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Abstract: In this work, we analyze recent proposals by Das and Dürr (DD) to measure the arrival
time distributions of quantum particles within the framework of de Broglie Bohm theory (or Bohmian
mechanics). We also analyze the criticisms made by Goldstein Tumulka and Zanghì (GTZ) of these
same proposals, and show that each protagonist is both right and wrong. In detail, we show that
DD’s predictions are indeed measurable in principle, but that they will not lead to violations of the
no-signalling theorem used in Bell’s theorem, in contradiction with some of Das and Maudlin’s hopes.
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1. Introduction

The concept of arrival time for a quantum particle at a spatial point has been a subject
of considerable controversy since the theory was founded in the 1920s–1930s [1] (Similar
difficulties arise in defining travel and dwell times in quantum mechanics [2,3]). At the
more technical level, the main difficulty stems from the lack of consensus on the definition
of a self-adjoint operator or POVM (positive operator valued measure) for the arrival time τ
of a particle, and on the probability distribution PΨ(τ) associated with these arrival times.
Numerous proposals have been made over the years, none of them unanimously accepted
(for exhaustive reviews of the problem, see [4–7]).

Remarkably, within the framework of de Broglie Bohm (dBB) theory [8,9], also called
Bohmian mechanics—which is an alternative deterministic interpretation of quantum
mechanics that re-establishes the notion of trajectory for particles—it is possible to define
unambiguously the arrival time of a quantum particle at any point in space based on the
precise calculation of the trajectory passing through that point [4,10–13].

However, one of the problems associated with this dBB definition of arrival times
concerns its link with the notion of quantum observable and POVM. Although the dBB
definition is well suited to the far-field regime, where it allows us to recover and justify
standard results used in particle collision physics, it generally leads to difficulties in
the near-field regime. In particular, it has been shown that the dBB definition leads to
fundamental problems when the flow of particles across a surface is associated with the
phenomenon of ‘back-flow’ [4]. In this back-flow regime, which is a purely undulatory
phenomenon in which several waves with a wave vector pointing in a common direction
generate an effective wave vector pointing in the opposite direction (for reviews and general
discussions, see [14–19]), the same Bohmian trajectory crosses a predefined detection spatial
zone D several times (i.e., at different times) from different sides [10]. The arrival time
is therefore not uniquely defined, and we must add a condition on the first passage,
the second passage, etc., of the particle in the detection region D [20,21]. Furthermore,
the probability distribution of (first) arrival times given by dBB theory depends on the
probability current JΨ(x, t) (more precisely on the so-called ‘truncated’ probability current
distribution [22] associated with this multiplicity of passages on the detector). However, it
has been shown [23,24] that, in general, the probability current JΨ(x, t) is not associated
with a POVM due to the presence of back-flow. Since the notion of POVM is generally
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accepted as the most accurate theoretical description of a quantum observable, it seems a
priori impossible to consider dBB arrival times as generally measurable. However, since
these back-flow phenomena are usually confined to interference zones or near-field regions
of very limited spatio-temporal extension, it is generally accepted that observing this regime
would be very difficult and has not yet been achieved.

More fundamentally, the notion of a Bohmian arrival or travel time is still very con-
troversial. For example, it was claimed that (in the context of tunneling times) ‘Bohm’s
theory can make a definite prediction when standard quantum mechanics can make none at all’ [25]
(similar speculations were discussed in [9] p. 215 and [26] pp. 53–55). This is a very
strong statement which, if justified, would break the empirical equivalence between dBB
mechanics and orthodox quantum mechanics. This would give a strong advantage to dBB
theory and of course it generates controversy (see the discussion in [21]). In the present
work, we will nevertheless insist on the possibility of preserving the empirical equivalence
between dBB theory and traditional quantum mechanics. We will seek to demonstrate that
there is no reason to doubt the relevance of this empirical equivalence. The key point here is
not that dBB theory predicts results that contradict orthodox quantum mechanics. What we
actually find is that, thanks to dBB mechanics, we can analyze and interpret empirical data
(i.e., predicted by standard formalism) in terms of probabilities for Bohmian arrival times.

One other controversy is perhaps that the probability current JΨ(x, t) is not unam-
biguously defined [13] (we can always add a term ∇× F(x, t) to JΨ(x, t) without altering
the local conservation law ∂ρΨ +∇ · JΨ = 0). There is thus a form of underdetermination
concerning the uniqueness of dBB dynamics [27]. As a result, the physical meaning to be
attributed to these arrival times based on the probability current is questionable. Neverthe-
less, there is a strong consensus concerning the far-field regime where the dBB trajectories
are reduced to straight lines and which corresponds to the scattering regime without back-
flow [28,29] (in this regime, a nice agreement between time of flight measurements and
dBB prediction has been recently analyzed for a double-slit experiment [30]). It should
be noted, in this context, that some authors [31–33] oppose this indetermination of the
Bohmian dynamics on the basis of the relativistic extension of the dBB theory using the
Dirac equation(see also [34–36]), and Holland’s work [37] showing that Lorentz invariance
fixes the arbitrariness in the form of the current.

A fundamental problem, not unrelated to arrival times in quantum mechanics and dBB
theory, concerns the observability of trajectories predicted by dBB mechanics. For many
years, it was accepted that these trajectories were hidden and therefore unobservable.
However, the development of experimental methodologies based on the notion of weak
measurements and weak values [38] has changed all that. Experiments and theories [39–42]
have shown how to observe such Bohmian trajectories. Since this reconstruction of dBB
trajectories is carried out statistically, it in no way violates the uncertainty principle. More-
over, recent work has emphasized the operational character of weak measurements and
the definition of the observed dBB velocity field [43,44]. This is clearly linked to the present
debate on arrival times, as we can see that it is the measurement procedure (and as we will,
see some methods of post-selection and data analysis) that is at the heart of the problem of
the definition of relevant physical quantities involved in the dBB theory. At the end of this
work, we will make a link with weak measurements, showing that these methods can also
contribute to solving the problem of arrival times.

Recently, it has been proposed by Siddhant Das and Detlef Dürr (hereinafter DD) to
use the dBB approach for arrival times within the framework of the Pauli equation (i.e.,
the non-relativistic limit of the Dirac equation) for particles with spin-1/2 [45,46]. Going
far beyond previous works [31–36] based on the Dirac equation, the authors have defined a
precise regime, in principle physically attainable, where the presence of back-flow is not
confined to the near-field domain. Importantly, they found a spin-dependent distribution
of arrival time PΨŝ

dBB(Σ, τ) (where Σ is the detector surface, τ the dBB arrival time, and Ψŝ

the wave function of the particle with spin direction along the direction s) with interesting
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consequences for back-flow. This, of course, reopens the debate on the observation of
Bohmian arrival times [47].

Moreover, in a recent comment [48], Goldstein Tumulka and Zanghì (hereinafter GTZ)
critically assessed the proposition and calculations made in [45,46] and showed that if DD
results were exact, and if the dBB first arrival time spin-dependent probability distribution
could be identified with a POVM, then a contradiction occurs. Therefore, GTZ conclude that
something must be wrong in the predictions given in [45,46] concerning the observation of
dBB arrival times.

Yet, as Das and Aristarhov stressed in a reply [49], DD never actually claimed that their
proposition for a dBB first arrival time measurement was reducible to a POVM, and thus far
from contradicting [45,46] the results of GTZ [48], only show that indeed the Bohmian first
arrival time probability distribution cannot be associated with a standard POVM. Therefore,
the real question asked by GTZ and DD is whether or not ‘the statistics of the outcomes of any
quantum experiment are governed by a POVM’ [48] and only by POVM.

Here, to answer this question, we assess the analyses conducted by GTZ and DD.
We show that while mathematically correct, GTZ’s conclusions are physically unjustifed.
In particular, we emphasize that GTZ’s too strong reliance on POVM (which can be summa-
rized by the slogan ‘POVM and only POVM’) is mostly a prejudice of the orthodox theory
of quantum measurements that must be generally abandoned in light of the dBB theory.
As we show, although POVMs are necessary, they are not sufficient to describe a Bohmian
measurement process. Moreover, we also stress that contrary to DD’s claims, experimental
observation of the first arrival time probability distribution requires explicit consideration
of the detector physics during the measurement process. Three key messages emerge
from our analysis. First (i), in agreement with POVM no-go theorems [23,24], there is no
universal detector for arrival time. Second (ii), every arrival time detector built for working
at time t is in general a very invasive device and could prohibit subsequent detections
at later time t′ > t (even if the measurement at time t did not actually occur because the
detector did not fire; this is an instance of negative-result quantum measurements). In other
words, in the dBB framework, one must distinguish between probability of being here at
time t and probability of being detected here at time t. Finally (iii), first arrival times are
defined within the dBB framework and as such require a post-selection of the data. The
whole procedure is thus theory-laden. In the end, we show that when all these features
are taken into account, nothing prohibits the experimental observation of the first arrival
time probability distribution predicted by DD (e.g., in connection with weak measurement
procedures introduced above [38–40,42,43]).

Moreover, as a follow-up of the previous studies by DD, it must be mentioned that the
philosopher Tim Maudlin has on various occasions on social media [50–52] discussed the
possibility of using the results obtained by DD for the spin-dependent time arrival proba-
bility distribution in order to develop new dBB-based faster-than-light communications
protocols involving pairs of entangled spin-1/2 particles. This ‘Bell telephone’ possibility
clearly contradicts the no-signalling theorem deduced from quantum mechanics in the
context of Bell’s theorem. More precisely, we demonstrate in quantum field theory that local
commutativity and microcausality impose this no-signalling constraint [53,54]. As stressed
by Bell, ‘It is as if there is some kind of conspiracy, that something is going on behind the
scenes which is not allowed to appear on the scenes’ [55]. In fact, dBB theory emphasizes
the crucial role of Born’s rule in this derivation, as shown by Valentini [56], and Born’s
rule is fundamentally linked to the existence and use of POVMs in quantum mechanics.
Unless we relax Born’s rule, i.e., abandon ‘quantum equilibrium’ [56], or modify quantum
mechanics, it is thus impossible in the quantum framework to exploit the violation of
Bell’s inequalities (i.e., the nonlocality of dBB theory) to transmit a signal faster than light.
Therefore, in a recent extension of their original comment, GTZ stress [57] that DD’s results,
assuming Born’s rule, also strongly contradict the no-signalling theorem and therefore
conflict with standard quantum mechanics.

However, we demonstrate in this article that a new analysis of the problem, in par-
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ticular in relation to point (iii) above, can remove the paradoxes. In fact, according to our
analysis, it becomes possible to measure the probability distribution predicted by DD with-
out violating the no-signalling theorem, thereby ruling out the possibility of supraluminal
transmission channels contradicting Bell’s theorem.

The layout of our article is as follows. In Section 2, we briefly review dBB theory and
show, with the help of one typical example, how it allows us to give physical answers to
questions that look devious in the orthodox quantum theory. In Section 2, we also analyze
the nature of measurements in dBB theory and stress the limitation of the notion of POVM.
In Section 3, we review the arrival time problem in the dBB theory and discuss DD’s and
Maudlin’s proposals as well as the counter-analysis by GTZ. In Sections 4–6, we discuss
the theory of detectors and the impact this has on dBB theory. In particular, we define
regimes of strong and weak coupling for detections. Finally, in the last Section 7, we resume
the first arrival time problem in the dBB theory and DD’s proposal involving the Pauli or
Dirac equation for a particle with spin-1/2 and show how we can in principle measure the
distribution predicted by DD.

In particular, we will show that the arrival time distribution can be reconstructed
using low-efficiency detectors so as not to perturb the wave function too much. As we shall
see, the key point of this procedure is based on a highly non-linear post-selection method
presuming knowledge of the underlying dBB dynamics (these dynamics being themselves
in principle analyzable by weak measurement methods).

2. Bohmian Inference

The concept of experimental measurement, and more precisely of so-called direct
experimental measurement, has always been a source of debate in physics since its founda-
tion. Take for example Rutherford’s experiment where a beam of α particles passes through
a thin film of gold. From the deviation of α particles at high angles (i.e., in backscatter-
ing), Rutherford deduced (or rather induced) the existence of atomic nuclei acting as very
compact centers of diffusion. Seen in hindsight, however, it is impossible to deduce a
theory from this Rutherford experiment. As Albert Einstein understood perfectly well,
the best we can say or infer is that in having a theory, we can define what is measurable,
or not, and then compare the predictions to the results. In other words, any measurement
is necessarily indirect and presupposes a theoretical model. As he explained in 1926 to
Heisenberg, who claimed to be able to build a quantum theory by limiting himself only to
what is observable:

‘it is the theory which alone decides what is measurable’. [58]

This is the heart of the hypothetico-deductive method!
In quantum physics, it is the forgetting of this elementary truth concerning the scientific

method which is responsible for numerous errors of interpretation. So, let us take Young’s
famous two-slit experiment. According to Bohrian quantum doxa, it is impossible to
interpret the observation of interference fringes using the concept of a continuous trajectory
followed by individual particles. For Bohr and Heisenberg, for example, this would indeed
amount to saying that the trajectory of a particle passing through hole A is influenced by the
existence of hole B through which it, however, did not pass! From a classical perspective,
this is a priori nonsense. But all this shows is that certain classical ‘Newtonian’ prejudices
oppose a simple interpretation of Young’s slit experiment in terms of trajectory.

However, we know that the pilot-wave dBB theory developed by Louis de Broglie in
1927 [59–61] and rediscovered by Bohm in 1952 [62,63] makes it possible to precisely explain
this interference experiment using trajectories [8,9]. In this dBB theory, the trajectories of the
particles are strongly curved by the presence of potentials of a specifically quantum nature
which free themselves from the overly Newtonian prejudices of Bohr and Heisenberg. We
can notice that the Newtonian reading made by Heisenberg and Bohr is biased. Indeed,
in his seminal work Opticks published in 1704 [64], Newton sought to explain the observa-
tion of diffraction and Newton’s rings using a theory (called by him the ‘access theory’)
involving forces acting on the particles of light, and which, in many aspects, anticipates the
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notion of Bohmian quantum potential. In turn, this quantum theory of dBB, giving meaning
to the notion of trajectory, makes it possible to define and characterize what is a ‘good’
measurement, or not, in complete agreement with Einstein’s hypothetico-deductivism.

To be more precise, we remind the reader that the dBB velocity of a particle is given in
the simplest non-relativistic spinless theory by the de Broglie guidance formula [8,9]:

d

dt
x(t) := vΨ(x(t), t) =

JΨ(x(t), t)

|Ψ(x(t), t)|2 = Im[
∇Ψ(x(t), t)

mΨ(x(t), t)
] =

∇SΨ(x(t), t)

m
(1)

where JΨ is the probability current, m the particle mass, and SΨ the phase of Ψ (i.e., the quan-
tum Hamilton–Jacobi action). This first-order differential equation dx

vΨ
x
= dy

vΨ
y
= dz

vΨ
z
= dt

can be integrated (at least numerically) and defines the Bohmian trajectories of the parti-
cle. In particular, trajectories obtained from these first-order dynamics can in general not
cross [9].

An important feature of the dBB theory concerns probability and statistics. In-
deed, from the law of conservation and the definition of the probability current, the
dBB theory shows that if an ensemble of similarly prepared particles are statistically
ρΨ

t0
:= |Ψ|2(x(t0), t0) distributed at an initial time t0, this will be so at any other time t:

ρΨ
t := |Ψ|2(x(t), t). In other words, from this property, called equivariance, Born’s rule

ρΨ := |Ψ|2 is naturally consistent with the dBB theory, and therefore, the statistical predic-
tions of standard quantum mechanics can be recovered within this framework [8,9].

Moreover, in the double-slit experiment, all of this has huge consequences. Consider
the case of a single electron wave function

Ψ(x, y, z, t) = Ψ0(x − a/2, y, z, t) + Ψ0(x + a/2, y, z, t) (2)

where Ψ0(x, y, z, t) is a propagating wave packet initially (i.e., at time t = 0) centered
on the origin and subsequently propagating along the z direction while it also spreads.
Assuming Ψ0(x, y, z, t) = Ψ0(−x, y, z, t), we thus deduce from Equations (1) and (2) that
dBB trajectories cannot cross the symmetry plane x = 0. Furthermore, suppose that at time
t = 0 the wave function Ψ0(x, y, z, t = 0) has a finite spatial support ∆0(0) such that the
two wave packets Ψ0(x − a/2, y, z, t = 0) and Ψ0(x + a/2, y, z, t = 0) are not overlapping
(i.e., ∆0(a/2, 0, 0) ∩ ∆0(−a/2, 0, 0) = ∅). Thus, dBB theory allows us to retrodict; if we
record the particle at the plane z in the zone x > 0, we can indeed retrodict that the particle
was necessarily coming at t = 0 from the wave packet located in the upper side of the
screen z = 0, i.e., centered on x = +a/2. The converse is true for a particle detected in the
region x < 0, allowing us to infer that it was coming from the lower wave packet centered
on x = −a/2.

With the dBB theory, the probability for the particle detected at time t to come from
the wave packet centered on x = a is thus rigorously

PΨ
+a(t) =

∫

x≥0
d3x|Ψ(x, t)|2 =

∫

x−x̂ a
2∈∆0

d3x|Ψ0(x − a/2, y, z, t = 0)|2 =
1
2

(3)

with a similar and symmetric expression for PΨ
−a(t). This is easily deduced from the two

properties that (i) the dBB trajectories cannot cross and ii) the conservation of the probability
fluid is preserved along trajectories, i.e., ρΨ(x(t), t)δ3x(t) = ρΨ(x(t = 0), t = 0)δ3x(t = 0).
According to dBB theory, we also have ρΨ(x(t), t) = |Ψ|2(x(t), t), a probabilistic rule that
was assumed by de Broglie even before Max Born!

For the present discussion, we emphasize that we can write

PΨ
±a(t) = ⟨Ψ(t)|Ô±a|Ψ(t)⟩ (4)

with the operators Ô+a =
∫

x≥0 d3x|x⟩⟨x|, Ô−a =
∫

x≤0 d3x|x⟩⟨x| defined as sums of projec-
tors, i.e., a special case of POVM (in dBB theory, any measurement procedure is necessarily
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reduced to a spatial localization measurement, and so the use of projectors |x⟩⟨x| is un-
avoidable [9,65]).

We briefly remind the reader that mathematically speaking, POVMs Ôn are linear
self-adjoint operators (i.e., Ôn = Ô†

n) acting on a Hilbert space H, such that ∑n Ôn = Î.
These operators obey the positivity condition Ôn > 0 which actually reads ⟨Ψ|Ôn|Ψ⟩ > 0
whatever the state |Ψ⟩ ∈ H. This last condition is naturally needed in order to interpret
⟨Ψ|Ôn|Ψ⟩ as a probability. We note that, rigorously speaking, a POVM denotes the set of
all linear operators satisfying the previous conditions. By extension, it is common to call
any member of the preceding family a POVM, and we will continue to use this convention
hereafter. The theory of quantum measurement ultimately relies on the concept of POVM
(for an introduction to POVM and its use in quantum information processing, see [66,67],
and for a more general and precise discussion related to the measurement process and dBB
theory, see [24,65,68,69]). These operators indeed constitute fundamental mathematical
tools formalizing the generalized von Neumann measurements coupling a system S to a
pointer M. Moreover, in the dBB theory relying on spatial measurements, the fundamental
role is played by projectors |q⟩⟨q| (where q is a coordinate vector in the configuration space
of the system). We include in the Appendix A a brief description of the POVM measurement
formalism applied to dBB theory for particles. This approach is non-ambiguous at least in
the non relativistic regime for a particle with or without spin and by extension for Dirac
(fermionic) relativistic particles (the extension to bosonic quantum fields is also possible
but relies on different beables or hidden variables than particle positions q and will not be
considered here).

Going back to our previous example with the double-slit experiment, it is central to
observe that while PΨ

±a(t) are obtained from standard POVMs, the Bohmian algorithm to
interpret these experimentally observable quantities as physical properties associated with
the system at time t = 0 does not work for an arbitrary wave function. Indeed, the previous
example strongly relies on the symmetry of ΨS. For a different superposition (for example,
by adding a phase: Ψ′

S(x, y, z, t) = Ψ0(x − a/2, y, z, t) + eiχΨ0(x + a/2, y, z, t)), the interpre-
tation of ⟨Ψ′(t)|Ô+a|Ψ′(t)⟩ as a probability PΨ′

+a for the particle to be initially in the upper
wave packet will not generally hold! It will, however, work for the cases χ = 0 or π.

In other words, in general, Equation (4) does not define genuine Bohmian ‘which-path’
observables. Moreover, for an arbitrary wave function Ψ(x, y, z, t) = αΨ0(x − a/2, y, z, t) +
βΨ0(x + a/2, y, z, t), it will be possible to define other POVMs

Ô
(Ψ)
±a =

∫

x∈∆
(Ψ)
±a

d3x|x⟩⟨x| (5)

where ∆
(Ψ)
±a are spatial domain images of ∆0(±a, 0, 0) through the Bohmian dynamical

map x(t) = F
(Ψ)
t (x0, t = 0), i.e., ∆

(Ψ)
±a = F

(Ψ)
t (∆0(±a, 0, 0), t = 0) is the volume of the fluid

carried by the particles during the evolution F
(Ψ)
t . In the dBB formalism, this can written

PΨ
±a(t) =

∫

I
∆
(Ψ)
±a

(x(t))ρΨ(x(t), t)d3x(t) (6)

=
∫

I
∆
(Ψ)
±a

(x(t))ρΨ(x0, t = 0)d3x0

where I
∆
(Ψ)
±a

(x(t)) =
∫

u∈∆
(Ψ)
±a

d3uδ3(x(t)− u) is an indicator function.

In fact, all of this can be interpreted in another way. An experimenter content with
measuring the spatial distribution of particle arrival on the detection screen will generally
not be able to trace the notion of the path followed and thus obtain ‘which-path’ type
information without performing a post-analysis on the events detected. So, in our example,
the experimenter will be able to post-select the events detected in the x-positive region in
order to obtain physical information. It is the theory, in this case that of de Broglie Bohm,
that makes it possible to interpret and give meaning to the raw data.
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It is clearly an example of Einstein’s credo ‘the theory decides what is to be measured’!
Having explained this, we are now ready to discuss the relationship between the

concept of arrival time in Bohmian mechanics and the notion of POVM.

3. Can We Observe Bohmian First Arrival Time? (First Round)

The notion of arrival time can be precisely defined in dBB theory. Consider a region of
space, say a Σ surface, then for a given wave function Ψt, the dBB trajectories x(t) arbitrarily
integrated from an initial time t0 = 0 and passing through this surface define the successive
arrival times of the particle on this surface. In general, these times are not unique, as the
particle can zig-zag around Σ. In cases where we can define a dBB first instant of arrival τΨ

Σ

on Σ (which is generally true for time-dependent problems where the wave function Ψtis
non-stationary), we formally write [22,28–30,45,46]:

τΨ
Σ = inf{t : x(t) ∈ Σ} (7)

The distribution of arrival time is generally obtained from the probability current
JΨ(x, t) projected onto the detection surface element having the direction n(x). Consider-
ing an infinitesimal surface dΣx, the number of particles crossing this surface during an
infinitesimal interval of time δt around t is given by

PΨ
dBB(x, t)δt := |JΨ(x, t) · n(x)|dΣxδt = ρΨ(x(t), t)δ3x(t) = ρΨ(x(t0), t0)δ

3x(t0) (8)

where we used the conservation of probability in the second and third lines with the
volume δ3x(t) = |vΨ(x, t) · n(x)|dΣxδt and where x(t0) are the initial coordinates for the
dBB trajectory connected to x(t). Moreover, if we consider only what is occurring in this
time window δt, then PΨ

dBB(x, t) = ρΨ(x(t0), t0)δ
3x(t0)

1
δt can be interpreted as an arrival

time distribution for the elementary surface dΣ. Integrating over the surface Σ and post-
selecting only on those events corresponding to a first arrival, the probability distribution
of first arrival reads

PΨ
dBB(Σ, τ) =

∫

Σ
|JΨ(x, τ = τΨ

Σ ) · n(x)|dΣx =
∫

V
δ(τ − τΨ

Σ )ρΨ(x0, t0)d
3x0 (9)

where x0 = x(t0). These two very general expressions are equivalent and were used
by DD [30,45,46] partly based on previous works by Leavens [4,10,70] and Dürr and
collaborators [28,29] (for other related works, see [22,71,72]).

We stress that the absolute value is required since the particle can come from the wrong
side in the presence of back-flow. In this regime, the probability current is backpropagating,
i.e., JΨ(x, t) · n(x) < 0 even if the incident wave packet Ψ contains only propagative
components Ψk (i.e. plane waves) which separately satisfy JΨk (x, t) · n(x) > 0 . In other
words, back-flow can be seen as an interference effect specific to wave mechanics. We
also emphasize that in general, PΨ

dBB(Σ, τ) is not normalized, i.e.,
∫

dτPΨ
dBB(Σ, τ) ≤ 1,

because not every trajectory is necessarily crossing Σ.
In usual scattering experiments where the incident wave packet Ψt0 is well localized in

space and where the detection the surface is located in the far-field (the far-field is the regime
where r ≫ λ, with r a typical distance between the source and the detector and λ a typical
wavelength), we can completely neglect back-flow. In this regime, the distribution of first
arrival times becomes the distribution of arrival times altogether [28,29]. There is no longer
any need to involve post-selection in arrival times, and the probability distribution reduces
to the standard formula used in collision physics (e.g., for evaluating scattering cross-
sections), regardless of any knowledge of Bohmian theory. We emphasize that semiclassical
and far-field regimes are often used in the orthodox quantum interpretation but these
approximations appear only as limiting special cases of the dBB framework situations
where trajectories are classical-like (i.e., because the quantum potential is negligible). In the
dBB framework, all kinds of vagueness concerning classicality can be easily removed and
the physical interpretation of PΨ

dBB(Σ, τ) is non-ambiguous even in regimes where the



Symmetry 2024, 16, 1325 8 of 39

far-field positivity condition JΨ(x, t) · n(x) > 0 does not hold anymore. The ontological
clarity of classical physics is thus recovered even in the quantum regime!

Yet, the fact that the probability PΨ
dBB(Σ, τ) can be mathematically constructed from

the notion of Bohmian trajectories does not explain how this probability can be measured.
Indeed, quantum mechanics is highly contextual and one should clearly distinguish the
probability of being from the probability of being detected. In fact, it is well accepted
that in the far-field regime, i.e., in the absence of back-flow, the PΨ

dBB(Σ, τ) distribution
is directly measurable, in line with results obtained in studies of scattering and collision
processes. This is also what emerges from the observation of diffraction and interference
phenomena, also observed in the far-field and in very good agreement with the predictions
for PΨ

dBB(Σ, τ) given by Bohmian theory.
Nevertheless, nothing is less certain for the more general regime where the back-

flow phenomenon is predicted by theory. The measurability of PΨ
dBB(Σ, τ) can then be

questioned. This is exactly the regime considered by DD [45,46] in a situation involving a
spin-1/2 particle exhibiting a back-flow-like phenomenon even quite far from the source.
To justify the measurability of PΨ

dBB(Σ, τ) in this regime, DD points out that a precise
theory of detection is by no means necessary to understand the far-field regime in very
good agreement with the theory. Similar statements were given by Dürr and Teufel in a
known textbook:

‘We should follow the common practice of quantum physics and henceforth not worry
about the presence of detectors, simply taking for granted that the detection is designed in
such a way that it does not mess up the trajectories too much’ [29] p. 347.

In DD’s view, the same could be expected in the new situation, even in the presence of
back-flow. They wrote:

‘We expect that in the experiment proposed in this paper the same will be true, i.e., the
detection event should not be drastically disturbed by the presence of the detector’. [45]

However, it is not difficult to show that this necessarily leads to difficulties and even
paradoxes such as those highlighted by GTZ [48].

The Specific Problem Considered by Das and Dürr

To keep the description of the situation described by DD as simple as possible, we
recall that it considers a spin-1/2 particle confined in a cylindrical guide with symmetry
axis z. Initially, the particle is described by a strongly localized wave function

Ψŝ(ρ, z, t0) = χŝ · Φ(ρ, z, t0) (10)

where χŝ is a two-component spinor such that χ†
ŝ σχŝ = ŝ (ŝ is a unit vector defining the

spin direction and σ = [σx, σy, σz] are the Pauli matrices). Initial particle spatial confinement
along the z direction is provided by a potential well. When this is removed on one side
only, the wave packet moves towards z > 0 while preserving the structure of the spinor
χ, which remains unchanged. The wave function then becomes Ψŝ(ρ, z, t) = χŝ · Φ(ρ, z, t),
the spatial part, preserving its rotation invariance over time. The dBB theory applied to the
Pauli equation leads to a probability current along the z direction:

JΨŝ
z (x, t) = |Φ(ρ, z, t)|2 ∂zS(ρ, z, t)

m
+

ŝ · ϕ̂
2m

∂ρ|Φ(ρ, z, t)|2. (11)

In this formula, the first term is a convective current reminiscent of the formula used
for a spinless particle (S is the phase of the wave packet Φ(ρ, z, t)). The second term is a
spin current associated with the magnetic structure of the electron (ϕ̂ is a unit vector for the
polar angle direction). We stress that Equation (11) is an application of the non-relativistic

Gordon formula JΨ = 1
2mi (Ψ

†
↔
∇ Ψ) + 1

2m∇× [Ψ†σΨ] for the probability current of an
electron. In the relativistic regime, it is more convenient to use Dirac current JΨ = Ψ†αΨ

using the bispinor Ψ (for previous studies using the Dirac equation, see [31–35]).
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Two regimes are clearly identifiable. Firstly, in the longitudinal case where the spin
vector is aligned with the ±z direction, only the convective current survives. The dBB
theory then gives the same trajectories as for a spinless particle, and in particular the
absence of back-flow. The second regime is more interesting and corresponds to the case
of a purely transverse spin in the ±x direction, for example. In this case, the spin current
reads ± cos φ

2 ∂ρ|Φ(ρ, z, t)|2 and can clearly change sign. In the configuration considered by
DD, the spin current can more than compensate for the positive convective current, and so
in some cases we obtain a back-flow JΨŝ

z < 0.
Using these predictions for the probability current, we can construct probability

distributions for the first arrival times on a given cross-section Σ of the wave guide at
z = const > 0 in both longitudinal and transverse spin configurations. The distribution
PΨ±ẑ

dBB (Σ, τ) for the longitudinal case is similar for both ±z possibilities (i.e., PΨẑ
dBB(Σ, τ) =

PΨ−ẑ(Σ, τ)). Qualitatively, the distribution starts from zero for τ = 0, approaches a max-
imum, then slowly decreases to zero for τ tending towards infinity. This probability
distribution gives the same result as for the spinless particle case. The transverse config-

uration is more surprising. We have first a rotational invariance PΨŝ
dBB(Σ, τ) = PΨŝ′

dBB(Σ, τ)
for any choice of the transverse spin vector (for example, ŝ = +x̂ or ŝ′ = −x̂), which was
expected based on the cylindrical symmetry of the problem. Qualitatively, the probability
distribution for the transverse case resembles the longitudinal one. The probability starts
from zero at τ = 0, approaches a maximum, and decreases. Here, however, the distribution
is more peaked and the decay more pronounced. Remarkably, after a characteristic time
τmax, the distribution rigorously cancels out and remains so for any time τ > τmax.

It is at this point that GTZ deduce a contradiction. Assuming that the distribution of
arrival times is given by a POVM and that we have PΨŝ

dBB(Σ, τ) = ⟨Ψŝ|Ô(Σ, τ)|Ψŝ⟩, GTZ
show that it would imply

⟨Ψẑ|Ô(Σ, τ)|Ψẑ⟩+ ⟨Ψ−ẑ|Ô(Σ, τ)|Ψ−ẑ⟩ = ⟨Ψx̂|Ô(Σ, τ)|Ψx̂⟩+ ⟨Ψ−x̂|Ô(Σ, τ)|Ψ−x̂⟩. (12)

However, from the above-mentioned symmetries of the arrival time distribution, that
would imply PΨẑ

dBB(Σ, τ) = PΨx̂(Σ, τ), which is in general not true (in particular for τmax).
Therefore, as shown by GTZ, the dBB first arrival time distribution cannot be identified
with a POVM.

This result is unavoidable and since any experimental quantum statistics are assumed
to be represented by POVM, this seems to imply that P Ψ̂

dBB(Σ, τ) is not measurable.

There is another very good reason justifying this result. If PΨŝ
dBB(Σ, τ) was a POVM,

then we would have a way of beating the no-signalling theorem. We could in fact use a
Bell-type scenario with an entangled pair of EPR spin-1/2 particles to send signals faster
than light! The idea has been recently proposed by Maudlin in several interviews referring
to DD work [50–52]. The point is that if we have an EPR–Bohm pair |Ψ12⟩ ∝ | ↑1⟩| ↓2
⟩ − | ↓1⟩| ↑2⟩ and if we send one of the particles to Pluto where Alice can measure the
spin value along one arbitrary direction, then Bob on earth could, by recording the first
arrival time distribution of the second particle (send into the wave guide proposed by
DD), know instantaneously the value of the spin measured by Alice just by observing
an event at time τ > τmax (see Figure 1). Critically, this Maudlin–DD proposal is based
on the assumption that the distribution of first arrival times is identifiable with a POVM,
i.e., ⟨Ψ12|Ô2(Σ, τ)|Ψ12⟩. Moreover, POVMs are central for deriving the no-signalling
theorem in relativistic quantum mechanics and this result is central to guaranteeing a
peaceful relationship between quantum mechanics and Einstein’s relativity theory. It
is therefore a priori highly desirable that the PΨ

dBB(Σ, τ) distribution not be a POVM;
otherwise, it would jeopardize all quantum field theory! Clearly, Equation (12) agrees with
the no-signalling theorem since the sum is independent of the spin basis chosen and Bob
not knowing the result of Alice must observe a random mixture. Taken all together, this
does not leave much hope for the measurability of the Bohmian distribution PΨ

dBB(Σ, τ).
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Figure 1. Principle of the experiment proposed by Das and Maudlin to build a faster-than-light
Bell telephone. A pair of spin-1/2 particles in a perfectly entangled Einstein–Podolsky–Rosen (EPR)
state is separated and analyzed by two agents, Alice and Bob. Alice can measure the spin of her
particle along the ±ŝ unit directions. Specifically, she considers the case ±ẑ (longitudinal) and ±x̂

(transverse). On his side, Bob measures the first arrival time distribution PΨŝ

dBB(Σ, τ) for his particle
(still ignoring the spin of his particle). Let us say he is measuring at a time τ ≫ τmax at which the
distribution PΨx̂

dBB(Σ, τ) vanishes but PΨẑ

dBB(Σ, τ) does not (the distributions are here taken and freely
adapted from [45]). If Bob, in his remote lab, detects an event at τ ≫ τmax, then can he deduce
that Alice was measuring her spin along the longitudinal direction ±ẑ? Her measurement affects
nonlocally the dBB dynamics of the particle detected by Bob. This is a form of faster-than-light
communication contradicting Bell’s no-signalling theorem [53].

Of course, there remains the possibility that DD’s and Maudlin’s results and analyses
are correct, in which case it could be that performing the experiment could indeed defeat
the POVM-based no-signalling theorem. This seems highly speculative, however, since this
would imply a whole new physics beyond the standard theory of measurement based on
POVMs and this would call into question the peaceful consensus between quantum me-
chanics and relativity theory. Therefore, it is likely that another, more nuanced answer is the
right one. In what follows, we shall show both that GTZ’s criticisms are too strong and that
DD (and Maudin) are too confident about the measurability of the PΨ

dBB(Σ, τ) distribution.
Let us start by looking at the problem in a more general way, and try to answer the two

points (i) and (ii) mentioned in the introduction. Since the ideal dBB probability distribution
PΨ

dBB(Σ, τ) depends on the projected current |JΨ(x, t) · n(x)|, the first question is whether
we can associate a POVM with |JΨ(x, t) · n(x)| (i.e., |JΨ(x, t) · n(x)| ≡ ⟨Ψ|Ôx,t|Ψ⟩). This
is a natural hypothesis since the current depends bilinearly—more precisely, sesquilin-
early [23,24]—on ψ and ψ†. The answer is no, and was given by Dürr and colleagues [23,24].
In fact, [23] was not interested in |JΨ(x, t) · n(x)| but in JΨ(x, t) · n(x), but the answer is
the same. Let us summarize the reasoning: Assume two wave functions Ψ1 and Ψ2 such
that JΨ1(x, t) · n(x) > 0 and JΨ2(x, t) · n(x) > 0 are true at point x and time t, but such
that for the wave functions Ψ+ = Ψ1+Ψ2√

2
and Ψ− = Ψ1−Ψ2√

2
, we have JΨ+(x, t) · n(x) > 0

and JΨ−(x, t) · n(x) < 0 (such situations can occur during interference experiments). If we
assume that |JΨ(x, t) · n(x)| is associated with a POVM, then by definition, we must have:

|JΨ1(x, t) · n(x)|+ |JΨ2(x, t) · n(x)| = |JΨ+(x, t) · n(x)|+ |JΨ−(x, t) · n(x)| (13)

Furthermore, we also have

JΨ1(x, t) · n(x) + JΨ2(x, t) · n(x) = JΨ+(x, t) · n(x) + JΨ−(x, t) · n(x) (14)

Clearly, the two relations contradict each other, so |JΨ(x, t) · n(x)| cannot generally be
a POVM. This is a central result that rules out any possibility of PΨ

dBB(Σ, τ) being a POVM!
Note that this proof was obtain in 2013 [23], 10 years before the DD and GTZ results [45,48]
and is not dependent on spin. This is therefore a very robust result.

But now comes the crux. What is the physical meaning of a POVM Ô? Besides
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mathematics, this operator is just a tool, an algorithm, such that for any wave function Ψ, the
quantity ⟨Ψ|Ô|Ψ⟩ gives us a probability. Physically speaking, it means that we actually have
a very precisely defined experimental context or setup (i.e., with external fields, mechanical
frames and so on) such that we can record statistical data proportional to ⟨Ψ|Ô|Ψ⟩. The fact
that |JΨ(x, t) · n(x)| is not a POVM implies that there is no experimental configuration such
that the amount of statistical information recorded is directly proportional to |JΨ(x, t) ·n(x)|
and this is the case whatever the Ψ wave function chosen.

However, we should be careful with this theorem. Indeed, this result in no way implies
the non-existence of a POVM, or more precisely of an experimental context, which—in
some situations and for some Ψ—could approximately imply a probability approaching
|JΨ(x, t) · n(x)|. Far from that, we all know that detectors are not universal but instead
have an optimum operating range outside of which reliable measurement is no longer
possible. Therefore, even if it is not possible to build a universal (POVM) detector such that
|JΨ(x, t) · n(x)| is a probability, one expects to have POVM detectors such that

PΨ
detec.(x, t) = ηΨ|JΨ(x, t) · n(x)|dΣx (15)

where ηΨ is an efficiency coefficient which is in general a complicated function of the
quantum state Ψ. PΨ

detec.(x, t) depends on the detector used and therefore only reproduces
approximately the dBB flux predictions given by Equation (8). In the next sections, we will
consider the implications of this possibility.

4. The Fabry–Perot Ideal Absorbing Medium for a Plane Wave

We first consider the non-relativistic problem for spinless particles. We start by suppos-

ing a spinless nonrelativistic plane wave Ψ(0) = eik1zeikx xe−i k2
2m t impinging on an absorbing

Fabry–Perot slab located between the surfaces z = 0 and z = d (details concerning this
model are given in Appendix B). The number of particles absorbed by the slab intuitively
gives us the number of particles detected, and we can a priori define the arrival time
distribution as

PΨ
detec.(Σ, t) = ΣJΨ(0)

z [1 − |R|2 − |T|2] (16)

where |R|2 and |T|2 are the reflection and transmission coefficients, respectively (in the

absence of absorption, we would have 1 − |R|2 − |T|2 = 0), and where JΨ(0)
z = v cos θ > 0

is the incident current (v = k/m is the de Broglie velocity and θ the incidence angle with
respect to the z axis). We can alternatively write

PΨ
detec.(Σ, t) = −2Σ

∫ z=d

z=0
dzIm[Ve f f ]|Ψ|2(x, y, z)

(17)

where Ve f f is an effective dissipative potential such that Im[Ve f f ] < 0 (for a discussion of
complex potentials in scattering theory, see [73]).

This complex potential implies a violation of unitarity and the local conservation law
is modified as

∂t|Ψ|2 = −∇ · JΨ + 2Im[Ve f f ]|Ψ|2 (18)

In this model, the violation of unitarity is reminiscent of a coupling with an external
bath allowing inelastic scattering through the medium [74]. Absorbing effective potentials
have often been used in quantum optics since the 1990s in order to model attenuators
and losses [75]. In other words, these complex potentials are associated with transmission
channels that we can neglect or that we can associate with trapped particles moving outside
the domain of propagation considered. More physically, the medium constituting the slab is
filled with absorbing atoms with individual extinction cross-section σext = σscat + σabs and
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we have −2Im[Ve f f ] = Nvσext, where N is the absorbing atom density in the slab. A typical
way of justifying such a model is to consider scattering of a particle by a potential well
V(x) having one bound energy state E0 < 0 and a continuum of propagative modes Ek > 0
coupled to a bath with a continuum of energy levels (plus a vaccum state). The coupling
allows us to derive an effective potential associated with absorption by the well, i.e., V(x) →
V(x) + ∆E − iΓ/2 with Γ > 0 a decay constant associated with dissipation and absorption.

Moreover, even in this simple model, the physical interpretation must be conducted
carefully and take into account the whole experimental configuration. This is so because
dBB trajectories are in general highly contextual and nonclassical. The situation is non-
ambiguous if the incident wave is actually a ‘plane wave packet’ with finite lateral extension
(see Figure 2) as analyzed, for example, by Norsen in [76]. In the absence of the slab, the dBB
trajectories would be straight lines (i.e., if we neglect the dispersion of the wave packet).
An ideal projective detector, as discussed in standard textbooks, would simply be placed
in the beam and the physical interaction would be neglected. Here, however, if we take
into account the presence of the absorbing medium associated with the detector, the dBB
trajectories are modified. If this disturbance does not change the trajectories upstream
of the detector too much, the statistical predictions will not be affected too much and
the detector can be considered efficient. More precisely, far away from the slab in the
z < 0 domain, the incident and reflected contribution are non-overlapping and the dBB
trajectories are straight lines with constant velocity v. In the vicinity of the slab, the incident
and reflected part interfere and the dBB dynamics is much more complicated. As shown in
detail in [76], the particle trajectories oscillate around main trajectories sketched in Figure 2
(see also [8,9,77]). The stream lines separate two regions of the initial plane wave packet.
The trajectories drawn in blue are reflected and constitute a fraction |R|2 of the incident
flux [76]. The trajectories drawn in red are transmitted through the slab. Moreover, because
of Equation (18), a fraction of the particles crossing the medium are continuously absorbed
(i.e., detected) along the trajectories. After integrating Equation (18) over a dBB trajectory
x(t), we obtain

|Ψ|2(x(t), t) = |Ψ|2(x(t0), t0)e
−
∫ t

t0
dt′ [∇·vΨ

t′+2Im[Ve f f ]] (19)

which contains an exponentially decaying term involving Im[Ve f f ] < 0.
An ideal detector would be such that |T|2 ≃ 0 and |R|2 ≃ 0. In general, this is not

so. Ultimately, as shown in Appendix B, in the weak-coupling regime where absorption is
very low, the incident flow is weakly disturbed (the medium is nearly transparent, |T|2 ≃ 1

and |R|2 ≃ 0) and the arrival time probability reads PΨ
detec.(Σ, τ) ≃ ΣdNσext|JΨ(0) |, which is

independent of the incidence angle θ. In this regime, the detector does not record the ideal
dBB probability Equation (8). Moreover, as shown in Appendix B, even if |T|2 ≃ 0, it is in
general not possible with this simple model to have |R|2 ≃ 0. This is not only a question of
numerical factor ηΨ = [1 − |R|2 − |T|2], but also an important experimental issue since the
reflected and transmitted beams can subsequently disturb and even ultimately prohibit the
current flow in other places where different detectors could be located.
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Figure 2. Visualization of the typical dBB trajectories scattered by a thin slab corresponding to a
potential barrier. The dBB trajectories cannot cross and therefore the reflected (blue curves) trajectories
and transmitted (red curves) trajectories are not overlapping. This is an idealized and schematic
representation based on rectilinear rays inspired by the work of Norsen [76] (the dashed lines show
the limits of these idealized beams). In his work, Norsen considers a 1D problem and looks at
motion in the t − x plane (t being time), whereas here, we are looking at a stationary problem in the
x − z plane.

5. Ideal Absorption of a Plane Wave by a Perfectly Matched Layer

The previous model of Section 4 was too simple, since we considered a homogeneous
potential barrier. The idea to optimize the detector by using stratified media and complex
potential has been considered in [17,78,79]. However, we consider here a more idealized
approach. Indeed, in principle, an ideal detector can be obtained using a stratified medium
known as a perfectly matched layer (PML), often used in numerical calculations [80] (our
method differs from the Robin boundary condition approach advocated by Tumulka [81]).

Consider here a one-dimensional problem and let Ψ(0) = eikze−i k2
2m t be a plane wave solution

of the Schrödinger equation with k =
√

(2mE). We then suppose an ideal absorbing
medium located in the region z > 0 such that the new wave function reads

Ψ(abs)(z, t) = eikze−
∫ z
−∞

dz′χ(z′)e−i k2
2m t (20)

with χ(z) ≥ 0 an absorption function (ideally) vanishing for z < 0. As shown in Appendix C,
we can immediately check that Ψ(abs) is a solution of the equation

∂2
zΨ(abs) + 2m(E − Ve f f )Ψ

(abs) = 0 (21)

with the effective complex potential

Ve f f (z) =
χ2(z)− χ′(z)

2m
− iχ(z)

k

m
. (22)

corresponding to a dissipative (absorbing) medium or detector. Importantly, for this
medium, there is no reflected wave (i.e., R = 0) and the transmitted wave is exponentially

decaying as |Ψ(abs)(z, t)|2 = e−2
∫ z
−∞

dz′χ(z′) for z > 0. If the exponential factor is very large,
the transmission goes to zero very quickly as required for a good detector. Going back to
the detecting slab considered previously, we can still apply Equation (17) for a plane wave
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at normal incidence if the function χ(z) ideally vanishes for z < 0 and z > d (see Figure 3
for a more realistic situation where χ(z) is a continuous function). We have

PΨ
detec.(Σ, t) = 2Σ

k

m

∫ z=d

z=0
dz′χ(z′)e−2

∫ z′
0 dz′′χ(z′′).

(23)

In the particular case where χ(z) = χ0 > 0 is constant for 0 < z < d (i.e., χ(z) =
χ0θ(z)θ(d − z)), we obtain the effective potential

Ve f f (z) =
χ2

0θ(z)θ(d − z)− χ0(δ(z)− δ(d − z))

2m
− iχ0θ(z)θ(d − z)

k

m
(24)

and Equation (23) reduces to

PΨ
detec.(Σ, t) = Σ

k

m
(1 − e−2χ0d) = ΣJΨ(0)

z (1 − e−2χ0d) (25)

with JΨ(0)
z = k

m = v > 0 and Σ the detector cross-section. This detector has an efficiency

ηΨ = 1 − e−2χ0d. In the limit where χ0d → +∞, we thus have PΨ
detec.(Σ, t) → ΣJΨ(0)

z , which
recovers the dBB arrival time distribution Equation (8).

Figure 3. A typical complex potential associated with a PML for a particle detector. In (a), we show
the transmitted intensity if the detector is optimized for either a plane wave propagating along the
+z direction (blue curve) or a wave moving along the −z direction (red curve). (b) The real parts
Re[Ve f f ] of the potentials are shown (red dashed curve for the −z incident direction and blue curve
for the +z direction) and compared with the imaginary part Im[Ve f f ] < 0 of the potential (orange
curve) which takes the same form in both ±z cases.

It must be stressed that the detector is optimized here for a given wavevector k and
that in general, for a different choice k → k + δk, the potential will not act as a perfect
absorber (i.e., in general, the reflectivity R ̸= 0 for δk ̸= 0). In a similar way, observe that k
and χ do not necessarily have to be positive and that we can develop a detector adapted to
a counterpropagating wave ∝ e−ikz with −k = −

√

(2mE) < 0 as well. From Equation (22),
we still have Im[Ve f f ] = −χ0θ(z)θ(d − z) k

m < 0 if χ(z) = −χ0θ(z)θ(d − z) < 0, and this
again corresponds to an absorbing medium (the choice χ(z) = +χ0θ(z)θ(d − z) > 0 would
have involved an anti-thermodynamical medium with gain, i.e, emitting particles instead
of absorbing them). From Equation (25), we now have

PΨ
detec.(Σ, t) = Σ

k

m
(e2χ0d − 1) = Σ|JΨ(0)

z |(e2χ0d − 1). (26)

This detector is a priori associated with a different efficiency ηΨ = e2χ0d − 1. However,
this is mostly a problem of convention concerning the role of the input and exit sides. If we
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instead normalize the field by its value at z = d and not at z = 0 (this is natural, since the
wave is counter-propagating and decaying in the −z direction), we recover PΨ

detec.(Σ, t) =

Σ|JΨ′(0)
z |(1 − e2χ0d) with the efficiency ηΨ′

= 1 − e−2χ0d as in Equation (25) and now

JΨ′(0)
z = − k

m e−2χ0d is associated with the incident plane wave Ψ′(0) = e−χ0de−ikze−i k2
2m t

and Equation (20) is replaced by Ψ′(abs)(z, t) = e−χ0deikze−
∫ z
−∞

dz′χ(z′)e−i k2
2m t with χ(z) =

−χ0θ(z)θ(d − z) < 0.
However, we emphasize that the new effective potential for the back-propagating

wave is actually different from Equation (24) since we have

Ve f f (z) =
χ2

0θ(z)θ(d − z) + χ0(δ(z)− δ(d − z))

2m
− iχ0θ(z)θ(d − z)

k

m
(27)

the real part of which differs from that deduced from Equation (24). This demonstrates
that it is not possible to use the same absorbing medium for the eikz and e−ikz cases. If we
had (wrongly) used Equation (24) for the e−ikz case, we would have obtained an additional
contribution in the form of a reflected plane wave proportional to eikz in the z > d domain
(i.e., the medium would not act as an idealized absorber for the counterpropagating wave).

Of course the discussion is based on an idealized medium, and the presence of Dirac
distributions in the potential Ve f f (z) of Equations (24) and (27) shows that the χ = const.
conditions are too strict. Moreover, these pathological features can be remodeled by
considering smooth potentials removing the discontinuities. An example is developed in
Appendix D. The conclusions we obtained before are, however, very general (the detector
can even be optimized for any plane wave having the associated wavevector components
kx, kz). As illustrated in Figure 3, the field transmitted through the medium is strongly
attenuated without reflection. Also, the potential is characterized by Im[Ve f f ] < 0, and as
before, we require two different potentials optimized either for the eikz (forward) or e−ikz

(backward) cases.

6. Generalization for Wave Packets and Time-Dependent Problems

The previous model, based on the interaction of a plane wave with an absorbing
medium, can in principle be generalized to the case of a superposition of plane waves form-
ing a wave packet. This is necessary in order to consider the problem associated with back-
flow. To do this, we will consider a particular case where the problem seems to be treatable
with sufficient precision and rigor. Let us consider the case where the initial wave function
Ψ(0)(x, t), i.e., in the absence of a detector, is developable in Taylor series in the vicinity of
a point x0. More specifically, we assume a constant energy E, i.e., Ψ(0)(x, t) ∝ e−iEt (our
wave packet or beam is thus physically a sum of plane waves having the same energy E

but different wave vectors) and write Ψ(0)(x, t) ≃ Ψ(0)(x0)e
−iEtei∇S(x0)·(x−x0)+O((x−x0)

2).
This is equivalent to assuming that the wave function is locally equivalent to a plane wave
with an effective wavevector ke f f (x0) = ∇S(x0). As shown by Berry [18], in general, such
wave packets can easily develop back-flow in the vicinity of a point x0.

A simple case is given by the superposition of two plane waves

Ψ(0)(x, t) = (eik1·x + αeik2·x)e−iEt (28)

with k1z > 0, k2z > 0 and α ∈ C, a constant. The probability current reads

JΨ(x) =
k1

m
+

k1

m
|α|2 + k1 + k2

m
|α| cos Φ (29)



Symmetry 2024, 16, 1325 16 of 39

with Φ = (k2 − k1) · x + Arg[α]. We are looking for situations where JΨ(0)
z < 0 (back-flow)

and for a given |α|, we naturally impose Φ = π for points where this back-flow is stronger.
Writing JΨ

z = k2z
m f (|α|) with

f (|α|) = |α|2 − (1 +
k1z

k2z
)|α|+ k1z

k2z
(30)

we easily find the minimum for |α|min = 1
2 (1 +

k1z
k2z

). In particular, as shown in Appendix E,
we easily obtain the effective wavevector ke f f (x0) and we have ke f f ,z(x0 = 0) = −k2z for

αmin = − 1
2 (1 +

k1z
k2z

).
It is thus possible to study numerically the trajectory back-flow effect near a point

where Φ ≃ π (e.g., near x0 = 0). This is illustrated in Figure 4 for a typical example. In this
example, we indeed have ke f f ,z(x0 = 0) = −k2z and we also have |ke f f (x0 = 0)| ≃ 1.11|k2|,
meaning that the effective wavelength λe f f ≃ 0.9λ0 is very close to the initial values of
each plane wave.

Figure 4. (a) Map of the real part of the wave function Re[Ψ(0)(z, x)] in presence of back-flow (see
Equation (28)) for the case k1 = [k1z = k cos (π/3), k sin (π/3))] and k2 = [k2z = k cos (9π/20),
k sin (9π/20))] and for k = 2π (the white arrows show these wave vectors normalized to k). The ef-
fective wave vector at the origin ke f f (0, 0)(blue arrows) has a negative z component due to local
back-flow. (b) Map of the dBB velocity vector (blue arrows) and trajectories(red lines) associated with
map (a).

As shown in Figure 4, the interference zone where the back-flow is visible is sufficiently
extended to imagine a detector localized in the region x0 ≃ 0 and able to observe the
phenomenon. In order to be more precise, we can use the model or perfectly matched layer
detectors and introduce a local potential barrier Ve f f (z) (see Equation (24) or Equation (27))
adapted to any regions of the interference field Ψ(0)(x), and this for both the normal and
back-flow regimes.

The great specificity of these detectors is of course that they are highly optimized
for well-defined regions of space (i.e., in the near environment of particular points x0,
x1, ...), where the initial wave function Ψ(0)(x, t) moves. Obviously, these detectors are
highly invasive in the sense that they are optimized to cancel local reflectivity at the chosen
point x0, x1, ... for a given local effective wave vector ke f f (x0), ke f f (x1), .... Transmission
is also zero, which implies high local absorption associated with high detection efficiency
ηΨ(x0), ηΨ(x1), ....

Moreover, faraway from the detector, the wave function is in general disturbed due to
diffraction and scattering by the potential Ve f f . Indeed, consider a single detector centered
on point x0 := [x0, y0, z0]. We assume that the detector has a finite volume δV located
between the planes z = z0 and z0 + d, where d can be arbitrarily small if the detector
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is very efficient (due to a fast decay of the wave propagating in the absorbing medium).
The transverse extension of the medium in the x and y direction is also limited around
x = x0 and y = y0 (i.e., ideally over few wavelengths λe f f (x0)). Therefore, the wave
function in the vicinity of point x0 is at a first approximation given by the theory of
Section 5.

However, due to the finite extension of the detector, important deviations must occur

in the far-field. If we write K
(0)
E (x|x1), the time-independent Green’s function for the

Schrödinger equation in vacuum (x is the observation point and x1 the source point),
we have

EK
(0)
E (x|x1) =

−∇
2

2m
K
(0)
E (x|x1) + δ3(x − x1) (31)

and the usual retarded solution is

K
(0)
E (x|x1) = −2m

ei
√

(2mE)|x−x1|

4π|x − x1|
(32)

From the Green theorem, the wave function scattered by the effective potential Ve f f

(with a negative imaginary part: Im[Ve f f ] < 0) is given by

Ψ(x) = Ψ(0)(x) +
∫

δV
d3x1K

(0)
E (x|x1)Ve f f (x1)Ψ(x1) (33)

where the integration is taken over the finite volume δV of the detector, i.e., for points x1
surrounding x0.

The scattered field Ψscat(x) = Ψ(x)− Ψ(0)(x) is equivalently writen using a surface
integral over the closed boundary δΣ surrounding δV. From the Huygens–Fresnel theory
applied to Schrödinger’s equation, we deduce:

Ψscat(x) = −
∮

δΣ
dΣ1n1 · [Ψ(x1)∇x1

K
(0)
E (x|x1)

2m
− K

(0)
E (x|x1)

2m
∇x1 Ψ(x1)] (34)

where n1 is the outwardly oriented unit vector normal to the surface element dΣ1 at point
x1 ∈ δΣ. In the case above of a sensing volume lying between planes z = z0 and z0 + d and
assuming a current JΨ

z (x0) > 0, the integration surface reduces approximately to the input
face δΣin at z = z0 and we have

Ψscat(x) ≃ −
∫

δΣin

dx1dy1[Ψ(x1)∂z1

K
(0)
E (x|x1)

2m
− K

(0)
E (x|x1)

2m
∂z1 Ψ(x1)] (35)

with R = |x − x1|. In general, this scattered field does not vanish, and in order to obtain
a converging expression, we replace the surface integral at z0 by a plane located at z0 − ϵ
such that χ(z0 − ϵ) ≃ 0. Equation (35) thus reads

Ψscat(x) ≃ Ψ(0)(x0)
∫

δΣin

dx1dy1
eikR

4πR
(ikR̂ · ẑ + ikz)e

ik|| ·(x1−x0) (36)

with R = x − x1, R̂ = R/|R| and the vector kzẑ + k|| := ∇S(x0), as explained before (for
kz > 0). For points in the shadow region, near the detector, the scattered contribution
Ψscat(x) strongly compensates the incident term Ψ(0)(x) and the full wave function ap-
proximately vanishes. However, in general, this implies that the scattered wave interferes
with the incident one and this will disturb the probability current JΨ as well as the dBB
trajectories in the vicinity of the strongly absorbing detector located at x0. The detector
is thus invasive and the disturbed trajectory flow will in general prohibit a subsequent
measurement of the incident current JΨ at a different point x′0 located near x0. We stress that
Equation (36) must be multiplied by the coefficient −1 if the current is counterprogating,



Symmetry 2024, 16, 1325 18 of 39

i.e., if we have a local back-flow with kz < 0 (this is because in this regime, the input face
at z = z0 contributing to the integral is replaced by the output face at z = z0 + d). We
thus have:

Ψscat(x) ≃ −Ψ(0)(x0)
∫

δΣin

dx1dy1
eikR

4πR
(ikR̂ · ẑ + ikz)e

ik|| ·(x1−x0) (37)

and all the conclusions concerning the invasiveness of the detector are of course also valid
in this back-flow regime.

The previous difficulties concerning ideal detectors are very general and will apply to
current measurements for time-dependent problems. This, in principle, is central for time
of flight and arrival time measurements. Qualitatively, the problem involves absorbing
detectors modeled by time-dependent dissipative potentials Ve f f (x, t). The potential is
supposedly acting only in a small region of space δV surrounding a point x0 during a time
interval δt surrounding a time t0.

The central formula in the above (non-relativistic) analysis is Equation (18)

−∂t|Ψ|2 = ∇ · JΨ − 2Im[Ve f f ]|Ψ|2 (38)

in which the sink term −2Im[Ve f f ]|Ψ|2 ≥ 0 represents the local absorption of the medium
characterized by an effective dissipative potential with Im[Ve f f ] < 0. The probability of
absorbing a particle is thus generally given by

PΨ
detec.(δΩ) = −2

∫

δΩ
d4xIm[Ve f f (x, t)]|Ψ|2(x, t) (39)

where δΩ is a 4-volume in space-time where the detector is active and the effective potential
Ve f f (x, t) ̸= 0. This effective potential is associated with relaxation and dissipation and
can ultimately be justified by interactions with a thermal bath (see Section 4). We stress
that PΨ

detec.(δΩ) is a POVM since −Im[Ve f f (x, t)] ≥ 0 and |Ψ|2(x, t) = ⟨x|Ψt|x⟩ (we have
the additivity for two disjoint regions δΩ1 and δΩ2 PΨ

detec.(δΩ1 ∪ δΩ2) = PΨ
detec.(δΩ1) +

PΨ
detec.(δΩ2)). The measurement of the probabilityPΨ

detec.(δΩ) is thus physically unambiguous
and must agree in both the orthodox and Bohmian quantum interpretations.

In practice, however, it is extremely difficult to build a detector with space-time
resolution. The basic idea, for example, would be to introduce a time-shutter that opens
and closes in a narrow time window δt. Within this time window, the incident particle is
likely to pass through and interact with the absorbing medium of the detector. However,
the wave theory of time-shutters and transient phenomena linked to diffraction in time
is complex (see, for example, [82–84]) and we will not go into it here. Calculations not
reproduced here show in particular that the presence of the shutter strongly disturbs
the incident wave field (e.g., due to the presence of back-scattering), and this will of
course have an impact on the PΨ

detec.(δΩ) probability. Another method could be to use
a dynamical potential barrier [85], or alternatively a metal plate that rejects secondary
electrons when subjected to a local excitation in space-time [86] (this approach has been
used in an interferometry experiment involving He atoms [87] and analyzed using dBB
dynamics [30]). For a review of detection methods relevant for arrival time measurement,
see [4,5] as well as [88–90].

Limiting our description to an effective absorption potential and Equation (39), it will
in general be difficult to reduce the probability to the simple dBB formula, Equation (8).
Going back to Equation (38) and integrating over a four-volume δΩ = δV × δt we obtain
by applying Gauss theorem:

∫

δV
d3x|Ψ(x, t)|2 −

∫

δV
d3x|Ψ(x, t + δt)|2

+
∫ t+δt

t
dt

∮

Σ
d2Σx · nxJΨ(x, t) = −2

∫

Ω
d4xIm[Ve f f (x, t)]|Ψ|2(x, t) (40)
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where nx is the inward-oriented unit vector normal to the closed boundary Σ surrounding
the volume δV of the detector and d2Σx is a surface element of Σ. If the detector is
efficient, we naturally expect

∫

δV d3x|Ψ(x, t + δt)|2 ≃ 0. Similarly, for an efficient and

compact detector reducing to a slab, we must have
∫

δV d3x|Ψ(x, t)|2 ≪
∫ t+δt

t dt
∮

Σ
d2Σxnx ·

JΨ(x, t) ≃ δt
∫

Σin
d2Σxnx · JΨ(x, t) where the only important contribution of the surface

integral comes from the entrance surface of the detector Σin (the sign
∫

Σin
d2Σxnx · JΨ ≥ 0

is thus naturally imposed but we can introduce a minus sign if we need to consider a
back-flow process). Therefore, Equation (39) reduces to

PΨ
detec.(δΩ) = −2

∫

Ω
d4xIm[Ve f f (x, t)]|Ψ|2(x, t) ≃ δt

∫

Σin

d2Σxnx · JΨ(x, t) (41)

which is recovering the dBB flux result, Equation (8), with a detecting efficiency η ≃ 1.
Of course, the present analysis is only an approximation. It cannot be general, since by
definition, Equation (39) is a POVM, whereas from the theorem of Dürr et al. [23] (derived
in Section 3, PΨ

dBB(x, τ) is not a POVM! We insist on the fact that if we use the perfectly
matched detector layer studied previously, then the surface integral

∫

Σin
d2Σx · nxJΨ(x, t)

depends on the initial wave function Ψ(0) existing in the absence of a detector. In this case,
we were justifying the possibility of measuring the local dBB distribution. In other words,
we have the local equivalence (and for this wave function): PΨ

detec.(δΩ) ≃ δtPΨ
dBB(x, τ) ≃

δtPΨ(0)

dBB (x, τ).
Furthermore, like in the stationary regime, the far-field wave function will be in

general strongly modified since we will have

Ψ(x, t) = Ψ(0)(x, t) +
∫

δΩ
d4x1K(0)(x, t|x1, t1)Ve f f (x1, t1)Ψ(x1, t1) (42)

where K(0)(x, t|x1, t1) = −i( m
2πi(t−t1)

)3/2e
i

m(x−x1)
2

2(t−t1) Θ(t − t1) is the retarded Schrödinger
Green function for the time-dependent problem. This implies that the mere presence
of an efficient absorbing detector in the space-time region δΩ will in general disturb and in-
fluence the surrounding environement. In particular, it will generally affect other detectors,
as we will now see.

7. General Discussions and Conclusions: Can We Observe Bohmian First Arrival Time?
(Second Round)

7.1. Weak Coupling versus Strong Coupling: Advantages and Limitations

The previous results show that, in general, it should not be impossible to measure
the dBB probability distribution PΨ

dBB(x, t) := |JΨ(x, t) · n(x)|dΣx of the first arrival times
at a given space-time point. However, as we show now, the procedure is generally very
invasive and may prevent this distribution from being measured in several space-time
regions in the same experiment. This point is crucial and is in line with the result obtained
on the no-signalling theorem concerning the impossibility of measurements that would
contradict special relativity.

Indeed, the central problem we have seen in previous sections is that an effective
detector modifies the Ψ wavefield in its immediate environment by scattering. This is in
some ways reminiscent of Renninger’s results on null or negative measurements [91]: A
non-measurement or non-detection of a particle by a localised screen impacts the wave
function of the particle outside that screen. The effect can never be neglected specifically if
the wavelength of Ψ is comparable to the detector size.

In Bohmian mechanics, the consequences are unavoidable in order to understand
how the presence of detectors can affect subsequent potential interactions or detections.
The problem is fundamentally linked to relativistic causality. For example, consider a
quantum particle following a Bohmian trajectory in space-time, as shown in Figure 5a.
Along this trajectory, we can place absorbing detectors at the space-time points A, B, and C
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(with time tC > tB > tA). From an intuitive point of view, if the detector observes a particle
at A, this naturally prevents subsequent observations at B and C. In other words, intuitively,
if, in an experiment, we position three detectors at A, B and C, only the first detector, which
is assumed to be very efficient, will be able to potentially observe a particle (this probability
of observation being given by Born’s rule |Ψ|2 for this point A) and we will never observe
particles at B or C because the mere presence of the detector at A screens out the other
detectors and precludes interactions. This intuitive description is, however, approximative
and essentially classical. It presupposes that the presence of the detectors at A, B, C is not
influencing the incident wave function Ψ. However, what we saw in previous sections of
this article is precisely the opposite; the detectors generally disturb the wave function Ψ.

As we saw, we can basically distinguish two regimes. In the ‘weak coupling regime’,
the detector is highly inefficient and η ≪ 1. In this regime, the Bohmian trajectories can be
considered as approximately non-modified: Most of the particles going through region A
of the previous example will not be absorbed by the detector and only a small fraction of
the incident particles will contribute to the recording signal at A. Moreover, in this weak
coupling regime, nothing prohibits the detectors at position B or C from firing if the particle
has not been detected at A (and B if we consider detection at C). Since we can ultimately
suppose that the incident wave function is not disturbed (i.e., we can neglect scattering in
Equation (36)), this implies that at the lowest order of approximation, the probabilities of

detection PΨ(0)

detec.(x, t) at A, B or C are just calculated by ignoring the presence of the other
detectors and using the incident wave function Ψ(0).

Figure 5. Bohmian trajectories 1, 2, 3, 4, ... in presence of position-time detectors. (a) In the idealized
weak coupling regime, detectors at points A, B, C or D are not perturbed by spurious scattering
and the system is sensitive to the incident wave function Ψ(0) existing in the absence of detectors.
However, one must add a clock to distinguish precisely the first arrival, second arrival, etc., at a given
position (the dashed line shows that A, B and C are belonging to the same dBB path). This requires
a precise knowledge of the dBB trajectories. (b) In the strong regime, only one pass is needed; the
detectors absorb with high efficiency the incoming particles. However, this strongly affects the wave
function Ψ ̸= Ψ(0) and disturbs the dBB motion on other detectors.

There are clearly advantages and disadvantages to considering the weak coupling
regime. Starting with the advantages, we can see, by returning to Figure 5a, that in this
regime, we can define detection experiments involving several points, A, B, C, etc., and
associated with complex geometries. From this point of view, measuring the probability

distribution PΨ(0)

detec.(Σ, t) is not in principle a problem. We can imagine, for example, a set
of weakly absorbing detectors distributed in a finite region of space-time in order to have
access in the same experiment to the probability distribution of arrival times associated
with the initial wave function Ψ(0).
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However, this weak coupling regime leads to two important problems. Firstly, as we
have seen in the previous sections, in the non-relativistic regime, if the efficiency of the

detector decreases, the arrival time probability approaches PΨ
detec.(Σ, τ) ≃ ΣdNσext|JΨ(0) |,

which is independent of the incidence angle θ and which shows that in the non-relativistic
regime in which the calculations are carried out, the detector is insensitive to the direction
of the probability current. Going back to Equation (39), we have for an individual detector
centered on A:

PΨ
detec.(δΩ) ≃ −2δt

∫

δV
d3xIm[Ve f f (x, t)]|Ψ(0)|2(x, t) ∼ ϵδtδV|Ψ(0)|2(xA, tA) (43)

with ϵ ∼ − 2
δV

∫

δV d3xIm[Ve f f (x, t)] a characteristic rate (in the model used previously—see
Section 4—we have ϵ = −2Im[Ve f f ] = Nvσext and δV = Σd, which allows us to recover the

formula PΨ
detec.(Σ, τ) ≃ ΣdNσext|JΨ(0) |). The detection probability is therefore no longer sim-

ply related to the ideal Bohmian probability Equation (8) PΨ
dBB(x, t) := |JΨ(x, t) · n(x)|dΣx

associated with the probability current JΨ(x, t).
The second problem with weak coupling arises from the very fact that the dBB trajecto-

ries obtained are unperturbed with respect to the initial wave function Ψ(0) (see Figure 5a).
It is therefore possible to imagine a detector that is sensitive to the first pass (at A), the sec-
ond pass (at B), the third pass (at C), etc. However, if the detector can observe a particle
corresponding to the second pass at B, for example (which may be associated with a back-
flow phenomenon), a clock is needed that can determine when the particles arrive and
tell when it is a first, second or third pass. In practice, this requires knowledge of the dBB
trajectories and is therefore dependent on the initial wave function. This problem seems to
be even more fundamental than the first, as it concerns the very notion of measurement.
In quantum measurement theory, which is based on the notion of POVM, it is presupposed
that any good measurement requires detection equipment that will function independently
of the chosen initial wave function Ψ(0). This is what is implied by the POVM formalism
that reduces any observable probability to an expression of the type PΨ

a = ⟨Ψ(0)|Ôa|Ψ(0)⟩,
which contains an operator Ôa (independent of |Ψ(0)⟩) and the wave function itself |Ψ(0)⟩,
which averages the operator Ôa. Here, however, in order to define the first, second, etc.,
arrival times, the precise knowledge of the dBB trajectories is needed. This clearly seems to
violate the natural formulation of quantum measurement based on POVM and therefore
does not look appealing. For the reasons mentioned above, the weak coupling regime
seems a priori unsuitable. This analysis confirms some of the worries of GTZ [48,57]. We
will see below that, far from being the case, the alleged defects will in fact turn out to be
advantageous. However, temporarily ignoring this point, it seems natural at this stage to
focus on the other regime, i.e., the strong coupling regime with highly efficient detectors.

In the strong coupling regime, the detection efficiency is high, i.e., η ∼ 1. As we have
seen in this regime, the probability of detection approaches the ideal Bohmian formula
Equation (8) PΨ

dBB(x, t) := |JΨ(x, t) · n(x)|dΣx. Moreover, as the probability of absorption is
high, this seems de facto to prohibit the detection of second, third, etc., passes; in principle,
only the first pass could be measured. This therefore seems intuitively desirable for a
procedure for measuring the first arrival time distribution of a particle in a given zone of
space (in agreement with the idealized classical picture of an absorption).

Alas, this image is, of course, an oversimplification because, as we have analyzed
above, the simple registration of a strongly absorbing detector in A will disturb the de-
tector’s immediate environment by scattering. Thus, in general, the wave function is
locally modified and the dBB trajectories are strongly perturbed. In the situation shown
in Figure 5a, the Bohmian trajectories are causally disturbed by diffraction in the future
light-cone emerging from point A. In fact, even if the particle passing through A is well
absorbed, this in no way precludes particle detection at B and C, since other disturbed
trajectories may reach regions B, C, etc., as shown in Figure 5b. Other regions may also
be affected, such as the one where detector D is located, which was not on the initial dBB
trajectory through ABC!
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We can obtain a theorem concerning this issue. Indeed, from [23] and results discussed

in Sections 3 and 6 (in particular, Equation (41)), we know that PΨ
detec.(δΩ) ≃ δtPΨ(0)

dBB (x, τ)
cannot generally be true for every wave function Ψ since the left-hand side of the relation is

a POVM, whereas the right-hand side is not. Let us assume that PΨ
detec.(δΩ) ≃ δtPΨ(0)

dBB (x, τ)
is (approximately) true for a specific wave function Ψ. We can thus consider several efficient
detectors in regions δΩ1, δΩ2, and suppose that for a given wave function Ψ, we have

PΨ
detec.(∪iδΩi) = ∑

i

PΨ
detec.(δΩi) ≃ ∑

i

δtiPΨi
dBB(xi, τi) (44)

Here, Ψi is the local wave function in the region δΩi that in principle includes the scattering
contributions from other detectors that could causally interact with detector i (i.e., located
in its past light-cone). Physically, we know some cases where Equation (44) is certainly true
or a very good approximation (e.g., typically in the far-field domain [30,86]). But what we
would ideally like to obtain is the stronger result

PΨ
detec.(∪iδΩi) = ∑

i

PΨ
detec.(δΩi) ≃ ∑

i

δtiP
Ψ
(0)
i

dBB (xi, τi) (45)

which depends on the initial wave function Ψ
(0)
i := Ψ(0)(xi, t1) unperturbed by the presence

of detectors and calculated at the various space-time points where the detectors are actually
located. For a single isolated detector, we know a priori that this is possible, but for a set of
detectors, the question remains open. However, we can easily show that this is actually
impossible. Indeed, since the various detectors in regions δΩ1, δΩ2, etc., are strongly
efficient, they actually record the probability of first arrival in these regions. The situation
is thus the one sketched in Figure 5b. But points A, B, C in this example are located on the
same initial unperturbed trajectory. Therefore, in order for Equation (45) to be true, we
would have to have detectors located at B and C which are sensitive to the first passage
of the particle at this point (in accordance with the definition and Figure 5b), and yet
according to Equation (45), in reality, these detectors would measure the second passage
(for B) and the third passage (for C). Another way of saying this is that, in accordance with
the definition of the strong coupling regime, the detector in A should be able to observe a
particle, while those in B and C should observe nothing in disagreement with Equation (45),
which authorizes detection in B or C. So there is a contradiction and we must conclude that
it is impossible to have such a configuration, and therefore, Equation (45) cannot be true
in situations involving several points on the same trajectory!

This clearly undermines DD’s position [45,46] that the presence of a detector should
not be taken into account when analyzing arrival times (it also undermines some predictions
made in [22] concerning back-flow). In fact, we are faced with two alternatives:

(1) We use detectors operating in the weak coupling regime, but then we have to amend
the implicit assumption that any measurement is based solely on a POVM, and we
have to add a post-selection and filtering condition (post-analysis) taking into account
the dBB dynamics. Also, in this regime (at least if we neglect spin), PΨ

detec.(Σ, τ) ≃
ΣdNσext|JΨ(0) | ̸= PΨ(0)

dBB (Σ, τ).
(2) We use a strongly coupled detection regime, but then we generally have to abandon

the idea of being able to directly measure the dBB distribution of arrival times based
on Equation (8). In case 2, we could of course eliminate the problem by limiting the
analysis to the detection at only one single space-time point located in the small region
δΩ. But in turn, this would mean that a single experiment could not measure all the

distributions PΨ(0)

dBB (Σ, τ). We would need several experiments in order to reconstruct
the distribution of arrival times. Additionally, in this situation, nothing would prohibit
us from recording the distribution at say, point B of Figure 5b. Indeed, since there
is no detector at A, there is no scattering from region A disturbing the local motion
at B. Therefore, like in the weak coupling regime, we need to add a post-selection
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depending on the full dBB dynamics in order to filter out such detection events. Like
for the weak coupling regime, this clearly contradicts the assumption of a purely
POVM-based quantum measurement procedure.

There are other issues that we have mentioned and which we must now consider, as
they play a central role in the analysis of the work of DD and GTZ. Indeed, DD’s predictions
involve spin-1/2 particles, so we need to include a magnetic current term (see Equation (11))
in our analysis. As we shall see, this has a strong impact on both regime 1 (weak coupling)
and regime 2 (strong coupling).

7.2. The Spin-Dependent Problem and the Measurement of the First Arrival Time Distribution of
Das and Dürr

In the previous analysis, we did not include the spin-1/2 required in the work of
DD [45,46] and GTZ [48,57]. For this purpose, we need to consider the dynamics of electron
using either the Pauli or Dirac wave equation. Taking the relativistic Dirac wave equation,
we have for the electron bi-spinor Ψ(x) ∈ C4:

iγµ∂µΨ(x) = mΨ(x) + eγµ Aµ(x)Ψ(x) (46)

where γ0 = β and γ = βα are Dirac matrices, e = −|e| the electron charge and Aµ(x) the
external electromagnetic field at space-time point x := [t, x]. By an obvious generalization
of the previous non-relativistic analysis, we can define an absorbing detector involving
complex 4-vector potential Aµ := [A0 = Φ, A] = Re[Aµ

e f f ] + iIm[A
µ
e f f ]. The local conser-

vation law for the 4-current Jµ = ΨγµΨ := [J0 = ρΨ = Ψ†Ψ, JΨ = Ψ†αΨ] is deduced from
Equation (46) and reads

−∂µ Jµ := −∂tρ
Ψ −∇ · JΨ = −2eIm[A

µ
e f f ]Jµ = −2eIm[Φe f f ]ρ

Ψ + 2eIm[Ae f f ] · JΨ (47)

which generalizes Equation (18) obtained in the non-relativistic regime for spinless particles.
From this relation, we can (a priori) extend the analysis of Section 6 and define the

probability of absorption by a detector located in the volume δΩ

PΨ
detec.(δΩ) = −2e

∫

δΩ
d4xIm[A

µ
e f f ]Jµ(x, t) (48)

which generalizes Equation (39) obtained in the non-relativistic regime for spinless particles.
However, unlike in the non-relativistic regime, there is an obvious difficulty; the scalar
product −eIm[A

µ
e f f ]Jµ(x, t) has no imposed sign. More precisely, in the non-relativistic

regime, the quantity −Im[Ve f f ]|Ψ|2(x, t) could always be positive if the medium obeys a
natural causal and entropic condition −Im[Ve f f ] ≥ 0 associated with inelastic scattering
and dissipation in the medium (i.e., due to coupling with a thermal bath). Of course,
media with gain (producing particles) such that −Im[Ve f f ] ≤ 0 are also potentially possi-
ble, but we could always imagine making a choice between the two alternatives. In the
case of lossy media, interpreting Equation (39) as the probability of absorption associated
with a POVM was therefore straightforward. In the relativistic regime, we cannot in gen-
eral be sure that the intrinsic properties of the medium will always impose a value of
−eIm[A

µ
e f f ]Jµ(x, t) strictly positive or negative. It means that for a given field Im[A

µ
e f f ],

PΨ
detec.(δΩ) ≥ 0 (loss) or PΨ

detec.(δΩ) ≤ 0 (gain), depending on the wave function Ψ. There-
fore, Equation (48) is not generally a POVM. Still, this quantity always has a physical
meaning. If PΨ

detec.(δΩ) ≥ 0, it represents a probability of absorption, and alternatively,
if PΨ

detec.(δΩ) ≤ 0, then −PΨ
detec.(δΩ) ≥ 0 represents a probability of emission (gain).

The crux is that it depends explicitly on the wave function Ψ used. This implies that in
the relativistic regime, the concept of POVM must be used cautiously. We stress that the
present analysis is in line with works applying Bohmian mechanics to quantum field theory
(QFT) where source/sink terms must be added in order to explain creation/annihilation of
particles by fields [92].
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Furthermore, supposing that for a given wave function Ψ, we indeed have PΨ
detec.(δΩ) ≥

0 and that we are considering a strongly efficient detector, we must have, as in Section 6:

PΨ
detec.(δΩ) = −2e

∫

δΩ
d4xIm[A

µ
e f f ]Jµ(x, t) ≃ δt

∫

Σin

d2Σxnx · JΨ(x, t) (49)

where the surviving contribution comes from a surface integral on the entrance side of the
detector (there is no ambiguity here, since the absorption condition PΨ

detec.(δΩ) ≥ 0 fixes
the direction of the decay of the wave function inside the detector).

However, there is now a new difficulty. Indeed, the Dirac current Jµ can be separated
into a convective current, a magnetic term and an absorbing term using the so-called
Gordon formula:

Jµ =
i

2m
(Ψ

↔
D µ Ψ)− 1

2m
∂ν(ΨσνµΨ)− e

m
ΨσµνΨIm[Aν

e f f ] (50)

with σνµ = i
2 [γν, γµ], Dµ = ∂µ + ieRe[Aµ

e f f ]. The absorbing term is usually not present
since the electromagnetic field is supposed to be real-valued. Here, this is not the case and
we must in general include this contribution. In the non-relativistic limit, this reduces to
ρΨ ≃ Ψ†Ψ and

JΨ ≃ 1
2m

(Ψ† ↔
π Ψ) +

1
2m

∇× [Ψ†
σΨ] +

e

m
Im[Ae f f ]× Ψ†

σΨ (51)

where π = ∇

i − eRe[Ae f f ] and Ψ ∈ C2 is now a bispinor. Now the problem is that the
divergence of the magnetic term in Equation (50) or (51) cancels out, and consequently,
the associated surface integral calculated using Gauss’s theorem over a closed surface
surrounding the detector region (in the 3D or 4D formalism) vanishes in Equation (52).
Therefore, in the non-relativistic regime, Equation (52) actually reduces to

PΨ
detec.(δΩ) ≃ δt

∫

Σin

d2Σxnx · [
1

2m
(Ψ† ↔

π Ψ) +
e

m
Im[Ae f f ]× Ψ†

σΨ]. (52)

The most important consequence is that an efficient detector (i.e., η ∼ 1) cannot
register a signal proportional to the total current flow; the detector is not sensitive to the
magnetic term 1

2m∇ × [Ψ†σΨ]. But it is precisely this term that plays a crucial role in
the analysis of DD and GTZ, with disastrous consequences for the analysis of DD in this
regime. More precisely, in the case of a simple detector where the coupling is via the
scalar field Ve f f := eΦe f f (A

µ
e f f := [Φe f f , 0]), we recover the analysis conducted in the

previous sections for spinless particles (indeed, we can always impose −2eIm[Φe f f ]ρ
Ψ ≥ 0,

imposing PΨ
detec.(δΩ) ≥ 0), but now we see that the detector will only be sensitive to the

convective term, which in the example of DD, reads

J
Ψŝ
conv.(x, t) = |Φ(ρ, z, t)|2 ∇S(ρ, z, t)

m
(53)

without the magnetic term −1
m ŝ ×∇|Φ(ρ, z, t)|2 of Equation (11). In the work of DD [46],

an explicit formula is given for the current, which in their system of normalized units (see
Equation (18) in [46]), reads:

J
Ψŝ
conv.(x, t) = |Φ(ρ, z, t)|2 tz

1 + tz2 ẑ (54)

which is directed parallel to the axis of the waveguide. It is interesting to note that a
dBB dynamics without any magnetic term is often considered as a good alternative (see
discussions in [8,9]). We can debate endlessly the motivations for the different dynamics,
but in the end, we see that the detectors are in the present regime ignoring the spin term.
The dBB trajectories deduced from this truncated current are thus straight lines parallel
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to the z axis and the velocity of the particle is tz
1+tz2 ẑ. In this regime, there is no observed

back-flow. Of course, for a Bohmian, the question of which velocity is the good one is
fundamental, but from the point of view of detection theory, only the convective term plays
a role and the trunctated dynamics without the spin term is the only relevant one.

Most importantly, this convective term generates a probability distribution of first
arrival times that is independent of the orientation of the incident spin ŝ. The analytical
formula is again given in [46] for the convective current of Equation (54) (see Equations (51)
and (52) in [46]), and we have:

PΨ
detec.(τ, L) =

4L3

λ0
√

π

τe
− L2

1+τ2

(1 + τ2)5/2 (55)

where z = L is the position of the detector localized along a cross-section of the wave guide
and λ0 is a constant [46].

We stress that for DD, the distribution of first arrival times given by Equation (55)
is only valid in the longitudinal cases where ŝ = ±ẑ, whereas here, in the presence of
strongly efficient detectors, this distribution is actually valid for every spin orientation
ŝ! In particular, this distribution is never vanishing, i.e., there is no critical time τmax for
which PΨ

detec.(τ, L) = 0 for τ > τmax. This is very different from the predictions obtained by
DD [45,46] with transverse spins. Clearly, this implies that in assuming the strong coupling
regime, all paradoxes of DD and GTZ disappear.

More precisely, in the strong coupling regime, where detectors are inherently sensitive
only to the first arrival time, we see that GTZ’s analysis [48] is clearly validated to the
detriment of DD’s conclusions [45]. Indeed, in this regime, Equation (12) is trivially true,
as there is no longer any spin dependence (PΨ

detec.(τ, L) is, for all practical purposes, a
POVM). Bell’s theorem is also safe; tt is not possible to use this type of experiment to send
faster-than-light signals, as the distribution is invariant to spin basis shifting. Again, this
agrees with GTZ [48].

At this stage, you could say that the die was cast; GTZ were right and DD were wrong.
However, we should not jump to conclusions. We have not yet analyzed the problem in
terms of weak coupling detection.

As we said, this weak coupling regime has two inherent shortcomings. The first
concerns the notion of POVM, which the approach seems to cast doubt on, since the
notion of dBB trajectory must be taken into account in order to make arrival time pre-

dictions. The second problem stems from the fact that the PΨ(0)

dBB (Σ, τ) distribution mea-
sured in the non-relativistic regime depends only on the norm of the probability current

PΨ
detec. (Σ, τ) ≃ ΣdNσext|JΨ(0) |. However, the second problem was obtained in the context

of a non-relativistic theory for spinless particles. In the context of Dirac or Pauli theory, this
problem can in fact be corrected. Indeed, starting from Equation (48), we deduce that in
general, we have

PΨ
detec.(δΩ) = −2e

∫

δΩ
d4x

(

Im[Φe f f ]Ψ
†Ψ(x, t)− Im[Ae f f ] · Ψ†

αΨ(x, t)
)

(56)

where Ψ is a Dirac bispinor. In the spinless case, only the first term appears, and in the
weak coupling regime, we have indeed an absorption probability proportional to Ψ†Ψ(x, t),
i.e., to the density of probability. In the Dirac–Pauli theory, this is possible if the detector
is scalar, i.e., if Im[Ae f f ] = 0. But for a spin-1/2 particle, this is not the only option. We
can in principle develop an experimental configuration with an absorbing field such that
Im[Φe f f ] = 0 but Im[Ae f f ] ̸= 0. In this alternative, the ‘probability’ of detection/gain reads

PΨ
detec.(δΩ) = +2e

∫

δΩ
d4xIm[Ae f f ] · Ψ†

αΨ(x, t) ∼ ϵδtδVn · JΨ
total(xdetec., tdetec.) (57)
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with ϵn ∼ + 2
δV

∫

δV d3xIm[Ae f f (x, t)], a coupling efficiency (compare with Equation (43)).
This ‘probability’ of local absorption/gain depends on the full Dirac current at the detector
position, and thus, in principle, it is possible to build such a detector which in the weak
coupling regime would give a signal directly related to the dBB probability predicted by
DD [45,46]. Moreover, in order to have absorption and not gain, we must locally define
the field Im[Ae f f (x, t)] in order to have PΨ

detec.(δΩ) ≥ 0 in the small 4-volume δΩ. This
procedure is wave function-dependent, since for a given field Im[Ae f f (x, t)], we cannot
impose the sign of Equation (57) for every wave function! Again, PΨ

detec.(δΩ) given by
Equation (56) is not generally a POVM, but still, its physical interpretation in terms or loss
or gain is obvious. The fact that it strongly depends on Ψ shows once more that in the
relativistic regime, local interactions do not simply lead to POVM. Yet, by specifically and
locally engineering a field Im[Ae f f (x, t)], we can imagine developing detectors adapted to
a given wave function Ψ.

Note, however, that at the very end of a measurement process, POVMs are still used.
A localized detector with PΨ

detec.(δΩ) > 0 or PΨ
detec.(δΩ) < properties will behave either as

an absorber or as an emitter, depending on the case and the Ψ wave function chosen. If we
know a priori by calculation (i.e., dBB trajectories) how it will behave, then in the end, the
experimenter will either have to count absorbed particles (e.g., trapped in the detectors or
channelled to particle-counting outputs in the far-field) or emitted particles, once again sent
and redirected to more conventional counters in the far-field regime. In these final counting
regimes, we ultimately end up using

∫

∆
dq|q⟩⟨q| projectors associated with POVMs in given

regions of space ∆ (i.e., in the far-field). The fact that dBB theory is ultimately based on such
spatial location and counting experiments was already pointed out by de Broglie and Bohm
and justifies the use of POVMs. Clearly, however, there is no universal detection procedure,
and we need to add elements foreign to POVMs in order to perform good dBB physics.

Of course, here we are just building a proof of principle, and we can see that there is
nothing in the laws of physics to prevent the construction of such detectors. However, more
work clearly needs to be conducted to define a precise and efficient design for such a Dirac
or Pauli current detector that would allow us to trace the Bohmian distribution of arrival
times predicted by DD. This goes far beyond the scope of the present study. Now we have
seen that POVMs are not the end of the story, but before concluding, however, it remains to
return to the second objection against the weak coupling regime, namely the weakening of
the exclusive use of POVMs, which is assumed as a postulate by GTZ, among others, and
is associated with a post-analysis of the data.

7.3. Beyond the Standard-only POVM-Based Quantum Measurement Procedure

The fact that the notion of POVM appears in any probabilistic analysis in quantum
mechanics, and more specifically, in Bohmian mechanics, is not surprising, as we pointed
out at the beginning of this article. However, the belief that one can limit oneself to using
POVMs to interpret quantum experiments within the framework of dBB theory is based
on prejudiced beliefs and demonstrates that a better understanding of the importance of
the Bohmian approach can be obtained. The problem is actually much more general than
the one we analyzed in the previous subsection and which concerned only the Dirac–Pauli
equation and the relativistic regime (or the regime of the Pauli equation with spin).

Let us return to the example of the two-slit experiment discussed at the beginning
of this article in Section 2. As we showed then, it is possible, thanks to the dBB theory,
to retrodict the passage of the particle through one or the other of the apertures while
detecting interference fringes. To accomplish this, we need to know precisely the shape of
the wave function Ψ(x, t) used in the experiment (and in particular, its phase) in order to
calculate the Bohmian velocity field and thus obtain the ‘which path’ information. Of course,
the whole method relies on the validity of Born’s rule on quantum probabilities, and in
the end, this necessarily implies the use of POVM in the analysis. However, knowledge
of the theoretical Bohmian trajectory allows us to find information that we would say
is ‘hidden’ if we did not know this dBB theory. In other words, we start with the raw
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measurements using Born’s rule, but we have to carry out post-analysis or filtering to
process the data and highlight the correct Bohmian information. This new methodology
has been strongly advocated in recent years by Detlef Dürr, and I consider this point to
be a major contribution to our understanding of Bohmian theory. Clearly, this is far from
being accepted by the whole ‘Bohmian’ community, but the lack of consensus shows, in my
opinion, even more the importance of the classical physics prejudices that have survived
among the dBB community.

Dürr often illustrated his argument by using Einstein’s reply quoted in Section 2:

‘it is the theory which alone decides what is measurable’. [58]

which Einstein gave to Heisenberg in 1926 when the latter claimed that he could build a
theory using only the notion of the observable. What Einstein reminded or taught Heisen-
berg [58] was that every scientific theory begins with a quasi-metaphysical act; a theory
has to be postulated, and this act, although motivated by previous observations, is free.
Then comes the prediction, and empirical data can only be interpreted within a precise
theoretical framework. This is the heart of the hypothetico-deductive method advocated by
Boltzmann and Einstein. Here, we are interested in the dBB theory, and therefore, following
Einstein’s hypothetico-deductive method, the analysis of data must include the Bohmian
dynamics in order to be predictive.

This is clearly the case for the retrodiction obtained in the two-slit experiment, which
enabled us to trace back to the ‘which path’ information thanks to precise knowledge of
the dBB trajectories (interestingly, it was only by forgetting the fundamentally quantum
character of these dBB trajectories that Heisenberg and many others after him thoughtlessly
deduced that Bohmian dynamics was surreal and that trajectory interpretation could not
explain wave–particle duality). This is also clearly the case here (and in agreement with the
conclusions of Dürr and Das [45,46]) for the analysis of the first arrival times of particles on
a detector. Going back to the above analysis of strong and weak regimes, what we have
deduced is indeed the need to explicitly take into account the Bohmian dynamics in order
to be predictive and to reconstruct the first arrival time probability PΨ

dBB(x, t) from the
raw data.

This suggests the following experimental scenario for measuring the arrival time
distribution predicted by DD. Use a set of detectors operating in the weak coupling regime
in agreement with Equation (57) and sensitive to the probability current including the
spin term. This set of detectors is distributed in space-time in such a way as to map the

probability density of Bohmian arrival times PΨ(0)

detec(Σ, τ) ≥ 0. This requires a specific
engineering of the local fields Im[Ae f f (xi)] in each spatio-temporal region δΩi where the

detectors are located in order to impose PΨ(0)

detec(Σ, τ) ≥ 0. As we are working in the weak
coupling regime, the initial wavefunction is very weakly perturbed, enabling us to carry
out a single experiment without changing the protocol from point to point in space-time.
However, in this weak coupling regime, we also need to perform a post-analysis to filter
out signals that may or may not be associated with first arrival times, second arrival times,
etc. This is clearly wave function-dependent and shows that elements foreign to POVM
must be considered. Although the method is based on good absorbing detectors, it can
only be interpreted physically if this post-analysis is carried out. This is very much in line
with the principle described above in the two-slit example.

It could be argued that if knowledge of Bohmian trajectories is necessary in order to
carry out this post-analysis or post-selection, this would be a purely theoretical element
based on unobservable trajectories, i.e., ‘hidden variables’. In reality, dBB trajectories are
not unobservable in principle. As mentioned in the introduction, weak measurement pro-
tocols [38] can be used to map the velocity field [39,40,42–44] and then trace the trajectories
followed by the particles. In principle, then, we could imagine a pre-experiment that would

first map dBB trajectories for the Ψ
(0)
t initial wave function we are interested in (in principle,

this could also involve the regions of detectors but this would be very difficult, since it
would require near-field measurements). Only once we know these dBB trajectories can



Symmetry 2024, 16, 1325 28 of 39

we carry out the post-selection required in our arrival time experiment to reconstruct the
Bohmian probability distribution.

It is worth noting that Dürr has long insisted on the limitation imposed by orthodox
measurement theory of restricting itself to so-called linear procedures [24,29,65], which is at
the heart of von Neumann’s approach. However, he noted that weak measurements are part
of non-linear measurement procedures that go beyond the simple use of POVMs [24,65].
This is also clearly the case with arrival time measurement, and our analysis strongly
confirms his own intuitions and work with Das [45,46].

It is also important to note that approaches based on weak measurements have the-
oretically focused on non-relativistic problems (i.e., Schrodinger equation) [43] or the
relativistic Klein Gordon equation for spinless particles [44]. However, experimental mea-
surements [39,40,42] are based on electromagnetic trajectories which, in all rigor, take into
account the polarization aspects associated with light propagation [93,94]. In the problem
we are interested in here, it would be necessary to be able to define weak measurement
protocols adapted to the relativistic Dirac equation, probably by analogy with what we have
already accomplished in the optical and electromagnetic domain. This opens interesting
research perspectives.

Clearly, with this protocol, we can bypass the objections raised by GTZ [48,57]. First of
all, Equation (12) presupposed that arrival time measurements were entirely based on the
notion of POVM. However, although our detectors here are fundamentally absorbing, since

we have PΨ(0)

detec(Σ, τ) ≥ 0, detector engineering together with post-selection are specifically
Bohmian and non-linear (they vary strongly with the wave functions used). Remarkably,
the present protocol, while not based only on POVM, is physically acceptable and does not
contradict any fundamental law.

Secondly, the objections related to Bell’s theorem and no-signalling theorem are also an-
swered. Indeed, in the ’Bell–Maudlin–Das experiment’ described in Section 2, it is assumed
that Bob can measure the distribution of dBB arrival times independently of knowledge of
the spin of his particles. This makes sense in a procedure based solely on POVMs. But here,
the design of the detectors and the method of post-selecting the data require knowledge of

the wave function and therefore of the particle spin. Bob cannot establish the PΨ(0)

dBB (Σ, τ)
probability distribution without prior knowledge of the wave function and spin of the
objects measured by Alice. Moreover, Bob could still decide to use a fixed setup such that
the potentials Im[Ae f f (xi)] at the various points of the detector are uniquely defined for all
the wave functions. If he is fixing the setup in such a way, then the various ‘probabilities’
PΨ

detec.(δΩ) for each elementary volume δΩ of the detector are not necessarily positive (this
is reminiscent of the presence or loss and gain in the general dynamics). This is the case
in particular if we have back-flow, as in DD’s setup [45]. The detector is thus not always
working correctly, and sometimes, part of the full detector emits particles instead of absorb-
ing them. Moreover, if we consider the full Dirac current with convective and magnetic
contributions in the configuration developed by DD [46] (see Equation (11)), we can easily
prove (see Appendix F) that the full integrated signal PΨ

detec.,full(Σ, t) ≃ η
∫

d2Σx JΨŝ
z (x, t)

recorded by the detector without post-selection is given by

PΨ
detec.,full signal (Σ, τ) = η

4L3

λ0
√

π

τe
− L2

1+τ2

(1 + τ2)5/2 . (58)

with η ≪ 1 This is precisely (up to the η coefficient) the spin-independent distribution con-
sidered in [46] (see Equation (55)). In other words, because the signal is spin-independent,
it cannot be used to violate non-signalling and sent a signal. Bob can, of course, decide
to post-select data in order to reconstruct the first arrival dBB distribution (which is spin-
dependent). But in order to do so, he must already know the spin measured by Alice in
order to correlate the information!

To sum up and conclude, in this work, we have analyzed in detail DD’s proposal [45,46]
to measure particle arrival times using dBB theory. We have compared their work with
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the criticism made by GTZ [48,57]. To this end, we have studied in detail the notion of
particle detection in quantum mechanics in the context of DBB theory. We concluded
that both DD [45,46] and GTZ [48,57] were both right and wrong. More specifically, DD
were right in believing that their specific Bohmian predictions involving the back-flow
phenomenon could be observed. However, they were wrong to believe that the impact of

detector physics could be neglected in their analyses. To be sure, the dBB PΨ(0)

dBB (Σ, τ) distri-
bution is merely an ideal, theoretical formulation of particle flow in space-time. However,
only the PΨ

detec.(δΩ) probability associated with absorption or, more generally, interaction
phenomena makes sense in the context of a complete physical theory, and dBB theory as
such is no exception to this fundamental fact.

In this work, we have clearly demonstrated the existence of two regimes: weak
and strong coupling, corresponding to low and high detection or absorption efficiency,
respectively. The strong coupling regime is the most natural, as it corresponds to the experi-
menter’s natural expectation and it will lead to first arrival time distributions. In this regime,
the detection probability PΨ

detec.(δΩ) (which is a POVM in the non-relativistic regime) re-
duces approximately to the dBB probability, Equation (8) PΨ

dBB(x, t) := |JΨ(x, t) · n(x)|dΣx,
which is not a POVM. Since this is true only for some wave functions Ψ, there is no paradox.
However, the method is highly invasive and strongly disturbs the wave function and
dBB trajectories, which in general can lead to major technical difficulties. Therefore, it
would be impossible to engineer complex time arrival detectors adapted to several wave
functions Ψ1, Ψ2, ..., some presenting back-flow, others not. What is more, in the relativistic
domain (requiring the Dirac equation) or in the Pauli equation regime for spin 1/2 electrons,
the notion of POVM is even more difficult to apply and we have seen that it is very hard to
make a measurement approaching the dBB prediction because the spin magnetic current is
generally undetected.

We deduced that the weak coupling regime was ultimately more appropriate for
measuring the probability distribution predicted by DD. However, there is a price to pay.
First of all, we must learn to give up the tenacious belief that only physics based on the
notion of POVM has the right to be quoted. In fact, in the dBB framework, it is necessary to
abandon this prejudice as soon as we seek to analyze trajectories (as we have shown with
several examples). In keeping with Einstein’s credo that ‘only theory decides what is to be
measured’, we have shown that, in order to measure the PΨŝ

dBB(Σ, τ) probability distribution
predicted by DD [45,46] (and which depends on spin orientation ŝ), in the weak coupling
regime, we must necessarily carry out a post-analysis or post-selection to filter and classify
the events detected, corresponding to first detection, second detection, etc. This point is
fundamental and strongly contradicts GTZ’s conclusions, which rely solely on the notion
of POVM in their critical analysis.

In the end, however, we agree with GTZ [48,57] on two points. Firstly, the physics of
the detector cannot be neglected in the analysis, as pointed out above (although this actually
constitutes a weaker agreement with GTZ, who hastily concluded that no dBB arrival time
measurement was possible based on their POVM analysis, whereas we demonstrate the
opposite here); secondly, it is impossible within the framework of ‘standard’ non-modified
quantum mechanics, in which the dBB theory is embedded (i.e., without questioning the
foundations and without adding new physics at a ‘sub-quantum’ level), to contradict the
results of Bell’s theorem and violate the no-signalling condition[95]. In fact, an analysis
obtained within the framework of the weak coupling regime shows that DD and Maudlin’s
proposal could not lead to such violations and to a hypothetical transmission of detectable
supraluminal information. In our view, this is fortunate, as it means that the dBB theory
is still completely empirically equivalent to the orthodox approach (in areas where these
approaches are comparable). Of course, new physics is always possible [49], but it is by no
means necessary here to agree with the results of DD and GTZ [45,46,48,57].

At a more fundamental level, our work should not be seen as an attempt to prove
the correctness or truth of the dBB interpretation (contrary to hypotheses that have been
discussed in the past [25]). As we have shown, the dBB theory fits in very well with the
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theoretical framework of quantum mechanics, and allows us to recover all its empirical
content. In this field of measurement theory, Bohmian and orthodox quantum mechanics
are empirically equivalent. Of course, the ontological clarity and absence of a measurement
problem (i.e., the absence of a wavefunction collapse) is a great advantage for dBB theory.
However, other ontological approaches could undoubtedly predict other trajectories and at
the same time account for arrival time experiments. Also, as mentioned in the introduction,
we could just add an arbitrary ∇× F(x, t) term to the local current in order to obtain a
new Bohmian ontology. The general methodology here would be to develop detectors
adapted to these new probability currents and dBB dynamics. This would clearly define
a new distribution of probability for the arrival times and we see no reason or physical
law which could prevent us from imagining detectors for such alternative theories. From a
philosophical point of view, this leads us to be more modest about our preferred theories,
while at the same time encouraging more comparative analysis of different approaches.

At a practical level, the greatest impact of our research will concern the possibility of
constructing detectors for Bohmian arrival times in any situation, such as those involving
back-flow. From a practical point of view, this will give a positive answer to a problem that
has been debated since the 1990s, while generalizing it to problems involving spin particles.
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Appendix A. POVM and dBB Theory

In order to describe a quantum measurement, we start with a subsystem S wave func-
tion |ψS

0 ⟩ ∈ HS = ∑n cn|nS⟩ expanded in a complete basis |nS⟩ and initially uncoupled to a
pointer M wave function |ΦM

0 ⟩ ∈ HM. During a generalized von Neumann measurement,
the interaction between S and M is characterized by an unitary evolution operator ÛSM

acting on the full Hilbert space HS ⊗HM, and it leads to entanglement:

|ΨSM
0 ⟩ = |ψS

0 ⟩|ΦM
0 ⟩ = (∑

n

cn|nS⟩)|ΦM
0 ⟩ ÛSM

−−→ |ΨSM
t ⟩ = ∑

n

cn|ΨSM
n ⟩ (A1)

where we have ⟨nS|mS⟩ = δnm → ⟨ΨSM
n |ΨSM

m ⟩ = δnm. We stress that in standard projective
von Neumann measurements, |ΨSM

t ⟩ = |nS⟩|ΦM
t ⟩, but here we consider a more general

case. In the dBB framework, the physical probabilities are defined in the configuration
space, and therefore, if q is the spatial coordinates for the S sub-system and ξ the spatial
coordinates for the M sub-system, we initially have the wave function ΨSM

0 (q, ξ), which
evolves as ΨSM(q, ξ, t) at time t. We can thus rewrite

ΨSM
0 (q, ξ) = ψS

0 (q)Φ
M
0 (ξ) = (∑

n

cnψS
n(q)Φ

M
0 (ξ)

ÛSM

−−→ ΨSM(q, ξ) = ∑
n

cnΨSM
n (q, ξ, t) (A2)

In order for an observer to legitimately speak of a quantum measurement, the physical
variables of the pointer, which in the dBB framework are necessarily the coordinates ξ, M
must move by an observable quantity in such a way that we can experimentally distinguish
the different eigenvalues n, m, etc., associated with the different states |nS⟩, |mS⟩, etc. To do
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so in a non-ambiguous way, we must be sure that the different waves functions ΨSM
n (q, ξ, t),

ΨSM
m (q, ξ, t), etc., are non-overlapping in the ξ−configuration space. In other words, these

wave functions ΨSM
n (q, ξ, t), ΨSM

m (q, ξ, t), etc., must have finite disjoint supports ∆n, ∆m,
etc., in the ξ−configuration space such that

|ΨSM
n (q, ξ, t)|2 · |ΨSM

m (q, ξ, t)|2 = 0 if n ̸= m. (A3)

The probability Pn of finding the pointer in the zone ∆n of the ξ−configuration space
is therefore given by

Pn =
∫

dq
∫

∆n

dξ|ΨSM(q, ξ, t)|2 = |cn|2
∫

dq
∫

∆n

dξ|ΨSM
n (q, ξ, t)|2

= |cn|2
∫

dq
∫

dξ|ΨSM
n (q, ξ, t)|2 = |cn|2⟨ΨSM

n |ΨSM
n ⟩ = |cn|2 (A4)

It can be rewritten as

Pn = ⟨ΨSM
t |Π̂S

n|ΨSM
t ⟩ = ⟨ΨSM

0 |(ÛSM)−1Π̂S
nÛSM|ΨSM

0 ⟩ (A5)

where Π̂S
n =

∫

∆n
dξ|ξ⟩⟨ξ| is the sum of projectors in the cell ∆n. It is equivalent to

Pn = ⟨ψS
0 |ÔS

n |ψS
0 ⟩ (A6)

where ÔS
n is a POVM defined by

ÔS
n = ⟨ΦM

0 |(ÛSM)−1Π̂S
nÛSM|ΦM

0 ⟩ (A7)

that explicitly reads

ÔS
n =

∫∫

dq f dq0|q f ⟩⟨q0|MSM(q f , q0) (A8)

with

MSM(q f , q0) =
∫

∆n
dξ

∫∫∫

dqdξ f dξ0ΦM
0

∗
(ξ f )Φ

M
0 (ξ0)K

SM(q, ξ; q0, ξ0)K
SM∗

(q, ξ; q f , ξ f ) (A9)

and the propagator KSM(q, ξ; q0, ξ0) = ⟨q, ξ|ÛSM|q0, ξ0⟩. We stress that we have the con-
dition (MSM(q0, q f ))

∗ = MSM(q f , q0) that implies the self-adjointedness ÔS
n = (ÔS

n)
†

required in the definition of a POVM. To complete our definition of a dBB POVM, we
observe that we have ∑n ÔS

n = Î, and ⟨ψS
0 |ÔS

n |ψS
0 ⟩ ≥ 0 whatever |ψS

0 ⟩.
The previous analysis was limited to spinless systems. If we consider systems of

particles with spins, we replace the wave function ΨSM(q, ξ, t) by ΨSM
iS ,jM (q, ξ, t), where iS

and jM are discrete spin indices for the S and M subsystems. From Equation (A1), we still
have Pn = ⟨ψS

0 |ÔS
n |ψS

0 ⟩, where the POVM reads

ÔS
n = ∑

iSf ,iS0

∫∫

dq f dq0|q f ⟩⟨q0|MSM
iSf ,iS0

(q f , q0) (A10)

with MSM
iSf ,iS0

(q f , q0) = (MSM
iS0 ,iSf

(q0, q f ))
∗ such that

MSM
iSf ,iS0

(q f , q0) = ∑
iS ,jM ,jM

f ,jM
0

∫

∆n

dξ
∫∫∫

dqdξ f dξ0ΦM
0,jM

f

∗
(ξ f )Φ

M
0,jM

0
(ξ0)

KSM
iS ,jM |iS0 ,jM

0
(q, ξ; q0, ξ0)K

SM∗
iS ,jM |iSf ,jM

f
(q, ξ; q f , ξ f ) (A11)

and KSM
iS ,jM |iS0 ,jM

0
(q, ξ; q0, ξ0) = ⟨q, ξ, iS, jM|ÛSM|q0, ξ0, iS

0 , jM
0 ⟩.
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Appendix B. Scattering by an Absorbing Fabry–Perot Detector

We model the absorbing medium by a set of atoms with individual extinction cross-
section σext =

4π
k Im[ f0], where k = mv is the momentum of the incident particle and f0 the

(complex-valued) inelastic scattering amplitude associated with a spherically symmetric

wave Ψs ≃ f0eikr

r . In the regime where the density N of the absorbing atom is not too high,
the wave function propagating in the medium obeys the equation

∇
2Ψ + (k2 + 4π f0N)Ψ = ∇

2Ψ + 2m(E − Ve f f )Ψ = 0 (A12)

corresponding to a medium having an effective propagation index ne f f =
√

[1 + 4π f0 N

k2 ],

i.e., to a medium characterized by an effective (complex-valued) potential Ve f f = − 4π f0 N
2m

with Im[Ve f f ] = −N k
2m σext < 0. The time-dependent Schrödinger evolution in this po-

tential i∂tΨt = [−∇
2

2m + Ve f f ]Ψt leads to the conservation law Equation (18) containing a
dissipation term 2Im[Ve f f ]|Ψ|2 due to the violation of unitarity in this effective model.

We now consider a plane wave incident on such a medium supposed to be confined
in a (Fabry–Perot) slab between the parallel surfaces z = 0 and z = d. The incident plane

wave reads Ψ(0) = eik1zeikx xe−i k2
2m t, where kx = k sin θ, k1 = k cos θ =

√

k2 − k2
x are, respec-

tively, the x and z wavevector components, θ is the incidence angle, and k the wavevector
associated with the kinetic energy k2

2m . In the presence of the Fabry–Perot slab, the wave
functions in the regions z < 0 and z > d read, respectively:

Ψ< = (eik1z + Re−ik1z)eikx xe−i k2
2m t

Ψ> = Teik1zeikx xe−i k2
2m t (A13)

Fresnel’s reflection and transmission coefficients R, T are given by standard formulas:

R =
r

1 − r2eiδ
(1 − eiδ)

T =
k2

k1

teiδ/2

1 − r2eiδ
(A14)

where r = k1−k2
k1+k2

, t = 2 k1
k1+k2

are the single interface Fresnel’s coefficients (with k2 =
√

k2
1 + 4π f0N the z−wavevector component in the absorbing medium), and δ = 2k2d is a

complex phase shift.

In the medium, for 0 < z < d, the wave function reads Ψinside = (Ceik2z +De−ik2z)e−ikxxe−i k2
2m t

with

C =
1
2
[1 + R +

k1

k2
(1 − R)]

D =
1
2
[1 + R − k1

k2
(1 − R)] (A15)

The dBB trajectories can be computed in the different regions using the probability
current JΨ = Im[Ψ†∇Ψ]/m. We have for z < 0

JΨ
z =

k1

m
(1 − |R|2),

JΨ
x =

kx

m
(1 + |R|2 + 2|R| cos (2k1z − arg(R))) (A16)
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leading to the trajectory equation dz
dx = JΨ

z

JΨ
x

in the interfering region:

dz

dx
= cot θ

1 − |R|2
1 + |R|2 + 2|R| cos (2k1z − arg(R))

(A17)

The mean trajectory, around which the particle oscillates, obeys the equation dz
dx =

cot θ 1−|R|2
1+|R|2 , which has a geometrical interpretation, as shown in [76] and Figure 2. In the

slab for 0 < z < d, we similarly obtain

dz

dx
=

k′2
kx (|C|2e−2k”2z − |D|2e2k”2z) + 2 k”2

kx |DC| sin (ξ)

|C|2e−2k”2z − |D|2e2k”2z + 2|DC| cos (ξ)
(A18)

with ξ = 2k′2z + arg(D)− arg(C), k′2 = Re[k2], k”2 = Im[k2]. This defines a very compli-
cated motion [61,76]. In the transmitted region z > d, we have dz

dx = cot θ, as it should be.
From Equation (18), we can calculate the difference between the probability current

flows through the surfaces z = 0 and z = d:

Iz=0 − Iz=d = Σ · v cos θ[1 − |R|2 − |T|2] = Σ · Nσextv
∫ z=d

z=0
dz|Ψ|2(x, y, z) (A19)

with Iz=0 =
∫

Σ
dxdyJΨ

z (x, y, z = 0), Iz=d =
∫

Σ
dxdyJΨ

z (x, y, z = d) and Σ is the whole

lateral surface of the slab. Importantly, Σ · Nσextv
∫ z=d

z=0 dz|Ψ|2(x, y, z) represents the proba-
bility of absorption by the slab per unit time, i.e., it defines the fraction of incident particles
trapped by the detector per unit time or the arrival time probability density PΨ(Σ, τ) (here,
the situation is time-independent).

Two extreme regimes are relevant for the present discussion. First, in the weak cou-
pling regime with a low density N and small cross-section σext, we have a semi-transparent

medium r ≃ 0 implying R ≃ 0 and T ≃ eik2d, i.e., |T|2 ≃ e−
Nσextd

cos θ . Thus, we obtain

PΨ(Σ, τ) ≃ Σ · Ndσextv = Σ · Ndσext|JΨ(0) | (A20)

which is proportional to the norm of the initial probability current and does not depend on
the incidence angle θ. In the second ‘strong absorption’ regime, we assume Im[δ] ≫ 1 and
thus |T|2 ≃ |t|4| k2

k1
|2e−2Im[δ] → 0 and |R|2 → |r|2. We thus obtain the arrival time density

of probability:

PΨ(Σ, τ) ≃ Σ · v cos θ[1 − |r|2] = Σ · JΨ(0)

z [1 − |r|2] (A21)

Note that in the limit where the medium is strongly absorbing, we have r → −1, and
therefore, the probability of absorbing a particle tends to vanish as well.

Appendix C. Perfectly Matched Layer Detectors: General Derivations

We write

Ψ(abs) = eikz f (z)eik|| ·x|| e−i k2
2m t. (A22)

We immediately check that we have

1
f ′(z)

∂z(
1

f ′(z)
∂zeikz f (z)) = −k2

zeikz f (z) (A23)
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or equivalently

∂2
zΨ(abs) − f ”(z)

f ′(z)
∂zΨ(abs) + k2

z( f ′(z))2Ψ(abs) = 0. (A24)

The first-order derivative can be eliminated by using the condition 1
f ′(z)∂zeikz f (z) =

ikzeikz f (z), and therefore, we have

∂2
zΨ(abs) − ikz f ”(z)Ψ(abs) + k2

z( f ′(z))2Ψ(abs) = 0. (A25)

Writing kz f (z) = kzz + i
∫ z
−∞

dz′χ(z′) (χ(z) defining the absorption of the system),

f ′(z) = 1 + i
χ(z)

kz
, f ”(z) = i

χ′(z)
kz

, (∂2
x + ∂2

y)Ψ
(abs) = −k2

||Ψ
(abs) we thus deduce

∇
2Ψ(abs)(z, x||, t) + 2m(E − Ve f f (z))Ψ

(abs)(z, x||, t) = 0 (A26)

with the effective complex potential

Ve f f (z) =
χ2(z)− χ′(z)

2m
− iχ(z)

kz

m
. (A27)

Appendix D. Perfectly Matched Layer Detectors: A Particular Model

In relation with Appendix C, we now impose

χ(z) = χ0 · [θ(−z)e−az2
+ θ(z)θ(d − z) + θ(z − d)e−a(z−d)2

] (A28)

where 1/
√

a defines a characteristic length over which the potential Ve f f rises continu-
ously around the two zones z ≃ 0 and z ≃ d. With this choice, the function f (z) =
z + i

kz

∫ z
−∞

dz′χ(z′) in Equation (A22) reads

f (z) = z +
i

2kz
χ0

√

(
π

a
)[1 + er f (

√
az)] if z ≤ 0

f (z) = z +
i

kz
χ0[z +

1
2

√

(
π

a
)] if 0 ≤ z ≤ d

f (z) = z +
i

kz
χ0[d +

1
2

√

(
π

a
)(1 + er f (

√
a(z − d)))] if d ≤ z. (A29)

where er f (x) = 2√
π

∫ x
0 dze−z2

. From Equation (A27), we deduce Ve f f with χ′(z) = −2χ0a ·
[zθ(−z)e−az2

+(z− d)θ(z− d)e−a(z−d)2
]. As shown in Figure 3, the potential is a continuous

function of z (with slope discontinuities at z = 0 and z = d arising from the second-order
derivative χ′′(z)).

In analogy with Equation (23), we define the probability PΨ
detec.(Σ, t)

PΨ
detec.(Σ, t) = 2Σ

k

m

∫ +∞

−∞
dzχ(z)e−2

∫ z
−∞

dzχ(z) (A30)

which reads

PΨ
detec.(Σ, t) = Σ

k

m
[e−ξ(1 − e−2χ0d) + ξF(ξ) + e−2χ0dξG(ξ)] (A31)

with ξ = χ0

√

(π
a ), F(ξ) = 2√

π

∫ 0
−∞

dze−z2
eξ(1+er f (z)), and G(ξ) = 2√

π

∫ +∞

0 dze−z2
eξ(1+er f (z)).

In the limit ξ → 0 (i.e. a → +∞), we have F(0) = G(0) = 1 and we recover the result,
Equation (25).

The present analysis for a detector adapted to a plane wave ∝ e+ikzz with kz > 0
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can be used to define the absorbing medium corresponding to an incident plane wave
propagating in the opposite direction, i.e., ∝ e−ikzz. For this, we write the previous solution,

Equation (A22), as Ψ(abs) = eikzze−F(z)eik|| ·x|| e−i k2
2m t and we define the counterpropagating

wave as the one obtained under the transformation z → d − z. We write the new wave:

Ψ̃(abs) = e−ikzze−F(d−z)eik|| ·x|| e−i k2
2m t = e−ikz f̃ (z)eik|| ·x|| e−i k2

2m t (A32)

where we omitted a phase constant. We have the transformation F(Z) =
∫ Z
−∞

dzχ(z) →
F(d − Z) =

∫ +∞

Z dzχ(d − z), and therefore, f̃ (Z) = Z − i 1
kz

∫ +∞

Z dzχ(d − z), f̃ ′(Z) =

1 + i 1
kz

χ(d − Z), f̃ ”(Z) = −i 1
kz

d
dz χ(z)|z=d−Z. Finally, we deduce

∂2
zΨ̃(abs) + ikz f̃ ”(z)Ψ̃(abs) + k2

z( f̃ ′(z))2Ψ̃(abs) = 0. (A33)

and therefore,

∇
2Ψ̃(abs)(z, x||, t) + 2m(E − Ṽe f f (z))Ψ̃

(abs)(z, x||, t) = 0 (A34)

with the new effective complex potential adapted to the counterpropagative wave:

Ṽe f f (Z) =
χ2(d − Z)− d

dz χ(z)|z=d−Z

2m
− iχ(d − Z)

kz

m
. (A35)

With the example of Equation (A28), we have χ(d − z) = χ(z), and d
dz χ(z)|z=d−Z =

−χ′(Z), and therefore,

Ṽe f f (Z) =
χ2(Z) + χ′(Z)

2m
− iχ(Z)

kz

m
. (A36)

This can be compared with Equation (A27) for the choice Equation (A28). The two
effective potentials differ by the sign in front of χ′(z).

Appendix E. Back-Flow with Two Plane Waves

From

Ψ(0)(x, t) = (eik1·x − 1
2
(1 +

k1z

k2z
)eik2·x)e−iEt (A37)

obtained with α = αmin = − 1
2 (1 +

k1z
k2z

) in Equation (28), we deduce the probability current
z−component at the point x0 = 0:

JΨ(0)

z (x0 = 0) =
k2z

m
[|α|2 − (1 +

k1z

k2z
)|α|+ k1z

k2z
] = − k2z

4m
(1 − k1z

k2z
)2

< 0. (A38)

Similarly, we have |Ψ(0)(x0 = 0)|2 = (1 − |α|)2 = 1
4 (1 −

k1z
k2z

)2. This allows us to define
an effective (z−component) wavevector:

ke f f ,z(x0 = 0) = m
JΨ(0)
z (x0 = 0)

|Ψ(0)(x0 = 0)|2
= −k2z. (A39)

We can easily deduce the other components of ke f f (x0 = 0). In particular, the quantum
potential reads

QΨ(0)
(x0 = 0) =

−∇
2|Ψ(0)|

2m|Ψ(0)|
|x0=0 =

(k1 − k2)
2

m

(1 + k1z
k2z

)

(1 − k1z
k2z

)2
(A40)
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Appendix F. The Full Arrival Time Distribution with Non-Efficient Detectors

We start with Equation (11) and consider the full signalPΨ
detec., full signal(Σ, t) ≃ η

∫

dΣ
x JΨŝ

z (x, t),
which reads

PΨ
detec.,full signal (Σ, t) = η

∫

0
Rdρρ

∮

dφ(|Φ(ρ, z = L, t)|2 ∂zS(ρ, z = L, t)

m

+
ŝ · ϕ̂
2m

∂ρ|Φ(ρ, z = L, t)|2). (A41)

Since we are working in the weak coupling regime, the current JΨŝ
z (x, t) can be negative,

and this is associated with back-flow. The contributions of back-flow are negative in
Equation (A43). However, it is not difficult to see that the second term of the integral
associated with the spin-magnetic current vanishes. This is trivially so for the longitudinal
case, where ŝ = ±ẑ. For the transverse cases, it is sufficient to consider the case ŝ = +x̂,
the other cases being equivalent due to rotational invariance of the problem. If ŝ = +x̂,
we have

∮

dφ
ŝ · ϕ̂
2m

∂ρ|Φ(ρ, z = L, t)|2 =
∮

dφ
cos (φ)

2m
∂ρ|Φ(ρ, z = L, t)|2 = 0 (A42)

as required. Therefore, we have

PΨ
detec.,full signal (Σ, t) = η

∫

0
Rdρρ

∮

dφ|Φ(ρ, z = L, t)|2 ∂zS(ρ, z = L, t)

m
. (A43)

which is spin-independent and considers only the convective current. We have recovered
DD’s result [46] (see Equation (55)):

PΨ
detec.,full signal (Σ, τ) = η

4L3

λ0
√

π

τe
− L2

1+τ2

(1 + τ2)5/2 . (A44)
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