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This paper presents theoretical arguments that certain virtual bound states carry the
trace component of affine torsion. The motivation for this work is that Einstein–Cartan
theory, which extends general relativity by including torsion to model intrinsic angular
momentum, is becoming more credible. We are not aware of any situation for which
there is evidence or substantial argument for the presence of torsion trace, except
in the continuum theory of edge dislocations in crystals. The main evidence for the
hypothesis consists of analogies between the structure of virtual bound states and (a)
geometry of dislocations in crystal lattices, which are modeled with torsion; and (b)
modeling of intrinsic angular momentum by torsion in Einstein–Cartan theory and the

theory of micro-elasticity. The work focuses on conjectured presence of torsion in para-
positronium, which intermediates annihilation of an electron and a positron with oppo-
site z-spins. If the virtual bound state carries torsion, then the local law of conservation
of angular momentum can hold over the spacelike separation during annihilation.

Keywords: Torsion; virtual bound state; positronium; spin; angular momentum; dislo-
cations; Einstein–Cartan theory.

1. Introduction

This paper presents theoretical arguments to support the hypothesis that certain
virtual bound states carry the trace component of affine torsion. The motivation
for this work is that Einstein–Cartan (EC) theory, which extends general relativity
(GR) by including torsion to model intrinsic angular momentum (AM), is becom-
ing more credible [8, 20, 23]. We are not aware of any situation for which there is
evidence or substantial argument for the presence of torsion trace, except in the
continuum theory of edge dislocations in crystals. The evidence presented here is of
two types that match the structure of virtual bound states: (a) angular momentum
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and conservation thereof are represented as torsion in EC theory and in continuum
theories of exchange of intrinsic and orbital AMs; and (b) screw and edge disloca-
tions in crystal lattices, which are represented as torsion, illustrate the geometry of
torsion.

We define “intrinsic” angular momentum to be the AM on too small a scale
to be modeled as orbital AM in a particular classical model; that is, intrinsic AM
cannot be modeled by displacement fields (in solids) or velocity fields (in fluids).
Intrinsic AM includes but is not limited to quantum spin.

1.1. Torsion and angular momentum

This paper contains enough information about the role of affine torsion in physics to
support the main hypothesis of this work. This work is not a comprehensive review
of torsion in physics. It discusses affine torsion as a classical tensor field defined in
Élie Cartan’s general theory of affine connections [2,4–7,13,14,24] and as identified
with intrinsic AM in EC theory.

Below are main events in the use of torsion to represent intrinsic AM.

(a) Early in the 20th century, Eugene Cosserat pioneered the field of micro-
elasticity in continuum mechanics, which allows points to have torque and clas-
sical intrinsic AM. Cosserat showed that exchange of intrinsic and orbital AMs
requires an intrinsic AM tensor and a nonsymmetric momentum tensor during
the exchange. This is the earliest example of modeling intrinsic AM with affine
torsion of which we are aware [9].

(b) In the 1920s, Élie Cartan developed the theory of affine connections, in which
Riemannian curvature (rotational curvature) and affine torsion (translational
curvature) are natural companions in Riemann–Cartan affine geometry. Several
times in the 1920s, Cartan urged Einstein to extend GR to include torsion.
In 1929, Einstein replied that he did not understand Cartan’s description of
torsion, and he did not know what physical process torsion would model [10].

(c) In the early 1960s, EC theory was essentially completed with the interpretation
of it as a gauge theory of the Poincaré group, and by identifying torsion as
intrinsic AM [12, 22]. EC theory is a modest extension of GR that enables
conservation of AM to include exchange of intrinsic and orbital AMs, which
GR cannot do because of its symmetric momentum tensor [8].

Torsion has applications in EC theory that are important in gravitational theory but
are not relevant to our current purpose. (a) Repulsive torsion force interacts with
ultra-high squared density of intrinsic AM to eliminate gravitational singularities.
(b) Current cosmological models ignore intrinsic AM that comes from two sources:
fluid turbulence [22–24], and exchange of intrinsic and orbital AMs across scales
from galactic clusters (∼1023 m) to orbits of moons (∼109 m).
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Capozziello et al. discuss several methods of decomposition of torsion into irre-
ducible representations, and alternative applications of torsion, including theories
in which torsion is defined as the gradient of a scalar field [3].

Jiminez et al. assert that three classes of gravitational gauge theories are accept-
able: (a) GR, (b) flat space theories based on torsion, and (c) flat space theories
based on nonmetricity [11].

According to [8], only three known theories satisfy all the empirical tests of
gravitational theories: GR, EC theory, and teleparallel gravity, which uses torsion
in a flat space.

We prefer EC theory, for four reasons:

(a) EC theory makes the least invasive changes to GR that enable exchange of
intrinsic and orbital AMs. In the absence of intrinsic AM, EC theory is identical
to GR.

(b) Torsion appears in EC theory exactly where it appears in Cartan’s master
structure equations for affine differential geometry; EC theory has no ad-hoc
torsion terms.

(c) EC theory can be derived from GR with no additional assumptions [20].
(d) EC theory has been more thoroughly studied than the alternatives.

1.2. Torsion and geometry of lattice defects

Physical theories that use affine torsion to model continuum distributions of defects
in affine lattices provide insight into the geometry of torsion. Since the 1950s, the
continuum theory of dislocations models distributions of dislocations and discli-
nations with torsion and Riemannian curvature, respectively [1, 15]. The discrete
theory of dislocations provides the best intuitive geometrical model of discrete tor-
sion.

1.3. Results

This paper uses insights from EC theory and the theory of dislocations to support
the conjecture that certain virtual bound states carry torsion trace that enables
micro-scale conservation of AM along spacelike separations. This work focuses on
annihilation of two spin-1/2 particles with opposite z-spins that are connected over
a spacelike separation by a virtual bound state, for example, annihilation of an
electron and a positron with opposite z-spins, mediated by para-positronium.

The annihilation of two Dirac particles joined at the ends of their worldlines by
a virtual bound state has these analogs in the fields discussed here:

• In the discrete theory of dislocations, the configuration that is analogous to para-
positronium is two screw dislocations whose dislocation lines end, and the ends
are joined by an edge dislocation.

• In the continuum theory of dislocations, the analogous configuration is two den-
sities of antisymmetric torsion (screw dislocations) of opposite helicities, such
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that, wherever the two densities decline together, torsion trace appears so that
the conservation law of dislocation lines is satisfied.

• In the Einstein–Cartan theory, the analogous configuration is two densities of
antisymmetric torsion (Dirac particles) of opposite helicities with spacelike sep-
aration, such that, wherever the two densities decline together, torsion trace
appears so that conservation of AM is satisfied. In the Riemann–Cartan geom-
etry, terms quadratic in torsion appear, so that zero net torsion does not imply
zero torsion.

• The law of conservation of dislocation lines and the law of conservation of total
AM in EC theory are both applications of the contracted first Bianchi identity
of Riemann–Cartan geometry.

Models of dislocations in terms of torsion are presented in Sec. 2. The model of
intrinsic AM in terms of torsion in EC theory is described in Sec. 3. The model
of virtual bound states in terms of holonomy and torsion is described in Sec. 4.
Speculations about future developments related to this work are discussed in Sec. 5.
The paper is concluded in Sec. 6. The interpretations of torsion in Riemann–Cartan
geometry, the theory of dislocations, and EC theory are compared in Table A.1 in
Appendix A.

2. Dislocations in Lattices Illustrate Geometry of Torsion

The theory of dislocations in affine lattices provides a well-accepted physical appli-
cation of torsion [16,21,25]. We begin with an affine defect that is not a dislocation
and is more familiar to physicists than torsion.

2.1. Disclinations

A disclination is a discrete unit of Riemannian curvature. Figure 1 is a graphical
representation of a disclination with less than 2π rad around its vertical centerline.

Fig. 1. Graphical representation of disclination in three dimensions.
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In a real disclination, the two faces of the angular deficit are joined together. This
dispiration is a discrete version of Riemannian curvature Rμνμν . To construct a two-
dimensional version of a disclination, excise a wedge of material of angle θ from a
flat disk.

This yields a horizontal slice of the 3D graphic in Fig. 1. If you join the edges of
the cut, the disk becomes a conical surface. The angular deficit at the apex of the
cone is θ, and the area deficit of a disk centered at the apex of radius r is 1/2θr2.
The tip of the cone has a Dirac delta of Riemannian curvature of magnitude θ. The
remainder of the cone has no intrinsic curvature.

To construct a surface with positive Riemannian curvature, remove many small
angular wedges whose centers are distributed around the disk. The limit of many
small wedges yields a surface with positive curvature.

A disclination that has more than 2π rad at the center represents discrete nega-
tive curvature. Negative Ricci curvature can occur GR in the presence of a positive
cosmological constant, which introduces repulsive acceleration. A distribution of
negative disclinations provides a discrete geometric model for dark energy via the
cosmological constant.

2.2. Discrete dislocations in lattices

In crystalline materials, a dislocation exists in a neighborhood where traversing a
loop that would be closed in a perfect lattice is not closed. For example, in a perfect
cubic lattice, a loop with 10 lattice steps in direction +x, 10 in direction +y, 10
in direction −x, and 10 in direction −y, is closed. If the loop path surrounds a
dislocation line, then the path does not close. We borrow from materials science
the term “Burghers vector” to denote the “failure-to-close vector” when we traverse
a loop that would otherwise close in a perfect lattice, but surrounds a dislocation
in our defected lattice.

Two types of dislocations are most common in materials: screw dislocations and
edge dislocations.

2.2.1. Screw dislocations

A screw dislocation has a Burghers vector that is orthogonal to the plane of the
loop around the dislocation. The graphical representation looks like a screw, or a
parking garage ramp, as in Fig. 2.

2.2.2. Edge dislocations

Figure 3 illustrates edge dislocations, which have Burghers vector in the plane of
the loop used to measure the dislocation.

In Fig. 3(a), if you travel around a loop in thezy-plane that surrounds the center,
you are translated one lattice spacing in the +z-direction. (Travel 4 units in the
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(a) (b)

Fig. 2. Graphical representations of screw dislocations. (a) Right-hand screw dislocation. Discrete
unit of torsion Txy

z and (b) Left-handed screw dislocation. Discrete unit of torsion Tyx
z .

(a) (b)

Fig. 3. Graphical representations of edge dislocations.

direction +z, 4 units in the direction +y, 4 units in the direction −z, and 4 units in
the direction −y. You finish 1 unit above the point where you started.) The graph
looks like a parking garage with many levels, where one level covers only half the
area of the others; that half-level has an edge where you could fall off if there were
no guard rails. This dislocation is a discrete unit of torsion Tzy

z.

Figure 3(b) is a graphical representation of the same edge dislocation with dif-
ferent coordinate orientation. If you travel around a loop in the yx-plane that
surrounds the center, you are translated one lattice spacing in the +x-direction.
This dislocation is a discrete unit of torsion Tyx

x.
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2.2.3. Other defects in affine lattices

Defects in affine lattices can be classified by their dimension:

• Zero-dimensional defects (point defects): Vacancies (missing atom or ion),
interstitials (atoms or ions not located at a regular lattice position), Frenkel
defects (displaced atoms or ions that create a void and a nearby inclusion), and
substitutions (atoms or ions at regular lattice locations but not the usual kind of
atoms or ions).

• One-dimensional defects: Dislocations and disclinations. These are called “line
defects” because the Burghers vector continues along a line that cannot end
inside a crystal; this is the conservation law for dislocation lines. The lines can
terminate at two-dimensional defects where the regular lattice structure breaks
down.

• Two-dimensional defects: Grain boundaries, phase boundaries, domain walls,
stacking faults, and free surfaces.

• Three dimensional defects: Precipitates and inhomogeneities.

2.3. Continuum distribution of dislocations

In Riemannian geometry, rotational holonomy is a discrete version of Riemannian
(rotational) curvature:

rotational curvature = limitarea→0(log(rotational holonomy))/

(area enclosed by the loop). (1)

(Fine point: log is the inverse of the exponential map; log maps the structure group
to its Lie algebra.)

In Riemann–Cartan geometry, translational holonomy is a discrete version of
affine torsion:

torsion = limitarea→0log(translational holonomy)/

(area enclosed by the loop). (2)

In the continuum theory of dislocations, torsion represents the density of dislo-
cations. The two common types of dislocations have characteristic components of
torsion:

• Screw dislocations have Burghers vectors (in the z-direction) orthogonal to the
plane of the loop (the xy-plane); they are represented by the torsion Txy

z, or any
other permutation of the orthogonal directions {x, y, z}. The antisymmetrized
indices x and y indicate the plane of a loop.

• Edge dislocations have Burghers vectors (in the z-direction) lying in the plane of
the loop (the zy−plane); they are represented by the torsion trace Tzy

z , or any
other permutation of {x, y, z}. The antisymmetrized indices z and y indicate the
plane of a loop.
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3. Einstein–Cartan Theory Describes Intrinsic Angular
Momentum with Torsion

3.1. Background

EC theory is the first theory of fundamental physics that uses affine torsion. EC
theory is a gauge theory of the Poincaré group. Torsion is identified with intrinsic
AM:

• A stationary spinning particle with AM polarized in the xy-plane (conventionally
described as AM in the z-direction) is represented as a discrete unit of torsion
T t

xy. Its translational holonomy (Burghers vector) is a timelike vector; parallel
translation around a spacelike equatorial loop translates the observer into the
future or the past.

• A stationary spin-1/2 Dirac field with z-spin polarized in the +z-direction has a
spin tensor equal to antisymmetrized torsion T[x,y,t]. Dirac fields couple only to
totally antisymmetric torsion.

Although EC theory is a classical theory of physics, the quantum spin fits well in
EC theory.

3.2. Conservation of angular momentum

In the continuum theory of dislocations, the conservation law for dislocations is

Dk(T k
ij + (torsion trace terms)k

ij) = sum of rotational curvature terms, (3)

where D is the covariant derivative operator and i, j, k ∈ {1, 2, 3} [2, p. 101; 13,
p. 121].

The law of conservation of AM in EC theory describes the exchange of intrinsic
and orbital angular momentums,

Dk(Jk
ij) + P[ij] = 0, (4)

where

• D is the covariant derivative operator;
• Jk

ij = Intrinsic AM = Sk
ij/κ, κ = (8πG/c4), G = Universal gravitational con-

stant;
• Sk

ij = T k
ij + (δk

i T m
jm − δk

j T m
im) is the modified torsion, which includes torsion

trace;
• P[i,j] is the antisymmetric part of the linear 4-momentum. It is the local rate of

loss of orbital AM;
• i, j, λ{0, 1, 2, 3}. The equations of EC theory are simplified by distinguishing the

spacetime indices μ, ν, λ, etc. and the current indices (or fiber indices) i, j, k,
etc. We ignore the distinction in this paper.

2250076-8

In
t. 

J.
 G

eo
m

. M
et

ho
ds

 M
od

. P
hy

s.
 2

02
2.

19
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 G

E
R

M
A

N
 E

L
E

C
T

R
O

N
 S

Y
N

C
H

R
O

T
R

O
N

 @
 H

A
M

B
U

R
G

 o
n 

04
/0

3/
22

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



March 18, 2022 9:42 WSPC/S0219-8878 IJGMMP-J043 2250076

Do some virtual bound states carry torsion trace?

Equation (4) has a simple intuitive interpretation:

• The first term, the divergence of the modified torsion, is the rate at which intrinsic
AM increases (or decreases if negative) at a spacetime location.

• The second term, the antisymmetric part of the momentum tensor, is the rate at
which orbital AM increases (or decreases if negative) at a spacetime location.

• Equation (4) states that, since total AM is conserved, the sum of the changes in
intrinsic and orbital AMs must equal zero.

The law of conservation of dislocations and the law of conservation of AM in EC
theory are the same identity in Riemann–Cartan geometry: the contracted first
Bianchi identity. This identity in different fields has the same geometric meaning,
though it has different physical interpretations.

3.3. Assessment of Einstein–Cartan theory

Although no empirical evidence supports EC theory at this time, the arguments
for the theory are substantial.

(a) EC theory, teleparallel gravity (which alters the geometric basis of GR), and
GR are the only theories of gravitation known to satisfy all empirical tests of
GR [8,23].

(b) EC theory can model exchange of intrinsic and orbital AMs. GR cannot do this
because its momentum tensor is symmetric:

— The essence of turbulence is transfer of orbital AM to smaller scales [17].
— Current theories of turbulence do not track intrinsic AM. Present research

suggests that transfer of AM in turbulence ends with classical intrinsic
AM [18,19].

— Classical turbulence is common in cosmology. Therefore, a master classical
theory of spacetime should be able to model these phenomena, at least in
theory.

(c) EC theory, plus quantum field-theoretic models of matter, removes many of
the singularities in GR, e.g. in black holes and in some Big Bang cosmological
models.

(d) Torsion appears in EC theory only in the places where it occurs in Cartan’s
master structure equations for affine geometry. EC theory has no ad-hoc torsion
terms.

(e) Classical EC theory can be derived from GR without additional assump-
tions [20].

(f) Mathematically, EC theory is that it includes translational symmetries of space-
time in the structure group. So, EC theory can properly derive linear momen-
tum as the Noether current of spacetime translations.

These advantages arguably make EC theory a more credible master theory of clas-
sical spacetime physics than GR.
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4. Annihilation of Two Spin-1/2 Particles

This work focuses on a configuration of two spin-1/2 particles with opposite z-spins
that are separated by a spatial distance, and that annihilate via a virtual bound
state that connects the ends of the worldlines of the annihilating particles. For
example, an electron and a positron with opposite z-spins can annihilate at a short
distance by forming a virtual bound state, para-positronium, which has S = 0.
Ortho-positronium has S = 1 and M = −1, 0, 1, so the internal AM content is
more complicated.

Just as the torsion trace of an edge dislocation enables screw dislocations to
annihilate at a distance while preserving dislocation lines, the torsion carried by
para-positronium enables spin-1/2 particles to annihilate at a distance while locally
conserving AM.

4.1. Two screw dislocations whose ends are joined

by edge dislocation

Two screw dislocations whose ends are joined by an edge dislocation form a geo-
metric analog for two spin-1/2 particles that annihilate at a spacelike separation
mediated by a virtual bound state.

Figure 4 represents the configuration of two screw dislocations of opposite helic-
ities whose ends are joined by an edge dislocation:

The thought experiment below helps to visualize the overall structure of this
configuration of dislocations:

(a) Rotate in the xy-plane around the screw dislocation on the right. This moves
you up the screw, which means the Burghers vector is in the direction +z.

(b) When you reach the top of the screw, turn the dislocation line (and the plane
of rotation) smoothly 90◦ to the left (in the −x-direction), so that the core of
the dislocation is horizontal.

Fig. 4. Two screws dislocations of opposite helicities joined by an edge dislocation.
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(c) Along the horizontal dislocation line, rotate one time around a loop in the
zy-plane, using the same number of lattice spacings in the directions +z, +y,
−z, and −y. The path does not close, and reveals a Burghers vector in the
+z-direction.

(d) When you reach the left end of the edge dislocation, turn the dislocation line
(and the plane of rotation) smoothly 90◦ downward (in the −z-direction),
so that the core of the dislocation is vertical pointing downward on the left
screw.

(e) Rotate around the screw dislocation on the left in the yx-plane. This moves
you down the screw, which means the Burghers vector is in the direction −z.

All three dislocations have Burghers vector (translational holonomy) in the +z-
direction. The configuration satisfies the conservation law for dislocations: disloca-
tion lines do not end, and the Burghers vector is constant. The edge dislocation
permits the screw dislocations to terminate without violating the conservation of
dislocation lines.

4.2. Two spin-1/2 particles of opposite z-spins joined by a virtual

bound state

The configuration of dislocations depicted in Fig. 4 is a 3D nonrelativistic model
for two spin-1/2 particles of opposite z-spins joined by a virtual bound state in
relativistic quantum field theory. The dislocation model can be adapted to a rela-
tivistic model of spin-1/2 particles by replacing the z-direction in the dislocation
model with a timelike direction in relativistic field theory. The translational holon-
omy (Burghers vector) in spacetime points to a timelike direction instead of the
z-direction. For a Dirac particle, parallel translation once around the spiral trans-
lates to a future or past time. In Fig. 4, we have the following:

• The left-handed screw on the left is depicted in Fig. 2(b). Its torsion is Tyx
t.

• The right-handed screw on the right is depicted in Fig. 2(a). Its torsion is Txy
t.

• The edge dislocation has the orientation depicted in Fig. 3(a). Its torsion is Tty
t.

The Burghers vector (angular momentum vector) lies in the time direction, as in
Dirac particles. However, it is a strange form of intrinsic AM because its Burghers
vector (AM vector) lies in the space time plane of the loop used to measure it.

We conjecture that this argument holds for any virtual bound state that medi-
ates the annihilation of two particles with canceling nonzero spins.

5. Further Developments

5.1. Torsion in quantum gravity and other quantum theories

Intrinsic AM is generally more important in quantum theories than in their classical
counterparts. Therefore, EC theory is likely a better classical starting point for a
theory of quantum gravity than is GR.
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Spin is omnipresent in quantum field theory. EC theory already assumes that all
spin-1/2 particles have torsion. We expect that, in a future quantum field theory,
torsion will be present wherever spin is present. This paper is a narrow instance of
how and where torsion will appear.

5.2. Quantum entanglement?

Quantum entanglement seems to require instant transport of information across
a macroscopic spacelike separation between two entangled particles. The model
proposed here suggests that certain virtual bound states use torsion trace to trans-
port AM over a spacelike separation, thereby enabling local conservation of AM in
spacetime. We might speculate that some gauge fields, analogous to torsion for spin
currents, enable entangled particles to share information over macroscopic distances
without violating the local structure of spacetime.

6. Conclusion

This work provides theoretical arguments to support the conjecture that para-
positronium and possibly other virtual bound states carry components of torsion,
including torsion trace. The geometry and intrinsic AM in para-positronium are
analogous to those of a configuration of two screw dislocations connected by an edge
dislocation, i.e. two pieces of antisymmetric torsion of opposite helicities connected
by a spacelike line that carries torsion trace. The key properties of torsion that are
used in this argument are based on analogies with two applications of torsion in
classical physical theories:

• The correspondence of torsion with intrinsic AM is the central feature of EC
theory.

• The local geometry of antisymmetric torsion and torsion trace are illustrated by
screw and edge dislocations in affine lattices in crystallography.

The conservation law of total AM in EC theory and the conservation of dislocation
lines in lattices have the same mathematical foundation as the contracted first
Bianchi identity of Riemann–Cartan geometry.

Using torsion trace to represent a spacelike flow of intrinsic AM allows the
local law of conservation of AM to hold across a spacelike separation when para-
positronium mediates annihilation of two Dirac particles.

We are unaware of any experimental tests that might confirm that these virtual
bound states carry torsion. The best supports for the conjecture are: (a) EC theory
claims that all intrinsic AM is modeled by torsion; and (b) torsion enables conserva-
tion of total AM across the micro-scale spacelike separation between the fermions.
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Appendix A. Riemann–Cartan Geometry

Riemann–Cartan geometry is the common foundation of the theory of dislocations
and Einstein–Cartan theory.

Table A.1. Concepts of Riemann–Cartan geometry in dislocation theory and Einstein–
Cartan theory.

Riemann–Cartan
geometry

Theory of
dislocations

Einstein–Cartan
theory

Quantum theory

Rotational
holonomy
(discrete
rotational
curvature)

Disclination Continuum limit is
Riemannian
curvature

Need quantum
theory of gravity

Rotational
curvature
(Riemannian
curvature)

Locked-in strain Riemannian
curvature
(gravitation)

Need quantum
theory of gravity

Translational
holonomy
(discrete
translational
curvature)

Burghers vector of
discrete
dislocation, or
continuum
density of
dislocations

Intrinsic AM of a
discrete particle

Conjecture: spin of
discrete particle

Torsion
(translational
curvature)

Density of
dislocations

Density of intrinsic
AM

Conjecture: density
of intrinsic AM

Helical torsion
(Burghers vector
is orthogonal to
the plane of the
loop)

Txy
z = Screw

dislocations loop
in the xy-plane,
Burghers vector
in z-direction

For spin-1/2 fields:
Txy

t = spin with
loop in xy-plane
and translation
in t-direction

Conjecture: spin
density of
spin-1/2 Dirac
particle with spin
polarization in
z-direction

Torsion trace Tzy
z = Density of

edge dislocations
with loop in
zy-plane,
Burghers vector
in z-direction

Tty
t = Density of
spin with loop in
the ty-plane and
translation in
t-direction

Conjecture: spin
density of virtual
bound state

Contracted first
affine Bianchi
identity

Conservation of
dislocation lines.
Dislocation line

cannot end inside
a crystal grain

Conservation of
AM: Δspin +
Δorbital AM = 0

Conjecture:
conservation of
AM
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(deuxième partie), Ann. Sci. Éc. Norm. Supér. 42 (1925) 17–88.
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