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1. Introduction

The standard model of particle physics (SM), a theory describing all known elementary
particles and their interactions, is a successful theory. It has been extensively tested over
the past forty years. After the precision measurements at the LEP e+e− collider, yielding
limits for the top quark and Higgs boson mass, the Nobel Prize in Physics was awarded in
1999 jointly to Gerardus ’t Hooft and Martinus J.G. Veltman ”for elucidating the quantum
structure of electroweak interactions in physics” [1].
In July 2012 the last missing particle, the so-called Higgs boson, has been discovered at
the Large Hadron Collider (LHC) at CERN in Geneva by two independent experiments
[2, 3]. It was predicted by the Higgs mechanism, a mechanism incorporated into the SM
to give the massive particles their mass. In the last two years, it became clear that the
discovered scalar particle is in fact SM-like, since the measured quantum numbers and the
decay rates are in agreement with the prediction of the SM. However, this last missing
piece of the SM does not close the theory, but the discovery raises new questions.
Although the SM predicts a Higgs boson, its mass could have been anywhere between
the GeV1 and TeV scale. In addition, the corrections to the Higgs boson mass include
quadratic terms of a parameter, which is associated with the scale up to which the SM is
supposed to be valid [4]. The physical mass of the Higgs boson results from the sum of
the bare mass, which enters the Lagrangian, and the corresponding radiative corrections.
If the Planck scale is assumed to be the scale to which the SM is valid, an incredible fine-
tuning of the masses is needed, since a cancellation from ∼ (1019 GeV)2 to ∼ (102 GeV)2

is requested [5]. Less fine-tuning would require new physics at the TeV scale. Beside the
fine-tuning problem, the cosmological observations point towards the existence of dark
matter (DM), which cannot be explained within the SM [6]. It becomes apparent that if
a 125 GeV Higgs boson and a dark matter particle are considered an extension of the SM
is required.

Supersymmetry (SUSY), a theory beyond the SM, solves the fine-tuning problem, since
it provides a symmetry between fermions and bosons: for each fermion a supersymmetric
bosonic partner exists and vice versa [7–11]. The corrections to the Higgs boson mass
naturally cancel since the fermions and bosons contribute with opposite signs to the radia-
tive corrections. So a light Higgs boson and the validity of the theory up to high energy
scales is maintained. In fact, a light Higgs boson with a mass below 135 GeV is predicted
within SUSY [12]. Therefore the discovered Higgs boson strongly supports SUSY despite

1Using the mass-energy equivalence the mass can be expressed in units of eV/c2 with the speed of light
in vacuum c. The convention of natural units c = ~ = 1 is used throughout this thesis.
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2 1. Introduction

of the fact that no supersymmetric particle has been found so far. The enriched particle
spectrum also includes a perfect dark matter candidate. Assuming R-parity conversation,
which is required to preserve the proton stability [13], the lightest supersymmetric particle
is stable and provides the right amount of dark matter. Within the minimal supersym-
metric extension of the SM, the so-called minimal supersymmetric SM (MSSM), many
experimental observations can be simultaneously described. However the parameter space
which is associated to a 125 GeV Higgs boson favors rather high masses of the super-
symmetric partner. Again this can lead to a fine-tuning problem, since the corrections to
the Higgs boson mass include the mass difference of the SM and their SUSY partners. A
minimal extension of the MSSM can solve this fine-tuning problem.
Within the so-called next-to-minimal supersymmetric SM (NMSSM) an additional Higgs
singlet is introduced. In this way, the Higgs sector is modified due to mixing effects, which
provides a 125 GeV Higgs boson for moderate and light SUSY masses leading to less fine-
tuning. This model is particularly interesting for experimental searches for SUSY, since
it leads to a lighter supersymmetric particle spectrum which is in reach of the LHC. The
enriched Higgs sector also extends the possibilities for search strategies, which so far have
mostly considered the minimal supersymmetric SM.

The goal of this thesis is twofold: first, the supersymmetric parameter space allowed by
accelerator and cosmological constraints is determined for both supersymmetric models,
the constrained MSSM and NMSSM. The second aspect is the comparison of the Higgs
and dark matter sector of the two SUSY models which lead to phenomenological different
scenarios. In particular their differences are important to distinguish the two SUSY models
and to estimate the discovery reach for current SUSY searches and for the next run of future
experiments, like the LHC at 14 TeV and future experiments for the direct search for dark
matter. A further reason to study the dark matter and the Higgs sector is due to their
connection: the nine orders of magnitude between the DM annihilation and DM scattering
cross section on nuclei is most easily explained if the interaction happens via exchange of
a Higgs boson, since the latter hardly interacts with the almost massless quarks inside
the nuclei. Since a weak neutral interaction can also be mediated by a Z0 boson, the
corresponding coupling has to be suppressed. These non-trivial requirements are easily
accomplished within the minimal and next-to-minimal supersymmetric SM, which further
motivates their study.

In chapter 2 the SM is briefly reviewed to give an introduction of the theoretical concepts.
The theoretical framework of Supersymmetry as well as the studied models are introduced
in chapter 3. The tools and methods which have been applied are described in chapter 4.
For a comprehensive understanding of the results of the combination of all constraints, the
favored region of each constraint in the parameter space has to be investigated first. so in
chapter 5 the results for the single observables are given. The results of the combination
of all constraints are presented subsequent in chapter 6. In addition, the differences of
the allowed parameter space of the two SUSY models are highlighted with respect to a
125 GeV Higgs and dark matter. The results are further compared to other analyses and
prospects for the sensitivities of future searches are given. Finally a short summary and
concluding remarks are given in chapter 7.
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2. Elementary Particles and Their
Interactions

The fundamental constituents of matter and their interactions are studied within particle
physics, while the kind of particles regarded as fundamental changed with time during
the 20th century. The standard model (SM) of elementary particle physics is currently
the established theory and includes all elementary particles and the fundamental forces of
nature. It was developed in the latter of the 20th century and finalized in the mid 1970s.
The SM is a successful theory, which has been extensively tested over the past forty years.
It includes an enormous theoretical framework, thus only a brief introduction is given in
this thesis. More details can be found in reviews or textbooks, see e.g. [14–16] and [17–21].
The section starts with a short introduction of the SM, which is mainly derived from Ref.
[4] and includes only the relevant aspects referred to this thesis. At the end its experimental
confirmation by the current largest and most powerful particle collider is presented.

2.1. The Standard Model of Elementary Particle Physics

The SM describes the building blocks of matter, the fermions namely quarks and leptons,
and their interactions. It contains the electromagnetic, weak and strong force mediated by
the corresponding gauge bosons, the photon, the W± and Z0 bosons and the gluons. The
theoretical framework of the SM is based on the combination of the electroweak theory, also
known as the Glashow-Weinberg-Salam (GWS) theory [22], and quantum chromodynamics
(QCD), the theory of the strong force. The GWS theory evolved from Glashow’s model
to unify the weak and electromagnetic interaction in the framework of SU(2) × U(1)
symmetry. The Higgs mechanism [23] was added by Weinberg and Salam [24, 25] to
generate masses for the gauge particles and fermions. The proof of renormalizability, i.e.
being a self-consistent mathematical theory, was given by t’Hooft [26, 27]. QCD is based
on the idea that the color charge is the source of the strong interaction between quarks
[28, 29]. QCD, a gauge theory including color SU(3) symmetry, was established to be the
theory of the strong force through the discovery of asymptotic freedom by Gross, Politzer
and Wilczek [30–32]. Efforts to unify the strong and electroweak theory within a grand
unified theory (GUT) is yet not possible in the SM, since the corresponding couplings do
not unify [33]. As will be discussed in the next section, gauge coupling unification works
in the supersymmetric extension of the SM.

The SM is described in the mathematical framework of the gauge field theory with the
local symmetry group

3



4 2. Elementary Particles and Their Interactions

SU(3)C × SU(2)L × U(1)Y , (2.1)

The subgroups SU(3)C and SU(2)L × U(1)Y correspond to the symmetry group of the
QCD and electroweak (EW) interaction. The model involves two kind of fields: matter
and gauge fields. The matter fields consist of three generations of left- and right-handed
chiral quarks and leptons fL,R, which fulfill fL,R = 1

2(1 ∓ γ5)f , where γ5 is the chirality
operator and f represents a dirac fermion. The left(right)-handed leptons and quarks are
arranged in weak isospin doublets(singlets):

L1 =

(
νe
e−

)
L

, eR1 = e−R, Q1 =

(
u

d

)
L

, uR1 = uR, dR1 = dR,

L2 =

(
νµ
µ−

)
L

, eR2 = µ−R, Q2 =

(
c

s

)
L

, uR2 = cR, dR2 = sR,

L3 =

(
ντ
τ−

)
L

, eR3 = τ−R , Q3 =

(
t

b

)
L

, uR3 = tR, dR3 = bR.

(2.2)

Leptons consist of the electron, the muon, the tau lepton and their corresponding neutri-
nos. The quarks are furthermore denoted according to their flavor as up-, down-, charm-,
strange-, top- and bottom quark. For each particle the corresponding anti-particle exist.
The weak hypercharge Yf of the fermions is defined via the so-called Gell-Mann-Nishijima
relation in terms of the third component of the weak isospin I3

f and the electric charge Qf
in units of the elementary charge e:

Qf = I3
f +

1

2
Yf . (2.3)

In Table 2.1 a summery of the quantum numbers of the first generation fermions is shown.
The quantum numbers resemble for the second and third generation. The quarks transform
as triplets of SU(3)C , whereas the colorless leptons are color singlets. The relation

∑
f

Yf =
∑
f

Qf = 0 (2.4)

ensures the cancellation of the chiral anomalies [34, 35] within each generation. In addition
it preserves the renormalizability of the EW theory [36].
The gauge fields correspond to the spin one bosons, which are associated with the gener-
ators of the corresponding algebra of the group:

SU(3)C × SU(2)L × U(1)Y .
↓ ↓ ↓
Gαµ W a

µ Bµ
α = 1, ..., 8 a = 1, 2, 3

The field Bµ represents the generator Y of the U(1)Y group. The three fields W a
µ cor-

respond to the generators T aL of the SU(2)L group, which can be written as T aL = 1
2τ

a,
where τa denotes the 2× 2 Pauli matrices. The eight generators T aC of the SU(3)C group
lead to an octet of gluon fields Gbµ and can be written in terms of the Gell-Mann matrices

λa: T aC = 1
2λ

a. The SM Lagrangian
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2.1. The Standard Model of Elementary Particle Physics 5

Table 2.1.: Summary of the electric charge Qf , the third component of the weak isospin I3f and the corre-
sponding weak hypercharge Yf of the first generation fermions.

e−L νe e−R dL uL dR uR

Qf -1 0 -1 -1
3 +2

3 -1
3 +2

3

I3
f -1

2 +1
2 0 -1

2 +1
2 0 0

Yf -1 -1 -2 +1
3

1
3 -2

3 +4
3

LSM =− 1

4
GaµνG

µν
a −

1

4
W a
µνW

µν
a −

1

4
BµνB

µν

+ L̄iiDµγ
µLi + ēRiiDµγ

µeRi
+ Q̄iiDµγ

µQi + ūRiiDµγ
µuRi + d̄RiiDµγ

µdRi .

(2.5)

is invariant under local SU(3)C×SU(2)L×U(1)Y gauge transformation using the covariant
derivative Dµ, which reads

Dµψ =

(
∂µ − igsTaGaµ − ig2TaW

a
µ − ig1

Yq
2
Bµ

)
ψ. (2.6)

Here g1, g2 and gs represent the coupling constants of the U(1)Y , SU(2)L and SU(3)C
group. The first line in Eq. 2.5 describes the kinetic term of the gauge bosons. It includes
the corresponding field strengths, which are given by

Gaµν = ∂µG
a
ν − ∂νGaµ + gsf

abcGbµG
c
ν ,

W a
µν = ∂µW

a
ν − ∂νW a

µ + g2ε
abcW b

µG
c
ν ,

Bµν = ∂µBν − ∂νBµ.
(2.7)

εabc denotes the antisymmetric tensor, while the tensor fabc corresponds to the structure
constants of the SU(3)C group. This non-abelian nature of the SU(2) and SU(3) groups
give rise to self-interaction terms leading to triple and quadric gauge couplings between
the gauge fields. The interaction of the matter fields Ψ with the gauge fields as well as
their kinetic terms are included via the covariant derivative Dµ.
So far, the fermion and gauge fields are massless although experimentally proved to be
massive. The explicit integration of mass terms for gauge bosons 1

2M
2
VWµW

µ violates
local SU(2)L × U(1)Y gauge invariance while explicit mass terms for fermions −mf ψ̄fψf
breaks chiral symmetry.

2.1.1. The Higgs Mechanism

The way to generate masses for the gauge bosons and fermions without violating gauge
invariance and preserving renormalizability is accomplished through the concept of spon-
taneous symmetry breaking via the Higgs mechanism1. Here the lowest energy state,
identified as the vacuum, does not respect gauge symmetry, so effective masses for propa-
gating particles are induced. The Higgs mechanism, i.e. the spontaneous breakdown of the

1The mechanism was developed in 1960s by three independent groups: by Robert Brout and Francois
Englert [37], by Peter Higgs [23] and by Gerald Guralnik, C.R. Hagen and Tom Kibble [38]. However,
the short naming of the mechanism prevailed ignoring the other contributing names.
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6 2. Elementary Particles and Their Interactions

V
(φ

)

φ

µ2 > 0

(a)

V
(φ

)

φ

µ2 < 0

(b)

Figure 2.1.: The potential V (φ) of a simple scalar real field φ for positive (a) and negative (b) µ2 illustrating
the development of a non-zero vev.

gauge symmetry and the associated mass generation of the gauge bosons, will be briefly
discussed for the SM in this section. The summary is mainly derived from Ref. [4].
The symmetry group of the SM has to be broken as SU(2)L × U(1)Y → U(1)em to get
massive W± and Z0 gauge bosons. The exact symmetry of quantum electrodynamics
(QED)has to be preserved at the same time. This implies the conservation of the electric
charge, i.e. the sub-group U(1)em remains a symmetry of the vacuum after the sponta-
neous symmetry breaking. The simplest option is a complex SU(2) doublet of scalar fields
φ with the hypercharge YΦ = +1:

Φ =

(
φ+

φ0

)
. (2.8)

The corresponding Lagrangian including the invariant terms of the scalar field reads

Lscalar = (DµΦ)†(DµΦ)− V (Φ†Φ), (2.9)

where the potential V is given by

V (Φ†Φ) = µ2Φ†Φ + λ(Φ†Φ)2. (2.10)

Since the Higgs complex SU(2) doublet is a color singlet with respect to SU(3)C , the
covariant derivative Dµ in Eq. 2.9 includes only the interactions generators of the SU(2)L
and U(1)Y group. Since the vacuum is not charged, the neutral component of the doublet
field Φ will develop a non-zero vacuum expectation value (vev) for µ2 < 0, which can be
chosen to be at

〈Φ〉0 ≡ 〈0|Φ|0〉 =

(
0
v√
2

)
with v =

(
−µ

2

λ

)1/2

(2.11)

by using a SU(2)L gauge transformation. The minimum for the potential V of a simple
scalar real field φ is illustrated for positive(negative) µ2 in Fig. 2.1(a)(Fig. 2.1(b)).
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2.1. The Standard Model of Elementary Particle Physics 7

The field Φ can be expanded around the minimum and written at first order in terms of
the four fields θ1,2,3(x) and H(x)

Φ(x) =

(
θ2 + iθ1

1√
2
(v +H)− iθ3

)
= eiθa(x)τa(x)/v ·

(
0

1√
2
(v +H(x))

)
, (2.12)

while θ1,2,3(x) corresponds to the massless goldstone bosons. Using a SU(2)L gauge trans-
formation to move to the unitarity gauge leads to the new field

Φ(x) → e−iθa(x)τa(x)Φ(x) =
1√
2

(
0

v +H(x)

)
. (2.13)

The first term of the scalar Lagrangian of Eq. 2.9 can be written in terms of this new field

|DµΦ|2 =

∣∣∣∣(∂µ − ig2
τa
2
W a
µ − ig1

1

2
Bµ

)
Φ

∣∣∣∣2
=

1

2

∣∣∣∣( ∂µ − i
2(g2W

3
µ + g1Bµ) − ig2

2 (W 1
µ − iW 2

µ)

− ig2
2 (W 1

µ + iW 2
µ) ∂ + i

2(g2W
3
µ − g1Bµ)

)(
0

v +H

)∣∣∣∣2
=

1

2
(∂µH)2 +

1

8
g2

2(v +H)2
∣∣W 1

µ + iW 2
µ

∣∣2 +
1

8
(v +H)2

∣∣g2W
3
µ − g1Bµ

∣∣ .
(2.14)

From Eq. 2.14 new physical fields W±µ , Zµ and Aµ, the orthogonal field to Zµ, are derived

W± =
1√
2

(W 1
µ ∓ iW 2

µ), Zµ =
g2W

3
µ − g1Bµ√
g2

2 + g2
1

, Aµ =
g2W

3
µ + g1Bµ√
g2

2 + g2
1

. (2.15)

If the mass terms M2
WW

+
µ W

−
µ + 1

2M
2
ZZµZ

µ+ 1
2M

2
AAµA

µ are compared with the quadratic
terms of the vector fields, the acquired masses for the W± and Z0 bosons can be identified

MW =
1

2
vg2, MZ =

1

2
v
√
g2

2 + g2
1, MA = 0. (2.16)

The photon is still massless and the vev2 v is fixed in terms of the W± boson mass
MW = 1

2g2v → v ≈ 246 GeV. The W± bosons mediate the charged currents, which
changes the flavor of a single quark. The exchange of a Z0 boson is related to the neutral
current.

2.1.1.1. The Fermion masses and their Weak Interaction

The same scalar field Φ can be used to generate the fermion masses by introducing the
isodoublet Φ̃ = iτ2Φ∗ and the corresponding SU(2)L×U(1)Y invariant Yukawa Lagrangian:

LF = −λeL̄ΦeR − λdQ̄ΦdR − λuQ̄Φ̃uR + h.c.. (2.17)

After spontaneous symmetry breaking the Lagrangian can be re-written in terms of the
new field in Eq. 2.13. After diagonalization of the mass matrices, i.e. by transforming
the weak to the physical states, the constant terms in front of f̄f = (f̄LfR + f̄RfL) are
identified with the fermion masses, e.g.

2In case the Higgs field is not normalized by 1/
√

2 the vev v is accordingly v ≈ 174GeV.

7



8 2. Elementary Particles and Their Interactions

me =
λev√

2
, mu =

λuv√
2
, md =

λdv√
2
. (2.18)

The fermionic part of the SM Lagrangian from Eq. 2.5 describes the interaction of the
fermions with the gauge bosons. The fermionic interaction can be written in terms of the
new physical fields after EWSB and the weak eigenstates can be transform to the physical
states, which diagonalize the mass matrices. For the quarks all interactions take the same
form in the physical basis except for the weak charged currents. As a result the charged
current W± interactions couples to the physical quarks eigenstates via

− g2√
2

(ūL, c̄L, t̄L)γµW+
µ VCKM

 dL
sL
bL

+ h.c.

VCKM ≡ V u
L V

d†
L =

 Vud Vus Vub
Vcd Vcs Vcb
Vtb Vts Vtb

 ,

(2.19)

where VCKM is the 3×3 unitary Cabibbo-Kobayashi-Maskawa matrix [39, 40]. The unitary
of V ensures the absence of flavor changing neutral currents (FCNC) at tree level. The
mass and weak eigenstates for leptons contribution in charged currents resemble since the
neutrinos are supposed to be massless within the SM, even though there are experimental
evidence suggesting massive neutrinos, e.g. from neutralino oscillation.

2.1.1.2. The Higgs masses and its Couplings

Combining the scalar potential 2.10 and Eq. 2.13 derives the following Lagrangian for
the Higgs Field H, which includes the kinetic part of the Higgs field 1

2(∂µH)2 from the
covariant derivative as well as the mass and the self-interaction parts of the Higgs field
from the scalar potential

LH =
1

2
(∂µH)∂µH − V

=
1

2
(∂µH)2 − λv2H2 − λvH3 − λ

4
H4.

(2.20)

From Eq. 2.20 the mass term of the Higgs boson is identified

M2
H = 2λv2 = −2µ2. (2.21)

The mass of the Higgs boson is a free parameter and has been determined experimentally
to be around 125 GeV. The couplings of the Higgs boson to the gauge and fermions can
be obtained from the Lagrangian:

gHff = i
mf

v
, gHV V = −2i

M2
V

v
, gHHV V = −2i

M2
V

v2
,

gHHH = 3i
M2
H

v
, gHHHH = 3i

M2
H

v2
.

(2.22)

A complete overview of the Higgs couplings can be found in Ref. [41].
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Figure 2.2.: Integrated luminosity versus day delivered (blue) and recorded by CMS (orange) during the
stable beams for p-p collisions at 8 TeV centre-of-mass energy in 2012. The figure has been
taken from [43].

2.1.2. Testing the Standard Model at the Large Hadron Collider

The complementary progress of theory and experiment plays an important role in particle
physics. Besides the development of the theoretical framework, the gain of knowledge
about elementary particles is coming from accelerating particles to very high energies in
collider experiments. Detecting the collision products allows to test the predictions of the
SM.
Todays world’s largest and highest energy particle accelerator is the Large Hadron Col-
lider (LHC) [42] based at CERN, the European Organization for Nuclear Research, near
Geneva in Switzerland. It is located in a 27 km circular tunnel around 100 m beneath
the Swiss/French border. Seven experiments are located within the ring structure. The
LHC is designed to collide counter-rotating proton beams with energies up to 7 TeV per
nucleon to study the conditions in the very early universe. To bend the proton along
the ring 1232 dipole magnets are installed and able to generate a 8.3 T magnetic field.
Before the particles reach their high energies in the LHC, they have to pass through a
pre-acceleration chain to be injected with an energy of 450 GeV. At the design energy the
protons are arranged in up to 2808 bunches per beam with 1.15 · 1011 protons per bunch.
A design bunch spacing of 25 ns and a frequency of 40 MHz leads to 600 million particle
collisions per second. After a electronic pre-selection only 1% of the events are further
selected for the analysis leading to several petabytes of collision data per year, which is
analyzed by a grid-based computer network infrastructure. The design luminosity of the
LHC is 1034 cm−2s−1 for proton collisions. The luminosity L = Ṅ/σ describes the relation
of the number of events per second Ṅ for a process with a given cross section σ. L is
determined by the machine parameter, e.g. high-intensity beams with small transverse
beam areas. The integrated luminosity Lint is therefore a measure for the total number of
events via the relation N =

∫
Lσdt = Lintσ. The integrated luminosity delivered over time

by the LHC and recorded by the CMS experiment is shown in Fig. 2.2 to demonstrate the
excellent performance of the LHC. This qunatity is needed for rare processes, since rare
events are limited by the production cross section. In spite of the low production cross
section, the number of events can be increased with higher luminosity.
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Figure 2.3.: The invariant mass spectrum of opposite-sign muon pairs taken from Ref. [47] including
Lint = 40pb−1.

At four intersection points the main detectors3 are located. The results of the following
main detectors have been relevant for this thesis:

• CMS (”Compact Muon Solenoid”) [44] and ATLAS (”A Toroidal LHC Apparatus”)
[45] represent the general purpose detectors. Their aim is to investigate a wide range
of physics starting from the detection of the Higgs boson, which succeeded in July
2012, to the discovery of evidences for new physics beyond the SM. The characteristic
design of the two detectors are slightly different. However, both experiments feature
the typical detector structure consisting of several layers of sub detectors: the inner
detector arranged around the collision center consists of a tracking system, which
is integrated into a magnetic field. The momentum of the particles is measured
by the deflection within the magntic fiels. The tracking system is surrounded by
the electromagnetic and hadronic calorimeter, where the deposited energy of the
particles is measured. By combining the energy and momentum measurement, the
particles can be identified. Unlike the other particles, muons can cross the whole
detector. They are detected within the muon spectrometer which is the last layer of
the detector.

• LHCb (”Large Hadron Collider beauty Experiment”) [46] is designed to investigate
heavy flavor, EW and QCD physics by performing precision measurements of the
decay of B-mesons. Studying for example the parameters of CP violation will help
to explain matter-antimatter asymmetry of the universe.

In march 2010 the LHC started its operation at the highest center of mass energy ever
reached. Ever since the first proton-proton collision at 7 TeV, it operated successfully so
in 2012 the energy per beam could be increased to 4 TeV. All experimental measurements
preformed up to now by the LHC are in excellent agreement with the predictions of the
SM. Fig. 2.3 shows the measurement of the mass spectrum for opposite sign muon pairs,
which reveals the structure of the bound states produced in hadron collisions decaying
into pairs of muons. The first di-muon spectrum has already been recorded only within

3In total seven detectors have been installed at the LHC, but the four experiments TOTEM (”Total
Elastic and diffractive cross section measurement”), MoEDAL (”Monopole and Exotics Detector At the
LHC”) and LHCf (”Large Hadron Collider forward”) and ALICE (”A Large Ion Collider Experiment”)
are much smaller and more specialized.
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Figure 2.4.: Comparison of a subset of SM total production cross section measurements and the corre-
sponding theoretical expectations at NLO and NNLO taken from Ref. [48].

the first short rediscover phase of data taking recapitulated high energy physics of the last
fifty years. The fast re-discovery of the SM is impressive but it is also required to discover
new phenomena, since SM processes are used to calibrate the detectors and to understand
the background processes. The excellent performance of the LHC became apparent by the
discovery of the Higgs boson. On 4th July 2012, its detection by the ATLAS and CMS
experiment was announced. The first elementary scalar particle in nature was discoverd,
while in 2013 the predicted positive parity and zero spin were confirmed.
In addition to the Higgs discovery, the first observation of a rare decay of a BS meson in
two muons has been recorded by LHCb and CMS. The collected data have been used to
perform measurements of many SM processes within a wide cross section range covering
many orders of magnitude. Only a short summary of cross section measurement of CMS
is shown in Fig. 2.4 together with the theoretical predictions including calcualtions at
next-to leading order (NLO) and next-to-next-to-leading order (NNLO) of perturbation
theory. It shows an excellent agreement within the uncertainties representing a remarkable
achievement of the SM and the LHC.
After two months of heavy ion collisions in 2013 the LHC went into a shutdown for magnet
and detector upgrades. For 2015 it is planned to start running at 13-14 TeV. In addition
to the collision energy also a luminosity upgrade of the LHC has been proposed for 2020.
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3. Supersymmetry - a Theory Beyond the
Standard Model

The SM is an extremely successful theory. Its high prescision predictions have been ex-
tensively tested over the past forty years . However, a number of fundamental questions
are left unanswered, which leads to the believe that the SM is incomplete and should be
regarded as an effective theory describing particle physics at the experimentally probed
energy scale. Extended theories beyond the SM are required, which include the SM as a
low energy limit. Physics beyond the SM can be motivated by the naturalness problem
of the SM, which occurs by calculating radiative corrections. Since it gives a hint of the
scale of new physics, the naturalness problem is shortly discussed in the following.
Divergent calculations of loop integrals are handled in the SM by regularization e.g. using
a Lorentz invariant cut-off Λ, so the leading divergency in any quantity is logarithmic
δm ∝ mln Λ

m . This leads to small radiative corrections even up to the Planck scale1

Λ ∼ MP ≈ 1019GeV. The divergence is absorbed in a field strength renormalization con-
stant and is associated with the running of the coupling constant. However, this is not
valid for a scalar field within the SM, e.g. the Higgs field. The calculation of the radiative
correction turns out to be quadratically divergent

m2
SM (phys) ' m2

SM −
c

16π2
Λ2, (3.1)

where m2
SM corresponds to the Higgs mass parameter squared from the Lagrangian. The

second term includes the leading contribution in the cut-off Λ with a numerical coefficient
c. The cut-off parameter Λ can be interpreted as the scale up to which the SM is supposed
to be valid. If the validity of the SM is assumed to reach the Planck scale given the physical
Higgs mass, the Lagrangian mass has to be incredibly fine tuned to provide the needed
cancellation from ∼ (1019 GeV)2 to ∼ (102 GeV)2. This cancellation is often referred to
as the fine-tuning problem in the context of the naturalness of a theory. A reasonable and
natural scale for Λ would be the TeV scale. Then new degrees of freedom coming with
new physics have to appear at the TeV scale to cancel the quadratic divergencies at all
orders of perturbation theory. Since the fermion and boson loops contribute with different
signs to the Higgs mass, the cancellation can be managed if the couplings of fermions and
bosons are related via a symmetry.
The symmetry which relates the properties of bosons and fermions is called Supersymmetry

1The Planck scale corresponds to the energy scale at which quantum effects of gravity become essential.
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14 3. Supersymmetry - a Theory Beyond the Standard Model

(SUSY), which will be discussed in more detail in section 3.1. SUSY solves the fine-tuning
problem and is able to answer numerous fundamental questions of the SM, which motivates
its examination:

• The hierarchy problem describes the mismatch of the observed and natural value
of the electroweak scale due to radiative corrections. In contrast to the SM, the tiny
scale ratio of the EW and the Planck scale is not destabilized by radiative corrections
within SUSY.

• The spontaneous electroweak symmetry breaking has to be introduced ad hoc
within the SM by choosing the negative sign of the mass parameter µ without any
explanation for this choice. EWSB occurs naturally within SUSY, since renorma-
lization effects drive the Higgs boson squared mass parameter negative.

• The mass of the Higgs boson was measured to be 125 GeV. However, it could have
been as heavy as 1 TeV within the SM2. The Higgs mass range was only constrained
experimentally from precision fits to electroweak data [50]. Unlike the SM, a light
Higgs boson below 135 GeV [12] is predicted within the minimal supersymmetric
extension of the SM.

• Attempts to embed the SM in a larger gauge symmetry leading to one single force and
one unified coupling failed, since the requested unification of the gauge couplings to
higher energies is not possible using the SM RGEs, see Fig. 3.1(a). The unification
of the gauge couplings tends to work well if the couplings are extrapolated using
the supersymmetric evolution equations, see Fig. 3.1(b), which was first examined
in Ref. [33].

• Gravitation although being a fundamental force, is not included in the SM and
described separately in general relativity. Local symmetry described by super-
gravity within SUSY could incorporate general relativity, although remaining non-
renormalizable.

• Cosmological observations show that a large fraction of the matter in the universe
consists of dark matter (DM), which is indicated only by its gravitational effect on
visible matter. In contrast to SM particles, the lightest supersymmetric particle is
an excellent candidate for cold dark matter, since it provides all needed properties
and the correct amount of dark matter.

3.1. Introduction to Supersymmetry

Supersymmetry was evolved in the late 1960s and early 1970s. The first concepts arose
in the context of string theory [51–53] until in 1974 Wess and Zumino wrote down the
first four-dimensional supersymmetric quantum field theory [54–56]. Many phenomeno-
logical studies of SUSY followed [13, 57–59], while the interest in SUSY has grown after
recognizing that SUSY provides a solution of the fine-tuning problem. The simplest super-
symmetric version of the SM, the Minimal Supersymmetric SM (MSSM) was developed
in the early 1980s [7–10] and is ever since of interest of phenomenological and experimen-
tal studies [13, 58, 59]. The following short introduction to SUSY and in particular the
MSSM is derived from Ref. [10]. More details can be found in reviews or textbooks, see
e.g. [7–11, 60] and [12, 49, 61–63].
Within SUSY a bosonic state is turned into a fermionic state and vice versa by a trans-
formation generated by the operator Q which respects

2Arguments of the unitarity of the S-matrix, which results from the conservation of probabilities at the
quantum level, leads to an upper limit of about 780 GeV [49] on the Higgs boson mass.
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3.1. Introduction to Supersymmetry 15

(a) (b)

Figure 3.1.: Evolution of the inverse of the coupling constants within the SM (a) and the supersymmetric
extension of the SM (b) taken from [33]. The unification of the couplings is only obtained in
the latter case.

Q |boson〉 = |fermion〉 , Q |fermion〉 = |boson〉 . (3.2)

The generator Q and the hermitian conjugated Q† are fermionic operators, i.e. they carry
spin angular momentum 1/2. Since SUSY is a space-time symmetry, the generators Q and
Q† must satisfy an algebra with

{Q,Q†} = Pµ,

{Q,Q} = {Q†, Q†} = 0,

[Pµ, Q] = [Pµ, Q†] = 0,

(3.3)

where Pµ is the four momentum generator of space-time translations. The irreducible rep-
resentation of the SUSY algebra, called supermultiplets, contain both fermion and boson
states, which are superpartners of each other. The particles in the same supermultiplet
have the same representation of the gauge group with the same corresponding quantum
numbers, except for the spin.
There are two possible types of supermultiplets: scalar (chiral) and vector (gauge) super-
multiplets. Scalar supermultiplets consist of a single Weyl fermion with two spin helicity
states and two real scalars, which can be assembled into a complex scalar field. Vector
supermultiplets contain a massless spin 1 gauge boson with two helicity states and their
fermionic superpartners. In the supersymmetric extension of the SM the known funda-
mental particles of the SM are organized in supermultiplets along with their superpartners
whose spin differ by 1/2 unit. The SM fermions have spin 0 partners named squarks and
sleptons3. Squarks and sleptons are denoted as left and right-handed which refer to the
helicity of the superpartners. The Higgs scalar boson is arranged in a chiral supermulti-
plet with the spin 1/2 superpartner, the Higgsino4. Two Higgs chiral supermultiplets are
needed for the MSSM to be a consistent quantum field theory. Only one Higgs super-
multiplet would lead to a gauge anomaly. Furthermore, no anti-chiral superfields can be
involved into the Lagrangian, so two Higgs supermultiplets with Y = ±1 are necessary to
have Yukawa couplings both to the up- and down-type fermions. The fields are denoted
accordingly as Hu and Hd, with an electric charged and neutral component according to

3The scalar superpartners to the SM fermions are denoted by prepending an ”s”. The symbols for the
sfermions differ by a tilde from the corresponding SM particles.

4The nomenclature for the spin 1/2 superpartners to the SM bosons is to append ”ino”to the corresponding
SM name. The symbols are marked with an additional tilde.
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16 3. Supersymmetry - a Theory Beyond the Standard Model

Table 3.1.: Summary of the chiral and gauge supermultiplet fields representing the particle content of
the MSSM taken from Ref. [12]. The particles are classified according to the transformation
properties under the SM gauge group.

Names spin 0 spin 1/2 SU(3)C SU(2)L U(1)Y

squarks, quarks
Q (ũL, d̃L) (uL, dL) 3 2 1/3

ū ˜̄uL = ũ†R ūL = (uR)c 3̄ 2 -4/3

d̄ ˜̄dL = d̃†R d̄L = (dR)c 3̄ 2 2/3

sleptons, leptons
L (ν̃eL, ẽL) (νeL, eL) 1 2 -1

ē ˜̄eL = ẽ†R ēL = (eR)c 1 1 2

Higgs, Higgsinos
Hu (H+

u , H
0
u) (H̃+

u , H̃
0
u) 1 2 1

Hd (H0
d , H

−
d ) (H̃0

d , H̃
−
d ) 1 2 -1

Names spin 1/2 spin 1 SU(3)C SU(2)L U(1)Y

gluinos, gluons g̃ g 8 1 0

winos, W bosons W̃±, W̃ 0 W±,W 0 1 3 0

bino, B boson B̃ B 1 1 0

the weak isospin component. The SM bosons and their superpartners, the gauginos, are
described in gauge supermultiplets. Combining all supermultiplets the number of particles
within the MSSM is essentially doubled compared to the SM. The particle content of the
MSSM is summarized in Table 3.1. The particles are classified according to their trans-
formation properties under the SM gauge group. The chiral supermultiplets are defined
in terms of left-handed Weyl spinors, so the right-handed particle fields can be accommo-
dated within the left-type convention by regarding them as the charge conjugated of the
left-type anti-particles fields which appear in Table 3.1. A generation index can be added
to the particle fields according to the three fermion generations.

If SUSY would be exact, the masses of the summarized superpartners in Table 3.1 would
be equal. Since no superpartners have been discovered so far, SUSY has to be broken. In
order to still provide the cancellation of the quadratic divergencies in scalar squared masses
to all orders in perturbation theory, a so-called soft breaking of SUSY is required. This is
maintained since the dimensionless couplings λ are related by introducing additional scalar
fields to the SM fermions. But the breaking of SUSY still leads to logarithmic corrections
of the order of λ(m2

H − m2
f )lnΛ. Since the mass splitting of the SM particles and their

superpartners determines the size of the logarithmic correction, the superpartners cannot
be too heavy, otherwise the corrections would be again unnaturally large. Especially the
stop and sbottoms as well as the winos and binos give large contributions to δm2

Hu
and

δm2
Hd

. Assuming Λ ≈Mp and λ ≈ 1 the lightest superpartner should not be much heavier
than the TeV scale to avoid again a fine-tuning problem.
The corresponding effective Lagrangian of the MSSM can be divided into two parts:

L = LSUSY + Lsoft. (3.4)

The first term is the SUSY generalization of the SM, which contains all gauge and Yukawa
interactions LSUSY = Lgauge + Lyukawa and preserves SUSY invariance. The interactions
and particle masses in LSUSY are determined by their gauge transformation properties and
by the superpotential W . W is incorporated into Lyukawa and its form is restricted by the
requirement of gauge invariance. The MSSM superpotential reads [11]
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3.1. Introduction to Supersymmetry 17

W = εij(y
u
abQ

j
aūbH

i
u + yd

abQ
j
ad̄bH

i
d + yL

abL
j
aēbH

i
d + µH i

uH
j
d), (3.5)

where i, j = 1, 2 are the SU(2) and a, b, d = 1, 2, 3 the generation indices. The color indices
are suppressed for simplicity but can be added as a further index. The dimensionless
Yukawa parameters yu,yd,yd are 3× 3 matrices in family space.
The superpotential resembles Eq. 2.17 after exchanging the SM fields with the superfields
listed in Table 3.1 except for the last term since the Higgs mixing is absent in the SM. In fact
further terms in addition to those in Eq. 3.5 exist which violate either baryon (B) or lepton
(L) number. The non observation of proton decay and many other processes give strong
constraints on the baryon or lepton number violation, e.g. [64, 65], thus such terms must
either be suppressed or excluded in nature. To preserve B- and L-conservation a new global
U(1)R symmetry, called R-symmetry, is added to the MSSM, which eliminates only B−L
violating terms in the renormalizable superpotential. The corresponding multiplicatively
conserved quantum number, the R-Parity, is defined by

R = (−1)3(B−L)+2S . (3.6)

According to Eq. 3.6, SM particles have a R-parity of +1 while SUSY particles carry
R = −1. If R-Parity is conserved sparticles can only be produced in pairs and heavy
sparticle will decay eventually in the stable lightest supersymmetric particle.

The second term in the Lagrangian of Eq. 3.4 includes the SUSY violating soft breaking
terms. The construction of these soft breaking terms is described in [10] for the MSSM
and leads to

Lsoft =− 1

2

(
M3g̃g̃ +M2W̃W̃ +M1B̃B̃ + h.c.

)
−
(

˜̄uLauQ̃Hu − ˜̄dLadQ̃Hd − ˜̄eLaeL̃Hd + h.c.
)

− Q̃†m2
QQ̃− L̃†m2

LL̃− ˜̄u†Lm2
ū

˜̄uL − ˜̄d†Lm2
d̄

˜̄dL − ˜̄e†Lm2
ē
˜̄eL

−m2
HuH

†
u ·Hu −m2

Hd
H†d ·Hd − (bHu ·Hd + h.c.).

(3.7)

M1,M2,M3 represent the gaugino mass terms, while (m2
Q,m

2
ū,m

2
d̄
,m2

L,m
2
ē) are 3 × 3

matrices in family space and correspond to the squark and slepton mass terms. The triple
scalar couplings are described by the complex 3× 3 dimensional matrices au,ad,ae. The
last line contains the supersymmetric breaking contribution to the Higgs potential with
the squared mass terms m2

Hu
, m2

Hd
and b. Lsoft leads the required soft breaking, i.e. the

cancellation of the quadratic divergencies in the radiative correction of all scalar masses
to all orders in perturbation theory. Such terms are independent of the breaking mech-
anism. Even though different breaking mechanisms lead to common results for the soft
breaking terms, the supersymmetric models which are further discussed refer to the super-
gravity mechanism of SUSY breaking (minimal supergravity, mSUGRA). This breaking
mechanism leads to a simplification of the soft terms using unified boundary conditions for
masses and couplings at the GUT scale. This will be further discussed in section 3.3. All
mass relations calculated at low scale by the RGEs apply these mSUGRA/GUT boundary
conditions. For more details on different SUSY breaking mechanism see Refs. [10, 11].

3.1.1. Electroweak Symmetry Breaking

The minimum of the Higgs potential in the supersymmetric extension of the SM should
break electroweak symmetry down to electromagnetism SU(2)L × U(1)Y → U(1)em, as
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18 3. Supersymmetry - a Theory Beyond the Standard Model

already described in section 2.1.1.2 for the SM. The mechanism has to be applied to the
extended Higgs sector in the MSSM which consits of the two complex Higgs doublets

Hu =

(
H+
u

H0
u

)
and Hd =

(
H0
d

H−0

)
. (3.8)

Possible vevs for the charged components of the Higgs scalar are rotated away by using a
SU(2)L gauge transformation, which assures unbroken electromagnetism at the minimum
of the potential. Using these simplifications the corresponding Higgs potential includes
only the neutral component and reads

V =(|µ|2 +m2
Hu)|H0

u|2 + (|µ|2 +m2
Hd

)|H0
d |2 − (bH0

uH
0
d + h.c.)

+
1

8
(g2

1 + g2
2)(|H0

u|2 − |H0
d |2)2.

(3.9)

In order to allow for real positive solutions and a potential which is bounded from below,
the following inequalities are required

2b < 2|µ|2 +m2
Hu +m2

Hd
,

b2 > (|µ|2 +m2
Hu)(|µ|2 +m2

Hd
).

(3.10)

Both inequalities can only be fulfilled simultaneously, if at least one of the Higgs mass
squared is negative, which is not applicable at the GUT scale due to the boundary condi-
tions. However, for a lower energy scale a negative mass squared naturally occurs for m2

Hu
,

because of the large top Yukawa coupling contribution in the RGE. In this way the top
mass was predicted to be heavy well before its discovery [66]. This mechanism is referred
to as radiative electroweak symmetry breaking. The vevs of the doublets

〈H0
u〉 =

1√
2
vu and 〈H0

d〉 =
1√
2
vd (3.11)

are related to the Z0 boson mass and the electroweak gauge couplings via v2
u + v2

d =

v2 = 4m2
Z/(g

2
1 + g2

2) ≈ (256 GeV)2. Their ratio is defined as tanβ ≡ vu/vd = v sinβ
v cosβ ,

which varies within 0 < β < π/2 for real and positive vevs5. The minimization condition
∂V/∂H0

u = ∂V/∂H0
d = 0 has to be satisfied, which leads to the following relations at tree

level using tanβ and the Z0 boson mass mZ :

sin(2β) =
2b

m2
Hu

+m2
Hd

+ 2|µ|2 ,

m2
Z =

|m2
Hd
−m2

Hu
|√

1− sin2(2β)
−m2

Hu −m2
Hd
− 2|µ|2.

(3.12)

If the soft breaking mass terms of the Higgs fields m2
Hu

and m2
Hd

are known at the weak

scale because of the RGEs, together with the knowledge of the Z0 boson mass and tanβ, the
values of b and µ are fixed due to EWSB, while the sign of µ is undetermined. The physical
fields and their masses are obtained by expanding the two complex scalar fields Hu and Hd

5To avoid large non perturbatively top and bottom Yukawa couplings, tanβ should be larger than ∼ 1.2
and less than ∼ 60, whereas the exact boundary values depend on the top quark mass.
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3.1. Introduction to Supersymmetry 19

Table 3.2.: Couplings from the neutral Higgs bosons φ = h0, H0, A0 to up-/down-type fermions and gauge
bosons normalized to the SM Higgs couplings taken from [67].

φ gφdd gφuu gφV V

h0 − sinα
cosβ

cosα
sinβ sin(β − α)

H0 cosα
cosβ

sinα
sinβ cos(β − α)

A0 tanβ cotβ 0

around the vacuum into real and imaginary parts. The mass matrices are evaluated for the
fields at the minimum and diagonalized, i.e. rotation matrices are chosen to get diagonal
squared masses in terms of the mass eigenstates fields. Three of the eight real, scalar
degrees of freedom of two complex SU(2)L Higgs doublets become the longitudinal modes
of the massive Z0 and W± bosons after EWSB. The remaining five Higgs scalar mass
eigenstates consist of two CP-even neutral scalars h0 and H0, one CP-odd neutral scalar
A0 and two charged scalars H±. The corresponding physical squared masses m2

h,m
2
H ,m

2
A

and m2
H± at tree level read

m2
A = 2b/sin(2β) = 2|µ|2 +m2

Hu +m2
Hd
,

m2
h,H =

1

2

(
m2
A +m2

Z ∓
√

(m2
A −m2

Z)2 + 4m2
Zm

2
Asin2(2β)

)
,

m2
H± = m2

A +m2
W .

(3.13)

The mixing angle α fulfills

sin2α

sin2β
= −

(
m2
H +m2

h

m2
H −m2

h

)
,

tan2α

tan2β
=

(
m2
A +m2

Z

m2
A −m2

Z

)
(3.14)

and varies within −π/2 < α < 0. The MSSM Higgs sector can be fully described by two
free parameters, which are often chosen to be tanβ and m0

A. Table 3.2 shortly summarize
the couplings of the neutral Higgs bosons to up-/down-type fermions and gauge bosons,
which are determined by the two angles α and β, while a complete overview of the Higgs
couplings can be found in [41].

The masses of the heavier Higgses A0, H0 and H± can be arbitrarily large, but the mass
of the lightest Higgs boson h0 is bound from above at tree level by the Z0 boson mass
mh < mZ |cos(2β)|. However, the one-loop contributions to the light Higgs boson mass
mh shift the mass up to larger values. The main contributions are coming from the one-
loop diagrams involving top quarks and squarks as shown in Fig. 3.2. The additional
corrections are of the order of

∆(m2
h) =

3

4π2
cos2α y2

tm
2
t ln

(
mt̃1

mt̃2
/m2

t

)
, (3.15)

including the stop mass eigenstates mt̃1
,mt̃2

resulting from the mixing of the left- and
right-handed stops. A major contribution even occurs for large stop mixing. Including
the stop and other important corrections, see e.g. [68–71], the bound on the Higgs mass is
weaker and around mh . 135 GeV, if the sparticles contributing to the loops are assumed
to have masses below 1 TeV. In the so-called decoupling limit, mA � mZ , the mass of
the lightest Higgs boson saturates the upper bound and the heavier Higgs masses mH and
mA are nearly degenerated. The corresponding mixing angle α approximates β − π/2.
This leads to SM Higgs couplings to quarks, leptons and electroweak gauge bosons for the
lightest Higgs boson, as can be extracted from Table 3.2.
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20 3. Supersymmetry - a Theory Beyond the Standard Model

∆(m2
h)=

t

h0

+

t̃

h0

+

t̃

h0

Figure 3.2.: Dominant one loop diagrams from stop and top contributing to the lightest Higgs boson mass
in the MSSM. A large positive correction is coming from the incomplete cancellation due to
the soft breaking terms.

3.2. The µ-problem and the Next-To-Minimal Supersymmet-
ric Standard Model

Radiative electroweak symmetry breaking occurs naturally in the MSSM in contrast to
the SM, but a problem still persist. It refers to the naturalness of the µ parameter, which
is illustrated by expanding Eq. 3.12 for large tanβ:

m2
Z = −2(m2

Hu + |µ|2) +
2

tan2 β
(m2

Hd
−m2

Hu) +O(1/ tan4 β). (3.16)

µ is a SUSY respecting parameter appearing in the superpotential, while the other masses
are SUSY breaking parameters. Although being unrelated they have to cancel within one
order of magnitude to get a Higgs vev of the order of O(102) as shown in Eq. 3.16. There
is no reason for µ to be of the order of msoft, so small compared to MP . Several extensions
of the MSSM have been proposed to solve this so-called µ-problem [72]. One possibility is
the next-to-minimal supersymmetric SM (NMSSM), whose main features will shortly be
discussed in this section mainly derived from Ref. [73] and [74]. For more details see e.g.
Refs. [73–78].

Within the NMSSM the Higgs sector is further extended by introducing a new, additional
Higgs singlet field S. This opens the possibility of new contributions to the superpotential
e.g. an interaction term λSHuHd of the Higgs singlet with the two doublets. The µ term
present in the MSSM is absent at tree-level before symmetry breaking and arises if the
scalar field S acquires a non-zero expectation values. An effective µeff term is generated,
which is expected to be naturally of the order of the electroweak scale µeff = λ〈S〉, since
µeff is dynamically linked to the vev of the singlet. However, this minimal extended
scenario possesses a global U(1) Peccei-Quinn (PQ) symmetry [79]. The spontaneous
breaking of this symmetry at electroweak scale, leads to a phenomenologically excluded
axion [80, 81]. To remove the unwanted PQ symmetry a cubic self coupling 1

3κS
3 is

added to the superpotential, which leads to a discrete Z3 symmetry Ψ → e2πi/3Ψ, whose
breaking gives rise to cosmological weak scale domain walls [82]. This would lead to
unacceptable large anisotropies in the cosmic microwave background [83]. The breaking of
the Z3 symmetry itself causes divergent tadpole contributions, which destabilize the mass
hierarchy [84]. More details about the breaking can be found in [77, 78], where scenarios
are introduced enabling an adequate Z3 symmetry breaking, i.e. the surviving tadpole
terms are sufficiently suppressed to not upset the mass hierarchy but to be large enough
to prevent the domain walls.
The resulting superpotential for the NMSSM is described by

WNMSSM = WMSSM + λSHuHd +
1

3
κS3, (3.17)
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3.2. The µ-problem and the Next-To-Minimal Supersymmetric Standard Model 21

where WMSSM denotes the first three terms in Eq. 3.5. λ and κ are dimensionless
couplings, while S represents the chiral supermultiplet, which contains a real scalar and
pseudo-scalar boson and a Weyl fermion, the singlino. These fields have no gauge couplings
to their own, so the can only interact with SM particles by mixing with the neutral MSSM
fields with the same spin and charge. The two additional bosons mix with the scalar and
pseudo-scalar Higgs bosons, which leads in total to seven Higgs bosons: H1, H2, H3, A1, A2

and H±. The singlino mixes with the four MSSM neutralinos inducing overall five neu-
tralinos: χ0

1, χ
0
2, χ

0
3, χ

0
4 and χ0

5. The modified Higgs sector is discussed in the next section,
whereas the modified neutralino sector will summarized in section 3.4.

3.2.1. The Higgs Sector in the Next-To-Minimal Supersymmetric Stan-
dard Model

The NMSSM superpotential combined with the corresponding soft breaking terms lead to
the following tree level Higgs potential for the two Higgs doublets and the singlet S [75]:

V =|λS|2(|Hu|2 + |Hd|2) + |λHuHd + κS2|2

+
g2

1 + g2
2

8
(|Hd|2 − |Hu|2)2 +

g2
2

2
|H†uHd|2

+m2
Hu |Hu|2 +m2

Hd
|Hd|2 +m2

S |S|2 + (λAλSHuHd +
1

3
κAκS

3 + h.c.).

(3.18)

Here the notation HuHd ≡ εαβ(Hu)α(Hd)
β = H+

u H
−
d −H0

uH
0
d is used. The last line in Eq.

3.18 results from the soft SUSY breaking terms and includes dimensionful coefficients and
soft mass terms for the fields. Additional parameters Aλ, Aκ and mS are introduced to
the MSSM soft mass terms mHu and mHd . The convention of a real combination of λκ∗

is adopted to avoid CP violation at tree level in the Higgs sector. The Higgs singlet field
decouples in the MSSM limit, which is reached if the couplings λ and κ vanish for fixed
Aλ and Aκ. EWSB can be applied for the modified Higgs potential in Eq. 3.18 analogous
to the MSSM. The vevs are described by

〈Hd〉 =
1√
2
vd, 〈Hu〉 =

1√
2
vu and 〈S〉 =

1√
2
vs, (3.19)

where vu and vd resemble the MSSM relation v2
u+v2

d = v2 = 4m2
Z/(g

2
1 +g2

2) ≈ (246 GeV)2.
Adopting the vevs into the potential, the following three minimization conditions6 are
obtained which connect the soft mass terms to the vevs of the Higgs fields:

m2
Hd

=
g2

1 + g2
2

8
(v2
u − v2

d)−
1

2
λ2v2

u +
1

2
(
√

2Aλ + κvs)λvs
vu
vd
− 1

2
λ2v2

s ,

m2
Hu =

g2
1 + g2

2

8
(v2
d − v2

u)− 1

2
λ2v2

d +
1

2
(
√

2Aλ + κvs)λvs
vd
vu
− 1

2
λ2v2

s ,

m2
S = −κ2v2

s −
1

2
λ2v2 + κλvuvd +

1√
2
λAλ

vuvd
vs
− 1√

2
κAκvs.

(3.20)

The values of λ,κ and µeff = λ〈s〉 are fixed, if the soft breaking mass terms of the Higgs
fields and the trilinear couplings are known at the weak scale from the RGEs together
with the Z0 boson mass and tanβ. The sign of µeff stays undetermined. The tree level
Higgs matrices can be extracted after expanding the full scalar potential around the vevs.

6A general analysis of the local minima of the superpotential is given in Ref. [74].
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The potential provides the following non zero mass terms after applying a rotation to the
Higgs fields:

M2
H±H

+H− +
1

2

(
P1 P2

)
M2
−

(
P1

P2

)
+

1

2

(
S1 S2 S3

)
M2

+

S1

S2

S2

 . (3.21)

The charged fields correspond already to the physical mass eigenstates with the tree level
masses of the charged fields H± of

M2
H± = M2

A +M2
W −

1

2
(λv)2, (3.22)

which includes

M2
A =

λvs
sin 2β

(
√

2Aλ + κvs). (3.23)

In contrast to the charged Higgs fields the CP-odd matrix M2
− of the pseudo-scalar fields

Pi(i = 1, 2) and the CP-even matrix M2
+ of the scalar fields Si(i = 1, 2, 3) have to be

further rotated to get the physical mass eigenstates. The matrix elements of the pseudo-
scalar mass matrix M2

− read

M2
−11 = M2

A,

M2
−12 =

1

2
(M2

A sin 2β − 3λκv2
s)
v

vs
,

M2
−22 =

1

4
(M2

A sin 2β + 3λκv2
s)
v2

v2
s

− 3κvsAκ/
√

2.

(3.24)

The top left entry of the CP-odd squared mass matrix is defined to be M2
A, which is equal

to the pseudo-scalar Higgs boson mass in the MSSM limit. The 3× 3 scalar mass matrix
M2

+ contains the following elements

M2
+11 = M2

A + (M2
Z −

1

2
(λv)2) sin2 2β,

M2
+12 = −1

2
(M2

Z −
1

2
(λv)2) sin 4β,

M2
+13 = −1

2
(M2

A sin 2β + λκv2
s)
v

vs
cos 2β,

M2
+22 = M2

Z cos2 2β +
1

2
(λv)2 sin2 2β,

M2
+23 =

1

2
(2λ2v2

s −M2
A sin2 2β − λκv2

s sin 2β)
v

vs
,

M2
+33 =

1

4
M2
A sin2 2β

v2

v2
s

+ 2κ2v2
s + κvsAκ/

√
2− 1

4
λκv2 sin 2β.

(3.25)

The Higgs masses are sorted according to their mass after the diagonalization ofM2
− and

M2
+, which gives in total three scalar Higgs bosons H1, H2, H3 and two pseudo-scalar Higgs

bosons A1, A2. While in the MSSM the Higgs sector is defined by two free parameters, six
free parameters are needed to describe the Higgs sector in the NMSSM:
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3.3. Constrained Supersymmetric Models 23

λ, κ, Aκ, Aλ, tanβ and µeff .

A simple analytic solution of the eigenvalues for a 3× 3 matrix does not exist so only ap-
proximate solutions for the scalar Higgs bosons are available. For large values of tanβ and
mA the masses of the two lightest Higgs bosons read [73]

M2
H1/2

≈ 1

2

{
M2
Z +

1

2
κvs(4κvs +

√
2Aκ)

∓
√

[M2
Z −

1

2
κvs(4κvs +

√
2Aκ)]2 +

v2

v2
s

[2λ2v2
s −M2

A sin2 2β]2

}
.

(3.26)

Two features of the NMSSM Higgs sector can be derived from Eq. 3.26:

• Given the sum rule M2
H1

+ M2
H2
≈ M2

Z + 1
2κvs(4κvs +

√
2Aκ), the second lightest

scalar Higgs boson mass is maximized if the lightest one approaches zero.

• MA is restricted to a narrow allowed range around MA ≈
√

2λvs/ sin 2β to respect a
positive light Higgs mass squared.

Like in the MSSM, higher order corrections dominated by top and stop loops affect the
tree level Higgs masses. The lightest Higgs boson can be approximated to

M2
SM ' M2

Z cos2 2β + λ2v2 sin2 2β − λ2

κ2
v2(λ− κ sin 2β)2

+
3m4

t

4π2v2

(
ln

(
m2
t̃

m2
t

)
+
A2
t

m2
t̃

(
1− A2

t

12m2
t̃

))
.

(3.27)

Here the soft SUSY breaking stop mass squared are assumed to satisfy m2
t̃
∼ m2

Q3
� m2

t

[74]. The couplings of the Higgs bosons to quarks and fermions are modified according to
the mixing matrix. A large fraction of the singlet component for a Higgs boson indicates a
reduction of the MSSM-like couplings due to the sum rule of the mixing matrix elements.
A summary of all tree level couplings can be found in [74].

3.3. Constrained Supersymmetric Models

The minimal supersymmetric extension of the SM, although called minimal, introduces
many free parameters in addition to the SM parameters, which arises from the soft SUSY
breaking as already discussed in section 3.1. Counting all free parameters describing
masses, couplings and mixing angles in the soft SUSY breaking terms, leads in total
to 105 free additional parameters [85]. In the most general form the MSSM contains
new sources of CP violation and FCNC due to off-diagonal elements of the squark and
slepton mixing matrices. However, a large amount of the parameter space could already
be excluded experimentally [86] and will not further be considered. Within the framework
of minimal supergravity [87–89], which includes the gravity mediated breaking of SUSY,
such off-diagonal terms are naturally suppressed. As a result the soft breaking parameters
at high energy, e.g. the GUT scale, take the following simple form for the MSSM7:

7These equations can be extended according to the additional parameters in the NMSSM.
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m2
Q = m2

ū = m2
d̄

= m2
L = m2

ē = m2
01,

M1 = M2 = M3 = m1/2,

m2
Hu = m2

Hd
= m2

0,

au = A0yu,ad = A0yd,ae = A0ye,

b = B0µ.

(3.28)

The RGEs are used to compute the low energy values of the parameters according to the
unified boundary conditions for the SUSY masses and couplings at the GUT scale. The
spectrum of the simplest SUSY model, the so-called constrained MSSM (CMSSM)8, is
determined by five free parameter

m0, m1/2, A0, tanβ and sgn(µ).

The unification of the Higgs and the scalar sector at high energies has no theoretical
motivation, so the universality of the scalar masses can be relaxed, which decouples the
squared masses of the Higgs boson and squark/sleptons. Such SUSY models are denoted
as non-universal Higgs (NUH) mass models. The free Higgs mass squared m2

Hu
and m2

Hd
at the GUT scale introduce two additional free parameters at the high energy scale, which
can be easily replaced by two equivalent parameters at a low scale e.g. mA and µ. In total
the NUH-CMSSM is determined by six free parameters:

m0, m1/2, A0, tanβ, mA and µ.

The constrained and non-universal Higgs model can be adopted to the NMSSM: the most
common choice for the free parameters of the constrained NMSSM (CNMSSM) are the
following six parameters [90]:

m0, m1/2, A0, tanβ, sgn(µ) and λ.

The singlet mass squared, the singlet vev and κ are determined by the minimization
equations of the scalar potential according to the input parameters, while the sign of µeff
is free. The non-universal Higgs model within the NMSSM, also known as semi-constrained
NMSSM, allows the soft mass terms and the trilinear couplings involving the Higgs singlet
to differ from the unified scalar masses and couplings. The SUSY spectrum is determined
by the following set of free parameters [91, 92]:

m0, m1/2, A0, tanβ, λ, κ, Aλ, Aκ and µeff .

The sign convention, see Ref. [93], fixes λ and tanβ to be positive whereas κ,Aλ, Aκ and
µeff can have both.

Table 3.3 summarizes the input parameters indicated by a cross for each analyzed SUSY
model. The overview of the parameters and the corresponding multi-dimensional param-
eter space of the constrained SUSY models refer to the available options in the applied
software package calculating the SUSY mass spectrum. Note that the free parameters can
be replaced by each other according to the minimization conditions and mass relations.
The common masses m0 and m1/2 as well as the trilinear couplings A0, Aκ, Aκ are defined
at the GUT scale. tanβ is given at MZ , while the couplings λ, κ and the Higgs mixing
parameter µeff are specified at the SUSY scale. For the NUH-CMSSM mA and µeff are
defined at the EWSB scale.
8mSUGRA is not equal to the CMSSM, since mSUGRA implies a further assumption for the gravitino

mass m3/2 = m0, which is independent in the CMSSM.
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3.4. Sparticle Masses 25

Table 3.3.: Summary of the parameters for the corresponding constrained and non-universal Higgs mass
SUSY models. The crosses mark the input parameters for the corresponding SUSY model.

CMSSM NUH-CMSSM CNMSSM NUH-CNMSSM

m0 x x x x
m1/2 x x x x

A0 x x x x
tanβ x x x x
sign(µ) x x
λ x x
κ x
mA/Aλ x x
Aκ x
µ/µeff x x

3.4. Sparticle Masses

The SUSY mass spectrum at low energy is given by the evolution of the masses and
couplings from the high to the low energy scale using the RGEs. A summary of the one
and two loop RGEs can be found in [10] and [74] for the MSSM and NMSSM, respectively.
Some relevant aspects of the sparticle masses are shortly discussed in this section.

The gluino, a color octet, cannot mix with any other particle in the MSSM. Using GUT
boundary conditions for the MSSM and NMSSM, the gluino mass parameter M3 is pro-
portional to the common spin 1/2 mass m1/2 and related to the other two gaugino mass
parameters M1 and M2 via [9]

M3 ≈Mg̃ ≈ 2.7m1/2, M2 ≈ 0.8m1/2, M1 ≈ 0.4m1/2. (3.29)

At the TEV scale this implies roughly the predicted mass relation M1 : M2 : M3 ≈ 1 : 2 : 6.
The gluino gets a positive contribution to the mass including one-loop corrections to the
gluino propagator due to gluon and quark-squark loops. In the constrained SUSY models
the gluino is therefore always slightly heavier compared to the first and second generation
squarks.

The first and second generation squarks and sleptons have negligible Yukawa couplings,
which leads to nearly degenerate unmixed pairs. The third generation squarks and sleptons
can have very different masses compared to the first and second-family sparticles, because
of the effects of large Yukawa and soft couplings, leading to m2

U3
< m2

Q3
. The third

generation squarks are therefor significantly smaller then the other two generation squark
squared masses. The off-diagonal terms of the mixing matrix lead to a significant mixing,
which predicts the lightest squark to be the lightest stop t̃1 in many models, which is
predominantly the right-handed stop t̃R. The requirement of positive squared masses for
third family squarks and slepton leads to a bound on A0 for large tanβ, which is typically
within −2m0 < A0 < 3m0. This range can vary depending on the particular parameter
space.

The charged Higgsinos and gauginos mix to form the charged mass eigenstates of the
supersymmetric partners of the gauge bosons, the so-called charginos. The charginos are
denoted by χ̃±j with j = 1, 2 according to the convention mχ̃±1

< mχ̃±2
. The mass term in

the Lagrangian for the gauge-eigenstate basis ψ± = (W̃+, H̃+
u , W̃

−, H̃−d ) reads

25



26 3. Supersymmetry - a Theory Beyond the Standard Model

Lχ̃± = −1

2
(ψ±)TMχ̃±ψ

± + h.c.. (3.30)

The 2× 2 block mass matrix

Mχ̃± = −
(

0 XT

X 0

)
(3.31)

includes

X = −
(
M2 gvu
gvd µ

)
. (3.32)

The mass eigenstates are related to the 2× 2 matrices and can be explicitly solved, which
leads to the following tree level masses:

m2
χ̃±
1/2

=
1

2
[|M2|2 + |µ|2 + 2m2

W

∓
√

(|M2|2 + |µ|2 + 2m2
W )2 − 4|µM2 −m2

W sin2β|2]

. (3.33)

In the limit of GUT boundary conditions the charginos consist of a wino-like and Higgsino-
like chargino.

The neutral gauginos and Higgsinos mix to mass eigenstates as well, the so-called neutrali-
nos. The neutralino sector within the MSSM and NMSSM is quite different because of the
additional Higgs singlet. The corresponding Higgsino, the singlino, enters the mass matrix
which leads to an additional neutralino component in the NMSSM. The neutralinos are
denoted by χ̃0

i with i = 1, 2, ..., 5 according to the convention mχ̃0
1
< mχ̃0

2
< ... < mχ̃0

5
.

Within the gauge eigenstate basis Ψ = (B̃, W̃ 0, H̃0
d , H̃

0
u, S̃), the neutralino mass term of

the Lagrangian reads

Lχ̃0 = −1

2
(ψ0)TMχ̃0ψ0 + h.c.. (3.34)

It includes the neutralino mass matrix

Mχ̃0 =


M1 0 −g1vd/

√
2 g1vu/

√
2 0

0 M2 g2vd/
√

2 −g2vu/sqrt2 0

−g1vd/
√

2 g2vd/
√

2 0 −µeff −λvu
g1vu/

√
2 −g2vu/

√
2 −µeff 0 −λvd

0 0 −λvu −λvd
√

2κvs

 , (3.35)

The first 4×4 elements in Eq. 3.35 resemble the neutralino mass matrix in the MSSM. The
mass eigenstates are obtained by the diagonalization of Mχ̃0 . Usually the diagonal terms
dominate over the off-diagonal terms, so the neutralino masses are approximately of the
order of M1, M2, µ in the MSSM and in case of the NMSSM of M1, M2, µeff and

√
2κvs.

For small v/vs and λv/κvs the mixing effects with the singlino are small. This leads to a
nearly decoupled singlino, so the remaining neutralinos are almost indistinguishable from
the MSSM neutralinos. The value of µ is determined by electroweak symmetry breaking,
so it is usually of the order of the SUSY breaking scale in the MSSM. Since M1 and M2

are related via the RGE, see Eq. 3.29, the ratio M1 < M2 << |µ| is fulfilled, so the mass
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3.4. Sparticle Masses 27

matrix indicates a nearly bino like lightest neutralino within the MSSM. In the NMSSM,
µeff is related to the vev of the Higgs singlet S, which is of the order of the electroweak
scale, so typically the last diagonal element is the lightest one, which leads to a lightest,
singlino-like neutralino in the NMSSM.
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4. Methods and Tools to Study the
Supersymmetric Parameter Space

Whether a parameter set within the parameter space of a supersymmetric model is allowed
or excluded is related to the agreement of the theoretical predictions to the experimental
data. Global fits are preformed to distinguish the allowed from the excluded part of the
parameter space, i.e. the allowed values of all free parameters of the supersymmetric
models are determined under the consideration of selected experimental results.
In this section, the statistical methods and analysis tools to perform the global fits are
introduced as well as the selected set of experimental measurements and their application
to the fit.

4.1. Concept of Parameter Estimation Using the Method of
Least Squares

The parameter space of the supersymmetric models consists of physical regions of interest
and regions, where the parameters lead either to unphysical or already excluded models.
Within the interesting parameter space, statistical tests are used to state how well the
observed data is in agreement with the predicted observables. Therefore, the region of
interest has to be identified first by using the method of least squares (LS), which is
related to the method of maximum likelihood (ML). The discussion about these statistical
data analysis methods has been mainly derived from Ref. [94].

4.1.1. Maximizing the Likelihood Function

The method of ML is a technique to estimate the values of the parameters for a finite
data sample. Assuming a set of independent measurements y1, ..., yn which are distributed
according to the probability density function (pdf) f(yi; θ). The value of at least one
parameter θ (or parameters θ = (θ1, ..., θm)) is not known. The joint pdf for yi, called the
likelihood function L(θ),

L(θ) =
n∏
i=1

f(yi; θ), (4.1)

yields high values for the true parameter, whereas a parameter far away from the true
value should give a low joint probability. The maximum likelihood estimator defines the
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30 4. Methods and Tools to Study the Supersymmetric Parameter Space

parameter θ̂ (or θ̂ = (θ̂1, ..., θ̂m)), which maximizes the likelihood function and therefore
is close to the true parameter. It is usually more convenient to use the logarithm of L(θ),
since the logarithm leads to a numerically manageable quantity. The parameter value
which maximizes L(θ) will also maximize logL(θ).

The method of LS results from maximizing the log-likelihood function logL(θ) of the joint
pdf of Gaussian random variables. A set of N independent Gaussian random variables
yi, i = 1, ..., N related to another variable xi are assumed. The measurements yi have a
corresponding mean λi and a known variance σ2

i . The true value is given as a function of
xi, which depends on the m unknown parameters θ = (θ1, ..., θm). The N measurements
of yi can be perceived as a single measurement of a N -dimensional random vector, so
its joint pdf is the product of N Gaussians. To estimate the unknown parameters θ, the
log-likelihood function of the joint pdf has to be maximized:

logL(θ) = −1

2

N∑
i=1

(yi − λ(xi;θ))2

σ2
i

, (4.2)

which resembles minimizing the quantity

χ2(θ) =
N∑
i=1

(yi − λ(xi;θ))2

σ2
i

. (4.3)

The quantity χ2 represents the quadratic sum of the difference between the measured and
the hypothesized values, weighted by the inverse of the variance. This principle is known
as the method of LS and can be used if the measurements are independent even in case
they are non-Gaussian. The quantity (yi − λ(xi;θ))2/σ2

i in Eq. 4.3 is a measure of the
deviation between the measurements and the hypothesis. It is used to test the goodness of
the fit, i.e. checking how likely it is to give the observed data assuming the hypothesis is
true. The minimum value of χ2 is distributed according to the χ2-distribution with N -m
degrees of freedom, see Appendix A.1, if the following aspects apply

1. yi, ..., yN are independent Gaussian random variable with known variances σ2
i ,

2. the hypothesis λ(x; θ1, ..., θm) is linear in the parameter θi and

3. the functional form of the hypothesis is correct.

Since the expectation value of a random variable y from the χ2-distribution is equal to
the number of degrees of freedom nd, the ratio χ2/nd is often quoted as a measure of the
goodness-of-fit. Furthermore the p-value for a given χ2 can be calculated. The p-value
corresponds to the probability that the hypothesis would lead to a χ2 value worse than
the one actually observed and reads

P =

∫ ∞
χ2

f(y;nd)dy, (4.4)

where f(y;nd) is the χ2-distribution for nd degrees of freedom. If statement (1)-(3) are
not applicable the concept of confidence intervals can be used to convey the agreement of
data and hypothesis.
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Figure 4.1.: Illustration of the construction of the limits a and b of the confidence interval [a, b] [94]. The pdf
g(θ̂; θ) with θ = a (a) and θ = b (b) is shown. The shaded area corresponds to the probability
α/β of the estimates θ̂ to be greater/less than θ̂obs if the true value is equal to be a/b.

4.1.2. Confidence Intervals

Confidence intervals allow to give a quantitative statement about the probability that
a certain interval would contain the true value of the parameter. First an estimator
θ̂(x1, ..., xn) for a parameter θ from n observations of a random variable has to be evaluated
which results in θ̂obs. The pdf of θ̂ is known to be g(θ̂; θ), which contains the true value θ
as a parameter. The limit a/b of a confidence interval is constructed to be the value for
which a fraction α/β of the estimates would be higher/lower than θ̂obs. This is illustrated
in Fig. 4.1 whereas the corresponding probabilities read

α =

∫ ∞
θ̂obs

g(θ̂; a)dθ̂ = 1−G(θ̂; a),

β =

∫ θ̂obs

−∞
g(θ̂; b)dθ̂ = G(θ̂; b).

(4.5)

G(θ̂; θ) represents the cumulative distribution of the pdf g(θ̂; θ). The resulting interval
[a, b] is then called a confidence interval at a confidence level (C.L.) 1 − α − β. Usually
the central confidence interval is used, where α = β = γ/2 with the resulting probability
1− γ. If upper or lower limits are specified, one-sided confidence intervals are needed, so
either a or b is given with the corresponding probability 1 − α or 1 − β. Since the pdf
of the maximum likelihood estimator θ̂ for a parameter θ becomes Gaussian in the large
sample limit, the confidence interval can be applied for a Gaussian distribution for θ̂ with
the mean θ and the standard deviation σθ̂. G(θ̂; θ) in Eq. 4.5 becomes the cumulative

distribution of a standard Gaussian Φ
(
θ̂−θ
σθ̂

)
:

α = 1−G(θ̂; a, σθ̂) = 1− Φ

(
θ̂obs − a
σθ̂

)
,

β = G(θ̂; b, σθ̂) = Φ

(
θ̂obs − b
σθ̂

)
.

(4.6)

which leads to

31



32 4. Methods and Tools to Study the Supersymmetric Parameter Space

0

0.1

0.2

0.3

0.4

0.5

0.6

-4 -2 0 2 4

φ
(x

)

x

Φ−1(γ/2) Φ−1(1− γ/2)

γ
2

γ
2

(a)

0

0.1

0.2

0.3

0.4

0.5

0.6

-4 -2 0 2 4

φ
(x

)

x

Φ−1(1− α)

α

(b)

Figure 4.2.: The standard Gaussian pdf φ(x) is displayed to show the effect of the quantile Φ−1 for a central
(a) and one-sided (b) confidence interval at a confidence level of 1− γ and 1− α, respectively,
from Ref. [94].

a = θ̂obs − σθ̂Φ−1(1− α),

b = θ̂obs − σθ̂Φ−1(β) = θ̂obs + σθ̂Φ
−1(1− β),

(4.7)

The inverse function Φ−1 of the cumulative Gaussian distribution characterize the distance
from the limit a, b to the estimator θ̂obs in units of the standard deviation σθ̂. This relation
is illustrated in Fig. 4.2 for a central (a) and one-sided (b) confidence interval. Either
the confidence level is chosen such that the quantile Φ−1(1 − γ/2) is an integer or a
fixed confidence level is used to calculated the corresponding quantile. Both cases can be
obtained for the central and one-sided confidence interval, see Table 4.1.

The confidence intervals can be applied for the ML and LS estimators by a simple pre-
scription using the estimated variance. Considering the expansion of the log-likelihood
function in a Taylors series around the ML estimate θ̂ and including logL(θ̂) = logLmax.
The following simple equation can be derived, see Ref. [94]:

logL(θ̂ ±Nσθ̂) = logLmax −
N2

2
. (4.8)

Eq. 4.8 indicates that changing the parameter θ by N standard deviations decreases the
log-likelihood function by N2/2. This translates into

χ2(θ̂ ±Nσθ̂) = χ2
min +N2. (4.9)

using logL = −χ2/2.

The confidence interval can be generalized to multidimensional confidence regions for n
parameters, θ = (θ1, ..., θn). The joint pdf of θ̂ becomes a multidimensional Gaussian

g(θ̂|θ) =
1

(2π)n/2|V |1/2 exp

[
−1

2
Q(θ̂, θ)

]
, (4.10)

where Q is defined by
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Table 4.1.: The upper rows show the value of the confidence level for different values of the quantile Φ−1

[94] for the central (left) and one-sided (right) interval. The lower rows show the opposite.

Φ−1(1− γ/2) 1− γ Φ−1(1− α) 1− α
1 0.6827 1 0.8413
2 0.9544 2 9.772
3 0.9973 3 0.9987

1− γ Φ−1(1− γ/2) 1− α Φ−1(1− α)

0.90 1.645 0.90 1.282
0.95 1.960 0.95 1.645
0.99 2.576 0.99 2.326

Q(θ̂, θ) = (θ̂ − θ)TV −1(θ̂ − θ) (4.11)

using the inverse of the covariance matrix V −1 and the transposed of the vector (θ̂− θ)T .
Constant Q(θ̂, θ) represents contours of constant joint pdf g(θ̂|θ). The corresponding
likelihood function, a Gaussian centered around the ML estimator θ̂, reads

L(θ) = Lmaxexp

[
−1

2
Q(θ̂, θ)

]
. (4.12)

If the estimate is within a certain distance to the true value θ, e.g. Q(θ̂, θ) ≤ Qγ , the
probability can be described by

P (Q(θ̂, θ) ≤ Qγ) =

∫ Qγ

0
f(y;n)dy = 1− γ. (4.13)

The quantile Qγ represents the inverse of the cumulative χ2 distribution F−1(1 − γ;n)
and determines the confidence region at a confidence level 1 − γ. Different values of the
quantile for n fitted parameters and various values of confidence levels are summarized in
Table 4.2. Applying the confidence region to a LS fit resembles the relation shown in Eq.
4.9, while the quantile has to be replaced by the multidimensional equivalent

χ2(θ) = χ2
min +Qγ . (4.14)

The allowed parameter space is determined in this thesis by using a χ2 minimization. The
results of the global fits will be presented in a two parameter plane. In most cases the
χ2 distribution will be projected into the common m0-m1/2 mass plane, so the confidence
regions for n = 2 parameter in Table 4.2 have to be adopted, i.e. a 95% C.L. interval
would lead to ∆χ2 = χ2 − χ2

min = 5.99.

The concept of confidence intervals is related to the test of goodness-of-fit. If θ̂ is used
as a test statistic to test the hypothesis of θ = a and the region θ̂ ≥ θ̂obs has equal or
less agreement with the hypothesis, then the resulting p-value of the test is α. For the
confidence interval the probability is specified first and a is a random quantity, whereas
for the goodness-of-fit a is specified first and the P -value is a random variable.
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Table 4.2.: The quantile Qγ is given for different values of the confidence level 1−γ for n fitted parameters
[94].

1− γ Qγ
n = 1 n = 2 n = 3 n = 4 n = 5

0.683 1.00 2.30 3.53 4.72 5.89
0.90 2.71 4.61 6.25 7.78 9.24
0.95 3.84 5.99 7.82 9.49 11.1
0.99 6.63 9.21 11.3 13.3 15.1

4.2. Constraining the Supersymmetric Parameter Space with
Experimental Data

In this section the selected experimental data is summarized, which is included into the
χ2 function to determine the allowed region in the supersymmetric parameter space. The
detailed discussion of each experimental constraint and the corresponding favored region in
parameter space will be given in Chapter 5. The experimental constraints are summarized
in Table 4.3 and 4.4. They are separated into results providing a actual measurement
including a theoretical and experimental error and experimental limits including a 1σ
error band. The constraints are further divided into

• direct constraints,

• indirect constraints

• and dark matter constraints.

The direct constraints include searches for SUSY particles, e.g. squarks, gluinos or ad-
ditional Higgs bosons. Experimental results listed as indirect constraints represent ob-
servables, where SUSY particles appear indirect via loops, such as rare B-decays and the
anomalous magnetic moment of the muon. Since SUSY provides a perfect dark matter
candidate, dark matter observables are also included into the χ2 function. The resulting
χ2 function including all constraints is defined by

χ2 = χ2
mh

+ χ2
BR(B0

s→µ+µ−) + χ2
BR(B→Xsγ) + χ2

RBR(B→τντ )
+ χ2

∆aµ + χ2
Ωh2 + χ2

mA

+χ2
ATLAS + χ2

LEP + χ2
LUX + χ2

XENON100 + χ2
COUPP . (4.15)

Most of the χ2 contributions associated with the constraints listed in Table 4.3 are defined
in a straightforward way: the square of the difference between the experimental value
given in Table 4.3 and the predicted value for a given SUSY parameter set, weighted by
the inverse of the error squared. The error which is included into the χ2 function corre-
sponds to the total error σ, where σ results from the linear addition of the theoretical and
experimental error. The linear addition is favored over the quadratic, since the quadratic
addition can only be used if the summed errors are all Gaussian. The theoretical uncer-
tainties are certainly non-Gaussian, since they correspond rather to intervals with constant
probability, thus a linear addition of the errors is more conservative. This was checked
by simply comparing the convolution of two Gaussian with a Gaussian and a flat top
Gaussian, where the flat region represents the interval with a constant probability, which
is more realistic for the theoretical errors. The latter one equals a Gaussian with an error
closer to the linear addition of the individual errors, so the linear addition of the errors is
applied [106].

The constraints which differ slightly from the previously mentioned, straightforward χ2 con-
tribution are briefly discussed:
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Table 4.3.: List of experimental measurements used to constrain the supersymmetric parameter space. The
references for the experimental data and the corresponding experimental and theoretical error
are summarized in the last columns.

Data Exp. Error Theo. Error Refs.

Direct Constraint

mh in GeV 125.2 0.4 1.5 [2, 3, 95]

Indirect Constraint

BR(B0
s → µ+µ−) ×10−9 2.9 0.7 0.23 [96–98]

BR(B → Xsγ) ×10−4 3.43 0.22 0.23 [99, 100]
BR(B → τντ ) ×10−4 0.96 0.26 0.14 [101, 102]
∆aµ × 10−12 28.70 6.33 4.94 [103, 104]

Dark Matter Constraint

Ωh2 0.1199 0.0027 0.01199 [6, 105]

• χ2
mh

: The CMS and the ATLAS experiment measured both a Higgs-like particle
at a mass of about 125 GeV. The Higgs mass given in Table 4.3 corresponds to
the mean of the two measurement. The experimental error results from a Gaussian
error propagation of the two experimental errors given by CMS and ATLAS. Since no
significant deviation of the coupling strengths compared to the SM was measured, the
resulting reduced cross sections to fermions and gauge bosons should agree with the
SM prediction within an error of 10%. This constraint and the resulting additional
contribution χ2

σred
to the overall χ2 in Eq. 4.15 is only relevant for the NMSSM, where

the two light scalar Higgs bosons can have significant deviations to the SM couplings
due to the mixing with the Higgs singlet. The corresponding χ2 contribution χ2

σred
is defined in the straightforward way, while it includes the following decay modes as
separate χ2 contributions: γγ, bb, ττ and ZZ/WW .

• χ2
RBR(B→τντ )

: The ratio RBR(B→τντ ) = BR(B → τντ )SUSY /BR(B → τντ )SM of the

SUSY and SM contribution to BR(B → τντ ) is used as a constraint for the χ2 mini-
mization. Therefore the χ2 contribution includes the ratio of the experimental value
BR(B → τντ )EXP and the SM prediction BR(B → τντ )SM = 0.74± 0.14 [102]. A
Gaussian error propagation of the corresponding experimental and the theoretical
error of the ratio is performed to get the total error on the ratio RBR(B→τντ ) =
BR(B → τντ )EXP /BR(B → τντ )SM . In principle the branching ratio itself instead
of the ratio can be included into the χ2 function as it is the case for the other branch-
ing ratios. This would lead to similar allowed regions. Since the ratio is calculated
within the applied software package, it is reasonable to use it as a constraint. By
using the ratio of the SUSY and SM branching ratio, many SM parameters cancel, so
the ratio suffers less from the uncertainties on the SM parameters. If the branching
ratio is included into the χ2 function, the uncertainties on the SM parameters have
to be taken into account.

The χ2 contributions for the experimental limits from Table 4.4, calculated from the non-
observation of particular particles, differ to the straightforward calculation. The 90% and
95% C.L. limit contours given in the references listed in Table 4.4 have to be parameterized
first and added as a one sided χ2 contribution to the overall χ2 function. Note the difference
in the corresponding quantile Φ−1 for the central and one-sided confidence interval for
the same confidence level shown in Table 4.1. Since the limits are interpreted as one-
sided confidence interval the cut on χ2

min is different compared to the central confidence
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Table 4.4.: List of limits used for the global fits to constrain the supersymmetric parameter space. The
corresponding references and confidence levels are given in the last columns.

Parametrized Limit C.L. Refs.

Direct Constraint

mA in Appendix B.1 95 [107]
ATLAS in Appendix B.2 95 [108, 109]
LEP in Appendix B.3 95 [110]

Dark Matter Constraint

LUX in Appendix B.4 90 [111]
XENON100 in Appendix B.4 90 [112]
COUPP in Appendix B.4 90 [113]

intervals used for the measurements. In principle, the χ2 contributions which correspond
to the one-sided and central confidence intervals have to be treated separately since the cut
with respect to χ2

min is different. However, it is reasonable to use the simplified approach
to apply the cut on the central confidence level given in Table 4.2 for the combination
of all constraints. This is applicable, since the χ2 distribution of the included limits
show such a steep increase, the cut on the one-sided and central confidence interval with
respect to χ2

min resembles. The difference due to the cut on the χ2 value translated into
m0 and m1/2 is small compared to the used grid distance leading to the same exclusion
contours independent of the treatment of the confidence intervals. In case the grid spacing
is small compared to the translated χ2 difference, the one-sided and central confidence
intervals have to be treated separately. In the following the experimental limits used for
the χ2 function in Eq. 4.15 are discussed separately:

• χ2
mA

: The search for the neutral Higgs bosons A decaying into tau pairs in pp
collisions at the LHC gives a 95% C.L. upper limit on the corresponding cross sec-
tion which can be translated into a exclusion contour within the tanβ-mA plane.
For a given value of tanβ a certain mass of the pseudo-scalar Higgs boson is ex-
cluded and vice-versa. The corresponding χ2 contribution is defined by χ2

mA
=

(tanβth(mA) − tanβ95(mA))2/σ2
tanβ95 , where σ2

tanβ95 is obtained from the 1σ error
band around the 95% C.L. exclusion curve. For a given parameter set which in-
cludes tanβa specific pseudo-scalar Higgs mass mA is predicted, while tanβth(mA)
corresponds to the inverse pair of values. tanβ95(mA) includes the experimental
limit, where tanβ is parametrized as a function of mA. The parameterization of
tanβ95(mA) is determined by the requirement that ∆χ2

mA
is 5.99 on the contour

line, see Appendix B.1.

• χ2
ATLAS : The direct searches for SUSY particles from the ATLAS experiment at the

LHC give 95% C.L. limits on the hadronic cross section. It is used to excluded low
SUSY masses, especially low gluinos and low first and second generation squarks
because of their large cross section. In Ref. [108, 109] the 95% C.L. exclusion
curves in the m0-m1/2 plane determines the limit on the hadronic cross sections
into squarks and gluinos σtot(pp → g̃g̃, g̃q̃, q̃q̃), which vary along the contour line
due to varying efficiencies. By using Wilks’ theorem, it can be demonstrated that
the profile likelihood leads to a χ2 distribution for the hadronic cross section, so
the simplified assumption of an exclusion limit proportional to the hadronic SUSY
cross section is reasonable. The corresponding χ2 contribution is parametrized as
follows: χ2

ATLAS = σ2
tot/σ

2
ATLAS . Since the 95% C.L. contour is published, σ2

ATLAS

is determined as a function of m0 requiring χ2
ATLAS = 5.99 on the contour line,
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see Appendix B.2. In the NMSSM, the splitting in the stop sector can be large
which leads to light stops. In this case the stop contribution to the total cross
section has to be separately included into the χ2 function, otherwise the parameter
space referring to light stops is misleadingly excluded. The χ2 contribution which
includes the hadronic cross section without the stop contribution is determined in
the same way as discussed above but the stop contribution is now parametrized as a
function of the stop mass mt̃. The corresponding stop contribution χ2

stop is defined

by χ2
stop = (σth

t̃
(mt̃)− σ95

t̃
(mt̃))

2/σ2. An estimated error of 15% on the cross section

is used for σ. σth
t̃

(mt̃) represents the stop cross section pp→ t̃t̃ for a given stop mass

mt̃. The parameterization of σ95
t̃

(mt̃) is determined by the requirement that ∆χ2
stop

is 5.99 on the contour line, see Appendix B.2. The contour line is given by the stop
cross section on the 95% C.L. exclusion contour from Ref. [108, 109] as a function
of the corresponding stop mass.

• χ2
LEP : The LEP collaboration established an upper bound on the HZZ coupling for

a Higgs boson below 114.4 GeV at 95% C.L. from the collected e+e− collision data.
χ2
LEP is only relevant for the NMSSM, since two light Higgses exist which can provide

non-SM couplings. A 95% C.L. upper bound on the ratio ξ2 = (gHZZ/g
SM
HZZ)2 is

published in [110] as a function of the Higgs boson mass mh, whose decays are
predicted by the SM. The corresponding χ2 contribution to the overall χ2-function
is defined by χ2

LEP = (ξ2
th(mh)− ξ2

95(mh))2/σ2
ξ295

. Here σξ295 can be obtained from the

1σ band given for the expected 95% C.L. exclusion curve. The function ξ2
95(mh) is

parameterized and determined by the requirement ∆χ2
LEP = 5.99 on the contour line,

see Appendix B.3. ξ2
th(mh) corresponds to the normalized coupling for a parameter

set which predicts mh.

• χ2
LUX , χ2

XENON100 and χ2
COUPP : In elastic scattering experiments an upper 90%

C.L. limit on the elastic WIMP-nucleon cross section is determined. Since the elas-
tic scattering of a dark matter particle off a nuclei consist of a spin-dependent (SD)
and spin-independent (SI) part both upper limits on the WIMP-nucleon cross sec-
tion from the direct dark matter searches (DDMS) are considered. The XENON100,
COUPP and the LUX experiment provide the current best limits on the SD and
SI WIMP-nucleon cross section σχN . The contribution is defined by χ2

DDMS =
(σthχN (mχ)−σ90

χN (mχ))2/σ2
σ90
χN

, where DDMS can be replaced by XENON100, COUPP

or LUX, respectively. Since 90% C.L. upper limits are published, the excluded cross
section σ90

χN (mχ) is determined by the requirement ∆χ2
DDMS = 4.61 at the con-

tour line, whereas the 1σ band in the corresponding references generates the weight
1/σ2

σ90
χN

, see Appendix B.4. σthχN (mχ) represents the predicted WIMP-nucleon cross

section for a WIMP mass of mχ.

4.2.1. Software Tools

All observables listed in Table 4.3 and 4.4 are calculated using the following software
packages:

• micrOMEGAs [114] is a software package to compute dark matter observables. It
is used to calculate the observables for the global fits within the MSSM for the
constrained and the NUH model. It is linked to SuSpect [115] to calculate the
supersymmetric spectrum including Higgs masses and mixing matrices. In addition
it provides cross section calculations, the computation of several B-physics branching
ratios and the anomalous magnetic moment of the muon. The version 3.6.9.2 has
been used.
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Table 4.5.: List of the standard model input parameters used for the global fits, taken from the PDG [86].
The masses are specified at the scale denoted in the brackets in MS scheme. All other masses
corresponds to pole masses.

SM Parameter PDG Value

mt (173.07± 0.52± 0.72) GeV
mb(mb) (4.18± 0.03) GeV
αs(MZ) 0.1185(6)
MZ 91.1876± 0.0021 GeV
αem(MZ)−1 127.944± 0.014
mτ (1776.82± 0.16) MeV
GF 1.1663787(6) · 10−5GeV−2

• NMSSMTools [116–118] is used to calculate the sparticle and Higgs masses within
the NMSSM using the routine NMSPEC [117] for the constrained and NUH model. It
is linked to micrOMEGAs to compute the remaining observables mentioned above.
The version 4.3.0 has been used with the option 2 for the precision of the Higgs mass
calculation.

Details about the implementation of the χ2 function can be found in Appendix C.

4.3. Multi-Step Fitting Approach

The allowed parameter space can either be determined by minimizing a χ2 function or using
random sampling techniques. Random sampling techniques like Markov-Chain-Monte-
Carlo (MCMC) methods are used to sample the probability distribution. This method
is efficient for higher dimensional parameter space. The desired probability distribution
is reached when the Markov Chain reached equilibrium. The probability distribution
is constructed according to the state of the chain after a large number of steps. This
characteristic is one of the problems using MCMC since it is difficult to determine how
many steps are needed to converge to the stationary stage.

The free parameter of the supersymmetric models are highly correlated as will be shown
in section 6.1. The correlation leads to spikes in χ2 within the parameter space where the
free parameters have to have specific correlated values. Although the χ2 is very low in this
narrow parameter region it can be easily missed in methods based on random stepping
techniques since the convergence is extremely sensitive to the chosen step-size. To account
for the strong correlations without knowing the correlation matrix, we use a multi-step
fitting approach, which means that we fit the highly correlated parameters first for fixed
other parameters. This allows to find the χ2 spikes and not misleadingly exclude a allowed
parameter set. The fixed parameters are the common SUSY masses m0 and m1/2. In this
way it is possible to cope with the strong correlations and parallelize the minimization. A
grid in m0 and m1/2 is defined in the range of 100 GeV to 5(3) TeV in m0(m1/2), which
allows to independently minimize the χ2 function defined in Eq. 4.15 for each m0-m1/2 pair
with respect to all other parameters. The publicly available software tool MINUIT [119] is
used to minimize the χ2 function. MINUIT offers multiple minimization techniques out of
which MIGRAD is used for this analysis. For each m0-m1/2 point the program is fast and
quickly converge to the global minimum. For the global fit of the NUH model within the
NMSSM additional minimizing steps are needed because of the enhanced number of free
parameters compared to the minimization in the MSSM. In a last step all seven parameters
can be varied at the same time to find the minimum for each m0-m1/2 pair.
After the optimization of the SUSY parameters, the SM parameters, like the top and
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bottom mass and the strong coupling constant, should also be varied or be marginalized.
The quark masses basically influence the running of the Higgs mass parameters, so different
values of the SM parameters can be adjusted by slightly different values of the SUSY
parameters which leads to a similar χ2. It was checked that the allowed parameter space
is hardly affected by the variation of the SM parameters. Thus an additional optimization
of the SM parameters is not necessary. The SM parameter applied for the optimization
are taken from the Particle Data Book (PDG) [86] and listed in Table 4.5.
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5. Favored Parameter Space for Single
Experimental Constraints

The allowed parameter space within the minimal and next-to-minimal supersymmetric SM
is determined by using the multi-step fitting approach with respect to the experimental
constraint listed in chapter 4. Each constraint and its favored region in the parameter
space will be discussed separately. The knowledge of the favored region of a separate
constraint is essential for the understanding of the favored region for the combination of
all constraints.

5.1. The Relic Density

A large number of astronomical evidence indicate more matter than can be associated
with the luminous matter in the galaxies. The first hint for dark matter was given in 1933
by Zwicky [120] by observing the Coma cluster. He calculated the gravitational mass of
the galaxies using the virial theorem and obtained a value greater than expected from the
luminous matter. Many other observations established the presence of DM in the universe
as well, e.g. the observations of flat rotations curves of galaxies [121]. Fig. 5.1 shows
the measured circular rotation velocities as function of the distance from the center of a
spiral galaxy [122]. The flat distribution cannot be explained by the contribution from the
observed disk and gas. An additional DM halo is needed to explain the large velocities
outside the center of the galaxy. Besides the rotation curves, gravitational lensing [123]
and the observed bullet cluster [124] fosters DM. Theoretical motivations for the existence
of DM result from the structure formation of the universe [125], which can be brought in
line with the results of N-body simulation [126] if cold DM is included into the calculations.
Combined with limits on barionic matter from the primordial nucleosynthesis supports the
existence of non-barionic, non-relativistic matter in the Universe.

Many candidates for dark matter exist nowadays, see e.g. Refs. [127, 128]. However, the
leading hypothetical particle in particle physics is the so-called weakly interacting massive
particle (WIMP) [129, 130]. The WIMPs are assumed to exist abundant in thermal equi-
librium in the early universe, when the temperature exceeded the mass of the particle. The
equilibrium abundance is maintained by the annihilation of the particle and its antiparticle
into lighter particles and vice versa. By the time the temperature of the universe drops
below the mass of the particle mχ, the equilibrium abundance drops exponential according
to the Boltzmann equation until the annihilation rate is below the expansion rate H of the
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42 5. Favored Parameter Space for Single Experimental Constraints

Figure 5.1.: Rotation curve of a spiral galaxy taken from Ref. [122]. The measured circular rotation
velocities as function of the distance from the center of the galaxy cannot be explained by the
contribution from the observed disk and gas. An additional DM halo is needed to explain the
large velocities outside the center of the galaxy.

Figure 5.2.: Co-moving WIMP number density in the early universe as a function of time taken from Ref.
[125]. The equilibrium abundance (solid line) freezes in and remains as relic abundance (dashed
line) depending on the WIMP annihilation rate.

universe. At this freeze out point, which occurs typically for a temperature of T ≈ mχ/20,
the relic cosmological abundance freezes in, see Fig. 5.2.

The relic abundance can be determined by using thermodynamics and statistical mechanics
to describe the particle production and reactions in the early universe. Assuming such a
stable particle exist, the relic abundance, also denoted as the relic density, can be estimated
to [127]

Ωχh
2 = mχnχ/ρc ' 3 · 10−27cm3s−1/〈σAv〉, (5.1)

in units of the critical density ρc. The Hubble constant h is in units of 100 km s−1 Mpc−1.
〈σAv〉 corresponds to the thermally averaged total annihilation cross section with the
number density nχ. The measured value of the relic density leads to an annihilation cross
section right of the order of the electroweak interaction. Although such a interaction is
expected for a stable particle associated with the weak scale interaction, the surprising
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Figure 5.3.: Selected dominant annihilation diagrams contributing to the dark matter relic abundance
within the co-annihilation (a), the focus point (b) and mA resonance region (c). Since the
neutralino is mainly a bino in most of the parameter space, the annihilation via the pseudo-
scalar Higgs boson is preferred. The stau self annihilation diagram (d) becomes significant as
well if the stau and the neutralino are degenerate in mass. Then they will freeze out in the
early universe eventually at the same temperature and contribute to the time averaged anni-
hilation cross section due to the large self annihilation cross section and the number density of
the staus at the freeze-out temperature.

agreement is often referred to as the so-called WIMP miracle. The identity of the WIMP
is still unknown though.

The lightest supersymmetric particle (LSP) is a perfect WIMP candidate in particular if
the neutralino is the LSP. It is neutral, stable, massive and provides the right amount of
DM in the universe. The parameter space where the LSP is represented by a charged or
colored sparticle is not considered, since it disagrees with the experimental observations.
The neutralino, a spin 1/2 majorana particle, can annihilate into SM particles via Higgses,
gauge bosons, sfermions and gauginos. The corresponding annihilation channels determine
the annihilation cross section and therefore the relic density. Since the neutralino is a
superposition of the supersymmetric partners of the gauge bosons, its cross section can
differ depending on the mixing. In addition its mass and the mass difference to the next-
to-lightest particle (NLSP) determine the relic density.

Many different annihilation diagrams exist, see e.g. Ref. [127], leading to gauge boson and
fermion final states. The selected diagrams shown in Fig. 5.3 correspond to the different
regions in parameter space, which are separated roughly into three1 relevant regions [10]:

• the co-annihilation region: co-annihilation occurs, if additional particles have the
same quantum numbers and are within 10% of the LSP mass [131, 132]. It implies,
that the extra particles are nearly as abundant as the relic species. Possible sparticle
candidates are charginos, staus or light stops. The relic number density is determined
by reaction of the type χiχj ↔ XX ′,χiX ↔ χjX

′ and χj ↔ χiXX
′, where χi with

i = 1, ..., N and i < j denote the sparticles and X,X ′ correspond to any SM particle.
For similar annihilation cross sections for the LSP and NLSP the effect on the relic
density is less than 5%. In case of colored NLSPs the cross sections are certainly
not identical, which leads to a huge reduction of the relic density of the order of
O(102) since the cross section difference is scaled with the ratio of the strong and
electroweak coupling constant. For small values of m0 and large m1/2, the stau and

1The bulk region is only relevant for small squark masses, which is experimentally already disfavored.
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the lightest neutralino are nearly degenerate in mass. Therefore they will freeze out
in the early universe eventually at the same temperature leading to co-annihilation,
which reduces the relic density.

• the mA resonance region: the s-channel annihilation via a scalar Higgs boson is
dominant for bino-like neutralinos. The correct relic density is reached close to the
resonance, while on the resonance for mA = 2 · mχ the cross section is too high
leading to a too low relic density. For zero relative velocity the annihilation via a
pseudo-scalar Higgs dominants over the scalar heavy Higgs due to CP conservation.
The resonance region is also known as the funnel region, while its characteristic
funnel only appears if tanβ is fixed. This narrow funnel region vanishes and the
whole m0-m1/2 plane opens up if tanβ is varied, see e.g. Ref. [133].

• the focus point region: this region is associated with large values of m0. Here the
value of µ is small due to EWSB, which requires at least one Higgs soft mass to
become negative at the electroweak scale. Since the Higgs mass at the GUT scale
starts at

√
m2

0 + µ2, small values of µ can compensate high values of m0 to obtain
EWSB by radiative corrections. Small values of µ lead to small chargino masses
and a large Higgsino component for the lightest neutralino, so the coupling to gauge
bosons and their superpartners are dominant in this region.

The annihilation and co-annihilation diagrams are often combined with a small contri-
bution from the mA resonance to obtain the correct relic density. However, in most of
the parameter space, the neutralino is bino-like, so the annihilation via a pseudo-scalar
Higgs boson is dominant. This leads to a strong dependence of the cross section on mA

and thus tanβ, which can be explained as follows: large Yukawa couplings can drive m2
Hd

negative at the electroweak scale leading to EWSB as demonstrated in Fig. 5.4(a). Here
the running of m2

Hd
and m2

Hu
from the GUT to the low energy scale for a fixed mass point

m0 = 1000 GeV and m1/2 = 500 GeV is shown using a small (Fig. 5.4(a)) and large (Fig.
5.4(b)) value of tanβ. For large values of tanβ, m2

Hu
is driven close to zero as well or

becomes even negative, see Fig. 5.4(b). The pseudo-scalar Higgs mass squared, which is
at tree level given by the sum of m2

Hu
and m2

Hd
becomes light for large tanβ. Since the

running of the soft masses is extremely sensitive to large values of tanβ, small changes in
tanβ in the range above 50 lead to strong variations of the pseudo-scalar Higgs mass mA.
The mass of the bino-like neutralino is related to m1/2, so the pseudo-scalar Higgs mass
shows the same proportionality mA ∼ m1/2 due to the resonance requirement.

Since the relic density is proportional to m−4
A , the dependencies on the CMSSM parameter

are intensified for Ωh2, which is demonstrated in Fig. 5.5(a). The relic density is plotted
versus tanβ for two mass points indicated by the corresponding m0-m1/2 values for A0 =
0 GeV. The strong dependence on tanβ is shown by the steep decrease for large tanβ. In
Fig. 5.5(b) the same distribution is shown on a smaller scale to resolve the distribution of
Ωh2. A slight impact on the trilinear coupling for the pseudo-scalar Higgs mass is given
due to one loop corrections to the Higgs mass squared, which are coming from squark
mixing effects [134]. For a fixed value of A0 there is only a specific value of tanβ, so by
changing A0, the preferred value of tanβ can be shifted. This is indicated for the light
SUSY mass by the dotted blue line in Fig. 5.5(a) which corresponds to A0 = −1500 GeV.
The dependence on A0 is negligible compared to tanβ, but is crucial if the relic density is
combined with other constraints. The red solid line in Fig. 5.5(a) corresponds to the relic
density distribution for large SUSY masses, which require a larger pseudo-scalar Higgs
mass due to the resonance requirement. This in turn narrows the resonance.
The correct value of the relic density can be obtained within almost the whole m0 and
m1/2 plane by varying tanβ and A0, which is shown in Fig. 5.6. The color coding indicates
the value of Ωh2. Within the white upper left corner the stau represents the LSP. The red
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Figure 5.4.: Running of m2
Hu and m2

Hd
from the GUT to the low energy scale demonstrated for a fixed

mass point m0 = 1000 GeV, m1/2 = 500 GeV using tanβ = 10 (a) and tanβ = 50 (b). Large
values of tanβ drive both masses negative, which results in a small pseudo-scalar Higgs mass.
The running of the soft masses is extremely sensitive to large values of tanβ, leading to strong
variations in mA.
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Figure 5.5.: (a): Dependence of the relic density on tanβ for varying SUSY masses indicated by the corre-
sponding m0-m1/2 values for A0 = 0 GeV. For a fixed value of A0 a specific value of tanβ exist.
So varying A0 leads to a shift in the preferred tanβ value, as indicated for the light SUSY mass
by the dotted blue line which corresponds to A0 = −1500 GeV. The steep decrease of mA for
large values of tanβ leads to a steep decrease of Ωh2. The resonance is getting more narrow
for larger SUSY masses as demonstrated by the red solid line. (b): Same distribution as in
(a) but on a smaller scale to resolve the resonance. The horizontal line corresponds to the
experimental measurement of Ωh2, while the colored band represents the total error.

region in Fig. 5.6 next to the white region is excluded, since the relic density is too large.
In this region the stau co-annihilation is not sufficient to reach the required annihilation
cross section. An additional contribution from the mA resonance is not possible because
of the limited range of tanβ and A0 resulting from low m0. Large values of tanβ are again
required to get the correct pseudo-scalar Higgs mass. For such large values of tanβ the
stau is the LSP in this parameter space, which is excluded. Almost the whole allowed
region is dominated by the mA resonance, except for the small focus point and stau co-
annihilation region. The correct annihilation cross section is determined slightly off the
resonance leading to a range of mA ≈ 1.5− 2.5 ·mχ̃. The mass of the bino like neutralino
is approximately mχ̃ ≈M1 ≈ 0.4m1/2. To obtain a pseudo-scalar Higgs mass of the order
of m1/2, the relic density prefers large values of tanβ around 50, as shown in Fig. 5.4. The
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Figure 5.6.: The relic density is plotted within the m0-m1/2 plane for optimized tanβ and A0 and is in-
dicated by the color coding. The relic density can be fulfilled within almost the whole m0-
m1/2 plane. The dominant annihilation via a pseudo scalar Higgs leads to mA ≈ 1.5−2.5 ·mχ,
which requires tanβ ≈ 50 [133]. The white region in the top left corner is excluded since the
stau represents the LSP. Within the red region the relic density is too large, since the stau
co-annihilation is not sufficient to provide the required annihilation cross section.

pseudo-scalar Higgs boson decays predominantly into b-quark pairs for large tanβ. The
corresponding annihilation cross section χχ→ A→ bb̄ is proportional to

〈σv〉 ∼
m2
χm

2
b tan2 β

sin4 2θWM2
Z

(N31 sinβ −N41 cosβ)2(N21 cos θW −N11 sin θW )2

(4m2
χ −m2

A)2 +m2
AΓ2

A

. (5.2)

The annihilation channel χχ → A → bb̄ is getting less significant for large SUSY masses.
The large corresponding values of the neutralino mass above 1 TeV reduces the annihila-
tion cross section. To still obtain the right amount of dark matter the dominant digram
to 1/Ωh2 is coming from the stau self annihilation via a scalar Higgs boson H. The corre-
sponding diagram is shown in Fig. 5.3(d). If the stau is slightly above the neutralino mass,
which occurs for large mixing in the stau sector |A0| ≈ 3m0, the stau self annihilation can
significantly contribute to the relic density. The large stau self annihilation cross section
and the number density at the freeze-out temperature, which is hardly suppressed by the
Boltzmann factor, gives a large contribution to 〈σv〉, see Ref. [114, 127]. The fraction
of the stau self annihilation into a bb̄ pair is shown in Fig. 5.7(a) in the m0-m1/2 plane
indicated by the color coding for optimized tanβ and A0.

The stau contribution is only required for high neutralino masses as shown by the orange
region in Fig. 5.7(a). Within the white region the annihilation via the pseudo-scalar Higgs
boson still persist. The reason for the abrupt step in the contribution from the stau self
annihilation for large neutralino masses is related to the minimization procedure. The χ2

contribution is increasing for moderate A0 for increasing m1/2, so the minimization tool
intend to search another lower minimum. It can be found in the stau self annihilation
region, since the χ2 value is much lower for the same SUSY mass point. This is demon-
strated in Fig. 5.7(b), where Ωh2 is plotted versus tanβ. The neutralino annihilation refers
to moderate A0 (blue lines), while the stau self annihilation is connected to large |A0| (red
lines). The green line corresponds to the measured value of Ωh2. The χ2 contribution from
the neutralino annihilation is higher compared to the self annihilation for increasing m1/2.
This leads to the abrupt step in A0 shown in Fig. 5.7(a). Eliminating the stau annihilation
channel leads to an exclusion of the corresponding parameter space. This parameter space
has been checked not to be a software specific features. The same conclusions are obtained
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Figure 5.7.: (a): The color coding corresponds to the fraction to the relic density, which is coming from
stau self annihilation in %. Here the stau and the neutralino are degenerate in mass. The
large stau self annihilation cross section and the number density at the freeze-out temperature
gives a large contribution to the time averaged annihilation cross section, which is needed
for large SUSY masses. For light SUSY masses, the annihilation via the pseudo scalar Higgs
boson dominates. (b): The relic density Ωh2is plotted versus tanβ for two different neutralino
masses indicated by the different values of m1/2. The neutralino annihilation corresponds to
the moderate A0 (blue lines) and while the stau annihilation occurs for large A0 (red lines).
The measured value of the relic density indicated by the solid green line, can only be fulfilled
for the stau self annihilation for increasing neutralino mass demonstrated by the dashed lines.

by using different combinations of additional spectrum calculator (SOFTSUSY [135]) and
relic density calculation software (SuperIso Relic [136]).

Two additional allowed regions in the CMSSM parameter space are mentioned in the
following, which are relevant if only Ωh2 is considered but vanish if all constraints are
combined:

• stop self annihilation: this annihilation channel can contribute to the relic density for
large neutralino masses in the same way like the stau self annihilation. However, it
requires small tanβ values of the order of 10 or less, which leads to light Higgs boson
masses below 120 GeV. Such parameter sets vanish if the relic density is combined
with the Higgs mass constraint.

• negative µ: the results shown so far correspond to a positive sign of µ. The relic
density constraint can also be fulfilled for sgn(µ) = −1 but it prefers low values of
tanβ leading again to a light Higgs mass. It was checked that the allowed parameter
space is small compared to the results for sgn(µ) = +1 , so only positive values of µ
are considered for the CMSSM.

In the NUH-CMSSM the splitting of the soft SUSY breaking masses at the GUT scale and
therefore the mass of the pseudo-scalar Higgs mass can be chosen independently of tanβ.
The resonance condition has to be fulfilled though, leading to the similar combinations
of tanβ and mA for a fixed mass point. Only the co-annihilation region is affected by
a slight extension. However, these extended regions are not compatible with a 125 GeV
Higgs boson leading to a similar allowed region in the m0-m1/2 plane like in the CMSSM.
It was checked that the results and conclusions of the CMSSM are mainly reproduced, so
the NUH-CMSSM is not further considered.

In the CNMSSM, the GUT relations resemble the CMSSM boundary conditions but an
additional coupling λ due to the extended Higgs sector has to be specified. λ tends to
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Figure 5.8.: (a): The light Higgs mass mh is plotted versus tanβ in the CMSSM for different mass points
indicated by the m0-m1/2 values. The trilinear coupling A0 is fixed, A0 = −2 · m0. The
horizontal line and the colored band correspond to the measured value and its total error. For
large SUSY masses, the light Higgs mass can reach 125 GeV even for small values of tanβ.
For large values tanβ & 10 the Higgs mass starts to saturate. (b): The Higgs mass is plotted
versus A0 for different values of tanβ = {10, 25, 50} for a fixed mass point m0 = 1000 GeV
m1/2 = 1000 GeV. The Higgs boson mass is maximized for moderate values of tanβ and large
negative values of A0 for a fixed mass point. The allowed range of A0 is reduced for large
values of tanβ, since positive sparticle mass squared are required.

vanish to fulfill the required Higgs mass constraint, which will be discussed in more detail
in the next section. This leads to a decoupled singlet and therefore to a decoupled fifth
neutralino χ̃0

5. This leads to the same conclusions as in the CMSSM, so they will not
further be discussed. In the NUH-NMSSM the required Higgs mass leads to a strong
mixing with the singlet, which impacts the neutralino sector. Many annihilation channels
and corresponding diagrams become accessible. Due to the variety of the neutralino sector,
only the relevant parameter space which is allowed by combing all constraints will discussed
in section 6.2.5.

5.2. Standard Model Higgs Boson

In 2012 a Higgs-like boson was discovered at the LHC both in the ATLAS and the CMS
experiment near a mass of 125 GeV. The measurements of CMS and ATLAS are compatible
within errors including the combination of all discovery channels. The corresponding
measured coupling strengths agree with the SM prediction within errors. The discovery
of the Higgs boson completed the SM, but its mass could have been anywhere between
the EW and GUT scale. Unlike the SM, within SUSY a light Higgs boson below 135
GeV is predicted, which strongly supports SUSY despite of the fact that no SUSY particle
has been found so far. However, the predicted mass of the Higgs boson depends on the
supersymmetric model.

The tree level mass of the Higgs boson is limited by the Z0 boson mass within the MSSM,
since mh ≤ mZ |cos 2β| [67], as already mentioned in section 3.1.1. The light Higgs mass
can be shifted to larger values by large loop corrections form stop and top loops. Such large
contributions of the order of 35 GeV are accomplished by using large values of tanβ and
large negative values of A0 within the CMSSM. Such a parameter combination maximizes
the splitting in the stop sector for fixed other values of CMSSM parameters. Fig. 5.8(a)
shows the dependence of the light Higgs mass on tanβ for different mass points indicated
by the corresponding m0-m1/2 values for A0 = −2 ·m0. The mass distribution saturates
for high values of tanβ, since cos 2β ≈ 1. If the common SUSY masses are too low, the
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Figure 5.9.: (a): Higgs mass plotted versus the stop mixing parameter Xt = At − µ/tanβ for a fixed mass
point m0 = 1000 GeV m1/2 = 1000 GeV and different values of tanβ = {10, 25, 50}. The hori-
zontal line corresponds to the experimental measurement while the colored band demonstrates
the total error. The maximal Higgs boson mass is reached for large negative Xt combined
with moderate to large values of tanβ. (b): mh plotted versus Xt for the same mass point
and tanβ = 25 using low energy input in the general MSSM, which is not restricted from any
GUT scale relations. Only a limited range in Xt is available in the CMSSM indicated by the
vertical colored band due to the fixed point solutions.

required Higgs mass cannot be reached even for a maximal mixing as demonstrated by the
solid blue line in Fig. 5.8(a). For adequate SUSY masses a Higgs boson mass of 125 GeV
is reached for tanβ values above 10. The influence of A0 due to the mixing is demonstrated
in Fig. 5.8(b). Here the Higgs mass is plotted for a fixed mass point m0 = 1000 GeV
m1/2 = 1000 GeV and varying values of tanβ = {10, 25, 50}. For fixed CMSSM parameters
the maximal Higgs mass is reached for large negative values of A0. Since the range for A0

is limited to [−2 ·m0, 3 ·m0] for large tanβ by the requirement of positive sparticle mass
squared, the Higgs mass constraint prefers intermediate values of tanβ. The limited range
on A0 due to the fixed point solutions, see e.g Ref. [137], results in a limit on the stop
mixing parameter Xt = At − µ/tanβ. This is demonstrated in Fig. 5.9(a), which shows
the same distribution as in Fig. 5.8(b), while A0 is translated to Xt. The allowed range
in the CMSSM corresponds only to a small range of the hypothetical Xt. In the general
MSSM, which is not restricted by GUT boundary conditions, Xt can reach large positive
values. In Fig. 5.9(b) the light Higgs mass is plotted versus Xt for the same mass point
and tanβ=25 within the general MSSM. Here a large range of Xt is accessible, while only
the vertical colored band is allowed within the CMSSM.

The required mass of about 125 GeV is reached almost in the whole m0-m1/2plane, except
for small SUSY masses below m0 = 1000 GeV m1/2 = 500 GeV. The lightest Higgs has
SM like couplings, since the decoupling limit is fulfilled within the whole m0-m1/2 plane.
Scenarios where the heavier scalar Higgs H corresponds to the 125 GeV SM Higgs are not
possible within the CMSSM.
Such a light heavy Higgs is only accomplished if the squared soft mass m2

Hu
is large and

negative. So the running from the GUT to the low scale has to be very steep. This
is fulfilled by large values of tanβ but such large values are immediately connected to
non-SM couplings. Fig. 5.10(b) and Fig. 5.10(d) shows the normalized couplings to up
and down type fermions for the heavy Higgs as a function of mA for different values of
tanβ = {3, 30, 50}. It demonstrates that small tanβ are favored to get compatible SM
couplings especially for the down type fermions indicated by the dashed dotted blue lines,
since it is proportional to sinα/ cosβ. This is inconsistent with a small heavy Higgs mass
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Figure 5.10.: Normalized couplings to up- and down-type fermions for the light and heavy scalar Higgs.
Within the CMSSM, the heavy Higgs boson requires large values of tanβ above 50 to reach
a low mass of about 125 GeV. This leads in turn to large non-SM couplings to down-type
fermions as indicated by the solid blue lines in (d). In the NUH-CMSSM, where the pseudo-
scalar Higgs mass and tanβ can be independently chosen, a light heavy Higgs boson with SM
couplings is possible. However, the enhancement of down-type couplings for the light scalar
Higgs below 125 GeV, indicated by the solid blue line in (c), is not compatible with the LEP
bound on a light Higgs below 125 GeV.

using GUT boundary condition as indicated by the solid blue lines in Fig. 5.10. This is
resolved, if tanβ and mA are chosen independently as it is the case in the NUH-CMSSM.
So a light scalar Higgs boson H with nearly SM couplings is possible. However even if the
couplings to the heavier Higgs can be SM like, the couplings of the lightest Higgs below
125 GeV are certainly non SM-like. Fig. 5.10(a) and Fig. 5.10(c) shows the couplings to
up- and down-type fermions for the light Higgs depending on mA for different values of
tanβ = {3, 30, 50}. The coupling to down-type fermions is enhanced for light heavy Higgs
bosons. This violates the LEP limit, which requires reduced couplings to SM particles for
a Higgs below 114 GeV.
Furthermore, the combination with the relic density would lead to preferred large tanβ val-
ues, which is inconsistent with the constraints on the pseudo-scalar Higgs mass. Such
scenarios are disfavored if all constraints are included. Even studies in a more larger
parameter space called the phenomenological MSSM (pMSSM2), where all masses and
couplings can be chosen independently at the low scale, such exotic scenarios emerge rare

2Within the phenomenological MSSM it is assumed that the first two sfermion generations are degenerate
with negligible Yukawa couplings, which leads to 19 free parameters.
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Figure 5.11.: (a): The lightest Higgs mass in the CNMSSM as function of tanβ for a fixed mass point
m0 = 2500 GeV m1/2 = 1500 GeV and varying values of λ = {0.01, 0.15, 0.3, 0.4, 0.5}. The
lightest Higgs mass is enhanced for small values of tanβ combined with large values of λ
as indicated by the solid yellow line. However, the required Higgs mass of 125 GeV is not
reached, since the range of tanβ is limited. To obtain the Higgs mass of 125 GeV within the
CNMSSM the MSSM limit λ, κ → 0 is required as indicated by the blue dotted line. (b):
The same distribution as in (a) is shown on a smaller scale to resolve the enhancement for
low tanβ.

from the parameter scans [138]. This proposed light heavy Higgs scenarios [139], can only
be discussed leaving out other constraints, e.g. flavor constraints see [140].

In the NMSSM, the SUSY Higgs sector is enriched compared to the MSSM by adding a
further Higgs singlet. Due to the mixing with the additional Higgs singlet the lightest Higgs
boson mass gets an additional term at tree level: λv|sin 2β|. This additional term leads to
an significant enhancement for small values tanβ combined with large values of λ. Within
the CNMSSM the range of λ and tanβ are correlated due to EWSB, which furthermore
determines µeff . Due to the limited combinations of tanβ and λ, the enhancement is
not sufficient to reach 125 GeV for small tanβ. This is shown in Fig. 5.11(a), where the
lightest SM-like Higgs is plotted versus tanβ for different values of λ. Fig. 5.11(b) shows
the same distribution on a smaller scale to resolve the enhancement. The enhancement is
only valid for small tanβ around ∼ 2 indicated by the solid yellow line. The distribution
is limited for large values of λ above 0.4 as can be seen from the solid red line, so the
required Higgs mass cannot be reached. Large values of tanβ combined with large values
of λ leads to a reduced Higgs mass compared to the CMSSM. This results from another
additional term which arise from the mixing with the Higgs singlet: −λ2

κ2
v2(λ− κ sin 2β)2.

For large tanβ the combination of the first and the second additional term leads in total
to a negative contribution since the terms which include sin 2β vanish. The required mass
of about 125 GeV is reached for small values of λ below 0.1 combined with moderate
values of tanβ as indicated by the blue dotted line. For such small couplings, the second
lightest Higgs corresponds to the heavy MSSM scalar Higgs while the additional singlet-
like Higgs and singlino-like neutralino are completely decoupled. The resulting scenario
thus reproduces the results from the CMSSM with slightly modified values of tanβ and
A0, which was checked by a combined global fit for the CNMSSM. The CNMSSM will
therefore not further be considered.

Within the NUH-CMSSM the couplings can be chosen independently from each other
while EWSB is still preserved. This opens a new window for small tanβand small values
of µeff are now possible, leading to new solutions of the Higgs mixing matrix in addition
to the results of the CNMSSM mentioned above. Among the three scalar Higgs bosons,
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two relatively light scalar Higgs bosons are predicted within the NUH-NMSSM, so either
the lightest or the second lightest Higgs boson can be the discovered Higgs boson at a mass
of 125 GeV with the required SM couplings. The requirement of SM couplings for one of
the light Higgs bosons leads immediately to reduced SM couplings for the remaining light
Higgs boson according to the sum rule of the couplings. If the lightest Higgs is the SM
like Higgs boson, a singlet like second-lightest Higgs boson with a slightly higher mass and
reduced couplings to SM particles exist and vice versa. The third Higgs corresponds to
the heavy scalar Higgs boson in the CMSSM. So far the couplings of the 125 GeV Higgs
boson show no significant deviation from the SM. However, a possible modifications of
the couplings can be easily obtained within the NUH-CNMSSM by a different mixing in
the Higgs sector. A third singlet-like Higgs reproduces again the CMSSM scenario. The
scenario where the third Higgs corresponds to the 125 GeV Higgs combined with two light
Higgs boson below 125 GeV is not possible within the NUH-CMSSM. The sum rule of the
Higgs couplings would lead non-SM couplings for one of the light Higgs boson inconsistent
with the LEP limit. Within the NUH-CNMSSM there exist various scenarios, which can
fulfill a SM-like 125 GeV Higgs boson, so only the relevant scenarios with respect to the
combination with all constraints will be discussed in detail in section 6.2.4.

5.3. Branching Ratios from B-Physics

Indirect signals from SUSY can be found in processes that are rare or forbidden in the SM
but have additional contributions from involving SUSY particles. The branching ratios
from rare decays summarized in this section can be used to constrain the supersymmetric
parameter space. In the last years the discrepancy between experimental measurements
and theoretical predictions decreased, so large additional contributions from SUSY are not
needed anymore.
In section 5.1 and 5.2, it was shown, that the NUH-CMSSM and CNMSSM, will not give
further physical insight, and mainly reproduce the results from the CMSSM, so further
discussions of the remaining constraints and the results of the combination of all constraints
will only include the CMSSM and NUH-CNMSSM.
For clearness and to avoid lengthy expression the NUH-CNMSSM will be re-named to
NMSSM from now on.

5.3.1. Rare Decay of a BS Meson: B0
s → µ+µ−

The decay of a BS meson, a hadron composed of a s and b̄ quark, into a pair of muons
is highly suppressed in the SM, since it requires a transition forbidden at tree level of
b → s. This FCNC can only proceed via higher order diagrams at the one loop level, see
SM diagrams in Fig. 5.12. The process receives an additional helicity suppression, which
leads to a predicted branching fraction of BR(B0

s → µ+µ−)SM = (3.65 ± 0.23) · 10−9 in
the SM [98]. In 2012 the rare decay has been measured at the LHC independently by
the LHCb [96] and the CMS [97] experiment which leads to the weighted average value of
BR(B0

s → µ+µ−)EXP = (2.9± 0.7) · 10−9 [141]. The measured value is slightly below the
SM prediction but agrees within errors, so the contribution to the SM branching ratio from
additional SUSY diagrams, shown in Fig. 5.12, should be small in order not to conflict
with the measured value. BR(B0

s → µ+µ−) can be written in the form [142]
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Figure 5.12.: Dominant diagrams for B0
s → µ+µ− in the SM and MSSM. The SUSY diagrams result from

the SM diagrams by replacing the SM particles by the corresponding SUSY particles and
additional Higgs bosons.
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(5.3)

where MBs is the Bs meson mass, τBs its mean life and fBs the Bs decay constant. The

coefficients C
(′)
S , C

(′)
P and C

(′)
A represent the scalar, pseudo-scalar and axial form-factors.

The scalar and pseudo-scalar form-factors include the SUSY loop contribution coming
from sparticles and Higgses. They give a large contribution to the SM branching ratio for
large tanβ. Their dominant contribution to CS is approximately [143]
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(5.4)

with the stop masses mt̃1,2
and the corresponding rotation angle θt̃ to diagonalize the

stop mass matrix. The other coefficients are given by CP = −CS , C ′S = (ms/mb)CS
and C ′P = −(ms/mb)CP . The B0

s → µ+µ− constraint can be fulfilled within the whole
m0-m1/2 plane. It prefers low values of tanβ to be compatible with the SM predictions
and therefore with the experimental measurement, since large values of tanβ lead to an
enhancement of ∝ tan6 β as shown in Eq. 5.4. The steep increase of the branching ratio
for large tanβ is demonstrated in Fig. 5.13(a). Here BR(B0

s → µ+µ−) is plotted versus
tanβ for A0 = 0 and different mass points in the CMSSM indicated by the corresponding
m0-m1/2 values. The horizontal line corresponds to the experimental value while the
colored band represents the total error. The slope of the distribution depends on the
common SUSY masses m0 and m1/2, which determine the involved sparticles in the loops.
The branching ratio starts to deviate from the SM value for moderate values of tanβ for
light SUSY masses, as demonstrated by the solid dark blue line in Fig. 5.13(a). Heavy
SUSY masses yield a small SUSY contribution, so a large range of tanβ is compatible with
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Figure 5.13.: (a): BR(B0
s → µ+µ−) plotted versus tanβ for a fixed trilinear coupling A0 = 0 GeV and

varying SUSY masses indicated by the correspondingm0-m1/2 values. The SUSY contribution
becomes small for increasing SUSY masses, which leads to a large allowed range for tanβ. (b):
BR(B0

s → µ+µ−) plotted versus tanβ for a fixed mass point m0 = 2000 GeV and m1/2 =
1020 GeV and varying trilinear coupling A0 = {−2 ·m0, 0, 3 ·m0}. Large positive(negative)
values of A0 can reduce(enhance) the SUSY contribution for large tanβ due to a destructive
interference coming from the stop sector. The horizontal line corresponds to the experimental
measurement while the band represents its total error.
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Figure 5.14.: BR(B0
s → µ+µ−) (a) and the corresponding stop mixing angle sin(2θt̃) (b) plotted in the

tanβ-A0 plane and indicated by the color coding for a fixed mass point m0 = 1000 GeV
m1/2 = 250 GeV. The branching ratio drops below the SM prediction, as shown by the blue
colored region in the top right corner of (a), if a small stop mixing and sin(2θt̃) < 0 coexist.
Thus large values of BR(B0

s → µ+µ−) can be sufficiently suppressed by the stop mixing, see
Ref. [144]. The white region is not allowed because of negative Higgs and/or sfermion mass
squared.

the measured branching ratio up to tanβ ≈ 50, as shown by the red lines in Fig. 5.13(a).
However, a huge enhancement for large tanβ still remains, since it is intensified by the
decrease of the pseudo-scalar Higgs mass mA as indicated in Eq. 5.4.
In the NMSSM small values of tanβ are required from the Higgs mass constraint, so
the additional SUSY contribution to BR(B0

s → µ+µ−) is small and leads to a SM-like
branching ratio. Within the CMSSM large values of tanβ are preferred by the relic density
constraint. To fulfill all constraints simultaneously the enhancement of BR(B0

s → µ+µ−)
from tan6 β/m4

A has to be compensated by other parameters in Eq. 5.4. A reduction
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Figure 5.15.: The leptonic decay of a B± meson can be mediated within SUSY by the annihilation into a
charged Higgs boson H± in addition to the SM annihilation into a virtual W± boson.

of the branching ratio for large tanβ is accomplished for large positive values of A0 as
demonstrated by the dashed-dotted line in Fig. 5.13(b). Here the dependence of BR(B0

s →
µ+µ−) on tanβ for a fixed mass point and varying trilinear couplings is shown. The allowed
range of tanβ can be enlarged(reduced) by large positive(negative) values of A0 as shown
by the dashed-dotted(dotted) line in Fig. 5.13(b). The impact of the trilinear coupling on
the branching ratio is linked to the stop sector: Eq. 5.4 includes the stop mass difference of
t̃1 and t̃2, so the branching ratio gets a strong suppression, if the stop masses are equal i.e.
if the stop splitting is small, see Ref. [144]. The splitting is determined by the off-diagonal
element, which is proportional to (At − µ · cotβ). Large positive values of A0 at the GUT
scale yield small negative values of At at the low scale due to the fixed point solutions, see
e.g Ref. [137], thus leading to a small stop mixing for large tanβ. An additional reduction
from the stop sector is coming from the mixing angle sin(2θt̃). It changes its sign for
increasing A0, which eventually changes the sign of CS and therefore CP . The altering
sign induces a destructive interference between CP and CA as derived from Eq. 5.3.
The dependence of BR(B0

s → µ+µ−) and the corresponding angle sin(2θt̃) on tanβ and
A0 for a fixed mass point are shown in Fig. 5.14(a) and Fig. 5.14(b). The color coding
corresponds to the value of BR(B0

s → µ+µ−) and sin(2θt̃), respectively. The white region
is excluded due to negative sfermion and/or Higgs mass squared. The enhancement of
BR(B0

s → µ+µ−) for large tanβ is shown by the large red region in the bottom right
corner of Fig. 5.14(a). The opposite is observed in the top right corner indicated by the
blue colored region due to the destructive interference from the stop sector. The branching
ratio drops below the SM prediction because of a small stop splitting and sin(2θt̃) < 0.
The negative interference from the additional SUSY contribution is required to dissolve the
small discrepancy between the measurement and the SM prediction of BR(B0

s → µ+µ−).

5.3.2. Leptonic Decay of the B Meson: B → τντ

The purely leptonic decay B → τντ is sensitive to new physics, since the process can also
be mediated by a charged Higgs boson H± in addition to a virtual W± boson, as shown
in Fig. 5.15. The predicted branching ratio

BR(B → τντ )SM =
G2
FmBm

2
τ

8π
f2
B|Vub|2

(
1− m2

τ

m2
B

)2

(5.5)

includes SM parameters like the CKM matrix element |Vub|, which has to be determined
experimentally. By studying the ratio of the SUSY and SM branching ratio all SM param-
eters cancel except for the well measured B meson mass, so the calculation of the SUSY
contribution is less affected by uncertainties on the involved SM parameters. The BR
ratio RB→τντ reads

RB→τντ = BR(B → τντ )SUSY /BR(B → τντ )SM =

(
1− tan2 β

1 + ε̃0tanβ

m2
B

m2
H

)2

, (5.6)
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Figure 5.16.: The charged Higgs boson mass mH± (a) and the corresponding BR ratio RB→τντ =
BRSUSY /BRSM of the leptonic decay of the B meson (b) plotted versus tanβ for three
different mass points denoted by the associated m0-m1/2 values. The horizontal line and the
green band in (b) corresponds to RB→τντ = BR(B → τντ )EXP /BR(B → τντ )SM and its
total error. The steep decrease of the charged Higgs mass for large tanβ shown in (a) leads
to a positive SUSY contribution to RB→τντ in (b). RB→τντ stays close to the SM prediction
for a large range of tanβ if mH± is of the order of several TeV.
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Figure 5.17.: (a): Dependence of the charged Higgs mass mH± on the trilinear coupling A0 for different
values of tanβ = {10, 30, 50} for a fixed mass point m0 = 1500 GeV m1/2 = 1020 GeV. The
sensitivity of mH± on A0 is coming from one loop corrections including squark mixing effects.
(b): The corresponding value of RB→τντ plotted versus tanβ for A0 = −2000(1500) GeV
indicated by the solid(dotted) line. A positive SUSY contribution to RB→τντ is obtained for
large values of tanβ combined with a large positive value of A0.

where ε̃0 is a SUSY correction factor, which results mainly from one-loop QCD corrections
including gluinos [145, 146] and is maximum of the order of 0.01 [147]. The theoretical and
experimental uncertainties are combined to a total error on RB→τντ using a Gaussian error
propagation. The experimental average of BR(B → τντ )EXP = (0.96±0.26) ·10−4 [101] is
in agreement with the SM prediction BR(B → τντ )SM = (0.74± 0.14) · 10−4 [102] within
uncertainties, so its ratio RB→τντ = BR(B → τντ )EXP /BR(B → τντ )SM = (1.29± 0.43)
is compatible to one within 1σ. The B → τντ constraint can be fulfilled in the whole
m0-m1/2 plane, if the additional SUSY contribution is large and positive to reach the
required value of RB→τντ = 1.29. In case of a negative SUSY contribution it has to be
small to stay within 1σ near the SM prediction. The latter one is easily fulfilled for small
values of tanβ, as can be derived from Eq. 5.6. The SUSY contribution decreases the BR
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ratio with respect to the corresponding charged Higgs mass, which depends on tanβ and
the common SUSY masses m0 and m1/2. This is demonstrated in Fig. 5.16(a) and Fig.
5.16(b), which show the dependence of mH± and the corresponding BR ratio RB→τντ on
tanβ for three different SUSY mass points indicated by the m0-m1/2 values. High SUSY
masses are correlated with large charged Higgs masses as shown by the lines in Fig. 5.16(a).
The mass of the charged Higgs boson mH± controls the slope of RB→τντ , so the BR ratio
stays close to one if mH± is of the order of several TeV as can be seen from the dotted
line in Fig. 5.16(b). If mH± is small due to light SUSY masses, the ratio deviates from
the SM prediction even for small values of tanβ demonstrated by the dashed line in Fig.
5.16(b). Small charged Higgs masses mH± ≈ 45 ·mB ≈ 200 GeV, which arise from large
tanβ & 50, lead to a compensation of the negative SUSY contribution. Even an additional

positive SUSY contribution for tanβ >

(
ε̃0 +

√
ε̃20 + 2

m2
B

m2
H

)
/
m2
B

m2
H

is possible as shown by

the dotted line in Fig. 5.16(b).

The trilinear coupling A0 slightly modifies the charged Higgs mass via one loop corrections
to the Higgs mass squared, which are coming from squark mixing effects [134]. The
dependence of mH± on the trilinear coupling for a fixed mass point and three different
values of tanβ is shown in Fig. 5.17(a). The one loop correction to the Higgs mass
squared include terms ∝ (µ/tanβ)2, which follows approximately a quadratic function in
A0. The resulting dependence of the branching ratio on A0 is shown in Fig. 5.17(b).
The solid(dotted) line corresponds to RB→τντ for a positive(negative) value of A0 plotted
versus tanβ. If large positive A0 are combined with a large value of tanβ mH± is getting
small and leads to a positive contribution to RB→τντ for a fixed mass point as shown in
Fig. 5.17(b). However, in the CMSSM such parameter combinations are not compatible
with the exclusion limit coming from the search for neutral MSSM Higgs bosons decaying
into taus, see section 5.5. Within the NMSSM low values of tanβ are preferred, so RB→τντ
is close to the SM prediction.

5.3.3. Radiative penguin b→ sγ

The decay b→ sγ is suppressed in the SM since it represents a FCNC which only proceeds
by higher order loops. A sample leading order diagram is shown in Fig. 5.18(a), where
the transition b → sγ is possible via a penguin digram involving a W− boson and a
top quark. The current experimental measurement on the rate of B → Xsγ, where Xs

corresponds to any hadronic system containing a strange particle, can be equaled to the
rate of b → sγ due to small non-perturbative effects and the heavy quark-hadron duality
[148, 149]. BR(B → Xsγ) is used to estimate the SM prediction and the corresponding
SUSY contribution. The world average performed by the Heavy Flavor Averaging Group
reads BR(B → Xsγ)EXP = (3.43 ± 0.21 ± 0.7) · 10−4 [99] and is in agreement with the
current next-to-leading order calculations of BR(B → Xsγ)SM = (3.15±0.23) ·10−4 [100].
This decay is of interest in many studies since it is sensitive to new physics. Additional
diagrams from charged Higgs bosons and charginos as shown in Fig. 5.18(b) can lead to a
significant contribution to the SM prediction for b→ sγ. The experimental measurement
and the predicted SM value are compatible within errors, so the SUSY contribution has
to be small in order to agree with BR(B → Xsγ)EXP .
The two main SUSY contributions from charged Higgs bosons [150] and charginos [151]
can be approximated for large tanβ [152]. The charged Higgs bosons will give a positive
contribution of the order of

BR(B → Xsγ)H± ∝
mb(ht cosβ − δht sinβ)

v cosβ(1 + δmb)
g(mH± ,mt), (5.7)
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Figure 5.18.: (a): A sample leading order diagram to the electromagnetic radiative decay B → Xsγ within
the SM. (b): Corresponding SUSY diagrams include charged Higgs bosons and charginos,
which contribute additionally to the SM branching ratio.

where δht is an effective coupling and g(mH± ,mt) represents the loop integral appearing at
one loop level. All dominant higher order contributions are included by ∆mb. The chargino
induced loops can have a positive or negative contribution to the SM BR depending on
the sign of µ. For large tanβ the chargino contribution to BR(B → Xsγ) reads

BR(B → Xsγ)χ± ∝ µAttanβ f(mt̃1
,mt̃2

,mχ̃±)
mb

v(1 + ∆mb)
. (5.8)

f(mt̃1
,mt̃2

,mχ̃±) corresponds to the loop integral appearing at one loop level. The sign
of At at low scale is negative, so the chargino contribution is positive(negative) for a
negative(positive) sign of µ.

The B → Xsγ constraint can be fulfilled within the whole m0-m1/2 plane. In the CMSSM
the sign of µ is taken to be positive, which leads to a negative contribution from the
charginos depending on the value of A0. The contribution is high(low) for large nega-
tive(positive) values of A0 as shown by the dashed(dotted) line in Fig. 5.19(a). Here the
dependence of BR(B → Xsγ) on tanβ for a fixed mass point m0 = 1000 GeV m1/2 =
510 GeV and varying values of A0 is shown. For large values of tanβ the negative contribu-
tion is compensated by the positive contribution from the charged Higgs, which becomes
light for large tanβ. A small positive contribution from light stops can be observed for
small values of tanβ ≈ 5. In case of light SUSY masses the required BR can be reached
for small values of tanβ or large values of tanβabove 50. The SUSY contribution from
charginos and charged Higgs bosons becomes small for high values of m0 and m1/2 indi-
cating heavier sparticle masses in the loop. This is demonstrated by the light blue and
dark red lines in Fig. 5.19(b), which shows the dependence of BR(B → Xsγ) on tanβ for
different SUSY masses indicated by the corresponding m0-m1/2 values for A0 = 0 GeV.
The charged Higgs and chargino mass distribution for a light(heavy) mass point is shown
in 5.19(c) indicated by the blue(light red) solid and dotted lines. The predicted branch-
ing ratio is close to the SM value for particle masses above 1 TeV. This leads to a small
constant contribution to the overall χ2 function of the order of 0.5σ. The charged Higgs
mass decreases steeply for large values of tanβ compared to the flat mass distribution of
the chargino, as shown by the solid and dotted lines in 5.19(c). This yields a remaining
positive contribution from H± to BR(B → Xsγ), which leads to the required measured
value. The slight dependence of the charged Higgs mass on A0 is negligible for heavy SUSY
masses. It simply leads to a small shift in the required tanβ value for a fixed mass point.
This is indicated by the dotted and solid line in 5.19(b) which corresponds to A0 = 1.8 ·m0

and A0 = 0 GeV, respectively.

The negative sign of µ, which is only relevant for the NMSSM, leads to a positive chargino
contribution, so the required experimental value is already reached for small values of
tanβ < 10 as shown in Fig. 5.19(d). Here the dependence of BR(B → Xsγ) on tanβ is
shown for a light(heavy) mass points indicated by the blue(light red) solid line for A0 =
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Figure 5.19.: (a): BR(B → Xsγ) plotted versus tanβ for a fixed mass point m0 = 1000 GeV and m1/2 =
510 GeV. The lines correspond to different values of A0 = {−1.5 ·m0, 0 GeV, 1.8 ·m0}, which
affect the negative chargino contribution. The horizontal line and the colored band represent
the experimental measurement and its total error. (b): BR(B → Xsγ) plotted versus tanβ for
different SUSY masses indicated by the m0-m1/2 values. BR(B → Xsγ) is close to the SM
prediction within a wide range of tanβ for heavy SUSY masses except for large tanβ > 50.
Here the charged Higgs mass contribution dominates, due to the steep decreases of mH± for
large tanβ compared to the flat distribution of mχ± . The dotted red line corresponds to a
higher value of A0 for the same mass point. (c): The dependence of the chargino (dotted
line) and charged Higgs bosons (solid line) mass for a light (blue) and heavy (light red) SUSY
mass is demonstrated. (d): BR(B → Xsγ) plotted versus tanβ for µ < 0. The experimental
value is reach for small values of tanβ due to the positive chargino contribution in addition
to the charged Higgs contribution. The dotted blue line corresponds to a lower value of A0

for the same mass point.

3 · m0. In case of µ < 0, only low values of tanβ are compatible with the experimental
measurement, since for large values of tanβ the combination of two positive contributions
from charginos and charged Higgs bosons is too large. The alternate sign of µ leads to a
opposite dependence of BR(B → Xsγ) on A0. This is shown in Fig. 5.19(d) by the blue
dotted line which corresponds to A0 = −m0. The SUSY contribution is small for heavy
involved particles, so the sign of µ is only significant for SUSY masses below 1 TeV.

5.4. Mass Limits on Squarks and Gluinos

At the LHC strongly interacting supersymmetric particles can be produced in proton-
proton collisions. So far no supersymmetric particles have been found at the LHC, which
leads to upper limits on the hadronic cross section. The cross section can be translated
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Figure 5.20.: Diagrams contributing to the strong production at the LHC. More diagrams can be found in
the Appendix D.

into corresponding limits on the squark and gluino masses. Selected diagrams contributing
to the hadronic cross section are shown in Fig. 5.20, while more diagrams can be found in
the Appendix D. The corresponding cross section for a center-of-mass energy of 8 TeV in
the m0-m1/2 plane is shown in Fig. 5.21(a)-5.21(c), while the figures are divided into the
g̃g̃, q̃q̃ and g̃q̃ contribution. The cross section contributions have been calculated for fixed
values of tanβ = 30 and A0 = −2 · m0. Since the cross section is sensitive to the mass
of the involved particles, the contribution is distributed according to the sparticle masses
in the m0-m1/2 plane. The gluino mass is proportional to m1/2, while the squark masses
are sensitive to m0 and m1/2. The corresponding cross section is large for low masses, i.e.
low values of m0-m1/2 are dominated by squark and squark-gluino production, while only
low values of m1/2 are needed for the gluino production. Therefore the gluino production
dominates for large values of m0[153].

The best limits on the cross section is given by the hadronic searches, while the results from
ATLAS [108, 109], which have been translated into the m0-m1/2 plane, are used for this
analysis. The total hadronic cross section σ(pp→ g̃g̃, g̃q̃, q̃q̃) along with the parameterized
95% C.L. exclusion contour from ATLAS are shown in Fig. 5.21(d). The excluded region
below the solid line follows rather closely the total cross section indicated by the color
shading. However, a small deviation can be observed which is coming due to variation in
the efficiency of the combined searches.
The total cross section and the corresponding upper limit on the cross section has been
calculated according to the fixed parameters A0 = −2m0 and tanβ = 30. The normalized
upper limit on the cross section corresponds to a specific value of m0 and m1/2, which refers
to a specific sparticle masses. The sparticle masses are largely independent of tanβ and
A0, except for the stop mass. t̃1 can become light for small values of tanβ and large
negative values of A0, as shown in Fig. 5.22(a). The lines correspond to different values
of A0 given in GeV and indicated by the numbers for a fixed mass point m0 = 1400 GeV
m1/2 = 800 GeV. For a large splitting in the stop sector which corresponds to a large values
of A0, the stop t̃1 becomes light and its associated cross section contribution dominates
the hadronic cross section. This is shown in Fig. 5.22(b), where the cross section is plotted
versus tanβ. The solid black line corresponds to the hadronic cross section without the
cross section contribution from the stop σtot w/o t̃. It is constant for varying tanβ and A0.
The horizontal red line marks the 95% C.L. upper limit on the cross section. The blue
lines correspond to the cross section of the stops σ(pp) → t̃t̃ for the given parameter set
in 5.22(a). The total cross section results from the combination of the black and one blue
curve.

The stop cross section and therefore the total cross section is above the upper 95% C.L.
limit for the parameter configuration indicated by the dashed-dotted blue line. Such small
stop masses are only possible for small values of tanβ combined with large values of A0

as can be seen from Fig. 5.22(a). Large tanβ are favored in the CMSSM, so the variation
of A0 and tanβ has no impact on the exclusion limit from the hadronic searches. Small
values of tanβ are favored in the NMSSM so the impact of the stops can be significant.
The determination of the χ2 contribution has to be slightly modified in this case. The
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Figure 5.21.: Cross section distribution indicated by the color coding for the g̃g̃ (a), q̃q̃ (b), g̃q̃ (c) strong
production at the LHC translated into the m0-m1/2 plane for fixed tanβ = 30 and A0 =
−2 · m0. The cross section follows the mass distribution. For small/mediate/large values
of tanβ the dominate contribution is coming from q̃q̃/g̃q̃/g̃g̃. (d): The total hadronic cross
section σ(pp → g̃g̃, g̃q̃, q̃q̃) plotted along with the parameterized 95% C.L. exclusion contour
from ATLAS in the m0-m1/2 plane. The excluded region below the solid line follows rather
closely the total cross section indicated by the color shading due to varying efficiencies. Within
the white region the stau represents the LSP.

stop contribution is separated from the hadronic cross section and separately included.
The separate upper limit on the stop cross section resulting from the contour line in
Ref. [108, 109] with respect to the corresponding stop mass is given in the Appendix
B.2 in Fig. B.4. The distribution follows a power law and can be parameterized with
a corresponding estimated error of 15% such that ∆χ2

t̃
= 5.99 on the line. The stop

contribution is combined with contribution from σtot w/o t̃ to get a total contribution from
the ATLAS constraint taking the dependence on tanβ and A0 into account. In this way
parameter sets leading to light stops are not misleadingly excluded. A separate stop mass
dependent contribution respects the varying values of tanβ and A0, which has been checked
for different combinations of tanβ and A0.

The limit on the squarks and gluinos from the ATLAS constraint can be fulfilled above
the solid line in Fig. 5.21(d). The region below the solid line is associated with light
gluinos and first and second generation squarks and is therefore excluded for all possible
combinations of tanβ and A0.
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Figure 5.22.: (a): Dependence of the stop mass on tanβ and A0 for a fixed mass point m0 = 1400 GeV
m1/2 = 800 GeV. A0 is given in GeV and indicated by the corresponding value. Large mixing
and small tanβ leads to light stops, so the total hadronic cross section is dominated by the
stop contribution. (b): The cross section contribution plotted versus tanβ using the A0 values
given in (a). The black solid line corresponds to the total hadronic cross section without the
stop contribution σtot w/o tildet, while the red solid horizontal line represents the cross section
referring to the 95% C.L. upper limit σ95% C.L.. The parameter configurations referring to
the blue dashed-dotted would have been misleadingly excluded by the normalized upper limit
on the cross section because of the large stop contribution. The separate stop contribution to
the total χ2 function respects the variations of tanβ and A0.

5.5. Mass Limit on the pseudo-scalar Higgs Boson

After the discovery of the SM-like Higgs boson at the LHC, further searches for additional
Higgs boson are still ongoing due to the enriched SUSY Higgs sector. The Higgs production
cross section has been extensively studied both for the SM and MSSM, see e.g. [4, 67].
The dominant production mechanism for the SM Higgs boson is the gluon fusion process
via a top quark loop as shown in Fig. 5.23(a). This process is also the main contribution
to pp→ φ+X for the MSSM Higgs boson for small and moderate values of tanβ, where
φ = h0, H0, A0. However, the Higgs coupling to down-type quarks is proportional to
tanβ, so for large values of tanβ the b-quark associated production becomes the dominant
contribution in the MSSM. The corresponding diagrams for the Higgs production in the
MSSM are shown in Fig. 5.23(b).

The b-quark associated production is enhanced about 3 orders of magnitude for values of
tanβ≈ 50 compared to the gluon fusion process, see e.g. Ref. [133]. Thus the strongly
enhanced production cross section becomes as large as the cross section for electroweak
gauge bosons motivating the searches for the heavy Higgs boson at the LHC. Although
the bb̄ decay mode is enhanced as well, it suffers from an overwhelming QCD background.
So the decay into tau pairs serves the current best experimental signature for this search.
The best limit is given by the CMS experiment [107]. The results have been interpreted
in terms of an upper limit on the cross section times branching fraction σ · BR(φ → ττ)
and additionally in the context of the MSSM for different benchmark scenarios, which
refer to different mixing scenarios. The limits on the cross section are translated into
the tanβ − mA plane since those parameters describe the Higgs sector in the MSSM at
tree level. If higher order corrections are taking into account, the parameter set defining
the Higgs sector is extended and now include additional mass and mixing parameters.
The stop mixing parameter Xt = At − µ/tanβ is crucial for the lightest Higgs boson as
already discussed in section 5.2. The results can be interpreted for a specific Xt, e.g. it is
chosen to get a lightest Higgs reaching its maximum. It turned out, that for this so-called

62



5.5. Mass Limit on the pseudo-scalar Higgs Boson 63

g

g

ht, b

(a)

g

g

h,H,At̃, b̃

g

g b̄

h,H,A

b

(b)

Figure 5.23.: The dominant diagrams contributing to the production of a Higgs boson at the LHC in the
SM (a) and MSSM (b). The dominant production mechanism for the SM Higgs boson is the
gluon fusion process, while in the MSSM the b-quark associated production is enhanced for
large values of tanβ.
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Figure 5.24.: Comparison of the 95% C.L. exclusion contours for the different benchmark scenarios
mmax
h ,mmod+

h and of mmod−
h given by CMS for the search of neutral Higgs bosons into tau

pairs in pp collisions [107]. The limits are hardly affected by the mixing scenarios, only the
remaining parameter space varies in terms of the compatibility with a 125 GeV Higgs.

mmax
h scenario a large part of allowed tanβ and mA parameter space is excluded, if the

discovered Higgs is associated to the lightest MSSM Higgs. The mass of the lightest Higgs
is too heavy in most of the parameter space, which yields additional scenarios using only
moderate mixing. Within this so-called mmod

h scenario, the remaining parameter space
in the tanβ-mA plane is compatible with a 125 GeV Higgs. The scenarios affect mainly
the mass of the lightest Higgs, while the exclusion curves in the tanβ-mA plane persist,
as shown in Fig. 5.24. Here the limits for three different scenarios used in Ref. [107]
are shown. Since the lines resemble, the exclusion limit can be applied to the CMSSM
parameter space independent on the mixing scenario.

The limit on the pseudo-scalar Higgs mass can be fulfilled within the whole m0-m1/2 plane
for small values of tanβ. For large values of tanβ, the allowed region can slightly be
modified by different values of A0, which influences the heavy Higgs mass as already shown
in Fig. 5.17(a). In the NMSSM small values of tanβ are favored, so the corresponding
parameter space is hardly affected by the limit on the pseudo-scalar Higgs mass. Although
in most of the parameter space, the heavy pseudo-scalar Higgs boson A2 in the NMSSM
corresponds to the pseudo-scalar MSSM Higgs A, the model independent limit on the cross
section times branching fraction σ ·BR(φ→ ττ) for gluon fusion has to be applied due to
the modified Higgs sector.
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5.6. Elastic WIMP-Nucleon Scattering

In section 5.1 experimental and theoretical evidence for the existence of DM has been
summarized, which is known to make up roughly 85% of the matter in the universe.
It is generally accepted that our galaxy consists of a barionic component, composed of
a central bulge and spiral disk, which is embedded in a smooth spherical halo of DM
particles. Since the earth is moving through the halo with given local WIMP density, an
interaction between a DM particle and a nucleus should be detected at earth, which is the
aim of so-called direct dark matter detection experiments. DM is detected in direct DM
searches by measuring the recoil of a WIMP on a nucleus, while the scattering happens
via elastic scattering. Several experiments try to measure theses rare events, but no DM
particle has been detected so far. Only upper limits on the WIMP-nucleon cross section
are given. These upper limits result from assumptions about the local DM density, which
can be determined from the rotation curve of the Milky Way and take values between
0.3 and 1.3 GeV/cm3, see e.g. [154]. Since the limits given by different experiments are
consistent with a conservative local DM density, this normalization uncertainty will not
further be discussed.
Since the elastic WIMP-nucleon scattering cross section determines the detection rate of
DM detection experiments, the knowledge of the WIMP-quark interaction, the distribution
of the quarks in the nucleon and the distribution of the nucleons in the nucleus is crucial.
After the calculation of the interaction of WIMPs with quarks and gluons, which give
the effective interactions of neutralinos at the microscopic level, the matrix elements of
quarks and gluon operators in a nucleon state has to be determined to translate the
microscopic interactions into a interaction with the nucleons. These matrix elements can
be extracted from scattering data or lattice calculations. As a last step, using the nuclear
wave function, the components must be added coherently to give the matrix element for
the WIMP-nucleus cross section.
Since the elastic scattering of DM takes place in the non-relativistic limit, the calculations
are simplified. Only two cases have to be considered [155], the spin-spin interaction, where
the WIMP couples to the spin (spin-dependent (SD)) of the nucleus and the scalar (spin
independent (SI)) interaction, where the WIMP couples to the mass of the nucleus. In
the following subsection the SI and SD WIMP-nucleon cross section are discussed, which
follows the discussion in Ref. [127]. Although it will be shown that the limits on the SD
limits are much weaker compared to the SI cross section limits, both limits have to be
fulfilled for a given parameter set in the supersymmetric parameters space to be consistent
with the experimental data.

5.6.1. Spin-Dependent Cross Section

The axial-vector current becomes an interaction between the quark spin and the WIMP
spin. The corresponding diagrams which give rise to this interaction are shown in Fig.
5.25 while the corresponding microscopic axial vector interaction is given by

LA = dqχ̄γ
µγ5χ̃q̄γµγ5q. (5.9)

The coupling dq, where q denotes the quark sector, includes the fundamental couplings of
the theory, which are coming from Z0 and squark exchange. Since the squarks are known to
be much heavier than the Z0 boson, the interaction is dominated by the Z0 boson exchange.
The matrix element of the quark axial vector current in a nucleon is proportional to the
spin of the nucleon, while the corresponding coefficients can be extracted from data on
polarized deep inelastic scattering [127]. Uncertainties in the experimental determination
of theses coefficients lead to variation in the predicted rates for WIMP detection. As will
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Figure 5.25.: Diagrams contributing to the spin dependent elastic scattering of neutralinos from quarks.
The squarks are usually much heavier compared to the Z0 boson, so the SD nucleon cross
section is dominated by the Z0 boson exchange.
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Figure 5.26.: SD WIMP-neutron cross section (a) and the corresponding Higgsino component (b) within
the tanβ-A0 plane for a fixed mass point m0 = 500 GeV m1/2 = 500 GeV. The plotted

Higgsino component is defined as
√
H̃2
u + H̃2

d . The SD cross section is dominated by the Z0

exchange, so a large Higgsino component leads to an enhancement of the WIMP-nucleon cross
section. The white region is not allowed due to negative sfermion and/or Higgs mass squared.

be shown in the next section, the limit on the spin-dependent cross section is about two
orders of magnitude above the spin-independent limit, so this uncertainty can be currently
neglected. The calculation of the nuclear matrix elements is at zero momentum transfer
equivalent to the calculation of the average spins for neutrons and protons. The total cross
section at zero momentum transfer reads accordingly

σspin = (32/π)G2
Fm

2
τΛ2J(J + 1). (5.10)

The reduced mass mτ =
mNmχ
mN+mχ

includes the nucleon mass mN . J is the total angular
moment of the nucleus, while Λ includes the expectation value of the spin content of the
proton and neutron group in the nucleus and the coefficients related to the quark spin
content of the nucleons.

The current best limit on the SD cross section is given by XENON100 for the WIMP-
neutron [112] and by COUPP for the WIMP-proton cross section [113]. The SD cross
section is dominated by the Z0 boson exchange, so it varies slightly due to varying neu-
tralino masses within the m0-m1/2 plane. The maximal cross section is of the order of
10−4 pb and is reached for small values of m0-m1/2, where the neutralinos are light. Since
the SD cross section is dominated by the Z0 boson exchange it is enhanced is the Higgsino
component is large. This is shown in Fig. 5.26(a) for a fixed mass point m0 = 500 GeV
m1/2 = 500 GeV in the tanβ-A0 plane. The Higgsino component, which is defined as
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Figure 5.27.: (a): Diagrams contributing to the spin-independent WIMP-nucleon cross section. (b): In
addition to the squark and Higgs exchange one-loop contributions for the interactions with
gluons have to be considered for the SI WIMP-nucleon cross section.

√
H̃2
u + H̃2

d , is shown in Fig. 5.26(b). A clear correlation is shown between the Higgsino

and the SD cross section. Such a enhancement is more significant in the focus point region,
where the Higgsino component becomes large due to small values of µ. However, the cross
section is largely below the current limits on the SD WIMP-nucleon cross section, so the
corresponding constraints are easily fulfilled within the whole m0-m1/2 plane.

5.6.2. Spin-Independent Cross Section

WIMPs are Majorana particles, so they do not have a vector interactions. The calculation
of the SI cross section therefore includes the scalar interactions and the tensor current.
This interaction, where the WIMP couples to the mass of the nucleus, often dominates
the axial-vector interaction for heavy nuclei. The contribution to the scalar neutralino-
nucleon interaction arises from the coupling to quarks currents, as they are shown in
Fig. 5.27(a). The interactions includes diagrams via squark and Higgs exchange but the
one-loop contributions for the interactions with gluons, as shown in Fig. 5.27(b), has
to be considered as well. The Higgs bosons are usually light compared to the squarks,
so the Higgs exchange dominate the scalar interaction. The microscopic interactions are
calculated from the effective Lagrangian including the scalar and tensor neutralino-quark
and neutralino gluon interaction. A complete overview of the calculation is given in Ref.
[156]. The nucleon matrix elements for quarks is defined by

〈n|mq q̄q|n〉 = mnf
(n)
Tq
. (5.11)

It is determined from measurements of the pion-nucleon term. The same evaluation can
be performed for the matrix element of the gluon operators in a nucleon state to determine
the effective coupling of a neutralino to a proton and neutron fp and fn. In the limit of
large squark masses they become

fp,n
mp,n

' fTsfs
ms

+
2

27

∑
q=c,b,t

fq
mq

, (5.12)

where the small contributions form the light squarks has been neglected. The matrix ele-
ments of the nucleon operators have to be determined to calculate the effective interaction
with the nuclei. For a scalar interaction the operators simply count for the nucleons, so
the amplitude is proportional to the number of nucleons. At zero moment transfer, the
cross section is therefore defined by

σscalar =
4m2

τ

π
[Zfp + (A− Z)fn] . (5.13)
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Figure 5.28.: χ2 contribution of the SI WIMP-nucleon cross section (a) and the corresponding mass dis-
tribution of the heavy scalar Higgs H (b) within the tanβ-A0 plane for a fixed mass point
m0 = 500 GeV m1/2 = 500 GeV. The SI WIMP-nucleon cross section is dominated by the
Higgs exchange, so it is enhanced if the Higgs boson becomes light. The white region is not
allowed due to negative sfermion and/or Higgs mass squared.
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Figure 5.29.: χ2 contribution of the SI WIMP-nucleon cross section (a) and the corresponding Higgsino
component (b) within the tanβ-A0 plane for a fixed mass point m0 = 2000 GeV m1/2 =
400 GeV within the focus point region. An additional enhancement to the WIMP-nucleon
cross section is coming from a large Higgsino component. To obtain a small cross section large
values of A0 are preferred for low and moderate tanβ, which is correlated to large values of µ

leading to a smaller Higgsino component. The Higgsino component is defined as
√
H̃2
u + H̃2

d .

The white region is excluded due to negative sfermion and/or Higgs mass squared.

As can be seen, from Eq. 5.13 for similar effective couplings for proton and neutron, the
cross section is proportional to the mass of the nucleus squared, which leads to a substan-
tial enhancement for heavy nuclei. The strange quark content within a nucleon is sufficient
in the large squark limit as can be derived from Eq. 5.12. The cross section increases if
the strange quark form-factor is increased. The quark form-factors suffer from large un-
certainties from pion-nucleon scattering measurements. In addition, these measurements
deviate from the form-factor resulting from lattice calculations. The default form-factors
given in micrOMEGAs have been used to calculate the SI cross section. They represent
the average of a variety of different measurements and lattice calculations [114].
The current best limit on the SI WIMP nucleon cross section is given by the LUX exper-
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Figure 5.30.: Relative difference between the cross section using the averaged σavg and lowest form-factors
σlow as a function of the neutralino mass. The solid line indicates the maximal difference of
the SI WIMP-nucleon cross section, referring to the same CMSSM parameter set. By slightly
varying the CMSSM parameters for different sets of form-factors, the difference vanishes and
similar exclusion contours in the m0-m1/2 plane are obtained.

iment [111]. They exclude discovery claims by DAMA/LIBRA [157] and CoGeNT [158].
The corresponding constraint can be fulfilled if the SI WIMP-nucleon cross section is below
the upper limit. This is accomplished within the whole m0-m1/2 plane. The dominant
diagram contributing to the SI cross section is coming from the Higgs exchange, so a suf-
ficient small cross section is obtained by a large Higgs mass. An enhancement of the cross
section is maintained if the heavier Higgs is getting small as well. This is demonstrated
in Fig. 5.28(a), where the χ2 contribution of the WIMP-nucleon cross section for a fixed
mass point m0 = 500 GeV and m1/2 = 500 GeV in the tanβ-A0 plane is shown. The color
coding indicates the χ2 values while the red and yellow region are excluded at 95% C.L..
The corresponding mass distribution of the heavier scalar Higgs is shown in Fig. 5.28(b).
The Higgs boson mass becomes small at large values of tanβ, which in turn leads to a
large cross section. To obtain the limit on the WIMP-nucleon cross section limit small
and moderate values of tanβ are preferred. The impact on A0 is milder except for the
focus point region. Here large values of A0 are needed to obtain the required cross section.
This is explained as follows: small values of µ lead to an enhanced Higgsino component
for small and moderate values of tanβ. Thus the cross section of the Higgs exchange is en-
hanced. The WIMP nucleon cross section can become small, if the value of A0 is changed.
Large values of A0 are correlated with large µ leading to a small Higgsino component
and therefore to a reduction of the WIMP nucleon cross section. This is demonstrated
in Fig. 5.29(a), which shows the χ2 contribution from the WIMP-nucleon cross section
in the tanβ-A0 plane for a fixed mass point in the focus point region m0 = 2000 GeV
m1/2 = 400 GeV. The cross section is indicated by the color coding. For vanishing A0 the
cross section is enhanced, because of the large corresponding Higgsino component, which

is shown in Fig. 5.29(b) and defined as
√
H̃2
u + H̃2

d .

The cross section is sensitive to the chosen form-factors [153]. The scalar coefficients for
the quark content in the nucleon are computed from the quark mass ratios mu/md = 0.56,
ms/md = 20.2 as well as σs = 42MeV and σπN = 34MeV , which are interpreted as the
contribution of the strange and the light quarks to the nucleon mass. The resulting scalar
form-factors are summarized in the Appendix E. These averaged values on the form-factors
are applied for the calculation of the scalar cross section which suggest a similar content
of the strangeness compared to the light quark content. The lowest possible form-factors
result from a combination of the form-factors given in Refs. [159–161] and are summarized
in Appendix E. If the lowest possible form-factors are applied for a fixed mass point, the
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Figure 5.31.: Diagrams contributing to aSMµ from first order QED (a), weak (b) and lowest order hadronic
(c) corrections. (b): Supersymmetric diagrams including charginos contribute to the anoma-
lous magnetic moment of the muon.

SI cross section can vary between 8 to 20% depending on the neutralino mass. This is
demonstrated in Fig. 5.30. The solid line indicates the relative difference between the
cross section using the averaged σavg and lowest form-factors σlow as a function of the
neutralino mass. The enhancement refers to the same CMSSM parameters so by slightly
changing them results in similar exclusion contours for different sets of form-factors.

5.7. Anomalous Magnetic Moment of the Muon

The muon, a spin 1/2 massive particle, is described by the Dirac equation, which predicts
a magnetic moment of the muon proportional to its spin: ~M = gµ

e
2mµ

~S. The Landé
g-factor of gµ = 2 represents the proportionality constant that relates the spin to the
magnetic moment. Due to quantum loop effects, the g-factor deviates slightly from 2. The
deviation is parameterized by the anomalous magnetic moment aµ ≡ gµ−2

2 . This quantity,
also known as g-2, is predicted precisely within the SM and can be generally divided into
three main parts consisting of a QED, weak and hadronic part: aSMµ = aQEDµ +aEWµ +aHadµ

[162]. The corresponding diagrams are shown in Figure 5.31. The QED part (Fig. 5.31(a)),
which includes all photonic and leptonic loops, has been computed through 4 loops and
estimated at the 5-loop level. The electroweak part (Fig. 5.31(b)) describes loops involving
heavy W±, Z and Higgs particles, which are suppressed due to the heavy mass. The
main uncertainties on the anomalous magnetic moment are coming from the hadronic
loop contribution including quarks and gluons (Fig. 5.31(c)). The calculation of the LO
and NLO hadronic contribution rely on a dispersion relation approach and on model-
depended estimates of the light-by-light scattering contribution [163]. The combination
of all contributions leads to a SM prediction of aSMµ = (116591802± 2± 42± 26) · 10−11

[104]. The first error corresponds to the electroweak corrections while the other two errors
results from the LO hadronic and light-by-light scattering contribution.

The E821 experiment at the Brookhaven National Lab (BNL) measured the anomalous
magnetic moment of the muon by studying the precession of muons in a constant external
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Figure 5.32.: Dependence of ∆aµ on tanβ for different mass points denoted by the corresponding m0-
m1/2 values. For the light SUSY mass point (blue lines) the difference of a small (solid) and
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the colored band corresponds to the total error.

magnetic field [164], and found aEXPµ = (11659208.9± 5.4± 3.3) · 10−10 [86, 103]. A clear
discrepancy between the SM prediction and the experimental measurement exists and leads
to ∆aµ = aEXPµ − aSMµ = (28.7± 6.3± 4.9) · 10−11. If the theoretical and experimental
errors are added in quadrature for the total error on ∆aµ the discrepancy is of the order
of 3.6σ. To be conservative the theoretical and experimental errors are added linearly,
as previously mentioned in section 4. The linear addition of the errors leads still to a
deviation of 2.6σ.

Additional supersymmetric particles can be involved in the loops, as demonstrated by the
diagrams in Fig. 5.31(d). They can supplemented the missing contribution to the SM
prediction. The Yukawa coupling in the muon-sneutrino-Higgsino vertex is dominant [165]
and leads to an additional SUSY contribution to aSMµ in the large tanβ limit of the order
of

∣∣aSUSYµ

∣∣ ' α(MZ)

8π sin2 θW

m2
µ

m2
SUSY

tanβ

(
1− 4α

π
ln
mSUSY

mµ

)
, (5.14)

with the typical supersymmetric mass mSUSY in the loop. The leading 2-loop EW effects
leads to a small suppression of about 7%. The sign of the SUSY contribution aSUSYµ

resembles the sign of the µ parameter, while µ < 0 is only relevant for the NMSSM.
Numerically the SUSY contribution to aSUSYµ can be approximated by

∣∣aSUSYµ

∣∣ ' 130 · 10−11

(
100GeV

mSUSY

)2

tanβ. (5.15)

The positive sign of µ leads to the required positive contribution to the SM prediction.
But even for µ > 0, the needed enhancement is only warrant for light SUSY particles of a
few hundred GeV combined with the small and moderate values of tanβ as shown in Fig.
5.32. Here the dependence of ∆aµ on tanβ is shown by the solid lines for a low (blue),
moderate (light red) and high (dark red) SUSY mass point denoted by the corresponding
m0-m1/2 value for A0 = 0 GeV. The distributions for negative µ can be obtained by

mirroring the distributions. The horizontal line corresponds to ∆aµ = aEXPµ −aSMµ , while
the colored band represents the total error. Low SUSY masses require low values of tanβ,
since large values of tanβ give a too large SUSY contribution. High values of tanβ are
preferred for increasing mSUSY , since mSUSY determines the slope of the distribution. If
mSUSY >> 100GeV the distribution of ∆aµ is flat. aSUSYµ is close to the SM prediction,
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so the impact of sgn(µ) is negligible. This is demonstrated by the light red and dark red
line in Fig. 5.32. The distribution is sensitive to the trilinear coupling A0, as shown for
the light SUSY mass point. The solid and dashed red line correspond to A0 = 0 GeV and
A0 = −2 ·m0. The difference between the lines can be explained as follows: a large value
of A0 leads to strong mixing effects in the squark sector and therefore increases the Higgs
masses and accordingly the Higgs mixing parameter µ. The mass of the lightest chargino
is proportional to µ, so the mass in the loop becomes large for large values of A0. The
impact of A0 is negligible for heavy SUSY masses due to the flat distribution of aSUSYµ .
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6. Combination of All Constraints in the
CMSSM and NMSSM

Each constraint has been discussed separately so far and its favored region in parameter
space has been summarized. Some constraints are related to each other, so their com-
bination is more challenging. In particular, the Higgs mass and the DM constraint are
connected which can be explained as follows:
the DM annihilation cross section, which is depicted in Fig. 6.1(a), is fixed by the relic
density. The amount of dark matter in the Universe requires an annihilation cross section
of the order of ∼ 10 pb, which is associated with a weak interaction as expected. The
elastic DM-nucleon scattering as shown in Fig. 6.1(b) is related to the annihilation of
DM, since its diagram results from rotating Fig. 6.1(a). However, the associated cross
section limit on the SI elastic scattering cross section is approximately ∼ 10−8 pb, so many
orders of magnitude below the annihilation cross section. To explain the neutral and weak
interactions only the Z0 or the Higgs boson can be considered. The differences of 9 or-
ders of magnitude can be most easily explained by the Higgs exchange, since the Higgs
boson couples only weakly to light quarks in the proton. However, the coupling to the
Z0 boson has to be sufficiently suppressed. This is done by either a bino-like neutralino
in the CMSSM or a singlino-like neutralino, which has reduced SM couplings. The latter
case is provided in the NMSSM. If the diagram is rotated further, the direct production
of DM at a collider is maintained, which is the third possibility of detecting DM. The
connection of the Higgs and DM sector via the annihilation and scattering cross section
leads to non-trivial constraints which are easily fulfilled in SUSY.

In the previous section it has been demonstrated that each constraint is fulfilled separately
almost in the whole m0-m1/2 plane, but their combination is much more challenging since
the favored region of the parameter space do not overlap for every observable. Instead
they sometimes favor orthogonal parts of the parameter space. Their combination leads
to a tension and thus to a high value for the total χ2 function. The combination of all
constraints will therefore exclude a larger region of parameter space.
This section starts with the discussion on the correlation of the free SUSY parameters
and their determination, in particular the Higgs sector parameters. Afterwards the results
of the combination of all constraints will be discussed and the impact of the dominant
constraints are summarized for the CMSSM and NMSSM. In addition the difference of the
Higgs and DM sector will be highlighted. The results of the global fits will be compared
to other analyses. In the end, the prospects of the sensitivities for future searches at the
LHC and for experiments for direct dark matter searches are estimated.
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Figure 6.1.: Diagrams associated with the DM annihilation (a), DM-nucleon scattering (b) and DM pro-
duction (c). The clockwise rotation of the first diagram yields the latter two. However, the
associated cross section of (a) and (b) differ by several orders of magnitude. To bring these two
cross sections in line, the interaction has to be mediated by a Higgs boson. In this way the DM
and Higgs sector are connected. The required reduced couplings to the Z0 boson is fulfilled
within SUSY, either by a bino-like neutralino in the CMSSM or a singlino-like neutralino in
the NMSSM.

6.1. Determination of the Allowed Parameter Space

The allowed parameter space has been determined by performing global fits to all available
data listed in section 4.2 using the multi-step fitting technique, which has been discussed in
section 4.3. In a first step the common masses for the spin 0 and spin 1/2 particles at the
GUT scale (m0 and m1/2) are fixed. Then the fits are preformed for all possible pairs of m0-
m1/2 in the range between 180(100) GeV and 3(5) TeV for m1/2(m0) in the CMSSM and
NMSSM. By minimizing the χ2 function the remaining parameters, two in the CMSSM and
seven in the NMSSM, are restricted. The allowed region in the CMSSM is determined by
constraints which are very sensitive to the free parameters like the relic density constraint
and B0

s → µ+µ−, thus strong correlations of the free parameters are maintained. Fig.
6.2 exemplary shows this strong correlation. Here the relic density and BR(B0

s → µ+µ−),
indicated by the solid lines, are plotted as a function of tanβ in the CMSSM for two
different values of the trilinear coupling A0 = 0 GeV (Fig. 6.2(a)) and A0 = 3090 GeV
(Fig. 6.2(b)). The blue line and right axis corresponds to the relic density, while the red
line and left axis correspond to B0

s → µ+µ−. The horizontal green line represents the
experimental measured values. To fulfill both constraints simultaneously both parameters
have to be varied at the same time. So only in Fig. 6.2(b) the constraints favor equal
parameter sets. This situation becomes more challenging, if additional constraints are
included. Close to the favored value of tanβ in Fig. 6.2(b) both distributions stop, since
here the stau is the LSP. If such a scenario would be considered, the distributions smoothly
continue. The steep increase of both distributions combined with the highly correlated
parameters requires a careful fitting technique. The multi-step fitting approach described
in section 4.3 is able to cope with such strong correlations. On a grid in the m0-m1/2 plane,
the highly correlated parameters are fitted first by fixed other parameters. In this way,
the minimization of the χ2 function is fast and converges to the global minimum to not
misleadingly excluded highly correlated regions as it can be the case for random sampling
techniques.

6.1.1. Higgs Sector Parameters

The Higgs sector of the CMSSM is described by two parameters, the pseudo-scalar Higgs
mass mA and tanβ (see section 3.1.1). Those two parameters are determined by the relic
density constraint. The dominant neutralino annihilation channel via the s-channel A-
exchange requires a mass relation of mA ≈ 1.5 − 2.5mχ̃ between the pseudo-scalar Higgs
mass and the neutralino mass mχ̃. Such light mA masses require large values of tanβ, as
previously shown in Fig. 5.4. The pseudo-scalar Higgs mass is slightly sensitive to the
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Figure 6.2.: Ωh2 (blue lines) and B0
s → µ+µ− (red lines) plotted versus tanβ for two different values

of the trilinear coupling A0 = 0 GeV (a) and A0 = 3090 GeV (b) for a fixed mass point
m0 = 1000 GeV and m1/2 = 630 GeV. The horizontal green line refers to the measured
value of Ωh2(BR(B0

s → µ+µ−)), while the corresponding value is associated with the right
blue(left red) axis. Both constraints can be fulfilled at the same time, i.e. they prefer the
same parameter set, if A0 and tanβ are simultaneously varied as demonstrated in (b). The
multi-step fitting method allows to find solutions reliably in such highly correlated parameter
regions. Close to the favored value of tanβ in (b) both distributions are discontinued, since for
higher tanβ the stau becomes the LSP.

trilinear coupling, which modifies the required values of mA and tanβ. This is helpful
if the relic density is combined with other constraints, e.g. the Higgs mass and flavor
constraints, to fulfill all constraints simultaneously.

The Higgs sector of the NMSSM is described by six parameters: λ, κ, Aκ, Aλ, tanβ and
µeff (see section 3.2.1). Here the parameters are hardly determined by the applied con-
straints if all parameters are allowed to vary [166]. If four of the six parameters are fixed,
the remaining parameters are well determined by the combination of the relic density and
Higgs mass constraint, which is shown in Fig. 6.3. Here the χ2 distribution indicated
by the color coding is plotted in the λ− κ plane for fixed other parameters for the Higgs
constraint (Fig. 6.3(a)) and its combination with the relic density (Fig. 6.3(b)) constraint.
If both constraints are combined the χ2 function favors a small region in the λ− κ plane
as indicated by the purple region in Fig. 6.3(b). By changing the remaining parameters
the favored values of λ and κ move to different values. However, there exist no constraints
on the trilinear couplings and µeff , besides the argument of µeff to be of the order of the
EW scale since it refers to a vev. If all parameters are left free, almost the whole λ − κ
plane is allowed. This is shown in the in Fig. 6.3(c) and 6.3(d), where again the χ2 for
the Higgs and its combination with the relic density is plotted in the λ− κ plane.

6.2. Comparison of the Allowed Parameter Space

The results of the global fits are shown in Fig. 6.4(a)(Fig. 6.4(b)) for the CMSSM(NMSSM).
The white region corresponds to the allowed region at 95% C.L., while the 68% C.L. re-
gions are summarized in the Appendix F. The best-fit point is marked by the black cross
for the CMSSM. In the NMSSM the χ2 distribution is almost flat, so an exclusive best-fit
point is not reasonable. The colored red region is excluded because of a combination of
all constraints, while the gray region in the upper left corner of Fig. 6.4(a) is excluded
since the stau is the LSP. The main contributions to the excluded regions are shown by
separate white contour lines. The lines correspond to 95% C.L. contours and are drawn
in the following way: ∆χ2

i = χ2
i − χ2

min = 5.99 is separately fulfilled for each constraint
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Figure 6.3.: The χ2 distribution indicated by the color coding is plotted in the λ − κ plane for a fixed
mass point. The χ2 function includes the Higgs mass constraint (a) and in addition the relic
density constraint (b) for fixed remaining Higgs sector parameters (tanβ, Aλ, Aκ and µeff ).
The values of the couplings λ and κ are well determined if both constraints are combined. By
changing the trilinear couplings and µeff the favored values of λ and κ move. If all remaining
NMSSM Higgs parameters are allowed to vary, almost the whole λ − κ plane is allowed for
the Higgs mass constraint as shown in (c) and hardly constrained if combined with the relic
density as shown in (d).

where χ2
min is the χ2 contribution of variable i at the best-fit point and χ2

i is the χ2 value
of variable i at the contour.
The allowed region in the CMSSM and NMSSM can be translated into the gluino-squark
mass plane, so the limits on the corresponding masses can be extracted. This has been
performed for the CMSSM(NMSSM) in Fig. 6.5(a)(Fig. 6.5(b)). The squark mass on the
y-axis corresponds to the average squark mass for the first and second generation squark.
The colored red region again represents the excluded region, while the white region is
allowed at 95% C.L.. The gray region is not allowed in the constrained models, since the
squarks and gluinos couple to each other. The squarks have important contribution from
the gluinos in the color field, so their mass cannot be considerable lighter than the gluino
mass. The horizontal and vertical dotted lines indicate the lower limit on the squark and
gluino mass. The detailed discussion of the main constraints is given separately for the
NMSSM and CMSSM in the following subsections.

6.2.1. Discussion on the NMSSM Parameter Space

In the NMSSM, the dominant constraint corresponds to the limit on the squarks and
gluino masses from the SUSY searches at the LHC as indicated by the white solid line
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Figure 6.4.: The allowed parameter space for the CMSSM (a) and NMSSM (b) in the m0-m1/2 plane. The
white region corresponds to the allowed region at 95% C.L.. The best-fit point is marked by
the black cross within the CMSSM. The χ2 distribution within the NMSSM is flat, so a best-fit
point is meaningless. The colored red region is excluded because of the combinations of all
constraints. The stau is the LSP within the gray region. The white lines represent the main
contributions to the excluded region. A contour line corresponds to a 95% C.L. contour, so
each constraint separately fulfills ∆χ2 = 5.99 on the line. Each contour line is denoted by the
corresponding constraint. The main contributions to the excluded region in the CMSSM are
coming from the direct searches for SUSY particles (LHC), the relic density (Ωh2), the Higgs
mass (mh) and the direct searches for DM (LUX). The excluded region in the NMSSM results
from a combination of the latter ones, which is anyhow excluded by the dominant LHC direct
searches. In the CMSSM large tanβ are favored due to the relic density constraint, while in
the NMSSM low values of tanβ are required to obtain a 125 GeV Higgs boson (see Appendix
G). The LSP is typically singlino-like with a Higgsino fraction in the NMSSM, so the DM
constraints can be easily fulfilled.
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Figure 6.5.: The allowed parameter space for the CMSSM (a) and NMSSM (b) from Fig. 6.4 translated
into the gluino-squark mass plane. The colored red region again corresponds to the excluded
region, while the white region is allowed at 95% C.L.. The horizontal and vertical dotted lines
indicate the lower limit on the squark and gluino mass. The gray region is not allowed within
the constrained models due to radiative corrections.
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in Fig. 6.4(b). This leads to a restriction on the first and second generation squarks and
the gluinos, which is represented by the red region in Fig. 6.5(b). The mass limits can be
obtained by the dotted lines in Fig. 6.5(b). Here the gluino can be as light as 1.45 TeV,
while the limit on the squarks is about 1.75 TeV. The given limits on the squark masses
correspond to the first and second generation. The SM Higgs mass constraint determines
the mixing with the singlet. The Higgs masses are determined by the additional Higgs
parameter of the NMSSM, which are largely independent of m0 and m1/2. Therefore, the
Higgs mass constraint in the NMSSM can be obtained for all points in the m0-m1/2 plane
for similar parameter sets. Small values of tanβ are preferred as shown in the Appendix G,
so the B-physics constraints are automatically fulfilled. The LSP obtains a large Higgsino
and singlino fraction, so the required DM amount can be easily fulfilled. Only a small
excluded region is obtained from the combination of several constraints, indicated by the
white dashed line in Fig. 6.4(b), which is anyhow below the dominant exclusion of the
LHC constraint. The χ2 distribution is flat for all scenarios in the NMSSM so no best-fit
point is specified in Fig. 6.4(b). The flatness of the distributions can be extracted by the
slight difference of the 68% (see Appendix F) and 95% C.L. region. The Higgs and DM
sector of the allowed parameter space for the NMSSM will be discussed in more detail in
section 6.2.4 and 6.2.5

6.2.2. Discussion on the CMSSM Parameter Space

In the CMSSM, a large contribution to the excluded region is coming from the LHC direct
searches as indicated by the solid white line denoted as LHC in Fig. 6.4(a). Here light
gluinos and first and second generation squarks are excluded due to their large hadronic
cross section. The contour line follows rather close the exclusion contour shown in section
5.4. Small deviations to the published curve are observed due to the stop contributions.
The direct dark matter searches, indicated by the white dotted line denoted as LUX, are
complementary to the direct searches at the LHC. They dominate the region for large
values of m0. Here the Higgsino component of the LSP is enhanced which leads to a large
WIMP-nucleon cross section. The region next to the stau LSP region is excluded due the
relic density constraint Ωh2 as indicated by the double-dotted line. Here the required mass
of the pseudo-scalar mass is only obtained for the parameter space, where the stau is the
LSP. Since this parameter space is excluded, the annihilation cross section is too small
leading to a large relic density, as previously shown in section 5.1.
The dominant exclusion is coming from the Higgs mass constraint, as shown by the
white dashed line in Fig. 6.4(a). It results from the combination of mh, Ωh2 and
BR(B0

s → µ+µ−). All constraints are separately fulfilled within almost the whole m0-
m1/2 plane, as already discussed in section 5. Even the combination of only two out of
these three constraints is compatible in the m0-m1/2 plane, which was checked by a sep-
arate minimization of two constraints. However, their combination and the difficulty to
fulfill all constraints simultaneously excludes masses up to m1/2 = 1.4 TeV. This can be
explained as follows: the relic density prefers large values of tanβ, but the exact value of
the favored tanβ value varies with A0 as already explained in section 5.1. Only specific
combinations of the two parameters are possible to fulfill the relic density which restricts
the parameter space. The Higgs mass constraint can be easily fulfilled for large splitting
in the stop sector and moderate tanβ. If the mixing in the stop sector is sufficient, large
values of tanβ are possible as well, since the Higgs mass starts to saturate for values of
tanβ above 10. However, the B0

s → µ+µ− constraint prefers a minimal mixing in the stop
sector to compensate the large preferred values of tanβ from Ωh2 leading to a tension with
the required Higgs mass. The χ2 distribution of Ωh2 and B0

s → µ+µ− are both very steep
in contrast to the Higgs mass constraint. So the minimal χ2 value in the excluded region
is obtained, if Ωh2 and B0

s → µ+µ− are fulfilled accepting the less significant χ2 contribu-
tion from the Higgs mass constraint. This tension becomes smaller for large SUSY masses
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Table 6.1.: The first parameter set corresponds to the best-fit point in the CMSSM. There are two additional
low χ2 regions in the m0-m1/2 plane, so two points denoted as II and II have been added. In
Addition to the parameter set, the masses of the pseudo-scalar Higgs A, the lightest neutralino,
selected squarks and the gluino are listed as well. The common SUSY mass parameters, the
trilinear coupling and sparticle masses are given in GeV. The sign of µ is positive.

m0 m1/2 tanβ A0 A χ0
1 ũR t̃1 g̃

CMSSM Best-Fit 550 1020 19.16 -2878 1860.13 440.2 2017.1 1145.3 2234.3
CMSSM II 1550 2790 45.00 -1598 2524.84 1256.0 5098.0 4053.3 5710.0
CMSSM III 5000 2430 50.12 1557 2203.09 1095.3 6506.4 4793.7 5252.7

because the SUSY contribution to B0
s → µ+µ− becomes small and the Higgs boson is

getting heavier at the same time. At 68% C.L. the allowed region is reduced and three
additional allowed regions are found, as shown in the Appendix F. However only a small
region refers to the light SUSY mass range, which includes the best-fit point at m0 = 550
GeV and m1/2 = 1020 GeV. Two region are associated to large SUSY masses. The sepa-
ration of these regions result from balancing the main contributions from the mh, Ωh2 and
B0
s → µ+µ− constraint in order to get a low χ2 value. The limit of the combination of all

constraints is slightly shifted compared to the contour of mh, since the χ2 distribution of
the Higgs mass constraint is broad.

The excluded region for the CMSSM is translated into the gluino-squark mass plane in
Fig.6.5(a). The dotted black lines indicate the limits on the corresponding masses, so
squark(gluino) masses above 1.73(1.85) TeV are required in the CMSSM. The neutralino
mass is related to m1/2 in the CMSSM. So considering the relation mg̃ = 2.7m1/2, the limit
on the gluino mass translates automatically in a limit on the neutralino and pseudo-scalar
Higgs mass of about 360 GeV and 940 GeV, respectively. The given limits on the squark
masses correspond to the first and second generation. The third generation is typically
lighter depending on the splitting, which is determined by the Higgs mass constraint and
at the same time restricted by B0

s → µ+µ− to compensated the large values of tanβ. In
most of the parameter space of the CMSSM the splitting is adjusted since B0

s → µ+µ− is
proportional to tan6 β, so a rather small mass splitting is preferred. Therefore the third
generation squarks are usually 30% lighter compared to the first and second generation
squarks.

The Higgs mas constraint is one of the main constraints which determines the allowed
parameter space within the CMSSM and NMSSM. This leads to a dependence on the
chosen theoretical error, which can be doubled to account for the MSSM Higgs boson
mass calculations. A larger theoretical error only slightly enlarges the allowed 95% C.L.
region, which is discussed in more detail in the Appendix H.

6.2.2.1. Best-Fit Point in the CMSSM

The best-fit point for the CMSSM has been marked in Fig. 6.4(a) by the black cross. The
corresponding parameter set and some sparticle masses are given in Table 6.1. There exist
two additional 68% C.L. regions, which refer to higher values of m0 and m1/2 but yield
a similar χ2 value. Therefore two additional points denoted as II and II are summarized
in Table 6.1. The separate χ2 contributions and the complete mass spectra for the best-
fit point and the CMSSM points II/III are summarized in Appendix I. Fig. 6.6 and 6.7
demonstrates the running of the soft masses from the high to the low scale for the best-fit
point in the CMSSM. The running of the masses for the additional points II and III are
plotted in Appendix J. Fig. 6.6(a) and 6.6(b) show the scale dependence of the gaugino
and squark/slepton masses. In the CMSSM, M1 and M3 correspond approximately to the
neutralino and gluino mass. For the best fit point a large splitting in the stop and the stau
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Figure 6.6.: The running of the soft masses from the high to the low scale for the best-fit point in the
CMSSM is shown. The soft masses are divided into the gaugino (a) and slepton/squark (b)
masses. In the CMSSM the neutralino and gluino masses correspond approximately to M1

and M3. Since the stau annihilation contribute to the relic density, the stau is slightly above
the neutralino mass, so M1 ≈ τ̃R.
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Figure 6.7.: The scale dependence for squarks/sleptons and gauginos is similar in the NMSSM except for
the running of the Higgs soft masses. A comparison of the running of the Higgs soft masses of
the CMSSM best-fit point (a) and the corresponding mass point in the NMSSM (b) is shown.
Unlike the CMSSM, the Higgs soft masses are not unified at the GUT scale in the NMSSM.

sector can be observed which results from the large negative trilinear coupling as listed
in Table 6.1. The stau annihilation diagram starts to contribute to the relic density as
previously discussed in section 5.1. Therefore the stau mass is slightly above the neutralino
mass, so M1 ≈ τ̃R. The scale dependence is similar in the NMSSM except for the running
of the Higgs soft masses, which is demonstrated in Fig. 6.7(a) and 6.7(b) for the CMSSM
and NMSSM, respectively, for same mass point. Unlike the CMSSM, the soft masses are
not unified at the GUT scale. The steep decrease of mHu in the CMSSM results from the
large negative trilinear coupling. For small values of A0 the squared Higgs soft masses get
negative for smaller values of Q, see Fig. 5.4.
The best-fit point is slightly above the limit of the LHC searches and is associated with
first and second generation squarks of about 2 TeV and gluinos of 2.2 TeV. These masses
are in reach of the next run of the LHC. The lightest stop mass is about 1.1 TeV so it
will be covered by the direct stop searches. The neutralino mass is of about 440 GeV
with a corresponding WIMP-nucleon cross section of about 8.5 · 10−12 pb, which will be
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preference for light SUSY masses is given by the favored 95% C.L. region.

challenging for the direct dark matter searches as it is close to the limit of the coherent
neutrino scattering. The value of tanβ is rather small, so the bino-like neutralino decays
predominately into tau (51%) and top (30%) pairs. The heavier Higgs boson is of about
1860 GeV which leads to a low production cross section. The remaining 68% C.L. region
II and III are associated with multi-TeV squarks, sleptons and gluinos and a lightest
neutralino above 1 TeV as can be seen in the Appendix I. Not only their detection will be
challenging but also their indirect effect within loops will be negligible.
Fig. 6.6(a) demonstrates that a relatively heavy gluino of a about 2 TeV is in line with
a light gaugino mass of about several hundred GeV. The fact that no SUSY particles
could be found in the hadronic searches should not questioning the existence of SUSY.
The gauginos have same couplings as gauge bosons but their mass is at least two to three
times heavier. So, only a fraction of events could have been detected by the LHC so far
if the mass suppression is considered for the di-boson events. So a higher luminosity is
required to state the status of SUSY.

6.2.3. Influence of g-2

Other constraints like B → Xsγ and B → τντ are less important, since they are close to the
SM value in the CMSSM and NMSSM, so they are not included as a separate contour line
in Fig. 6.4. aSUSYµ is close to the SM prediction as well for large SUSY masses, which leads

to a constant contribution to the total χ2 function of about χ2
∆aµ

=
(

∆aµ−∆aSUSYµ

σ

)2

∼(
∆aEXPµ −∆aSMµ

σ

)2

= (2.6)2 for the linear addition of the errors for SUSY masses above 1

TeV as discussed in section 5.7. This resembles the deviation of the experimental to the
predicted SM value, which varies within 2.6− 3.6σ depending on the error addition. The
resulting offset of the total χ2 function vanishes if the confidence regions are calculated
by using the χ2 difference with respect to χ2

min. So the g-2 constraint therefore hardly
contributes to the total χ2 except for the light preference for light SUSY masses. The
reason for the constant contribution results from the fact, that the g-2 constraint cannot
be fulfilled within the whole m0-m1/2 plane, since it requires low SUSY masses. Fig.
6.8 shows the favored region of ∆aµ translated into the m0-m1/2 plane indicated by the
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Figure 6.9.: The Higgs boson mass within the CMSSM and NMSSM are compared by plotting mh as a
function of m1/2 for fixed values of all other parameters [166]. The stop mass is indicated at the
top. Within the NMSSM a 125 GeV Higgs boson can be easily fulfilled for light stop masses as
indicated by the green line. Whereas the CMSSM requires multi-TeV stops if all constraints are
considered. The blue(red) solid line corresponds to a trilinear coupling of A0 = −2 ·m0(3 ·m0)
for tanβ = 30.

colored region. The two colors corresponds to the linear (light blue) and quadratic (green)
addition of the theoretical and experimental errors. The colored region indicates the 68%
C.L. region, while the region below the colored lines represents the allowed 95% C.L. region.
The region below the solid red line is excluded by the LHC SUSY searches. As derived
from Fig. 6.8, the favored region of ∆aµ at 68% C.L. is already excluded by the LHC
SUSY searches independent of the error addition [106]. Only a slight preference for light
SUSY masses is given by the 2σ contour of ∆aµ. The deviation between the experimental
measurement and the theoretical prediction may either be a statistical fluctuation or the
theoretical and experimental errors have been underestimated.

6.2.4. Higgs Sector

The comparison of the allowed regions in the CMSSM and NMSSM in Fig. 6.4 clearly
shows a larger allowed region in the NMSSM due the various possibilities of the combi-
nation of the free parameters. However, the reason which motivates the additional study
of the NMSSM is the allowed low SUSY mass region which includes in particular light
stops. Light SUSY masses are generally preferred, since they lead to less fine-tuning.
The CMSSM favors mostly large values of the SUSY masses and therefor large values of
the stop, see e.g. [166]. This is demonstrated in Fig. 6.9, where the Higgs boson mass
plotted as function of m1/2 for fixed values of all other parameters for the CMSSM and
NMSSM. Increasing m1/2 increases the stop mass, as indicated on the scale at the top
of the figure. One notice the steep increase in the Higgs boson mass of the NMSSM,
which reaches 125 GeV for significantly lower stop masses as indicated by the green solid
line than in the CMSSM. The blue(red) solid line corresponds to a trilinear couplings of
A0 = −2 ·m0(3 ·m0) for tanβ = 30. Within the NMSSM a 125 GeV Higgs boson can be
easily fulfilled for light stop masses since the mixing with the singlet enhances the mass of
the lightest Higgs boson, whereas the CMSSM requires multi-TeV stops if all constraints
are considered.

Since there is no constraint on the vev of the singlet nor on the trilinear couplings as
discussed in section 6.2.4, they can be chosen to be rather small or large. Furthermore
in the NMSSM there exist three Higgs bosons, so a choice is given to define which Higgs
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Table 6.2.: Parameter set for the benchmark points in the NMSSM referring to different Higgs boson
scenarios [166]. BMP II and III distinguish themselves by the fact, that for BMP II the second
lightest Higgs has a mass of 125 GeV, while in BMP III the lightest Higgs boson mass is 125
GeV. The third Higgs boson H3 is light for BMP I while for BMP II and III H3 is heavy. A
fixed mass point for m0 = 2400 GeV and m1/2 = 600 GeV is chosen to be outside the LHC
direct searches. For the CMSSM a different value of m1/2 = 2100 GeV is used to be within the
95% C.L. region. The trilinear coupling and µeff are given in GeV.

tanβ A0 sgn(µ)/µeff λ κ Aλ Aκ

BMP I 2.72 -975 119.94 0.648 0.379 -510 -848
BMP II 2.67 -142 383.21 0.642 0.1388 2666 2589
BMP III 2.59 -2359 385.37 0.627 0.1352 894 1413
CMSSM IV 50.11 -4585 1 - - - -

Table 6.3.: Reduced couplings from the Higgs boson to up-/down-type fermions and gauge boson and the
corresponding Higgs mixing elements for the benchmark points in the NMSSM [166]. The
reduced couplings are in units of the SM couplings. The couplings and mixing matrix elements
of BMP II and I are similar, so only the couplings for BMP II are shown.

Hd Hu S κu κd κW/Z

BMP II ∼ BMP I

H1 0.06 -0.07 0.99 -0.07 0.16 -0.04
H2 0.35 0.93 0.04 0.99 1.01 0.99
H3 0.93 -0.35 -0.07 -0.37 2.67 -0.001
A1 -0.07 -0.03 0.99 -0.03 -0.21 0.00
A2 0.93 0.35 0.08 0.37 2.67 0.00

BMP III

H1 0.36 0.93 0.02 0.99 1.00 0.99
H2 0.06 -0.05 0.99 -0.05 0.17 -0.02
H3 0.93 -0.36 -0.07 -0.39 2.58 -0.0009
A1 -0.07 -0.03 0.99 -0.03 -0.19 0.00
A2 0.93 0.36 0.07 0.39 2.58 0.00

boson should have a mass of 125 GeV, the lightest one or second lightest one. Three
different scenarios have been defined for a fixed mass point in the m0-m1/2 plane denoted
as benchmark point (BMP) I, II and III [166]. The three different benchmark scenarios
are given in Table 6.2. Their mass spectra at low scale are summarized in Appendix K. To
compare these different scenarios to the CMSSM, a CMSSM BMP IV has been included
for the same m0 but different m1/2 value, which had to be shifted to higher masses to be
within the 95% C.L. region.

In the NMSSM the mass of the Higgs bosons and in particular the heavy Higgs H3 can
be varied by µeff and the trilinear coupling. Since they are an input, they are chosen to
be either relatively light (BMP I) or heavy (BMP II and III). The latter two distinguish
themselves by the fact, that for BMP II the second lightest Higgs has a mass of 125 GeV,
while in BMP III the lightest Higgs boson mass is 125 GeV. The mass of the heaviest Higgs
is largely determined by the mass of the pseudo-scalar Higgs boson mA as can be derived
from the Higgs mass matrix in Eq. 3.25. In the CMSSM mA is proportional to m1/2,
while in the NMSSM it is independent of m0 and m1/2. The mA dependence of the three
eigenvalues of the Higgs mass matrix is shown in Fig. 6.10(a)-6.10(c). The second lightest
Higgs boson can have a mass close to 125 GeV for pseudo-scalar Higgs boson masses in the
range of 300 GeV, see Fig. 6.10(a). The allowed range of mA is limited by the requirement
that all Higgs boson values have to be positive. But they can be shifted by different values
of µeff , Aλ, tanβ and κ, as shown in Fig. 6.10(b) and 6.10(c), where large values of Aλ
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Figure 6.10.: The scalar Higgs boson masses plotted versus the pseudo-scalar Higgs mass mA for the three
benchmark points in the NMSSM (a-c) [166]. The mass of the third Higgs H3 is indicated
on the right axis for BMP II and III. To get a significant contribution from the mixing the
masses have to be rather close. In this minimum/maximum of H2/H1 the mixing is minimal
and the singlet component of Hi denoted as S(i, 3) where i = 1, 2 is minimal/maximal as
shown in (d). Away from these extremes the mixing increases, thus lowering one Higgs mass
and increasing the other one.

have been used.

To get a significant contribution to the Higgs boson mass at tree level from mixing, thus
preventing multi-TeV stops, the masses have to be rather close so in the NMSSM a second
Higgs boson is either below or above 125 GeV, as it is apparent from Fig. 6.10. In
this minimum/maximum of H2/H1 the mixing is minimal and the corresponding singlet
component is close to 0/1 as demonstrated in Fig. 6.10(d). Here the singlet component
S(i, 3) is plotted for the lightest and second lightest Higgs bosons Hi where i = 1, 2 for
BMP I. Away from these extremes the mixing increases, thus lowering one Higgs mass and
increasing the other. The large singlet component for the lightest Higgs results in reduced
couplings to SM particles which are summarized in Table 6.3 for each Higgs boson. If one of
the two light Higgs bosons should have SM-like couplings, the other one has automatically
reduced couplings to SM particles as it becomes apparent from Table 6.3. The negligible
gauge bosons couplings could explain why the singlet-like Higgs boson has not been seen at
LEP. The heaviest Higgs couples similar to the heavy CMSSM Higgs boson, so it couples
preferentially to down-type fermions and has negligible couplings to W and Z bosons.
The corresponding branching ratios, which depend on the mixing and masses, are given
in Table 6.4 for BMP I and CMSSM IV. The branching ratios for BMP II and III are
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Table 6.4.: Summary of the branching ratios for the Higgs boson into SM particles, neutralinos and
charginos for the CMSSM IV and BMP I in the NMSSM [166]. The cross section in the
last line represents the Higgs production cross section at 8 TeV for the dominant gluon-gluon
fusion process. The branching ratios for BMP II and III are summarized in the Appendix L.

Branching Ratios in %

CMSSM IV NMSSM BMP I

h H A H1 H2 H3 A1 A2

Mass [GeV] 125.82 2025.87 2025.97 87.59 124.03 337.57 207.21 326.72

bb̄ 67.21 84.68 84.77 90.26 64.71 2.86 0.18 1.85
W+W− 17.76 1.65e-5 - 6.47e-7 17.63 0.17 - -
ττ 5.16 15.03 15.06 9.23 6.96 0.37 0.02 0.24
hh - 8.56e-5 - - - - - -
H1H2 - - - - - 44.59 - -
A1H1 - - - - - - - 4.62
Zh - - 1.64e-5 - - - - -
ZH1 - - - - - - 0.22 27.44
χ0
1χ

0
1 - 8.89e-5 7.11e-4 - - 6.68 99.57 37.64

χ0
1χ

0
3 - - - - - 19.31 - 4.92

χ+
1 χ
−
1 - - - - - 19.23 - 16.47

σprod [pb] 19.13 1.18e-6 1.96e-6 1.85 19.51 0.55 4.2e-2 1.44

summarized in the Appendix L.

The heavy Higgs boson in the CMSSM preferentially decays into b quarks and tau leptons.
If the heavy Higgs mass in the NMSSM is of the order of several 100 GeV (BMP I) it
prefers to decay into two Higgs bosons. This is due to the relatively large values of λ and κ
parameters of the Higgs self couplings which allow for large branching ratios of the heaviest
Higgs into two lightest Higgs bosons. This double Higgs boson production, is negligible in
the CMSSM not only due to the heavy Higgs mass, but such couplings are absent, so a
trilinear coupling can only be obtained from the derivatives of the scalar potential of the
form λijk = ∂VH

∂Hi∂Hj∂Hk
|min evaluated at its minimum [67]. With this sizable double Higgs

production the singlet Higgs boson can be discovered despite of the small couplings. In
addition, the LSP has a large Higgsino component in the NMSSM, which leads to sizable
decays into gauginos including LSPs in the NMSSM. Such invisible decays are shown for
BMP I. Theses decay modes are practically absent in the CMSSM. The decay properties
of the heavier Higgs bosons depend on their mass. For heavy Higgs masses new channels
open up, which are obtained if the trilinear couplings are large. Large values of the trilinear
couplings require opposite signs of A0 and Aλ, Aκ due to their correlation via the RGEs.
In case of heavy Higgs scenarios the tt̄ decay modes are allowed and the branching ratios
into lighter Higgs bosons or LSPs decrease. The heaviest Higgs boson mass depends on
the chosen trilinear couplings, so no upper limit on H3 can be found. Only a lower limit
around 200 GeV is obtained from the lower limit on the chargino mass which limits µ.

If scenarios are considered, where the second lightest Higgs boson represents the SM-like
Higgs boson, a lower limit for the lightest singlet-like Higgs boson can be found from the
relic density constraint for moderate values of the trilinear couplings between 0 and -1.5
TeV. Assuming that DM consists only of neutralinos, the lower limit of about 60 GeV
for the lightest Higgs boson is obtained from the relic density, since else the relic density
becomes too small. This is demonstrated in Fig. 6.11. Here the Higgs mass dependence
is plotted as function of Aκ at the low scale. For small values of the trilinear coupling
the Higgs mass becomes small, since it enters the mixing matrix in Eq. 3.25. The relic
density is plotted for the corresponding range for Aκ indicated by the color coding. The
different lines correspond to different values of the Aλ varying between 0 and −1.5 TeV.
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Figure 6.11.: Relic density and the lightest Higgs mass plotted as a function of Aκ at the low scale [166].
By varying Aκ the Higgs can become light, but for light Higgs boson masses the relic density,
indicated by the color coding, is too small due to additional kinematically allowed annihilation
channels. So the relic density can be used to give a lower limit on the lightest Higgs mass of
about 60 GeV. The different lines corresponds to different values of the Aλ for a fixed mass
point varying between 0 and -1.5 TeV.

For mH1 below 60 GeV the LSP annihilation into two lightest Higgs boson or a Higgs and
a Z0 boson becomes kinematically allowed, thus leading to a too low relic density. Such
low values of the lightest Higgs mass requires low values of the trilinear couplings Aκ at
the GUT scale.

Not only Aλ and Aκ but all parameters associated to the Higgs singlet enters the Higgs
mass matrix in Eq. 3.25 in addition to tanβ. The Higgs boson masses are therefore
determined by the parameters independent of the common SUSY masses, so a similar
Higgs spectrum can be obtained within the whole m0-m1/2 for a similar parameter set.
Thus the limit from the gluinos do not affect the Higgs boson mass. The mass limit on
the lightest Higgs boson shown in Fig. 6.11 is obtained by using moderate values of the
trilinear couplings between 0 and −1.5 TeV and µeff of the order of the EW scale, which
is a natural NMSSM scenario. However, this limit can vary for different NMSSM Higgs
parameters.

6.2.5. Neutralino Sector

The neutralino is determined by the corresponding mixing matrix in Eq. 3.35. Usually
the diagonal terms dominate over the off-diagonal terms, so the neutralino masses are
approximately of the order of M1, M2, µ in the CMSSM and in case of the NMSSM of
the order of M1, M2, µeff and

√
2κvs. The mass spectrum at the low scale is calculated

via the RGEs, so the masses are correlated. The gaugino masses satisfy Eq. 3.29. In the
CMSSM the values of the Higgs mixing parameter µ is given by electroweak symmetry
breaking, which leads to µ > m1/2, so typically M1 < µ, which implies that in the CMSSM
the lightest neutralino is usually bino-like, with a mass of approximately 0.4m1/2. The
125 GeV Higgs requires large stop masses, which can be obtained for large values of
m0 and/or m1/2 implying a large neutralino mass. As already been discussed in section
6.2, the combination of all constraints leads to a lower limit of about 360 GeV on the
lightest neutralino mass in the CMSSM. In case of the NMSSM, the vacuum expectation
value of the Higgs singlet and therefore µeff is usually taken to be of the order of the
electroweak scale, so the element (5, 5) from the mixing matrix in Eq. 3.35 is the lightest
element. In this case the lightest neutralino is singlino-like with a mass independent of
m1/2, so neither the LHC SUSY searches nor the Higgs mass affect the WIMP mass. The
neutralino mass eigenstates are obtained by the diagonalization of the mass matrix Mχ̃0

and are linear combinations of the gaugino and Higgsino states
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Figure 6.12.: The neutralino mass matrix elements squared for the CMSSM IV (a) and NMSSM BMP II
(b) point [167]. The elements are indicated by the different colors going from white, gray, light
blue, dark blue and red for the B̃, W̃ 0, H̃0

u, H̃
0
d and S̃, respectively. The mass of the neutralino

is given by the numbers below the bars in GeV. In the CMSSM the lightest neutralino is almost
bino-like, while in the NMSSM the singlino-like lightest neutralino has also a small Higgsino
fraction.

χ̃0
i =Mχ̃0(i, 1)

∣∣∣B̃〉+Mχ̃0(i, 2)
∣∣∣W̃ 0

〉
+Mχ̃0(i, 3)

∣∣∣H̃0
d

〉
+Mχ̃0(i, 4)

∣∣∣H̃0
u

〉
+Mχ̃0(i, 5)

∣∣∣S̃〉 .
(6.1)

The coefficients Mχ̃0(i, j)2 of the neutralino mixing matrix are plotted in Fig. 6.12 for
each of the four CMSSM neutralinos for point CMSSM IV (Fig. 6.12(a)) and for the
five neutralinos of the NMSSM in BMP II (Fig. 6.12(b)). The neutralino mixing matrix
elements for BMP I and III are summarized in the Appendix M. The main difference
between the BMPs in the NMSSM is the relatively large Higgsino component for the
lightest neutralino, which will be significant for the elastic scattering cross section. In the
CMSSM/NMSSM the lightest neutralino is largely a bino/singlino and rather heavy/light.

Since there is no constraint on the vev of the singlet, one can choose it to be heavy as
well. In this case, if it is chosen to be above M1 in the mass matrix, the lightest neutralino
is not a singlino anymore, but it becomes bino-like like in the CMSSM. However this is
only allowed in the NMSSM in a very restricted region of parameter space, namely if the
lightest Higgs has SM couplings. In most of the cases the second lightest Higgs boson has
SM couplings as already discussed in section 6.2.4. So to obtain the reserve this requires
a strong fine tuning of the rather large trilinear couplings. So almost in all region of the
NMSSM parameter space the LSP is singlino-like.

The impact on the DM searches can be investigated for the neutralino sector by translating
allowed points into the WIMP-nucleon cross section versus WIMP mass plane [167]. The
spin-independent WIMP nucleon cross section and the corresponding neutralino mass for
allowed points in the parameter space, both for the CMSSM and NMSSM, are calculated
and shown in Fig. 6.13 by the shaded colored region. Since the lightest neutralino is
independent of m0 and m1/2, the allowed regions generated for the NMSSM in Fig. 6.13(b)
are given for a fixed combination for m0 and m1/2. This point has been chosen to be outside
the LHC limit, otherwise all combinations would be excluded because of too light squark
and gluino masses. Both scenarios, where the lightest or the second lightest Higgs boson
corresponds to the SM Higgs boson have been taken into account. For the allowed region
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(a) (b)

Figure 6.13.: The allowed parameter space within the SI WIMP-nucleon cross section versus WIMP mass
plane for points in the CMSSM (a) and NMSSM (b). The different colored regions correspond
to regions which fulfill certain constraints specified in the legend below. Since the WIMP mass
is independent of the SUSY masses in the NMSSM, the allowed regions are generated for a
fixed mass point outside the LHC limit, while in the CMSSM a scan over all mass points has
been preformed [167].

in the CMSSM shown in Fig. 6.13(a), the points are generated in the applied mass range
of the common SUSY masses. The allowed regions are further divided into regions which
fulfill

• the Higgs mass mh constraint

• the Higgs mass mh and the relic density Ωh2 constraint

• the Higgs mass mh, the relic density Ωh2 and all other constraints from Table 4.3
and 4.4 except for the direct dark matter searches.

The colored regions correspond all to 95% C.L. regions. The region above the solid line,
which corresponds to the current LUX limit, is excluded by the direct dark matter searches.
In the CMSSM the WIMP mass can reach large values since wχ̃ ∝ m1/2. The lower limit
on the WIMP mass in the CMSSM is given by the LEP limit on the chargino mass. If
this constraint is neglected even smaller allowed values are possible. The Higgs mass
reduces the allowed parameter space slightly as shown by the dark green region. If the
relic density is added, this narrows the allowed region, since only certain values of σSI
are allowed (light green region). If all constraints are added, only heavy SUSY masses
are allowed due to B0

s → µ+µ−, which needed a suppression by heavy SUSY masses, as
already discussed. The lower limit on the WIMP mass is of about 360 GeV within the
CMSSM. In the NMSSM the singlino like neutralino ranges from 20-1000 GeV. The lower
limit is combining from the fact, that µeff cannot be arbitrary small, otherwise the lightest
Higgs mass squared is getting negative. High WIMP values can be obtained if all diagonal
elements in Eq. 3.35 are large, which requires a large values of the singlet vev. The whole
WIMP mass range is compatible with the combination of all constraints, while the LUX
limit determines the allowed region in the SI cross section.

The analysis in this thesis has been performed under the assumption that all the DM in
the universe consists of neutralinos. There exist other WIMP candidates, so DM could
have in principle more then one component. This would soften the constraint on the relic
density, since then only an upper limit on the relic density would be valid.
The effect of a bound on the relic density is negligible for the CMSSM. Usually the relic
density is too high in the excluded regions as shown in Fig. 6.4(a) since a small value of

88



6.2. Comparison of the Allowed Parameter Space 89

m
A

in
G

eV

Aλ in GeV

300

350

400

450

500

550

200 400 600

(a)

m
H

i
in

G
eV

Aλ in GeV

0

20

40

60

80

100

120

140

160

200 400 600

H1

H2

(b)

σ
S
I

in
pb

Aλ in GeV

LUX limit
combined σSI

1e-10

1e-07

0.0001

0.1

100

100 200 300 400 500 600

H1 H1

H1 +H2
excluded

allowed

(c)

A
λ

in
G

eV

log10(Q) in GeV

-1500

-1000

-500

0

500

1000

1500

4 6 8 10 12 14 16

(d)

Figure 6.14.: The Higgs masses mA (a) and mH1(2) (b) plotted as a function of the trilinear couplings Aλ
at the low scale [167]. If the masses of the lightest and second lightest Higgs are getting close,
the SI WIMP-nucleon cross section can get zero. But this does not happen simultaneously
for neutron and proton, so the average cross section stays finite as indicated by the solid blue
line in (c). The cancellation is within the quasi-fixed point solution for Aλ as indicated in (d)
where the running of Aλ from the GUT to the low scale is shown.

Ωh2 is only obtained at the narrow mA resonance, see Fig. 5.5. Thus a limit on Ωh2 does
not effect the allowed region in the CMSSM.
In the NMSSM the allowed region is neither effected by a bound on the the relic density,
since the dominant exclusion is coming from the SUSY searches at the LHC. However, a
limit affects the limit on the lightest Higgs mass H1. It was shown in section 6.2.4 that
the relic density constraint restricts the lightest Higgs mass in the NMSSM. A limit on
the relic density, allows for lighter Higgs bosons, so the limit on the H1 mass is not valid
anymore.

6.2.6. Elastic Scattering Cross Section

The main contribution to the scalar elastic scattering amplitude of the neutralino scattering
on quarks comes form the scalar Higgs boson t-channel exchange. The pseudo-scalar Higgs
boson exchange is suppressed because of parity, whereas the heavy squark exchange as well
as the heavy Higgs boson exchange are suppressed by their mass. So the scattering via the
lightest and in case of the NMSSM the second lightest Higgs boson is dominant. These
diagrams have a negative interference in the NMSSM, which can lead to very small cross
sections, especially if the masses of H1 and H2 are similar. H1 and H2 depend both on
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the pseudo-scalar Higgs mass mA, which in turn is a function of Aλ at low energy SUSY
scale.

The dependence of mA and the other Higgs bosons on Aλ at the SUSY scale is shown in
Fig. 6.14(a) and 6.14(b). mH1 can become zero for small and large values of Aλ and the
SI cross section becomes correspondingly large as shown in Fig. 6.14(c). For Aλ values
in between the values of H1 and H2 masses become similar and σSI becomes small as
indicated by the solid blue line in Fig. 6.14(c). The cross section can actually become zero
for either a proton or a neutron but this does not happen for equal regions in parameter
space [167]. Therefore the average cross section stays finite. The horizontal red dotted line
corresponds to the LUX limit, which excludes a wide range of Aλ. The allowed values of
Aλ are indicated by the green region in Fig. 6.14(c) and are in the range of the quasi-fixed
point solutions of the RGEs as indicated by Fig. 6.14(d). However, the elastic scattering
also consist of a SD part. In the CMSSM, the corresponding excluded parameter space is
negligible but for the NMSSM this contribution can be significant. The SD cross section is
dominated by the Z0 boson exchange, so the Higgsino component should be small to fulfill
the limit on the SD WIMP-nucleon cross section. A resonance like it happens for the SI
is not obtained, so by varying Aλ the SD cross section stays rather constant. The mass
point only benefits from the negative interference, if the corresponding SD cross section is
compatible with the limit. Many other analyses do not include the SD cross section, since
the SI limits are more stringent. This applies only for the CMSSM, where the masses are
correlated but is not necessarily true for the NMSSM. So many scenarios, which favor a
large Higgsino component for the lightest neutralino could be ruled out by the limit on
the SD cross section.
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6.3. Comparison to Other Analyses

Many different groups pursued similar combinations of experimental constraints to deter-
mine the allowed supersymmetric parameter space using either a frequentist approach by
maximizing a likelihood or using random sampling techniques. Many of such scans have
been performed within the CMSSM as well as in the NMSSM. The sampling techniques
depend on the prior, which leads to an additional, non-quantifiable uncertainty in the
excluded or allowed region. This uncertainty is due to the high correlations between three
of the four CMSSM parameters: m0 is highly correlated with tanβ because of the relic
density constraint, which requires large tanβ in most of the parameter space except for
the narrow co-annihilation regions at low and large m0 as shown in section 5.1. The trilin-
ear coupling is highly correlated with tanβ because of the B-physics constraints, namely
B0
s → µ+µ−. Since BR(B0

s → µ+µ−) is proportional to tan6 β, it can become large and
even be above the present experimental measurement for large tanβ as shown in section
5.3.1. But it can be strongly reduced by the appropriate mixing in the stop sector which is
determined by the trilinear coupling A0. Such strong correlations lead to likelihood spikes
in the parameter region, where three of the four parameters have to have specific values.
Although the likelihood of such narrow regions is high, they are either not found in meth-
ods based on stepping techniques or their probability is given a different weight because of
its low posterior mass. To cope with the strong correlations a multi-step fitting technique
is used by fitting the highly correlated parameters first for fixed other parameters, e.g. first
tanβ and A0 are fitted for each pair of the mass parameters m0 and m1/2 in the CMSSM.
In this way such likelihood spikes can be easily identified. The multi-step fitting technique
is fast, since initially two parameters are fitted for each point in the m0-m1/2 grid in the
CMSSM and NMSSM. The most probable region of the parameter space is determined by
the minimum of the χ2 value.

Our results are close to the ones of Ref. [168]. They estimate confidence intervals within
the frequentist approach in a similar way, although they use a sampling technique based on
a Bayesian interpretation approach. They sample the parameter space with the MultiNest
algorithm [169, 170], a multi-modal nested sampling algorithm. The blue line in Fig. 6.15
corresponds to the 95% C.L. contour and is compared to the 95% C.L. allowed region
resulting from this analysis. The allowed region is indicated by the green line which equals
the allowed region in Fig. 6.4(a). The comparison of the 68% C.L. contours is summarized
in Appendix N. As can be derived from Fig. 6.15, their allowed region associated to
light SUSY masses is compatible, but they are not sensitive to the left top corner of the
parameter space. In this region, the allowed parameter space requires a careful fitting
method. The sampling techniques seems to miss the nodes of high likelihood. In addition
their best-fit point, is outside the applied m0 range. However they added best-fit points
for low mass points, since their distribution is rather flat. This point agrees with the given
best-fit point in this analyses indicated by the black cross. The 95% C.L. contour of Ref.
[168] allows for a parameter space in the bottom right corner. This is due to different
form-factors for the SI WIMP-nucleon cross section calculation and an additional applied
error due to the uncertainty on the scalar form-factors.
The results differ significantly from results using Markov Chain Monte Carlo sampling
techniques. MCMC or other scanning techniques usually find smaller allowed regions,
since the parameters are strongly correlated, unless a correlation matrix is used during
the scanning which tells if the parameter i moves to a certain value, all other correlated
parameter should move to specific values as well. Fig. 6.16(a) shows the comparison of the
allowed 95% C.L. region from Ref. [171] indicated by the blue solid line and the allowed
95% C.L. contour from this analysis indicated by the green solid line which resembles
the allowed region from Fig. 6.4(a). The comparison of the 68% C.L. contours is again
summarized in Appendix N. These sampling techniques exclude the parameter region
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Figure 6.15.: Comparison of the 95% C.L. contour of Ref. [168], indicated by the solid blue line, and the
allowed 95% C.L. region resulting from this analysis which is represented by the green line.
The line corresponds to the allowed region showed in Fig. 6.4(a). The comparison of the 68%
C.L. contours is summarized in Appendix N. The results of the 95% C.L. contours are rather
similar. However, the lines of Ref. [168] exclude the parameter space for large m1/2, where
the parameters are highly correlated. Their best-fit point is outside the given m0 range.

for intermediate m0, which corresponds to the region of large tanβ. Here tanβ and A0

are highly correlated and finding the correct minimum depends strongly on the stepping
algorithm, e.g. stepping in the logarithm of a parameter is different from stepping in
the parameter prior dependence. If all values of tanβ are equally sampled, the highly
correlated, intermediate regions of the masses m0 and m1/2 are excluded, since they need
large values of tanβ, so the sampling in the low tanβ range is inefficient. An additional
allowed region for large m0 is given, since the limit on the elastic WIMP-nucleon scattering
cross section is not included. In Ref. [172] logarithmic priors are used. The light blue
solid line in Fig. 6.16(b) corresponds to their 95% C.L. contour. Logarithmic priors sample
preferentially low tanβ, but almost in the whole m0-m1/2 plane large tanβ are favored, so
the careful sampling at high tanβ is needed. This is not possible if the logarithmic sampling
of tanβ is used. As a result, they exclude the highly correlated parameter space for large
values of m1/2. In addition, the 68% C.L. regions do not match at all, as demonstrated in
the Appendix N.
In the NMSSM the resulting allowed region is similar to Ref. [173] as showed in Fig. 6.17.
The green line corresponds to the 95% C.L. region from Fig. 6.4(b). Similar constraints
and the same constrained model is applied. The dominant exclusion corresponds to the
SUSY direct searches for both analyses. Since the parameter space has been randomly
scanned in Ref. [173], the allowed points are not equally spread within the m0-m1/2 plane
and stop above m0 = 4000 GeV. Slight deviations between the contour lines result from
different applications of the constraints. In Ref. [173] the constraints are applied as a step-
function, while in this analysis a smooth χ2 distribution is defined. In addition, the stops
are rather light in the NMSSM, which modifies their contribution to the total hadronic
cross section.

Many another analyses have been performed in the NMSSM, e.g. see Refs. [93, 174–180],
by using EW input and/or focusing on the Higgs phenomenology. However, GUT scale
relations are not applied within theses analyses. Such general SUSY models include all
soft masses and couplings as free parameters, which are independently defined at the TeV
scale. In this case, the radiative corrections are only integrated between the low scale and
the actual mass, which in practice means the masses are close to the tree level masses,
thus efficiently eliminating radiative corrections. In addition low scale definitions ignore the
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(a) (b)

Figure 6.16.: Comparison of the 95% C.L. contour resulting from this analysis indicated by the green line
and the corresponding contours of Ref. [171] (a) and Ref. [172](b). The green line resembles
the allowed region in Fig. 6.4(a). The allowed region of Ref. [171] indicated by the solid blue
line in (a), overlaps with the allowed region of this analysis. However, the random sampling
technique excludes most of the parameter space since they equally sample the highly correlated
parameters. The second allowed region for large values of m0 is allowed, since in Ref. [171]
the DDMS constraint is not applied. The 95% C.L. region of Ref. [172] indicated by the
blue line in (b) is mostly in line with the green contour. The region for large m1/2 is again
excluded due to the highly correlated parameters which is missed by the random sampling
techniques. The comparison of the 68% C.L. contours is summarized in Appendix N.

(a)

Figure 6.17.: Comparison of the exclusion contour of Ref. [173] and the allowed 95% C.L. region resulting
from this analysis indicated by the green solid line, which resembles the allowed region in Fig.
6.4(b). Since a random scan in the m0-m1/2 plane is performed in Ref. [173], the allowed
points are not equally distributed. However, the dominant exclusion is also coming from the
LHC SUSY searches. The upper limit from the scan preformed by Ref. [173] is indicated by
the solid blue line.

fixed point solution of the couplings, which restrict the minimal/maximal mixing scenarios
in the stop sector. In this analysis GUT scale relations are applied to use the full radiative
corrections to the SUSY masses and couplings. The resulting allowed region is therefore
a part of the more general parameter space of the other analyses.
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6.4. Prospects of Future Searches Including Extrapolated Sen-
sitivities for SUSY

Since no SUSY or dark matter particles have been found so far, future searches are needed
to probe the remaining allowed parameter space. In this section, the discovery prospects
are given by extrapolating the current sensitivities for the future dark matter experiment
XENON1T and LHC at 14 TeV. Furthermore, possibilities to discriminate the two SUSY
models are introduced.

The sensitivity for the future direct dark matter experiment is determined by extrapolating
the limit given by XENON100 [181] to the XENON1T limit. XENON1T is expected to
reach a sensitivity two orders of magnitude better than XENON100. The corresponding
parametrization is given in the Appendix O. For the future prospects of an energy of 14
TeV at the LHC with an integrated luminosity of 3000 fb−1 (LHC-14) the current cross
section limits of the SUSY searches at the LHC for squarks and gluinos are extrapolated.
The searches excluded low SUSY masses and accordingly large cross sections. The 95%
C.L. exclusion in the m0-m1/2 plane determines the limit on the hadronic cross section,
as already discussed in section 5. Since the χ2 contribution is proportional to the total
cross section which in turn is depending on the luminosity L by σtot = N

εL , for a given
number of events N and the efficiency ε, the limit on the cross section at higher luminosity
L is obtained by scaling the limit with 1/L2 and than check for each point in the m0-
m1/2 plane, where the limit is reached for 14 TeV. This method is tested to work if the
early low luminosity results at 7 TeV have been extrapolated to high luminosity results at
8 TeV. The LHC running at a center-of-mass energy of 14 TeV including 3000fb−1 will
be sensitive to the 95% C.L. low mass region in the CMSSM, as can be derived from Fig.
6.18(a). Here the extrapolated limit of the LHC direct searches has been included as a
solid red line into the 95% C.L. allowed parameter space shown in Fig. 6.4(a), indicated
by the red dotted line. The red region corresponds to the excluded region from the LHC
direct searches at 8 TeV. The best-fit point will be in reach of the next run of the LHC. A
large region of parameter space will be covered by the LHC which corresponds to a large
squark and gluino mass range. This can be extracted from the translated limits into the
gluino-squark mass plane, which is shown in Fig. 6.18(b). The red region corresponds
to the excluded region from the current limit of the LHC SUSY searches at 8 TeV, while
the solid red line demonstrates the extrapolated sensitivity. The 95% C.L. contour of all
constraints from Fig. 6.4(a) is represented by the dotted red line. The LHC will be able
to cover squark and gluino masses of about 3.6 and 3.0 TeV, respectively, as indicated by
the horizontal and vertical black dotted line in Fig. 6.18(b).

To compare this sensitivity with the direct searches, Fig. 6.13 is repeated and the expected
limits from XENON1T is added [167]. The regions above theses contours are excluded. In
addition, the blue area corresponds to the region, which will escape the sensitivity from the
LHC at 14 TeV. In the CMSSM the non-accessible region occurs for large WIMP masses,
since the LHC SUSY searches are sensitive to gluino masses up to 3.0 TeV. This implies
sensitivities to WIMPs around 600 GeV, since mg̃/mWIMP ≈ M3/M1 ≈ 5 − 6.75 in the
CMSSM. If the LHC SUSY searches are combined with all constraints, the lower limit
increases slightly to 680 GeV. In the NMSSM for a singlino-like WIMP such a relation to
the gluino mass does not exist and light singlino-like WIMPs can only be probed efficiently
by the direct dark matter searches. Light WIMPs, as claimed in Ref. [182] would only be
allowed in the NMSSM and exclude the CMSSM.

Other searches at the LHC for SUSY particles, e.g. in multilepton searches, or for DM
in monojets and invisible Higgs decays are ongoing and discussed in more detail in the
Appendix P. Theses searches are less sensitive compared to the current hadronic searches
and the limit on the elastic scattering cross section and thus not included into this analysis.
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Figure 6.18.: (a): The extrapolated sensitivity of LHC at 14 TeV and 3000fb−1, indicated by the solid red
line, within the allowed 95% allowed parameter region from Fig. 6.4(a), which corresponds
to the red dotted line. The contribution from the LHC searches at 8 TeV is represented
by the red colored region. LHC-14 will be able to cover a large region of parameter space
including the best-fit point so a large mass range of squarks and gluinos is covered as well.
(b): The extrapolated sensitivity translated into the gluino-squark mass plane. The colored
red region corresponds to the current limit from the LHC SUSY searches at 8 TeV, while
the solid line represents the extrapolation for LHC-14. The dotted red line corresponds to
the combination of all constraints at 95% C.L. from Fig. 6.4(a). The dotted vertical and
horizontal line corresponds to the expected limits on the squark and gluino masses. The gray
region is not allowed in constrained models.

(a) (b)

Figure 6.19.: Same allowed parameter space as in Fig. 6.13 but including the expected sensitivities for
LHC-14 and XENON1T for the CMSSM (a) and NMSSM (b). The regions above the red
dashed line are sensitive to XENON1T. The blue region will not be accessible to the LHC
SUSY searches at 14 TeV and 3000fb−1 [167].

Finding additional Higgs bosons and DM would be the key to prove physics beyond the
SM. The properties of the additional Higgs boson and the DM particle could be used to
distinguish the two models.
If a additional Higgs boson would be discovered its mass could distinguish between the
CMSSM and NMSSM. A lower limit of 940 GeV on the pseudo-scalar Higgs is determined
in the CMSSM from the combination of all constraints, so a Higgs boson of several hundred
GeV, would disfavor the CMSSM but can obtained in the NMSSM. A further Higgs boson
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below 125 GeV would be clearly favored in the NMSSM. Since the additional light Higgs
boson has a large singlet component, it is hard to discover at the LHC because of its
reduced couplings. It may be discovered in the decay mode of the heavier Higgs boson.
The relatively large values of the Higgs self couplings parameters allow for large branching
ratios of the heaviest Higgs into two lightest Higgs bosons. Such couplings are strongly
suppressed in the CMSSM. Another interesting signature is given by the lightest pseudo-
scalar Higgs. The LSP in the NMSSM has rather large Higgsino component, so the lightest
pseudo-scalar Higgs boson decays almost exclusively to two LSP, i.e. invisible decays, if
kinematically allowed. The unique NMSSM search signatures are therefore the double
Higgs boson production, i.e. two Higgs bosons in a single event, one of them having a
mass of 125 GeV and a second Higgs boson below or above 125 GeV, and Higgs boson
decays into LSPs can be appreciable, thus leading to invisible Higgs decays. Another key
signature for the NMSSM with respect to the DM sector would be a light WIMP. The
large singlino component of the lightest neutralino leads to small values of the LSP mass
independent of the other SUSY masses in contrast to the rather heavy bino-like neutralino
in the CMSSM.
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7. Summary and Outlook

Supersymmetry (SUSY) is a well-motivated theory beyond the SM, which has been searched
for for many years. SUSY solves many problems of the SM simultaneously like the fine-
tuning problem, the unification of the couplings, electroweak symmetry breaking via ra-
diative corrections and it provides a perfect dark matter (DM) candidate. In addition,
it predicts a light Higgs boson below 135 GeV, so the discovery of a Higgs boson at 125
GeV is a major triumph for SUSY. But the predicted supersymmetric partners of the SM
particles have not been found yet.
Within the simplest supersymmetric model, the constrained minimal supersymmetric SM
(CMSSM), the Born term for the lightest Higgs boson is below the Z0 boson mass. How-
ever, the radiative corrections from the stop loops can increase the mass to 125 GeV,
although this requires stop masses in the multi-TeV range, at least if constraints from
cosmology and flavor physics are required to be fulfilled (see section 6.2). In the next-
to-minimal CMSSM (NMSSM) the Higgs mass can be above the Z0 boson mass, because
of the mixing with the additional Higgs singlet, which distinguishes the NMSSM from
the CMSSM. Such a singlet also solves the µ-problem, i.e. the Higgs mixing parameter
µ becomes naturally of the order of the electroweak scale, because it is assumed to be
proportional to the vev of the Higgs singlet. The Higgs sector of the NMSSM is described
by six (see section 3.2.1) instead of two free parameters in the CMSSM.

There are two major topics in this thesis, which have been published in Refs. [106, 153,
166, 167]. The first topic is the determination of the parameter space allowed by current
experimental data from accelerators and cosmology. These allowed regions have been
identified, both in the CMSSM and NMSSM, by using a χ2 minimization, where the
χ2 function includes all applied constraints summarized in Table 4.3 and 4.4. The free
parameters are highly correlated (see section 6.1), which requires a careful fitting technique.
To cope with these strong correlations the multi-step fitting technique is applied, where
the highly correlated parameters are fitted first for fixed values of all other parameters. In
this way regions of high likelihood are identified and not misleadingly missed like it can
be the case when using random sampling techniques. For both models the GUT boundary
conditions, which imply unified SUSY masses and couplings at the GUT scale, have been
applied to include all radiative corrections from the GUT to the low scale. Both models
satisfy the experimental constraints, which has been demonstrated in Fig. 6.4, except for
the anomalous magnetic moment of the muon. The g-2 favored region in the parameter
space is already excluded by the LHC SUSY direct searches, so the 2-3σ has either another
origin or is simply a statistical fluctuation. The major constraints are the Higgs sector
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(mh=125 GeV), the DM sector (Ωh2, σχN ) and for the CMSSM the heavy flavor sector,
since in the CMSSM the relic density constraint can only be fulfilled for high tanβ values.
In this case B0

s → µ+µ− SUSY contributions tend to become large, since its branching
ratio is ∝ tan6 β, but its measured value is close to the SM value. The SUSY contributions
can only be tempered by nearly equal values of the t̃1 and t̃2 masses, which requires small
mixing in the stop sector.
The second main topic is the comparison of the Higgs and DM sectors of the CMSSM and
NMSSM, which are connected via the neutralino annihilation and scattering cross section.
The constraints from the Higgs and DM sector are shortly summarized and followed by
an outlook including the reach for new physics at the LHC in comparison with the reach
in direct DM search experiments.

7.1. Higgs Sector

In the CMSSM the lightest Higgs boson is associated with the SM-like Higgs boson. The
tree level mass of the lightest Higgs boson is below the Z0 boson mass, so large radiative
corrections are needed to obtain a mass of 125 GeV. These radiative corrections require
heavy SUSY particles and in particular stops in the multi-TeV range if all constraints are
combined, as indicated in Fig. 6.9.
Furthermore, Fig. 6.9 demonstrates that a 125 GeV Higgs boson can be obtained for
significant smaller stop masses in the NMSSM due to the mixing with the additional Higgs
singlet. Since small values of tanβ are favored to obtain a 125 GeV Higgs boson the SUSY
contribution to the heavy flavor constraints is small, so the corresponding constraints are
automatically fulfilled. In the NMSSM either the lightest or the second lightest Higgs can
have a mass of 125 GeV and SM couplings. Since one of the lightest Higgs boson has SM
couplings, the other Higgs boson is almost a pure singlet and has reduced couplings to SM
particles (see Fig. 6.10(d) and Table 6.3). These small couplings are challenging for the
production at the LHC, but the singlet-like Higgs boson can be found in the decay of the
heavier Higgs into two light Higgs bosons, which has a large branching fraction due to the
large triple Higgs coupling compared to the CMSSM as shown in Table 6.4.

7.2. Dark Matter Sector

In the CMSSM, the neutralino annihilation is dominated by the s-channel pseudo-scalar
Higgs boson exchange. The neutralino is almost a pure bino, as shown in Fig. 6.12(a), so
its mass mχ̃ is related to m1/2. The correct relic density is obtained for mA = 1.5−2.5·mχ̃.
Thus the pseudo-scalar Higgs masses is proportional to m1/2 as well and has to be of the
order of m1/2. Such small pseudo-scalar Higgs masses are obtained for large values of
tanβ, as shown in Fig. 5.4. The fact that the neutralino and pseudo-scalar Higgs are
proportional to m1/2 yield a limit on their masses from the limit on the gluino mass from
the direct SUSY searches at the LHC. This is not the case for the NMSSM. Here the
lightest neutralino is almost a pure singlino, see Fig. 6.12(b), with a significant Higgsino
contribution, so the limits of the LHC SUSY searches have no impact on the neutralino
mass nor on the pseudo-scalar Higgs mass. Furthermore, the elastic neutralino-nucleon
scattering cross section is modified in the NMSSM. Since two light Higgs bosons exist,
which both can contribute to the dominant Higgs exchange for the spin-independent cross
section, negative interferences occur, which lead to a small cross section. The cross section
can even become zero for both, the WIMP-proton and WIMP-neutron cross section. Since
this does not happen simultaneously, the nucleon cross section stays finite as shown in
Fig. 6.14(c). The spin-dependent searches are often neglected, since the spin-independent
cross sections are larger because of the coherence of the scattering on the whole nucleus,
which gives an enhancement proportional to the nucleon mass squared. This is true for
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Figure 7.1.: Mass limits for the gluino (g̃), first and second generation squarks (q̃), the Higgs bosons (H, h,
H3, H2 and H1) and the lightest neutralino (χ̃0

1) resulting from the global fits for the CMSSM
(a) and NMSSM (b)(c). In the CMSSM the gluino and neutralino are related, so the lower
mass limits on g̃ from the LHC SUSY direct searches translates into a lower limit on χ̃0

1 and
heavy Higgs mass. In the NMSSM such a relation is not given, so the limits on the Higgs boson
and neutralino masses are independent of the limit on the gluino and squarks from the LHC
SUSY direct searches. However, the masses depend on the NMSSM Higgs parameter, so the
limits are given for µeff at the EW (b) and up to the TeV scale (c). The trilinear couplings are
chosen accordingly to be below or above ±1 TeV. The arrows indicate no upper limit on the
corresponding mass limit, while the vertical red lines correspond to the expected sensitivity of
LHC14.

the CMSSM. Here, the contribution from the spin-dependent cross section is negligible.
However, a large Higgsino component of the lightest neutralino in the NMSSM can lead to
a large spin-dependent cross section, since the Z0 exchange is the dominant contribution.
This constraint on the spin-dependent neutralino-nucleon scattering cross section excludes
a large part of the NMSSM parameter space.

7.3. Outlook

So far no SUSY particles have been discovered, but the combination of all constraints
and the model specific correlations lead to mass limits, which are listed in section 6.2 and
summarized in Fig. 7.1(a) and 7.1(b)/7.1(c) for the CMSSM and NMSSM, respectively.
In the NMSSM, the trilinear couplings and µeff can be chosen to be either of the order
of the EW or TeV scale, which determines the mass limits on the third Higgs and the
neutralino mass as indicated by Fig. 7.1(b) and 7.1(c). For the µEWeff scenario, the masses
are rather well determined, while for the TeV scenario no upper limit can be given. Note
that µeff is λ〈s〉. Since the couplings λ is smaller than 1 and the vev of the singlet is
expected to be of the order of the EW scale, the µEWeff scenario is the most natural one.

Future searches, like the LHC at 14 TeV and 3000 fb−1 (LHC14) and XENON1T, will
provide a higher luminosity and sensitivity, which are needed to further constrain the
parameter space. In the CMSSM a large part of parameter space will be covered by the
LHC14 (see Fig. 6.18(a)). These searches will access the multi-TeV range for squarks
and gluinos (see Fig. 6.18(b)) as indicated by red vertical bars in Fig. 7.1. The direct
searches will restrict the range of the elastic cross section which is demonstrated in see
Fig. 6.19(a). However, the part of parameter space which will escape the LHC will not be
covered by the direct dark matter searches. Within the NMSSM, the same mass range for
squarks and gluinos can be covered, but the Higgs and neutralino masses are independent
of the SUSY masses, so the mass range on the neutralino is not affected by the LHC direct
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searches (see Fig. 6.19(b)).
An additional Higgs boson or a WIMP would be the key to prove physics beyond the SM.
The mass of this additional Higgs boson and its decays mode will be able to distinguish
the CMSSM and NMSSM. An indication for a light WIMP would also distinguish the two
models, since a light neutralino is only possible in the NMSSM and would exclude the
CMSSM. Such light WIMPs and the corresponding spin-independent cross section down
to 10−11 pb will be probed by future direct dark matter searches. The complementary
searches at the LHC and at experiments for the direct dark matter search are both needed
to further cover the supersymmetric parameter space in the future.
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Appendix

A. Probability Density Function

The probability to observe a value of a variable x within a infinitesimal interval [x, x+dx]
is given by the probability density function f(x), which is normalized such that the total
probability is one for the entire sample space S

∫
S
f(x)dx = 1. (7.1)

The probability for a random variable to take a value less than or equal to x is defined by
the cumulative distribution F (x) which is related to the pdf via

F (x) =

∫ x

−∞
f(x′)dx′. (7.2)

The expectation value E[x], also known as the mean, of a random variable which is dis-
tributed according to the pdf f(x) is defined by

E[x] =

∫ ∞
−∞

xf(x)dx = µ. (7.3)

A measure of how widely x is spread around its mean is given by its variance V [x], whereas
the square root of the variance is called the standard deviation σ of x

E[(x− E[x])2] =

∫ ∞
−∞

(x− µ)2f(x)dx = σ2 = V [x]. (7.4)

A.1. χ2 distribution

The χ2 distribution for a continuous variable z where 0 ≤ z <∞ and n degrees of freedom
is defined by

f(z;n) =
1

2n/2Γ(n/2)
zn/2−1e−z/2, (7.5)

where Γ(x) represents the gamma function

Γ(x) =

∫ ∞
0

e−ttx−1dt. (7.6)
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The mean and variance of z read

E[x] =

∫ ∞
0

z
1

2n/2Γ(n/2)
zn/2−1e−z/2dz = n,

V [x] =

∫ ∞
0

(z − n)2 1

2n/2Γ(n/2)
zn/2−1e−z/2dz = 2n.

(7.7)

B. Parametrization of the Experimental Limits

In chapter 4 the experimental constraints have been introduced and their implementation
to the χ2 function has been discussed. The χ2 contribution which refers to the experimental
limit is defined by

χ2 =


(
xtheo−xXexp

σ

)2

, if xtheo ≥ xXexp
0, if xtheo < xXexp

for an upper limit. The lower limit is reversely defined, while X stands either for a 95% or
90% C.L. limit. The χ2 contribution is zero if the theoretical prediction if below/above the
evaluated minimum for the upper/lower limit marked xXexp. Those values can be derived
from the corresponding published exclusion contour. The detailed parameterization of the
published 95% and 90% C.L. exclusion contour as well as the 1σ band are summarized in
the following subsections.

B.1. Limit on the Pseudo-Scalar Higgs Boson Mass

The parameterization of tanβ95(mA) given in χ2
mA

is determined by the requirement that
∆χ2

mA
is 5.99 on the contour line:

∆χ2 = 5.99

=

(
tanβobs(mA)− tanβ95(mA)

σtanβ95(mA)

)2

→ tanβ95(mA) = tanβobs(mA)−
√

5.99 · σtanβ95(mA). (7.8)

The 95% C.L. contour line is parameterized by fitting piecewise a polynomial using GNU-
PLOT [183]. Outside the published mass range, the exclusion contour is approximated to
be linear with a fixed error. The parametrization for tanβobs(mA) reads

tanβobs(mA) =


mA < 90, 7.2

90 ≤ mA < 134.5, a1 + a2 ·mA + a3 ·m2
A + a4 ·m3

A + a5 ·m4
A

134.5 ≤ mA < 900, b1 + b2 ·mA + b3 ·m2
A + b4 ·m3

A

900 ≤ mA, c1 + c2 ·mA

(7.9)

with

a1 = −462.45, b1 = −3.18 , c1 = −57.05,
a2 = 15.55 , b2 = 6.14 · 10−2 , c2 = 1.28 · 10−1,
a3 = −1.89 · 10−1 , b3 = −6.10 · 10−5 ,
a4 = 9.96 · 10−4 , b4 = 7.53 · 10−8 ,
a5 = −1.94 · 10−6 .
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Figure B.1.: Comparison of the published 95% C.L. contour taken from Ref. [184] (a) and their parametriza-
tion needed for the χ2 contribution (b). The blue area is excluded at 95%C.L.. The solid black
line corresponds to the observed limit while the dark gray band represents the 1σ error band.

The mass mA is given in GeV. A similar parameterization can be used for the 1σ error
band which corresponds to σtanβ95(mA):

σtanβ95(mA) =


mA < 90, 1.6

90 ≤ mA < 134.5, A1 +A2 ·mA +A3 ·m2
A +A4 ·m3

A +A5 ·m4
A

134.5 ≤ mA < 900, B1 +B2 ·mA +B3 ·m2
A +B4 ·m3

A +B5 ·m4
A

900 ≤ mA, 11.6

(7.10)

with

A1 = −131.39 , B1 = −0.39,
A2 = 4.64 , B2 = 7.38 · 10−3,
A3 = −5.96 · 10−2 , B3 = 3.92 · 10−6,
A4 = 3.33 · 10−4, B4 = −1.60 · 10−8,
A5 = −6.84 · 10−7 , B5 = 2.11 · 10−11.

Fig. B.1 shows the comparison of the published data from Ref. [184] and the parame-
terization used for the global fit. The blue areas are excluded at 95% C.L.. The green
area in Fig. B.1(a) is excluded by the LEP constraint. The LEP constraint is taken into
account separately by an additional χ2 contribution. Therefore, only tanβobs(mA) (solid
black line) and the corresponding error σtanβ95(mA) (gray band) is shown in Fig. B.1(b).
The parameterization is based on the preliminary results from CMS in Ref. [184]. It has
been checked that the limit is similar to the updated limit given in Ref. [107] and leads
to the same exclusion contour in the m0-m1/2 plane.

The Higgs sector is modified in the NMSSM. Therefore, the model independent upper limit
on the cross section times branching fraction σ ·BR(φ→ ττ) for the gluon fusion is used to
include the constraint on the pseudo-scalar Higgs mass. To get the corresponding χ2 con-
tribution tanβ(mA) is replaced by (σ · BR)(mφ). The parameterization (σ · BR)95(mφ)
given in χ2

mφ
is determined by the requirement that ∆χ2

mφ
is 5.99 on the contour line from

Ref. [107]:
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(a)
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Figure B.2.: Comparison of the published model independent 95% C.L. contour taken from Ref. [107]
(a) and the parametrization for the corresponding χ2 contribution (b). The contour line
corresponds to an 95%C.L. upper limit exclusion contour on the cross section times branching
fraction, while the blue band represents the 1σ error band.

∆χ2 = 5.99

=

(
(σ ·BR)obs(mφ)− (σ ·BR)95(mφ)

σ(σ·BR)95(mφ)

)2

→ (σ ·BR)95(mφ) = (σ ·BR)obs(mφ)−
√

5.99 · σ(σ·BR)95(mφ). (7.11)

The 95% C.L. contour line is parameterized by fitting a polynomial using GNUPLOT.
Outside the published mass range, the exclusion contour is approximated to be linear with
a fixed error. The parametrization for (σ ·BR)obs(mφ) reads

(σ ·BR)obs(mφ) =


mφ < 90, d1 + d2 ·mφ

90 ≤ mφ < 1000, 10e1+e2·mφ+e3·m2
φ+e4·m3

φ+e5·m4
φ+e6·m5

φ+e7·m6
φ

1000 ≤ mφ, f1 + f2 ·mφ

(7.12)

with

e1 = 7.96, e6 = −1.37 · 10−12 , d1 = 217.69,
e2 = −1.07 · 10−1 , e7 = 3.79 · 10−16 , d2 = −1.86,
e3 = 5.46 · 10−4 , f1 = 2.22 · 10−2,
e4 = −1.43 · 10−6 , f2 = −1.39 · 10−5,
e5 = 1.98 · 10−9 .

The mass mφ is given in GeV. A similar parameterization can be used for the 1σ error
band which corresponds to σ(σ·BR)95(mφ):

σ(σ·BR)95(mφ) =


mφ < 90, 3.87

90 ≤ mφ < 1000, 10E1+E2·mφ+E3·m2
φ+E4·m3

φ+E5·m4
φ+E6·m5

φ+E7·m6
φ

1000 ≤ mφ, 6.10 · 10−3

(7.13)

with
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Table B.1.: The hadronic cross section σtot(pp→ g̃g̃, g̃q̃, q̃q̃) given on the published 95% C.L. contour line
in Ref. [108, 109]. The cross sections in the last row shows vary due to varying efficiencies
along the exclusion contour.

m0 in GeV m1/2 in GeV σtot · 10−3 in pb

400 843.11 1.513613
800 798.26 1.155236
1200 705.35 1.271251
1600 602.82 2.814515
2000 572.71 3.352062
2400 556.69 2.996126
2800 554.77 1.997814
3200 548.36 1.350165
3600 545.15 0.9181249
4000 535.54 0.7640308
4400 521.44 0.7729961
4800 519.52 0.6964154
5200 516.32 0.6665289
5600 514.40 0.6335210

E1 = 4.33 , E5 = 7.97 · 10−10,
E2 = −5.84513 · 10−2 , E6 = −5.39 · 10−13,
E3 = 2.56 · 10−4 , E7 = 1.48 · 10−16,
E4 = −6.09 · 10−7 .

The comparison of the published data and the parameterization used for the global fit is
shown in Fig. B.2. The solid black line in Fig. B.2(a) corresponds to the exclusion contour
at 95% C.L. on the cross section times branching fraction from Ref. [107], while the blue
band represents the 1σ error band. Fig. B.2(b) shows (σ · BR)obs(mφ) (solid black line)
and the corresponding error σ(σ·BR)95(mφ) (blue band).

B.2. Mass Limits on Squarks and Gluinos

The implementation of the ATLAS contribution requires the parametrization of σATLAS(m0),
which takes the varying efficiencies into account. The hadronic cross section σtot(pp →
g̃g̃, g̃q̃, q̃q̃) on the published 95% C.L. contour line in Ref. [108, 109] has been calculated
with micrOMEGAs. Table B.1 summarize the excluded hadronic cross sections, which
vary due to varying efficiencies. σATLAS can be parameterized as a function of m0 to
compensate the variation of the hadronic cross section. By using the requirement

χ2 = 5.99

= σ2
tot/σ

2
ATLAS

→ σATLAS =
σtot√
5.99

, (7.14)

∆χ2 = 5.99 is fulfilled on the contour line. The 95% C.L. exclusion contour line has been
parameterized by piecewise fitting a polynomial using GNUPLOT. The parametrization
for σATLAS(m0) reads
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Figure B.3.: Comparison of the published 95% C.L. contour taken from Ref. [108, 109] (a) and their
corresponding excluded region which results from the parametrization of σATLAS(m0) (b).
The region below the lower 95% exclusion C.L. contours in (a) resemble the red region in (b).

σATLAS(m0) =


m0 < 400, 1.48 · 10−3

400 ≤ m0 < 992, a1 + a2/m0 + a3 ·m0 + a4 ·m2
0 + a5 ·m3

0 + a6 ·m4
0

992 ≤ m0 < 3966, b1 + b2 ·m0 + b3 ·m2
0 + b4 ·m3

0 + b5 ·m4
0 + b6 ·m5

0

3966 ≤ m0 < 5800, a1 + a2/m0 + a3 ·m0 + a4 ·m2
0 + a5 ·m3

0 + a6 ·m4
0

5800 ≤ m0, 6.65 · 10−4

(7.15)

with

a1 = 4.59 · 10−3, b1 = 2.07 · 10−2,
a2 = −5.77 · 10−1, b2 = −5.81 · 10−5,
a3 = −4.84 · 10−6, b3 = 6.08 · 10−8,
a4 = 2.11 · 10−9, b4 = −2.78 · 10−11,
a5 = −3.80 · 10−13, b5 = 5.76 · 10−15,
a6 = 2.41 · 10−17, b6 = −4.46 · 10−19.

The mass m0 is given in GeV. The published exclusion curve from Ref. [108, 109] is shown
in Fig. B.3(a) along with the corresponding excluded region at 95% C.L. in Fig. B.3(b)
indicated by the red region. The red region results from the parametrization from Eq.
7.16.

In the NMSSM, a large stop splitting and therefore light stops can arise, while the remain-
ing particles stays unaffected. This leads to an enhancement of the total hadronic cross
section due to the light stops. In this case the stop contribution has to be separated from
the total hadronic cross section and an additional χ2 contribution is calculated from the
stop with respect to the stop mass. First the remaining hadronic cross section has to be
determined. For this, the stop contribution is calculated and subtracted from the total

hadronic contribution. The remaining hadronic cross section σ
(w/o)
tot (pp → g̃g̃, g̃q̃, q̃q̃) on

the published 95% C.L. contour line is given in Table B.2.

The χ2 contribution coming from the total cross section without the stop contribution
can be obtained by the requirement in Eq. 7.14. The parametrization of the 95% C.L.

exclusion contour for σ
(w/o)
ATLAS(m0) reads
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Figure B.4.: Upper limit on the cross section of the stop contribution with respect to the stop mass.

Table B.2.: The hadronic cross section σ
(w/o)
tot (pp → g̃g̃, g̃q̃, q̃q̃) without the stop contribution given on the

published 95% C.L. contour line from Ref. [108, 109]. The last row corresponds to the stop
contribution σt̃(pp→ t̃t̃).

m0 in GeV m1/2 in GeV σ
(w/o)
tot · 10−3 in pb σt̃ · 10−3 in pb

400 843.11 1.47842 0.035196
800 798.26 1.06343 0.091803
1200 705.35 0.842563 0.428687
1600 602.82 0.721977 2.092538
2000 572.71 0.493441 2.858621
2400 556.69 0.498709 2.497417
2800 554.77 0.473849 1.523965
3200 548.36 0.509381 0.840784
3600 545.15 0.513310 0.404814
4000 535.54 0.577234 0.186797
4400 521.44 0.690872 0.082123
4800 519.52 0.663571 0.032844
5200 516.32 0.653581 0.012947
5600 514.40 0.628648 0.004872

σ
(w/o)
ATLAS(m0) =


m0 < 400, 1.52 · 10−3

400 ≤ m0 < 992, c1 + c2 ·m0 + c3 ·m2
0 + c4 ·m3

0 + c5 ·m4
0 + c6 ·m5

0

5800 ≤ m0, 6.66 · 10−4

(7.16)

with

c1 = 1.86 · 10−3, c4 = 9.84 · 10−14,
c2 = −1.00 · 10−6, c5 = −2.35 · 10−17,
c3 = 5.45 · 10−11, c6 = 1.54 · 10−21.

The mass m0 is given in GeV. The stop contribution given in the las row of Table B.2 is
associated with a separate χ2 contribution χ2

stop(mt̃). This contribution includes the stop
cross section σt̃(pp → t̃t̃) which is a function of the stop mass. By calculating for each
m0-m1/2 point on the contour line the stop mass and the corresponding stop cross section
σ(pp→ t̃t̃), the 95% C.L. contour can be derived. The contour is shown in Fig. B.4. The
requirement ∆χ2 = 5.99 has to be fulfilled on the contour line in Fig. B.4 for σstop(mt̃),
which leads to the parameterization of σ95

t̃
(mt̃)
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∆χ2 = 5.99

=

(
σobs
t̃

(mt̃)− σ95
t̃

(mt̃)

σ

)2

→ σ95
t̃

(mt̃) = σobs
t̃

(mt̃)−
√

5.99 · σ, (7.17)

with an estimated error σ of 15% on the cross section. The 95% C.L. contour line is
parameterized by piecewise fitting a polynomial using GNUPLOT. Outside the published
mass range, the exclusion contour is approximated to be fixed with a fixed error. The
parametrization for σobs(mt̃) reads

σobs(mt̃) = 10d1+d2·mt̃ (7.18)

with

d1 = 5.95164 · 10−1, d2 = −3.99 · 10−3.

The mass mt̃ is given in GeV. χ2
ATLAS and χ2

stop are added to get the total χ2 contribution
from the ATLAS constraint for a parameter set in the NMSSM.

B.3. Standard Model-like Higgs Boson

The LEP collaboration put a constraint on a SM Higgs bosons of about 114.4 GeV. The
95% C.L. exclusion contour in [110] refers to the ratio ξ2 = (gHZZ/g

SM
HZZ)2, so a light

Higgs with reduced couplings below the upper limit is still allowed. The limit is only
significant for the NMSSM, which provides two light Higgs bosons with possibly non-SM
couplings. In the MSSM the light Higgs boson h has SM couplings in the decoupling
limit MA >> MZ , which is true for the considered parameter space. So the lower limit
of 114.4 GeV is already fulfilled by the Higgs mass constraint of about 125 GeV and the
corresponding χ2 contribution χ2

mh
. The requirement ∆χ2 = 5.99 is fulfilled on the 95%

C.L. contour line, which leads to the parameterization

∆χ2 = 5.99

=

(
ξ2
obs(mh)− ξ2

95(mh)

σξ295(mA)

)2

→ ξ2
95(mh) = ξ2

obs(mh)−
√

5.99 · σξ295(mh), (7.19)

where the mass of mh is given in GeV. The published 95% C.L. contour is already imple-
mented as a table within the software package NMSSMTools, so ξ2

obs(mh) is extracted from
this table. The parametrization of the 1σ error band arises from the fit of a polynomial
function on a logarithmic scale using GNUPLOT

σξ295(mh) =


mh < 15, 3.15 · 10−3

15 ≤ mh < 115, 10A1+A2·mh+A3·m2
h+A4·m3

h+A5·m4
h+A6·m5

h+A7·m6
h

115 ≤ mh, 4.31 · 10−1

(7.20)

where
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Figure B.5.: Comparison between the published 95% C.L. contour (a) from Ref. [110] and the parametriza-
tion of ξ2obs(mh) (b). The solid black line corresponds to the observed limit whereas the dark
green band represents the 1σ error band. The area above the solid black line is excluded at
95%C.L..

A1 = 2.38421, A5 = 1.35 · 10−5,
A2 = −7.35 · 10−1 , A6 = −8.85 · 10−8,
A3 = 3.99 · 10−2, A7 = 2.29 · 10−10 ,
A4 = −1.02 · 10−3.

The comparison between the published data taken from Ref. [110] and the parameteriza-
tion for the χ2 contribution is shown in Fig. B.5. The area below the solid black line in
Fig. B.5 is excluded at 95% C.L.. The green band corresponds to the 1σ error band.

B.4. Elastic Scattering Cross Section

In direct dark matter experiments no dark matter particles have been found so far, which
results in 90% C.L. upper exclusion limit on the WIMP-nucleon cross section as a function
of the WIMP mass. The corresponding χ2 contribution fulfills ∆χ2 = 4.91 on the contour
line, which leads to

∆χ2 = 4.91

=

(
σobsχN (mχ)− σ90

χN (mχ)

σσ90
χN

(mχ)

)2

→ σ90
χN (mχ) = σobsχN (mχ)−

√
4.91 · σσ90

χN
(mχ). (7.21)

The observed 90% C.L. contour and the corresponding 1σ error band can be parametrized
by fitting a polynomial on a double logarithmic scale using GNUPLOT. The procedure
can be performed for the SD and SI cross section limits. The parametrized limit on the
SI cross section σobsχN (mχ), which corresponds to χ2

LUX , reads

σobsχN (x) = 10a1+a2·x+a3·x2+a4·x3+a5·x4+a6·x5+a7·x6+a8∗·x7+a9·x8+a10·x9 , (7.22)

where x = log10(mχ) with a neutralino mass mχ given in GeV. The parameters read
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Figure B.6.: Comparison of the published (a) and parameterized (b) 90% C.L. contour on the WIMP-
nucleon cross section from the SI elastic scattering cross section. The published curve has
been taken from Ref. [111].

a1 = 206.84 , a5 = 1708.90, a8 = −45.56,
a2 = −1107.32, a6 = −790.71, a9 = 4.97,
a3 = 2154.06 , a7 = 239.06, a10 = 2.37 · 10−1,
a4 = −2414.01 .

The fit to the corresponding error band shows the same polynomial function like Eq. 7.22
but with slightly different parameters:

A1 = 142.25, A5 = 1245.74, A8 = −33.25,
A2 = −815.32 , A6 = −576.52, A9 = 3.63,
A3 = 1575.96 , A7 = 174.40, A10 = −1.73 · 10−1,
A4 = −1761.15.

Fig. B.6(a) shows the published 90% C.L. contour taken from Ref. [111] for the upper
limit on the SI WIMP-nucleon cross section. The parameterized 90% C.L. contour, which
enters the χ2 function, is shown in Fig. B.6(b). The blue band corresponds to the 1σ error
band.

The limit on the SD elastic scattering cross section is separated into a limit on the
WIMP-neutron and on the WIMP-proton cross section. The distribution is similar, so
the parameterization from Eq. 7.22 is taken for the WIMP-proton, WIMP-neutron and
the corresponding 1σ error band. The associated parameters for parameterization of the
WIMP-proton cross section read

b1 = 7.92, b5 = 224.58, b8 = −5.01,
b2 = −178.19 , b6 = −98.37, b9 = 5.10 · 10−1,
b3 = 317.75 , b7 = 28.03, b10 = −2.26 · 10−2,
b4 = −334.78.

The following parameters are associated with the error band:

B1 = 27.26 , B5 = 300.13, B8 = −5.39,
B2 = −253.23 , B6 = −124.12, B9 = 4.98 · 10−1,
B3 = 450.55 , B7 = 32.89, B10 = −1.97 · 10−2,
B4 = −465.505 ,

The comparison between the published 90% C.L. contour from Ref. [113] and the parametriza-
tion for the contribution χ2

COUPP is shown in Fig. B.7. The blue bands refer to the 1σ
error band.
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Figure B.7.: The published limit on the SD WIMP-proton cross section (a) taken from Ref. [113] compared
to the parametrized 90% C.L. limit (b) for the corresponding contribution χ2

COUPP .
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Figure B.8.: Comparison of the published (a) and parameterized (b) 90% C.L. contour for the χ2 contri-
bution resulting from the spin-dependent WIMP-neutron cross section. The published 90%
C.L. contour has been taken from Ref. [112].

For the limit on the SD WIMP-neutron cross section, the following parameter are used:

c1 = 164.42 , c5 = 1149.37, c8 = −25.97 ,
c2 = −849.15 , c6 = −506.08, c9 = 2.65,
c3 = 1580.61 , c7 = 144.79, c10 = −1.18 · 10−1,
c4 = −1698.10 .

The parameters for the corresponding error σσ90
χN

read

C1 = 68.98, C5 = 221.64, C8 = −1.54,
C2 = −360.97 , C6 = −71.13, C9 = 7.25 · 10−2,
C3 = 525.24, C7 = 13.99, C10 = 2.82 · 10−5,
C4 = −434.31 .

The published 90% C.L. contour from Ref. [112] and the parametrization, which is used
to evaluate the contribution χ2

XENON100 are shown in Fig. B.8. The 1σ error band is
represented by the green band.

123



124 7. Appendix

g

g

g̃

g̃

g̃

q

q̄

g

g̃

g̃

q

q̄

q̃

g̃

g̃

(a)

g

g

q̃

¯̃q

q

q̄

g

q̃

¯̃q

q

q

g̃

q̃

q̃

(b)

q

g

q

q̃

g̃, χ̃0

q

g

q̃

g̃, χ̃0

q̃

(c)

Figure B.9.: Additional diagrams contributing to strong production at the LHC.

C. Implementation of the χ2 function

The implementation of the χ2 function for the NMSSM and MSSM is similar, except for
the calculation of the mass spectrum and the observables, so the following discussion will
mainly refer to the NMSSM SUSY model. The NMSSMTools/micrOMEGAs software
package is used for the calculations of the mass spectra and observables, which correspond
to a parameter set of a NMSSM/MSSM model. NMSSMTools is written in Fortran while
micrOMEGAs is written in Fortran and C. The mass spectrum in the NMSSM is calculated
inside NMSSMTools using the Routine NMSPEC. MicrOMEGAs is linked to SuSpect to
calculate the supersymmetric spectrum. Both program packages use masses and mixing
matrices as specified in the SUSY Les Houches Accord [185]. NMSSMTools is linked to
micrOMEGAs to calculate the dark matter observables. The evaluated cross sections are
extracted from CalcHEP [186], a software package which is designed for effective evaluation
and simulation of high energy physics collider processes at parton level.

After the calculation of the mass spectra, the parameter configurations have to be checked
first, which is done in the subroutine CHECK_ERR_SCAN, since a parameter set can give a
non-physical solution or correspond to a excluded region in parameter space e.g. the stau
being the lightest supersymmetric particle. In case, the point in parameter space refers
to such a forbidden region, the corresponding χ2 function is set to the maximal DOUBLE
value. In this way the non-physical regions are absorbed into a large χ2 value, forcing the
minimization tool to move to another region in parameter space. From numerical point of
view a smooth steep function is more suitable for the minimization since a step function
sometimes causes convergence problems. However there exist no intermediate transition
region, i.e. either a region is physical or non-physical. Therefore, the step function is
reasonable to describe the physical solutions. After the parameter set is checked to be
relevant, the mass spectra and observables for the χ2 function are calculated. These val-
ues are passed to the subroutine CHI. It contains all separate χ2 contribution, which are
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calculated and finally added to the total χ2 value. Whether or not a specific χ2 contri-
bution is included into the fit is specified in the corresponding input file. It includes an
additional BLOCK LISTCON summarizing all constraints. The entry 1/0 includes/excluded
the constraint from the total χ2 function for the minimization. Additionally the subrou-
tine OUTPUT_SCAN has been added to print all resulting masses, couplings and branching
ratios for the chosen mass point into a corresponding output file. The total χ2 value is
passed to the minimization software package Minuit. The minimization input file includes
all parameters and the fitting strategy. Furthermore it contains information about the
parameters, e.g. if they are fixed or varied within a certain range. Using theses infor-
mations Minuit starts the minimization until the chosen convergence criteria is fulfilled.
Minuit stops the minimization after it has converged. The χ2 value and the corresponding
parameter configuration is written into an output file. This is repeated for each mass
point in the parameter space for the chosen range. A fast calculation is maintained if the
calculation for each mass point is separately submitted to several nodes on a computing
cluster to parallelized the calculation.

D. Strong and Electroweak Diagrams

Additional diagrams contributing to the strong production at the LHC are shown in Fig.
B.9. The first row represents the g̃g̃, the second the g̃q̃ and the last row the q̃q̃ production.

E. Scalar Form-Factors

A summary of the applied default scalar form-factors and the lowest possible form-factors
with respect to the strange quark content, which result from a combination of Refs. [159–
161], are given in Table E.3.

Table E.3.: Summary of the default and the lowest scalar form-factors.

Quark Default Form-Factor Lowest Form-Factors

proton

u 1.5323 · 10−2 1.4 · 10−2

d 1.9093 · 10−2 3.6 · 10−2

s 4.4762 · 10−2 2.0 · 10−2

neutron

u 1.0677 · 10−2 2.0 · 10−2

d 2.7325 · 10−2 2.6 · 10−2

s 4.4700 · 10−2 2.0 · 10−2

F. Allowed 68% C.L. Regions

The allowed region at 95% C.L. within the m0-m1/2 plane for the CMSSM and NMSSM
are shown in chapter 6. The corresponding 68% C.L. regions are summarized in Fig.
F.10(a) and Fig. F.10(b). For each confidence region a separate region is plotted in the
m0-m1/2 plane, indicated by a green colored region. The green region in Fig. F.10(a)(Fig.
F.11(a)) and Fig. F.10(b)(Fig. F.11(b)) is allowed at 68% and 95% C.L. for the CMSSM
(NMSSM), respectively. The white region is excluded.
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Figure F.10.: The allowed 68%(a) and 95% C.L. (b) regions for the CMSSM within the m0-m1/2 plane
indicated by the colored green region. The white region is accordingly excluded, while the
gray region is not allowed due to the stau being the LSP. The black cross marks the best-fit
point.
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Figure F.11.: The allowed 68%(a) and 95% C.L. (b) regions for the NMSSM within the m0-m1/2 plane
indicated by the colored green region. The white region is excluded. The distribution is very
flat, which can be derived from the similar allowed colored regions for the different confidence
regions.

G. Optimized tanβ values in the m0-m1/2 plane

The allowed region at 95% C.L. within the m0-m1/2 plane for the CMSSM and NMSSM
are shown in chapter 6. The corresponding optimized values of tanβ for the CMSSM and
NMSSM are summarized in Fig. G.12a and G.12, respectively. Large values of tanβ are
preferred by the global fit in the CMSSM, since the free parameters are mainly determined
by the relic density constraint, as discussed in section 6.1. In the NMSSM, the Higgs mass
constraint favors low values of tanβ to obtain a significant enhancement of the tree level
mass due to the mixing with the Higgs singlet.
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Figure G.12.: The optimized tanβ values for the CMSSM (b) and NMSSM (b) within the m0-m1/2 plane.
Within the CMSSM large values of tanβ are favored due to the relic density constraint, while
in the NMSSM low values of tanβ are required to obtain the Higgs boson mass of 125 GeV.
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m
1
/
2

in
Te

V

m0 in TeV

95 % C.L.

0.5

1

1.5

2

2.5

3

1 2 3 4 5

τ̃
LSP

σth=1.5 GeV

σth=3 GeV

(a)

m
1
/
2

in
Te

V

m0 in TeV

68 % C.L.

0.5

1

1.5

2

2.5

3

1 2 3 4 5

τ̃
LSP

σth=1.5 GeV

σth=3 GeV

(b)

Figure H.13.: Impact of the theoretical error of the Higgs mass constraint on the allowed 95% (a) and 68%
C.L.(b) regions within the CMSSM. The solid line corresponds to the applied theory error of
σth = 1.5 GeV, while the dashed line represents the allowed region using a theory error of 3
GeV. A doubled theory error on the Higgs mass slightly changes the 95% C.L. region. The
68% C.L. regions are enlarged, so the different regions merge together. The best-fit points
indicated by the black cross (σth = 1.5 GeV) and the empty circle (σth = 3 GeV) are hardly
affected. The stau is the LSP in the gray region.

The excluded region in the CMSSM is sensitive to the mh constraint and therefore to the
chosen error of the Higgs mass, see e.g. Ref. [106]. A theoretical error of 1.5 GeV for the
Higgs mass as suggested in [95] has been applied but the theory error can be as well of the
order of 3 GeV to account for the theoretical uncertainties of the MSSM Higgs boson mass
calculations [187]. The impact of the theory error on the allowed region in the CMSSM
is demonstrated in Fig. H.13. Here the allowed 95% (Fig. H.13(a)) and 68% C.L. (Fig.
H.13(b)) contours are shown for two theoretical errors indicated by the solid and dashed
lines. The larger theory error σth = 3 GeV has been applied on the results including the
optimized tanβ and A0 values for σth = 1.5 GeV. The two errors can be regarded as the
minimal and maximal theoretical error, so taking a theoretical error within this interval,
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leads to an exclusion contour in between the solid and dashed lines in Fig. H.13. The 95%
C.L. exclusion contour for the doubled theoretical error is slightly shifted as expected. The
68% C.L. excluded region for σth = 3 GeV is enlarged, so the three allowed regions merge
together. The best fit point, which is associated with the larger theory error, is indicated
by the empty circle, overlaps with the black cross. Unlike the CMSSM, within the NMSSM
the Higgs mass constraint is easily fulfilled, so changing the theoretical error on the Higgs
mass will not affect the allowed region because the excluded region is dominated by the
LHC direct searches.

I. Mass spectrum and χ2 contributions for the CMSSM bench-
mark points

The theortical prediction of the constraints from Table 4.3 and the χ2 contribution are
given in Table I.4 and I.5 for the three benchmark points are summarized for the CMSSM
in Table 6.1. The mass spectrum at low scale is summarized in Table I.6.

Table I.4.: Summary of the predicted values of the constraints from Table 4.3 for the three benchmark
points in the CMSSM.

CMSSM Best-Fit CMSSM II CMSSM III

mh 124.45 125.02 123.97
BR(B0

s → µ+µ−) · 10−9 3.18 3.46 3.20
BR(B → Xsγ) · 10−9 3.14 3.28 3.31
RBR(B→τντ ) · 10−1 9.95 9.85 9.73

∆aµ · 10−11 29.30 9.59 5.99
Ωh2 · 10−1 1.21 1.21 1.20

Table I.5.: χ2 contributions to the total χ2 value for each constraint given for the parameter points in Table
6.1. The contributions χ2

mA , χ2
LUX , χ2

XENON100 and χ2
COUPP are negligible, so they are not

specified.

CMSSM Best-Fit CMSSM II CMSSM III

χ2
mh

0.16 0.01 0.42
χ2
BR(B0

s→µ+µ−) 0.09 0.36 0.10

χ2
BR(B→Xsγ) 0.42 0.11 0.07

χ2
RBR(B→τντ )

0.47 0.50 0.54

χ2
∆aµ

5.23 6.06 6.22

χ2
Ωh2 0.00 0.01 0.00
χ2
ATLAS 0.05 0.00 0.00

χ2
tot 6.42 7.05 7.35
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Table I.6.: Mass spectrum at low scale for the parameter points in Table 6.1 given in GeV.

CMSSM Best-Fit CMSSM II CMSSM III

h 124.45 125.02 123.97
H 1859.73 2524.82 2203.12
A 1860.13 2524.84 2203.09
H± 1862.02 2526.23 2204.73

χ0
1 440.2 1256.0 1095.3
χ0

2 833.5 2313.1 1607.7
χ0

3 1826.4 3005.9 1614.0
χ0

4 1829.2 3010.2 2045.9

χ±1 833.5 2313.1 1606.5
χ±2 1829.4 3010.2 2045.9

ẽL 865.7 2357.2 5213.3
ẽR 666.0 1848.8 5068.1
µ̃L 865.7 2357.2 5213.3
µ̃R 666.0 1848.8 5068.1
τ̃1 440.2 1256.0 3710.0
τ̃2 800.8 2165.1 4612.7
ν̃e 862.2 2356.0 5212.7
ν̃µ 862.2 2356.0 5212.7
ν̃τ 790.5 2159.0 4611.7

ũL 2093.2 5312.7 6621.2
ũR 2017.1 5098.0 6506.4

d̃L 2094.7 5313.3 6621.6

d̃R 2008.3 5070.1 6492.2
c̃L 2093.2 5312.7 6621.2
c̃R 2017.1 5098.0 6506.4
s̃L 2094.7 5313.3 6621.6
s̃R 2008.3 5070.1 6492.2

b̃1 1711.7 4583.8 5361.4

b̃2 1918.2 4661.3 5513.7
t̃1 1145.3 4053.3 4793.7
t̃2 1738.6 4631.3 5342.2

g̃ 2234.3 5710.0 5252.7
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J. Running of the masses in the CMSSM

The running of the masses for the additional CMSSM points II and III are plotted in Fig.
J.14. Since theses points refer to the two 68% C.L. regions in the m0-m1/2 plane for high
SUSY masses, the corresponding low energy soft masses are heavy as well.
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Figure J.14.: The running of the soft masses from the high to the low scale for the CMSSM point II and
III is shown. The soft masses are divided into the gaugino (a)((b)), slepton/squark (c)((d))
and Higgs masses (e)((f)) for CMSSM point II(III).
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K. Mass spectrum for the NMSSM Benchmark Points

In section 6.2.4 three benchmark points for the NMSSM are summarized. The correspond-
ing mass spectrum at low scale is given in Table L.8.

Table K.7.: Mass spectrum at low scale for the parameter points in Table 6.2 given in GeV.

BMP I BMP II BMP III CMSSM IV

H1 87.59 96.07 125.21 -
H2 124.03 124.35 167.40 125.82
H3 337.57 1119.61 1098.69 2025.87
A1 207.21 306.25 191.19 -
A2 326.72 1119.95 1098.84 2025.97
H± 316.61 1114.27 1093.71 2027.72

χ0
1 78.3 172.7 172.7 945.5
χ0

2 159.9 250.2 251.9 1760.4
χ0

3 199.1 372.2 372.3 3018.1
χ0

4 268.1 407.6 406.6 3020.3
χ0

5 516.2 540.3 544.7 -

χ±1 110.6 353.3 353.7 1760.4
χ±2 516.0 538.5 543.1 3020.4

ẽL 2471.5 2464.8 2472.8 2746.5
ẽR 2300.8 2313.8 2298.0 2515.6
µ̃L 2471.5 2464.8 2472.8 2746.5
µ̃R 2300.8 2313.8 2298.0 2515.6
τ̃1 2299.4 2312.4 2295.9 945.5
τ̃2 2470.9 2464.1 2471.9 2216.0
ν̃e 2470.6 2463.8 2471.9 2745.5
ν̃µ 2470.6 2463.8 2471.9 2745.5
ν̃τ 2469.9 2463.2 2470.9 2210.0

ũL 2636.0 2635.9 2638.5 4576.9
ũR 2701.3 2692.3 2705.9 4439.5

d̃L 2636.8 2636.7 2639.3 4577.6

d̃R 2606.6 2608.9 2608.8 4422.4
c̃L 2636.0 2635.9 2638.5 4576.9
c̃R 2701.3 2692.3 2705.9 4439.5
s̃L 2636.8 2636.7 2639.3 4577.6
s̃R 2606.6 2608.9 2608.8 4422.4

b̃1 1964.3 1984.7 1860.3 3542.3

b̃2 2590.7 2594.0 2583.9 3663.9
t̃1 1050.9 1105.9 5371.5 2956.3
t̃2 1971.7 1992.6 18703.4 3550.1

g̃ 1492.5 1491.1 1491.2 4447.5

L. Branching Ratios for the NMSSM Benchmark Points II
and III

In section 6.2.4 the branching ratios of CMSSM IV and BMP I are summarized. The
remaining branching ratios for BMP II and III are given in Table K.7.
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Table L.8.: Branching ratios for BMP II and III in the NMSSM. The cross section in the last line represents
the Higgs production cross section at 8 TeV for the dominant gluon-gluon fusion process.

Branching Ratios [%]

NMSSM (BMP II) NMSSM (BMP III)

H1 H2 H3 A1 A2 H1 H2 H3 A1 A2

Mass [GeV] 96.07 124.35 1119.61 306.25 1119.95 125.21 167.40 1098.69 191.19 1098.84

bb̄ 88.21 63.50 0.40 50.67 0.39 61.92 30.25 0.39 88.09 0.39
tt̄ 0.00 0.00 26.35 0.00 27.70 0.00 0.00 28.74 0.00 30.62
ττ 9.23 6.83 0.06 6.50 0.06 6.67 3.49 0.06 10.40 0.06
W+W− 0.02 18.61 4.58e-3 - - 20.12 63.73 0.14e-3 - -
χ0
1χ

0
1 - - 4.19 - 4.65 - - 3.79 - 4.25

χ0
1χ

0
3 - - 7.51 - 3.67 - - 7.67 - 3.48

χ0
1χ

0
4 - - 5.33 - 11.01 - - 4.99 - 10.93

χ+
1 χ
−
1 - - 1.92 - 9.53 - - 1.77 - 9.34

H1H2 - - 10.50 - - - - 9.76 - -
A1H2 - - - - 8.99 - - - - 0.37
ZA1 - - 8.18 - - - - 8.28 - -
ZH1 - - - 39.33 9.60 - - - - 0.01
A1H1 - - - - 0.43 - - - - 9.16
ZH2 - - - 0.11 0.04 - - - - 9.02

σprod [pb] 0.27 19.5 2.4e-3 8.4e-3 3.2e-3 19.35 4.5e-2 2.8e-3 1.2e-2 3.5e-3

M. Neutralino Mixing Matrix for BMP I and III

The neutralino mixing matrix elements for BMP I and III are given in Fig. M.15(a) and
M.15(b), respectively. The large Higgsino component for BMP I is excluded by limits of
the SD WIMP-nucleon cross section.

χ̃1=78.3 χ̃2=159.9 χ̃3= 199.1 χ̃4=268.1 χ̃5=515.9
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BMP III

S̃

H̃0
d

B̃
H̃0
u

H̃0
d

W̃ 0

H̃0
u

H̃0
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W̃ 0
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Figure M.15.: The neutralino mass matrix elements squared for the BMP I (a) and BMP III (b) in the
NMSSM. The elements are indicated by the different colors going from white, gray, light blue,
dark blue and red for the B̃, W̃ 0, H̃0

u, H̃
0
d and S̃, respectively. The mass of the neutralino is

given by the numbers below the bars in GeV.

N. Comparison of Allowed 68% C.L. Regions

The comparison of the allowed contours at 95% C.L. within the m0-m1/2 plane for the
CMSSM and NMSSM with other analyses are summarized in chapter 6. The corresponding
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Figure N.16.: Comparison of the 68% C.L. contour of Ref. [168] indicated by the solid red line and the
allowed 68% C.L. contour resulting from this analysis represented by the solid green line from
Fig. F.10(a). The χ2 distribution from Ref. [168] is rather flat, so the 68% C.L. contour is
close to the 95% C.L.. Since the best-fit point has a lower minimum, the 68% C.L. regions
are smaller compared to the contour of Ref. [168].

(a) (b)

Figure N.17.: Comparison of the 68% C.L. contour of Ref. [171] (a) and Ref. [172](b) with the allowed
region of this analysis indicated by the green solid line from Fig. F.10(a). The 68% C.L.
regions in (a) match, but the random sampling technique excludes a large part of the pa-
rameter space. The 68% C.L. contour in (b) do not match at all, due to the logarithmic
priors.

68% C.L. regions are given in Fig. N.16 for Ref. [168] indicated by the solid red line. The
resulting 68% C.L. contour from Fig. F.10(a) is represented by the solid green line. The
χ2 distribution from Ref. [168] is flat, which is derived from the similar 68% and 95% C.L.
contours. The best-fit point marked by a cross has a lower minimum compared to Ref.
[168], so the 68% C.L. regions are smaller. The comparison of the 68% C.L. region for
Ref. [171]([172]) is showed in Fig. N.17(a)(Fig. N.17(b)), indicated by the solid red(blue)
line. The resulting 68% C.L. allowed region from this analysis. is again represented by the
solid green line, which resembles the allowed region in Fig. F.10. The 68% C.L. contours
in Fig. N.17(a) match, but the random sampling technique used in Ref. [171] excludes a
large part of the parameter space. The 68% C.L. contour in Fig. N.17(b) do not match
at all because in Ref. [172] logarithmic priors are applied.
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O. Extrapolation of XENON100

In section 6.4 the sensitivities for future DDMS searches has been estimated by using the
limit of XENON1T. This limit has been extracted from the published 90% C.L. contour
given by the XENON100 experiment in Ref. [181]. The parameterization of the limit
has been obtained by a polynomial on a double logarithmic scale using GNUPLOT. The
exclusion curve for the SI WIMP-nucleon cross section given in pb reads

σXENON100
χN (x) = 10d1+d2·x−1+d3·x−2+d4·x−4+d5·x−6

, (7.23)

where x = log10(mχ) with a neutralino mass mχ given in GeV. The corresponding param-
eters read

d1 = −0.86 , d3 = 35.42, d5 = 3.43209 ,
d2 = −31.70, d4 = −13.05 .

The XENON1T is expected to be two orders of magnitude better than XENON100, so
σXENON100
χN (x) has been scaled accordingly to obtain the XENON1T limit, which reads

σXENON1T
χN (x) = σXENON100

χN (x) · 10−2. (7.24)

P. Additional SUSY Searches at the LHC

Further searches for SUSY in multilepton events from electroweak production are ongoing
at the LHC. Diagrams for the electroweak production of charginos and neutralinos at the
LHC are shown in Fig. P.18. The comparatively light chargino and neutralino masses
lead to higher cross sections compared to the strong production, as shown in Fig. P.19.
Here the electroweak production cross section, indicated by the color coding, is plotted
within the m0-m1/2 plane. This figure can be compared with Fig. 5.21(d), which includes
the total hadronic cross section. However, the full cascade of such processes has to be
taken into account. The strong production cross sections are characterized by a large jet
activity from the long decay chains and large missing energy from the escaping neutralino.
This characteristic decay products can be used to efficiently suppress the background.
Compared to the electroweak production the number of jets and the missing transverse
energy is rather low [188]. Leptonic decays are needed to reduce the background, so these
signatures suffer from the luminosity. With increase luminosity in the next run of the LHC
at 14 TeV, the sensitivity will compete with the strong production of squarks and gluinos.
So these limits can also be included to be sensitive to large values of m0, which cannot be
covered by the hadronic searches.

In addition to the searches for SUSY particles at the LHC, there exist also searches for
DM particles at the LHC in monojets [189] and in searches for invisible decays of the
Higgs boson [190], which can currently cover WIMP-nucleon cross sections down to 10−8

pb. However these searches have not been included into the current and extrapolated
sensitivities, since these limits are still above the limit reached by the direct dark matter
searches. In addition those searches are not fully compatible with the limits from the
elastic scattering cross section. The searches for monojets give limits for an effective
cross section, which includes only specific interactions corresponding to specific effective
operators, like the axial-vector interaction between neutralino and quarks. The calculation
of the SI elastic scattering cross section inside micrOMEGAs includes the whole nuclei.
Here not only one but several effective operators at the microscopic level are summarized
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Figure P.18.: Additional diagrams contributing to the electroweak production at the LHC.

1000 2000 3000 4000
m0 in GeV

500

1000

1500

2000

m
1
/
2

in
G

eV

1e-10

1e-08

1e-06

0.0001

0.01

1

100

σ
(p
,p
→

χ̃
,χ̃

)
in

pb

LSP
τ̃

(a)

Figure P.19.: Cross section distribution indicated by the color coding for the electroweak production at the
LHC translated into the m0-m1/2 plane for fixed tanβ = 30 and A0 = −2 ·m0.

and extended to the whole nuclei. The limits from the monojet searches can only be
applied if the corresponding observable is calculated.
The limit on the WIMP-nucleon cross section from the limit on the invisible branching
ratio covers WIMP masses up to 0.5 mh. For light singlino-like neutralinos in the NMSSM
this mass region is relevant but it is not significant for the CMSSM because the limit on
the neutralino is far above 0.5 mh due to the SUSY searches at the LHC.
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Prof. Dmitri Kazakov möchte ich für die konstruktiven Diskussionen und der Unter-
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