ;−pt,−p)

)
(5.37)

is the Weyl symbol of the infinitesimal matrix-operator Â, and ⋆ stands for the Moyal

product on the space-time phase-space (c.f. appendix A) defined by

⋆ = exp

[
i

2

(
−
←−
∂

∂t

−→
∂

∂pt
+

←−
∂

∂pt

−→
∂

∂t
+

←−
∂

∂xi

−→
∂

∂pi
−
←−
∂

∂pi

−→
∂

∂xi

)]
, (5.38)

where the left and right arrows indicate on which side the corresponding derivative acts.

The above Weyl symbols (5.36)–(5.37) should be interpreted as generating functions of

symmetric tensor fields via the corresponding analogue of the power series expansion in

momenta (5.11). In other words, the infinitesimal gauge transformation (5.35) can be

written explicitly in terms of tensor fields only but the resulting expression would be rather

complicated in complete generality. For the sake of simplicity, in the following subsection

this will be done only to the lowest zeroth order in the background fields.

What is the relation of the gauge symmetries of the free action in the presence of back-

ground fields and the rigid symmetries of the Schrödinger action investigated in section 3?

As can be seen from the conditions (3.28) and (3.29) defining, respectively, the symmetries

of the Schrödinger action and their generators, they can be seen as gauge symmetries of

the free action preserving the background fields, e.g. δĤint = 0. In the absence of any

background field (h = ϕ = 0 ↔ Ĥint = 0), the classical action (5.3) reduces to the free

Schrödinger action (5.1). Therefore the symmetries of the free Schrödinger action can be

seen as the subalgebra of gauge symmetries that preserve the absence of background fields.

The maximal symmetry algebra of the free Schrödinger action for two-component wave

functions has been identified in subsection 3.2.3 with the real Lie algebra u(2) ⊗ Ad(R)
of quantum observables. Physically, this means that the algebra u(2) ⊗ Ad+1 of 2 × 2

Hermitian space-time operators can be seen as arising from gauging the algebra u(2)⊗Ad
of rigid symmetries via the Noether procedure, c.f. the minimal coupling (5.3). As usual

in non-relativistic physics, the gauging amounts to an arbitrary dependence on the time
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coordinate t. Here, one adds an arbitrary dependence on the time momentum P̂t = i∂t
of the transformation parameters. However, only the arbitrary time dependence is gen-

uinely non-trivial because, on-shell, any time derivative can be traded for the Laplacian.

A related subtlety is that the charged non-relativistic bilinears are not Noether currents

since they are not conserved. Thus, strictly speaking, the coupling (5.3) to external fields

is not a pure minimal coupling à la Noether. As will be seen in the next subsection, the

pseudo “conservation laws” of the charged bilinears are thus not associated with genuine

rigid symmetries. Their related local symmetries simply allow to get rid of the charged

background fields ϕ(r) with level r > 0, as is consistent with the fact that the bilinears

k(r) with r > 0 are descendants. A somewhat similar result is actually true even for the

neutral background fields and currents.

As a side remark, let us notice that the restriction to the Sp (2N)-invariant background

fields subsector is a consistent truncation. However, it seems that the corresponding non-

relativistic higher-spin algebra has no relativistic parent algebra. Let us describe in some

details the subalgebra of symmetries related to the restriction to the Sp (2N)-invariant sub-

sector. In order to describe this subtle subalgebra, some algebraic technology is needed.

More precisely the operation τ , defined on the algebra of space-time operators in subsec-

tion 5.1, can be extended to a linear antiautomorphism of the algebra of matrix-operators

by defining

στ0 = σ0 , στi = −σi , (i = 1, 2, 3) . (5.39)

The algebras of 2× 2 matrices and of space-time operators are Z2-graded with respect to

the eigenvalues ±1 of τ and decompose as: u(2) ∼= u(1) ⊕ sp(2) (since σ0 is of eigenvalue

+1 and the Pauli matrices σi are of eigenvalues −1) and Ad+1 = Aevend+1 ⊕ Aoddd+1 (where

even/odd refer to the momentum parity). The eigenvalue −1 of this antiautomorphism

correspond to the property (5.26). The corresponding real subalgebra of 2 × 2 matrix-

operators is isomorphic to
(
u(1) ⊗ Aoddd+1

)
⊕
(
sp(2) ⊗ Aevend+1

)
. As one can clearly see,

this subalgebra for the Sp (2N)-invariant subsector is much more complicated than the

corresponding algebra of infinitesimal gauge transformations, u(2) ⊗ Ad+1, for the O(N)-

invariant sector. Moreover, the operation τ seems to have no counterpart in the relativistic

construction of Vasiliev [26]. This provides a strong motivation for focusing on the flavor-

invariant (i.e. O(N)-invariant) bilinears when looking for a bulk dual.

5.3 Gauge symmetries to lowest order

Since, as any operator, the infinitesimal gauge parameter Â in eq. (5.32) is the sum of

a Hermitian and an anti-Hermitian operator, it is enough to consider these two cases of

gauge parameters separately.

If the operator-matrix Â is Hermitian, it becomes

Â =

(
â↑ b̂

b̂† −âτ↓

)
= Â† (5.40)
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where the operators â↑ and â↓ are Hermitian. Then we obtain that (5.34) can be written as
(
δĤ↑ int δϕ̂

δϕ̂† −δĤτ
↓ int

)
= − i

(
[P̂t − P̂ 2

2m , â↑] [P̂t , b̂]− 1
2m {P̂ 2 , b̂}

[P̂t , b̂
†] + 1

2m{P̂ 2 , b̂†} −[P̂t + P̂ 2

2m , âτ↓ ]

)
, (5.41)

modulo the linear term in the backgrounds which will always be dropped from now on.

This transformation is equivalent to the following infinitesimal transformation:

δĤα
int = −i

[
P̂t −

P̂ 2

2m
, âα

]
(5.42)

for the (up and down) interaction Hamiltonians, and

δϕ̂ = −i [P̂t , b̂] +
i

2m
{P̂ 2 , b̂} (5.43)

for the off-diagonal term. The transformation (5.42) reads in terms of the corresponding

Weyl symbols

δhα(t,x ; pt,p) = − i
[
pt −

p2

2m
⋆, aα(t,x ; pt,p)

]
=

(
∂

∂t
+

1

m
pi

∂

∂xi

)
aα(t,x ; pt,p)

(5.44)

where ⋆ stands for the Moyal product (5.38) on the space-time phase space. The above

Weyl symbols should be interpreted as generating functions of symmetric tensor fields via

the corresponding analogue of the power series expansion in momenta (5.11). This leads

to the following gauge transformations at order zero in the neutral background fields

δh
(r)α
i1··· is = ∂ta

(r)α
i1··· is +

s

m
∂(i1a

(r)α
i2··· is) (5.45)

where the round bracket stands for the symmetrisation over all indices with weight one,

e.g. h(i1··· is) = hi1··· is . These gauge symmetries of the neutral background fields are thus

the pendant of the conservation laws of the neutral currents encoded in (4.30). These

symmetries indeed leave invariant the minimal coupling terms on-shell, as can be checked

explicitly by integrating by parts and making use of the conservation laws. The gauge

symmetries, in the case of neutral background field such that h↑ = h↓, generalise to higher

spins the non-relativistic general-coordinate symmetries discussed in [13].27 Similarly, the

infinitesimal transformations corresponding to (5.43) can also be written in terms of the

Weyl symbols as

δϕ(t,x ; pt,p) = −i
[
pt ⋆, b(t,x ; pt,p)

]
+

i

2m

{
p2 ⋆, b(t,x ; pt,p)

}

=

(
∂t +

i

m

(
p2 − ∆

4

))
b(t,x ; pt,p). (5.46)

27Explicitly, the dictionary between notations of [13] and ours is: A0 = − 1
m
h(0)+ 1

8m
(∂i∂j −δij∆)h(0)ij +

1
4m

∆h(1) − 1
4m
∂t∂ih

(1)i, Ai = −h(0)
i , Φ = −h(1), Bi = −mh

(1)
i , hij = −mh

(0)
ij and ξ− = − 1

m
a(0), ξi = a

(0)
i ,

ξt = −a(1). Employing these identifications we recover the gauge transformations of [13] to zeroth order in

the background fields. More precisely, we find a higher-spin generalisation of transformations of [13] since

only transformations which originate from the relativistic spin one and two gauge transformations were

considered in [13].
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This leads to the following gauge transformations at order zero in the charged back-

ground fields

δϕ
(r)
i1··· is =

(
∂t −

i

4m
∆

)
b
(r)
i1··· is +

i s(s− 1)

m
δ(i1i2b

(r)
i3··· is) . (5.47)

These transformations actually correspond to the tracelessness-like condition for the

charged currents k, i.e. of the type (4.61). If we instead had made use of the trace-

less currents k̄, then the above transformation would take the simpler form of a Weyl

transformation δϕ̄
(r)
i1··· is = i s(s−1)

m δ(i1i2 b̄
(r)
i3··· is) . Such kind of higher-spin generalisations of

linearised Weyl transformations appear in conformal higher-spin gravity [54].

If the matrix-operator Â is anti-Hermitian, it is of the form

Â = i

(
ĉ↑ d̂

d̂† −ĉτ↓

)
. (5.48)

where the operators ĉ↑ and ĉ↓ are Hermitian. Then we obtain that (5.34) can be written as

(
δĤ↑ int δϕ̂

δϕ̂† −δĤτ
↓ int

)
=

(
{P̂t − P̂ 2

2m , ĉ↑} {P̂t, d̂} − 1
2m [P̂ 2, d̂ ]

{P̂t, d̂†} + 1
2m [P̂ 2, d̂†] −{P̂t + P̂ 2

2m , ĉ
τ
↓}

)
, (5.49)

which is equivalent to the following infinitesimal transformation:

δĤα
int =

{
P̂t −

P̂ 2

2m
, ĉα

}
(5.50)

for the (up and down) interaction Hamiltonians, and

δϕ̂ = {P̂t , d̂} −
1

2m
[P̂ 2 , d̂ ] . (5.51)

This leads to the following gauge transformations at order zero in the background fields

δh
(r)α
i1··· is = 2 r c

(r−1)α
i1··· is +

1

m

(
1

4
∆ c

(r)α
i1··· is − s(s− 1)δ(i1i2c

(r)α
i3··· is)

)
(5.52)

and

δϕ
(r)
i1··· is = 2 r d

(r−1)
i1··· is +

i s

m
∂(i1 d

(r)
i2··· is) . (5.53)

The first important observation to be made is that the first term in these transformations

for level r 6= 0 is of Stuckelberg type and therefore allows to get rid (at this order in the

background expansion) of all tensor fields of non-vanishing level r > 0. This is natural

since the bilinears to which they couple are not independent: the neutral (respectively,

charged) bilinears of the non-vanishing level r > 0 are traces (respectively, descendants) of

the ones with r = 0. One should be careful that it is not clear whether this gauge choice

is accessible at non-linear level. In addition, the non-vanishing levels are useful for the clo-

sure of the non-Abelian gauge algebra. Moreover, these Stuckelberg-like transformations

might be anomalous at quantum level. In any case, the second terms in the transforma-

tions (5.52)–(5.53) are more familiar: they correspond respectively to Weyl-like (Fradkin-

Tseytlin’s) transformations of the neutral tensor fields and to Maxwell-like (Fronsdal’s)
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transformations of the charged tensor fields. They correspond respectively to the trace-like

(or pseudo-conservation) conditions on the neutral (or charged) bilinears (4.69) (or (4.49) ).

The gauge symmetries (5.52), in the case of neutral background field such that h↑ = h↓,
generalise to higher spins the non-relativistic Weyl symmetries discussed in [36].

Let us stress that it is very useful to make use of the traceless currents k̄, because

the transformations δϕ̄
(r)
i1··· is take a simpler form for the part independent of the back-

ground fields. However, the explicit form of the non-linear completion would be much

more complicated, which is why we refrained from making direct use of them in this sec-

tion. Nevertheless, one should observe that the scalar charged background field at level

zero, i.e. the dimer ϕ = ϕ̄(0) coupling to the Cooper pair, transforms linearly under the

symmetries. More precisely, δϕ̄(0) is linear in the background field. This property should

be useful to write the symmetry transformations of the Legendre transform Γ[h ,ϕ ;N ]

of the background effective action Wfree[h ,ϕ ;N ] with respect to the dimer. Anyway,

at leading order in 1/N , the bulk dual of the ideal and of the unitary Fermi gases has

the same symmetries. Only the 1/N corrections are expected to break the higher-spin

symmetries [55].

6 Conclusion and outlook

Recent advances in holographic duality motivated us to investigate the symmetries and

the currents of non-relativistic free fermions. Since in the large-N limit the unitary and

free Fermi gases are Legendre conjugate of each other, our studies might be useful for a

better understanding of the strongly-coupled many-body problem of unitary fermions. We

identified the maximal symmetry algebra of the free single-particle Schrödinger equation

with the Weyl algebra of quantum observables. This higher-spin algebra is an infinite-

dimensional extension of the well-studied Schrödinger algebra. Further, by applying the

light-like dimensional reduction to relativistic Noether currents we constructed the infinite

collection of non-relativistic “currents” bilinear in the elementary fermions. In addition,

the formalism of Weyl quantisation allowed us to express the minimal coupling of these

bilinears to background sources in a compact way. The final result is formally identical to

the Nambu-Gor’kov formulation of the BCS theory except that the chemical potential and

the Cooper-pair source are replaced by space-time differential operators.

One of the leitmotives behind our work is the null reduction method, advocated as

“Bargmann framework” in [42, 43, 48, 49], which allows to obtain non-relativistic structures

from given relativistic ones. The other way around, i.e. a null lift (or “oxydation”) of a given

non-relativistic structure to its higher-dimensional relativistic counterpart, is sometimes

called an “Eisenhart lift”. One should stress that the higher-dimensional counterpart

of a consistent non-relativistic field theory may be sick as a relativistic quantum field

theory per se. For instance, the spin-statistics theorem does not apply to non-relativistic

theories so it may be violated in the Eisenhart lift. Therefore, in general the relativistic

higher-dimensional theory should be understood as an auxiliary tool.28 The results of

28In any case, a priori the Eisenhart lift should not be trusted beyond tree level. Nevertheless, this

restriction might be overcome by working with the quantum effective action since then all Feynman diagrams

become trees (written in terms of full propagators and of proper vertices).
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the present paper demonstrate the usefulness of the Eisenhart lift for the free and the

unitary Fermi gases.

The Bargmann framework might also apply to the holographic duality in the sense

that the AdS/CFT correspondence might lead to the AdS/unitary fermions correspon-

dence upon null reduction, along the lines of [56–58] and as proposed in [24]. In these

proposals, the background bulk geometry is an asymptotically AdS space-time (rather than

the Schrödinger manifold, as proposed in [13, 14]) possessing a nowhere vanishing covari-

antly constant null vector field.29 The isometry group of AdS is broken to the Schrödinger

subgroup by the dimensional reduction itself. A nice property of this approach is that

if the dimensional reduction is performed on both sides of the correspondence, then the

validity of the holographic duality between the pair of relativistic parent theories would

ensure the duality between the pair of reduced non-relativistic theories, at least in the

large-N limit. Notice that, in this picture, the reduced holographic duality should be be-

tween a non-relativistic conformal field theory living on the boundary of a Newton-Cartan

space-time and a non-relativistic gravity theory in its interior. Indeed, the reduction of

vacuum Einstein equations along a non-vanishing covariantly-constant (or at least Killing)

null vector field leads to the Newton-Cartan equations describing in a geometric fashion

the non-relativistic gravity theory of Newton [42, 59].

So, with these various results in mind, let us come back to our original question: What

is an educated guess for a gravity dual of unitary and free fermions? On the boundary side,

the Bargmann framework allowed us to understand the higher-spin symmetries of the free

fermions and to obtain from the relativistic massless Grassmann-odd scalar free theory the

corresponding currents and couplings to background sources. Our results closely resemble

the boundary data in the AdS/O(N) correspondence mentioned in the introduction.30 On

the bulk side, one might thus speculate that the null reduction of a higher-spin gauge

theory would be a natural candidate. Assuming that the Bargmann framework can be

applied to both sides of the correspondence, the gravity dual of the ideal and unitary

Fermi gases should be a non-relativistic higher-spin gravity theory obtained directly from

Vasiliev equations upon light-like reduction.31 Looking in the catalogue of Vasiliev theories

in any dimension [26], one can see that the flavor-singlet bilinear sector of the large-N

extension of the unitary fermions in d space dimension should be dual to the null-reduction

of classical Vasiliev theory on AdSd+3 with u(2)-valued tensor gauge fields of all integer

ranks.32 Therefore, one is led to speculate that the bulk dual of the “physical” (i.e. N = 1,

d = 3) unitary UV-stable Fermi gas might be the null dimensional reduction of the u(2)

higher-spin gauge theory on AdS6 with the exotic (∆− = 2) boundary condition for the

complex scalar field dual to the Cooper-pair field [24].

29Such space-times would be called asymptotically AdS Bargmann manifolds in the terminology of [42].

They can somehow be interpreted physically as gravitational waves propagating in AdS with parallel rays.
30Interestingly, an Euclidean Sp (2N) vector model with anticommuting scalars has recently been con-

jectured to be dual to Vasiliev’s higher-spin gravity on de Sitter space [60].
31An alternative, more along the lines of [13, 14], would be to look for a natural embedding of the

Schrödinger manifold as a natural background for some (possibly modified) version of Vasiliev equations.
32The corresponding higher-spin algebra was denoted by hu(2/sp(2)[d+ 2, 2] ) in [26]. It is isomorphic to

the product between u(2) and the higher-spin algebra hu(1/sp(2)[d+ 2, 2] ).
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These speculations are supported by our results on the large-N extension of the ideal

and the unitary Fermi gases, so let us summarise them with emphasis on their relevance

for the above proposal: In section 2, it was demonstrated that, in the large-N limit, the

generating functionals of the unitary Fermi gas and of the ideal Fermi gas are related by

a Legendre transformation. Therefore the corresponding Fermi gases can be dual to the

same bulk theory for two distinct choices of boundary conditions, as in the conjecture [21]

(and its generalisation to higher dimensions). The corresponding scaling dimensions of the

Cooper-pair field was found to be precisely in agreement with the mass-square m2 = −2 d
of the AdSd+3 scalar field in Vasiliev higher-spin multiplet [26]. The holographic degener-

acy is admissible in the range 0 < d < 4 in agreement with the field theory prediction. In

section 3 the maximal symmetry algebra of the free Schrödinger action was identified and

in section 4 it was shown that it originates from the maximal symmetry algebra of the free

massless Klein-Gordon action via light-like dimensional reduction. Since the identification

of the proper higher-spin algebras is a crucial step in the construction of higher-spin gravi-

ties of Vasiliev, the embedding of the non-relativistic higher-spin algebra into its relativistic

parent (as the centraliser of a given light-like momentum) provides a strong evidence for

the consistency of the dimensional reduction of Vasiliev equations. More precisely, we

believe that the techniques of the light-like dimensional reduction for Einstein gravity in

the frame formalism, developed in [59], must have a natural higher-spin extension since

Vasiliev gravity is based on a frame-like formalism à la Cartan where, in the fiber, the AdS

isometry algebra for usual gravity is replaced by the higher-spin algebra. For the relativis-

tic conjecture [21, 25], the validity of the holographic dictionary at the kinematical level

(i.e. two-point functions) between bilinear boundary currents and bulk gauge fields in any

dimension and for any integer spin is actually a corollary of the Flato-Fronsdal theorem

and its generalisation [61, 62]. The above embedding of the non-relativistic higher-spin

algebra into its relativistic parent combined with the Flato-Fronsdal theorem automati-

cally validates the holographic dictionary proposed above between O(N)-singlet bilinears

in the non-relativistic fields on the boundary, constructed in section 4, and u(2)-valued

symmetric tensor gauge fields of all integer spins in the bulk. In section 5, the generat-

ing functional of connected correlators of O(N)-singlet bilinears for the non-interacting

Fermi gas was computed explicitly together with the non-relativistic conformal higher-

spin Ward identities. According to the Gubser-Klebanov-Polyakov-Witten prescription,

the generating functional should be equal to the on-shell bulk higher-spin action with pre-

scribed boundary conditions while the Ward identities should be dual to the asymptotic

remnant of bulk higher-spin gauge transformations. In the large-N limit, these properties

would follow directly from the light-like dimensional reduction if the parent relativistic

duality [21, 25] is valid.

In order to test these ideas explicitly in the bulk, various issues need to be investi-

gated: Firstly, one should clarify how concretely the higher-spin unitary representations

of the Schrödinger group also describe free higher-spin fields in the bulk. Secondly, the

non-relativistic analogues of the Flato-Fronsdal theorem [61, 62] and of the Vasiliev equa-

tions [26] should be spelled out. These interesting open problems may prove to be chal-

lenging exercises to perform explicitly but one should stress that they are ensured to be
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well posed problems because their answers have to follow from their known relativistic

counterparts via the light-like dimensional reduction, since the latter is well defined and

consistent. Both at the kinematical and dynamical level, this consistency is ensured by

our embedding of the non-relativistic higher-spin algebra into its relativistic parent as the

centraliser of a given light-like momentum.

Endowed with these results, one could try to perform non-trivial tests of the conjecture,

presumably along the lines of the encouraging results of Giombi and Yin in AdS4 [22, 23].

So far most tests of the higher-spin AdS/CFT correspondence have been restricted to

bulk dimensions D 6 4, because Vasiliev theory is technically simpler in these dimensions

(due to the use of twistors, see e.g. [63] for a review). For this reason, technically it

might be easier to check whether the null reduction of u(2) Vasiliev theory around AdS4
with the standard (∆+ = 2) boundary condition is dual to the d = 1 scale-invariant

“unitary” IR-stable two-component Fermi gas. Remarkably, the latter is well-understood

as it corresponds to an infinite repulsion between “up” and “down” fermions and thus

is equivalent to the non-interacting one-component Fermi gas with the same density (see

e.g. [64] and references therein).

A possible angle of attack toward a derivation of the holographic duality would be to

parallel the strategy of Douglas, Mazzucato and Razamat [65]. More precisely, one might

consider the exact renormalisation group equation for the regularised generating functional

describing free fermions in the presence of a higher-spin background. The corresponding

higher-spin sources flow under the renormalisation group and one may look for a suggestive

rewriting of their scale evolution as a radial evolution of higher-spin bulk fields.

The relative simplicity of the non-relativistic higher-spin algebra and of the null reduc-

tion method supports the optimistic view that the holographic dual of unitary fermions is

an accessible goal worth investigating.

Note added.33 After the present work was completed and submitted to arXiv, we were

informed that it has some overlap with results obtained in the context of the Sp (2d,R)-
covariant unfolded equations initiated in [66]. In particular, the isomorphism between the

maximal symmetry algebra of the free Schrödinger equation and the Weyl algebra of spatial

differential operators follows as a corollary34 from the general results on global symmetries

of unfolded equations upon the identification of the spatial coordinates with the twistor

variables of [66] and of the time35 coordinate with the trace of the matrix coordinates of [66].

Moreover, the structure (4.21) of the generating function of non-relativistic bilinear currents

of vanishing level is a particular instance of the “generalised stress tensor” of [67]. Bilinear

current generating functions constructed in terms of two different solutions with opposite

signs of the Planck constant, identified with the mass here, were presented before in [69].

33We are grateful to M.A. Vasiliev for calling these points to our attention and for his useful explanations.
34See e.g. the subsection 2.1 of [67] for a review of the general argument and its application to the case

relevant here.
35Notice that the latter identification of a “time” coordinate among the sp(2d,R) matrix coordinates was

motivated in [68] (see e.g. the subsection 2.2 of [67] for a concise review of this point).
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A Weyl quantisation

The Weyl-Wigner-Grönewold-Moyal formalism [70–74] offers a classical-like formulation of

quantum mechanics using phase space functions as observables and the Wigner function

as an analogue of the Liouville density function.

Classical mechanics is based on the commutative algebra of classical observables, i.e.

real functions f(x,p) on the phase space T ∗Rd ∼= Rd × Rd∗, endowed with the canonical

Poisson bracket

{f, g}P.B. =
∂f

∂xi
∂g

∂pi
− ∂f

∂pi

∂g

∂xi
. (A.1)

Quantum mechanics is based on the non-commutative associative algebra of quantum

observables, i.e. Hermitian operators F̂ (X̂, P̂) on the Hilbert space L2(Rd) of square-

integrable functions. The Weyl algebra Ad is the associative algebra of quantum observ-

ables that are polynomials in the positions and momenta. The Heisenberg algebra hd is

the Lie algebra of quantum observables that are polynomials of degree one in the positions

and momenta, it is spanned by X̂i, P̂j and a central element ~ obeying to the canonical

commutation relations

[ X̂i , P̂j ] = i~ δij . (A.2)

In more abstract terms, the Weyl algebra Ad is the universal enveloping algebra U(hd) of
the Heisenberg algebra. The Schur lemma implies that the real eigenvalue (which we denote

by the same symbol ~) of the central element labels the UIRs of the Heisenberg algebra.

The theorem of Stone and von Neumann asserts that, up to equivalence, there is a unique

UIR of the Heisenberg algebra hd for each real value of ~ 6= 0. Moreover, the corresponding

representation of Ad is faithful, which legitimates the equivalence between the abstract

definitions and the concrete realisations of the Heisenberg and Weyl algebras.36

The Weyl map W : f(x,p) 7→ F̂ (X̂, P̂) associates to any function f a Weyl(i.e.

symmetric)-ordered operator F̂ defined by

F̂ :=
1

(2π~)d

∫
dk dv F(k,v) e i

~ ( ki X̂
i − vi P̂i) , (A.3)

36For ~ = 0, the UIRs of hd reduce to the one-dimensional UIRs of the commutative algebra Rd × Rd∗

labeled by the eigenvalues x and p of the operators X̂ and P̂. Obviously, when ~ = 0 the algebra Ad is

realised as the commutative algebra of polynomials f(x,p) on phase space.
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where F is the Fourier transform37 of f over the whole phase space (in other words, over

position and momentum spaces)

F(k,v) :=
1

(2π~)d

∫
dx dp f(x,p) e−

i
~ ( ki x

i − vi pi) . (A.4)

The function f(x,p) is called the Weyl symbol of the operator F̂ (X̂, P̂) which need not be

in the symmetric-ordered form. A nice property of the Weyl map (A.3) is that it relates

the complex conjugation ∗ of symbols to the Hermitian conjugation † of operators, W :

f∗(x,p) 7→ F̂ †(X̂, P̂). Consequently, the image of a real function (a classical observable)

is a Hermitian operator (a quantum observable). The inverse W−1 : F̂ (X̂, P̂) 7→ f(x,p) of

the Weyl map is called the Wigner map.

The canonical commutation relations (A.2) between the position and momentum op-

erators and the Baker-Campbell-Hausdorff formula imply two very useful equalities:

e
i
~ ( ki X̂

i − vi P̂i) = e−
i
2~ v

i P̂i e
i
~ ki X̂

i
e−

i
2~ v

i P̂i (A.5)

= e−
i
2~ v

i { P̂i, } e
i
~ ki X̂

i
(A.6)

where { , } denotes the anticommutator.

On the one hand, combining (A.3) with (A.6) implies that one way to explicitly perform

the Weyl map is via some “anticommutator ordering” for half of the variables with respect

to their conjugates. For instance, the image of a Weyl symbol which is a formal power

series in the momenta,

f(x,p) =
∑

r>0

1

r!
f i1...ir(x) pi1 . . . pir

= f(x) + f i(x) pi +
1

2
f ij(x) pipj + O(p3) , (A.7)

can be written as

F̂ (X̂, P̂) =
∑

r>0

1

r! 2r
{ · · · {f i1...ir(X̂) , P̂i1} , · · · , P̂ir}

= F̂ (X̂) +
1

2

(
F̂ i(X̂) P̂i + P̂i F̂

i(X̂)
)

+
1

4

(
F̂ ij(X̂) P̂iP̂j + 2 P̂i F̂

ij(X̂) P̂j + P̂iP̂j F̂
ij(X̂)

)
+ . . . (A.8)

On the other hand, eq. (A.5) implies that one way to explicitly perform the Wigner

map is via a Fourier transformation of the “point shifted” integral kernel of the operator.

The integral kernel of an operator F̂ is the matrix element 〈x | F̂ | x′〉 appearing in the

position representation of the state F̂ | ψ 〉 as follows

〈x | F̂ | ψ 〉 =
∫
dx′ 〈x | F̂ | x′ 〉 ψ(x′) , (A.9)

37The Weyl map is well defined for a much larger class than square integrable functions, including for

instance the polynomial functions, Fourier transforms of which are distributions.
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where the wave function in position space is ψ(x′) := 〈x′ | ψ 〉 and the completeness relation∫
dx′ | x′ 〉 〈x′ |= 1̂ has been inserted. The definition (A.3) and the relation (A.5) enable

to write the integral kernel of an operator in terms of its Weyl symbol,

〈x | F̂ | x′ 〉 =
∫

dp

(2π~)d
f
( x+ x′

2
, p
)
e

i
~ (xi−x′ i) pi . (A.10)

Conversely, this provides an explicit form of the Wigner map

f(x,p) =

∫
dq 〈x− q/2 | F̂ | x+ q/2 〉 e i

~ q
i pi , (A.11)

as follows from the expression (A.10). This shows that indeed the Weyl and Wigner maps

are bijections between the vector spaces of classical and quantum observables.

The Moyal product ⋆ is the pull-back of the composition product in the algebra of

quantum observables with respect to the Weyl map W , such that

W
[
f(x,p) ⋆ g(x,p)

]
= F̂ (X̂, P̂) Ĝ(X̂, P̂) . (A.12)

The Wigner map (A.11) allows to check that the following explicit expression of the Moyal

product satisfies the definition (A.12),

f ⋆ g = f exp

[
i ~
2

( ←−
∂

∂xi

−→
∂

∂pi
−
←−
∂

∂pi

−→
∂

∂xi

)]
g

= f g +
i ~
2
{f , g}P.B. +O(~2), (A.13)

where the arrows indicate on which factor the derivatives should act.

Let Ĥ be a Hamiltonian operator with the corresponding Weyl symbol h(x,p) . In the

Heisenberg picture, the time evolution of a quantum observable F̂ (which does not depend

explicitly on time) is governed by the differential equation

dF̂

dt
=

1

i ~
[F̂ , Ĥ] (A.14)

or equivalently in terms of symbols

df

dt
=

1

i ~
[ f ⋆, h ] (A.15)

where [ ⋆, ] denotes the Moyal commutator defined by

[ f ⋆, g ] := f ⋆ g − g ⋆ f

= 2 i f sin

[
~
2

( ←−
∂

∂xi

−→
∂

∂pi
−
←−
∂

∂pi

−→
∂

∂xi

)]
g

= i ~ { f , g }P.B. + O(~2) , (A.16)

as can be seen from (A.13). The Moyal bracket is related to the Moyal commutator by

{ f , g }M.B. :=
1

i ~
[ f ⋆, g ] = { f , g }P.B. +O(~).
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Note that the Moyal bracket { , }M.B. is a deformation of the Poisson bracket { , }P.B.,

and one can see that the equation (A.15) is a perturbation of the Hamiltonian flow. If

either f(x,p) or g(x,p) is a polynomial of degree two, then their Moyal bracket reduces to

their Poisson bracket. So when the Hamiltonian is quadratic (free) the quantum evolution

of a Weyl symbol is identical to its classical evolution.

B Representations of the Schrödinger algebra

Besides the free Schrödinger theory, there are known examples of interacting theories which

preserve the Schrödinger symmetry at quantum level. Nishida and Son called them “non-

relativistic conformal field theories” (NRCFT) and made an important step towards a

systematic understanding of this class of theories [11, 12].38 In this appendix, we review

their basic results and investigate the structure of the unitary irreducible representations

(UIR) of the Schrödinger algebra.

In close analogy with relativistic conformal field theories, it is useful to introduce

primary operators39 in NRCFT [11]. A local primary operator Ô(t,x) has a well defined

“spin” s
Ô
, scaling dimension ∆

Ô
and mass number M

Ô
. In other words, it carries an

irreducible representation of the rotation algebra o(d) and it is an eigenvector of the scaling

and mass operators.40 For a scalar primary Ô with s
Ô

= 0 (to which we restrict our

attention here for the sake of simplicity), this means

[D̂, Ô] = −i∆
Ô
Ô, [M̂, Ô] =M

Ô
Ô, (B.1)

where Ô ≡ Ô(t = 0,x = 0). By definition, a primary operator Ô must also commute with

K̂i and Ĉ

[K̂i, Ô] = 0, [Ĉ, Ô] = 0. (B.2)

Most importantly, from the primary operator Ô one can build a representation41 of the

Schrödinger algebra. Specifically, the primary operator is the lowest weight operator as it

has the lowest scaling dimension in the representation. The descendants are constructed by

taking spatial and temporal derivatives of the primary operator Ô. Using the Schrödinger

algebra it is possible to show that the generators P̂i and Ĥ form a pair of canonical creation

operators which increase the scaling dimension by one and two units respectively.

The commutation relation

[P̂i, K̂j ] = −iδijM̂ (B.3)

suggests that −iK̂j plays the role of a canonical annihilation operator as it decreases the

scaling dimension by one unit. Actually, this is only true for the massive representations

(with M
Ô
6= 0). The descendants are thus higher weight operators in a massive representa-

tion. The massless case is special since [P̂i, K̂j ] = 0, and thus all Galilean boost generators

38See also earlier important works of Henkel and Unterberger [75, 76] on this subject.
39or quasiprimary in the language of [75, 76]
40For d > 3, the irreducible representations of the rotation algebra o(d) are characterised by Young

diagrams rather than a single half-integer. By “spin”, one should understand the collection of labels

characterising uniquely the representation.
41more precisely, a “Verma module” in mathematical jargon
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Figure 1. Massive unitary irreducible representation of the Schrödinger algebra: The primary is

represented by a full square, while descendants are depicted as solid circles.

K̂j commute with all “descendants” generated by P̂i. Notably, there are operators in the

massless representation which are both descendants and primaries. This implies that the

structures of the massive and massless representations are very different and they will be

discussed separately in the following.

In a similar fashion, the commutation relation

[Ĥ, Ĉ] = iD̂ (B.4)

hints that iĈ plays the role of an annihilation operator as it always decreases the scaling

dimension by two units.42 Indeed, due to the unitarity bound (∆
Ô
> d

2 > 0) the right-

hand-side of eq. (B.4) is never zero. Thus, for the pair Ĥ and Ĉ there is no analogous

subtlety which we encountered for the pair P̂i and K̂j in the particular case of M
Ô
= 0.

After this general discussion we are ready to construct explicitly a massive UIR of

the Schrödinger algebra on the basis of a primary Ô. In general, the representation is

characterised by the scaling dimension ∆
Ô
, spin s

Ô
and mass numberM

Ô
6= 0. Its structure

is schematically illustrated in figure 1 which makes the irreducibility of the representation

manifest. We must mention that figure 1 is in fact oversimplified since P̂i and K̂i do not

commute with Ĥ and Ĉ and thus some arrows corresponding to the action of K̂i and C on

descendants are not shown explicitly.

The operator/state correspondence of [11, 12]43 provides a very interesting alternative

viewpoint on the massive representations. According to this correspondence the operators

(the primary and descendants) of a NRCFT are mapped onto energy states of the same

system placed in an external harmonic potential (with some frequency ω). In particular,

the primary operator corresponds to the ground state of the system of mass M
Ô

(i.e.

with particle number N
Ô
=

M
Ô

m ) with the internal angular momentum s
Ô
. The ground

42In order to obtain the canonical commutation relation, the operators Ĥ and iĈ must be properly

renormalised (see [8–10] for details).
43See also [8–10, 77] for the earlier quantum-mechanical formulation of this correspondence.
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state in the trap reads
∣∣ψ

Ô

〉
= e−Ĥ/ωÔ | 0 〉 and has the energy related to the scaling

dimension of the primary via E = ω∆
Ô
. In this picture, descendants of the NRCFT

simply correspond to the excited states. Specifically, the towers generated by P̂i (see

horizontal lines in figure 1) are mapped into excitations of the center-of-mass motion in

the harmonic trap. Indeed the oscillator energy spectrum is equidistant with the spacing ω

which matches precisely with the NRCFT result mentioned above. Explicitly, the center-

of-mass excitations of the trapped system are constructed by acting repeatedly with the

creation operators Q̂†
i = 1√

2

(
P̂i√
ω
+ i
√
ωK̂i

)
on the ground state

∣∣ψ
Ô

〉
. On the other

hand, one can also excite the internal motion (so called breathing modes) in the harmonic

potential which is mapped into the towers generated by Ĥ in the NRCFT (see vertical

lines in figure 1). Due to scale invariance the energy spectrum of breathing modes is also

equidistant with the spacing 2ω [8–10]. The proper operator that excites the breathing

modes turns out to be B̂† = L̂† − Q̂†
i Q̂

†
i

2m
Ô
, where L̂† = 1

2

(
Ĥ
ω − ωĈ − iD̂

)
. Note that the

pairs of operators Q̂†
i , Q̂i and B̂

†, B̂ commute with each other, since they act on different

degrees of freedom. Finally, we mention that the operator/state correspondence makes the

unitarity of the massive representation manifest, because it maps the representation onto

a Hilbert space of the N
Ô
-particle problem in a harmonic trap.

The light-like dimensional reduction method also provides a complementary perspec-

tive on the massive representations. Indeed, the restriction of relativistic conformal pri-

maries to some proper subset of components leads to non-relativistic conformal primaries

(with the other components being descendants). To clarify this, let us remind the definition

of a primary operator in a relativistic CFT: a local primary operator Õ(x) has a well defined

“spin” s
Õ
and scaling dimension ∆

Õ
. In other words, it carries an irreducible representation

of the Lorentz algebra o(d+ 1, 1) spanned by the generators M̃µν and it is an eigenvector

of the dilatation operator D̃: [D̃, Õ] = −i∆
Õ
Õ where Õ = Õ(x = 0). By definition, a

relativistic primary operator Ô must also commute with the conformal boost generators

K̃µ: [K̃µ, Õ] = 0. Furthermore, the dimensional reduction ansatz requires to consider an

eigenvector of a null translation operator: [P̃+, Õ] = M
Õ
Õ. This ansatz implies that the

non-relativistic operator Ô(t,x) := Õ(x+ = t, x− = 0,x) has mass M
Ô
= M

Õ
. Moreover,

the identification (4.9) together with the fact that Õ commutes with all conformal boost

generators implies that Ô commutes with the expansion generator Ĉ. Now comes a crucial

additional ansatz: let us assume that Õ further commutes with the generators M̃µ− which

is equivalent to the fact that all the components Õ+... vanish. As the result, the purely

spatial components Ôi1i2...(t,x) span a non-relativistic primary with spin s
Ô

= s
Õ

and

scaling dimension ∆
Ô
= ∆

Õ
, while the other components Ô−···−i1i2...(t,x) are descendants.

This can be verified via the identification (4.9), the previously stated commutations and

the branching rules for the restriction of o(d + 1, 1) to o(d). As a corollary, this property

ensures that the charged bilinears k(0)i1···is(t,x) (see section 4 for their definition) are local

non-relativistic primary operators.

Another useful perspective on the massive representations of the Schrödinger algebra

is the so-called “standard” realisation of the generators. Actually, for spinning massive

particles, the space-time differential operators (3.10) correspond to the “orbital” part of
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the generators which must be supplemented by a “spinning” (or “internal”) part spanning

an irreducible representation of the subalgebra o(d) ⊕ sl(2,R). As was mentioned in the

subsection 3.1, the translation and Galilean boost generators P̂i and K̂
j together with the

mass operator span the Heisenberg subalgebra hd ⊂ sch(d). The theorem of Stone and von

Neumann (see appendix A) implies that, given the mass m, there is a unique UIR of the

Heisenberg subalgebra. The authors of [47] proved that any massive representation of the

Schrödinger algebra is equivalent to the following realisation of the remaining generators

P̂t =
P̂ 2

2m
+ L̂− ,

M̂ij =
K̂iP̂j − K̂jP̂i

m
+ L̂ij ,

D̂ = −K̂
iP̂i
m

+ i
d

2
+ L̂0 ,

Ĉ =
K̂2

2m
+ L̂+ ,

(B.5)

where the operators L̂ij , L̂± and L̂0 commute with all the other generators and provide

a representation of o(d) ⊕ sl(2,R) with usual notations. In a sense, the latter operators

correspond to the “spinning” or “internal” part of the generators while the “orbital” part

is entirely built out of the translation and boost generators. In order to have an irreducible

representation of sch(d), the internal part of the representation of o(d) ⊕ sl(2,R) should

be irreducible, so it is characterised by spin and scaling dimension (for lowest weight

representations). Therefore, one recovers in a different way the results obtained from the

non-relativistic conformal field theory techniques.

Let us now turn to massless representations of the Schrödinger algebra. As emphasized

above, they have a distinct structure and are not so well understood. The representation

containing e.g. the non-relativistic currents j
(0)
i1...in

(see section 4 for their definition) has a

form of a pyramid and is illustrated in figure 2.44 The density operator j(0) = n is a non-

relativistic primary, but not a descendant. On the other hand, the operators ∂i1 · · · ∂inj(0)
are both primaries and descendants. The spatial currents j

(0)
i1...in

are neither primaries nor

descendants. As is clear from figure 2, this representation is not irreducible. Formally,

one can generate the full representation starting from the current j
(0)
i1...in

with n → ∞.

The operator/state correspondence cannot be applied in a straightforward fashion to the

normal-ordered neutral currents as they act trivially on the vacuum state.

In the AdS/CFT correspondence, a special role is played by the very exceptional

irreducible representations of the Poincaré group that can be lifted to representations of

the conformal group. They are called “singletons” and describe dynamical elementary

fields living on the conformal boundary of AdS. So an important question is: which UIRs

of the Bargmann group can be extended to representations of the Schrödinger group?

The massive (sometimes called “physical”) representations of the Bargmann group are

44We are thankful to S. Golkar and D.T. Son for presenting this to us.
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Figure 2. Massless representation of the Schrödinger algebra: The operators are depicted as solid

circles.

classified (see e.g. [37, 38]) by the mass, the “spin” and the so-called internal energy45

corresponding to the fact that in non-relativistic physics there is no privileged zero of

the energy. One can see that all the massive representations of the Bargmann group with

vanishing internal energy can be extended to representations of the Schrödinger group.

Indeed, conformal invariance requires that the internal energy must vanish because it is

not preserved by scale transformations. Physically the internal energy may always be put

to zero.46 In order to complete the proof, one simply verifies that one may associate, to any

representation of zero internal energy, a representation of the Schrödinger group (as follows

from the above discussion). The only massive representations of the Schrödinger algebra

with vanishing internal energy are those for which the UIR of the sl(2,R) subalgebra

on the internal (i.e. spinning) degrees of freedom is trivial. Furthermore, looking at

the classification of the UIRs of the Schrödinger group [45], one can see that the massive

representations are the only non-trivial unitary irreducible representations of the Bargmann

group that can be obtained as restrictions of the Schrödinger group. In a sense, the analogue

of the singleton representations of the Poincaré and conformal groups is identified with

the massive representations (with zero internal energy) of the Bargmann and Schrödinger

groups.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License which permits any use, distribution and reproduction in any medium,

provided the original author(s) and source are credited.
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Résumé :

La théorie des spins élevés est le domaine de la physique théorique au centre de cette
thèse. Le contexte général de la naissance de cette théorie est présentée dans l’introduction.

La première partie est axée sur les ingrédients (méthode de Noether, fonctions géné-
ratrices et formalisme ambiant) permettant la construction de vertex cubiques entre un
champ scalaire de matière et un champ de jauge de spin élevé dans un espace-temps à
courbure constante à partir des courants conservés en espace-temps plat.

Dans un second temps, nous préparons les éléments pour un futur test de la correspon-
dance holographique à l’ordre cubique voire quartique en la constante de couplage. Plus
précisément, nous révisons en détail le calcul de certains propagateurs, ce qui nous mène à
calculer les fonctions à trois points impliquant deux scalaires.

La dernière partie, bien que concernant toujours l’holographie des spins élevés, traite
de la physique non-relativiste. Les symétries et les courants d’un gaz parfait/unitaire de
Fermi y sont étudiés. Le lien entre physiques relativiste et non-relativiste est obtenue grâce
à la réduction dimensionnelle de Bargmann.
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Abstract :

The higher spin theory is the field of theoretical physics at the center of this thesis.
The general context of the birth of this theory is presenting in the introduction.

The first part focuses on the ingredients (Noether method, generating functions and
ambient formalism) for the construction of cubic vertices between a scalar matter field and
a higher spin gauge field in a constant curvature space-time from conserved currents in flat
space-time.

In a second step, we prepare the around for a future test of the holographic correspon-
dence in the cubic or quartic order in the coupling constant. More specifically, we review
in detail the computation of some propagators, which leads us to calculate three-point
functions involving two scalars.

The last part, although always on the higher spin holography, deals with non-relativistic
physics. Symmetries and currents of an ideal or unitary Fermi gas are studied. The link
between relativistic and non-relativistic physics is obtained by Bargmann dimensional re-
duction.

Keywords :

Symmetries, Noether method, conserved currents, spacetime of constant curvature,
ambient formalism, holography, AdS/CFT correspondence, higher spin, unitary Fermi gas


