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Chapter 1

Introduction

This thesis deals with problems in the fields of algebraic geometry and mathematical
physics related to Gromov–Witten theory, spectral curve topological recursion and Hur-
witz numbers.

The next section, Section 1.1, gives an introduction for non-experts. Then in Sections
1.2–1.4 we introduce and define the objects studied in the thesis. This allows us to for-
mulate the results of the thesis in Section 1.5. Chapters 2–6 constitute the main body
of the thesis; they are based on papers [104, 103, 101, 100, 102] by the author, in collab-
oration with S.Shadrin, L.Spitz; N.Orantin, S.Shadrin, L.Spitz; M.Mulase, P.Norbury,
A.Popolitov, S.Shadrin; M.Kazarian, N.Orantin, S.Shadrin, L.Spitz; and N.Orantin,
A.Popolitov, S.Shadrin respectively1. Finally, Chapter 7 provides a popular summary
in Dutch.

1.1 Introduction for non-experts

One of the central concepts in algebraic geometry is a concept of an algebraic curve.
Usually (and it is indeed the case for this thesis) people work with complex algebraic
curves. In this case these curves are actually two-dimensional surfaces. We call them
curves since such a curve can be represented as a solution to an algebraic equation in
two-dimensional (complex) space. When we say ”algebraic equations” we mean equations
polynomial in the independent variables.

Gromov-Witten theory deals with maps (i.e., essentially, embeddings) of algebraic
curves into a given complex manifold (i.e. some multidimensional space). This theory
originated from physics, more precisely from string theory. Gromov-Witten invariants
are numbers which, essentially, count the number of ways one can embed curves of a
given type into a given complex manifold. Gromov-Witten invariants are very interesting
since they are both interesting entities from the string theory point of view, and because
they turned out to be very useful in algebraic geometry. Moreover, it was found that
they are also connected to a completely different area of mathematical physics, namely,
to the theory of integrable systems.

Spectral curve topological recursion is a quite general technique which has applications

1Formal remark on co-authorship, required by the Promotieregelement of the University of Amster-
dam: all authors of all these papers have equally contributed to all obtained results.
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in many different branches of mathematics and physics. This technique, given certain
initial data, namely, a spectral curve (which is an algebraic curve equipped with some
additional structure), produces so-called n-point functions on this spectral curve. It
turns out that for a vast array of problems in such areas of science as algebraic geometry,
mathematical physics, topology and combinatorics, these n-point functions appear to
be generating functions for numbers arising in these problems, if one takes appropriate
initial data. When we say that these n-point functions are the generating functions for
these numbers we mean that they encode these numbers in such a way that the numbers
appear as coefficients in series expansions of these functions. Spectral curve topological
recursion is very interesting since it is one and the same procedure that for appropriate
choices of initial data produces answers to many seemingly unrelated problems.

Hurwitz numbers count covers of sphere by two-dimensional compact surfaces (com-
pact here, essentially, means that they are not infinite and have no boundary). Cover is a
sufficiently nice map from the surface to the sphere, i.e. to each point of the surface one
puts into correspondence a point of the sphere. To almost every point of the sphere (ex-
cept for a finite number of the so-called ramification points) correspond the same number
of points of the surface, which is called the degree of the cover. Then, if one specifies the
behavior in these ramification points, it turns out that there is only a finite number of
possible covers, up to certain equivalence. This number is called the Hurwitz number.
Hurwitz numbers are interesting since they have interpretations in terms of combinatorics
and topology, and also play a role in algebraic geometry and mathematical physics.

The thesis mostly studies connections between the above concepts. One of the main
results of the thesis is a way to apply (local version of) the spectral curve topological
recursion to any Gromov-Witten theory. Namely, we propose a way (and prove that
it works) to choose initial data in the (local) spectral curve topological recursion such
that the resulting n-point functions will generate Gromov-Witten invariants for any given
target complex manifold.

Another result is related to the so-called quantum spectral curve equation. It turns
out that in some cases it is possible to show that certain generating functions (called
wave functions) satisfy quantized versions of the spectral curve equation. Quantization
here means that the variables in the equation are replaced with differential operators in
the same way as it happens in quantum physics. In the thesis it is shown that the wave
function for the Gromov–Witten invariants of sphere (i.e. for the target manifold being
the sphere) satisfies the corresponding quantum spectral curve equation.

Another main result is the new, combinatorial, proof of the so-called ELSV formula.
This formula relates simple Hurwitz numbers (particular type of Hurwitz numbers with
ramification profiles specified in a certain way) to the so-called Hodge integrals, which
are entities similar to Gromov–Witten invariants. Its original proof (and all the other
subsequent ones) involved complicated geometric considerations. Here we prove it in a
simple combinatorial way by, first, proving that these Hurwitz numbers are polynomial
expressions in numbers which describe the ramification profile, then using this to prove the
spectral curve topological recursion for these simple Hurwitz numbers, and finally using
the above result on spectral curve topological recursion for Gromov–Witten theories to
build the connection to Hodge integrals.

Finally, we prove (in a combinatorial way) the spectral curve topological recursion
for the problem of counting bi-colored maps. Bi-colored maps are, essentially, ways to
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subdivide a given two-dimensional surface into polygons and paint them in black and
white such that white polygons only border black ones and vice versa. It turns out that
these numbers can be generated by the spectral curve topological recursion with the
appropriate initial data.

1.2 Frobenius manifolds and Givental theory

In this section we introduce Frobenius manifolds, moduli spaces of algebraic curves,
Gromov–Witten theory, cohomological field theory and Givental theory.

1.2.1 Frobenius manifolds

A Frobenius manifold is a differential-geometric structure that was introduced by Dub-
rovin in the early 1990’s as a mathematical framework for the study of two-dimensional
topological field theory in genus zero [25, 26]. It has appeared to be a quite universal
structure that has many naturally arising examples. In particular, Frobenius manifolds
can serve as a classification tool for (dispersionless) bi-Hamiltonian hierarchies of hydro-
dynamic type [28, 27]. Nowadays there is a number of standard textbooks on Frobenius
manifolds, see [26, 78, 62].

Here we introduce Frobenius manifolds following [26].

Definition 1.2.1. An algebra A over C is called (commutative) Frobenius algebra if:

1. It is a commutative associative C-algebra with a unity e.

2. It is supplied with a C-bilinear symmetric nondegenerate inner product

A× A→ C, a, b 7→ (a, b)

being invariant in the following sense:

(ab, c) = (a, bc)

Definition 1.2.2. M is Frobenius manifold if a structure of Frobenius algebra is specified
on any tangent plane TtM at any point t ∈ M smoothly depending on the point such
that

1. The invariant inner product ( , ) is a flat metric on M .

2. The unity vector field e is covariantly constant w.r.t. the Levi-Civitá connection ∇
for the metric ( , )

∇e = 0

3. Let
c(u, v, w) := (u · v, w)

(a symmetric 3-tensor). We require the 4-tensor

(∇zc)(u, v, w)

to be symmetric in the four vector fields u, v, w, z.
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4. A vector field E must be determined on M such that

∇(∇E) = 0

and that the correspondent one-parameter group of diffeomorphisms acts by confor-
mal transformations of the metric ( , ) and by rescalings on the Frobenius algebras
TtM .

Locally Frobenius manifold can be defined in terms of a Frobenius prepotential F (t)
as follows.

Definition 1.2.3. Function F = F (t), t = (t1, . . . , tn) is a Frobenius prepotential if its
third derivatives

cαβγ(t) :=
∂3F (t)

∂tα∂tβ∂tγ

obey the following equations

1. Normalization:
ηαβ := c1αβ(t)

is a constant nondegenerate matrix. Let

(ηαβ) := (ηαβ)−1.

We will use the matrices (ηαβ) and (ηαβ) for raising and lowering indices.

2. Associativity: the functions

cγαβ(t) := ηγεcεαβ(t)

(summation over repeated indices is assumed here) for any t must define in the
n-dimensional space with a basis e1, ..., en a structure of an associative algebra At

eα · eβ = cγαβ(t)eγ.

Note that the vector e1 will be the unity for all the algebras At:

cβ1α(t) = δβα.

3. F (t) must be quasihomogeneous function of its variables:

F (cd1t1, . . . , cdntn) = cdFF (t1, . . . , tn) (1.1)

for any nonzero c and for some numbers d1, ..., dn, dF .

Coordinates t such as above on the Frobenius manifold are called the flat coordinates.
It will be convenient to rewrite the quasihomogeneity condition in the infinitesimal

form introducing the Euler vector field

E = Eα(t)∂α

as
LEF (t) := Eα(t)∂αF (t) = dF · F (t)

E(t) is a linear vector field

E =
∑
α

dαt
α∂α

generating the scaling transformations (1.1).
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Definition 1.2.4. Point of a Frobenius manifold is called semisimple if at this point the
Frobenius algebra structure is nondegenerate, i.e. there is no tangent vector that squares
to zero.

Near a semisimple point of a Frobenius manifold one can introduce the so-called
canonical coordinates, which are defined as coordinates ui that have the property

∂

∂ui
· ∂

∂uj
= δij

∂

∂uj
, (1.2)

where δij is the Kronecker delta.
Define ∆i := 1/(∂i, ∂i) to be the inverse of the square of the length of the ith canonical

basis element, and call {∂/∂vi := ∆
1/2
i ∂/∂ui} the normalized canonical basis in the

tangent space.
Let U be the matrix of canonical coordinates U = diag(u1, . . . , uN) and denote by Ψ

the transition matrix from the flat to the normalized canonical bases. That is, denoting
dt = (dt1, . . . , dtN)T and du = (du1, . . . , duN)T, one has

∆−1/2du = Ψdt, (1.3)

where ∆ = diag(∆1, . . . ,∆N).

1.2.2 Gromov-Witten theory

Let us introduce Gromov–Witten theory, following, e.g. [87].
First, let us introduce moduli spaces of algebraic curves. The moduli space of curves

Mg,n, g ≥ 0, n ≥ 0, 2g− 2 +n > 0, parametrizes smooth complex curves of genus g with
n ordered marked points. It is a smooth complex orbifold of dimension 3g − 3 + n.

The spaceMg,n is a compactification ofMg,n. It parametrizes stable curves of genus
g with n ordered marked points. A stable curve is a possibly reducible curve with possible
nodes, such that the order of its automorphism group is finite. Genus of a stable curve
is the arithmetic genus, namely, the genus of the smooth curve that we get if the replace
each node (given locally by the equation xy = 0) with a cylinder (given locally by the
equation xy = ε). The space Mg,n is a smooth compact complex orbifold.

There is a number of natural mappings between the moduli spaces of curves.
First, there are projections π : Mg,n+1 → Mg,n that forget the last marked point.

Note that there is a subtlety related to the fact that when we forget a marked point a
stable curve can become unstable.

Second, there is a 2-to-1 mapping σ : Mg−1,n+2 →Mg,n whose image is the boundary
divisor of irreducible curves with one node.

Third, there are mappings ρ : Mg1,n1+1×Mg2,n2+1 →Mg,n, g1 + g2 = g, n1 +n2 = n,
whose images are the other irreducible boundary divisors of the compactification ofMg,n.

Let Li the line bundle over Mg,n, whose fiber over a point x ∈ Mg,n represented by
a curve Cg with marked points x1, . . . , xn is equal to T ∗xiCg. Denote by ψi ∈ H2(Mg,n)
the first Chern class of Li. ψi are referred to as psi-classes.

Given a complex manifold X, one can consider [Xg,k,deg], the moduli space of degree
deg stable maps to X of genus-g curves with k marked points. There is a natural projec-
tion from [Xg,k,deg] to Mg,k which consists of forgetting the map to X. Note that there
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is a subtlety related to the fact that an unstable curve can be mapped to X in a stable
way. One can consider pullback of psi-classes to [Xg,k,deg] with respect to this projection.
We will denote them as ψi too.

Gromov–Witten theory studies the so-called Gromov–Witten invariants (also called
Gromov–Witten correlators), defined as follows (left hand side is just a notation):

〈τd1(ei1)τd2(ei2) · · · τdk(eik)〉g :=∑
deg

∫
[Xg,k,deg]vir

ev∗1(ei1)ψ
d1
1 ev∗2(ei2)ψ

d2
2 · · · ev∗k(eik)ψ

dk
k , (1.4)

where , evi is the evaluation map at the ith.
Gromov–Witten potential Fg of genus g is the following generating function for the

correlators (vd,i are formal variables):

Fg =
∑ 〈τd1(ei1)τd2(ei2) · · · τdk(eik)〉g

|Aut((im, dm)km=1)|
vd1,i1 · · · vdk,ik , (1.5)

where |Aut((im, dm)km=1)| denotes the number of automorphisms of the collection of multi-
indices (im, dm) and where the sum is such that it includes each monomial vd1,i1 · · · vdk,ik
exactly once.

It turns out [78] that the genus zero potential without descendants, i.e.

F = F0

∣∣
vd,i=0, d>0

(1.6)

is a Frobenius prepotential.
Partition function of the Gromov–Witten theory is defined as follows:

Z = exp

(∑
g≥0

~g−1Fg

)
, (1.7)

where ~ is a formal parameter.
Celebrated result of Kontsevich–Witten states that the partition function for the

Gromov-Witten theory of a point (i.e. for X = {pt}) is the tau-function of the KdV
integrable hierarchy. We will denote this partition function as ZKdV.

1.2.3 Cohomological field theory

Here we introduce cohomological field theory, again following [87].
Cohomological field theory is a generalization of Gromov-Witten theory where one

drops the target complex manifold and takes just some vector space V in place of its
cohomology. Roughly speaking, a CohFT is a system of cohomology classes on the
moduli spaces of curves with the values in the tensor powers of V , compatible with all
natural mappings between the moduli spaces.

The formal definition is the following. We fix a vector space V = 〈e1, . . . , es〉 (e1 will
play a special role) with a non-degenerate scalar product η. A cohomological field theory
is a system of cohomology classes αg,n ∈ H∗(Mg,n, V

⊗n) satisfying the properties:
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1. αg,n is equivariant with respect to the action of Sn on the labels of marked points
and components of V ⊗n.

2. σ∗αg,n = (αg−1,n+2, η
−1); ρ∗αg,n = (αg1,n1+1 · αg2,n2+1, η

−1) (in both cases we con-
tract with the scalar product the two components of V corresponding to the two
points in the preimage of the node under normalization).

3. (α0,3, e1 ⊗ ei ⊗ ej) = ηij, π
∗αg,n = (αg,n+1, e1) (again, we contract the component of

V corresponding to the last marked point with e1).

Then correlators in cohomological field theory are defined as follows:

〈τd1(ei1) · · · τdn(ein)〉g :=

∫
Mg,n

n∏
j=1

ψ
dj
j ·
(
αg,n,⊗nj=1eij

)
(1.8)

Genus-g potentials and partition function are defined for cohomological field theories
in exactly the same way as for Gromov–Witten theories above.

The statement about the genus zero potential without the descendants being a Frobe-
nius prepotential is also true for any cohomological field theory.

1.2.4 Givental theory

Givental theory [52, 53, 54] is one of the most important tools in the study of Gromov-
Witten invariants of target varieties and general cohomological field theories. It allows,
in particular, to obtain explicit relations between the partition functions of different
theories, reconstruct higher genera correlators from the genus 0 data, and establish general
properties of semi-simple theories.

The core of the theory is Givental’s formula that gives a formal Gromov-Witten
potential associated to a semi-simple Frobenius structure. Teleman proves [93] that
the formal Gromov-Witten potential associated to the Frobenius structure of a target
variety with semi-simple quantum cohomology coincides with the actual Gromov-Witten
potential in all genera.

In order to write Givental formula, let us construct an operator series
R(z) =

∑
k≥0Rkz

k in the following way.
Recursively define the off-diagonal entries of Rk in normalized canonical coordinates

by solving the equation
Ψ−1d(ΨRk−1) = [dU,Rk]. (1.9)

using R0 = I as a base case. Construct the diagonal entries of Rk by integrating the next
equation

Ψ−1d(ΨRk) = [dU,Rk+1] (1.10)

using the fact that the diagonal entries of [dU,Rk+1] are equal to zero. To fix the inte-
gration constant, use the Euler equation

Rk = −(iEdRk)/k, (1.11)

where E =
∑
ui∂i is the Euler field.

This procedure recursively defines Rk for all k.
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Let us consider the following reexpansion:

R(z) =
∞∑
l=0

Rlz
l = exp

(
∞∑
l=1

rlz
l

)
. (1.12)

Then we denote by (rlz
l)̂ the following differential operator:

(rlz
l)̂ :=− (rl)

i
1

∂

∂vl+1,i
+
∞∑
d=0

vd,i(rl)
j
i

∂

∂vd+l,j
(1.13)

+
~
2

l−1∑
m=0

(−1)m+1(rl)
i,j ∂2

∂vm,i∂vl−1−m,j .

Here the indices i, j ∈ {1, . . . , N} on rl correspond to the basis {e1, . . . , eN} of V , and
the index 1 corresponds to the unit vector e1. When we write rl with two upper-indices
we mean as usual that we raise one of the indices using the scalar product η.

The quantization R̂ of series R(z) is then defined by

R̂ = exp

(
∞∑
l=1

(
(−1)lrlz

l
)
ˆ

)
. (1.14)

Givental formula then allows to reproduce all ancestor correlators of the given (ho-
mogenous) cohomological field theory in the following way:

Z = Ψ̂R̂∆̂T , (1.15)

where
T := ZKdV({ud,1}) · · ·ZKdV({ud,N});

∆̂ replaces the variables of ith KdV τ -function according to ud,i = ∆
1/2
i vd,i and replaces

~ with ∆i~, while Ψ̂ is the change of variables vd,i = Ψi
νt
d,ν .

1.3 Spectral curve topological recursion

The theory developed by Eynard and Orantin (see [48, 44, 18]), is a procedure, called
spectral curve topological recursion, that takes the following objects as input. First, a
particular Riemann surface, which is called the spectral curve. Second, two functions
x and y on this surface, and, third, a choice of a bi-differential on this surface, which
we will call the two-point function (which also is often called Bergman kernel). And,
occasionally, a particular extra choice of a coordinate on an open part of the Riemann
surface. The output of the topological recursion is a set of n-forms ωg,n, whose expansion
in this additional coordinate generates interesting numbers.

In some cases these numbers are correlators of a matrix model (that was the original
motivation for introducing the topological recursion; it is a natural generalization of the
reconstruction procedure for the correlators of a certain class of matrix models, see, e.g.
[4]), in some other cases they appear to be related to Gromov-Witten theory and to
various intersection numbers on the moduli space of curves.
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Note that this spectral curve topological recursion is unrelated to the topological
recursion occurring in the theory of moduli spaces of curves.

One of the ways to think about the input data of the topological recursion theory is to
say that the (g, n) = (0, 1) part of a partition function in some geometrically motivated
theory determines the spectral curve; the (g, n) = (0, 2) part of a partition function
determines the two-point function, and the rest of the correlators can be reconstructed
from these two via topological recursion, in terms of a proper expansion of ωg,n (see [31]).

The topological recursion theory is often used to reproduce known partition functions,
extracts from them some higher genus correlators which were up to now unreachable and
gives new non-trivial relations for the correlators, see e. g. [45].

Local version of the spectral curve topological recursion is defined as follows.
For N ∈ N∗, we call times a set of N families of complex numbers {hik}k∈N for

i = 1, . . . , N and jumps another set of N × N infinite families of complex numbers{
Bi,j
k,l

}
(k,l)∈N2

for i, j = 1, . . . , N . We finally define a set of canonical coordinates {ai}Ni=1 ∈
CN subject to ai 6= aj for i 6= j.

Definition 1.3.1. For all i, j ∈ {1, . . . , N}, we define the following set of analytic func-
tions and differential forms in a neighborhood of 0 ∈ C:

xi(z) := z2 + ai , yi(z) :=
∞∑
k=0

hikz
k (1.16)

and

Bi,j(z, z′) = δi,j
dz ⊗ dz′

(z − z′)2 +
∞∑

k,l=0

Bi,j
k,lz

kz′ldz ⊗ dz′. (1.17)

For 2g−2+n > 0, we define the genus g, n-point correlation functions ωi1,...,ing,n (z1, . . . zn)
recursively by

ωi0,i1,...,ing,n+1 (z0, z1, . . . , zn) :=
N∑
j=1

Res
z→0

∫ z
−z B

i0,j(z0, ·)
2 (yj(z)− yj(−z)) dxj(z)

×ωj,j,i1,...,ing−1,n+2 (z,−z, z1, . . . , zn) +
∑

A∪B={1,...,n}

g∑
h=0

ωj,iAh,|A|+1(z, zA)ωj,iBg−h,|B|+1(−z, zB)

 ,

(1.18)

where for any set A, we denote by zA (resp., iA) the set {zk}k∈A (resp., {ik}k∈A), and
where the base of the recursion is given by

ωi0,1(z) := 0; ωi,j0,2(z, z′) := Bi,j(z, z′). (1.19)

1.4 Hurwitz numbers and covers of sphere

1.4.1 Simple Hurwitz numbers

Simple Hurwitz numbers h◦g,µ = h◦g;µ1,...,µn enumerate ramified coverings of the 2-sphere
by a connected genus g surface, where the ramification profile over infinity is given by the
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partition µ = (µ1, . . . , µn), there are simple ramifications over b(g, µ) = 2g − 2 + n+ |µ|
fixed points, and there are no further ramifications.

Hurwitz numbers play an important role in the interaction of combinatorics, represen-
tation theory of symmetric groups, integrable systems, tropical geometry, matrix models,
and intersection theory of the moduli spaces of curves.

1.4.2 Bi-colored maps

Here we discuss the problem of enumeration of bi-colored maps. They are decompositions
of closed two-dimensional surfaces into polygons of black and white color glued along
their sides, considered as combinatorial objects. We count such decompositions of two-
dimensional surfaces into a fixed set of polygons with some appropriate weights. This
problem is then equivalent to enumeration of Belyi functions with fixed type of local
monodromy data over its critical values (following [23], we call such functions hypermaps),
which is a special case of a more general Hurwitz problem.

Belyi functions are objects of principle importance in algebraic geometry; they allow
to detect the algebraic curves defined over the field of algebraic numbers. There is a
way to study them in terms of “dessins d’enfants”, that is, some embedded graphs in
two-dimensional surfaces, see [69] for a survey or [1] for some recent developments.

The local monodromy data of a Belyi function can be controlled by the choice of
three partitions of the degree of the function. We consider a special generating function
for enumeration of Belyi functions. Namely, we fix the length of the first partition to
be n and we introduce some formal variables x1, . . . , xn to control the first partition as
an n-point function; we introduce auxiliary parameters ti, i ≥ 1, in order to control the
number of parts of length i in the second partition as a generating function; and we take
the sum of all possible choices of the third partition so that the genus of the surface is
equal to g ≥ 0. This way we get some functions W

(g)
n (x1, . . . , xn) that also depend on

formal parameters ti, i ≥ 0.
More precisely, we have the following.
We are interested in the enumeration of covers of P1 branched over three points. These

covers are defined as follows.

Definition 1.4.1. Considerm positive integers a1, . . . , am and n positive integers b1, . . . , bn.
We denote by Mg,m,n(a1, . . . , am|b1, . . . , bn) the weighted count of branched covers of P1

by a genus g surface with m + n marked points f : (S; q1, . . . , qm; p1, . . . , pn) → P1 such
that

• f is unramified over P1\{0, 1,∞};

• the preimage divisor f−1(∞) is a1q1 + . . . amqm;

• the preimage divisor f−1(1) is b1p1 + . . . bnpn;

Of course, a cover f can exist only if a1+· · ·+am = b1+· · ·+bn. In this case d = b1+· · ·+bn
is called the degree of a cover.

These covers are counted up to isomorphisms preserving the marked points p1, . . . , pn
pointwise and covering the identity on P1. The weight of a cover is equal to the inverse
order of its automorphism group.
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The n-point correlation function is defined by

Ω(a)
g,n(x1, . . . , xn) :=

∞∑
m=0

∑
1≤a1,...,am≤a

0≤b1,...,bn

Mg,m,n(a1, . . . , am|b1, . . . , bn)
m∏
i=1

tai

n∏
j=1

bjx
−bj−1
i . (1.20)

1.5 Results

1.5.1 Inversion symmetry through Givental group action

Here we present the main result of Chapter 2. This result expresses inversion symmetry
(a nontrivial symmetry of Frobenius manifolds) through Givental group action.

In [26], Dubrovin derived some symmetries of Frobenius manifolds coming from the
elementary Schlesinger transformations of the associated special ODE. One type of trans-
formations, the so-called Legendre-type transformations, refers to the possible choices of
flat coordinates for the associated pencil of flat connections that let it be integrated to
a solution of the WDVV equation (we are not sure that it is presented in that way any-
where, but implicitly it is explained in [76, 77]). Another transformation is called the
inversion symmetry and it really looks completely unexpected in terms of the solution of
the WDVV equation and its flat coordinates.

Recently, Liu, Xu, and Zhang studied the action of the inversion symmetry on the
integrable hierarchies associated to Frobenius manifolds [75]. They described the action
of the inversion symmetry on the principal (dispersionless) hierarchies completely; it
turns out to be a particular reciprocal transformation. They made some interesting
conjectures on the topological deformations of those hierarchies and the genus expansion
of the corresponding tau-function.

Given a Frobenius manifold M with flat coordinates (t1, . . . , tn) and potential F ,
inversion transformation consists of the following change of coordinates:

t̂1 =
1

2

tσt
σ

tn
,

t̂α =
tα

tn
for α 6= 1, n,

t̂n = − 1

tn
,

together with the following change of the potential and the metric:

F̂ (t̂) = (tn)−2

[
F (t)− 1

2
t1tσt

σ

]
= (t̂n)2F +

1

2
t̂1t̂σ t̂

σ,

η̂αβ = ηαβ.

Main theorem of Chapter 2 is as follows:
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Theorem 1.5.1. The inversion transformation is given by the Givental transformation
R̂ = exp

(∑
k≥1

(
rkz

k
) )̂

with

r1 =


0 . . . 0 1
0 . . . 0 0
...

. . .
...

...
0 . . . 0 0

 ,

rk = 0, k > 1.

More precisely, if F̂ (t̂) is the inversion transformation of F (t), then the local expansion
of F̂ (t̂) at (0, . . . , 0,−1) is the same as the genus zero part without descendants of the R̂-
transformed potential of the cohomological field theory corresponding to the local expansion
of F (t) at (0, . . . , 0, 1).

1.5.2 Identification of the Givental formula with the spectral
curve topological recursion procedure

Here we present the main result of Chapter 3.
Suppose some local spectral curve is given. For any i ∈ {1, . . . , N} and k ∈ Z≥0 define

W i
k(z) :=

N∑
j=1

d

((
−1

z

d

dz

)k
ξi0(z, j)

)
.

Theorem 1.5.2. Let R be some series of operators on an N-dimensional vector space V
as in Section 3.1. Let Z = R̂∆̂T , where T is a product of N KdV τ -functions, be the
partition function of the corresponding semi-simple cohomological field theory.

Define a local spectral curve by the following data

B̌i,j
p,q := [zpwq]

δij −
∑N

s=1 R
i
s(−z)R(−w)js

z + w
(1.21)

and

ȟik := [zk−1]
(
−R(−z))i1

)
(1.22)

hi1 := − 1

2
√

∆i
. (1.23)

Let ωg,n be the genus g, n-pointed topological recursion invariant of this spectral curve
and denote by

Ω({vd,i}) =

(∑
g,d

ωg,d(z1, . . . , zd)
∣∣∣
W i
d(zm)=vd,i

~g−1

)
their sum after a change of variables W i

k(zm) ↔ vd,i for all m. Then the partition
function of the cohomological field theory and the topological recursion invariants agree
in the following sense:

Z({vd,i}) = exp
(
Ω({vd,i})

)
. (1.24)
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1.5.3 Quantum spectral curve for the Gromov-Witten theory
of CP1

Here we present the main result of Chapter 4.
Let us recall the Gromov–Witten theory for the case of X = P1.
The descendant Gromov-Witten invariants of P1 are defined by〈

n∏
i=1

τbi(αi)

〉d

g.n

:=

∫
[Mg,n(P1,d)]vir

n∏
i=1

ψbii ev
∗
i (αi), (1.25)

where [Mg,n(P1, d)]vir is the virtual fundamental class of the moduli space,

evi :Mg,n(P1, d) −→ P1

is a natural morphism defined by evaluating a stable map at the i-th marked point of
the source curve, αi ∈ H∗(P1,Q) is a cohomology class of the target P1, and ψi is the
tautological cotangent class in H2(Mg,n(P1, d),Q). We denote by 1 the generator of
H0(P1,Q), and by ω ∈ H2(P1,Q) the Poincaré dual to the point class. We assemble
the Gromov-Witten invariants into particular generating functions as follows. For every
(g, n) in the stable sector 2g − 2 + n > 0, we define the free energy of type (g, n) by

Fg,n(x1, . . . , xn) :=

〈
n∏
i=1

(
−τ0(1)

2
−
∞∑
b=0

b!τb(ω)

xb+1
i

)〉
g,n

. (1.26)

Here the degree d is determined by the dimension condition of the cohomology classes to
be integrated over the virtual fundamental class. We note that (1.26) contains the class
τ0(1). For unstable geometries, we introduce two functions

S0(x) := x− x log x+
∞∑
d=1

〈
−(2d− 2)!τ2d−2(ω)

x2d−1

〉d
0,1

, (1.27)

S1(x) := −1

2
log x+

1

2

∞∑
d=0

〈(
−τ0(1)

2
−
∞∑
b=0

b!τb(ω)

xb+1

)2〉d

0,2

. (1.28)

Main result of Chapter 4 is as follows:

Theorem 1.5.3. The wave function

Ψ(x, ~) := exp

(
1

~
S0(x) + S1(x) +

∑
2g−2+n>0

~2g−2+n

n!
Fg,n(x, . . . , x)

)
(1.29)

satisfies the quantum curve equation of an infinite order[
exp

(
~
d

dx

)
+ exp

(
−~ d

dx

)
− x
]

Ψ(x, ~) = 0. (1.30)

Moreover, the free energies Fg,n(x1, . . . , xn) as functions in n-variables, and hence all the
Gromov-Witten invariants (1.25), can be recovered from the equation (1.30) alone, using
the mechanism of the spectral curve topological recursion.
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1.5.4 Polynomiality of Hurwitz numbers and a new proof of the
ELSV formula

Here wi present the main results of Chapter 5.
The ELSV formula [33] gives an expression for connected Hurwitz numbers in terms

of intersection numbers on the moduli space of curves:

h◦g,µ = b(g, µ)!
n∏
i=1

µµii
µi!

∫
Mg,n

Λ∨g (1)∏n
i=1(1− µiψi)

. (1.31)

The Bouchard-Mariño conjecture [12] (proved by now in several different papers) is
also a relation of Hurwitz numbers to matrix models. Consider the spectral curve

x = ye−y (1.32)

equipped with the two-point function

dydy′

(y − y′)2
. (1.33)

Then the n-point functions wg,n produced from this data via the spectral curve topological
recursion are equal to∑

µ1,...,µn

h◦g;µ1,...,µn
b(g, µ)!

µ1 . . . µn x
µ1−1
1 . . . xµn−1

n dx1 . . . dxn. (1.34)

These two statements are known to be equivalent [36], see also [89]. We revisit this
equivalence and present this argument in a new way.

Let us describe the existing proofs of both statements. All proofs of the ELSV for-
mula [33, 59, 82, 74] are based, either directly or, as the original one, indirectly, on the
computation of the Euler class of the fixed locus of the C∗-action on the space of (rel-
ative stable) maps to CP1. All mathematically rigorous proofs of the Bouchard-Mariño
conjecture [43, 79] use the ELSV formula and the Laplace transform of the so-called
cut-and-join equation for Hurwitz numbers, the basic equation that also allows to re-
construct them recursively. There is one more proof of the Bouchard-Mariño conjecture
in [11] that goes through the construction of a matrix model for Hurwitz numbers and a
direct derivation of the topological recursion, but it will require plenty of subtle analytic
work to make it really mathematically rigorous. Of course, since the ELSV formula is
proved independently, the fact [36, 89] that the two statements are equivalent implies the
Bouchard-Mariño conjecture as well.

There is still a number of interesting questions on both statements. The first question
is whether it is possible to prove the Bouchard-Mariño conjecture independently of the
ELSV formula. The second question is whether there exists any way to derive the ELSV
formula combinatorially, rather than via the computation of the Euler class mentioned
above. For example, all Hurwitz numbers can be computed combinatorially, either us-
ing the character formula, or, equivalently, using the semi-infinite wedge formalism, or
recursively via the cut-and-join equation. On the other hand, the intersection number
in the ELSV formula can also be computed combinatorially. Indeed, we can use the
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Mumford formula [80] for the Chern characters of the Hodge bundle in order to reduce
the intersection number in the ELSV formula to intersection numbers of ψ-classes, and
any intersection number of ψ-classes can be computed using the Witten-Kontsevich the-
orem [98, 67]. The third question, posed e.g. in [96, 57], is the following. The structure
of the ELSV formula implies some polynomiality property of Hurwitz numbers, that is

h◦g;µ1,...,µn = b(g, µ)!

(
n∏
i=1

µµii
µi!

)
Pg,n(µ1, . . . , µn),

where Pg,n(µ1, . . . , µn) are some polynomials in µ1, . . . , µn. Though this fact is completely
combinatorial, the only way to prove it known up to now is to use the ELSV formula. So,
the third question we consider here is whether it is possible to prove this polynomiality
in some direct way, without any usage of the ELSV formula.

We provide full answer to all three questions. It is organized in the following way.
First, we prove in Section 5.1 the polynomiality of Hurwitz numbers directly from the
definition in terms of the semi-infinite wedge formalism. Our argument is a refinement
of an argument by Okounkov and Pandharipande in [83]. Then, using the polynomiality
property of Hurwitz numbers we are able to derive in Section 5.2 the Bouchard-Mariño
conjecture directly from the cut-and-join equation. Then, since we have an equivalence
of the Bouchard-Mariño conjecture and the ELSV formula, we immediately derive the
ELSV formula in a new way. In Section 5.3 we review the correspondence between the
topological recursion and the Givental theory, with a special focus on the 1-dimensional
case, and in Section 5.4 we provide a (slightly refined) proof of the equivalence of the
ELSV formula and the Bouchard-Mariño conjecture.

Theorem 1.5.4. The Hurwitz numbers h◦g;µ1,...,µn for (g, n) /∈ {(0, 1), (0, 2)} can be ex-
pressed as follows:

h◦g;µ1,...,µn = (2g + |µ|+ n− 2)!

(
n∏
i=1

µµii
µi!

)
Pg,n(µ1, . . . , µn), (1.35)

where Pg,n(µ1, . . . , µn) is some polynomial in µ1, . . . , µn.

Basically this theorem gives the form of the ELSV formula without specifying the
precise formulas for the coefficients. This property (in a bit stronger form) was conjec-
tured in [56] and then proved in [57], with the help of the ELSV formula. Still, the
question whether this property can be derived without using the ELSV formula remained
open [96]. This is precisely what we do in Chapter 5: we prove this statement without
using the ELSV formula.

Define the generating function for the connected Hurwitz numbers h◦g;µ in the following
way:

H◦g,n :=
∑

µ1,...,µn∈{1,2,...}

h◦g;µ1,...,µn
b(g, µ)!

xµ11 . . . xµnn . (1.36)

Theorem 1.5.4 implies that, for (g, n) /∈ {(0, 1), (0, 2)},

H◦g,n =
∑

k1,...,kn∈
{0,1,...,Kg,n}

ck1...kn

n∏
i=1

∞∑
µi=1

µµi+kii

µi!
xµii , (1.37)
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where ck1...kn are the coefficients of the polynomials Pg,n from Theorem 5.1.1, and Kg,n is
the highest power appearing in Pg,n.

Define

ρk(x) :=
∞∑
m=1

mm+k

m!
xm. (1.38)

for (g, n) /∈ {(0, 1), (0, 2)}, and

Wg,n(t1, . . . , tn) =
∑

k1,...,kn∈
{0,1,...,Kg,n}

ck1...kn

n∏
i=1

ρki+1(ti). (1.39)

In the unstable cases we define the functions Wg,n by setting explicitly

W0,1(t1) = 0, (1.40)

W0,2(t1, t2) =
t21(t1 + 1)t22(t2 + 1)

(t2 − t1)2
. (1.41)

In Chapter 5 we give a new proof, using the above polynomiality result, the following

Theorem 1.5.5 (Bouchard-Mariño conjecture). The polynomials Wg,n can be determined
by the either of the following recursive formulas

Wg,n(t1, tL′) =− res
z=0

(
K(z, t1) W̃g,n

(1

z
,
1

z
; tL′
))

= res
z=0

(
K(z, t1) W̃g,n

(1

z
,

1

σ(z)
; tL′
))

=− res
z=0

(
K(z, t1) W̃g,n

( 1

σ(z)
,

1

σ(z)
; tL′
))

where

K(z, t1) =
t21(1 + t1)

2(1− z t1)(1− σ(z) t1)

z dz

z + 1

and σ(z) is defined by
(1 + z) e−z = (1 + σ(z)) e−σ(z). (1.42)

Using this and the Gromov–Witten/spectral curve topological recursion correspon-
dence discussed in the previous section allows us to give a new proof of the ELSV formula:

h◦g;µ1,...,µn = b(g, µ)!

(∫
Mg,n

Λg∏n
i=1(1− µiψi)

)
n∏
i=1

µµii
µi!

. (1.43)

1.5.5 Spectral curve topological recursion for counting of bi-
colored maps

Here we present the main result of Chapter 6.
Since the combinatorial problem of counting bi-colored maps allows us to arrange te

answers into generating functions W
(g)
n (x1, . . . , xn), it makes sense to check whether these

functions W
(g)
n (x1, . . . , xn) can be reproduced via the topological recursion [48].
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The theory of spectral curve topological recursion, actually, has initially occurred as
a way to solve a set of loop equations satisfied by the correlation functions of a particular
class of matrix model [40, 16, 47, 18].

In fact, bi-colored maps are a standard representation of correlation functions of a two
matrix model, see a survey in [35] or more recent paper [5], and the topological recursion
in this case is derived in [18]. However, the general question that one can pose there is
whether there is any way to relate the topological recursion to the intrinsic combinatorics
of bi-colored maps. There are two steps of derivation of the topological recursion in [18].
First, using skillfully chosen changes of variables in the matrix integral, one can define
the loop equations for the correlation functions [38]. Then, via a sequence of formal
computations, one can determine the spectral curve and prove the topological recursion.

The loop equations of a formal matrix model are equivalent to some combinatorial
properties of bi-colored maps [95]. In this thesis we exhibit these combinatorial relations
deriving the loop equations directly from the intrinsic combinatorics of the bi-colored
maps. This procedure can be generalized for deriving combinatorially the loop equations
of an arbitrary formal matrix model. This allows us to prove the topological recursion
for the functions W

(g)
n (x1, . . . , xn) in a purely combinatorial way.

As a motivating example, we use a recent conjecture posed by Do and Manescu in [23].
They considered the enumeration problem for a special case of our bi-colored maps, where
all polygons of the white color have the same length a. In this case, they conjectured that
this enumeration problem satisfies the topological recursion and proposed a particular
spectral curve. So, as a special case of our result, we prove their conjecture, and it
appears to be a purely combinatorial proof. Though similar problems were considered a
lot recently [66, 7, 8], the conjecture of Do and Manescu was not covered there.

There is a general principle that associates to a given spectral curve its quantization,
which is a differential operator called quantum spectral curve [60]. Conjecturally, this
operator should annihilate the wave function, which is, roughly speaking, the exponent
of the generating series of functions

∫ x · · · ∫ xW (g)
n (x1, . . . , xn)dx1 · · · dxn. We show that

this general principle works in this case, namely, we derive the quantum spectral curve
directly from the same combinatorics of loop equations. This generalizes the main result
in [23] .

The combinatorics that we use in the analysis of bi-colored maps is in fact of a more
general nature. The same idea of derivation of the loop equations can be used in more
general settings. In particular, we show how it would work for the enumeration of 4-
colored maps, where the topological recursion was derived from the loop equations by
Eynard in [39].

All this allows us to give a combinatorial proof of the following:

Corollary 1.5.6. The generating series Ω
(a)
g,k(x1, . . . , xk) can be computed by topological

recursion with a genus 0 spectral curve

E(a)(x, y) = y

(
a∑
i=1

tiy
i−1 − x

)
+ 1 = 0 (1.44)

and the genus 0 2-point function defined by the corresponding Bergmann kernel, i. e.

ω0,2(z1, z2) =
dz1 ⊗ dz2

(z1 − z2)2
(1.45)
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for a global coordinate z on the genus 0 spectral curve.

We would like to mention that most of the results of paper [102], on which Chapter
6 is based, were derived independently by Borot [10] while this paper was being written,
and the combinatorial approach to loop equations in Section 6.3 was also independently
derived by Eynard [34, Chapter 8].
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Chapter 2

Givental graphs and inversion
symmetry

This chapter is based on paper [104], joint work with S. Shadrin and L. Spitz. In this
chapter we express Dubrovin’s inversion transformation through the Givental group ac-
tion.

In Section 2.1 we recall Y.-P. Lee’s formulas for the operators of the infinitesimal
deformation and explain them in terms of graphs. In Section 2.2 we use the graphical
representation of the Givental group action in order to find a particular group element that
performs the inversion symmetry. In Section 2.3 we reproduce the elementary Schlesinger
transformation that was the origin of the inversion symmetry (for that we heavily use the
results obtained in [15] in multi-KP approach to Frobenius manifold structures). Finally,
in Section 2.4 we reproduce the formulas of Liu, Xu, and Zhang for the transformation
of the Hamiltonians of the principle hierarchy under the inversion symmetry (this comes
as a very special case of the general deformation formulas for the Hamiltonians obtained
in [14]).

2.1 Givental group action as a sum over graphs

In this section we explain an interpretation of the Givental group action [52, 54] on
cohomological field theories as a sum over graphs.

2.1.1 Cohomological field theories and Frobenius manifolds

Consider the space of partition functions for n-dimensional cohomological field theories

Z = exp(
∑
g≥0

~g−1Fg) (2.1)

in variables td,µ, d ≥ 0, µ = 1, . . . , n. Such a partition function is always tame; the
weighted degree of any monomial ~gtd1,µ1 · · · tdk,µk occurring with non-zero coefficient
is not more than 3g − 3 + k, where the weight of ~ is 0, and the weight of td,µ is d.
There is a fixed scalar product η on the vector space V := 〈e1, . . . , en〉 of primary fields
corresponding to the indices µ = 1, . . . , n. Furthermore, we will denote by e1 the vector
in V that plays the role of the unit in the underlying family of Frobenius algebras.
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In this chapter, we will always work in flat coordinates, that is, ηαβ = δα,n−β and e1 =
e1.

The information of the genus zero part of a cohomological field theory is equivalent
to the information of a Frobenius manifold. That is, given a cohomological field theory
with genus zero partition function F0, we obtain the potential F of a Frobenius manifold
by

F (t1, . . . , tn) = F0(td,µ)|td,µ=0 for d>0

where we identify tµ := t0,µ.
On the other hand, given a Frobenius manifold we can uniquely reconstruct the genus

zero descendant part using topological recursion ([78]). Although the construction we
describe below is for the full genus expansion of a cohomological field theory, it can be
restricted to the genus zero part (with or without descendants), and thus interpreted as
an action on the space of Frobenius manifolds. This is what we will do in Example 2.1.3
and the subsequent sections.

Notation 2.1.1. Define the so-called correlators

〈τd1(α1)τd2(α2) · · · τdk(αk)〉g
by

Fg =
∑ 〈τd1(α1)τd2(α2) · · · τdk(αk)〉g

|Aut((αi, di)ki=1)|
td1,α1 · · · tdk,αk , (2.2)

where |Aut((αi, di)
k
i=1)| denotes the number of automorphisms of the collection of multi-

indices (αi, di) and where the sum is such that it includes each monomial td1,α1 · · · tdn,αn
exactly once.

2.1.2 Differential operators

Let us remind the reader of the original formulation, due to Y.-P. Lee, of the infinitesimal
Givental group action in terms of differential operators [70, 71, 72].

Consider a sequence of operators rl ∈ Hom(V, V ), l ≥ 1, such that the operators
with odd (resp., even) indices are symmetric (resp., skew-symmetric). Then we denote
by (rlz

l)̂ the following differential operator:

(rlz
l)̂ :=− (rl)

µ
1

∂

∂tl+1,µ
+
∞∑
d=0

td,ν(rl)
µ
ν

∂

∂td+l,µ
(2.3)

+
~
2

l−1∑
i=0

(−1)i+1(rl)
µ,ν ∂2

∂ti,µ∂tl−1−i,ν .

Givental observed that the action of the operators

R̂ := exp(
∞∑
l=1

(rlz
l)̂ )

on formal power series preserves tameness. The main theorem of [51] states that this
action preserves the property that Z is the generating function of the correlators of a
cohomological field theory with the target space (V, η) (see also [65, 93]).

26



Remark 2.1.2. The action of the operators described above is usually referred to as the
action of the upper triangular group. There is also a lower triangular group action, but
we do not consider it in the present chapter.

2.1.3 Expressions in terms of graphs

We now describe the Givental action in terms of graphs. Consider a connected graph γ
of arbitrary genus, and with leaves. To such a graph we assign some additional structure.
First, we choose an orientation on each edge of the graph, in an arbitrary way (the
contribution of a graph will not depend on these choices). Second, to each element of the
graph (a leaf, an edge, a vertex) we associate some tensor over the vector space V [[z]]
(where z is a formal variable) that also depends on ~ and td,µ for d ≥ 0 and 1 ≤ µ ≤ n.
This graph equipped with an additional structure of such a type we denote by γ̌.

Notation 2.1.3. By a half-edge, we mean either an edge together with a choice of one of
the two adjacent vertices, or a leaf. If we want to talk only about the first of these two,
we will use half of an internal edge.

Leaves

Leaves are decorated by one of two types of vectors. The first type corresponds to the
second term of the operator (2.3) and is given by

L := exp

(
∞∑
l=1

rlz
l

)(
∞∑
d=0

n∑
µ=1

eµt
d,µzd

)
. (2.4)

The second type of decoration is given by the vector

L0 := −z ·

(
exp(

∞∑
l=1

rlz
l)− I

)
(e1) (2.5)

and corresponds to the dilaton shift (the first term of the operator (2.3)).

Edges

An edge is already oriented. We expect to decorate it with a bivector. Using the scalar
product we can turn any (skew-)symmetric operator into a bivector. However, this re-
quires a choice of sign. Some choice of sign was already made in the differential op-
erator (2.3) when we used the symbol (rl)

µν . Let us fix this choice. In the case of a
skew-symmetric operator, the bivector is also skew-symmetric, so we have to use the
orientation of the underlying edge in order to fix the ambiguity. It will be obvious later
on that nothing depends on the choice of orientations on edges.

So, we are going to assign a bivector E ∈ (V [[z]])⊗2 to an oriented edge. The first
copy of V [[z]] is associated to the input, the second to the output of the oriented edge.
For clarity, we will denote the formal variable corresponding to the first copy by z, and
the one corresponding to the second copy by w. We put

E = Ẽη,
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where Ẽ ∈ Hom(V, V )[[z, w]] is given by

Ẽ := −~ ·
exp

(∑∞
l=1(−1)l−1rlz

l
)

exp
(∑∞

l=1 rlw
l
)
− I

z + w
.

Let us rewrite this formula in a more convenient way. Denote by r(z) the series
∑∞

l=1 rlz
l.

Then Ẽ is equal to

Ẽ = −~ · exp(r(z)∗) exp(r(w))− I

z + w
(2.6)

= −~ · exp (−r(−z)) exp(r(w))− I

z + w
.

(cf. the same formula in [93]).
The change of the orientation of an edge corresponds to the replacement of an operator

with its adjoint and the simultaneous interchange of z and w. From Equation (2.6) it is
obvious that Ẽ∗|z↔w = Ẽ . Using the symmetry of the metric, we see that nothing depends
on the choice of orientations on edges.

Vertices

The collection of correlators of order n corresponding to a formal power series Fg in
variables td,µ can be considered as a tensor Vg[n] ∈ (V ∗[[z]])⊗n. Namely, the tensor Vg[n]
sends eµ1z

d1
1 ⊗ · · · ⊗ eµnzdnn to

the correlator 〈τd1(eµ1) · · · τdn(eµn)g〉 (which is just a number), and we extend this defini-
tion linearly.

We want to apply an element of the Givental group to the series Z; this means that
we decorate the vertices of index n exactly by the tensor

V [n] :=
∑
g≥0

~g−1Vg[n]. (2.7)

Contraction of tensors

Consider a decorated graph γ̌. We have associated vectors in V [[z]] to leaves and bivectors
in (V [[z]])⊗2 to edges (the former depending on ~ and td,µ, the later depending on ~).
Furthermore, for each edge we have associated one copy of V [[z]] with the input of the
edge and the other with the output. At each vertex, we now contract the tensor V [n]
with the tensor product of the decorations of the half edges corresponding to the vertex,
where n is the index of the vertex. The result is a number depending on ~ and td,µ which
we denote by C(γ̌).

The final formula

Finally, we sum over all possible decorated graphs like this, weighted by the inverse order
of their automorphisms to obtain a formal power series in td,µ that also depends on ~. In
a formula:

log(R̂(Z)) =
∑
γ̌∈Γ̌

1

# Aut(γ̌)
C(γ̌) (2.8)
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where Γ̌ denotes the set of all decorated graphs as above, and Aut(γ̌) is the set of au-
tomorphisms of γ̌. From now on we will use a decorated graph and the function of ~
and td,µ assigned to it by the graphical formalism interchangeably.

It follows directly from the combinatorics of graphs that the result is represented as
a formal power series of the same form as in Equation (2.1).

Remark 2.1.4. Note that for any graph the only choice in the decoration is that for each
leaf, it can either be decorated by L or L0.

Furthermore, the decorations on the edges and leaves are defined as sums. Using the
linearity of the functions with which we contract at the vertices, we can replace a graph
with a leaf or edge decorated with a sum by a sum of graphs which only differ from the
original one by replacing this sum with its individual terms. We will use this freedom in
computations; thus, we will work graphs that are not elements of Γ̌ as well.

Remark 2.1.5. The formal variable z. The contraction of tensors couples the power of
the formal variable z to the first index of the variable td,µ. Thus, in the context of
cohomological field theory, the power of z should be interpreted as keeping track of the
power of the ψ-class appearing at the corresponding half-edge.

The trivial example

We discuss the trivial example of the Givental action, that is, we assume that rl = 0,
l = 1, 2, . . . . In this case E = 0, so the only connected graphs that give a non-trivial
contribution are the graphs with one vertex and no edges. Furthermore, L0 is also zero,
so we only need to compute

1

n!
V [n](L ⊗ · · · ⊗ L︸ ︷︷ ︸

n times

)

which is the nth homogeneous component of
∑

g≥0 ~g−1Fg, as we can see directly from
the definition of V [n]. Therefore, the sum over all graphs just gives us the initial series Z.

Dilaton equation and topological recursion relation

We remind the reader of the well-known topological recursion relation and dilaton equa-
tion [98] which hold for any cohomological field theory.

In terms of correlators, the dilaton equation is given by

〈τ1(1)τb1(α1) . . . τbk(αk)〉g = (2g − 2 + k) 〈τb1(α1) . . . τbk(αk)〉g (2.9)

for any g.
In terms of graphical formalism, the dilaton equation has the following interpretation:

whenever we are given a graph with a leaf that is marked by e1z, the dilaton equation
allows us to remove that leaf entirely, at the same time multiplying the resulting graph
by (2g − 2 + k), where k is the number of leaves/edges going from the corresponding
vertex (the removed leaf is not counted).

Consider the generating function for descendant classes

D = exp

(∑
d,α

td,ατd(α)

)
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Then the genus zero topological recursion relation takes the following form (for d1 > 0):

〈τd1(α1)τd2(α2)τd3(α3)D〉0 =∑
λ,σ

〈τd1−1(α1)τ0(λ)D〉0 η
λσ 〈τ0(σ)τd2(α2)τd3(α3)D〉0 (2.10)

The topological recursion relation has the following graphical interpretation. When-
ever we are given a graph with a leaf marked by eiz

k for some i and k > 0, we can remove
a ψ-class (lower the power of z) in the following way. Pick any two other half-edges
on the same vertex (vertices in graphs that have a non-zero contribution are always at
least trivalent) and split the vertex into two vertices connected by an edge marked by∑

α,β η
αβeα ⊗ eβ. Put the two chosen half-edges on one vertex and the original leaf on

the other, now marked by eiz
k−1. Take the sum over all possible distributions of the

other half edges of the original vertex over the two new vertices. It is easy to see that this
procedure does not depend on the choice of two half-edges, and represents the topological
recursion relation. In an equation (dotted lines represent either edges which connect the
vertices to some other parts of the graph or just leaves):

eµ1 eµ2

eρz
k

eν1 eνk

=
∑

I⊆{1,...,k}
α,β

eµ1 eµ2
eρz

k−1

︸ ︷︷ ︸
eνi ,
i∈I

︸ ︷︷ ︸
eνi ,

i∈{1,...,k}\I

eα

ηαβ

eβ

.

Example; inversion symmetry in two dimensions

To illustrate the graphical formalism in practice, we explicitly compute one of the terms
of the two-dimensional case of the inversion transformation defined and studied in general
in Section 2.2. Let F0 be the potential of a two-dimensional Frobenius manifold given by

F0(t1, t2) =
(t1)2t2

2
+
∑
k≥3

σk
k!

(t2)k (2.11)

for some set of numbers {σk|k ≥ 3}, and let r(z) =
∑

k rkz
k be the matrix series given

by

r := r1 =

(
0 1
0 0

)
, rk = 0 for all k > 1. (2.12)

As above, using the topological recursion relation in genus zero we can consider
F0(t1, t2) as a restriction to the small phase space of some full descendant genus zero
potential F0

(
{t1,d, t2,d}∞d=0

)
, identifying t1, t2 with t1,0, t2,0 and setting all other variables

equal to zero. Define F̃0 to be the genus zero part of log(exp(r̂(z)) exp(~−1F0)). We
compute the coefficient σ̃5 of (t2,0)5 in F̃0 using the graphical formalism (as usual, we
regard F̃0 as the exponential generating series for its coefficients).
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e2 e2

r(e1)
ψ

e2 e2 e2

,

e2 e2

e2 e2

e2

r(e1)
ψ

e2 e2

r22

Figure 2.1: Two of the graphs contributing to σ̃5 where one of the leaves is decorated
using L0. Note that in this case, both of their contributions are zero, because L0 = 0.

Since the variables td,µ only appear in the formalism when we have leaves decorated
by L, graphs contributing to σ̃5 must have precisely five leaves decorated by L. Fur-
thermore, in these decorations, only the terms which depend solely on t0,2 out of all td,µ

contribute to σ̃5. By equation (2.12) we have

exp

(
∞∑
l=1

rlz
l

)
= 1 + rz, (2.13)

therefore, after total expansion using the linearity of Remark 2.1.4, leaves that were
originally decorated by L have at most one ψ-class.

In principle, there could be extra leaves which are decorated by L0 (note that the
variables td,µ do not appear in L0). We have drawn two graphs with such leaves in
Figure 2.1. However, it follows immediately from equation (2.12) that L0 = 0, so the
dilaton term plays no role in this computation.

Once again using equation (2.12), we see that in this case the edge decoration simplifies
to

E = −
∑
µ,ν

rµ,νeµ ⊗ eν . (2.14)

By the tameness property, any vertex for which the total number of ψ-classes (that is,
the total power of z) at half-edges connected to it is equal to some d, must have valence
at least d + 3 for the graph to have a non-zero contribution. Taking into account that
vertices at which no ψ-class appears must have either precisely three leaves, two of which
are decorated with e1 and one with e2, or only leaves decorated with e2, it is easy to see
that σ̃5 is given by the following sum:

1

5!
σ̃5 =

1

5!

e2 e2

e2 e2 e2

+
1

4!

e2 r(e2)

ψ

e2 e2 e2
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+
1

3!2!

r(e2)

ψ

r(e2)

ψ

e2 e2 e2

+
1

3!2!

e2 e2

e2 e2
e2

e2 e2

r22

− 1

4

e2 e2

e2 e2
r(e2)

ψ

e2 e2

r22
− 1

4

e2 e2

e2 e1
r(e2)

ψ

e2 e2

r21

+
1

8

e2 e2

e2 e2 e2 e2

e2

e2 e2

r22 r22
+

1

8

e2 e2

e2 e1 e1 e2

e2

e2 e2

r21 r12

Let us explain the notation. The coefficients in front of the graphs are just the inverse
orders of the corresponding automorphism groups. The labels at the leaves are the ones
coming from L, where we have left out the variables td,µ, and where we have replaced z
by ψ to remind the reader that it keeps track of the power of ψ-class at that leaf. The
decorations at the edges are split between the input, output and middle of the edge. For
instance, an edge decorated by r22e2 ⊗ e2 is shown with a label e2 near the input and
output of the edge, and a label r22 in the middle. The minus signs in the third line come
from the minus sign in equation (2.14).

Note that in the original description of the algorithm, the first three graphs would
have appeared as one graph with the sums of different decortions on the leaves, as would
the second three graphs and also the last two graphs. We have used the linearity described
in Remark 2.1.4 to write them as the sums of graphs that appear above.

To get the result of this computation we first note that rµν = rµρη
ρν . In our case this

means that r11 = 1, and all other entries are 0. Thus, only the first three terms survive.
Using either the dilaton equation or topological recursion, and using that r(e2) = e1 in
this case, we see immediately that

σ̃5 = σ5 + 10σ4 + 20σ3.

This agrees with formula (2.22) for the inversion transformed potential, as it should.

2.1.4 Equivalence of descriptions

It follows directly from the standard correspondence between differential operators of
the type (2.3) and Feynman-type formulas in terms of graphs ([53], cf. [86]) that the
descriptions of the Givental group action given in Sections 2.1.2 and 2.1.3 are equivalent.
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For simplicity, we will first assume that rl(e1) = 0 for all l, allowing us to ignore the
dilaton term. In that case, the only thing we have to show is that

R̂ := exp

( ∑
d≥0,l≥1

td,ν(rl)
µ
ν∂d+l,µ +

~
2

∑
i,j≥0

(−1)i+1∂i,µ(ri+j+1)µν∂j,ν

)

= exp

( ∑
d≥0,l≥1

td,ν(rl)
µ
ν∂d+l,µ

)
exp

(∑
k,l≥0

(Vk,l)
µν∂k,µ∂l,ν

) (2.15)

where ∂d,µ =
∂

∂td,µ
and Vk,l is defined by

−~
2

exp(−r(−z)) exp(r(w))− I

z + w
=
∑

Vk,lz
kwl

and we assume summation over repeated Greek indices (we will do so for the rest of
this section). Equation (2.15) follows from the Campbell-Baker-Hausdorff formula in the
following way. Write

X =
∑

l≥1,d≥0

(rl)
µ
ν t
d,ν∂d+l,µ, Y =

~
2

∑
i,j≥0

(−1)i+1(ri+j+1)µν∂i,µ∂j,ν

for the linear and quadratic parts in the exponent in R̂ respectively. Then Y commutes
with any (iterated) commutator of X and Y containing at least one copy of Y . Therefore,
it follows from Campbell-Baker-Hausdorff that eX+Y = eXeZ , where

Z :=
−e− adX + 1

adX
Y =

∑
p≥0

(−1)p(adX)p

(p+ 1)!
Y

=
~
2

∑
p≥0

∑
s+t=p

∑
f1,...,fs≥0

∑
g1,...,gt≥0

∑
i,j≥0

(
p
s

)
(p+ 1)!

(−1)i+1+f1+···+fs+s·

· (rfs · · · rf1ri+j+1rg1 · · · rgt)µν∂i+f1+···+fs,µ∂j+g1+···+gt,ν . (2.16)

In the last equality we use the fact that rl is symmetric when l is odd, and skew-symmetric
when l is even. Writing Z =

∑
k,l Zkl∂k∂l, it is easy to see that

(z + w)
∑
k,l

Zklz
kwl = −~

2
(exp(−r(−z)) exp(r(w))− I) (2.17)

by expanding the right hand side and using the equality

1

k!(n− k − 1)!n
+

1

(k − 1)!(n− k)!n
=

1

k!(n− k)!
.

This completes the proof of the equivalence of descriptions for the case where rle1 = 0.
For the general case, it is clear that replacing X by

X̃ = X1 +X2 = −
∑
l≥1

(rl)
µ
1∂l+1,µ +

∑
l≥1,d≥0

(rl)
µ
ν t
d,ν∂d+l,µ,
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will not affect any of the arguments made above. That is, since X1 commutes with Y ,
the same argument proves that eX̃+Y = eX̃eZ . Therefore, it remains to show that

exp

(
−
∑
l≥1

(rl)
µ
1∂l+1,µ +

∑
d≥0,l≥1

(rl)
µ
ν t
d,ν∂d+l,µ

)
(2.18)

= exp

( ∑
d≥0,l≥1

(rl)
µ
ν t
d,ν∂d+l,µ

)(∑
l≥1

(Wl)
µ
1∂l,µ

)
where Wl is defined by ∑

l≥1

Wlz
l = (−z)

(
exp

(∑
l≥1

rlz
l

)
− I

)
.

Since X1 commutes with any iterated commutator of X1 and X2 including X1 at least
once, we have eX1+X2 = eX2eT , where

T :=
−e− adX2 + 1

adX2

X1

= −
∑
p,l

∑
f1,...,fp

1

(p+ 1)!
(rfp · · · rf1rl)

µ
1∂f1+···+fp+l+1,µ =

∑
l≥1

(Wl)
µ
1∂l,µ. (2.19)

This completes the proof of the equivalence of the graphical and operator representation
of Givental’s theory.

2.2 Inversion transformation

The so-called inversion transformation is an important example of a transformation that
gives a discrete symmetry of Frobenius structures. Namely, if one applies this trans-
formation to any given Frobenius manifold, the resulting object is again a Frobenius
manifold.

It turns out that in terms of the Givental group action one can express this transfor-
mation in a particularly nice way.

Let us recall the definition of the inversion transformation ([26]). Given a Frobenius
manifold M with flat coordinates (t1, . . . , tn) and potential F , this transformation consists
of the following change of coordinates:

t̂1 =
1

2

tσt
σ

tn
,

t̂α =
tα

tn
for α 6= 1, n,

t̂n = − 1

tn
,

together with the following change of the potential and the metric:

F̂ (t̂) = (tn)−2

[
F (t)− 1

2
t1tσt

σ

]
= (t̂n)2F +

1

2
t̂1t̂σ t̂

σ,

η̂αβ = ηαβ.
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We will also need the inverse of the inversion transformation:

t1 =
1

2

t̂σ t̂
σ

t̂n
,

tα = − t̂
α

t̂n
for α 6= 1, n,

tn = − 1

t̂n
.

We prove the following

Theorem 2.2.1. The inversion transformation is given by the Givental transformation
R̂ = exp

(∑
k≥1

(
rkz

k
) )̂

with

r1 =


0 . . . 0 1
0 . . . 0 0
...

. . .
...

...
0 . . . 0 0

 ,

rk = 0, k > 1.

More precisely, if F̂ (t̂) is the inversion transformation of F (t), then the local expansion
of F̂ (t̂) at (0, . . . , 0,−1) is the same as the genus zero part without descendants of the R̂-
transformed potential of the cohomological field theory corresponding to the local expansion
of F (t) at (0, . . . , 0, 1).

Proof of Theorem 2.2.1. We are going to check that the coefficients of the local expansion
of F̂ (t̂) at (0, . . . , 0,−1) and the coefficients of the genus zero part without the descendants
of the R̂-transformed cohomological field theory potential corresponding to the local
expansion of F (t) at (0, . . . , 0, 1) agree.

Let us determine the coefficients of F̂ . Recall that in flat coordinates, the metric is
given by ηαβ = δα+β,n+1. Thus, the potential has the form

F (t) =
1

2
t1
(
t1tn + · · ·+ tnt1

)
− 1

2
t1t1tn +H

(
t2, . . . , tn

)
, (2.20)

for some function H.
Note that we consider cohomological field theories as well as Frobenius potentials to

be defined up to addition of any terms of order 2 or lower in t’s, so we disregard such
terms here and below.

Computing the inversion-transformed potential, we have

F̂ (t̂) =
1

2
t̂1
(
t̂1t̂n + · · ·+ t̂nt̂1

)
− 1

2
t̂1t̂1t̂n+

+
1

8t̂n

(
t̂2t̂n−1 + · · ·+ t̂n−1t̂2

)2
+ t̂nt̂nH

(
− t̂

2

t̂n
, . . . ,− t̂

n−1

t̂n
,− 1

t̂n

)
. (2.21)

Recall the correlator notation for the coefficients of the potential and denote by

1

|Aut((α))|
〈τ̂0 (α1) . . . τ̂0 (αN)〉IH
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the coefficient of t̂α1 . . . t̂αN in the inversion-transformed potential coming from the last
term of (2.21), and by

1

|Aut((α))|
〈τ̂0 (α1) . . . τ̂0 (αN)〉IQ

the coefficient of t̂α1 . . . t̂αN in the inversion-transformed potential coming from the second-
to-last term of (2.21), where |Aut((α))| denotes the number of automorphisms of the
collection of indices αi.

We are interested in the local expansion near (0, . . . , 0,−1), so we put t̂n = −1 + ε.
Then, for the last term we have

(1− ε)2H

(
t̂2

1− ε
, . . . ,

t̂n−1

1− ε
,

1

1− ε

)
=

=
∑

N+p≥3

∑
2≤α1≤···≤αN≤n−1

t̂α1 . . . t̂αN εp (1− ε)2−p−N

|Aut((α))| p!
Hα1...αN n...n︸︷︷︸

p

=
∑

N+p≥3
k≥0

∑
2≤α1≤···≤αN≤n−1

(
N+k+p−3

k

)
|Aut((α))| p!

Hα1...αN n...n︸︷︷︸
p

t̂α1 . . . t̂αN εp+k, (2.22)

where H with subscripts stands for the value of the respective multiple partial derivative
of H taken at (0, . . . , 0, 1). In terms of correlators this means that

〈τ̂0(α1) . . . τ̂0(αN) (τ̂0(n))q〉IH

=
∑
p+k=q

q!

p!

(
N + k + p− 3

k

)
Hα1...αN n...n︸︷︷︸

p

(2.23)

for 2 ≤ α1, . . . , αN ≤ n − 1.
For the second-to-last term we have

1

8t̂n

(
t̂2t̂n−1 + · · ·+ t̂n−1t̂2

)2
=

−
∑

2≤α≤β≤n+1−β≤n+1−α≤n−1
k

1

|Aut2(α, β)|
εk t̂αt̂n+1−αt̂β t̂n+1−β, (2.24)

where |Aut2(α, β)| is defined in the following way. Define ᾱ = n + 1 − α for any
2 ≤ α ≤ n − 1. Then |Aut2(α, β)| = 1 if all four numbers α, β, ᾱ and β̄ are pair-
wise different, |Aut2(α, β)| = 2 if two of them are equal, but not equal to the other two,
and |Aut2(α, β)| = 8 if all of them coincide. In terms of correlators, this means that for
2 ≤ α, β, ᾱ, β̄ ≤ n− 1〈

τ̂0 (α) τ̂0 (ᾱ) τ̂0 (β) τ̂0

(
β̄
)

(τ̂0 (n))k
〉I

Q
= −k! |Aut((α, β, ᾱ, β̄))|

|Aut2(α, β)|
, (2.25)

while Q-correlators of any other form vanish.
Since the Givental transformation acts trivially on cubic terms, the part containing

t̂1 obviously coincides with what is coming from the Givental transformation.
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Let us describe the situation on the Givental side. The main point we are going to use
is the very simple form of the matrices rl, where the only non-zero entry of r1 is (r1)1

n = 1,
and rl is identically zero for all other l. Furthermore, we are interested only in decorated
graphs where td,µ with d > 0 do not enter the decorations, since we aim at recovering
the Frobenius potential, which is the genus zero part without descendants. Thus we will
write tµ := t0,µ to simplify expressions.

Taking all this into account, by equation (2.4) we have L = ze1t
n +
∑n

µ=1 eµt
µ for the

decoration of ordinary leaves, and no dilaton leaves since the expression (2.5) vanishes
entirely in our case. Furthermore, for the internal edges we have E = −e1 ⊗ e1 by
equation (2.6).

Let us find which decorated graphs will give a nonzero contribution. We see that z
always comes coupled to e1, which allows us to use the dilaton equation (2.9) to express
all graphs with z entering their decorations in terms of graphs without z entering their
decorations.

Since the contraction with the tensor associated with a vertex is a linear operation,
we can represent a given graph as a sum of 2k graphs, where k is the number of the leaves,
such that instead of the sum ze1t

n +
∑n

µ=1 eµt
µ on each leaf we will have either just ze1t

n

or just
∑n

µ=1 eµt
µ. Then the dilaton equation implies that the contribution of each of

these 2k graphs is a multiple of the contribution of a graph resulting from removal of all
ze1t

n leaves from the given graph. All these resulting graphs then obviously do not have
any z entering into their decorations.

Let us then find which graphs with no z in the decorations after using the dilaton
equation can give a non-zero contribution. The claim is that they are either single-vertex
ones with any number of leaves, or trivalent ones with no more than two internal edges
going out of each vertex. Recall that the tensors V [n] appearing on n-valent vertices are
built from the coefficients of the nth homogeneous part of the original potential. Then
the claim follows from the form of the decorations we have on the internal edges, namely
−e1⊗ e1, and the fact that t1 enters the the original potential only in cubic terms. More
precisely, if a vertex has an internal edge going from it, then, since the corresponding
tensor V [n] gets contracted with −e1 ⊗ e1, n should be equal to 3 because only V [3] has
non-zero components with one of the indices equal to 1.

Furthermore, if there is only one internal edge going from a given vertex, then there
are two leaves attached to this vertex decorated by

∑n
µ=1 eµt

µ. Taking the linearity into

account, we can represent the given decorated graph as a sum of n2 graphs for which
these two leaves are decorated by eµt

µ and eνt
ν for µ, ν ∈ {1, . . . , n} respectively. From

the form of the original potential (2.20) it follows that out of these graphs only the ones
with 2 ≤ µ ≤ n− 1 and ν = n+ 1− µ give a non-zero contribution.

By similar considerations a vertex with more than two internal edges attached to it
will contribute zero, and on a vertex with precisely two internal edges attached to it only
ent

n survives as the decoration of the single leaf attached to it.
With help of the linearity property we now totally expand all the decorated graphs

we have after applying the Givental transformation. By the consideration above, we are
left with the following sum, where each graph is of course multiplied by the inverse order
of its automorphism group. First, there are all possible graphs with one vertex and any
number of leaves decorated by eµt

µ for any µ and any number of leaves decorated by ze1t
n.

Second, there are all possible trivalent graphs with at least one internal edge in total and
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no more than two internal edges going from each vertex, with −e1⊗e1 decorating internal
edges, ent

n decorating the single leaf attached to a vertex with two internal edges, and
eµt

µ and en−µ+1t
n−µ+1 for 2 ≤ µ ≤ n − 1 decorating two leaves attached to a vertex

with only one internal edge going from it. Furthermore, all graphs obtained from the
above trivalent ones by adding any number of leaves decorated by ze1t

n to any number
of vertices are also included in the sum. One can find the graphical representation of all
of these graphs below.

Thus we have described all relevant graphs giving the Givental-transformed potential.
Now let us show that the Frobenius potential recovered from them precisely coincides with
the inversion-transformed potential.

The contribution coming from the one-vertex graphs turns out to coincide with the
last term of (2.21). More precisely, if we denote the contribution of these one-vertex
graphs to the coefficient of t̂α1 . . . t̂αN εq in the Givental-transformed potential by

1

|Aut((α))| q!
〈τ̂0(α1) . . . τ̂0(αN) (τ̂0(n))q〉GH

we have

1

|Aut((α))| q!
〈τ̂0(α1) · · · τ̂0(αN) (τ̂0(n))q〉GH =

=
1

|Aut((α))|
∑
p+k=q

1

k! p!

〈
τ0(α1) · · · τ0(αN) (τ0(n))p (τ1(1))k

〉
(2.26)

(here on the right hand side the correlator corresponds to original, non-transformed po-
tential). Using the dilaton equation (2.9) we get

〈τ̂0(α1) · · · τ̂0(αN) (τ̂0(n))q〉GH

= q!
∑
p+k=q

(N + k + p− 3) · · · (N + p− 2)

p! k!
·

· 〈τ0(α1) · · · τ0(αN) (τ0(n))p〉

=
∑
p+k=q

q!

p!

(
N + k + p− 3

k

)
〈τ0(α1) . . . τ0(αN) (τ0(n))p〉

=
∑
p+k=q

q!

p!

(
N + k + p− 3

k

)
Hα1...αN n...n︸︷︷︸

p

, (2.27)

which exactly coincides with 〈τ̂0(α1) . . . τ̂0(αN) (τ̂0(n))q〉IH on the inversion-transformed
side (2.23).

In terms of graphs, equations (2.26) and (2.27) can be expressed in the following way:

〈τ̂0(α1) . . . τ̂0(αN) (τ̂0(n))q〉GH =:

eα1
eαN

H

en en︸ ︷︷ ︸
q

(2.28)
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=
∑
p+k=q

(
q

k

)
eα1

eαN

en en︸ ︷︷ ︸
p

e1

ψ

e1

ψ︸ ︷︷ ︸
k

=
∑
p+k=q

q!

p!

(
N + k + p− 3

k

)
eα1

eαN

en en︸ ︷︷ ︸
p

Now we look at the graphs with a non-zero number of internal edges, which turn out
to correspond precisely to the second-to-last term of (2.21). By the discussion above
about graphs, they contribute only to correlators of the form〈

τ̂0 (α) τ̂0 (ᾱ) τ̂0 (β) τ̂0

(
β̄
)

(τ̂0 (n))k
〉G

Q

(where the index G attached to correlator means that it corresponds to the Givental-
transformed potential, and the index Q means that we take just the part coming from
graphs with at least one internal edge), and this contribution is the following (for 2 ≤
α, β, ᾱ, β̄ ≤ n− 1):〈

τ̂0 (α) τ̂0 (ᾱ) τ̂0 (β) τ̂0

(
β̄
)

(τ̂0 (n))k
〉G

Q

k! |Aut((α, β, ᾱ, β̄))|

=
1

|Aut2(α, β)|

( ∑
m1+m2=k

1

m1!m2!
〈τ0 (α) τ0 (ᾱ) (τ1 (1))m1 τ0 (µ)〉

(r1)µν
〈
τ0 (ν) τ0 (β) τ

(
β̄
)

(τ1 (1))m2
〉

+
∑

m1+m2+m3
=k−1

1

m1!m2!m3!
〈τ0 (α) τ (ᾱ) (τ1 (1))m1 τ0 (µ1)〉 (r1)µ1ν1

〈τ0 (ν1) τ0 (n) (τ1 (1))m2 τ0 (µ2)〉 (r1)µ2ν2
〈
τ0 (ν2) τ0 (β) τ

(
β̄
)

(τ1 (1))m2
〉

+ · · ·
+ 〈τ0 (α) τ0 (ᾱ) τ0 (µ1)〉 (r1)µ1ν1 〈τ0 (ν1) τ0 (n) τ0 (µ2)〉 (r1)µ2ν2 · · ·

· · · 〈τ0 (νk) τ0 (n) τ0 (µk+1)〉 (r1)µk+1νk+1
〈
τ0 (νk+1) τ0 (β) τ

(
β̄
)〉)

. (2.29)

The contribution of each product of correlators on the right hand side is given by
(−1)pm1! · · · · ·mp+1!, where p+ 1 is the number of correlators in the product. Thus, the
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result is equal to〈
τ̂0 (α) τ̂0 (ᾱ) τ̂0 (β) τ̂0

(
β̄
)

(τ̂0 (n))k
〉G

Q

=
k! |Aut((α, β, ᾱ, β̄))|
|Aut2(α, β)|

k+1∑
p=1

(−1)p
(
k + 1

p

)
= −k! |Aut((α, β, ᾱ, β̄))|

|Aut2(α, β)|
, (2.30)

which coincides with what we have on the inversion-transformed side (2.25). This con-
cludes the proof. In terms of graphs formula (2.29) takes the following form:

〈
τ̂0 (α) τ̂0 (ᾱ) τ̂0 (β) τ̂0

(
β̄
)

(τ̂0 (n))k
〉G

Q
=:

en+1−α en+1−β

Q

en en︸ ︷︷ ︸
k

eα eβ

=
k! |Aut((α, β, ᾱ, β̄))|
|Aut2(α, β)|

(
−

∑
m1+m2=k

1

m1!m2!

en+1−α en+1−β

e1 e1

e1

ψ

e1

ψ︸ ︷︷ ︸
m1

e1

ψ

e1

ψ︸ ︷︷ ︸
m2

eα eβ

+
∑

m1+m2+m3=k−1

1

m1!m2!m3!

en+1−α en+1−β

e1 e1 e1 e1

e1

ψ

e1

ψ︸ ︷︷ ︸
m1

e1

ψ

e1

ψ

en

︸ ︷︷ ︸
m2

e1

ψ

e1

ψ︸ ︷︷ ︸
m3

eα eβ

+ · · ·

+ (−1)k+1

en+1−α en+1−β

e1 e1 e1 e1

en

e1 e1

en

eα eβ

︸ ︷︷ ︸
k + 2 vertices

)

= −k! Aut(α, β, ᾱ, β̄)

# Aut2(α, β)
. (2.31)
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Remark 2.2.2. Note that in this Section we used neither semi-simplicity of the Frobenius
structure nor the Euler vector field. The Givental group element that we obtained acts
perfectly without any extra assumptions, except for the analyticity of F (t) at point
(0, . . . , 0, 1). Even this last assumption is not necessary due to the following reasons.
Since inversion transformation is singular at the origin, in Dubrovin’s original formulation
analyticity at some point other than the origin is implicitly assumed. This domain of
analyticity can very well not include (0, . . . , 0, 1). However, one can deal with this in
Givental approach by considering not only the action of R̂-operator, but also the action
of Ψ̂-operator [52], which has a simple form. This will make formulas a bit less nice,
so for this reason we consider here only the case when F (t) is analytical at (0, . . . , 0, 1).
Going to the more general case with the help of Ψ̂-operator is rather straightforward.

2.3 Relation to Schlesinger transformations

In the semi-simple case, the inversion transformation of Frobenius structures originates
from a Schlesinger transformation of a special differential operator [26]:

Λ = ∂z − U −
1

z
[Γ(u), U ], (2.32)

where U is the diagonal matrix of canonical coordinates

U =

 u1

. . .

un

 (2.33)

and Γ is the Darboux-Egoroff matrix.
With the help of the results of [15] and our known form of R̂-matrix we are now able

to reproduce the formula for the Schlesinger transformation for the rotation coefficients
γij from [26]:

γ̂ij = γij − Aij, (2.34)

Aij =

√
∂it1∂jt1

t1

in Givental approach. We prove the following

Proposition 2.3.1. R̂-transformation of rotation coefficients gives

γ̂ij = γij −
√
∂it1∂jt1

1 + t1
. (2.35)

Proof of Proposition 2.3.1. Following [15], for the infinitesimal deformation of γ we have
(we write all of the indices explicitly in order to get all of the instances of the metric
correctly):

(r1z)̂ γij = − (Ψ0)iα (r1)αβ η
βγ (Ψ0)jγ , (2.36)

(r1z)̂ (Ψ0)iα = (Ψ1)iβ (r1)βα − (Ψ0)iβ (r1)βγ η
γδ (Ψ0)jδ δjk (Ψ1)kα ,

(r1z)̂ (Ψ1)iα = (Ψ2)iβ (r1)βα − (Ψ0)iβ (r1)βγ η
γδ (Ψ0)jδ δjk (Ψ2)kα ,

...
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Here by Ψi, i = 0, 1, 2, . . . , we denote the twisted wave functions of the multi-KP
hierarchy as in [15].

Taking into account that r1 has only one nonzero element, we see that this chain actu-
ally terminates in the sense that Ψ2 never enters the expression for the total deformation
of γ, and also taking into account that [26, 97]

n∑
k=1

(Ψ0)k1 (Ψ1)k1 = t1, (2.37)

we arrive at the following formula for transformed rotation coefficients:

γ̂ij = γij − (Ψ0)i1 (Ψ0)j1
(
1− t1 + (t1)2 − (t1)3 + . . .

)
(2.38)

= γij −
√
∂it1∂jt1

1 + t1
.

Here we should recall that in order to get our R̂-matrix, we made a shift to the point
(0, . . . , 0, 1). Due to flat metric being anti-diagonal with unit components, we also have
t1 = tn. This means that the right hand side of (2.38) actually coincides with that of
(2.34), which proves the claim.

2.4 Implications for integrable hierarchies

The result of Section 2.2 allows us to explicitly obtain inversion-transformed Hamiltonians
of the principal hierarchy. We prove the following

Proposition 2.4.1. Linear span of R̂-transformed Hamiltonians of the principal hier-
archy coincides with the linear span of inversion-transformed Hamiltonians obtained in
[75].

Proof of Proposition 2.4.1. In order to prove this proposition, we use the results of [14]
for the deformation of Ωα,p;β,q under Givental transformation, where

Ωα,p;β,q =
∂2F0

∂tα,p∂tβ,q
, (2.39)

where F0 is the total genus zero potential with descendants.
In the case of genus zero and for our R̂-operator, for the infinitesimal deformation of

Hamiltonians

θα,p = Ωα,p;1,0, (2.40)

we have (following [14]):

(r1z)̂ θα,p = U θα,p + δnαθ1,p+1, (2.41)

where operator U is given by

U = −vn − 1

2

n∑
γ=1

vγvn+1−γ ∂

∂v1
+ vn

n∑
γ=1

vγ
∂

∂vγ
. (2.42)
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This infinitesimal deformation can be exponentiated to give the inversion-transformed
Hamiltonians:

θ̂α,p (v̂) = (exp (U (v)) θα,p (v) + δnα exp (U (v)) θ1,p+1 (v))

∣∣∣∣
v=v̂

. (2.43)

Now we are able to compare our results with the ones of [75], where the inversion-
transformed Hamiltonians are given in a bit less explicit form:

θ̂LXZ1,0 (v̂) = − 1

vn
, θ̂LXZ1,p (v̂) = −θn,p−1(v)

vn
, p ≥ 1, (2.44)

θ̂LXZα,p (v̂) =
θα,p(v)

vn
, 2 ≤ α ≤ n− 1, p ≥ 0,

θ̂LXZn,p (v̂) =
θ1,p+1(v)

vn
, p ≥ 0,

Applying the inverse inversion transformation, we get (for 2 ≤ α ≤ n− 1)

θ̂LXZα,p (v̂) = −v̂nθα,p
(∑n

i=1 v̂
iv̂n+1−i

2v̂n
,− v̂

2

v̂n
, . . . ,− v̂

n−1

v̂n
,− 1

v̂n

)
(2.45)

= (1− ε)θα,p

(
v̂1 − 1

2

∑n−1
i=2 v̂

iv̂n+1−i

1− ε
,
v̂2

1− ε
, . . . ,

v̂n−1

1− ε
,

1

1− ε

)

Now it’s easy to see that the operator from (2.43) makes exactly this change of variables in
the function θα,p, which proves the coincidence of Hamiltonians θα,p for 2 ≤ α ≤ n−1. In
an analogous way, for α = 1 and α = n we see that our Hamiltonians do not coincide with
the ones of [75] but are instead certain linear combinations of them, which is perfectly valid
due to the fact that only the linear span of the collection of Hamiltonians is unambiguously
defined.

Remark 2.4.2. In principle, the result of [14] gives also a deformation formula for the
Hamiltonians of the full Dubrovin-Zhang hierarchy that is reduced to Equation (2.41)
in genus 0. An advantage of Equation (2.41) is that it is an ODE whose right hand
side is linear in Hamiltonians, and therefore we can immediately write a nice closed
formula for its solution. In the general case the right hand side appears to be quadratic.
This still allows to integrate the corresponding ODE formally, but the resulting formulas
don’t say much about the inverse-transformed Hamiltonians. The same is true for the
tau-functions.
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Chapter 3

Identification of the Givental
formula with the spectral curve
topological recursion procedure

This chapter is based on paper [103], joint work with N. Orantin, S. Shadrin and L. Spitz.
In this chapter we establish the identification of Givental formula and the local spectral
curve topological recursion procedure with an appropriate choice of initial data. Then,
as a corollary, we prove the Norbury–Scott conjecture on the spectral curve topological
recursion for the Gromov–Witten theory of CP1.

This chapter deals with the Givental theory and the spectral curve topological recur-
sion theory; for more information on both theories we refer to [44, 73, 87] as possible
sources. In Section 3.1 we recall the Givental theory, and present the Givental formula as
a sum over graphs. In Section 3.2 we do the same for the topological recursion. In Section
3.3 we prove the theorem on identification of the two theories and provide a corresponding
dictionary. In Section 3.4 we provide the computations showing that this identification
works for the spectral curve proposed by Norbury and Scott for the Gromov-Witten
theory of CP1.

3.1 Givental group action as a sum over graphs

In this section we review the Givental group action and we remind the reader how it can
be used to write the partition function of an N -dimensional semi-simple cohomological
field theory as an operator acting on the product of N KdV τ -functions. Using this, we
write the partition function for such a cohomological field theory as a sum over decorated
graphs. This is essentially the same as what was done in Chapter 2; in the present chapter
the contributions are distributed in a slightly different way over the components of the
graph to make the comparison with the topological recursion.

3.1.1 Givental group action

We remind the reader of the original formulation, due to Y.-P. Lee, of the infinitesimal
Givental group action in terms of differential operators [70, 71, 72].
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Consider the space of partition functions for N -dimensional cohomological field the-
ories

Z = exp

(∑
g≥0

~g−1Fg

)
(3.1)

in variables vd,i, d ≥ 0, i = 1, . . . , N . There is a fixed scalar product ηij = δij on the
vector space V := 〈e1, . . . , eN〉 of primary fields corresponding to the indices i = 1, . . . , N .
Furthermore, we will denote by e1 the vector in V that plays the role of the unit.

Later on we will also use the so-called correlators

〈τd1(ei1)τd2(ei2) · · · τdk(eik)〉g

which correspond to the coefficients of formal power series Fg in the following way:

Fg =
∑ 〈τd1(ei1)τd2(ei2) · · · τdk(eik)〉g

|Aut((im, dm)km=1)|
vd1,i1 · · · vdk,ik , (3.2)

where |Aut((im, dm)km=1)| denotes the number of automorphisms of the collection of multi-
indices (im, dm) and where the sum is such that it includes each monomial vd1,i1 · · · vdk,ik
exactly once. Note that in the special case of a Gromov-Witten theory for some manifold
X, these correlators carry the following meaning:

〈τd1(ei1)τd2(ei2) · · · τdk(eik)〉g =
∑
deg

∫
[Xg,k,deg]

ev∗1(ei1)ψ
d1
1 ev∗2(ei2)ψ

d2
2 · · · ev∗k(eik)ψ

dk
k , (3.3)

where [Xg,k,deg] is the moduli space of degree deg stable maps to X of genus-g curves with
k marked points, evi is the evaluation map at the ith point and ψ correspond to ψ-classes.

Consider a sequence of operators rl ∈ Hom(V, V ) for l ≥ 1, such that the operators
with odd (resp., even) indices are symmetric (resp., skew-symmetric). Then we denote
by (rlz

l)̂ the following differential operator:

(rlz
l)̂ := −(rl)

i
1

∂

∂vl+1,i
+
∞∑
d=0

vd,i(rl)
j
i

∂

∂vd+l,j
+

~
2

l−1∑
m=0

(−1)m+1(rl)
i,j ∂2

∂vm,i∂vl−1−m,j .

Here the indices i, j ∈ {1, . . . , N} on rl correspond to the basis {e1, . . . , eN} of V , and
the index 1 corresponds to the unit vector e1. When we write rl with two upper-indices
we mean as usual that we raise one of the indices using the scalar product η.

Given such a sequence of operators rl, we define an operator seriesR(z) in the following
way

R(z) =
∞∑
l=0

Rlz
l := exp

(
∞∑
l=1

rlz
l

)
. (3.4)

The quantization R̂ of this series is defined by

R̂ = exp

(
∞∑
l=1

(
(−1)lrlz

l
)
ˆ

)
. (3.5)
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Givental observed that the action of such operators R̂ on formal power series Z for which
the number of ψ-classes (given by the first index of vd,µ) at any monomial of degree n is
no more than 3g−3 +n, is well-defined. The main theorem of [51] states that this action
preserves the property that Z is a generating function of the correlators of a cohomological
field theory with target space (V, η) (see also [65, 93]).

Remark 3.1.1. Note that this definition of R̂ differs from the one in Chapter 2 by the
sign (−1)l. It is needed here to agree with Givental’s notation in Proposition 3.1.3, cf. [52,
Proposition 7.3]. For the same reason, in order to agree with the conventions of Givental,
we label in a matrix by the upper index the column and by the lower index the row.

3.1.2 Givental operator for a Frobenius manifold

Let Z({td,µ}) be the partition function of some N -dimensional semi-simple conformal co-
homological field theory. We recall the construction (due to Givental [52, 53, 54], see also
Dubrovin [24]) of an operator series R(z) as in the previous section whose quantization
takes the product of N KdV τ -functions to Z.

Let F be the restriction of log(Z) to the genus zero part without descendants. Denote
tµ := t0,µ. Then F can be interpreted as a formal Frobenius manifold with metric

ηαβ =
∂3F

∂t1∂tα∂tβ
(3.6)

and Frobenius algebra structure cγαβ

cαβγ =
∂3F

∂tα∂tβ∂tγ
. (3.7)

We can assume that ηαβ = δα+β,n+1 and e1 = e1. According to [26] it is always possible
by an appropriate choice of these flat coordinates tµ.

Canonical coordinates

Another set of coordinates is given by the canonical coordinates {ui} which can be found
as solutions to Equation (3.54) from [26], and have the property that {∂i := ∂/∂ui} forms
a basis of canonical idempotents of the Frobenius algebra product. In these coordinates
the metric is diagonal and the unit vector field is given by e1 = ∂1 + · · ·+ ∂N .

Define ∆i := 1/(∂i, ∂i) to be the inverse of the square of the length of the ith canonical

basis element, and call {∂/∂vi := ∆
1/2
i ∂/∂ui} the normalized canonical basis in the

tangent space. We denote the coordinates corresponding to this basis by vi, and the
formal variables corresponding to these coordinates by vd,i. They are precisely the formal
variables vd,i appearing in the previous section.

Let U be the matrix of canonical coordinates U = diag(u1, . . . , uN) and denote by Ψ
the transition matrix from the flat to the normalized canonical bases. That is, denoting
dt = (dt1, . . . , dtN)T and du = (du1, . . . , duN)T, one has

∆−1/2du = Ψdt, (3.8)

where ∆ = diag(∆1, . . . ,∆N).

Remark 3.1.2. Note that Ψ obtained with the help of the definition above depends on
the point p of the Frobenius manifold.

47



Recursion

Construct an operator series R(z) =
∑

k≥0Rkz
k as in the previous section in the following

way.
Recursively define the off-diagonal entries of Rk in normalized canonical coordinates

by solving the equation
Ψ−1d(ΨRk−1) = [dU,Rk]. (3.9)

using R0 = I as a base case. Construct the diagonal entries of Rk by integrating the next
equation

Ψ−1d(ΨRk) = [dU,Rk+1] (3.10)

using the fact that the diagonal entries of [dU,Rk+1] are equal to zero. To fix the inte-
gration constant, use the Euler equation

Rk = −(iEdRk)/k, (3.11)

where E =
∑
ui∂i is the Euler field (here we use the fact that we started with a conformal

cohomological field theory).
This procedure recursively defines Rk for all k. The following proposition is essentially

proved in Givental’s papers [52, 53].

Proposition 3.1.3. Let F be a local N-dimensional Frobenius manifold structure, semi-
simple at the origin, and let (Rk) be the series of operators constructed from this F by
the recursive procedure described above, at the origin. Let Ψ and ∆ be as above, taken at
the origin as well. Then we have the following formula:

F0 = Res
~=0

d~ · log Ψ̂R̂∆̂T . (3.12)

Here F0 = F0({td,µ}) is the genus 0 descendant potential of cohomological field theory
associated to F ; T is the product of N KdV tau-functions,

T := ZKdV({ud,1}) · · ·ZKdV({ud,N});

∆̂ replaces the variables of ith KdV τ -function according to ud,i = ∆
1/2
i vd,i and replaces ~

with ∆i~, while Ψ̂ is the change of variables vd,i = Ψi
νt
d,ν. The unit for the R-action is

given by (Ψ1
1, . . . ,Ψ

N
1 ).

Remark 3.1.4. In fact, using Teleman’s result in [93], one has a refined version of Equa-
tion (3.12):

Z = Ψ̂R̂∆̂T . (3.13)

Note that it holds for cohomological field theories. In the Gromov-Witten case, when
quadratic terms in the potential cannot be neglected, there appears an additional com-
plication, see the next remark below.

Remark 3.1.5. Givental’s formula [52] for a Gromov-Witten total descendant potential
(without the (g = 1, n = 0)-term),

Z = Ŝ−1Ψ̂R̂∆̂T , (3.14)
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also includes the operator Ŝ, given by

Ŝ = exp

(
∞∑
l=1

(slz
−l)̂

)
, (3.15)

where the operators (slz
−l)̂ are defined in the following way (see, e. g., [51, Section 4.2]):

∞∑
l=1

(slz
−l)̂ =− (s1)µ1

∂

∂t0,µ
+

1

~

∞∑
d=0

(sd+2)1,µ t
d,µ (3.16)

+
∞∑
d=0
l=1

(sl)
µ
ν t

d+l,ν ∂

∂td,µ
+

1

2~
∑
d1,d2
µ2,µ2

(−1)d1(sd1+d2+1)µ1,µ2 t
d1,µ1td2,µ2 .

Note that formula (3.15) for the quantization of S differs from the analogous formula (3.5)
for R by a factor of (−1)l in the exponent, which agrees with the definition in Givental’s
papers [53, 52].

The matrices sk are defined through the following relation:

S(z) =
∞∑
k=0

Skz
−k = exp

(
∞∑
l=0

slz
−l

)
, (3.17)

where for S(z), taken at a point p of the Frobenius manifold, we have (see [52]), for any
points a and b of the Frobenius manifold,

(a, b Sp) := (a, b) +
∞∑
k=0

〈τ0(a) exp (τ0(p)) τk(b)〉0 z
−1−k. (3.18)

Here on the left hand side the brackets stand for the scalar product on the tangent space
to the Frobenius manifold at p, and we used an identification of the tangent space with
the whole Frobenius manifold, since in this case the Frobenius manifold is itself a vector
space. If p is the origin, we have just

(a, b S) := (a, b) +
∞∑
k=0

〈τ0(a)τk(b)〉 z−1−k. (3.19)

Note that this S action is defined in the general case when the total descendant genus
0 potential is known. For the case when only a Frobenius potential is specified, the choice
of S is then called a calibration of the Frobenius manifold, see [53, 24] for related details.
In the case of cohomological field theory when we disregard quadratic terms, the S action
is trivial if p is taken to be the origin.

It turns out that in most of the relevant cases, e.g. for the Gromov-Witten theory of
CP1 (see section 3.4.1 below), the only relevant term in equation (3.16) is

∞∑
d=0
l=1

(sl)
µ
ν t

d+l,ν ∂

∂td,µ
,
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since (s1)µ1 vanishes and all other terms just change the unstable terms in the potential.

This means, that in these cases Ŝ−1 just performs a linear change of formal variables
td,µ in the following way:

td,µ 7→
∞∑
m=d

(Sm−d)
µ
ν t
m,ν . (3.20)

3.1.3 Expressions in terms of graphs

In Chapter 2 the action of an operator series as in equation (3.5) is written as a sum
over graphs. By Remark 3.1.4, this allows us to construct the potential of any semi-
simple conformal cohomological field theory as a sum over graphs. Here we repeat the
construction of Chapter 2 in a slightly different way that will be more convenient for the
comparison with the topological recursion formalism. Furthermore, we also include the
action of ∆̂. It is easy to see that the construction is equivalent to that of Chapter 2.

Notation 3.1.6. Let γ be any graph. By a half-edge we mean either a leaf or an edge
together with a choice of one of the two vertices it is attached to. By V (γ), E(γ), H(γ)
and L(γ) we denote the sets of vertices, edges, half-edges and leaves of γ. For any vertex v
of γ, denote by H(v) the set of half-edges connected to v.

Let Γ̃ be the set of all connected graphs γ together with a choice of disjoint split-
ting L(γ) = L∗(γ)

∐
L•(γ), a labelling of the vertices by pairs (g, i) ∈ Z≥0 × {1, . . . , N}

and a labelling of the elements of H(γ) by non-negative integers, such that the label of
a leaf in L• is always greater than one. The elements of L∗(γ) are called ordinary leaves,

the elements of L• are called dilaton leaves. We denote by Γ the subset of all graphs in Γ̃
that are stable; that is, any vertex labelled (0, i) for some i is of valence at least three.

For any graph γ denote by g : V (γ)→ Z≥0 and i : V (γ)→ {1, . . . , N} the maps that
associate to any vertex its first and second label respectively, and by k : H(γ) → Z≥0

the map that associates to any half-edge its label. Denote by v : L(γ) → V (γ) the map
that associates to each leaf the corresponding vertex, and by v1, v2 : E(γ) → V (γ) and
by h1, h2 : E(γ) → H(γ) the maps that associate to an edge the first and second vertex,
and the corresponding half-edges respectively.

Remark 3.1.7. The labels introduced above are used to keep track of different data for the
trivial cohomological field theory; g is for the genus, i for the primary field in canonical
coordinates and the labelling of the marked half-edges is for the power of ψ-class.

Remark 3.1.8. As in Chapter 2, edges of a graph in Γ are considered to be oriented (this
allows to define the maps v1 and v2 unambiguously); the final result does not depend on
the orientation.

Let R(z)ij be the components of the operator series R(z) in normalized canonical basis
as computed in Section 3.1.2. To each part of a graph γ ∈ Γ we assign some polynomial
in formal variables ~ and vd,i. Here ~ is used to keep track of the genus, while the first
index of vd,i keeps track of the number of ψ-classes and the second index keeps track of
the normalized canonical coordinate.
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Leaves

To each ordinary leaf l ∈ L∗ marked by k attached to a vertex marked by the pair (g, i),
we assign

(L∗)ik(l) := [zk]

(∑
d≥0

(
(R(−z))ijv

d,jzd
))

, (3.21)

which corresponds to the second term in (3.4).

To a dilaton leaf λ ∈ L•(γ) marked by k attached to a vertex marked by (g, i) we
assign

(L•)ik(λ) := [zk−1]
(
−(R(−z))i1

)
, (3.22)

which corresponds to the first term in (3.4), which is called the dilaton shift.

Edges

To an edge e connecting a vertex v1 marked by (g1, i1) to a vertex v2 marked by (g2, i2)
and with markings k1 and k2 at the corresponding half-edges, we assign

E i1,i2k1,k2
(e) := [zk1wk2 ]

(
~ · δ

i1i2 −
∑

s(R(−z))i1s (R(−w))i2s
z + w

)
. (3.23)

Note that this does not depend on the choice of ordering of the vertices and that it follows
from the fact that R(z) can be written as R(z) = exp(

∑
rlz

l) that the numerator on the
right-hand side is equal to the product of (z + w) with some power series in z and w, so
this definition makes sense.

Vertices

Let v be a vertex marked by (g, i) with n half-edges attached to it (this includes all
ordinary and dilaton leaves and also half-edges that are parts of internal edges) labelled
by k1, . . . , kn. Then we assign to v the following expression:

V(g,i)
{k1,...,kn}(v) := ~g−1(∆i)

1
2

(2g−2+n)

∫
M̄g,n

ψk11 · · ·ψknn . (3.24)

Z as a sum over graphs

It is easy to see that the sum over all graphs in Γ of the product of the contributions
described above, weighted by the inverse order of the automorphism group of the graph,
is equal to the graph-sum described in Chapter 2 (the only difference is that now we
have specialized to the action on the trivial cohomological field theory, leading to ψ-class
integrals (3.24) as vertex contributions). Thus, we recover the partition function Z of the
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cohomological field theory we started with as a sum over Γ:

(R̂∆̂T )({vd,j}) =
∑
γ∈Γ

1

|Aut(γ)|∏
v∈V (Γ)

~g(v)−1(∆i(v))
1
2

(2g(v)−2+val(v))

〈 ∏
h∈H(v)

τk(h)

〉
g∏

e∈E(γ)

E i(v1(e)),i(v2(e))
k(h1(e)),k(h2(e))(e)

∏
l∈L∗(γ)

(L∗)i(v(l))
k(l) (l)

∏
λ∈L•(γ)

(L•)i(v(l))
k(l) (λ). (3.25)

3.2 Topological recursion

In this section, we define a local version of the topological recursion and write the corre-
sponding invariants as a sum over graphs, which allows us to compare it to the Givental
action in the next section.

3.2.1 Local topological recursion

We define a local version of the topological recursion in the following way. The term local
refers to the fact that the data are all defined locally around the canonical coordinates
without any reference to the possible existence of a global manifold where these functions
can be defined.

Definition 3.2.1. For N ∈ N∗, we call times a set of N families of complex numbers
{hik}k∈N for i = 1, . . . , N and jumps another set of N × N infinite families of complex

numbers
{
Bi,j
k,l

}
(k,l)∈N2

for i, j = 1, . . . , N . We finally define a set of canonical coordinates

{ai}Ni=1 ∈ CN subject to ai 6= aj for i 6= j.
For all i, j ∈ {1, . . . , N}, we define the following set of analytic functions and differ-

ential forms in a neighborhood of 0 ∈ C:

xi(z) := z2 + ai , yi(z) :=
∞∑
k=0

hikz
k (3.26)

and

Bi,j(z, z′) = δi,j
dz ⊗ dz′

(z − z′)2 +
∞∑

k,l=0

Bi,j
k,lz

kz′ldz ⊗ dz′. (3.27)

For 2g−2+n > 0, we define the genus g, n-point correlation functions ωi1,...,ing,n (z1, . . . zn)
recursively by

ωi0,i1,...,ing,n+1 (z0, z1, . . . , zn) :=
N∑
j=1

Res
z→0

∫ z
−z B

i0,j(z0, ·)
2 (yj(z)− yj(−z)) dxj(z)

×ωj,j,i1,...,ing−1,n+2 (z,−z, z1, . . . , zn) +
∑

A∪B={1,...,n}

g∑
h=0

ωj,iAh,|A|+1(z, zA)ωj,iBg−h,|B|+1(−z, zB)

 ,

(3.28)
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where for any set A, we denote by zA (resp., iA) the set {zk}k∈A (resp., {ik}k∈A), and
where the base of the recursion is given by

ωi0,1(z) := 0; ωi,j0,2(z, z′) := Bi,j(z, z′). (3.29)

For convenience, in the sequel we denote

Ki,j(z, z′) =

∫ z
−z B

i,j(z′, ·)
2(yj(z)− yj(−z))dxj(z)

(3.30)

and

ωg,n(~z) =
∑
~i

ω
~i
g,n(~z) , (3.31)

where the length of ~z and ~i is n.

3.2.2 Correlation functions and intersection numbers

The correlation functions built by this topological recursion can actually be written in
terms of intersection of ψ classes on the moduli space of Riemann surfaces. This result
is a slight generalization of [36, 37] to the local topological recursion.

3.2.3 One-branch point case

The link between the topological recursion formalism and intersection numbers on the
moduli space of Riemann surfaces comes from the application of this formalism to the
Airy curve. This case corresponds to N = 1 and:

x(z) = z2 + a , y(z) = z and B(z, z′) =
dz ⊗ dz′

(z − z′)2 . (3.32)

Remark 3.2.2. Since there is only one branch point in this case, i.e. N = 1, we omit the
superscript indicating which branch point we consider in the notations of this section.

For further convenience, we introduce two additional parameters by considering the
curve

x(z) = z2 + a , y(z) = αz and B(z, z′) = β
dz ⊗ dz′

(z − z′)2 , (3.33)

the usual Airy curve being α = β = 1. In this case, the topological recursion reads

ωg,n+1(z0, z1, . . . , zn) := Res
z→0

β

2α

dz0

2z dz

1

(z2
0 − z2)

×ωg−1,n+2(z,−z, z1, . . . , zn) +
∑

A∪B={1,...,n}

g∑
h=0

ωh,|A|+1(z, zA)ωg−h,|B|+1(−z, zB)

 (3.34)

and one has
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Lemma 3.2.3. The correlation functions of the Airy curve can be expressed in terms of
intersection numbers:

ωg,n(z1, . . . , zn) =(
− β

2α

)2g+n−2

βg+n−1
∑

α1,...,αn≥0

〈τa1 . . . τan〉g,n
n∏
i=1

(2αi + 1)!! dzi

z2αi+2
i

. (3.35)

This lemma was proved many times by direct computation [41, 36, 44, 99], matching
the topological recursion with the recursive definition of the intersection numbers.

As a side note, the first few correlation functions are

ω0.3(z1, z2, z3) = −β
3

2α

3∏
i=1

dzi
z2
i

, (3.36)

ω0,4(z1, z2, z3, z4) =
β5

4α2

4∏
i=1

dzi
z2
i

4∑
i=1

3

z2
i

, (3.37)

ω1,1(z) =
−β2

2α

dz

8z4
(3.38)

and

ω1,2(z1, z2) =
β4

4α2

dz1 dz2

8z2
1z

2
2

(
5

z4
1

+
5

z4
2

+
3

z2
1z

2
2

)
. (3.39)

Remark 3.2.4. It is important to remark that there exist different conventions in the literature
for defining the topological recursion, mainly differing by a change of sign of the recursion kernel.
The latter can be recovered by a change of sign α→ −α.

Let us now consider a deformation of the Airy curve which we will refer to as the KdV
curve in the following. It has only one branch point, N = 1, and reads

x(z) = z2 + ai

y(z) = α

∞∑
k=1

hkz
k

B(z, z′) = βBKdV(z, z′) = βdz ⊗ dz′(z − z′)2

. (3.40)

The corresponding correlation functions can also be expressed in terms intersection num-
bers as follows:

Lemma 3.2.5. The correlation functions of the KdV curve read:

ωg,n(z1, . . . , zn) =

(
− β

2αh1

)2g+n−2

βg+n−1

∞∑
m=0

(−1)m

m!∑
~α∈N∗m

m∏
k=1

(2αk + 1)!!
h2αk+1

h1

n∏
i=1

(2di + 1)!! dzi

z2di+2
i

〈
n∏
j=1

τdj

m∏
k=1

ταk+1

〉
g,n+m

. (3.41)
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Proof. Once again the proof can be found in the literature [41, 46, 36]. However, let us
study a graphical interpretation of this result when considering an arbitrary convention
for the topological recursion. For f(z) an analytic function around z → 0 and {Tk}k∈Z a
set of parameters, one can compute

Res
Z1→0

Res
Z2→0

K(Z1, z)

{(∑
k≥1

TkZ
k
1

)
dZ1K(Z2,−Z1)f(Z2) [dZ2]2

−

(∑
k≥1

Tk(−Z1)k

)
dZ1K(Z2, Z1)f(Z2) [dZ2]2

}
(3.42)

where the recursion kernel is the one of the Airy curve, i.e. the one for which hk = 0 for
k ≥ 2:

K(z, z0) =
β

2αh1

dz0

2z dz

1

(z2
0 − z2)

. (3.43)

One can move the integration contours to get

Res
Z1→0

Res
Z2→0

= Res
Z2→0

Res
Z1→0

+ Res
Z2→0

Res
Z1→Z2

+ Res
Z2→0

Res
Z1→−Z2

. (3.44)

The first term of the right hand side vanishes since the integrand does not have any
pole at Z1 → 0. Let us now compute one of the other two terms:

Res
Z2→0

Res
Z1→Z2

K(Z1, z)

(∑
k≥1

TkZ
k
1dZ1

)
K(Z2,−Z1)f(Z2) [dZ2]2 =

− Res
Z2→0

β

2αh1

dZ2

2Z2

f(Z2) Res
Z1→Z2

dz

2Z1

1

(z2 − Z2
1)

β

2αh1

1

(Z2
1 − Z2

2)

(∑
k≥1

TkZ
k
1dZ1

)
=

= − Res
Z2→0

β

2αh1

dZ2dz

2Z2

f(Z2)
1

(z2 − Z2
2)

β

2αh1

∑
k≥1

Tk
4
Zk−2

2 . (3.45)

In the same way,

Res
Z2→0

Res
Z1→−Z2

K(Z1, z)

(∑
k≥1

TkZ
k
1dZ1

)
K(Z2,−Z1)f(Z2) [dZ2]2 =

= − Res
Z2→0

β

2αh1

dZ2dz

2Z2

f(Z2)
1

(z2 − Z2
2)

β

2αh1

∑
k≥1

Tk
4

(−Z2)k−2. (3.46)

The sum of these two terms reads

Res
Z2→0

Res
Z1→±Z2

K(Z1, z)

(∑
k≥1

TkZ
k
1dZ1

)
K(Z2,−Z1)f(Z2) [dZ2]2 =

= − Res
Z2→0

β

2αh1

dZ2dz

2Z2

f(Z2)
1

(z2 − Z2
2)

β

2αh1

∑
k≥1

T2k

2
(Z2)2k−2 (3.47)
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and finally:

Res
Z1→0

Res
Z2→0

K(Z1, z)

{(∑
k≥1

TkZ
k
1

)
dZ1K(Z2,−Z1)f(Z2) [dZ2]2

−

(∑
k≥1

Tk(−Z1)k

)
dZ1K(Z2, Z1)f(Z2) [dZ2]2

}
=

= Res
Z2→0

β

2αh1

dZ2dz

2Z2

f(Z2)
1

(z2 − Z2
2)

(
− β

2αh1

)∑
k≥1

T2k(Z2)2k−2. (3.48)

On the other hand, plugging in the times hk amounts to computing similar quantities:

Res
z→0

β

2αh1

dz0

2z dz

1

(z2
0 − z2)

1(
1 +

∞∑
k=1

h2k+1

h1
z2k

)f(z) [dz]2 =

= Res
z→0

β

2αh1

dz0

2z dz

1

(z2
0 − z2)

f(z) [dz]2 (1−
∞∑
k=1

h2k+1

h1

z2k +

[
∞∑
k=1

h2k+1

h1

z2k

]2

+ . . . ) (3.49)

The first term of this sum is the Airy recursion kernel. The second one is of the shape of
the preceding one with T2k+2 = 2αh2k+1

h1
for k ≥ 1 so that:

− Res
z→0

β

2α

dz0

2z dz

1

(z2
0 − z2)

f(z) [dz]2
∞∑
k=1

h2k+1

h1

z2k =

= Res
Z1→0

Res
Z2→0

K(Z1, z0)
{
g(Z1)dZ1K(Z2,−Z1)f(Z2) [dZ2]2

−g(−Z1)dZ1K(Z2, Z1)f(Z2) [dZ2]2
}

(3.50)

where

g(z) :=
∑
k≥1

2αh2k+1

βh1

z2k+2. (3.51)

This same procedure can be applied to the other terms of the sum. The kth order
term can be written as a sequence of k + 1 residues computed with the Airy recursion
kernel with g(z)dz on one of the outgoing legs. This computation shows that introducing
non-vanishing times amounts to introducing a non-vanishing ω0,1(z) := g(z)dz in the
topological recursion.

It is often useful to represent the topological recursion in a graphical form by repre-
senting the interaction kernel K(z, z0) by an edge oriented from z0 towards a trivalent
vertex labelled by z and the function ω0,2(z1, z2) by a non-oriented edge (see [48] for more
details about this set of graphs). In this form, ωg,n(z1, . . . , zn) is a sum over trivalent
graphs of genus g with n leaves labelled by the arguments z1, . . . , zn. The preceding com-
putation shows that the correlation functions of the KdV curve can be obtained from the
correlation functions of the Airy curve by introducing a set of new leaves, called dilation
leaves, in the definition of the graphs used. A dilation leave decorated by a label k is
weighted by

(2d− 1)!! Res
z→0

g(z)
dz

z2d+1
= (2d− 1)!!

2αh2d−1

β
. (3.52)
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Plugging this expression into the formula for the Airy correlation functions proves the
result.

General case

In this section we give a formula for the correlation function of the local topological
recursion.

Definition 3.2.6. Let Γg,n be the subset of Γ (see Notation 3.1.6) consisting of graphs of
genus g′ such that g′+

∑
v∈V (Γ) g(v) = g and with n ordinary leaves. Let us also introduce

orderings on the ordinary leaves and denote by Γ̌g,n the set of all graphs from Γg,n with
all possible orderings on the ordinary leaves. For a given graph with a fixed ordering
γ̌ ∈ Γ̌g,n for an ordinary leaf of that graph l ∈ L∗(γ̌) we denote by m(l) the index of
this particular leaf (then m(l) is an integer from 1 to n such that different leaves have
different values m(l) assigned to them).

Theorem 3.2.7. The correlation functions can be written as a sum over decorated graphs
whose vertices are weighted by intersection of ψ-classes on Mg,n, edges by the jumps,
ordinary leaves by primitives of B and dilaton leaves by the times.

For 2− 2g − n < 0, one has

ωg,n(~z) =
1

n!

∑
γ̌∈Γ̌g,n

∏
v∈V (γ̌)

(
−2h

i(v)
1

)2−2g(v)−val(v)
〈 ∏
h∈H(v)

τk(h)

〉
g(v),val(v)∏

e∈E(γ̌)

B̌
i(v1(e)),i(v2(e))
k(h1(e)),k(h2(e))

∏
l∈L∗(γ̌)

N∑
j=1

dξ
i(v(l))
k(l) (zm(l), j)

∏
λ∈L•(γ̌)

ȟ
i(v(λ))
k(λ) (3.53)

with
ȟik := 2(2k − 1)!!hi2k−1, (3.54)

dξid(zα, j) := Res
z→0

(2d+ 1)!!dz

z2d+2

∫ z

Bi,j(z, zα), (3.55)

B̌i,j
d1,d2

:= Bi,j
2d1,2d2

(2d1 − 1)!! (2d2 − 1)!! (3.56)

and 〈
n∏
i=1

τki

〉
g,n

:=

∫
Mg,n

ψk11 ψ
k2
2 . . . ψknn . (3.57)

Proof. The proof is very similar to the one presented in [37, 68]. However, we prefer
to present a completely graphical proof so that the link with the next sections becomes
clear.

We follow the proof of [37]. From the definition, one can write the correlation functions
as a sum over graphs with oriented and non-oriented arrows linking trivalent vertices
resulting in the following expression:

ω
~i
g,n(~z) =

∑
G∈Ĝg,n

ω(G) (3.58)
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with Ĝg,n the set of genus g trivalent graphs with one root and n − 1 leaves labelled by
the arguments zi and a skeleton tree of oriented edges pointing from the root towards the
leaves weighted by

ω(G) =
~∏

v∈V (G)

Res
Zv→0

∏
e∈Eoriented(G)

Ki(v1(e)),i(v2(e))(Zv1(e), Zv2(e))∏
e∈Eunoriented(G)

Bi(v1(e)),i(v2(e))(Zv1(e), Zv2(e))

(3.59)

where each leaf is considered as a one-valent vertex v and one denotes Zv the variable zi
associated to this leaf in the correlation function, Eoriented(G) is the set of oriented leaves
of G and Eunoriented(G) is the set of unoriented leaves of G (see [48] for further details).

The product of residues
~∏

v∈V (G)

Res Zv→0 is oriented following the arrows, i.e. one first

computes the residue corresponding to the end of an arrow before the one associated to
its root.

It is useful to remark, that, for any edge, oriented or not, one has two types of
contributions. Indeed, the functions Bi,j(z, z′) have a singular part

Bi,j
KdV(z, z′) := δi,j

dz ⊗ dz′

(z − z′)2
(3.60)

and a regular part

Bi,j
reg(z, z′) :=

∞∑
k,l=0

Bi,j
k,lz

kz′ldz ⊗ dz′ (3.61)

when z → z′:
Bi,j(z, z′) = Bi,j

KdV(z, z′) +Bi,j
reg(z, z′). (3.62)

In the same way, one has

Ki,j(z, z′) = Ki,j
KdV(z, z′) +Ki,j

reg(z, z′). (3.63)

One can translate this by representing Bi,j
KdV(z, z′) (resp. Bi,j

reg(z, z′)) by dashed (resp.

dotted) unoriented edges and Ki,j
KdV(z, z′) (resp. Ki,j

reg(z, z′)) by dashed (resp. dotted)
oriented edges form z to z′. The preceding sum is thus transformed into a sum over
graphs where the edges are dotted or dashed and weighted accordingly.

The dashed edges can be expressed in a slightly different way. Indeed, one has

Bi,j
reg(z, z′) = Res

z1→z
Res
z2→z′

Bi,i
KdV(z, z1)

[∫ z1
∫ z2

Bi,j
reg(z1, z2)

]
Bj,j

KdV(z2, z
′) (3.64)

and

Ki,j
reg(z, z′) = Res

z1→z
Res

z2→±z′
Bi,i

KdV(z, z1)

[∫ z1
∫ z2

Bi,j
reg(z1, z2)

]
Kj,j

KdV(z2, z
′) (3.65)

by a simple application of the Cauchy formula.
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Remember that such an edge comes with integration of its boundary variables, thus,
one typically has to compute

Res
z→0

Res
z′→0

g(z)Ki,j
reg(z, z′)f(z′) (3.66)

which reads

Res
z→0

Res
z1→z

Res
z′→0

Res
z2→±z′

g(z)Bi,i
KdV(z, z1)

[∫ z1
∫ z2

Bi,j
reg(z1, z2)

]
Kj,j

KdV(z2, z
′)f(z′). (3.67)

One can move the integration contours around 0 thanks to:

Res
z→0

Res
z1→z

= Res
z1→0

Res
z→0
− Res

z→0
Res
z1→0

(3.68)

and

Res
z′→0

Res
z2→±z′

= Res
z2→0

Res
z′→0
− Res

z′→0
Res
z2→0

. (3.69)

Since, the integrand does not have any pole as z1 → 0 nor z2 → 0, this shows that 3.66
is equal to

Res
z1→0

Res
z→0

Res
z2→0

g(z)Bi,i
KdV(z, z1)

[∫ z1
∫ z2

Bi,j
reg(z1, z2)

]
Res
z′→0

Kj,j
KdV(z2, z

′) f(z′). (3.70)

In the same way, one gets that

Res
z→0

Res
z′→0

g(z)Bi,j
reg(z, z′)f(z′) (3.71)

is equal to

Res
z1→0

Res
z→0

Res
z2→0

g(z)Bi,i
KdV(z, z1)

[∫ z1
∫ z2

Bi,j
reg(z1, z2)

]
Res
z′→0

Bj,j
KdV(z2, z

′) f(z′). (3.72)

One can finally proceed in a similar way for re-expressing the weights of the root and the
leaves by writing1

Res
z′→0

Ki,j(z, z′)f(z′) = Res
z2→0

[∫ z2

Bi,j(z, z2)

]
Res
z′→0

Kj,j
KdV(z2, z

′) f(z′) (3.73)

and

Res
z→0

g(z)Bi,j(z, z′) = Res
z1→0

Res
z→0

g(z)Bi,i
KdV(z, z1)

[∫ z1

Bi,j(z1, z
′)

]
. (3.74)

As a result, by applying this transformation to each dotted line, any graph is composed
of a set of dotted subgraphs whose vertices have the same label separated by dashed lines.
Since each subgraph with label i also includes a root and leaves, it is a contribution to the
correlation functions obtained for the case N = 1, times hik and vanishing jumps Bi,i

k,l = 0.

1Remark that, for the roots and leaves, in opposition to the inner edges, the functions are the full
ones, not just the regular part.
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In the sum over graphs, one can thus replace every sum over such sub-graphs by vertices
of corresponding genus weighted by the correlation function for N = 1, which reads

ω
~i
g,n(~z) =

∑
γ∈Γg,n

Ω(γ) (3.75)

where

Ω(γ) =
∏

v∈V (γ)

∏
h∈H(v)

Res
Zh→0

ω
KdV,i(v)
g(v),val(v)

(
{Zh}h∈H(v)

)
∏

e∈E(γ)

∫ Zh1(e)
∫ Zh2(e)

Bi(v1(h)),i(v2(h))
reg (Zh1(e), Zh2(e))

∏
h∈L∗(γ)

∫ Zh

Bi,j(Zh, zh) (3.76)

where ωKdV,i
g,n (z1, . . . , zn) is the genus g, n-pointed correlation function obtained from the

topological recursion in the case N = 1 and the initial data:
x(z) = z2 + ai

y(z) =
∞∑
k=1

hikz
k

B(z, z′) = BKdV(z, z′) = dz⊗dz′
(z−z′)2

. (3.77)

As explained in the preceding section, it can be expressed in terms of intersection numbers:

ωKdV,i
g,n (z1, . . . , zn) =

(
−2hi1

)2−2g−n
∞∑
m=0

(−1)m

m!∑
~α∈N∗m

m∏
k=1

(2αk + 1)!!
hi2αk+1

hi1

n∏
i=1

(2di + 1)!! dzi

z2di+2
i〈
n∏
j=1

τdj

m∏
k=1

ταk+1

〉
g,n+m

(3.78)

which can be made more symmetric under the exchange of the ordinary and dilation
leaves by writing

ωKdV,i
g,n (z1, . . . , zn) =

∞∑
m=0

(−2h1)2−2g−n−m 1

m!∑
~α∈N∗m

m∏
k=1

(2αk − 1)!!2hi2αk−1

n∏
i=1

(2di + 1)!! dzi

z2di+2
i〈

n∏
j=1

τdj

m∏
k=1

ταk

〉
g,n+m

(3.79)
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Absorbing the factors of the form

(2d+ 1)!!dz

z2d+2
(3.80)

into the corresponding half-edge contribution, the weight of an inner edge becomes

Res
z1→0

Res
z2→0

∫ z1
∫ z2

Bi,j
reg(z1, z2)

(2d1 + 1)!!dz1

z2d1+2
1

(2d2 + 1)!!dz1

z2d2+2
2

(3.81)

which is equal to
B̌i,j
d1,d2

:= Bi,j
2d1,2d2

(2d1 − 1)!! (2d2 − 1)!! (3.82)

while the weight of the ordinary leaves becomes

dξid(zα, j) := Res
z→0

(2d+ 1)!!dz

z2d+2

∫ z

Bi,j(z, zα), (3.83)

where one considers both the singular and non-singular part of Bi,j(z, zα). Collecting
these contributions together proves the theorem.

3.2.4 Change of scales

An important property of the correlation functions built in this way is their homogeneity
property which reads

∀λ ∈ C , ωg,n(~zN |x, λy,B) = λ2−2g−nωg,n(~zN |x, y, B) (3.84)

One can thus get an additional factor λi by replacing hik → λihik resulting in a rescaling

of the weight of the vertices by
(
λi(v)

)2−2g(v)−val(v)
.

3.2.5 Weights, Laplace transform and recursive definition

It is interesting to note that the weights of the edges are the coefficient of the Laplace
transform of B:

B̌i,j(u, v) :=
∑

(k,l)∈N2

B̌i,j
k,lu
−kv−l (3.85)

is equal to

B̌i,j(u, v) = δi,j
uv

u+ v
+
√
uveuai+vaj

2π

∫
x(z)−ai∈R+

∫
x(z′)−aj∈R+

Bi,j(z, z′)e−ux(z)−vx(z′). (3.86)

In [37], it was proved that, if dx is a meromorphic form defined on a Riemann surface,
B̌i,j(u, v) can be factorized and expressed in terms of some basic functions. Here, we will
consider the converse and build Bi,j

k,l by induction in such a way that there exist a set of

functions {fi,j(u)}Ni,j=1 such that

B̌i,j(u, v) =
uv

u+ v

(
δi,j −

N∑
k=1

fi,k(u)fk,j(v)

)
. (3.87)
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Let us define the coefficients Bi,j
k,l recursively in terms of the initial data Bi,j

k,0 by
imposing that

ξid+1(z, j) := −2
dξid(z, j)

dx[j](z)
−

b∑
k=1

B̌i,k
d,0 ξ

k
0 (z, j), (3.88)

or, in terms of the Laplace transform

f id(u, j) :=

√
u

2
√
π

∫
x(z)−aj∈R+

e−u(x(z)−aj)dxj(z) ξid(z) (3.89)

= δi,j(−1)dud −
∑
d′

B̌i,j
d,d′u

−d′−1,

it reads

f id+1(u, j) := −2uf id(u, j)−
N∑
k=1

B̌i,k
d,0 f

k
0 (z, j). (3.90)

With this definition, one has

B̌i,j(u, v) =
uv

u+ v

(
δi,j −

b∑
k=1

fk0 (u, i)fk0 (v, j)

)
. (3.91)

3.3 Identification of the two theories

In this section we show how to find a local spectral curve corresponding to any semi-simple
conformal Frobenius manifold.

Suppose some local spectral curve is given. For any i ∈ {1, . . . , N} and k ∈ Z≥0 define

W i
k(z) :=

N∑
j=1

d

((
−1

z

d

dz

)k
ξi0(z, j)

)
.

Theorem 3.3.1. Let R be some series of operators on an N-dimensional vector space V
as in Section 3.1. Let Z = R̂∆̂T , where T is a product of N KdV τ -functions, be the
partition function of the corresponding semi-simple cohomological field theory.

Define a local spectral curve by the following data

B̌i,j
p,q := [zpwq]

δij −
∑N

s=1 R
i
s(−z)R(−w)js

z + w
(3.92)

and

ȟik := [zk−1]
(
−R(−z))i1

)
(3.93)

hi1 := − 1

2
√

∆i
. (3.94)

Let ωg,n be the genus g, n-pointed topological recursion invariant of this spectral curve
and denote by

Ω({vd,i}) =

(∑
g,d

ωg,d(z1, . . . , zd)
∣∣∣
W i
d(zm)=vd,i

~g−1

)
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their sum after a change of variables W i
k(zm) ↔ vd,i for all m. Then the partition

function of the cohomological field theory and the topological recursion invariants agree
in the following sense:

Z({vd,i}) = exp
(
Ω({vd,i})

)
. (3.95)

Proof. In Sections 3.1 and 3.2 we have given representations of Z and ωg,n as sums over
the set Γ (in fact, in the case of ωg,n this set is Γ̌ rather than Γ, but after changing the
variables W i

k(zm) ↔ vd,i we can take the sum over orderings and arrive at the sum over
Γ acquiring an additional factor of n!, which cancels with the corresponding factor in
(3.53)). We prove the theorem by showing that the contribution of each individual graph
to Z is equal to the contribution to Ω.

Let γ ∈ Γ be some graph. Note that on both sides we assign the same weight to
the vertices of γ, namely to a vertex labelled (g, i) with n half-edges attached to it
labelled d1, . . . , dn we associate

(−2hi1)2−2g−n 〈τd1 · · · τdn〉g,n . (3.96)

Furthermore, by equation (3.92), any edge in γ contributes the same to Z and Ω.
Let l be an ordinary leaf of γ labelled by k attached to a vertex labelled by (g, i). We

use induction on k to show that the contribution to Z is the same as the contribution
to Ω.

The contribution of l to Z is given by

Lik(l) = [zk]

(∑
d

(R(−z))ijv
d,jzd

)
=

k∑
d=0

(−1)k−d(Rk−d)
i
jv
d,j. (3.97)

When k = 0, the contribution of l to Ω is given by∑
j

dξi0(zj, j) = W i
0. (3.98)

Since (R0)ij = δij, the contributions to Z and Ω agree when k = 0.
Now suppose that they agree for some k ∈ Z≥0. That is, suppose that

∑
j

dξik(z
j, j) =

k∑
l=0

(−1)k−l(Rk−l)
i
sW

s
l . (3.99)

Then, using Equation (3.88), the contribution of the leaf to Ω for the index k+ 1 is given
by

∑
j

dξik+1(zj, j) =
∑
j

d

(
−2

∂ξik(z
j, j)

∂xj
−

N∑
t=1

B̌i,t
k,0ξ

t
0(zj, j)

)

=
∑
j

d

(
− 1

zj
∂

∂zj
ξik(z

j, j)−
n∑
t=1

−(−1)k+1(Rk+1)itξ
t
0(zj, j)

)

=
k∑
l=0

(−1)l(Rl)
i
tW

t
k+1−l + (−1)k+1(Rk+1)itW

t
0 =

k+1∑
l=0

(−1)l(Rl)
i
tW

t
k+1−l, (3.100)
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where we used equation (3.92) to write

B̌i,t
k,0 = −(−1)k+1(Rk+1)it. (3.101)

This completes the induction, and since it is clear that the dilaton leaves contribute
the same in both cases, it also completes the proof of the theorem.

Remark 3.3.2. The theorem above deals with the potential of a cohomological field theory
written in terms of formal variables vd,i corresponding to normalized canonical basis. In
order to pass to flat coordinates one can change the variables in the following way:

vd,i = Ψi
µt
d,µ. (3.102)

On the spectral curve side it will correspond to changing the variables W i
k in the following

way:
W i
k = Ψi

µV
µ
k . (3.103)

Thus, the theorem holds in the same form for the potential of cohomological field
theory written in terms of formal variables td,µ, only one should identify td,µ with V µ

d .

Remark 3.3.3. Above we established the correspondence between cohomological field the-
ories and symplectic invariants of spectral curves. However, as noted in Remark 3.1.5,
in the case of Gromov-Witten theories we cannot disregard quadratic terms. So, in the
formula for the total descendent potential an additional operator Ŝ appears. In some
cases, again see Remark 3.1.5, it performs only a linear change of formal variables td,µ

on which the potential depends. Thus, to establish the correspondence in this case, one
has to change the variables W i

k in precisely the same way, and then identify the resulting
variables with td,µ, similar to the case of previous remark. Occasionally, the changes of
variables preformed by Ψ̂ and Ŝ−1 can be a re-expansion of ωg,n in a new coordinate
on the spectral curve. We explain this procedure in detail for the case of CP1 below in
section 3.4.

Remark 3.3.4. The system of equations obtained via a Laplace transform from the equa-
tions of Givental for the R-matrix (that is, the so-called equations of deformed flat connec-
tion) is studied in detail in [24, Section 5]. This gives, in particular, a recipe to reconstruct
the two-point function directly from the Frobenius structure bypassing the reconstruction
of the R-matrix. This also explains why we call the critical values a1, . . . , aN of x the
canonical coordinates.

3.4 The Norbury-Scott conjecture

In this section we recall and prove the Norbury-Scott conjecture on the stationary sector
of the Gromov-Witten theory of CP1.

3.4.1 Gromov-Witten theory of CP1

The Gromov-Witten theory of CP1 is discussed from the geometric point of view in many
sources, see e. g. [82]. Givental proved in [52] that his formula for the formal Gromov-
Witten potential coincides with the geometric Gromov-Witten potential of CP1, so we
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discuss it here only from the Givental point of view, ignoring the geometric background.
The same computations one can find in [92, 91].

The underlying structure of Frobenius manifold is determined by the following solution
of the WDVV equation

1

2
(t1)2t2 + et

2

, (3.104)

and the scalar product given by (
0 1
1 0

)
. (3.105)

All ingredients of the Givental formula depend on a particular choice of the point on the
Frobenius manifold, and in this case we choose the point (0, 0) in the coordinates (t1, t2).

We perform a direct computation following the recipe of Givental in [53], see also
Section 3.1.2. As a possible choice of the canonical coordinates, we use

u1 = t1 + 2 exp(t2/2); (3.106)

u2 = t1 − 2 exp(t2/2). (3.107)

In particular, for t1 = t2 = 0 we have u1 = −u2 = 2. Then,

∆−1
1 =

〈
∂

∂u1
,
∂

∂u1

〉
=

exp(−t2/2)

2
; (3.108)

∆−1
2 =

〈
∂

∂u2
,
∂

∂u2

〉
=
− exp(−t2/2)

2
, (3.109)

so we can choose the square roots as

∆
−1/2
1 =

exp(−t2/4)√
2

; (3.110)

∆
−1/2
2 =

−i exp(−t2/4)√
2

, (3.111)

and for this choice we have the following matrix of transition from the basis given by
(∂/∂t1, ∂/∂t2) to the normalized canonical basis:

Ψ =

(
exp(−t2/4)√

2

−i exp(−t2/4)√
2

exp(t2/4)√
2

i exp(t2/4)√
2

)
. (3.112)

It is the matrix Ψ = Ψi
α, where α labels the rows and corresponds to the flat basis, while

i labels the columns and corresponds to the normalized canonical basis.

The recipe of reconstruction of the matrix R from [53] gives at the origin the matrix
R(ζ) =

∑∞
k=0Rkζ

k, where

Rk =
(2k − 1)!!(2k − 3)!!

24kk!
·
(
−1 (−1)k+12ki
2ki (−1)k+1

)
(3.113)
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The S matrix is given by the derivatives of the deformed flat coordinates, computed
in [27, Example 3.7.9] At the origin we have:

S(ζ−1) =I + ζ−1 ·
(

0 0
1 0

)
(3.114)

+
∞∑
k=1

ζ−2k

(k!)2

(
1− 2k

(
1
1

+ · · · 1
k

)
0

0 1

)
+
∞∑
k=1

ζ−2k−1

(k!)2

(
0 −2

(
1
1

+ · · · 1
k

)
1

k+1
0

)
.

(Note once again that we are using the convention that the matrices are acting on vector
rows, opposite to the standard one).

The unit vector at the origin in the normalized canonical basis is equal to

e = (1, 0) ·

(
1√
2

−i√
2

1√
2

i√
2

)
=

(
1√
2
,
−i√

2

)
. (3.115)

Therefore, the dilaton leaves (cf. Equation (3.22)) in the Givental formula for CP1 at
the origin are

(L•)1
k+1 =

1√
2
· (−1)k+1 ((2k − 1)!!)2

k!24k
; (3.116)

(L•)2
k+1 =

i√
2
· ((2k − 1)!!)2

k!24k
(3.117)

for k ≥ 0.

Proposition 3.4.1. The Gromov-Witten potential of CP1,

ZCP1(~, {t`,1, t`,2}∞`=0), (3.118)

is obtained from R̂∆̂Z⊗2
KdV (understood as a sum over graphs in the sense of Section 3.1.3

and written down in the normalized canonical basis, that is, in the variables vd,i, d ≥ 0,
i = 1, 2) via a linear change of variables given by

∞∑
m≥k

(
tm,1, tm,2

)
Skζ

m−k =
∞∑
`=0

(
v`,1, v`,2

)
ζ` ·Ψ−1, (3.119)

and a correction of the unstable terms (that is, (g, n)-correlators with 2g − 2 + n ≤ 0).

Proof. In order to get the Gromov-Witten potential of CP1 as given by the Givental
formula, we have to apply the Ψ̂- and Ŝ−1-action to the expression in terms of graphs
discussed in Section 3.1.3 that corresponds to R̂∆̂Z⊗2

KdV. The Ψ̂-action is just a linear
change of variable by definition. The general S-action is discussed in [51, Section 4.2].
It is a combination of a shift of variables that vanishes in our case (indeed, (1, 0)S1 =
(0, 0)), the linear change of variables that we have in the statement of Proposition, and
a correction of unstable terms that is not essential for us.
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3.4.2 The Norbury-Scott conjecture

Norbury and Scott [81] propose the following construction. They consider a spectral
curve given by {

x = z + 1
z
;

y = log z,
(3.120)

and the standard two-point function

B(z, z′) =
dz ⊗ dz′

(z − z′)2
. (3.121)

Via topological recursion they obtain the n-forms ωg,n that they consider in the global
variable x, and they conjecture the following theorem (they prove it for g = 0, 1):

Theorem 3.4.2. For 2g − 2 + n > 0, we have:

n∏
j=1

(
− Res

xj=∞

1

(aj + 1)!
x
aj+1
1

)
ωg,n(x1, . . . , xn) = 〈

n∏
j=1

τ2,aj〉g, (3.122)

where 〈
∏n

j=1 τ2,aj〉g is the corresponding correlator in ZCP1, that is, the coefficient of

~g−1
∏n

j=1 t2,aj/|Aut(a1, . . . , an)| in logZCP1.

In the rest of this section we prove this theorem, identifying all ingredients of the
topological recursion with the corresponding parts of the Givental formula.

3.4.3 Proof of the Norbury-Scott conjecture

Local coordinates near the branch points

We denote the local coordinates by z1 =
√
x− 2 and z2 =

√
x+ 2. Then we have:

x = z2
1 + 2 near x = 2, z = 1, z1 = 0; (3.123)

x = z2
2 − 2 near x = −2, z = −1, z2 = 0. (3.124)

Therefore,

z = 1 +
z2

1

2
± z1

√
1 +

z2
1

4
; (3.125)

z = −1 +
z2

2

2
± iz2

√
1− z2

2

4
. (3.126)

In both cases we choose + for ±.

Expansion of y

Recall that y = log z. The direct computation shows:

y =

∫
dz1√
1 +

z21
4

; (3.127)

y =

∫
−i dz2√
1− z22

4

; (3.128)
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Note that

1√
1 +

z21
4

= 1 +
∞∑
k=1

z2k
1 ·

(−1)k(2k − 1)!!

k!23k
; (3.129)

−i√
1− z22

4

= −i+
∞∑
k=1

z2k
2 ·

(−i) · (2k − 1)!!

k!23k
. (3.130)

Therefore

y = z1 +
∞∑
k=1

z2k+1
1 · (−1)k(2k − 1)!!

k!23k(2k + 1)
; (3.131)

y = −iz2 +
∞∑
k=1

z2k+1
2 · (−i) · (2k − 1)!!

k!23k(2k + 1)
. (3.132)

Thus the coefficients ȟik+1, k ≥ 0, are given by the following formulas:

ȟ1
k+1 = 2 · (−1)k ((2k − 1)!!)2

k!23k
; (3.133)

ȟ2
k+1 = 2 · (−i) · ((2k − 1)!!)2

k!23k
. (3.134)

Matrix fi,j(w)

We use the following definition of the matrix fij(w) (cf. Equation (3.87)):

fij(w) = δij − wB̌[ij](0, w−1), (3.135)

where w = v−1. We use B̃ij
0,l = (Bij

reg)0,2l(2l − 1)!!, and the following expressions:

B11
reg(0, z1) =

[
dz(z′1)⊗ dz(z1)

(z(z′1)− z(z1))2
− dz′1 ⊗ dz1

(z′1 − z1)2

]
z′1=0

(3.136)

B12
reg(0, z2) =

[
dz(z′1)⊗ dz(z2)

(z(z′1)− z(z2))2

]
z′1=0

(3.137)

B21
reg(0, z1) =

[
dz(z′2)⊗ dz(z1)

(z(z′2)− z(z1))2

]
z′2=0

(3.138)

B22
reg(0, z2) =

[
dz(z′2)⊗ dz(z2)

(z(z′2)− z(z2))2
− dz′2 ⊗ dz2

(z′2 − z2)2

]
z′2=0

(3.139)
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Therefore,

B11
reg(0, z1) =

1

z2
1

 1√
1 +

z21
4

− 1

 (3.140)

B12
reg(0, z2) =

i

4(1− z22
4

)3/2
(3.141)

B21
reg(0, z1) =

i

4(1 +
z21
4

)3/2
(3.142)

B22
reg(0, z2) =

1

z2
2

 1√
1− z22

4

− 1

 (3.143)

So, we have the following expansions:

B11
reg(0, z1) =

∞∑
k=0

z2k
1 ·

(−1)k+1(2k + 1)!!

(k + 1)!23(k+1)
(3.144)

B12
reg(0, z2) =

∞∑
k=0

z2k
2 ·

i(2k + 1)!!

(k)!23k+2
(3.145)

B21
reg(0, z1) =

∞∑
k=0

z2k
2 ·

i(−1)k(2k + 1)!!

(k)!23k+2
(3.146)

B22
reg(0, z2) =

∞∑
k=0

z2k
2 ·

(2k + 1)!!

(k + 1)!23(k+1)
. (3.147)

The formulas for fij(w) are then

f11(w) = 1 +
∞∑
k=1

wk · (−1)k+1(2k − 1)!!(2k − 3)!!

k!23k
(3.148)

f12(w) =
∞∑
k=1

wk · −i(2k − 1)!!(2k − 3)!!

(k − 1)!23k−1
(3.149)

f21(w) =
∞∑
k=1

wk · (−1)ki(2k − 1)!!(2k − 3)!!

(k − 1)!23k−1
(3.150)

f22(w) = 1 +
∞∑
k=1

wk · −(2k − 1)!!(2k − 3)!!

k!23k
(3.151)

This coincides with the formula for the
∑∞

k=0 Rk2
k(−w)k at the point (0, 0).

Comparison of the coefficient of (g, n,m)-vertex

In this section we consider a vertex of genus g with n attached half-edges or ordinary
leaves, and m dilaton leaves, with an associated intersection
number 〈

∏n
i=1 τdi

∏m
i=1 τai+1〉g,n+m. There are vertices of type 1 and type 2, depending
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on the canonical coordinate that we associate to the vertex. We compare the coefficients
that we associate to these vertices in the Givental case, using the data from Section 3.4.1
in Formula (3.25), and in the case of local topological recursion, using the data from
Sections 3.4.3-3.4.3 in Formula (3.53).

The coefficients that we have in Formula (3.53) (at the vertex of the type 1 and 2
resp.):

(−2)2−2g−n−m and (2i)2−2g−n−m. (3.152)

Let us compute how these coefficients change if we take into account all the differences
between R-matrix and the dilaton leaves. First, observe that the extra factor of 2k in Rk

and, in addition, an extra factor of
√

2 that we have to put by hand on each ordinary
leave give us together the extra factors of

2
∑n
i=1 di2n/2 and 2

∑n
i=1 di2n/2. (3.153)

Then the quotient of the contributions of the dilaton leaves gives us the extra factors of

2
∑m
i=1(ai+1)2m/2(−1)m and 2

∑m
i=1(ai+1)2m/2(−1)m. (3.154)

Let us assign by hand an extra factor of (−1)2g−2+n to each (g, n,m)-vertex. This way
we get the following coefficients:

2g−1+n/2+m/2 and 2g−1+n/2+m/2i2g−2+n+m. (3.155)

These coefficients are precisely(
(∆1)1/2

)2g−2+n+m
and

(
(∆2)1/2

)2g−2+n+m
. (3.156)

Therefore, the coefficient of
∏n̂

k=1W
ik
dk

in a graph of global genus ĝ with n̂ marked
leaves in the Formula (3.53) for the set up of Norbury-Scott, multiplied by

2n̂/2(−1)2ĝ−2+n̂ = (−
√

2)n̂, (3.157)

is equal to the coefficient of
∏n̂

k=1 t
dk,ik in the same graph in Formula (3.25). This extra

factor will be taken into account via rescaling of the variables by −
√

2.

The Ψ-action

Let us apply the Ψ-operator to the leaves. After comparing the R-action with graph
expansion given formulas (3.25) and (3.53), and taking into account the extra factor of
−
√

2, we have the following identification of the marking on the leaves:∑
a−b=c

(ta,1, ta,2)Sb =
(
W 1
c ,W

2
c

)
Ψ−1/(−

√
2). (3.158)

Here

W 1
0 =

dz

(1− z)2

∣∣∣∣
z=z(z1)

+
dz

(1− z)2

∣∣∣∣
z=z(z2)

(3.159)

W 2
0 =

i dz

(1 + z)2

∣∣∣∣
z=z(z1)

+
i dz

(1 + z)2

∣∣∣∣
z=z(z2)

, (3.160)
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and

W i
c = d

((
−2

d

dx

)c ∫
W i

0

)
, (3.161)

so we can work in the global coordinate z rather than in the local coordinates z1, z2.

Since

Ψ−1/(−
√

2) =

(−1
2

−1
2

−i
2

i
2

)
, (3.162)

we have: ∑
a−b=c

(ta,1, ta,2)Sb =
(
U1
c , U

2
c

)
, (3.163)

where

U1
0 =

1

2

(
− dz

(1− z)2
+

dz

(1 + z)2

)
(3.164)

U2
0 =
−1

2

(
dz

(1− z)2
+

dz

(1 + z)2

)
(3.165)

and

U i
c = d

((
−2

d

dx

)c ∫
U i

0

)
, i = 1, 2; c = 0, 1, 2, . . . . (3.166)

The S-action

The S-action is just a linear change of variables prescribed by Equation (3.163). This
means that we replace each U i

c with a linear combination of times ta,j, a ≥ c, where the
coefficient of ta,2 (this is the series of variables corresponding to the stationary sector) is
equal to {

0, if a− c is even;
1

(k+1)·(k!)2
, if a− c = 2k + 1.

(3.167)

for i = 1, and {
1

(k!)2
, if a− c = 2k;

0, if a− c is odd.
(3.168)

for i = 2.

Norbury and Scott make the same kind of a linear change of variables, with the
coefficient of ta,2 in U j

c , j = 1, 2, given by

− Res
x=∞

1

(a+ 1)!
xa+1U j

c =
1

(a+ 1)!
Res
z=0

(
z +

1

z

)a+1

U j
c . (3.169)

In order to complete the proof of Theorem 3.4.2, we have to check two things: (1)
that the Norbury-Scott formula for the contribution depends only on the difference a− c;
(2) that for c = 0 Equation (3.169) gives exactly the same coefficients as we have in
Equations (3.167) and (3.168).
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The first thing follows directly from the formula. Indeed,

−
∮

xa+1

(a+ 1)!
d

((
−2

d

dx

)c ∫
U j

0

)
=

∮
xa

(a)!

((
−2

d

dx

)c ∫
U j

0

)
dx (3.170)

= 2c
∮

xa−c

(a− c)!

(∫
U j

0

)
dx

= −2c
∮

xa+1−c

(a+ 1− c)!
d

(∫
U j

0

)
.

In particular, we see that the coefficient is equal to 0 if a < c.
Then, a direct computation shows that

1

(a+ 1)!
Res
z=0

(
z +

1

z

)a+1

U1
0 (3.171)

=
1

(a+ 1)!
Res
z=0

(
z +

1

z

)a+1
1

2

(
− dz

(1− z)2
+

dz

(1 + z)2

)
=

1

(a+ 1)!
Res
z=0

(
z +

1

z

)a+1 −2z dz

(1− z2)2

=

{
0, if a is even;
−2

(2k+2)!

((
2k+2

0

)
· (k + 1) +

(
2k+2

1

)
· k + · · ·

(
2k+2
k

)
· 1
)

if a = 2k + 1.

=

{
0, if a is even;
−1

(k+1)(k!)2
if a = 2k + 1.

and

1

(a+ 1)!
Res
z=0

(
z +

1

z

)a+1

U2
0 (3.172)

=
1

(a+ 1)!
Res
z=0

(
z +

1

z

)a+1 −1

2

(
dz

(1− z)2
+

dz

(1 + z)2

)
=

−1

(a+ 1)!
Res
z=0

(
z +

1

z

)a+2
z dz

(1− z2)2

=

{
−1

(2k+1)!

((
2k+2

0

)
· (k + 1) +

(
2k+2

1

)
· k + · · ·

(
2k+2
k

)
· 1
)

if a = 2k;

0, if a is odd

=

{
−1

(k!)2
if a = 2k;

0, if a is odd.

We see that there is an extra factor of (−1) in all coefficients. This means that the
(g, n)-correlation functions of Norbury-Scott differ from the stationary Gromov-Witten
invariants of CP1 by the factor of (−1)n. But this factor is exactly the difference we
must have because Norbury and Scott using a different convention on the sign in the
topological recursion, cf. Remark 3.2.4. This completes the proof of Theorem 3.4.2.
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Chapter 4

Quantum spectral curve for the
Gromov-Witten theory of the
complex projective line

This chapter is based on paper [101], joint work with M. Mulase, P. Norbury, A. Popolitov
and S. Shadrin. In this chapter we prove the quantum spectral curve equation for the
Gromov-Witten theory of P1.

The chapter is organized as follows. In Section 4.2 we start with a solution Wg,n to
the topological recursion equation with respect to the spectral curve Σ of (4.13). It is
a symmetric differential form of degree n on Σn. We then propose a unique mechanism
to integrate Wg,n into a rational function. The goal of this section is to show that
this primitive function is identical to (4.5). Then in Section 4.3, we re-write Ψ(x, ~) in a
different manner, only involving stationary Gromov-Witten invariants of P1. This formula
allows us to express it in terms of a semi-infinite wedge product in Section 4.4. Using
this formalism, we reduce the quantum curve equation (4.9) to a combinatorial equation
(4.14) in Section 4.5. Equation (4.14) is then proved in Section 4.6 using representation
theory of Sd, which in turn establishes (4.9). For completeness, we give an expression of
(4.15) in terms of special values of the Laguerre polynomials in Section 4.7. Section 4.8
is devoted to the comparison of (4.9) and the Toda lattice equations of [84], in terms of
the functions Xd of (4.15).

4.1 Quantum curves

The purpose of this Chapter is to construct the quantum curve for the Gromov-Witten
invariants of the complex projective line P1. Quantum curves are conceived in the physics
literature, including [2, 21, 22, 42, 60, 63]. They quantize the spectral curves of the
theory, and are conjectured to capture the information of many topological invariants,
such as certain Gromov-Witten invariants, quantum knot invariants, and cohomology of
instanton moduli spaces for 4-dimensional gauge theory. In this chapter we show that
the conjecture is indeed true for the Gromov-Witten theory of P1.
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4.1.1 Spectral curves and quantum curves

When spectral curves appear in mathematics, they take various different forms, and
even look as totally different objects. For example, they can be the mirror curve of a
toric Calabi-Yau 3-fold, the SL2-character variety of the fundamental group of a knot
complement, or a Seiberg-Witten curve. In the context of the Gromov-Witten theory of
P1, it is the Landau-Ginzburg model

x = z +
1

z
, (4.1)

which is the homological mirror dual of P1 with respect to the standard Kähler structure.
Our main theorem (Theorem 4.1.1 below) states that the quantization of (4.1), which
we call a quantum curve, characterizes the exponential generating function of Gromov-
Witten invariants of P1.

In a purely algebro-geometric setting, a quantum curve can be understood in the
following way [30]. Let C be a non-singular complex projective algebraic curve, and η
the tautological 1-form on the cotangent bundle T ∗C. A spectral curve Σ is a complex
1-dimensional subvariety

ι : Σ −−−→ T ∗Cyπ
C

(4.2)

in the cotangent bundle, which is automatically a Lagrangian subvariety with respect to
the standard symplectic form −dη. A quantum curve is an ~-deformed D-module on the
1-parameter formal family C[[~]] of the curve C, whose semi-classical limit coincides with
the spectral curve Σ. On an affine piece of the base curve C with coordinate x, we can
choose a generator P of the D-module and consider a Schrödinger-like equation

P (x, ~)Ψ(x, ~) = 0. (4.3)

The construction of the quantum curve in this setting is established in [30] for SL(2,C)
Hitchin fibrations.

The geometric situation we consider here is slightly different. Instead of the cotangent
bundle T ∗C in (4.2), we have a surface X equipped with a C∗-invariant holomorphic
symplectic form and a spectral curve Σ is mapped into it. The base curve C is replaced
by the quotient X/C∗. For example, if a curve C admits a C∗-action then the natural
holomorphic symplectic form on X = T ∗C is C∗-invariant. In local coordinates for T ∗C,
the C∗-action is given by c · (w, z) = (cw, c−1z) and the symplectic form is given by
dx ∧ (dz/z) where x = wz is the quotient map (w, z) 7→ wz by the C∗-action. Reflecting
the C∗-action, the quantum curve (4.3) becomes a differential equation of infinite order,
or a difference equation.

We present here the first rigorous example of a direct connection between Gromov-
Witten theory and quantum curves. Our construction requires the fermionic Fock space
representation of the Gromov-Witten invariants [84], and a subtle combinatorial analysis
based on representation theory of symmetric groups.
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4.1.2 Main theorem

Let Mg,n(P1, d) denote the moduli space of stable maps of degree d from an n-pointed
genus g curve to P1. This is an algebraic stack of dimension 2g− 2 +n+ 2d. The dimen-
sion reflects the fact that a generic map from an algebraic curve to P1 has only simple
ramifications, which we can see from the Riemann-Hurwitz formula. The descendant
Gromov-Witten invariants of P1 are defined by〈

n∏
i=1

τbi(αi)

〉d

g.n

:=

∫
[Mg,n(P1,d)]vir

n∏
i=1

ψbii ev
∗
i (αi), (4.4)

where [Mg,n(P1, d)]vir is the virtual fundamental class of the moduli space,

evi :Mg,n(P1, d) −→ P1

is a natural morphism defined by evaluating a stable map at the i-th marked point of
the source curve, αi ∈ H∗(P1,Q) is a cohomology class of the target P1, and ψi is the
tautological cotangent class in H2(Mg,n(P1, d),Q). We denote by 1 the generator of
H0(P1,Q), and by ω ∈ H2(P1,Q) the Poincaré dual to the point class. We assemble
the Gromov-Witten invariants into particular generating functions as follows. For every
(g, n) in the stable sector 2g − 2 + n > 0, we define the free energy of type (g, n) by

Fg,n(x1, . . . , xn) :=

〈
n∏
i=1

(
−τ0(1)

2
−
∞∑
b=0

b!τb(ω)

xb+1
i

)〉
g,n

. (4.5)

Here the degree d is determined by the dimension condition of the cohomology classes to
be integrated over the virtual fundamental class. We note that (4.5) contains the class
τ0(1). For unstable geometries, we introduce two functions

S0(x) := x− x log x+
∞∑
d=1

〈
−(2d− 2)!τ2d−2(ω)

x2d−1

〉d
0,1

, (4.6)

S1(x) := −1

2
log x+

1

2

∞∑
d=0

〈(
−τ0(1)

2
−
∞∑
b=0

b!τb(ω)

xb+1

)2〉d

0,2

. (4.7)

The appearance of the extra terms, in particular the log x terms, will be explained in
Section 4.3. We shall prove the following.

Theorem 4.1.1 (Main Theorem). The wave function

Ψ(x, ~) := exp

(
1

~
S0(x) + S1(x) +

∑
2g−2+n>0

~2g−2+n

n!
Fg,n(x, . . . , x)

)
(4.8)

satisfies the quantum curve equation of an infinite order[
exp

(
~
d

dx

)
+ exp

(
−~ d

dx

)
− x
]

Ψ(x, ~) = 0. (4.9)

Moreover, the free energies Fg,n(x1, . . . , xn) as functions in n-variables, and hence all the
Gromov-Witten invariants (4.4), can be recovered from the equation (4.9) alone, using
the mechanism of the topological recursion of [18, 48].
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Remark 4.1.2. Put

Sm(x) :=
∑

2g−2+n=m−1

1

n!
Fg,n(x, . . . , x). (4.10)

Then our wave function is of the form

Ψ(x, ~) = exp

(
∞∑
m=0

~m−1Sm(x)

)
, (4.11)

which provides the WKB approximation of the quantum curve equation (4.9). Thus the
significance of (4.5) is that the exponential generating function (4.8) of the descendant
Gromov-Witten invariants of P1 gives the solution to the exact WKB analysis for the
difference equation (4.9).

Remark 4.1.3. For the case of Hitchin fibrations [30], the Schrödinger-like equation (4.3)
is a direct consequence of the generalized topological recursion. In our current context,
the topological recursion does not play any role in establishing (4.9).

Remark 4.1.4. Although the shape of the operator in (4.9) has a similarity with the Lax
operator of the Toda lattice equations that control the Gromov-Witten invariants of P1

[84], we are unable to find any direct relations between these two apparently different
equations. We present a detailed comparison of these equations in Section 4.8.

4.1.3 WKB approximation, topological recursion, and repre-
sentation theory

The WKB analysis provides a perturbative quantization method of a classical mechanical
problem. We can recover the classical problem corresponding to (4.9) by taking its semi-
classical limit, which is the singular perturbation limit

lim
~→0

(
e−

1
~S0(x)

[
exp

(
~
d

dx

)
+ exp

(
−~ d

dx

)
− x
]
e

1
~S0(x)e

∑∞
m=1 ~m−1Sm(x)

)
=
(
eS
′
0(x) + e−S

′
0(x) − x

)
eS1(x) = 0. (4.12)

In terms of new variables y(x) = S ′0(x) and z(x) = ey(x), the semi-classical limit gives us
an equation for the spectral curve

z ∈ Σ = C∗ ⊂ C× C∗ exp←− T ∗C = C2 3 (x, y)

by {
x = z + 1

z

z = ey
. (4.13)

This is the reason we consider (4.9) as the quantization of the Landau-Ginzburg model
(4.1).

It was conjectured in [81] that the stationary Gromov-Witten theory of P1 should
satisfy the topological recursion of [18, 48] with respect to the spectral curve (4.13). We
refer to [30, 31, 81] for a mathematical formulation of the topological recursion. The
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conjecture is solved in Chapter 3 as a corollary to its main theorem, which establishes
the correspondence between the topological recursion and the Givental formalism.

The quantum curve equation (4.9) determines only the function Ψ, and by the ~-
expansion, each coefficient Sm(x). But then how do we possibly recover Fg,n for each
(g, n) as a function in n variables? Here comes the significance of the topological recursion
of [18, 48], which was established in Chapter 3 for the case of the Gromov-Witten theory
of P1. The scenario goes as follows. First we note that the semi-classical limit of (4.9)
identifies the spectral curve (4.13). We then launch the topological recursion formalism
of [18, 48] for this particular spectral curve, and obtain symmetric differential n-forms
Wg,n(z1, . . . , zn) on Σn. In this chapter we will present a canonical way to integrate
these n-forms, which yields the free energy Fg,n(x1, . . . , xn) for every (g, n) subject to
2g − 2 + n > 0. In this sense the single equation (4.9) knows the information of all
Gromov-Witten invariants (4.4). This shows the power of quantum curves.

The key discovery of the present chapter is that the quantum curve equation (4.9) is
equivalent to a recursion equation

x

~

(
e−~

d
dx − 1

)
Xd(x, ~) +

1

1 + x
~
e~

d
dxXd−1(x, ~) = 0 (4.14)

for a rational function

Xd(x, ~) =
∑
λ`d

(
dimλ

d!

)2 `(λ)∏
i=1

x+ (i− λi)~
x+ i~

. (4.15)

Here λ is a partition of d ≥ 0 with parts λi and dimλ denotes the dimension of the
irreducible representation of the symmetric group Sd characterized by λ.

4.2 The functions Fg,n in terms of Gromov-Witten

invariants

The significance of the idea of quantum curves is that the single equation (4.3) captures
all information of the topological invariants of the theory. The key process from this single
equation to the topological invariants is the integral form of the mechanism known as the
topological recursion of [18, 48]. We refer to [30, 31, 81] for mathematical formulation of
the topological recursion. This section is devoted to providing the unique mechanism to
integrate the topological recursion, for the context of the Gromov-Witten theory of P1.

Let us begin with a solution Wg,n(z1, . . . , zn) to the topological recursion of [18, 48]
associated with the spectral curve Σ = C∗ defined by{

x(z) = z + 1
z

y(z) = log z
. (4.16)

This means that symmetric differential forms Wg,n(z1, . . . , zn) of degree n on Σn for
(g, n) in the stable range 2g−2+n > 0 are inductively defined by the following recursion
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formula:

Wg,n(z1, . . . , zn)

=
1

2πi

∮
z=±1

∫ 1/z

z
W0,2( · , z1)

W0,1(1/z)−W0,1(z)

[
Wg−1,n+1(z, 1/z, z2, . . . , zn)

+
stable∑

g1+g1=g
ItJ={2,...,n}

Wg1,|I|+1(z, zI)Wg2,|J |+1(1/z, zJ)

]
, (4.17)

where the residue integral is taken with respect to the variable z ∈ Σ on two small,
positively oriented, closed loops around z = 1 and z = −1, and for the index set I ⊂
{2, . . . , n}, we denote by |I| its cardinality, and zI = (zi)i∈I . For (g, n) in the unstable
range, we define

W0,1(z) := y(z)dx(z), (4.18)

W0,2(z1, z2) :=
dz1dz2

(z1 − z2)2
− dx(z1)dx(z2)

(x(z1)− x(z2))2
. (4.19)

The goal of this section is to derive the integral Fg,n(z1, . . . , zn) of Wg,n(z1, . . . , zn) in a
consistent and unique way that has the x-variable expansion (4.5).

Remark 4.2.1. The second term of the right-hand side of (4.19) does not play any role in
the topological recursion (4.17). It is included here for the consistency of the primitive
F0,2(z1, z2) to be discussed in Section 4.3.

Definition 4.2.2. For 2g−2+n > 0, we define the primitive Fg,n(z1, . . . , zn) of the n-form
Wg,n(z1, . . . , zn) to be a rational function on Σn that satisfies the following conditions:

d1 · · · dnFg,n(z1, . . . , zn) =Wg,n(z1, . . . , zn); (4.20)

Fg,n(z1, . . . , zi−1, 1/zi, zi+1, . . . , zn) = −Fg,n(z1, . . . , zn), i = 1, . . . , n; (4.21)

Fg,n(z1, . . . , zn)
∣∣
z1=···=zn=0

= 0. (4.22)

If it exists, then it is unique.

From now on, we need to relate functions or differential forms defined on the spectral
curve Σ = C∗ of (4.16) and on the base curve C. We recall [31] that the inverse function
of (4.1) for the branch near z = 0 and x =∞ is given by the generating function of the
Catalan numbers

z = z(x) =
∞∑
m=0

1

m+ 1

(
2m

m

)
1

x2m+1
. (4.23)

By abuse of notation, for a function or a differential form f(z) on Σ, we denote the
pull-back via (4.23) simply by f(x) := f(z(x)).

It is established in Chapter 3 that the solution Wg,n of the topological recursion has
the following x-variable expansion in terms of the stationary Gromov-Witten invariants
of P1:

Wg,n(x1, . . . , xn) =

〈
n∏
i=1

(
∞∑
b=0

(b+ 1)! τb(ω)
dxi

xb+2
i

)〉
g,n

. (4.24)
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There is no systematic mechanism to integrate this expression to obtain (4.5). Instead,
we establish the following theorem in this section.

Theorem 4.2.3. For every (g, n) in the stable sector 2g−2 +n > 0, there exists a prim-
itive Fg,n(z1, . . . , zn) in the sense of Definition 4.2.2, such that its x-variable expansion
is given by

Fg,n(x1, . . . , xn) =

〈
n∏
i=1

(
−τ0(1)

2
−
∞∑
b=0

b!τb(ω)

xb+1
i

)〉
g,n

. (4.25)

Remark 4.2.4. We need a different treatment for the unstable primitives F0,1(z) and
F0,2(z1, z2). They are calculated in Section 4.3.

The rest of this section is devoted to proving this theorem. We start with recalling
(in a bit reformulated way) some results of Chapter 3. The most important one is the
formula for Wg,n(z1, . . . , zn) in terms of the auxiliary functions W i

d(z) (defined below)
with the ancestor Gromov-Witten invariants as its coefficients. We will then prove the
existence of the anti-symmetric primitives of the functions W i

d, and their x-expansions.
This will then lead us to the proof of the above theorem, where we will also utilize the
known relations between the ancestor and the descendant Gromov-Witten invariants.

4.2.1 Some results from Chapter 3

The ancestor Gromov-Witten invariants of P1 we need are〈
n∏
i=1

τ̄bi(αi)

〉d

g,n

:=

∫
[Mg,n(P1,d)]vir

n∏
i=1

ψ̄bii ev
∗
i (αi), (4.26)

where ψ̄i denotes the pull back of the cotangent class on Mg,n by the natural forgetful
morphism

Mg,n(P1, d) −→Mg,n.

Since we adopt a quantum field theoretic point of view in calculating Gromov-Witten
invariants, we often call them correlators. The ancestor and descendant correlators do
not agree. We will give a formula to determine one from the other in (4.31).

Let us define

W 1
0 (z) :=

dz

(1− z)2
, (4.27)

W 2
0 (z) :=

idz

(1 + z)2
, (4.28)

W i
k(z) := d

((
−2

d

dx(z)

)k ∫
W i

0(z)

)
, i = 1, 2; k ≥ 0. (4.29)

Then for g ≥ 0 and n ≥ 1 with 2g − 2 + n > 0, from Theorem 3.3.1 (as shown in the
proof of Theorem 3.4.2), we have

Wg,n(z1, . . . , zn) =
∑
~d,~i

〈τ̄d1(ẽi1) . . . τ̄dn(ẽin)〉g
W i1
d1

(z1)

2d1
√

2
. . .

W in
dn

(zn)

2dn
√

2
. (4.30)
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Here the sum over ~d and ~i are taken over all integer values 0 ≤ dk and ik = 1, 2. Note
that the coefficients of this expansion are the ancestor Gromov-Witten invariants. The
cohomology basis for H1(P1,Q) is normalized as follows. First we denote by e1 = 1 and
e2 = ω. Using the normalization matrix

A =
1√
2

(
1 −i
1 i

)
,

we define

ẽi =
(
A−1

)µ
i
eµ.

In this section we use the Einstein convention and take summation over repeated indices.

With the help of the Givental formula, Proposition 3.4.1 relates the ancestor and the
descendant correlators for P1 by∑

~d,~i

〈τ̄d1(ẽi1) . . . τ̄dn(ẽin)〉g v
d1,i1 . . . vdn,in

=
∑
~d, ~µ

〈τd1(eµ1) . . . τdn(eµn)〉g t
d1,µ1 . . . tdn,µn ,

(4.31)

where vd,i and td,µ are formal variables related by the following formula:

vd,i = Aiµ

∞∑
m=d

(Sm−d)µν tm,ν . (4.32)

Here (Sk)µν are the matrix elements of the Givental S-matrix and defined by

S(ζ−1) =
∞∑
k=0

Skζ−k = I + ζ−1 ·
(

0 0
1 0

)
+
∞∑
k=1

ζ−2k

(k!)2

(
1− 2k

(
1
1

+ · · ·+ 1
k

)
0

0 1

)
+
∞∑
k=1

ζ−2k−1

(k!)2

(
0 −2

(
1
1

+ · · ·+ 1
k

)
1

k+1
0

)
.

(4.33)

In the proof of Theorem 3.4.2 it was shown that the x−1-expansion of W i
d(z) near z = 0

was given by the following formula:

W i
d(z) = 2d

√
2Aiµ

∞∑
m=d

(Sm−d)µν δν2 (m+ 1)!
dx

xm+2
, (4.34)

where δij is the Kronecker delta symbol. The above formula, together with formulas
(4.30)-(4.33), implies (4.24).

The first step of integrating Wg,n is to identify a suitable primitive of the differential
1-forms W i

d(z).
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Proposition 4.2.5. For given i = 1, 2 and d ≥ 0, there exists a uniquely defined rational
function θid(z) on Σ such that

dθid(z) = W i
d(z), (4.35)

θid(1/z) = − θid(z). (4.36)

Moreover, the x−1-expansion of θid(z) near z = 0 is given by

θid(z(x)) = 2d
√

2Aiµ

∞∑
m=d

(Sm−d)µν
(
−δν1δm0

1

2
− δν2 m!

1

xm+1

)
. (4.37)

4.2.2 Proof of Proposition 4.2.5

It is easy to see by direct computation that the rational functions

θ1
0 :=

1

1− z
− 1

2

θ2
0 := − i

1 + z
+
i

2

(4.38)

are the unique solutions of (4.35) and (4.36) for d = 0.
Equation (4.29), together with condition (4.35), implies that if θid(z) exists, then it

has to satisfy

θid(z) =

(
−2

d

dx(z)

)d
θi0(z). (4.39)

Since x is symmetric under the coordinate change z 7−→ 1/z, we see that the right-hand
side of equation (4.39) satisfies (4.36). This means that θid(z) defined by (4.39) is, for
given i and d, indeed the unique solution of (4.35) and (4.36).

We denote by θ̃id the right-hand side of (4.37). We wish to prove that the x−1-
expansion of θid(z) near z = 0 is given by θ̃id. Let us introduce the following notation:

ηµd :=
1

2d
√

2

(
A−1

)µ
i
θid. (4.40)

Then we have

η0 =

(
1

1− z2
− 1

2
,

z

1− z2

)
, (4.41)

ηµk (z) =

(
− d

dx(z)

)k
ηµ0 , (4.42)

and condition (4.37) becomes equivalent to the condition that the x−1-expansion of ηµd
near z = 0 is equal to η̃µd , where

η̃µd :=
∞∑
m=d

(Sm−d)µν
(
−δν1δm0

1

2
− δν2 m!

1

xm+1

)
. (4.43)
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Let us prove formula (4.43) for d = 0. Note that S0 = I, so for the constant term of η̃0

we have [
1

x0

]
η̃µ0 = −δµ1

1

2
. (4.44)

It is easy to see from (4.41) that ηi0 has the same constant term at z = 0.
For k ≥ 1 we have[

1

x2k−1

]
η̃1

0 = −(2k − 2)! (S2k−2)1
2 = 0,[

1

x2k−1

]
η̃2

0 = −(2k − 2)! (S2k−2)2
2 = − (2k − 2)!

((k − 1)!)2
,[

1

x2k

]
η̃1

0 = −(2k − 1)! (S2k−1)1
2 = − (2k − 1)!

k! (k − 1)!
,[

1

x2k

]
η̃2

0 = −(2k − 1)! (S2k−1)2
2 = 0.

(4.45)

For the corresponding coefficients in the x−1-expansion of ηµ0 near z = 0 we have (k ≥ 1):

Res
z=0

x2k−2(z) η1
0 dx(z) = − Res

z=0
z−2k

(
1 + z2

)2k−2
dz = 0,

Res
z=0

x2k−2(z) η2
0 dx(z) = − Res

z=0
z−2k+1

(
1 + z2

)2k−2
dz = − (2k − 2)!

((k − 1)!)2
,

Res
z=0

x2k−1(z) η1
0 dx(z) = − Res

z=0
z−2k−1

(
1 + z2

)2k−1
dz = − (2k − 1)!

k! (k − 1)!
,

Res
z=0

x2k−1(z) η2
0 dx(z) = − Res

z=0
z−2k

(
1 + z2

)2k−1
dz = 0.

(4.46)

We see that the coefficients in (4.45) precisely coincide with the ones in (4.46). This
implies that the x−1-expansion of ηµ0 is indeed given by η̃µ0 .

By virtue of (4.42), we see that the x−1-expansion of ηµk near z = 0 is given by the
following formula (for k ≥ 1):(

− d

dx

)k
ηµ0 =

∞∑
m=0

(Sm)µν

(
−δν2 (m+ k)!

1

xm+k

)
=

∞∑
m=d

(Sm−k)µν
(
−δν2 m!

1

xm+1

)
.

This coincides with the formula for η̃µk for k ≥ 1. Thus, we have proved that the x−1-
expansion of ηµk is given by η̃µk , which, in turn, implies that Equation (4.37) holds. This
concludes the proof of the proposition.

4.2.3 Proof of Theorem 4.2.3

Recall Equation (4.30) for Wg,n:

Wg,n(z1, . . . , zn) =
∑
~d,~i

〈τ̄d1(ẽi1) . . . τ̄dn(ẽin)〉g
W i1
d1

(z1)

2d1
√

2
· · ·

W in
dn

(zn)

2dn
√

2
.
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Since we know how to integrate every W i
d(z), we simply define

Fg,n(z1, . . . , zn) :=
∑
~d,~i

〈τ̄d1(ẽi1) . . . τ̄dn(ẽin)〉g
θi1d1(z1)

2dn
√

2
· · ·

θindn(zn)

2dn
√

2
. (4.47)

Then from Proposition 4.2.5, we see that (4.20) and (4.21) are automatically satisfied. We
also know from Proposition 4.2.5 that the x−1-expansion of Fg,n near z1 = · · · = zn = 0
is given by

Fg,n(x1, . . . , xn)

=
∑
~d,~i

〈τ̄d1(ẽi1) . . . τ̄dn(ẽin)〉g
n∏
k=1

Aikµk

∞∑
m=d

(Sm−d)µkνk

(
−δνk1 δ

m
0

1

2
− δνk2 m!

1

xm+1
k

)
.

Using (4.31) and (4.32), we find

Fg,n(x1, . . . , xn)

=
∑
~d,~i

〈τd1(eµ1) . . . τdn(eµn)〉g
n∏
i=1

(
−δµi1 δ

di
0

1

2
− δµi2 di!

1

xdi+1

)

=

〈
n∏
i=1

(
−τ0(1)

2
−
∞∑
b=0

b!τb(ω)

xb+1
i

)〉
g,n

.

(4.48)

The final condition (4.22) follows from the fact that 〈(τ0(1))n〉g,n = 0 for all g and n in
the stable range. This concludes the proof of the theorem.

4.3 The shift of variable simplification

Let us now turn our attention toward proving (4.9) of Theorem 4.1.1. In this section, as
the first step, we establish a formula for the wave function Ψ(x, ~) of (4.8) involving only
the stationary Gromov-Witten invariants.

Our starting point is

log Ψ(x, ~) =
1

~
S0(x) + S1(x)

+
∞∑

g,d=0

∞∑
n=1

2g−2+n>0

~2g−2+n

n!

〈(
−τ0(1)

2
−
∞∑
b=0

b!τb(ω)

xb+1

)n〉d

g,n

. (4.49)

Using the string equation and some earlier results in [31], we shall give an expression for
log Ψ(x, ~) purely in terms of the stationary sector. More precisely, we prove the following
lemma.
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Lemma 4.3.1. The function log Ψ(x, ~) is a solution to the following difference equation:

exp

(
−~

2

d

dx

)
log Ψ(x, ~) =

1

~
(x− x log x)

+
∞∑

g,d=0

∞∑
n=1

~2g−2+n

n!

〈(
−
∞∑
b=0

b!τb(ω)

xb+1

)n〉d

g,n

. (4.50)

4.3.1 Expansion of S0 and S1

The functions S0(x) and S1(x) of (4.6) and (4.7) are derived from the first steps of the
WKB method, that is, they are just imposed by the quantum spectral curve equation.
In this subsection, we represent them in terms of the unstable (0, 1)- and (0, 2)-Gromov-
Witten invariants.

First let us calculate these functions from the WKB approximation (4.11). After
taking the semi-classical limit (4.12), we can calculate S ′1(x) as follows:

e−
1
~S0(x)−S1(x)(e~

d
dx + e−~

d
dx − x)e

1
~S0(x)+S1(x)

= eS
′
0(x)+~( 1

2
S′′0 (x)+S′1(x))e~

d
dx + e−S

′
0(x)+~( 1

2
S′′0 (x)−S′1(x))e−~

d
dx − x+O(~2)

= eS
′
0(x)

(
1 + ~

(
1

2
S ′′0 (x) + S ′1(x)

))
+ e−S

′
0(x)

(
1 + ~

(
1

2
S ′′0 (x)− S ′1(x)

))
− x+O(~2)

= ~
(
S ′′0 (x)

2

(
eS
′
0(x) + e−S

′
0(x)
)

+ S ′1(x)
(
eS
′
0(x) − e−S′0(x)

))
+O(~2).

The coefficient of ~ must vanish, hence we can solve for S ′1(x). Since

S ′′0 (x) =
d

dx
S ′0(x) =

d

dx
log z =

d
dz

log z

x′(z)
=

1
z

1− 1
z2

=
1

z − 1
z

,

we find

S ′1(x) = −1

2

1

z − 1
z

z + 1
z

z − 1
z

= −1

2

z(z2 + 1)

(z2 − 1)2
. (4.51)

It is proved in [31, Equation (7.9) and Theorem 7.7] that

∞∑
d=0

〈(
−
∞∑
b=0

b!τb(ω)

xb+1

)〉d

0,1

=
∞∑
d=1

〈(
−(2d− 2)!τ2d−2(ω)

x2d−1

)〉d
0,1

= −2z +

(
z +

1

z

)
log
(
1 + z2

)
,

(4.52)

and
∞∑
d=0

〈
2∏
i=1

(
−
∞∑
b=0

b!τb(ω)

xb+1
i

)〉d

0,2

= − log (1− z1z2) . (4.53)
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One of the implications of the string equation is

〈τ0(1)τb+1(ω)〉d0,2 = 〈τb(ω)〉d0,1 .

Using this form of the string equation and Equation (4.52), we calculate that

∞∑
d=1

〈(
−1

2
τ0(1)

)(
−(2d− 1)!τ2d−1(ω)

x2d
i

)〉d
0,2

=
1

2

d

dx

(
−2z +

(
z +

1

z

)
log
(
1 + z2

))
=

1

2
log x+

1

2
log z.

(4.54)

Note that the only condition we have for S0(x) is that S ′0(x) = log z. Therefore, if we
define

S0(z) := F0,1(z) =

∫
W0,1(z) =

∫
y(z)dx(z)

by formally applying (4.10) for m = 0, and impose the skew-symmetry condition (4.21)
to the primitive F0,1(z), then from (4.52) we obtain

S0(x) =
1

z
− z +

(
z +

1

z

)
log z

= (x− x log x) +
∞∑
d=1

〈(
−(2d− 2)!τ2d−2(ω)

x2d−1
i

)〉d
0,1

.

(4.55)

The determination of S1(x) is trickier. Morally speaking, if we formally apply (4.10)
for m = 1, then we obtain

S1(x) = −1

2
F0,2(z, z) (4.56)

for the primitive

F0,2(z1, z2) =

∫ z1
∫ z2

W0,2(z1, z2)

=

∫ z1
∫ z2

(
dz1dz2

(z1 − z2)2
− dx1dx2

(x1 − x2)2

)
= − log(1− z1z2) + f(z1) + f(z2) + c. (4.57)

Here we are imposing the condition that F0,2(z1, z2) is a symmetric function. The fact
that F0,2 is a primitive of W0,2 does not determine the function f(z). Therefore, we are
free to choose f(z) so that the differential equation (4.51) holds. Obviously, we need to

choose f(z) =
1

2
log z. In this way, using (4.53) and (4.54) as well, we obtain

S1(x) = −1

2
log
(
1− z2

)
+

1

2
log z

= −1

2
log x+

1

2

∞∑
d=0

〈(
−τ0(1)

2
−
∞∑
b=0

b!τb(ω)

xb+1

)2〉d

0,2

.

(4.58)
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Remark 4.3.2. This adjustment of the choice of S1(x) also appears in the Hitchin fibration
case of [30]. Still we have one degree of freedom for choosing a constant c of (4.57). It
does not matter to the linear quantum curve equation (4.9), because the constant term
c only affects on the overall constant factor of Ψ of (4.8).

4.3.2 A new formula for log Ψ

We use Equations (4.55) and (4.58) to rewrite the formula (4.49) for log Ψ in the following
way:

log Ψ(x, ~) =
∞∑

g,d=0

∞∑
n=1

~2g−2+n(−1)n

n!
Θd
g,n, (4.59)

where

Θ0
0,1 := −x+ x log x+

~
2

log x+
∞∑
k=2

〈
τ0(1)kτk−2(ω)

〉0

0,k+1

(−1)k~k

2kk!

(k − 2)!

xk−1
(4.60)

and

Θd
g,n :=

∞∑
k=0

∞∑
b1,...,bn=0

〈
τ0(1)k

n∏
i=1

τbi(ω)

〉d

g,n+k

(−1)k~k

2kk!

∏n
i=1 bi!

xn+
∑n
i=1 bi

. (4.61)

It is obvious that for dimensional reasons, Θ0
0,n = 0 for any n ≥ 2. Lemma 4.3.1 is then

a direct corollary to the following statement.

Lemma 4.3.3. The quantities defined in (4.60) and (4.61) are given by

Θ0
0,1 = −

(
x+

~
2

)
+

(
x+

~
2

)
log

(
x+

~
2

)
; (4.62)

Θd
g,n =

∑
b1,...,bn

〈
n∏
i=1

τbi(ω)

〉d

g,n

∏n
i=1 bi!(

x+ ~
2

)n+
∑n
i=1 bi

, (4.63)

where in the second equation the sum is taken over all b1, . . . , bn ≥ 0 such that
∑n

i=1 bi =
2g + 2d− 2.

4.3.3 Proof of Lemma 4.3.3

Since the difference between the definitions (4.60)-(4.61) and the values (4.62)-(4.63) is
simply the elimination of τ0(1), we prove Lemma 4.3.3 by using the string equation for
the Gromov-Witten invariants of P1:〈

τ0(1)k
n∏
i=1

τbi(ω)

〉d

g,n+k

=
n∑
j=1
bj>0

〈
τ0(1)k−1τbj−1(ω)

n∏
i=1
i 6=j

τbi(ω)

〉d

g,n+k−1

, (4.64)

where we assume 2g − 2 + n > 1 and k > 0.
First, let us directly compute Θ0

0,1. Equation (4.64) implies that〈
τ0(1)kτk−2(ω)

〉0

0,k+1
=
〈
τ0(1)k−1τk−3(ω)

〉0

0,k
=
〈
τ0(1)2τ0(ω)

〉
0,3

= 1. (4.65)
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Therefore,

∞∑
k=2

〈
τ0(1)kτk−2(ω)

〉0

0,k+1

(−1)k~k

2kk!

(k − 2)!

xk−1

=
∞∑
k=2

(−1)k~k

2kk!

(k − 2)!

xk−1
=

(
x+

~
2

)
log

(
x+ ~

2

x

)
− ~

2
.

This proves Equation (4.62).
The proof of Equation (4.63) goes as follows. Recall that g + d > 0 and n > 0.

Equation (4.64) implies that any correlator
〈
τ0(1)k

∏n
i=1 τbi(ω)

〉d
g,n+k

can be represented

as a linear combination of the correlators 〈
∏n

i=1 τbi(ω)〉dg,n with
∑n

i=1 bi = 2g + 2d − 2.

Moreover, for any k ≥ 0 and c1, . . . , cn ≥ 0 such that
∑n

i=1 ci = k, the coefficient of a

particular correlator 〈
∏n

i=1 τbi(ω)〉dg,n in
〈
τ0(1)k

∏n
i=1 τbi+ci(ω)

〉d
g,n+k

is equal to

k!

c1! · · · cn!
.

Therefore, the total coefficient of 〈
∏n

i=1 τbi(ω)〉d
g,n

in Θd
g,n is equal to

∞∑
k=0

∞∑
c1,...,cn=0
c1+···cn=k

(−1)k~k

2kk!

∏n
i=1(bi + ci)!

xn+
∑n
i=1(bi+ci)

k!

c1! · · · cn!

=

∏n
i=1(bi)!

xn+
∑n
i=1(bi)

∞∑
k=0

(
−~
2x

)k ∑
c1,...,cn≥0
c1+···+cn=k

n∏
i=1

(bi + ci)!

bi!ci!
.

(4.66)

On the other hand, expansion of the coefficient of 〈
∏n

i=1 τbi(ω)〉d
g,n

in Equation (4.63) is
equal to ∏n

i=1(bi)!(
x+ ~

2

)n+
∑n
i=1(bi)

=
n∏
i=1

(bi)!(
x+ ~

2

)bi+1

=
n∏
i=1

(bi)!

(x)bi+1

∞∑
ci=0

(
−~
2x

)k
(bi + ci)!

bi!ci!
.

(4.67)

Since (4.66) and (4.67) are identical, we have proved Equation (4.63). This completes
the proof of Lemma 4.3.1.

4.4 Reduction to the semi-infinite wedge formalism

In this Section we represent the formula for Ψ(x, ~) in terms of the semi-infinite wedge
formalism. We use the formula of Okounkov-Pandharipande [84] that relates the sta-
tionary sector of the Gromov-Witten invariants of P1 to the expectation values of the
so-called E-operators. In order to include the extra combinatorial factors that we have in
the expansion of log Ψ(x, ~), we consider the E-operators with values in formal differential
operators.
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4.4.1 Semi-infinite wedge formalism

In this subsection we recall very briefly some basic facts about the semi-infinite wedge
formalism. For more details we refer to [84, 88].

Let us consider a vector space V :=
⊕∞

c=−∞ Vc, where Vc is spanned by the basis
vectors a1 ∧ a2 ∧ a3 ∧ · · · such that ai ∈ Z + 1/2, i = 1, 2, . . . , a1 > a2 > a3 . . . , and for
all but a finite number of terms we have ai = 1/2− i+ c. We denote by ψk the operator
k∧ : Vc → Vc+1, and by ψ∗k the operator ∂/∂k : Vc → Vc−1. Both are odd operators, and
they satisfy the graded commutation relation [ψi, ψ

∗
i ] = 1, with all other possible pairwise

commutators equal to zero.
We denote by : ψiψ

∗
j : the normally ordered product, that is, : ψiψ

∗
j := ψiψ

∗
j for j > 0

and : ψiψ
∗
j := −ψ∗jψi for j < 0. We introduce the operators En(z), n ∈ Z as

En(z) :=
∑

k∈Z+1/2

exp
(
z
(
k − n

2

))
: ψk−rψ

∗
k : +

δn0

ζ(z)
, (4.68)

where ζ(z) = exp(z/2) − exp(−z/2). These operators satisfy the commutation relation
[En(z), Em(w)] = ζ(nw −mz)En+m(z + w).

For any operator A = En1(z1) · · · Enm(zm) we denote by 〈|A|〉 the coefficient of the
vector v∅ := −1/2 ∧ −3/2 ∧ −5/2 ∧ · · · in the basis expansion of Av∅. If we want
to compute a particular correlator 〈|En1(z1) · · · Enm(zm)|〉, first we use the commutation
relation for the E-operators, and then appeal to the simple fact that En(z)|〉 = 0 for
n > 0, 〈|En(z) = 0 for n < 0, and 〈|E0(z1) · · · E0(zn)|〉 = 1/ (ζ(z1) · · · ζ(zn)). In this
section we are mostly interested in correlators for the form

〈|A|〉 =

〈∣∣∣∣∣E1(0)d
n∏
i=1

E0(zi)E−1(0)d

∣∣∣∣∣
〉
. (4.69)

For the purpose of establishing the results in [84], Okounkov and Pandharipande
considered the disconnected version of Gromov-Witten invariants and Hurwitz numbers.
The disconnectedness here means we allow disconnected domain curves mapped to P1. For
example, they establish in [84, Proposition 3.1, Equation 3.4] a formula for disconnected
stationary Gromov-Witten invariants of P1, which reads∑

b1,...,bn≥−2

〈
n∏
i=1

τbi(ω)

〉• d n∏
i=1

xbi+1
i =

1

(d!)2

〈∣∣∣∣∣E1(0)d
n∏
i=1

E0(xi)E−1(0)d

∣∣∣∣∣
〉
, (4.70)

where 〈 〉• denotes the disconnected Gromov-Witten invariant. Counting the number
of disconnected domain curves and connected ones are related simply by talking the
logarithm. Thus we have

∞∑
g=0

∑
b1,...,bn≥−2

〈
n∏
i=1

τbi(ω)

〉d

g,n

n∏
i=1

xbi+1
i = log

 ∑
b1,...,bn≥−2

〈
n∏
i=1

τbi(ω)

〉• d n∏
i=1

xbi+1
i

 .

This prompts us to introduce the connected correlator notation, corresponding to (4.70),
as follows:

∞∑
g=0

∑
b1,...,bn≥−2

〈
n∏
i=1

τbi(ω)

〉d

g,n

n∏
i=1

xbi+1
i =

1

(d!)2

〈∣∣∣∣∣E1(0)d
n∏
i=1

E0(xi)E−1(0)d

∣∣∣∣∣
〉◦

. (4.71)
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The connected correlator is also known as the cumulant in probability theory, which is
calculate via the inclusion-exclusion formula. In general, for an operator A of (4.69), we
denote by 〈|A|〉◦ the contribution coming from the single operator of the form E0(

∑n
i=1 zi)

in the end, after applying the commutation relation successively. Of course in terms of
generating functions, this simply means we take the logarithm of the expression.

4.4.2 A new formula for Ψ

Noticing that exp
(~

2
d
dx

)
is an automorphism, from (4.50) we find

log Ψ(x, ~) = exp

(
~
2

d

dx

)
T (x),

where

T (x) :=
∞∑

g,d=0

∞∑
n=1

~2g−2+n

n!

∞∑
b1,...,bn=0

〈
n∏
i=1

τbi(ω)

〉d

g,n

n∏
i=1

(
− bi!

xbi+1

)
+

1

~
〈τ−2(ω)〉00,1 (x− x log x) .

Here we have used the convention of [84] that 〈τ−2(ω)〉00,1 = 1 and τ−1(ω) = 0. We are
now ready to re-write the right-hand side in terms of expectation values of E-operators.
Corollary 4.4.2 of the following lemma is the main result of this section.

Lemma 4.4.1. For any d ≥ 0, n ≥ 1, (d, n) 6= (0, 1), we have

∞∑
g=0

~2g−2+n

∞∑
b1,...,bn=0

〈
n∏
i=1

τbi(ω)

〉d

g,n

n∏
i=1

(
− bi!

xbi+1
i

)

=
1

(d!)2~2d

〈∣∣∣∣∣E1(0)d
n∏
i=1

E0

(
−~ ∂

∂xi

)
(log xi) E−1(0)−d

∣∣∣∣∣
〉◦

. (4.72)

For d = 0 and n = 1, we have

1

~
〈τ−2(ω)〉00,1 (x− x log x) +

∞∑
g=1

~2g−1

〈
n∏
i=1

τ2g−2(ω)

〉0

g,1

(
−(2g − 2)!

x2g−1

)
=

〈∣∣∣∣E0

(
−~ d

dx

)
(log x)

∣∣∣∣〉◦ . (4.73)

Here we denote by 〈 〉◦ the connected expectation value. This means that after the
successive application of the commutation relation, all differential operators appear in
one correlator. Of course for d = 0, n = 1, we have 〈E0〉◦ = 〈E0〉. The following corollary
is a straightforward application of Lemma 4.4.1.

Corollary 4.4.2. We have the following expression for log Ψ:

log Ψ(x, ~)

=
∞∑
d=0

1

~2d(d!)2

〈∣∣∣∣∣E1(0)d
∞∑
n=1

(
exp

(
1
2
~ d
dx

)
E0

(
−~ d

dx

)
(log x)

)n
n!

E−1(0)d

∣∣∣∣∣
〉◦

. (4.74)
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4.4.3 Proof of Lemma 4.4.1

The starting point of the proof is (4.71). Note that only negative bi contribution comes
from 〈τ−2(ω)〉00,1 = 1, which is the coefficient of x−1

i in 〈|E0 (xi)|〉◦.
Let A(x) =

∑∞
i=−1 aix

i be an arbitrary Laurent series. Observe that

A

(
−~ d

dx

)
(log x) = a−1

(
x− x log x

~

)
+ a0 log x−

∞∑
i=1

ai
(i− 1)!~i

xi
. (4.75)

We can apply this observation to the correlator

1

(d!)2

〈∣∣∣∣∣E1(0)d
n∏
i=1

E0 (xi) E−1(0)−d

∣∣∣∣∣
〉◦

(4.76)

and change E0 (xi) to

E0

(
−~ ∂

∂xi

)
log xi.

If (n, d) 6= (1, 0), then we have a formal Laurent series in x1, . . . , xn, where the degree of
each variable in each term is less than or equal to −1. Together with the computation of
the degree of ~, which is

∑n
i=1(bi + 1)− 2d = 2g − 2 + n, we establish Equation (4.72).

If (n, d) = (1, 0), then it is sufficient to observe that 〈|E0 (x)|〉◦ = x−1 + O(x). Thus
we have one additional term (x − x log x)/~ as in (4.75), which is exactly the first term
in Equation (4.73).

This completes the proof of Lemma 4.4.1, and hence, Corollary 4.4.2.

4.5 Reduction to a combinatorial problem

The expression (4.74) of log Ψ in the form of the vacuum expectation value of the operator
product allows us to convert the quantum curve equation (4.9) into a combinatorial
formula.

Our starting point is the Ψ-function represented in the form

Ψ(x, ~) = 1 +
∞∑
d=0

1

~2d(d!)2

〈∣∣∣∣∣E1(0)d
∞∑
n=1

1

n!
A(x)nE−1(0)d

∣∣∣∣∣
〉?

, (4.77)

where

A(x) = exp

(
~
2

d

dx

)
E0

(
−~ d

dx

)
(log x)

=
∑
k∈Z+ 1

2

exp

((
−k +

1

2

)
~
d

dx

)
(log x) : ψkψ

∗
k :

+B

(
−~ d

dx

)(
x− x log x

~

)
.

(4.78)

Here B(t) := t/(et − 1) in (4.78) is the generating series of the Bernoulli numbers, and
the notation 〈−〉? in (4.77) means that in the computation of this expectation value using
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the commutation relations, we never allow any E1(0) and E−1(0) to commute directly. We
need this requirement since we exponentiate the series (4.74), which does not have terms
without E0-operators. The goal of this section is to prove Corollary 4.5.2.

Lemma 4.5.1. We have

exp

(
1

~2

)
Ψ(x, ~) = exp

(
B

(
−~ d

dx

)(
x− x log x

~

))
X, (4.79)

where X :=
∑∞

d=0Xd/~2g, and Xd is given by

Xd =
1

(d!)2

〈∣∣∣∣∣∣E1(0)d exp

 ∑
k∈Z+ 1

2

log

(
x−

(
k − 1

2

)
~
)

: ψkψ
∗
k :

 E−1(0)d

∣∣∣∣∣∣
〉

=
∑
λ`d

(
dimλ

d!

)2 ∞∏
i=1

x+ (i− λi)~
x+ i~

.

(4.80)

Corollary 4.5.2. The quantum spectral curve equation[
exp

(
~
d

dx

)
+ exp

(
−~ d

dx

)
− x
]

Ψ(x, ~) = 0

is equivalent to the following equation for the function X:[
1

x+ ~
exp

(
~
d

dx

)
+ x exp

(
−~ d

dx

)
− x
]
X = 0. (4.81)

Proof of Lemma 4.5.1. Corollary 4.4.2 implies that

∞∑
d=0

〈∣∣E1(0)d exp
(
exp

(
1
2
~ d
dx

)
E0

(
−~ d

dx

)
(log x)

)
E−1(0)d

∣∣〉◦
~2d(d!)2

(4.82)

= log Ψ(x, ~) +
1

~2
+ 1.

Indeed, we add terms with n = 0, and it is easy to see that〈∣∣E1(0)dE−1(0)d
∣∣〉◦ = 0, d ≥ 2,

and 〈|E1(0)E−1(0)|〉◦ = 〈|Id|〉◦ = 1. Therefore,

exp

(
1

~2

)
Ψ(x, ~) = (4.83)

∞∑
d=0

〈∣∣E1(0)d exp
(
exp

(
1
2
~ d
dx

)
E0

(
−~ d

dx

)
(log x)

)
E−1(0)d

∣∣〉
~2d(d!)2

.
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From the definition of the operator E0, we have

exp

(
1

2
~
d

dx

)
E0

(
−~ d

dx

)
(log x)

= exp

(
1

2
~
d

dx

) ∑
k∈Z+1/2

log (x− k~) : ψkψ
∗
k :


+ exp

(
1

2
~
d

dx

) −~ d
dx

exp
(
−1

2
~ d
dx

)
− exp

(
1
2
~ d
dx

) (x− x log x

~

)
=

∑
k∈Z+1/2

log

(
x−

(
k − 1

2

)
~
)

: ψkψ
∗
k : +B

(
−~ d

dx

)(
x− x log x

~

)
.

(4.84)

Now define

A1 =
∑

k∈Z+1/2

log

(
x−

(
k − 1

2

)
~
)

: ψkψ
∗
k : (4.85)

A2 = B

(
−~ d

dx

)(
x− x log x

~

)
. (4.86)

Since A1 and A2 commute, we have exp(A1 +A2) = exp(A2) exp(A1). Furthermore, since
A2 is a scalar operator, we have

∞∑
d=0

〈∣∣E1(0)d exp(A2) exp(A1)E−1(0)d
∣∣〉

~2d(d!)2
= exp(A2)

∞∑
d=0

〈∣∣E1(0)d exp(A1)E−1(0)d
∣∣〉

~2d(d!)2
.

This is exactly the right-hand side of Equation (4.79).

Proof of Corollary 4.5.2. We just have to show that

exp(−A2) exp

(
~
d

dx

)
exp(A2) =

1

x+ ~
exp

(
~
d

dx

)
;

exp(−A2) exp

(
−~ d

dx

)
exp(A2) = x exp

(
−~ d

dx

)
;

exp(−A2)x exp(A2) = x.

The last equality is tautological, and the first two are obtained by a straightforward
computation.

For completeness, let us also explain Equation (4.80). It is based on several standard
facts about the semi-infinite wedge formalism. For any partition λ = (λ1 ≥ λ2 ≥ λ3 ≥
. . . ) we associate a basis vector vλ ∈ V0 given by(

λ1 −
1

2

)
∧
(
λ2 −

3

2

)
∧
(
λ3 −

5

2

)
∧ · · · . (4.87)
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Then, we have E−1(0)dv∅ =
∑

λ`d dimλ ·vλ,
〈∣∣E1(0)dvλ = dimλ, and the fact that for any

constants an, n ∈ Z+ 1/2, vλ is an eigenvector of the operator
∑

n∈Z+1/2 an : ψnψ
∗
n : with

the eigenvalue
∑∞

i=1

(
aλi−i+1/2 − a−i+1/2

)
. Therefore, vλ is an eigenvector of the operator

A1 = exp

 ∑
k∈Z+ 1

2

log

(
x−

(
k − 1

2

)
~
)

: ψkψ
∗
k :

 (4.88)

with the eigenvalue

exp

(
∞∑
i=1

log (x+ (i− λi)~)− log (x+ i~)

)
=
∞∏
i=1

x+ (i− λi)~
x+ i~

, (4.89)

and the total weight of the vector vλ in
〈∣∣E1(0)dA1E−1(0)d

∣∣〉 is (dimλ)2. This implies
Equation (4.80).

4.6 Key combinatorial argument

We have shown that the quantum curve equation (4.9) is equivalent to a combinatorial
equation (4.81), which is indeed a first-order recursion equation for Xd of (4.80) with
respect to the index d. In this section we prove (4.81).

Let λ ` d be a partition λ = (λ1 ≥ λ2 ≥ ... ≥ λ`(λ) > 0) of d ≥ 1. We can always
append it with d− `(λ) zeros λ`(λ)+1 := 0, . . . , λd := 0 at the end so that we would have
a partition of d of length d with non-negative parts. Throughout this section we use this
convention that a partition of d has length d.

Consider the following sum over all partitions λ = (λ1 ≥ λ2 ≥ ... ≥ λd) of d ≥ 1:

Xd :=
∑
λ`d

1

H2
λ

d∏
i=1

x+ (i− λi)~
x+ i~

. (4.90)

Here Hλ :=
∏

ij hij, where hij is the hook length at the vertex (ij) of the corresponding
Young diagram, so that d!/

∏
hij is the dimension of the irreducible representation corre-

sponding to λ. Or equivalently, it is the number of the standard Young tableaux of this
shape. We use the convention that X0 := 1.

In this Section we prove the following key combinatorial lemma.

Lemma 4.6.1. The series X :=
∑∞

d=0Xd/~2g satisfies the following equation:[
1

x+ ~
exp

(
~
d

dx

)
+ x exp

(
−~ d

dx

)
− x
]
X = 0. (4.91)

Proof. In fact, (4.91) is a direct consequence of the following more refined statement.

Lemma 4.6.2. For any d ≥ 1 we have

1

x/~ + 1
exp

(
~
d

dx

)
Xd−1 +

[
x

~
exp

(
−~ d

dx

)
− x

~

]
Xd = 0. (4.92)
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Indeed, since
[
x exp

(
−h d

dx

)
− x
]
X0 = 0, the sum of Equation (4.92) for all d ≥ 1

with coefficients 1/~2d−1 yields Lemma 4.6.1.

To prove Lemma 4.6.2, we need to recall some standard facts on the hook length
formula as well as a recent result of Han [61].

4.6.1 Hook lengths and shifted parts of partition

We use the following result from [61]. For a partition λ ` d, d ≥ 1, we define the so-called
g-function:

gλ(y) :=
d∏
i=1

(y + λi − i). (4.93)

For any λ ` d, d ≥ 1, we denote by λ \ 1 the set of all partitions of d − 1 that can be
obtained from λ (or rather the corresponding Young diagram) by removing one corner of
λ.

Lemma 4.6.3 (Han [61]). For every partition λ we have

1

Hλ

(gλ(y + 1)− gλ(y)) =
∑
µ∈λ\1

1

Hµ

gµ(y). (4.94)

Here y is a formal variable.

We need the following corollary of this lemma.

Corollary 4.6.4. For an integer d ≥ 1 we have∑
λ`d+1

1

H2
λ

(gλ(y + 1)− gλ(y)) =
∑
µ`d

1

H2
µ

gµ(y). (4.95)

Proof. We recall that for any µ ` d, d ≥ 1, we have:∑
λ`d+1
λ\13µ

1

Hλ

=
1

Hµ

. (4.96)

Therefore, ∑
µ`d

1

H2
µ

gµ(y) =
∑
µ`d

1

Hµ

∑
λ`d+1
λ\13µ

1

Hλ

gµ(y)

=
∑
λ`d+1

1

Hλ

∑
µ`d
µ∈λ\1

1

Hλ

gµ(y)

=
∑
λ`d+1

1

H2
λ

(gλ(y + 1)− gλ(y)) .
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4.6.2 Reformulation of Lemma 4.6.2 in terms of g-functions

We make the following substitution: y := −x/~. Then we see that

Xd =
∑
λ`d

1

H2
λ

gλ(y)∏d
i=1(y − i)

.

Moreover,
1

x/~ + 1
exp

(
~
d

dx

)
Xd−1 +

[
x

~
exp

(
−~ d

dx

)
− x

~

]
Xd

=
−1

y − 1
exp

(
− d

dy

)
Xd−1 +

[
−y exp

(
d

dy

)
+ y

]
Xd.

(4.97)

Observe that

−1

y − 1
exp

(
− d

dy

)
Xd−1 = −

∑
λ`d−1

1

H2
λ

gλ(y − 1)∏d
i=1(y − i)

; (4.98)

−y exp

(
d

dy

)
Xd = (d− y)

∑
λ`d

1

H2
λ

gλ(y + 1)∏d
i=1(y − i)

;

yXd = y
∑
λ`d

1

H2
λ

gλ(y)∏d
i=1(y − i)

.

Using Corollary 4.6.4 we can rewrite the right hand side of Equation (4.98) as

−1

y − 1
exp

(
− d

dy

)
Xd−1 =

∑
λ`d

1

H2
λ

gλ(y − 1)− gλ(y)∏d
i=1(y − i)

. (4.99)

Therefore, the right hand side of Equation (4.97) is equal to

Yd(y)∏d
i=1(y − i)

, (4.100)

where

Yd(y) :=
∑
λ`d

(d− y)gλ(y + 1) + (y − 1)gλ(y) + gλ(y − 1)

H2
λ

. (4.101)

Note that Yd(y) is a polynomial in y of degree ≤ d+ 1, and Lemma 4.6.2 is equivalent to
the following statement:

Lemma 4.6.5. For any d ≥ 1 we have Yd(y) ≡ 0.

4.6.3 Proof of Lemma 4.6.5

In this subsection we prove Lemma 4.6.5 and, therefore, Lemmas 4.6.2 and 4.6.1.
First of all, it is easy to check that for any d ≥ 1 the polynomial Yd(y) has at least

one root. Namely,

Yd(d) =
∑
λ`d

(d− 1)gλ(d) + gλ(d− 1)

H2
λ

= 0. (4.102)
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Indeed, gλ(d) is not equal to zero only for λ = (1, 1, . . . , 1). In this case gλ(d) = d!,
Hλ = d!, and (d − 1)gλ(d)/H2

λ = (d − 1)/d!. Notice that gλ(d − 1) does not vanish only
for λ = (2, 1, 1, . . . , 1, 0). In this case gλ(d − 1) = −d · (d − 2)!, Hλ = d · (d − 2)!, and
gλ(d− 1)/H2

λ = −(d− 1)/d!. Thus we see that always Yd(d) = 0, establishing (4.102).

Now we proceed by induction. It is easy to check that Y1(y) ≡ 0. Assume that we
know that Yd(y) ≡ 0. Corollary 4.6.4 then implies that

Yd(y) =
∑
λ`d

(d− y)gλ(y + 1) + (y − 1)gλ(y) + gλ(y − 1)

H2
λ

=
∑
λ`d+1

(d− y)gλ(y + 2) + (2y − d− 1)gλ(y + 1) + (2− y)gλ(y)− gλ(y − 1)

H2
λ

=
∑
λ`d+1

((d+ 1)− (y + 1))gλ(y + 2) + ((y + 1)− 1)gλ(y + 1) + gλ(y)

H2
λ

−
∑
λ`d+1

((d+ 1)− y)gλ(y + 1) + (y − 1)gλ(y) + gλ(y − 1)

H2
λ

= Yd+1(y + 1)− Yd+1(y).

By assumption, we have Yd(y) ≡ 0. Therefore, Yd+1(y+1) = Yd+1(y) for any y. HenceYd+1

is constant. Since we have shown that Yd+1(d+ 1) = 0, we conclude that Yd+1 ≡ 0.

This completes the proof of Lemmas 4.6.5, 4.6.2, and 4.6.1. Thus we have established
the main theorem of this chapter.

4.7 Laguerre polynomials

In this section we prove a combinatorial expression for the functions

Xd :=
∑
λ`d

1

H2
λ

d∏
i=1

x+ (i− λi)~
x+ i~

in terms of the Laguerre polynomials L
(α)
n (z).

The Laguerre polynomial is a solution of the differential equation

z
d2

dz2
L(α)
n (z) + (α + 1− z)

d

dz
L(α)
n (z) + nL(α)

n (z) = 0,

and has a closed expression

L(α)
n (z) =

n∑
i=0

(−1)i
(
n+ a

n− i

)
zi

i!
.
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Here is a list of some properties of the Laguerre polynomials:

Lαn(z)(
n+α
n

) = 1−
n∑
j=1

zj

a+ j

L
(j)
n−j(z)

(j − 1)!
; (4.103)

nLαn(z) = (n+ α)Lαn−1(z)− zLα+1
n−1(z); (4.104)

Lαn(z) = Lα+1
n (z)− Lα+1

n−1(z); (4.105)(
n+ α

n

)
=

n∑
i=0

zi

i!
L

(α+i)
n−i (z). (4.106)

Proposition 4.7.1. For any d ≥ 0 we have:

Xd =
1

d!

(
1−

d∑
m=1

1

(m− 1)!
L

(m)
d−m(1)

~
x+m~

)
.

Remark 4.7.2. This equation can be rewritten as

Xd =
1

d!

L
x/~
d (1)

L
x/~
d (0)

.

Indeed, we just apply the identity (4.103) for α = x/~ and z = 1 and further observe

that
(
n+x/~
n

)
= L

(x/~)
n (0).

Proof of Proposition 4.7.1. It is obvious that both Xd and

X̃d :=
1

d!

(
1−

d∑
m=1

1

(m− 1)!
L

(m)
d−m(1)

~
x+m~

)
(4.107)

are rational functions with simple poles at x/~ = −1,−2, . . . ,−d. We have defined
X0 := 1, and it is easy to see that Z0 = 1. Then we know (see Lemma 4.6.2) that all Xd

are unambiguously determined by the equation

1
x
~ + 1

exp

(
~
d

dx

)
Xd +

[
x

~
exp

(
−~ d

dx

)
− x

~

]
Xd+1 = 0 (4.108)

for all d ≥ 0. In order to prove the proposition we check that {X̃d}d≥0 also satisfy this
equation.

Indeed, observe that

1
x
~ + 1

exp

(
~
d

dx

)
X̃d (4.109)

=
1

d!

(
1

x
~ + 1

−
d∑

m=1

L
(m)
d−m(1)

(m− 1)!

1

(x~ + 1)(x~ +m+ 1)

)

=
1

x
~ + 1

1

d!

(
1−

d∑
m=1

L
(m)
d−m(1)

m!

)
+

1

d!

d+1∑
m=2

L
(m−1)
d+1−m(1)

(m− 1)!

1

(x~ +m)
;
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x

~
exp

(
−~ d

dx

)
X̃d+1 (4.110)

=
1

(d+ 1)!

(
x

~
−

d+1∑
m=1

L
(m)
d+1−m(1)

(m− 1)!

x
~

x
~ +m− 1

)

=
x
~

(d+ 1)!
− 1

(d+ 1)!

d+1∑
m=1

L
(m)
d+1−m(1)

(m− 1)!
+

1

(d+ 1)!

d∑
m=1

L
(m+1)
d−m (1)

(m− 1)!

1
x
~ +m

;

and

− x

~
X̃d+1 =

1

(d+ 1)!

(
−x
~

+
d+1∑
m=1

L
(m)
d+1−m(1)

(m− 1)!

x
~

x
~ +m

)
(4.111)

=
−x

~
(d+ 1)!

+
1

(d+ 1)!

d+1∑
m=1

L
(m)
d+1−m(1)

(m− 1)!
− 1

(d+ 1)!

d+1∑
m=1

L
(m)
d+1−m(1)

(m− 1)!

m
x
~ +m

.

It is obvious that in the sum of the expressions (4.109), (4.110), and (4.111) the
coefficient of x/~ and the constant term vanish. So, we have to prove that the coefficient
of each 1/(x/~ +m), m = 1, . . . , d+ 1, vanishes.

The coefficient of 1/(x/~ + d+ 1) is equal to

1

d!

L
(d)
0 (1)

d!
− 1

(d+ 1)!

(d+ 1)L
(d+1)
0 (1)

d!
,

which is equal to zero since L
(d)
0 = L

(d+1)
0 = 1.

The coefficient of 1/(x/~ +m), 2 ≤ m ≤ d, is equal to

1

d!

L
(m−1)
d+1−m(1)

(m− 1)!
+

1

(d+ 1)!

L
(m+1)
d−m (1)

(m− 1)!
− 1

(d+ 1)!

mL
(m)
d+1−m(1)

(m− 1)!
. (4.112)

First we use Equation (4.104) for z = 1, α = m, and n = d+m− 1:

(d+ 1−m)L
(m)
d+1−m(1) = (d+ 1)L

(m)
d−m(1)− L(m+1)

d−m (1). (4.113)

We see then that expression (4.112) is equal to

1

d!(m− 1)!

(
L

(m−1)
d+1−m(1)− L(m)

d+1−m(1) + L
(m)
d−m(1)

)
.

And this is equal to zero due to Equation (4.105) for n = d + 1 − m, α = m − 1, and
z = 1.

The coefficient of 1/(x/~ + 1) is equal to

1

d!

(
1−

d∑
m=1

L
(m)
d−m(1)

m!

)
+

1

(d+ 1)!
L

(2)
d−1(1)− 1

(d+ 1)!
L

(1)
d (1).
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Using that L
(2)
d−1(1) = −dL(1)

d (1) + (d + 1)L
(1)
d−1(1) (which is Equation (4.104) for z = 1,

n = d, and α = 1) and −L(1)
d (1) + L

(1)
d−1(1) = −L(0)

d (1) (which is Equation (4.105) for
z = 1, d = n, and α = 0), we see that this coefficient is equal to

1

d!

(
1−

d∑
m=0

L
(m)
d−m(1)

m!

)
.

This is equal to zero due to Equation (4.106) for z = 1, α = 0, and n = d.

Thus we see that the sum of expressions (4.109), (4.110), and (4.111) is equal to zero.
So, the functions X̃d satisfy Equation (4.108), and, therefore, X̃d = Xd for all d ≥ 0.

4.8 Toda lattice equation

In this section we recall, for completeness, the Toda lattice equation for the partition
function of the Gromov-Witten invariants of P1. We show that the Toda lattice equation
implies a quadratic relation for the functions Xd, d ≥ 0, considered in the previous
sections. It is an open question whether it is possible to relate the Toda lattice equation
to the quantum spectral curve equation.

It is convenient to include a degree variable q in the free energy of the Gromov-Witten
invariants of P1. Define

Fg :=
∑
d

qd

〈
exp

{
∞∑
i≥0

τi(ω)ti + τ0(1)t

}〉d

g

(4.114)

(where we have switched off τk(1) for k > 0). Then F =
∑∞

g=0Fg satisfies the Toda
lattice equation:

exp(F(t+ 1) + F(t− 1)− 2F(t)) =
1

q

∂2

∂t20
F(t), (4.115)

which was conjectured by Eguchi-Yang [32] and proven by Dubrovin-Zhang [29] and
Okounkov-Pandharipande [84, Equation (4.11)].

We specialize

Φ(x, ~, q) := F

(
q =

q

~2
, t = −1

2
, ti = −i!

(
~
x

)i+1
)

(4.116)

and consider the function exp {Φ(x, ~, q)− Φ(x, ~, 0)}.

Lemma 4.8.1. We have:

exp {Φ(x, ~, q)− Φ(x, ~, 0)} =
∞∑
d=0

( q
~2

)d
Xd. (4.117)

99



Proof. Indeed, tracing back the arguments of Sections 4.3 and 4.4 and taking q into
account this time, it is easy to see that

Φ(x, ~, q) =
∞∑
d=0

( q
~2

)d ∞∑
g=0

〈
exp

(
−1

2
τ0(1)−

∞∑
i=0

τi(ω)i!

(
~
x

)i+1
)〉d

g

. (4.118)

The proof of Lemma 4.5.1 implies that

Φ(x, ~, 0) =
∞∑
g=0

〈
exp

(
−1

2
τ0(1)−

∞∑
i=0

τi(ω)i!

(
~
x

)i+1
)〉0

g

(4.119)

= B

(
−~ d

dx

)(
x− x log x

~

)
These two observations and Equation (4.79) imply Equation (4.117).

By abuse of notation, we denote the function exp {Φ(x, ~, q)− Φ(x, ~, 0)} also by X
(so-called degree-weighted X). The quantum spectral curve equation for this degree-
weighted X reads [

q

x+ ~
exp

(
~
d

dx

)
+ x exp

(
−~ d

dx

)
− x
]
X = 0. (4.120)

The Toda lattice equation combined with the string and the divisor equations implies
the following equation for X:

Proposition 4.8.2. We have:

X(x+ ~)X(x− ~)

X(x)2
=
x+ ~
x

∂

∂q

(
q
∂

∂q
logX(x)

)
. (4.121)

Proof. We recall the divisor equation

∂F
∂t0

=
1

2
t2 + q

∂F
∂q

. (4.122)

Consider Equations (4.115). The result of Section 4.3 implies that the shifts in τ0(1)-
coefficient t can be replaced by shifts of variable x with factor ~. Using this and Equa-
tion (4.122) we obtain equation for Φ(x, ~, q):

exp (Φ(x+ ~, ~, q) + Φ(x− ~, ~, q)− 2Φ(x, ~, q)) =
∂

∂q

(
q
∂

∂q
Φ(x, ~, q)

)
. (4.123)

From the definition of degree-weighted X it follows that

∂

∂q

(
q
∂

∂q
logX(x)

)
=

∂

∂q

(
q
∂

∂q
Φq(x)

)
. (4.124)

Therefore, in order to prove Equation (4.121), it is enough to show that

exp (Φ(x+ ~, ~, 0)) exp (Φ(x− ~, ~, 0))

exp (2Φ(x, ~, 0))
=

x

x+ ~
. (4.125)
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Indeed, using Equation (4.119) we can represent the left hand side of Equation (4.125)
in the following form:

exp

([(
et + e−t − 2

)
B(t)

]∣∣
t=−~ d

dx

(
x− x log x

~

))
(4.126)

= exp

([(
et/2 − e−t/2

)2 t

et − 1

]∣∣∣∣
t=−~ d

dx

(
x− x log x

~

))
= exp (log(x)− log(x+ ~)) .

The homogeneous in q part of the Toda lattice equation (4.121) for the series expansion
given by Equation (4.117) can be rewritten as

x

x+ ~
∑
a+b=d

Xa(x+ ~)Xb(x− ~) =
∑

a+b=d+1

Xa(x)Xb(x)
(a− b)2

2
(4.127)

for any d ≥ 0. We can use Equation (4.92) in order to rewrite this equation as∑
a+b=d+1

(Xa(x)Xb(x− ~)−Xa(x− ~)Xb(x− ~)) (4.128)

=
~2

x2

∑
a+b=d+1

Xa(x)Xb(x)
(a− b)2

2
,

for any d ≥ 0. It would be interesting to see whether Equation (4.127) or Equation (4.128)
can be related to Equation (4.92).
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Chapter 5

Polynomiality of Hurwitz numbers,
Bouchard-Mariño conjecture, and a
new proof of the ELSV formula

This chapter is based on paper [100], joint work with M. Kazarian, N. Orantin, S. Shadrin
and L. Spitz. In this chapter we prove the polynomiality of simple Hurwitz numbers,
which allows us to give a new proof of the Bouchard-Mariño conjecture, which, in turn,
allows us to give a new proof of the ELSV formula.

This chapter is organized in the following way. First, we prove in Section 5.1 the poly-
nomiality of Hurwitz numbers directly from the definition in terms of the semi-infinite
wedge formalism. Our argument is a refinement of an argument by Okounkov and Pand-
haripande in [83]. Then, using the polynomiality property of Hurwitz numbers we are
able to derive in Section 5.2 the Bouchard-Mariño conjecture directly from the cut-and-
join equation. Then, since we have an equivalence of the Bouchard-Mariño conjecture
and the ELSV formula, we immediately derive the ELSV formula in a new way. In Sec-
tion 5.3 we review the correspondence between the topological recursion and the Givental
theory, with a special focus on the 1-dimensional case, and in Section 5.4 we provide a
(slightly refined) proof of the equivalence of the ELSV formula and the Bouchard-Mariño
conjecture.

5.1 Polynomiality of the Hurwitz numbers

In this section we prove the following theorem:

Theorem 5.1.1. The Hurwitz numbers h◦g;µ1,...,µn for (g, n) /∈ {(0, 1), (0, 2)} can be ex-
pressed as follows:

h◦g;µ1,...,µn = (2g + |µ|+ n− 2)!

(
n∏
i=1

µµii
µi!

)
Pg,n(µ1, . . . , µn), (5.1)

where Pg,n(µ1, . . . , µn) is some polynomial in µ1, . . . , µn.

Basically this theorem gives the form of the ELSV formula without specifying the
precise formulas for the coefficients. This property (in a bit stronger form) was conjec-
tured in [56] and then proved in [57], with the help of the ELSV formula. Still, the
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question whether this property can be derived without using the ELSV formula remained
open [96]. This is precisely what we do here: we prove this statement without using the
ELSV formula.

5.1.1 Infinite wedge

In this subsection we recall some basic facts from the theory of the semi-infinite wedge
space following [83, 84, 64].

Let V be an infinite dimensional vector space with a basis labeled by the half integers.
Denote the basis vector labeled by m/2 by m/2, so V =

⊕
i∈Z+ 1

2
i.

Definition 5.1.2. The semi-infinite wedge space V is the span of all wedge products of
the form

i1 ∧ i2 ∧ · · · (5.2)

for any decreasing sequence of half integers (ik) such that there is an integer c (called
the charge) with ik + k − 1

2
= c for k sufficiently large. We denote the inner product

associated with this basis by (·, ·).
Here we are mostly concerned with the zero charge subspace V0 ⊂ V of the semi-

infinite wedge space, which is the space of all wedge products of the form (5.2) such
that

ik + k =
1

2
(5.3)

for k sufficiently large.

Remark 5.1.3. An element of V0 is of the form

λ1 −
1

2
∧ λ2 −

3

2
∧ · · ·

for some integer partition λ. This follows immediately from condition (5.3). Thus, we
canonically have a basis for V0 labeled by all integer partitions.

Notation 5.1.4. We denote by vλ the vector labeled by a partition λ. The vector
labeled by the empty partition is called the vacuum vector and denoted by |0〉 = v∅ =
−1

2
∧ −3

2
∧ · · · .

Definition 5.1.5. If P is an operator on V0, then we define the vacuum expectation value
of P by 〈P〉 := 〈0|P|0〉, where 〈0| is the dual of the vacuum vector with respect to the
inner product (·, ·), and called the covacuum vector. We will also refer to these vacuum
expectation values as (disconnected) correlators.

We now define some operators on the infinite wedge space.

Definition 5.1.6. Let k be any half integer. Then the operator ψk : V → V is defined
by ψk : (i1 ∧ i2 ∧ · · · ) 7→ (k ∧ i1 ∧ i2 ∧ · · · ). It increases the charge by 1.

The operator ψ∗k is defined to be the adjoint of the operator ψk with respect to the
inner product (·, ·).
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Definition 5.1.7. The normally ordered products of ψ-operators are defined in the fol-
lowing way

Eij := :ψiψ
∗
j : :=

{
ψiψ

∗
j , if j > 0

−ψ∗jψi if j < 0 .
(5.4)

This operator does not change the charge and can be restricted to V0. Its action on the
basis vectors vλ can be described as follows: :ψiψ

∗
j : checks if vλ contains j as a wedge

factor and if so replaces it by i. Otherwise it yields 0. In the case i = j > 0, we have
:ψiψ

∗
j :(vλ) = vλ if vλ contains j and 0 if it does not; in the case i = j < 0, we have

:ψiψ
∗
j :(vλ) = −vλ if vλ does not contain j and 0 if it does. These are the only two cases

where the normal ordering is important.

Notation 5.1.8. We denote by ζ(z) the function ez/2 − e−z/2.

Definition 5.1.9. Let n ∈ Z be any integer. We define an operator En(z) depending on
a formal variable z by

En(z) =
∑
k∈Z+ 1

2

ez(k−
n
2

)Ek−n,k +
δn,0
ζ(z)

.

Note that
[Ea(z), Eb(w)] = ζ (det [ a z

b w ]) Ea+b(z + w) (5.5)

and

E0(z)
∣∣0〉 =

1

ζ(z)

∣∣0〉 (5.6)

and also that
Ek(z)

∣∣0〉 = 0, k > 0. (5.7)

Definition 5.1.10. In what follows we will use the following operator:

F2 :=
∑
k∈Z+ 1

2

k2

2
Ek,k.

Definition 5.1.11. We will also need the following operators:

αk := Ek(0), k 6= 0.

5.1.2 Hurwitz numbers in the infinite wedge formalism

By hg,µ = hg;µ1,...,µn we denote the Hurwitz numbers for possibly disconnected covering
surfaces. The character formula for the disconnected Hurwitz numbers hg,µ implies that
(see e.g. [83])

hg,µ =

〈
eα1Fb(g,µ)

2

n∏
i=1

α−µi
µi

〉
. (5.8)

Note the difference between our disconnected Hurwitz numbers hg,µ and the ones in [83]
(which are denoted by Cg(µ) there). The difference is in a factor of |Aut(µ)|, the number
of automorphisms of the partition.
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Definition 5.1.12. Define the genus-generating functions for the disconnected Hurwitz
numbers and for the connected ones as well:

hµ(u) :=
∞∑

g=1−n

u2g−2

b(g, µ)!
hg,µ, (5.9)

h◦µ(u) :=
∞∑
g=0

u2g−2

b(g, µ)!
h◦g,µ. (5.10)

Remark 5.1.13. Note that these two generating functions are related to each other through
the inclusion-exclusion formula, namely, we have:

for n = 1, hµ1(u) = h◦µ1(u);

for n = 2, hµ1,µ2(u) = h◦µ1,µ2(u) + h◦µ1(u)h◦µ2(u),

h◦µ1,µ2(u) = hµ1,µ2(u)− hµ1(u)hµ2(u);

for n = 3, hµ1,µ2,µ3(u) = h◦µ1,µ2,µ3(u) + h◦µ1,µ2(u)h◦µ3(u) + h◦µ1,µ3(u)h◦µ2(u)

+ h◦µ2,µ3(u)h◦µ1(u) + h◦µ1(u)h◦µ2(u)h◦µ3(u),

h◦µ1,µ2,µ3(u) = hµ1,µ2,µ3(u)− hµ1,µ2(u)hµ3(u)− hµ1,µ3(u)hµ2(u)

− hµ2,µ3(u)hµ1(u) + 2hµ1(u)hµ2(u)hµ3(u),

and so on.

We have

hµ(u) = u−|µ|−n

〈
eα1euF2

n∏
i=1

α−µi
µi

〉
(5.11)

= u−|µ|−n

〈
eα1euF2

(
n∏
i=1

α−µi
µi

)
e−uF2e−α1

〉

= u−|µ|−n

〈
n∏
i=1

(
eα1euF2

α−µi
µi

e−uF2e−α1

)〉
.

The second equality holds since e−uF2 and e−α1 fix the vacuum vector.

5.1.3 A-operators

Now, following [83], we introduce certain operators that we use later on to rewrite the
formula for Hurwitz numbers.

Definition 5.1.14. Define

A(a, b) :=

(
ζ(b)

b

)a ∑
k∈Z

ζ(b)k

(a+ 1)k
Ek(b), (5.12)

where a and b are parameters and we use the standard notation:

(a+ 1)k =
(a+ k)!

a!
=

{
(a+ 1)(a+ 2) · · · (a+ k) , k ≥ 0 ,

(a(a− 1) · · · (a+ k + 1))−1 , k ≤ 0 .
(5.13)
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If a 6= 0, 1, 2, . . . , the sum in (5.12) is infinite in both directions. If a is a non-negative
integer, the summands with k ≤ −a− 1 in (5.12) vanish.

Note that Proposition 3 of [83] implies that the correlator

〈A(z1, uz1) . . .A(zn, uzn)〉 (5.14)

is well-defined for all (z1, . . . , zn) ∈ Ω ⊂ Cn and sufficiently small u, where

Ω =

(
(z1, . . . , zn)

∣∣∣∣∣|zk| >
k−1∑
i=1

|zi|, k = 1, . . . , n

)
. (5.15)

Definition 5.1.15. Define the connected correlator of A-operators

〈A(z1, uz1) . . .A(zn, uzn)〉◦

through the disconnected ones via the inclusion-exclusion formula (cf. Remark (5.1.13)).

Proposition 5.1.16.

h◦g;µ1...µn = b(g, µ)!
n∏
i=1

(
µµi−1
i

µi!

)
[u2g−2+n] 〈A(µ1, uµ1) . . .A(µn, uµn)〉◦ (5.16)

where [u2g−2+n] 〈A(µ1, uµ1) . . .A(µn, uµn)〉◦ stands for the coefficient of u2g−2+n

in 〈A(µ1, uµ1) . . .A(µn, uµn)〉◦.
Proof. The main part of the proof follows [83]. Note that

euF2 α−m e
−uF2 = E−m(um) (5.17)

which is easy to see since F2 acts diagonally. From the commutation relations for Ei we
see that

eα1 E−m(s) e−α1 =
ζ(s)m

m!

∑
k∈Z

ζ(s)k

(m+ 1)k
Ek(s). (5.18)

The previous two formulas imply the following, for m ∈ {1, 2, 3, . . .} (Lemma 2 of [83]):

eα1 euF2 α−m e
−uF2 e−α1 =

ummm

m!
A(m,um). (5.19)

Now we can rewrite formula (5.11) as

hµ1...µn(u) = u−n
n∏
i=1

(
µµi−1
i

µi!

)
〈A(µ1, uµ1) . . .A(µn, uµn)〉 . (5.20)

Recall that the connected Hurwitz numbers can be expressed though the disconnected
ones with the help of the inclusion-exclusion formula. Since the relation between con-
nected and disconnected Hurwitz numbers is the same as the one between connected and
disconnected correlators, we have:

h◦µ1...µn(u) = u−n
n∏
i=1

(
µµi−1
i

µi!

)
〈A(µ1, uµ1) . . .A(µn, uµn)〉◦ . (5.21)

Comparing the coefficients in front of the same powers of u on the right hand side and
on the left hand side we directly obtain the statement of the proposition.

Now we see that in order to prove Theorem 5.1.1 we only have to show that expressions
[u2g−2+n] 〈A(µ1, uµ1) . . .A(µn, uµn)〉◦ are polynomial in µ1, . . . , µn.
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5.1.4 Further properties of A-operators

In this subsection we modify an expression for the connected correlators of A-operators
in order to exclude possible so-called unstable terms.

Definition 5.1.17. Let Ak be the coefficients of the expansion of the operator A(z, uz)
in powers of z:

A(z, uz) =
∑
k∈Z

Ak zk . (5.22)

We will use the following theorem, due to Okounkov and Pandharipande:

Theorem 5.1.18 (Okounkov-Pandharipande, [83]).

[Ak,Al] = (−1)lδk+l−1 . (5.23)

Definition 5.1.19. Define

A+(z, uz) :=
∞∑
k=1

Ak zk . (5.24)

Notation 5.1.20. For any operator P(u) define

〈P(u)〉k := [uk] 〈P(u)〉 (the coefficient of uk in 〈P(u)〉).

If the operator P(u) is a product of A-operators, then the connected correlator 〈P(u)〉◦
makes sense, and we define

〈P(u)〉◦k := [uk] 〈P(u)〉◦ (the coefficient of uk in 〈P(u)〉◦).

Our next goal is to give a formula that would express a coefficient of u in a disconnected
correlator of a product of A-operators 〈A(z1, uz1) . . .A(zn, uzn)〉k in terms of connected
ones (the “inverse” inclusion-exclusion formula, cf. formulas in Remark 5.1.13). We get a
sum of the products of correlators, where the operators A(zi, uzi) are distributed in some
way among the factors, and the degree of u is also specified for each factor so that the sum
of all degrees in each product is equal to k. For further computations it is convenient to
encode the summands of this expression in terms of Young tableaux with extra structure.

Definition 5.1.21. We denote by Yn,k the set of {1, . . . , n} Young tableaux (i. e. Young
diagrams of size n with each box labeled by a number from 1 to n such that no two boxes
are labeled by the same number) with certain conditions and additional row labels.

Namely, let y be such a tableau. Let ci,j(y) be the number in the i-th row and j-th
column. Let h(y) be the number of rows, and let li(y) be the length of the i-th row. Now
we are ready to describe the conditions.

First, the numbers in the rows should be ascending, i. e. for any i and for any j1 < j2
we have ci,j1(y) < ci,j2(y). Second, the numbers in the first column that correspond to
rows of the same length should be ascending, i. e., if li1(y) = li2(y) and i1 < i2, then
ci1,1(y) < ci2,1(y).

By λi(y) ∈ {−1, 0, 1, . . .} we denote additional labels that are assigned to all rows,

and we require that
∑h(y)

i=1 λi(y) = k.
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There is a one-to-one correspondence between the elements of Yn,k and the terms
in the expression for a disconnected correlator through the connected ones. Rows in y
correspond to individual connected correlators in the product, while labels λ correspond
to the Euler characteristics of these connected correlators. This can be expressed through
the following formula:

〈A(z1, uz1) . . .A(zn, uzn)〉k (5.25)

=
∑
y∈Yn,k

h(y)∏
i=1

〈
A(zci,1(y), uzci,1(y)) . . .A(zci,li(y)(y), uzci,li(y)(y))

〉◦
λi(y)

.

The terms in this sum that contain either 〈A(zi, uzi)〉◦−1

or 〈A(zi, uzi)A(zj, uzj)〉◦0 are called unstable terms. We would like to exclude all unstable

terms. This way we get a summation over a subset Ỹn,k of Yn,k defined in the following
way:

Ỹn,k =
{
y ∈ Yn,k

∣∣ li(y) = 1⇒ λi(y) 6= −1, li(y) = 2⇒ λi(y) 6= 0
}
. (5.26)

If we exclude all unstable terms, we obtain the following expression.

Proposition 5.1.22. We have:

〈A+(z1, uz1) . . .A+(zn, uzn)〉k (5.27)

=
∑
y∈Ỹn,k

h(y)∏
i=1

〈
A(zci,1(y), uzci,1(y)) . . .A(zci,li(y)(y), uzci,li(y)(y))

〉◦
λi(y)

.

In other words, 〈A+(z1, uz1) . . .A+(zn, uzn)〉k is equal to 〈A(z1, uz1) . . .A(zn, uzn)〉k with
all the unstable terms dropped.

Proof. Let us first compute the unstable factors, i. e. the genus-zero one- and two-point
connected correlators.

Note that

〈A(z, uz)〉 =
1

uz
+
z(z − 1)

24
u+O(u2). (5.28)

This directly implies the following formula for the genus-zero one-point correlator:

〈A(z, uz)〉◦−1 =
1

z
. (5.29)

The definition of the operator A implies that

〈0|A(z, uz) =
1

uz
〈0|+ 〈0|A+(z, uz). (5.30)

Using the definition of the two-point connected correlators together with formulas (5.28),
(5.30) and (5.23) we can derive the following formula for the genus-zero two-point con-
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nected correlator (we expand it in the region |z1| < |z2|):

〈A(z1, uz1)A(z2, uz2)〉◦0 = 〈A(z1, uz1)A(z2, uz2)〉0 − 〈A(z1, uz1)〉−1 〈A(z2, uz2)〉1 (5.31)

− 〈A(z1, uz1)〉1 〈A(z2, uz2)〉−1

= 〈A+(z1, uz1)A(z2, uz2)〉0 − 〈A(z1, uz1)〉1 〈A(z2, uz2)〉−1

= 〈A(z2, uz2)A+(z1, uz1)〉0 + z1

∞∑
k=0

(−1)k
(
z1

z2

)k
− 〈A(z2, uz2)〉−1 〈A(z1, uz1)〉1

= 〈A+(z2, uz2)A+(z1, uz1)〉0 + z1

∞∑
k=0

(−1)k
(
z1

z2

)k
= z1

∞∑
k=0

(−1)k
(
z1

z2

)k
.

Since the same arguments are used many times in the computations below, let us go
through all the steps of this computation. The first equality,

〈A(z1, uz1)A(z2, uz2)〉◦0 = 〈A(z1, uz1)A(z2, uz2)〉0
− 〈A(z1, uz1)〉−1 〈A(z2, uz2)〉1 − 〈A(z1, uz1)〉1 〈A(z2, uz2)〉−1 ,

is a special case of the definition of a connected correlator. In the next equality we
first replace 〈A(z1, uz1)〉−1 〈A(z2, uz2)〉1 by (1/z1) 〈A(z2, uz2)〉1 and then use the following
consequence of Equation (5.30):

〈A(z1, uz1)A(z2, uz2)〉0 −
1

z1

〈A(z2, uz2)〉1 = 〈A+(z1, uz1)A(z2, uz2)〉0 .

For the third equality we use the commutation relation (5.23). For the fourth equality
we first replace 〈A(z2, uz2)〉−1 〈A(z1, uz1)〉1 by (1/z2) 〈A+(z1, uz1)〉1 and then use the
following consequence of Equation (5.30):

〈A(z2, uz2)A+(z1, uz1)〉0 −
1

z2

〈A+(z1, uz1)〉1 = 〈A+(z2, uz2)A+(z1, uz1)〉0 .

Finally, we observe that 〈A+(z2, uz2)A+(z1, uz1)〉0 = 0.

Now we prove the statement of the proposition by induction over the number of
operators n in the correlator on the left hand side. From the definition of the operator
A it is easy to see that the statement holds for n = 1. Suppose that it holds for the
correlator of any number of operators less than n. We will prove that it holds for n
operators.

Taking into account (5.30), (5.23), (5.29) and (5.31) and using the same arguments
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as above we see with that

〈A(z1, uz1) . . .A(zn, uzn)〉k (5.32)

=
1

z1

〈A(z2, uz2) . . .A(zn, uzn)〉k+1

+ 〈A+(z1, uz1)A(z2, uz2) . . .A(zn, uzn)〉k
= 〈A(z1, uz1)〉◦−1 〈A(z2, uz2) . . .A(zn, uzn)〉k+1

+ z1

∞∑
k=0

(−1)k
(
z1

z2

)k
〈A(z3, uz3) . . .A(zn, uzn)〉k

+ 〈A(z2, uz2)A+(z1, uz1)A(z3, uz3) . . .A(zn, uzn)〉k
= 〈A(z1, uz1)〉◦−1 〈A(z2, uz2) . . .A(zn, uzn)〉k+1

+ 〈A(z1, uz1)A(z2, uz2)〉◦0 〈A(z3, uz3) . . .A(zn, uzn)〉k
+ 〈A(z2, uz2)〉◦−1 〈A+(z1, uz1)A(z3, uz3) . . .A(zn, uzn)〉k+1

+ 〈A+(z1, uz1)A+(z2, uz2)A(z3, uz3) . . .A(zn, uzn)〉k .

We continue with the same computation (replacing the leftmost operator A with A+ and
commuting it to the right, collecting the emerging coefficients in the unstable correlators),
finally arriving at the following expression.

〈A(z1, uz1) . . .A(zn, uzn)〉k = 〈A+(z1, uz1) . . .A+(zn, uzn)〉k (5.33)

+
n−1∑
p=3

[n−p
2

]∑
q=0

∑
y∈Ŷp,qn,k

〈
A+(zc1,1(y), uzc1,1(y)) . . .A+(zc1,p(y), uzc1,p(y))

〉
k+h(y)−q−1

×
q+1∏
i=2

〈
A(zci,1(y), uzci,1(y))A(zci,2(y), uzci,2(y))

〉◦
0

h(y)∏
i=q+2

〈
A(zci,1(y), uzci,1(y))

〉◦
−1

+

[n−2
2

]∑
q=0

∑
y∈Ŷ2,q

n,k

〈
A+(zcs(y),1(y), uzcs(y),1(y))A+(zcs(y),2(y), uzcs(y),2(y))

〉
k+h(y)−q−1

×
q+1∏
i=1
i 6=s(y)

〈
A(zci,1(y), uzci,1(y))A(zci,2(y), uzci,2(y))

〉◦
0

h(y)∏
i=q+2

〈
A(zci,1(y), uzci,1(y))

〉◦
−1

+

[n−1
2

]∑
q=0

∑
y∈Ŷ1,q

n,k

〈
A+(zcs(y),1(y), uzc(y)s(y),1(y))

〉
k+h(y)−q−1

×
q∏
i=1

〈
A(zci,1(y), uzci,1(y))A(zci,2(y), uzci,2(y))

〉◦
0

h(y)∏
i=q+1
i 6=s(y)

〈
A(zci,1(y), uzci,1(y))

〉◦
−1

Here Ŷp,qn,k contains all elements y of Yn,k such that there is precisely one row of length p
labeled by k+h(y)−q−1, q rows of length 2 labeled by 0, and all other rows are of length
1 and labeled by −1. s(y) stands for the position of the row with p elements labeled by
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k+h(y)− q−1. If p = 2 and k+h(y)− q−1 = 0 or p = 1 and k+h(y)− q−1 = −1 one
cannot determine s(y) in this way, but this is not a problem since, due to the fact that
〈A+(z, uz)〉−1 = 0 and 〈A+(z1, uz1)A+(z2, uz2)〉0 = 0, the corresponding term vanishes
in any case. Also note that, obviously, for p ≥ 3 we have s(y) = 1.

Note that the right hand side of formula (5.33) is equal to the correlator

〈A+(z1, uz1) . . .A+(zn, uzn)〉k (5.34)

plus all possible unstable terms entering exactly once, since, by the induction hypothesis,
the correlators of less than n operators A+ are equal to sums of all possible stable terms.
This means that upon moving these terms to the left hand side and subtracting them
from 〈A(z1, uz1) . . .A(zn, uzn)〉k we get precisely all possible stable terms. This proves
the proposition.

5.1.5 Polynomiality

In this subsection we establish polynomiality of some correlators, and this allows us to
complete the proof of Theorem 5.1.1.

Proposition 5.1.23. The series

〈A+(z1, uz1) . . .A+(zn, uzn)〉k
z1 · · · zn

(5.35)

for (n, k) /∈ {(1,−1), (2, 0)} is a symmetric polynomial in z1, . . . , zn.

Proof. From the definition of A+ it is easy to see that for every i the power of zi in the
series 〈A+(z1, uz1) . . .A+(zn, uzn)〉k is bounded from below by 1. From (5.23) it is clear
that this series is symmetric in z1, . . . , zn. Let us prove that, for fixed k, the power of zn
in this series is bounded from above, following the proof of Proposition 9 of [83].

Note that

〈Ek1(uz1) . . . Ekn(uzn)〉 =

〈
Ek1(uz1)

uk1
. . .
Ekn(uzn)

ukn

〉
, (5.36)

holds since the correlator vanishes unless
∑
ki = 0.

Let us apply this transformation to the correlator of A operators:

〈A(z1, uz1) . . .A(zn, uzn)〉 =
〈
Ã(z1, uz1) . . . Ã(zn, uzn)

〉
. (5.37)

Here Ã stands for the operator A where the substitution Ek 7→ u−kEk was made. Note
that each term in each Ã is then regular and non-vanishing at u = 0, except for the term
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1

ζ(uz)
coming from E0, which has a simple pole. Let us write the following:

Ã(zn, uzn)
∣∣0〉 (5.38)

=

(
ζ(uzn)

uzn

)zn ∑
k∈Z

ζ(uzn)k

(zn + 1)k

Ek(uzn)

uk
∣∣0〉

=

(
ζ(uzn)

uzn

)zn ∞∑
k=0

uk

ζ(uzn)k
zn . . . (zn − k + 1) E−k(uzn)

∣∣0〉
=

(
ζ(uzn)

uzn

)zn ∞∑
k=0

(
uzn
ζ(uzn)

)k (
1− 1

zn

)
. . .

(
1− k − 1

zn

)
E−k(uzn)

∣∣0〉.
It is easy to see that zn and u enter this expression in such a way that for all terms with
a fixed power of u the power of zn is bounded from above. Since in (5.37) this expression

is multiplied by operators Ã(zi, uzi), i ∈ {1, . . . , n− 1}, which have at most simple poles
in u, the whole correlator (5.37) is bounded from above in powers of zn, for a fixed power
of u.

From the definition of A+ it is clear that the fact that the power of zn in

〈A(z1, uz1) . . .A(zn, uzn)〉k

is bounded from above for a fixed k immediately implies that the power of zn in

〈A+(z1, uz1) . . .A+(zn, uzn)〉k

is bounded from above for a fixed k as well.
The symmetricity of 〈A+(z1, uz1) . . .A+(zn, uzn)〉k then implies that for fixed k the

power of zi in this expression is bounded from above for any i, which implies that the
series

〈A+(z1, uz1) . . .A+(zn, uzn)〉k (5.39)

is polynomial in z1, . . . , zn, which, in turn, leads to the fact that the series

〈A+(z1, uz1) . . .A+(zn, uzn)〉k
z1 · · · zn

(5.40)

is polynomial in z1, . . . , zn.

Proposition 5.1.24. For (n, k) /∈ {(1,−1), (2, 0)} the series

〈A(z1, uz1) . . .A(zn, uzn)〉◦k
z1 · · · zn

(5.41)

is a symmetric polynomial in z1, . . . , zn.

Proof. Let us prove the statement of this proposition by induction in n, the number of
operators in the correlator. It is clear that for n = 1 the statement holds. Suppose that
it holds for any number of operators less than n. We will prove that it then holds for n
operators as well.
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Formula (5.27) can be rewritten as

〈A(z1, uz1) . . .A(zn, uzn)〉◦k
z1 · · · zn

=
〈A+(z1, uz1) . . .A+(zn, uzn)〉k

z1 · · · zn
(5.42)

−
∑
y∈Ỹ ′n,k

h(y)∏
i=1

〈
A(zci,1(y), uzci,1(y)) . . .A(zci,li(y)(y), uzci,li(y)(y))

〉◦
λi(y)

zci,1(y) · · · zci,li(y)(y)

.

Here, naturally, Ỹ ′n,k is equal to Ỹn,k with the single-row Young tableau thrown away.
By Proposition 5.1.23, the first term on the right hand side of (5.42) is polynomial

in z1, . . . , zn. By induction hypothesis, all the terms in the sum on the right hand side
of (5.42) are polynomial as well, since they are finite products of connected correlators

of the lower number of operators (and, by definition of Ỹ ′n,k, correlators with (ni, ki) ∈
{(1,−1), (2, 0)} never appear). This implies the statement of the proposition.

Taking into account formula (5.16), we see that Proposition 5.1.24 directly implies
the statement of Theorem 5.1.1.

5.2 Proof of the Bouchard-Mariño conjecture

In the present section we give a new proof of the Bouchard-Mariño conjecture using the
polynomiality result from the previous section and not using the ELSV formula.

This conjecture was already proved in [11] and [43]. The first of these papers provides
a “physical” proof through the study of the corresponding matrix model. Unfortunately,
we were not able to attribute precise mathematical meaning to all of the statements of
that paper (see [89] for a related discussion). In the second paper the Bouchard-Mariño
formula is derived directly from the known cut-and-join recursion relation for Hurwitz
numbers, with the help of the ELSV formula.

Here we follow the ideas of the proof of [43] presenting them in a simplified way, with
one essential modification: we do not use the ELSV formula in this proof, using instead
just the polynomiality property.

5.2.1 The Lambert curve

The Lambert curve is a curve in C2 defined by the equation

x = y e−y. (5.43)

We consider this affine curve as an open part of its compactification C = CP 1. We
regard y as a rational coordinate on C and the projection to the x-line as a holomorphic
function with an essential singularity at the point y =∞. In addition to y we use other
convenient rational coordinates on C. In particular, we keep the notations z and t for
the rational coordinates related to y by

y = 1 + z = 1 +
1

t
, t =

1

z
.
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There are two points on C of special interest for us: the origin O corresponding to the
coordinates y = 0, z = −1, t = −1, and the branching point P with the coordinates y = 1,
z = 0, t = ∞. The point P is a Morse critical point for the function x. It means that
the projection to the x-line considered as a branched cover has ramification of order two
at P .

Consider also the function w = log x. It is multi-valued, however, its differential is a
well-defined meromorphic differential on C,

dw =
dx

x
=

1− y
y

dy = − z

z + 1
dz =

dt

t2(t+ 1)
. (5.44)

Denote also by D the vector field dual to this 1-form,

D = x∂x =
y

1− y
∂y = −z + 1

z
∂z = t2(t+ 1)∂t. (5.45)

We regard (5.44) and (5.45) as a single meromorphic form and a single vector field
on C respectively, whose coordinate presentation depends on the chosen local coordinate.
Remark that the form dw vanishes at P , while the field D has a simple pole at this
point.

The inversion of (5.43) near the origin is given [19, 31] by the expansion

y =
∞∑
µ=1

µµ−1

µ!
xµ.

It follows from (5.45) that for any integer k the series

ρk =
∞∑
µ=1

µµ+k

µ!
xµ = Dk+1y

is a rational function on C. More explicitly, in the t-coordinate it is given for k ≥ 0 by
the recursion

ρ0(t) = −1− t, ρk+1(t) = t2(t+ 1)
d

dt
(ρk(t)).

It is a polynomial in t:

ρk(t) = −k! tk+1 − · · · − (2k − 1)!! t2k+1.

The degree of this polynomial is 2k+1. Equivalently, one can say that ρk considered as a
meromorphic function on C has pole of order 2k+ 1 at P . It follows that the linear span
of the polynomials ρk form a subspace of ‘approximately half’ dimension in the space of
all polynomials in t. This subspace has a nice characterization that we describe now.

Denote by σ the involution interchanging the sheets of the ramification defined by the
function x near the point P . The function σ is holomorphic in a neighborhood of P and
its Taylor expansion can be computed from the equation

(1 + z) e−z = (1 + σ(z)) e−σ(z). (5.46)
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Here are the first few terms of this expansion written in the coordinates z and t, respec-
tively:

σ(z) = −z +
2

3
z2 − 4

9
z3 +

44

135
z4 − 104

405
x5 +

40

189
z6 + . . .

σ̃(t) =
1

σ(1/t)
= −t− 2

3
− 4

135t2
+

8

405t3
− 8

567t4
+ . . .

Lemma 5.2.1. For any k ≥ 0 the principal part of the pole of ρk(t) at the point P is
odd with respect to the involution σ. In other words, the function ρk(t) + ρk(σ̃(t)) is
holomorphic at P .

Proof. For k = 0 the assertion is obvious since the principal part of any simple pole is
odd. Now, arguing by induction, we assume that ρk is represented in the form

ρk(t) = ηk(t) + Fk(t)

where ηk(t) = 1
2

(
ρk(t) − ρk(σ̃(t))

)
is odd and Fk(t) = 1

2

(
ρk(t) + ρk(σ̃(t))

)
is even and

holomorphic at P . Then, by definition,

ρk+1(t) = D(ρk(t)) = D(ηk(t)) +D(Fk(t)).

The field D is invariant with respect to the involution, therefore, it preserves the parity.
It follows that D(ηk(t)) is odd, and D(Fk(t)) is even and the order of its pole at P
is at most 1. It follows that D(Fk(t)) is, in fact, holomorphic at P , which proves the
lemma.

5.2.2 Generating function for Hurwitz numbers

Let us introduce the generating function for the connected Hurwitz numbers h◦g;µ in the
following way:

H◦g,n :=
∑

µ1,...,µn∈{1,2,...}

h◦g;µ1,...,µn
b(g, µ)!

xµ11 . . . xµnn . (5.47)

Theorem 5.1.1 implies that, for (g, n) /∈ {(0, 1), (0, 2)},

H◦g,n =
∑

k1,...,kn∈
{0,1,...,Kg,n}

ck1...kn

n∏
i=1

∞∑
µi=1

µµi+kii

µi!
xµii , (5.48)

where ck1...kn are the coefficients of the polynomials Pg,n from Theorem 5.1.1, and Kg,n is
the highest power appearing in Pg,n.

Define

ρk(x) :=
∞∑
m=1

mm+k

m!
xm. (5.49)

Now we can rewrite (5.48) as

H◦g,n =
∑

k1,...,kn∈
{0,1,...,Kg,n}

ck1...kn

n∏
i=1

ρki(xi). (5.50)
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Consider the following change of variables:

xi =
(

1 +
1

ti

)
e
−1− 1

ti . (5.51)

We see that the generating function Hg,n is a polynomial in variables ti (in all but two
‘unstable’ cases when g = 0 and n ≤ 2) after the above substitution (we treat this
substitution as a power series expansion at the point ti = −1). For the unstable cases we
have

H◦0,1 =
∞∑
a=1

aa−2

a!
xa1 = ρ−2(x1) =

1

2
− 1

2t21
,

H◦0,2 =
∑
a,b

aa

a!

bb

b!

xa1x
b
2

a+ b
= log

(
1

t2+1
− 1

t1+1
1
x1
− 1

x2

)
.

(5.52)

The formula of Bouchard and Mariño is a recursion relation for these polynomials. In
order to present it in a more closed form it is convenient to introduce another family of
polynomials Wg,n(t1, . . . , tn) obtained by the above substitution from the series(∏

xk∂xk

)
H◦g,n =

∑
µ1,...,µn

h◦g;µ1,...,µn
b(g, µ)!

µ1 . . . µn x
µ1
1 . . . xµnn ,

i. e., for (g, n) /∈ {(0, 1), (0, 2)},

Wg,n(t1, . . . , tn) =
∑

k1,...,kn∈
{0,1,...,Kg,n}

ck1...kn

n∏
i=1

ρki+1(ti). (5.53)

In the unstable cases we define the functions Wg,n by setting explicitly

W0,1(t1) = 0, (5.54)

W0,2(t1, t2) =
t21(t1 + 1)t22(t2 + 1)

(t2 − t1)2
. (5.55)

Define also auxiliary functions W̃g,n(u, v; t2, . . . , tn) by

W̃g,n(u, v; tL′) :=Wg−1,n+1(u, v, tL′)

+
∑

g1+g2=g

∑
AtB=L′

Wg1,|A|+1(u, tA)Wg2,|B|+1(v, tB).

We denote here by L′ = {2, . . . , n} the index set, tL′ = (t2, . . . , tn); the summation is
taken over the set of all possible partitions of the index set into a disjoint union of two
subsets, A and B.

Theorem 5.2.2 (Bouchard-Mariño conjecture). The polynomials Wg,n can be determined
by the either of the following recursive formulas

Wg,n(t1, tL′) =− res
z=0

(
K(z, t1) W̃g,n

(1

z
,
1

z
; tL′
))

= res
z=0

(
K(z, t1) W̃g,n

(1

z
,

1

σ(z)
; tL′
))

=− res
z=0

(
K(z, t1) W̃g,n

( 1

σ(z)
,

1

σ(z)
; tL′
))
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where

K(z, t1) =
t21(1 + t1)

2(1− z t1)(1− σ(z) t1)

z dz

z + 1

and the series σ(z) = −z + 2
3
z2 − 4

9
z3 + . . . is defined in the previous subsection.

The second equality is a reformulation of the Bouchard-Mariño conjecture. Experi-
ments show, however, that the first formula is more efficient for practical computations.

Analytically, the meaning of this theorem is as follows. The function Hg,n is defined
originally as a formal power series expansion at xi = 0. It turns out, however, that this
series has a finite radius of convergence with respect to each variable xi (to be precise, the
radius of convergence is e−1). An attempt to extend it beyond the radius of convergence
meets difficulties: the function becomes multi-valued with ramification at xi = e−1.
Therefore, it is more natural to consider Hg,n as a function on the product C × · · · × C
where C is the curve given by the equation x =

(
1 + 1

t

)
e−1− 1

t . When treated in this

way, it becomes single-valued and even rational. The recursive relation of the theorem
is formulated in terms of the analysis of the behavior of the function Hg,n (and closely
related to it function Wg,n) in a neighborhood of the ramification point x1 = e−1 which
is different from the origin.

5.2.3 The cut-and-join equation

Yet another way to collect Hurwitz numbers into a generating series is given by the
expansion

Gg,n(p1, p2, . . . ) =
1

n!

∑
µ1,...,µn

h◦g;µ1,...,µn
b(g, µ)!

pµ1 . . . pµn .

The series Gg,n involves an infinite collection of variables p1, p2, . . . and all its terms are
homogeneous of degree n. The relation between the two series Gg,n and H◦g,n is obvious.
In particular, Gg,n can be obtained from 1

n!
H◦g,n by replacing every monomial xµ11 . . . xµnn

by the corresponding monomial pµ1 . . . pµn .

The cut-and-join equation is a recursion on Hurwitz numbers obtained through the
analysis of the cyclic type of the result of multiplication of a given permutation by a
single transposition. In its original form [55], it is written as

2u
∂eG

∂u
+
∞∑
i=1

(i+ 1) pi
∂eG

∂pi
=

1

2

∑
a,b

(
(a+ b)papb

∂eG

∂pa+b

+ u ab pa+b
∂2eG

∂padpb

)

where

G =
∑
g,n

ug−1Gg,n.
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The same equation written in terms of the individual components Gg,n is

(2g − 2 + n)Gg,n +
∞∑
i=1

i pi
∂Gg,n

∂pi
(5.56)

=
1

2

∑
a,b

(
(a+ b)papb

∂Gg,n−1

∂pa+b

+ ab pa+b

(∂2Gg−1,n+1

∂pa∂pb
+

∑
g1+g2=g

n1+n2=n+1

∂Gg1,n1

∂pa

∂Gg2,n2

∂pb

))
.

Let us rewrite this equation in terms of the functions H◦g,n. The operator
∑
i pi∂pi

from the left hand side of the equation corresponds to the operator
∑n

i=1Di acting on
H◦g,n where

Di = xi∂xi = t2i (ti + 1)∂ti .

The action of the ‘cut’ operator
∑

(a + b)papbdpa+b in terms of the series H◦g,n results in
the replacement of any monomial x`m by the sum∑

a+b=`

(a+ b)xajx
b
k = `

xkxj(x
`−1
k − x`−1

j )

xk − xj

=
xj

xk − xj
xk
∂(x`k)

∂xk
+

xk
xj − xk

xj
∂(x`j)

∂xj

=
xj

xk − xj
Dk(x

`
k) +

xk
xj − xk

Dj(x
`
j).

In a similar way, the action of the ‘join’ operator ab pa+b
∂2

∂padpb
results in the replace-

ment of any monomial xajx
b
k by the monomial

ab xa+b
m =

(
xm

∂(xam)

∂xm

)(
xm

∂(xbm)

∂xm

)
= Dm(xam)Dm(xbm).

The relation between the indices k, j, and m in the above considerations is not essential.
One should only take care that the result is symmetric with respect to the permutations
of the variables x1, . . . , xn.

The relation obtained from (5.56) in this way is presented below. In this relation L
denotes the collection of indices L = {1, 2, . . . , n}, and tL = (t1, . . . , tn).

(2g−2+n)H◦g,n(tL) +
n∑
k=1

DkH
◦
g,n(tL) (5.57)

=
1

2

∑
k 6=j

2
xj

xk − xj
DkH

◦
g,n−1(tL\{j})

+
1

2

n∑
k=1

(
DkDn+1H

◦
g−1,n+1(tL, tn+1)

∣∣
tn+1=tk

+
∑

g1+g2=g

∑
AtB=L\{k}

DkH
◦
g1,|A|+1(tk, tA)DkH

◦
g2,|B|+1(tk, tB)

)
,
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where the last summation is taken over the set of all possible partitions of the index set
L \ {k} = {1, . . . , k − 1, k + 1, . . . , n} into a disjoint union of two subsets, A and B.

This relation can be regarded as a relation on the functions in either x or t-variables,
where xi and ti are related by (5.51). We consider this relation as the ‘preliminary
form’ of the required cut-and-join equation. The final form is obtained by extracting
unstable terms from the last summation corresponding to the functions H◦0,1 and H◦0,2 and
combining these terms with the corresponding terms of the previous sums. Using (5.52),
we find the coefficients of the recombined terms

1−D1H
◦
0,1(t1) = − 1

t1
,

x2

x1 − x2

+D1H
◦
0,2(t1, t2) =

t21(1 + t2)

t1 − t2
.

We obtain thus the final form of the cut-and-join equation in the t-coordinates, see
more details in [79]:

(2g−2+n)H◦g,n(tL) +
n∑
k=1

(
− 1

tk

)
DkH

◦
g,n(tL) (5.58)

=
∑
k 6=j

t2k(1 + tj)

tk − tj
DkH

◦
g,n−1(tL\{j})

+
1

2

n∑
k=1

(
DkDn+1H

◦
g−1,n+1(tL, tn+1)

∣∣
tn+1=tk

+
∑

g1+g2=g

stable∑
AtB=L\{k}

DkH
◦
g1,|A|+1(tk, tA)DkH

◦
g2,|B|+1(tk, tB)

)
.

It is remarkable that the ‘non-polynomial’ summands are canceled out, and both sides
of the relation proved to be polynomial in t-variables. As it is pointed out in [58, 79],
selecting the highest and the lowest degree terms of this formula one gets immediately
the Virasoro constrains for the intersection numbers of ψ-classes on the moduli spaces of
curves (see e.g. [20, 67, 98, 6, 90]) and the relation of the λg-formula [49, 50], respectively.

5.2.4 Reduction by symmetrization

The cut-and-join equation (5.58) can be used to determine H◦g,n inductively. However, in
the presented form it is not very convenient since it is not clear how to invert the operator
on the left hand side of the equation. It is not even obvious that the functionH◦g,n obtained
by this recursion is polynomial in t-variables. The following two key observations of [43]
lead to a considerable simplification of (5.58):

1. The function H◦g,n is polynomial in each variable ti, therefore, the whole information
about this function is contained in the principal part of its pole at the point P with
respect to ti. Let us stress that in [43] this polynomiality was derived from the
ELSV formula, while here we have it independently due to the results of Section
5.1, as noted above.
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2. The principal part of the pole of Hg,n is odd with respect to the involution σ on
each ti-line (as it follows from Lemma 5.2.1).

Consider the even summand of the principal part of the pole at P of each term
in (5.58) with respect to the first variable t1. It follows that most of the terms will give
trivial contribution to the result so that the whole equation will be considerably simplified.

It is more convenient for us to use a slight modification of this idea. Namely, set

η(t1) = σ
( 1

t1

)
− 1

t1
.

This function is holomorphic at P and odd with respect to the involution. Now, consider
an arbitrary meromorphic function f(t1).

Notation 5.2.3. We denote by ⌊
f(t1)

η(t1)

⌋−
1

the odd residueless principal part of the pole of the quotient f/η at the point P . More
explicitly, if we write the Laurent expansion

f(t1) + f(σ̃(t1))

2 η(t1)
=

∑
−∞<i≤N

ai t
i
1

at P , then we set, by definition,

bf/ηc−1 =
N∑
i=2

ai t
i
1.

From this definition we see that bf/ηc−1 is a polynomial in t1 divisible by t21.

We apply the transformation f(t1) 7→ b2f/ηc−1 to both sides of (5.58). This trans-
formation annihilates any function in t1 whose pole at P has odd principal part. In
particular, it annihilates H◦g,n(tL) on the left hand side as well as all terms on both sides
of the equality corresponding to the summation index k different from 1.

Let us compute the action of this transformation on the term − 1
t1
D1H

◦
g,n on the left

hand side. For any meromorphic function f(t1) which is odd with respect to the involution
we have

−f(t1)
t1
− f(σ̃(t1))

σ̃(t1)

η(t1)
= f(t1)

− 1
t1

+ 1
σ̃(t1)

η(t1)
= f(t1).

Therefore,
⌊
− 2f(t1)
η(t1) t1

⌋−
1

= bf(t1)c−1 . The function D1H
◦
g,n differs from such a function by a

holomorphic summand that gives trivial contribution to the transformation. This implies⌊
− 2

η(t1) t1
D1H

◦
g,n

⌋−
1

=
⌊
D1H

◦
g,n

⌋−
1

= D1H
◦
g,n.
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We obtain finally the equation

D1H
◦
g,n =


1

η



n∑
j=2

t21(1 + tj)

t1 − tj
D1H

◦
g,n−1(t1, tL′\{j})

+D1Dn+1H
◦
g−1,n+1(t1, tL′ , tn+1)

∣∣
tn+1=t1

+
∑

g1+g2=g

stable∑
AtB=L′

D1H
◦
g1,|A|+1(t1, tA)D1H

◦
g2,|B|+1(t1, tB)





−

1

(5.59)

where L′ = L \ {1} = {2, . . . , n}.
In order to represent this equation in a more readable form, let us apply

∏n
k=2 Dk to

both its sides and observe that the expression inside the square brackets becomes algebraic
with respect to the functions Wg,k defined by (5.53). Moreover, the first term on the right
hand side can be formally included into the last since we defined the contribution of the
unstable terms as in Equations (5.54) and (5.55). With this notation, the result of the
application of

∏n
k=2Dk to both sides of Equation (5.59) takes the form of the following

recursive relation on Wg,n.

Proposition 5.2.4. The function Wg,n defined by (5.53)–(5.55) satisfies the recursive
equation

Wg,n(t1, tL′) =

⌊
1

η(t1)
W̃ (t1, t1; tL′)

⌋−
1

,

where L′ = {2, . . . , n}, tL′ = (t2, . . . , tn), and

W̃g,n(u, v; tL′) = Wg−1,n+1(u, v, tL′) (5.60)

+
∑

g1+g2=g

∑
AtB=L′

Wg1,|A|+1(u, tA)Wg2,|B|+1(v, tB).

Remark 5.2.5. If f(t1) is a meromorphic function whose pole at P has odd principal part
then for any other function g we have⌊

f(t1)g(t1)

η(t1)

⌋−
1

+

⌊
f(t1)g(σ̃(t1))

η(t1)

⌋−
1

=

⌊
f(t1)

g(t1) + g(σ̃(t1))

η(t1)

⌋−
1

= 0

since (g(t1) + g(σ̃(t1)))/η(t1) is odd. Therefore, Wg,n can equivalently be obtained by the
either of the following relations

Wg,n(t1, tL′) = −
⌊

1

η(t1)
W̃g,n(t1, σ̃(t1); tL′)

⌋−
1

=

⌊
1

η(t1)
W̃g,n(σ̃(t1), σ̃(t1); tL′)

⌋−
1

.

5.2.5 Residual formalism

The coefficient fk of the meromorphic function f(t1) =
∑
−∞<i≤N fit

i
1 can be extracted

by taking the residue

fk = Res
z=0

(
f
(

1
z

)
zk−1 dz

)
.
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It follows that the whole residueless principal part of the pole of f is given by

N∑
k=2

fkt
k
1 = Res

z=0

(
f
(

1
z

) ∞∑
k=2

tk1z
k−1 dz

)
= Res

z=0

(
f
(

1
z

) t21z

1− t1z
dz
)
. (5.61)

Similarly, for the function f̄(t1) = f(σ̃(t1)) =
∑
−∞<i≤N f̄it

i
1 we get

N∑
k=2

f̄kt
k
1 = Res

z=0

(
f
(

1
s(z)

) t21z

1− t1z
dz
)

(5.62)

= Res
z=0

(
f
(

1
z

) t21σ(z)

1− t1σ(z)

z

1 + z

1 + σ(z)

σ(z)
dz
)
.

We used here the equality
z dz

1 + z
=
σ(z) dσ(z)

1 + σ(z)

that follows from Equation (5.46).
Combining (5.61) and (5.62) we obtain a residual formula for the odd residueless

principal part of the pole of a function:

bf(t1)/η(t1)c−1 = − Res
z=0

(
K(z, t1) f(1/z)

)
where

K(z, t1) =
1

2η(1/z)

( t21z

1− t1z
− t21σ(z)

1− t1σ(z)

z

1 + z

1 + σ(z)

σ(z)

)
dz (5.63)

=
t21(1 + t1)

2(1− z t1)(1− σ(z) t1)

z dz

z + 1
.

This, substituted into the recursive formulas of Proposition 5.2.4 and Remark 5.2.5,
directly gives Theorem 5.2.2.

5.3 Spectral curve topological recursion /

Givental correspondence revisited

In this section we review and reformulate the correspondence between spectral curve
topological recursion and Givental theory established in Chapter 3. We use it in the
next section to prove the equivalence between the Bouchard-Mariño conjecture and the
ELSV formula. This way we obtain a new proof of the ELSV formula, using the new
independent proof of the Bouchard-Mariño conjecture from the previous section.

5.3.1 Givental formula

Let H be a Frobenius algebra, that is, a finite-dimensional commutative associative alge-
bra over C with a unit denoted by 11 ∈ H, equipped with a linear function ` : H → C such
that the symmetric bilinear form given by 〈a, b〉 = `(a b) is non-degenerate. A typical
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example is the (even part of the) cohomology ring of a complex compact manifold. The
dimension of H will be denoted by N = dimH. Fix a basis e1, . . . , eN in H.

Consider also an element of the Givental upper triangular twisted loop group, that is,
a formal series of the form

R(z) = 1 +
∞∑
k=1

Rkz
k, Rk ∈ End(H),

satisfying
R(z)R∗(−z) = 1.

In terms of the Lie algebra element r(z) = log(R(z)), R(z) = exp r(z), the last relation
can be equivalently rewritten as r(z) + r∗(−z) = 0.

To this data (a Frobenius algebra and an element R of the upper triangular group)
Givental associates a formal Gromov-Witten potential F , a formal series in an infinite
number of variables tkν , k = 0, 1, 2, . . . , ν = 1, 2, . . . , N , and one extra variable ~, defined
by the formula

e
1
~F = R̂ e

1
~F

top

, R̂ = er̂, (5.64)

where F top is the potential of the topological field theory associated with the Frobenius
algebra H, and r̂ is a second-order differential operator obtained from r(z) by a procedure
of ‘quantization of quadratic Hamiltonians’, see details in [52].

A choice of basis in H is not essential. A change of the basis leads to a linear change
of variables in the potential of the form tkν −→

∑N
µ=1 Ψµ

ν tkµ where Ψ is the matrix of the
change of basis. In other words, we can treat F as a formal function on H ⊕H ⊕ . . . .

It was observed in [51, 65] that the potential F constructed this way is, in fact,
a descendant potential of a certain cohomological field theory. Moreover, it is proved
in [93] that the descendant potential of any semi-simple cohomological field theory can
be represented in such form.

5.3.2 Spectral curve topological recursion

Spectral curve topological recursion is a formal procedure leading to a family of certain
differentials wg,n associated with a plane complex curve. They were introduced originally
for particular curves in relation to matrix models in mathematical physics, then the
procedure was formalized for arbitrary abstract curves (see [16, 18, 17, 4, 3, 48, 85]).

Let C ⊂ C2 be a smooth complex curve on the plane with coordinates x, y. Let
a1, . . . , aN ∈ C be the critical points of the coordinate function x. The construction of
the differentials wg,n requires the study of the curve in a neighborhood of these points,
therefore, it is sufficient to assume that instead of C we have a union of N small discs
centered at the points ai, i = 1, . . . , N , or even the union of formal neighborhoods of these
points. Respectively, by a function or differential form (holomorphic or meromorphic)
on C we mean a collection of germs of functions or differential forms at the points ai or
even a collection of formal Laurent series at these points.

Assume that each point ai is a Morse critical point of the function x, that is, x
is a ramified covering with a ramification of order 2 at ai. Let σ be the holomorphic
involution on C interchanging the branches of the function x near ai. In order to simplify
notations, for any function or differential form α we denote α = σ∗α. With this notation
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the involution is given by σ : (x, y) 7→ (x, y). Remark that this bar sign has nothing to
do with the complex conjugation in the present context. Remark also that the form α is
defined in a neighborhood of the point ai only, even if the form α is globally defined.

On top of that, assume that we are given a 2-point differential B(z1, z2) (referred
to as Bergman kernel in some papers), that is, a meromorphic symmetric 2-differential
on C × C representable near ai × aj ∈ C × C in the form

B(z1, z2) = δi,j
dz

(i)
1 dz

(j)
2

(z
(i)
1 − z

(j)
2 )2

+B(ij)
reg (z

(i)
1 , z

(j)
2 )

where z(i) is a local coordinate on C near ai and where B
(ij)
reg (z

(i)
1 , z

(j)
2 ) is holomorphic at

ai × aj.
The spectral curve n-point functions wg,n, g ≥ 0, n ≥ 1, are meromorphic n-

differentials on C×n defined inductively by the following formulas:

w0,1(z) = 0, w0,2(z1, z2) = B(z1, z2),

and for 2g − 2 + n > 0,

wg,n(z, z2, . . . , zn) = −
N∑
i=1

res
z′=ai

(
w̃g,n(z′, z̄′, z2, . . . , zn)

2µ(z′)

∫ z̄′

z′
B(z, ·)

)
, (5.65)

where µ is the 1-form µ := y dx− ȳ dx defined in a neighborhood of the union of points ai,
and where

w̃g,n(z′, z′′, zK) = wg−1,n+1(z′, z′′, zK) +
∑

g1+g2=g
ItJ=K

wg1,|I|+1(z′, zI) wg2,|J |+1(z′′, zJ). (5.66)

We used here notation K = {2, . . . , n}, and uI = (ui1 , . . . , ui|I|) for any subset I =
{i1, . . . , i|I|} ⊂ K.

Remark 5.3.1. We collect here several important remarks clarifying the meaning of all
these formulas.

1. Consider the following operator α 7→ Pα acting on the space of meromorphic 1-
forms,

(Pα)(z) =
N∑
i=1

res
z′=ai

(
α(z′)

2

∫ z̄′

z′
B(z, ·)

)
.

Denote by L the image of this operator. Then the operator P is the projection
to the subspace L, that is, it is identical on L. The kernel of P is generated by
holomorphic and by even (in the sense of local automorphism σ at each critical
point) meromorphic 1-forms.

2. It follows that the 1-form in z on the right hand side of (5.65) belongs to L. In other
words, the invariants wg,n can be regarded as tensors wg,n ∈ L⊗n (for (g, n) 6= (0, 2)).
These tensors are symmetric and polynomial. The last property means that wg,n
belongs to the corresponding tensor product space itself, not just to its completion.
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3. The data contained in the collection of invariants wg,n can be collected in a single
potential F =

∑
~gFg such that the symmetric tensor wg,n is identified with the

nth homogeneous term of the Taylor expansion of Fg,

wg,n =
∑

α1,...,αn

∂nFg
∂tα1 . . . ∂tαn

∣∣∣
t=0

dξα1 ⊗ · · · ⊗ dξαn .

Here {dξa}α∈A is some chosen basis in L, and t = {tα}α∈A is the set of formal
variables labeled by the same set of indices. The coordinate expression of the
potential F depends on a choice of the basis in L. A different choice of the basis
leads to the corresponding linear change of coordinates in F . In other words, F
can be regarded as a formal function on the infinite dimensional space L∗; with this
treatment of the potential, it is invariantly defined and independent of any basis.

4. The dual space V = L∗ can be identified with the space of odd holomorphic 1-forms
defined in a neighborhood of the union of points ai. The pairing is given by

(α, β) =
N∑
ν=1

res
z=aν

(α

∫
β), α ∈ L. β ∈ V.

If {dξα}α∈A is any basis in L and {dξα}α∈A is the dual basis in V = L∗, then there
is an asymptotic expansion

1

2
(B(z, w)−B(z, w)) =

∑
α∈A

dξα(z)dξα(w).

This expansion takes place as w → ai, |w − w(ai)| � |z − z(ai)|.

5. It follows, in particular, that the subspace L is spanned by the coefficients of the
Taylor expansion of the antisymmetrized Bergman kernel 1

2
(B(z, w)−B(z, w)) with

respect to the second argument w at the points ai.

5.3.3 Givental action as spectral curve topological recursion

Here we formulate in a refined way the result of Chapter 3 in the case N = 1.
Let C be a curve on the (x, y)-plane as above. Consider the following operator acting

in the space of meromorphic 1-forms,

D : α 7→ d
( α
dx

)
.

This operator commutes with the action of the involution σ, Dα = Dα. Set

dξk := D−kdy, k = 0, 1, 2, . . . .

The forms dξk are holomorphic in a neighborhood of the point a1. There is an ambiguity
in the choice of integration constants appearing in the inversion of D. Different choices
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of these constants lead to forms that differ by a holomorphic and even (with respect to
the involution σ) summand. It follows that the odd parts of these forms

1

2

(
dξk − dξk

)
, k = 0, 1, 2, . . .

are independent of any choice. Moreover, these odd forms form a basis in the space of
odd holomorphic forms. Let us take the antisymmetrized Bergman kernel 1

2

(
B(z, w) −

B(z, w)
)
, develop it over the obtained basis, and denote by dξk the coefficients of this

expansion:

1

2

(
B(z, w)−B(z, w)

)
=
∞∑
k=0

dξk(z)
dξk(w)− dξk(w)

2
. (5.67)

This asymptotic expansion takes place as w → 0, |w| � |z| where z is a local holomorphic
coordinate on C near the point a1. The form dξk defined by this expansion is meromorphic
with a pole of order 2k + 1 at z = 0.

Definition 5.3.2. The Bergman kernel is said to be compatible with the operator D if
the introduced meromorphic forms dξk are given explicitly by dξk = (−1)k+1Dk+1dξ0.

The following criterion simplifies the verification of the compatibility condition.

Lemma 5.3.3. Assume that the Bergman kernel satisfies the identity

(Dz +Dw)B(z, w) = −Dzdξ0(z) Dwdξ0(w).

Then it is compatible with D.

Proof. Applying the expansion (5.67) we get

0 = (Dz +Dw)
B(z, w)−B(z, w)

2
+Dzdξ0(z) Dw

dξ0(w)− dξ0
(w)

2

=
∞∑
k=0

(Dzdξk(z) + dξk+1(z))
dξk(w)− dξk(w)

2

+ (Dzdξ0(z) + dξ0(z))Dw
dξ0(w)− dξ0

(w)

2
.

This equality is equivalent to the system of equations dξ0 = −Ddξ0, dξk+1 = −Ddξk, that
is, dξk = (−1)k+1Dk+1dξ0, as required.

Now, assume that the Bergman kernel is compatible with D. Introduce the local
coordinate s on the curve near the point a1 from the relation dx = s ds, that is,

s =
√

2(x− x(a1)).

This coordinate is defined up to a sign, and the involution in this coordinate is given
simply by s = −s. Consider the expansion of the odd part of the form dy in this
coordinate,

1

2
(dy − dy) = ds+

∞∑
k=1

Rk
s2k ds

(2k − 1)!!
. (5.68)

We can now formulate the main result of Chapter 3 for the case of N = 1.
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Theorem 5.3.4. If the Bergman kernel is compatible with the operator D, then the
spectral curve n-point functions are the n-point correlator functions of a certain formal
GW potential F (t0, t1, . . . ) =

∑
~gFg,

wg,n =
∑

k1,...,kn

∂nFg
∂tk1 . . . dtkn

∣∣∣
t=0

dξk1 ⊗ · · · ⊗ dξkn .

Moreover, this GW potential is given by the Givental formula (5.64) with the Witten-
Kontsevich potential for F top and with the element R(z) = 1 + R1z + R2z

2 + . . . of the
upper triangular group whose components Rk are determined by the expansion (5.68).

5.4 New proof of the ELSV formula

In the present section we prove the equivalence of the Bouchard-Mariño formula and
the ELSV formula with the help of the Givental-topological recursion correspondence
reviewed in the previous section. Note that this equivalence was already proved by
Eynard in [36], see also [89].

From this equivalence, using our new proof of the Bouchard-Mariño conjecture (The-
orem 5.2.2), we obtain a new proof of the ELSV formula.

5.4.1 Hodge class

The total Hodge class Λg = 1 − λ1 + · · · + (−1)gλg ∈ H∗(Mg,n) provides the simplest
non-trivial example of a cohomological field theory (of dimension N = 1). It follows that
its potential, the generating function for Hodge integrals,

F (~, t0, t1, . . . ) =
∑
g,n

~g

n!

∑
k1,...,kn

∫
Mg,n

Λg ψ
k1
1 . . . ψknn tk1 . . . tkn

is a formal GW potential. Indeed, Mumford’s formula [80] for the Chern characters of
the Hodge bundle rewritten in terms of intersection numbers has exactly the form (5.64)
with the Witten-Kontsevich potential for the series F top and the following element of the
upper triangular group

R(z) = exp

(
∞∑
n=1

B2n

2n (2n− 1)
z2n−1

)
= 1 +

1

12
z +

1

288
z2 − 139

51840
z3 + . . . , (5.69)

where Bn is the nth Bernoulli number. The operator R̂ = exp
(∑∞

n=1
B2k

2n (2n−1)
ẑ2n−1

)
corresponding to this element acts by

ẑ2n−1 = − ∂

∂t2n
+
∞∑
i=0

ti
∂

∂ti+2n−1

− 1

2

∑
i+j=2n−2

(−1)i
∂2

∂tidtj
.

In the definition of this operator, we use a convention which differs by the sign from that
of the original paper [52].
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5.4.2 BM-ELSV equivalence

Consider the Lambert curve (5.43)

x̃ = ỹ − log(1 + ỹ), dx̃ =
ỹ dỹ

1 + ỹ
,

which is given here in logarithmic coordinates

x̃ = −1− log x,

ỹ = −1 + y.

For this curve, the standard Bergman kernel B(ỹ1, ỹ2) = dỹ1dỹ2
(ỹ1−ỹ2)2

is compatible with
the operator D. Indeed, we have

(Dỹ1 +Dỹ2)
dỹ1dỹ2

(ỹ1 − ỹ2)2
= dỹ1

(1 + ỹ1) dỹ2

ỹ1(ỹ1 − ỹ2)2
+ dỹ2

(1 + ỹ2) dỹ1

ỹ2(ỹ1 − ỹ2)2

= −dỹ1dỹ2

ỹ2
1 ỹ

2
2

= −Dỹ1dỹ1 Dỹ2dỹ2.

Therefore, by Lemma 5.3.3 and Theorem 5.3.4, the spectral curve n-point functions in
this case are the correlation functions of a certain formal GW potential. Moreover, this
potential is obtained from the Kontsevich-Witten potential by the action of the element
R(z) = 1 +

∑
Rkz

k of the Givental group whose coefficients are determined by the
expansion

d

ds

ỹ(s)− ỹ(−s)
2

= 1 +
∞∑
k=1

Rk
s2k

(2k − 1)!!
,

where the function ỹ(s) is given by the implicit equation

s =
√

2 (ỹ − log(1 + ỹ)).

It is proved in [13] that these coefficients are the same as those given by the expan-
sion (5.69).

This means that for our spectral curve we have

wg,n =
∑

k1,...,kn

∂nFg
∂tk1 . . . dtkn

∣∣∣
t=0

(dξk1)1 . . . (dξkn)n (5.70)

=
∑

k1,...,kn

(∫
Mg,n

Λgψ
k1
1 . . . ψknn

)
n∏
i=1

∞∑
µi=1

µµi+ki+1
i

µi!
xµi−1
i dxi

=
∑

µ1,...,µn

(∫
Mg,n

Λg∏n
i=1(1− µiψi)

)
n∏
i=1

µµi+1
i

µi!
xµi−1
i dxi.

Here we used the fact that in our case

dξk = (−1)k+1Dk+1dỹ = d

((
x
d

dx

)k+1

y

)

= d

((
x
d

dx

)k+1 ∞∑
µ=1

µµ−1

µ!
xµ

)
=
∞∑
µ=1

µµ+k+1

µ!
xµ−1dx.
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Note that the Bouchard-Mariño conjecture may be written as

wg,n =
∑

µ1,...,µn

h◦g;µ1,...,µn
b(g, µ)!

µ1 . . . µn x
µ1−1
1 . . . xµn−1

n dx1 . . . dxn, (5.71)

while the ELSV formula states that

h◦g;µ1,...,µn = b(g, µ)!

(∫
Mg,n

Λg∏n
i=1(1− µiψi)

)
n∏
i=1

µµii
µi!

. (5.72)

We immediately see that formula (5.70) directly implies the following

Theorem 5.4.1. The Bouchard-Mariño conjecture and the ELSV formula are equivalent.

This means that we have a new proof of the ELSV formula, since we proved the
Bouchard-Mariño conjecture independently in Section 5.2. Note that the Bouchard-
Mariño conjecture as given in Theorem 5.2.2 is equivalent to formula (5.71), if one
takes into account the topological recursion formula for wg,n, given by Equations (5.65)
and (5.66).
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Chapter 6

Combinatorics of loop equations for
branched covers of sphere

This chapter is based on paper [102], joint work with N. Orantin, A. Popolitov and
S. Shadrin. In this chapter we prove the spectral curve topological recursion for the
problem of enumeration of bi-colored maps.

The chapter is organized as follows.
In Section 6.1 we recall the definitions of hypermaps and discuss generating functions

corresponding to hypermap enumeration problems. In Section 6.2 we reformulate the
definition of hypermaps in terms of bi-colored maps and discuss the 2-matrix model which
gives rise to enumeration of bi-colored maps. In Section 6.3 we recall the form of the loop
equations for the 2-matrix model and then we show that using purely combinatorial
argument to prove the basic building blocks of loop equations, we can obtain a purely
combinatorial proof of the spectral curve for the enumeration of bi-colored maps In Section
6.4 we review the problem of finding the quantum curve for enumeration of hypermaps.
In Section 6.5 we outline the proof of the spectral curve topological recursion for the even
further generalization of our problem: the case of 4-colored maps, which corresponds to
4-matrix models.

6.1 Branched covers of P1

6.1.1 Definitions

We are interested in the enumeration of covers of P1 branched over three points. These
covers are defined as follows.

Definition 6.1.1. Considerm positive integers a1, . . . , am and n positive integers b1, . . . , bn.
We denote by Mg,m,n(a1, . . . , am|b1, . . . , bn) the weighted count of branched covers of P1

by a genus g surface with m + n marked points f : (S; q1, . . . , qm; p1, . . . , pn) → P1 such
that

• f is unramified over P1\{0, 1,∞};

• the preimage divisor f−1(∞) is a1q1 + . . . amqm;

• the preimage divisor f−1(1) is b1p1 + . . . bnpn;
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Of course, a cover f can exist only if a1+· · ·+am = b1+· · ·+bn. In this case d = b1+· · ·+bn
is called the degree of a cover.

These covers are counted up to isomorphisms preserving the marked points p1, . . . , pn
pointwise and covering the identity on P1. The weight of a cover is equal to the inverse
order of its automorphism group.

Example 6.1.2. In [23] the authors consider the case of

Mg,d/a,n(a, . . . , a|b1, . . . , bn),

and relate this enumeration problem to the existence of a quantum curve.

Since such a branched cover can be recovered just from its monodromy around 0, 1
and ∞, it is convenient to reformulate this enumeration problem in different terms.

Definition 6.1.3. Let us fix d ≥ 1, g ≥ 0, m ≥ 1, and n ≥ 1. A hypermap of type
(g,m, n) is a triple of permutations (σ0, σ1, σ∞) ∈ S3

d such that

• σ0σ1σ∞ = Id;

• σ1 is composed of n cycles;

• σ∞ is composed of m cycles.

A hypermap is called connected if the permutations σ0, σ1, σ∞ generate a transitive
subgroup of Sd. A hypermap is called labelled if the disjoint cycles of σ1 are labelled from
1 to n.

Two hypermaps (σ0, σ1, σ∞) and (τ0, τ1, τ∞) are equivalent if one can conjugate all
the σi’s to obtain the τi’s. Two labelled hypermaps are equivalent if in addition the
conjugation preserves the labelling.

By Riemann existence theorem, one has

Lemma 6.1.4. The number Mg,m,n(a1, . . . , am|b1, . . . , bn) is equal to the weighted count
of labelled hypermaps of type (g,m, n) where the cycles of σ∞ have lengths a1, . . . , am
and the cycles of σ1 have length b1, . . . , bn. Here the weight of a labelled hypermap is the
inverse order of its automorphism group.

6.1.2 Generating functions

In order to compute these numbers, it is very useful to collect them in generating func-
tions. For this purpose, we define:

Definition 6.1.5. Let us fix integer g ≥ 0 and n ≥ 1 such that 2g − 2 + n > 0. We also
fix one more integer a ≥ 1 that will be used to restrict the possible length of cycle in σ∞.

The n-point correlation function is defined by

Ω(a)
g,n(x1, . . . , xn) :=

∞∑
m=0

∑
1≤a1,...,am≤a

0≤b1,...,bn

Mg,m,n(a1, . . . , am|b1, . . . , bn)
m∏
i=1

tai

n∏
j=1

bjx
−bj−1
i . (6.1)

It is a function of the variables x1, . . . , xn that depends on formal parameters t1, . . . , ta.
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Remark 6.1.6. Note that the product

Mg,m,n(a1, . . . , am|b1, . . . , bn)
n∏
j=1

bj

counts the same covers as in Definition 6.1.1, but with an additional choice, for each i,
of one of the possible bi preimages of a path from 1 to 0 starting at point pi.

For later convenience in the definition of the quantum curve, we define the symmetric
counterpart of the n-point correlation function by (for (g, n) 6= (0, 1))

F (a)
g,n(x) :=

∫ x

. . .

∫ x

Ω(a)
g,n(x1, . . . , xn)dx1 . . . dxn (6.2)

The special case (g, n) = (0, 1), as usual, includes a logarithmic term:

F (a)
0,1 (x) := log(x) +

∫ x

Ω
(a)
0,1(x1)dx1 (6.3)

Then we define the wave function by

Z(a)(x, ~) := exp

[
∞∑
g=0

∞∑
n=1

~2g+n−2

n!
F (a)
g,n(x)

]
. (6.4)

Remark 6.1.7. Note that in Do and Manescu’s paper [23] a different definition of Fg,n
was used, differing by (−1)n, which leads to a different definition of Z(a), and, in turn,
to a slightly different quantum spectral curve equation. See more on this in Section 6.4.

6.2 Maps and matrix models

In the present section we discuss the definition of bi-colored maps and a formal matrix
model argument on the existence of a topological recursion for them. However, it is
possible to prove the topological recursion in a purely combinatorial way without even
mentioning any formal matrix model integral representation of the problem1 . This is
done in the subsequent section, Section 6.3.

6.2.1 Covers branched over 3 points and maps

There exists a natural graphical representation of hypermaps (which generalizes the no-
tion of dessin d’enfant [69] and the construction of [23]).

Let us now describe how to associate a colored map2 to any labelled hypermap.

1It is important to note that the combinatorial derivation is equivalent to the matrix model derivation
as it is only a translation of the latter in purely combinatorial arguments. However, it might be easier
to understand for some readers not used to the matrix model formalism.

2In the following, when referring to a map, we refer to a combinatorial object corresponding to a
polygonalisation of a surface. These objects appear naturally in the literature in the context of random
matrices and were introduced in physics as part of various attempts to quantize gravity in 2 dimensions
and to approach string theory from a discrete point of view.
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Each independent cycle ρi in the decomposition of σ1 = ρ1ρ2 . . . ρn is represented by a
black |ρi|-gon whose corners are cyclically ordered and labelled by the numbers composing
ρi. We glue these black polygons by their corners following σ0. Namely, for each disjoint
cycle ρ = (α1, . . . , αk) of σ0, one attachs the corners of black faces labelled by α1, . . . αk
to a 2k-valent vertex such that:

• Turning around the vertex, one encounters alternatively white and black sectors (k
of each) separated by the edges adjacent to the vertex;

• when turning counterclockwise around the vertex starting from the corner labelled
by α1, the labels of the corner corresponding to the black sectors adjacent to the
vertex form the sequence α1, α2, . . . , αk.

Example 6.2.1. Let us give an example of a bi-colored map. Consider a hypermap corre-
sponding to d = 7, g = 0,

σ0 = (1, 5, 7)(4, 6),

σ1 = (1, 2, 3, 4)(5, 6, 7),

σ∞ = (1, 6, 3, 2)(4, 5)

Then the corresponding bi-colored map can be seen in Figure 6.1.

4

6

3

2 1
5

7

Figure 6.1: Bi-colored map

In this figure we see two black polygons corresponding to cycles (1, 2, 3, 4) and (5, 6, 7)
of σ1; they are glued according to σ0.

Let us fix a ≥ 1. We denote by G
(a)
g,m,n the set of bi-colored maps, where m is the

number of white polygons, n is the number of black polygons, and g is the genus of
the surface we get by gluing the polygons and a is the maximum perimeter of a white
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polygon. We assume that the black polygons are labelled, and we consider the maps up to
combinatorial isomorphisms preserving this labelling. For a particular map M ∈ G(a)

g,m,n

we denote by Aut(M) its automorphism group.
One can restate the problem of enumerating covers of P1 as counting bi-colored maps

as follows.

Lemma 6.2.2. The function Ω
(a)
g,n(x1, . . . , xn) is the generating function of bi-colored

maps with an arbitrary number m ≥ 1 of white faces whose perimeters are less or equal
to a and n marked black faces with perimeters b1, . . . , bn. That is,

Ω(a)
g,n(x1, . . . , xn) =

∞∑
m=1

∑
M∈G(a)

g,m,n

∏a
i=1 t

ni(M)
i

|Aut(M)|

n∏
j=1

bj(M)x
−bj(M)−1
j . (6.5)

Here by ni(M) we denote the number of white polygons of perimeter i in M ,
and b1(M), . . . , bn(M) are the perimeters of the black polygons in M .

6.2.2 Matrix model and topological recursion

The enumeration of bi-colored maps is a classical problem of random matrix theory which
is equivalent to the computation of formal matrix integrals. One can state this equivalence
in the following way.

Lemma 6.2.3. (see, e. g. [35]) Consider the partition function of a formal Hermitian
two-matrix model

Z
(
~t(1),~t(2)

)
:= (6.6)∫ formal

HN

dM1 dM2 e
−N [Tr(M1M2)−TrV1(M1)−TrV2(M2)]

where the potentials Vi(x), i = 1, 2, are polynomials of degree di,

Vi(x) =

di∑
d=1

t
(i)
d

d
xd. (6.7)

This partition function is a generating function of bi-colored maps, that is,

Z
(
~t(1),~t(2)

)
= (6.8)

∞∑
g,m,n=0

∑
M∈S•g,m,n

d1∏
i=1

[
t
(1)
i

]n(1)
i (M) d2∏

i=1

[
t
(2)
i

]n(2)
i (M)

|Aut(M)|

where

• S•g,m,n is the set of bi-colored maps, possibly disconnected, of genus g composed of n
black polygons and m white polygons glued by their edges, such that black polygons
are glued only to white polygons and vice versa. Neither black nor white polygons
are marked.
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• By n
(1)
i (M) (resp. n

(2)
i (M)) we denote the number of black (resp. white) polygons

of perimeter i in M ;

It is also possible to enumerate connected maps with some specific marked faces by
computing certain correlation functions of this formal matrix model.

Definition 6.2.4. For any set of words (non-commutative monomials) {fi(x, y)}si=1 in
two variables, we define the correlator of the formal matrix model by〈

s∏
i=1

Tr fi(M1,M2)

〉
:=

∫ formal
HN

dµN(M1,M2)
∏s

i=1 Tr fi(M1,M2)

Z
(
~t(1),~t(2)

) ,

where the measure of integration µ(M1,M2) is the same as before,

dµN(M1,M2) := dM1 dM2 e
−N [Tr(M1M2)−TrV1(M1)−TrV2(M2)].

We denote by

〈
s∏
i=1

Tr fi(M1,M2)

〉
c

its connected part.

In matrix models, one classically works with generating series of such correlators
(named correlation functions) defined by

Wk,l(x1, . . . , xk; y1, . . . , yl) :=

〈
k∏
i=1

Tr
1

xi −M1

l∏
j=1

Tr
1

yj −M2

〉
c

.

These correlation functions have to be understood as series expansions around xi, yi →∞:

Wk,l(x1, . . . , xk; y1, . . . , yl) :=
∑
~n∈Nk

∑
~m∈Nl

〈
k∏
i=1

TrMni
1

xni+1
i

l∏
j=1

TrM
mj
2

y
mj+1
j

〉
c

. (6.9)

These correlation functions admit a topological expansion, i. e. they can be written as

Wk,l(x1, . . . , xk; y1, . . . , yl) =
∞∑
g=0

N2−2g−k−lW
(g)
k,l (x1, . . . , xk; y1, . . . , yl)

where each of W
(g)
k,l does not depend on N .

With this notation,

W
(g)
k,l (x1, . . . , xk; y1, . . . , yl) =

∞∑
m,n=0

∑
~α∈Nk
~β∈Nl

∑
M∈S◦

g,m,n|~α,~β

d1∏
i=1

[
t
(1)
i

]n(1)
i (M) d2∏

i=1

[
t
(2)
i

]n(2)
i (M)

|Aut(M)|
k∏
i=1

xαi+1
i

l∏
j=1

y
βj+1
j

,

where S◦
g,m,n|~α,~β is the set of connected bi-colored maps of genus g composed of n unmarked

black faces, m unmarked white faces, k marked black faces of perimeters α1, . . . , αk, each
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having one marked edge, and l marked white faces of perimeter β1, . . . , βn, each having
one marked edge too; black faces are only glued to white faces and vice versa, as above.

Such a model admits a spectral curve. This means that there exists a polynomial
P (x, y) of degree d1 − 1 in x and d2 − 1 in y such that the generating function for discs

W
(0)
1,0 (x) satisfies an algebraic equation:

E2MM(x,W
(0)
1,0 (x)) = 0, x ∈ C,

where
E2MM(x, y) = (V ′1(x)− y)(V ′2(y)− x)− P (x, y) + 1.

In [47, 18], it was proved that the correlation functions W
(g)
k,0 can be computed by topo-

logical recursion on this spectral curve:

Theorem 6.2.5. [47, 18] The correlation functions of the 2-matrix models can be com-
puted by the topological recursion procedure of [48] with the genus 0 spectral curve

E2MM(x, y) = (V ′1(x)− y)(V ′2(y)− x)− P (x, y) + 1

and the genus 0, 2-point function defined by the bilinear differential

ω0,2(z1, z2) =
dz1dz2

(z1 − z2)2

for a global coordinate z on the spectral curve.

The proof of this theorem consists in three steps:

• First, find a set of equations satisfied by the correlation functions of the matrix
model.

• Second, show that these equations admit a unique solution admitting a topological
expansion.

• Third, exhibit a solution which immediately implies the topological recursion.

6.2.3 A matrix model for branched covers

Since the problem of enumerating branched covers can be rephrased in terms of bi-colored
maps, one can find a matrix model representation for it.

Using the definition of the preceding section together with the hypermap representa-
tion of section 6.2.1, one immediately finds that

Lemma 6.2.6. The correlation functions of the formal two matrix model with potentials

V1(x) = 0 and V2(x) =
a∑
i=1

ti
i
xi coincide with the generating series of covers of P1 branched

over 3 points defined in (6.5), for (g, k) 6= (0, 1):

W
(g)
k,0 (x1, . . . , xk) = Ω

(a)
g,k(x1, . . . , xk). (6.10)

For (g, k) = (0, 1) we have

W
(0)
1,0 (x1) =

1

x
+ Ω

(a)
0,1(x1). (6.11)
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Applying [48, 18], one can thus compute the generating series using topological recur-
sion. We have:

Corollary 6.2.7. The generating series Ω
(a)
g,k(x1, . . . , xk) can be computed by topological

recursion with a genus 0 spectral curve

E(a)(x, y) = y

(
a∑
i=1

tiy
i−1 − x

)
+ 1 = 0 (6.12)

and the genus 0 2-point function defined by the corresponding Bergmann kernel, i. e.

ω0,2(z1, z2) =
dz1 ⊗ dz2

(z1 − z2)2
(6.13)

for a global coordinate z on the genus 0 spectral curve.

Remark 6.2.8. This corollary proves in particular the conjecture made by Do and Manescu [23]
considering such covers with only type a ramifications above 1. The spectral curve is indeed,

E(a)(x, y) = y
(
ya−1 − x

)
+ 1 = 0 (6.14)

coinciding with the classical limit of their quantum curve.

6.3 Loop equations and combinatorics

The proof of Corollary 6.2.7 relies on the representation of our combinatorial under the
form of a formal matrix integral. Actually, the only input from the formal matrix model is
the existence of loop equations satisfied by the correlation functions of the model. These
loop equations are of combinatorial nature and should reflect some cut-and-join procedure
satisfied by the hypermaps enumerated. However, a simple combinatorial interpretation
of these precise 2-matrix model loop equations could not be found in the literature, even
if some similar and probably equivalent equations have been derived combinatorially in
some particular cases [9, 95]. In this section, we derive such an interpretation, allowing to
bypass the necessity to use any integral (matrix model) representation and thus getting
a completely combinatorial proof of the results of the preceding section.

Remark 6.3.1. We have been informed that such a direct derivation of the loop equations for
the 2-matrix model is performed in chapter 8 [34] which is in preparation and whose preliminary
version can be found online.

6.3.1 Loop equations

In order to produce the hierarchy of loop equations whose solution gives rise to the
topological recursion, one combines two set of equations which can be written as follows:

• The first one corresponds to the change of variable

M2 →M2 + ε
1

x−M1

n∏
i=1

Tr
1

xi −M1
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in the formal matrix integral defining the partition function. To first order in ε, the
compensation of the Jacobian (which is vanishing here) with the variation of the
action gives rise to the equation:〈

Tr

(
M1

x−M1

) n∏
i=1

Tr
1

xi −M1

〉
(6.15)

=

〈
Tr

(
1

x−M1

V ′2(M2)

) n∏
i=1

Tr
1

xi −M1

〉

• The second one corresponds to the change of variable

M1 →M1 + ε
1

x−M1

V ′2(y)− V ′2(M2)

y −M2

n∏
i=1

Tr
1

xi −M1

(6.16)

and reads〈
Tr

(
1

x−M1

V ′2(y)− V ′2(M2)

y −M2

M2

) n∏
i=1

Tr
1

xi −M1

〉
(6.17)

=

〈
Tr

(
V ′1(M1)

x−M1

V ′2(y)− V ′2(M2)

y −M2

) n∏
i=1

Tr
1

xi −M1

〉

+
1

N

〈
Tr

(
1

x−M1

)
Tr

(
1

x−M1

V ′2(y)− V ′2(M2)

y −M2

) n∏
i=1

Tr
1

xi −M1

〉

+
1

N

n∑
i=1

〈
Tr

(
1

(xi −M1)2

1

x−M1

V ′2(y)− V ′2(M2)

y −M2

)∏
j 6=i

Tr
1

xj −M1

〉

Note that in these equations the correlators are not the connected ones, but they are
generating functions of possibly disconnected maps of arbitrary genus.

6.3.2 Combinatorial interpretation

The loop equations (6.15), (6.17) make sense only in their x, xi, y →∞ series expansions.
These expansions generate a set of equations for the correlators of the matrix models
which can be interpreted as relations between the number of bi-colored maps with different
boundary conditions. In this section, we give a combinatorial derivation of these relations.

Definition of boundary conditions

In order to derive the loop equations, we have to deal with bi-colored maps with bound-
aries (or marked faces) of general type. A map with n boundaries is a map with n marked
faces (polygons), each carrying a marked edge. The boundary conditions are defined as
the color of the marked face. However, in the following, we need to introduce mixed-type
boundary conditions obtained by considering marked faces with sides colored differently.
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The boundary conditions of a marked face (or a boundary) are then given by the sequence
of colors of the edges of this face starting from the marked edge and going clockwise from
it.

Considering a set of n sequences of non-negative integers

Si = bi,1, ai,1, bi,2, ai,2 . . . bi,li , ai,li , i = 1, . . . n. (6.18)

Here bi,1 is the number of consecutive black edges starting from the marked edge and
going clockwise (it is equal to zero if the marked edge is white), ai,1 is the number of the
following consecutive white edges, and so on.

We define T (g)
S1,...,Sn

to be the number of connected bi-colored maps of genus g with n
boundaries with the boundary conditions S1, . . . , Sn.

Remark 6.3.2. In terms of correlators of a two matrix model, one can write

T (g)
S1,...,Sn

= Nn+2g−2

〈
n∏
i=1

Tr
(
M

bi,1
1 M

ai,1
2 M

bi,2
1 M

ai,2
2 . . .M

bi,li
1 M

ai,li
2

)〉g
c

(6.19)

where the superscript g means that we only consider the g’th term of the expansion in N−2 of
this correlator.

Cut-and-join equations

With these definitions, we are ready to derive the loop equations (6.15) and (6.17).
Namely, we can generalize to the two matrix model the procedure developed by Tutte

for the enumeration of maps [94] and then extensively developed in the study of formal
random matrices. Let us consider a connected genus g map with n + 1 boundaries with
boundary conditions

S0 = k + 1, 0; Si = ki, 0, i = 1, . . . , n. (6.20)

This means that all the edges of the marked faces are black. This surface contributes
to T (g)

k+1,0;k1,0;...;kn,0
. Let us remove the marked edge from the boundary 0. Since one can

only glue together polygons of different colors, on the other side of the marked edge one
can find only a white (unmarked) l-gon with 1 ≤ l ≤ d2. After removing the edge, let us
mark in the resulting joint polygon the edge which is located clockwise from the origin
of the removed edge (the origin of an edge is the vertex located on the counterclockwise

side of the edge). We end up with a map that contributes to T (g)
0,l−1,k,0;k1,0;...;kn,0

. This
procedure is bijective between the sets considered. We take the sum over all possibilities,
taking into account the weight of the edge and l-gon removed, and we see that

T (g)
k+1,0;k1,0;...;kn,0

=

d2∑
l=1

t
(2)
l T

(g)
0,l−1,k,0;k1,0;...;kn,0

. (6.21)

Multiplying by x−k−1x−k1−1 . . . x−kn−1 and taking the sum over
k, k1, . . . , kn, one recovers the loop equation (6.15).

This first equation produces mixed boundary condition out of homogeneous black
conditions. Let us now proceed one step further and apply Tutte’s method to the maps
produced in this way.
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Let us consider a map contributing to T (g)
0,l+1,k,0;k1,0;...;kn,0

, i. e. a genus g connected
map with boundary condition:

S0 = 0, l + 1, k, 0; Si = ki, 0, i = 1, . . . , n. (6.22)

Note that it follows from our definition that the marked edge is of white boundary con-
dition type. When we remove it, we can produce different types of maps, namely, one of
the following cases:

• Either the other side of the edge is an unmarked black m-gon. We remove the edge
and this gives a map that contributes to T (g)

0,l,k+m−1,0;k1,0;...;kn,0

• Or the other side of the edge belongs to the black boundary condition type of the
same marked face. Then two possible cases occur. The resulting surface can still
be connected, giving rise to a map contributing to T (g−1)

m,0;0,l,k−m,0;k1,0;...;kn,0
for some

1 ≤ m ≤ k, i. e. with one more boundary but a genus decreased by one. Or
removing the marked edge can disconnect the map into two connected component
giving contributions to T (h)

m,0;kα1 ,0;...;kαj ,0
and T (g−h)

0,l,k−m,0;kβ1 ,0;...;kβn−j ,0
respectively, where

0 ≤ h ≤ g and {α1, . . . , αj} ∪ {β1, . . . , βn−j} = {1, . . . , n}. This type of behavior
can be thought of as a ”cut” move.

• Finally, the other side of the edge can be another marked black face with boundary
condition (ki, 0). Removing the edge, one gets a contribution to

T (g)
0,l,k+ki−1,0;k1,0;...;ki−1,0;ki−m,0;ki+1,0...;kn,0

. This type of behavior can be thought of as
a ”join” move.

Once again, this procedure is bijective, if we take the sum over all cases. Taking into
account the weight of the elements removed, we end up with an equation relating the
number of bi-colored maps with different boundary conditions:

T (g)
0,l+1,k,0;k1,0;...;kn,0

(6.23)

=

d2∑
m=0

t(2)
m T

(g)
0,l,k+m−1,0;k1,0;...;kn,0

+
k∑

m=0

T (g−1)
m,0;0,l,k−m,0;k1,0;...;kn,0

+
k∑

m=0

g∑
h=0

∑
~α∪~β={1,...,n}

T (h)
m,0;kα1 ,0;...;kαj ,0

T (g−h)
0,l,k−m,0;kβ1 ,0;...;kβn−j ,0

+
n∑
i=1

T (g)
0,l,k+ki−1,0;k1,0;...;ki−1,0;ki−m,0;ki+1,0...;kn,0

where ~α = {α1, . . . , αj} and ~β = {β1, . . . , βn−j}. This equation is the genus g contribution
to the expansion of the loop equation (6.17) when all its variables are large.

This concludes the fully combinatorial proof of the two matrix model’s loop equations.
The latter can be seen as some particular cut-and-join equations. One can now apply
the procedure used in [18] for solving them (without having to introduce any matrix
model consideration!) and derive the topological recursion for the generating functions
of bi-colored maps with homogenous boundary conditions.
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6.4 Quantum curve

In this section we prove a generalization of the theorem of Do and Manescu from [23] on
the quantum spectral curve equation for enumeration of hypermaps.

Theorem 6.4.1. The wave function Z(a)(x), defined in (6.4), satisfies the ODE:(
−~x ∂

∂x
+ 1 +

a∑
i=1

ti

(
~
∂

∂x

)i)
Z(a)(x) = 0 (6.24)

Remark 6.4.2. The differential operator in the previous theorem is given by the naive

quantization of the classical spectral curve (6.12), y ↔ ~
∂

∂x
. Note that in Do and

Manescu’s paper [23] a different definition of Z(a) was used, as noted above, and a different

convention y ↔ −~ ∂
∂x

.

6.4.1 Wave functions

In the proof we use the notations coming from the formal matrix model formalism for
simplicity, but as usual in the formal matrix model setup, they just represent well defined
combinatorial objects which satisfy the loop equations derived in the preceding sections.

In what follows we identify N with 1/~.
From the definition of the wave function Z(a), given in formulas (6.2)-(6.4), from the

identification between W
(g)
k,0 and Ω

(a)
g,k given by Equation (6.10) and from the definition of

Wk,l (6.9), we have

Z(a)(x) = exp

(
1

~
log(x) +

∞∑
n=1

(−1)n

n!

∞∑
b1,...bn=1

〈
Tr(M b1

1 ) . . .Tr(M bn
1 )
〉
c

b1 . . . bnxb1 . . . xbn

)
. (6.25)

The standard relation between connected and disconnected correlators imply

Z(a)(x) = x1/~
∞∑
n=1

(−1)n

n!

∞∑
b1,...bn=1

〈
Tr(M b1

1 ) . . .Tr(M bn
1 )
〉

b1 . . . bnxb1 . . . xbn
. (6.26)

In order to simplify the notation, we introduce functions Zr
n(x1, . . . , xn) and Zr(y, x)

for integers n ≥ 1, r ≥ 0 (we call these functions non-principally-specialized wave func-
tions).

Definition 6.4.3. The n-point wave function Zr
n of level r is defined as

Zr
n(x1, . . . , xn) := (6.27)

log(x1) (−1)n−1

∞∑
b2...bn=1

〈
Tr(M r

2 ) Tr(M b2
1 ) . . .Tr(M bn

1 )
〉

b2 . . . bn x
b2
2 . . . xbnn

+ (−1)n
∞∑

b1,b2...bn=1

〈
Tr(M r

2M
b1
1 ) Tr(M b2

1 ) . . .Tr(M bn
1 )
〉

b1 . . . bn x
b1
1 . . . xbnn

, r > 0

Z0
n(x1, . . . , xn) := (−1)n

∞∑
b1,b2...bn=1

〈
Tr(M b1

1 ) . . .Tr(M bn
1 )
〉

b1 . . . bn x
b1
1 . . . xbnn
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and the almost-fully principally-specialized wave function of level r is

Zr(y, x) =
∞∑
n=0

1

n!
Zr
n(y, x, . . . x) (6.28)

Note that with these definitions

Z(a)(x) = x1/~Z0(x, x) (6.29)

6.4.2 Loop equations in terms of Zr
n

Considering the coefficient in front of particular powers of 1/x and 1/xi’s in loop equations
(6.15) and (6.17) we get the following equations relating particular formal matrix model
correlators

〈
Tr(M b1

1 ) . . .Tr(M bn
1 )
〉

= (6.30)
a∑
i=1

ti
〈
Tr
(
M b1−1

1 M i−1
2

)
Tr(M b2

1 ) . . .Tr(M bn
1 )
〉

〈
Tr
(
M r

2M
b1
1

)
Tr(M b2

1 ) . . .Tr(M bn
1 )
〉

=

~
n∑
j=2

bj

〈
Tr
(
M r−1

2 M
b1+bj−1
1

)
Tr(M b2

1 ) . . . T̂r(M
bj
1 ) . . .Tr(M bn

1 )

〉
+ ~

∑
p+q=b1−1

〈
Tr(M r−1

2 Mp
1 ) Tr(M q

1 ) Tr(M b2
1 ) . . .Tr(M bn

1 )
〉
,

Here the hat above Tr(M
bj
1 ) means that it is excluded from the correlator.

Let us sum the above equations over all b1, . . . , bn from 1 to ∞ with the coefficient

(−1)n

xb11 b2 . . . bnx
b2
2 . . . xbnn

.

(note the absence of the 1/b1 factor). We get:

Lemma 6.4.4. Loop equations, written in terms of Zr
n, read

(−x1
∂

∂x1

)Z0
n(x1, . . . , xn) = (6.31)

a∑
i=1

ti(−
∂

∂x1

)Zi−1
n (x1, . . . , xn)− 1

~x1

Z0
n−1(x2, . . . , xn),
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1

~
(−x1

∂

∂x1

)Z1
n(x1, . . . , xn) = (6.32)

−
n∑
j=2

[
(− ∂

∂xj
)Z0

n−1(xj, x2, . . . x̂j . . . xn) +
1

~xj
Z0
n−2(x2, . . . x̂j . . . xn)

]
+

2

~
(− ∂

∂x1

)Z0
n(x1, . . . , xn)− 1

~2x1

Z0
n−1(x2, . . . , xn)

− x1
∂2

∂u1∂u2

∣∣∣
u1=u2=x1

Z0
n+1(u1, u2, x2, . . . , xn)

−
n∑
j=2

1

(x1 − xj)

[
x1

∂

∂x1

Z0
n−1(x1, . . . x̂j . . . xn)− xj

∂

∂xj
Z0
n−1(xj, x2, . . . x̂j . . . xn)

]
,

and, for all r > 1,

1

~
(−x1

∂

∂x1

)Zr
n(x1, . . . , xn) = (6.33)

−
n∑
j=2

(− ∂

∂xj
)Zr−1

n−1(xj, x2, . . . x̂j . . . xn) +
1

~
(− ∂

∂x1

)Zr−1
n (x1, . . . , xn)

− x1
∂2

∂u1∂u2

∣∣∣
u1=u2=x1

Zr−1
n+1(u1, u2, x2, . . . , xn)

−
n∑
j=2

1

(x1 − xj)

[
x1

∂

∂x1

Zr−1
n−1(x1, x2, . . . x̂j . . . xn)− xj

∂

∂xj
Zr−1
n−1(xj, x2, . . . x̂j . . . xn)

]
.

6.4.3 Symmetrization of loop equations

Last step to obtain quantum curve equation is to put all equations (6.31)–(6.33) into
principal specialization: put all xi’s equal to x.

The following obvious statement plays a crucial role in the induction:

Lemma 6.4.5. Let f(x1|x2, . . . , xn) be a symmetric function in the variables x2, . . . , xn
(so, x1 is treated specially here). Then we have the following formula for the derivative
in the principal specialization.

∂

∂x
f(x|x, . . . , x) =

∂

∂u

∣∣∣
u=x

f(u|x, . . . , x) + (n− 1)
∂

∂u

∣∣∣
u=x

f(x|u, x, . . . , x). (6.34)

In particular, if f(x1, x2, . . . , xn) = ∂
∂x1
g(x1, x2, . . . , xn), then

∂

∂x

∂

∂y

∣∣∣
y=x

g(y|x, . . . , x) = (6.35)

∂2

∂u2

∣∣∣
u=x

g(u|x, . . . , x) + (n− 1)
∂2

∂u1∂u2

∣∣∣
u1=x,u2=x

g(u1|u2, x, . . . , x).

Since Z0
n is symmetric in all its arguments, the first equation of (6.31) is equivalent
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to

1

n
(−x ∂

∂x
)Z0

n(x, . . . , x) = (6.36)

− t1
1

~x
Z0
n−1(x, . . . , x)− 1

n

∂

∂x
Z0
n(x, . . . , x)

+
a∑
i=2

ti(−
∂

∂y
)
∣∣∣
y=x

Zi−1
n (y, x, . . . , x)

We multiply this by 1
(n−1)!

and take the sum over n ≥ 0. We have:

(−x ∂
∂x

)Z0(x, . . . , x) = (6.37)

− t1
(
∂

∂x
+

1

~x

)
Z0(x, . . . , x)

+
a∑
i=2

ti

∞∑
n=0

1

(n− 1)!
(− ∂

∂y
)
∣∣∣
y=x

Zi−1
n (y, x, . . . , x).

Then, the existence of a quantum curve equation relies on two observations:

Lemma 6.4.6. We have:

i > 1 :
∞∑
n=0

1

(n− 1)!
(− ∂

∂y
)
∣∣∣
y=x

Zi
n(y, x, . . . , x) (6.38)

=

(
1

x
+ ~

∂

∂x

) ∞∑
n=0

1

(n− 1)!
(− ∂

∂y
)
∣∣∣
y=x

Zi−1
n (y, x, . . . , x)

i = 1 :
∞∑
n=0

1

(n− 1)!
(− ∂

∂y
)
∣∣∣
y=x

Zi
n(y, x, . . . , x)

= ~
[
− ∂2

∂x2
− 2

~x
∂

∂x
− 1/~(1/~− 1)

x2

]
Z0

= −1

~

(
1

x
+ ~

∂

∂x

)2

Z0

Proof. These equations are direct corollaries of Equations (6.31), we just have to put
them into principal specialization and apply Lemma 6.4.5.

We combine Equation (6.37) and Lemma (6.4.6), and we obtain the following equation:

(−~x ∂
∂x

)Z0 = −
a∑
i=1

ti

(
1

x
+ ~

∂

∂x

)i
Z0. (6.39)

which, with help of commutation relation

x1/~
(

1

x
+ ~

∂

∂x

)
= ~

∂

∂x
◦ x1/~, (6.40)

leads directly to the statement of Theorem 6.4.1.
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6.5 4-colored maps and 4-matrix models

It turns out that the ideas above can be applied not only to bi-colored maps (which
correspond to the 2-matrix model case), but also to 4-colored maps. In the current
section we outline the proof of a spectral curve topological recursion for the enumeration
of 4-colored maps.

4-colored maps arise as a natural generalization of bi-colored maps. Instead of con-
sidering partitions of surfaces into black and white polygons, we consider partitions into
polygons of four colors c1, c2, c3, c4, such that polygons of color c1 are glued only to poly-
gons of color c2, polygons of color c2 are glued only to polygons of colors c1 and c3,
polygons of color c3 are only glued to those of color c2 and c4 and finally polygons of
color c4 are only glued to polygons of color c3. This can be represented in terms of the
following color incidency matrix: 

0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0

 (6.41)

Applying considerations similar to the ones in the above sections, it’s easy to see that
the problem of enumeration of such 4-colored maps is governed by a 4-matrix model with
the interaction part of the potential being equal to

−N Tr(M1M2 −M1M4 +M3M4), (6.42)

since the inverse of the above incidency matrix is equal to
0 1 0 −1
1 0 0 0
0 0 0 1
−1 0 1 0

 (6.43)

We see that in the 4-colored maps case, after a renumeration of matrices and a certain
change of signs, this still gives us the matrix model for a chain of matrices (which is no
longer true for, e.g., 6-colored maps). Fortunately, the case of matrix model for a chain of
matrices was studied by Eynard in [39], and the master loop equation obtained there gives
rise to the spectral curve topological recursion for this problem. Again, it’s easy to see
in the analogous way to what was discussed in the previous sections that the individual
building blocks of loop equations can be proved to hold by purely combinatorial means.
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Chapter 7

Populaire samenvatting

Dit proefschrift gaat over problemen in de algebräısche meetkunde en mathematische fys-
ica die verband hebben met Gromov-Witten-theorie, topologische recursie van spectrale
krommen en Hurwitzgetallen.

Een van de centrale objecten in de algebräısche meetkunde is een algebräısche kromme.
Ik het kader van dit proefschrift werken we met algebräısche krommen gedefinieerd over
het lichaam van complexe getallen. In dit geval kunnen we deze krommen beschouwen
als twee-dimesionale oppervlakken.

De Gromov-Witten-theorie bestudeert afbeeldingen van algebräısche krommen naar
een gegeven complexe variëteit (in andere woorden, naar een zekere meer-dimensionale
ruimte). Deze theorie komt uit snaartheorie, een vakgebied in de theoretische natu-
urkunde. Gromov-Witten-invarianten zijn getallen die het aantal mogelijke inbeddingen
geven van krommen van een bepaald type in een gegeven complexe variëteit. Het belang
van de Gromov-Witten-invarianten is duidelijk door hun gebruik in snaartheorie en al-
gebräısche meetkunde. Ze zijn echter ook verbonden met een heel ander vakgebied van
mathematische fysica, namelijk de theorie van integreerbare systemen.

Topologische recursie van de spectrale krommen is een algemene methode die toepassin-
gen heeft in veel verschillende takken van de wiskunde en natuurkunde. Deze methode
heeft als input een spectrale kromme die een algebräısche kromme is met het aantal extra
structuren, en geeft als output zogenoemde n-punt functies op de spectrale kromme. Het
blijkt dat voor een enorm groot aantal problemen in algebräısche meetkunde, mathema-
tische fysica, topologie, en combinatoriek deze n-punt functies de genererende functies
voor de oplossingen van deze problemen zijn (de input is dan bepaald door een probleem).
Hier bedoelen we met een genererende functie een functie waarvan de coëfficiënten van
de machtreeksonwikkeling de getallen zijn, die deze problemen oplossen.

De topologische recursie van de spectrale krommen is heel interessant, omdat het een
universele procedure is die op een universele manier de antwoorden geeft op een groot
aantal problemen, die onderling geen verband hebben.

Hurwitzgetallen berekenen de overdekkingen van een sfeer door twee-dimensionale
compacte oppervlakken. Een overdekking is een afbeelding van een oppervlak naar
de sfeer. Voor bijna alle punten van de sfeer (met uitzondering van een eindig aan-
tal zogenoemde vertakkingspunten) hebben we hetzelfde aantal punten op het oppervlak
die daarop afgebeeld worden. Dit getal noemt men de graad van de overdekking. Als
we het type vertakkingspunten vastleggen, dan hebben we een eindig aantal mogelijke
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overdekkingen met deze voorwaarden. Dit getal heet het Hurwitzgetal. Hurwitzgetallen
zijn belangrijk vanwege hun meerdere interpretaties in combinatoriek en topologie, en
hebben tevens een belangrijke rol in representatietheorie.

Dit proefschrift onderzocht een aantal verbindingen tussen de bovengenoemde ob-
jecten en theoriëen. Een van de hoofdstellingen van het proefschrift geeft een toepassing
van de lokale versie van de topologische recursie op een willekeurige Gromov-Witten-
theorie. Namelijk, we bewijzen dat we altijd de juiste input kunnen kiezen zo dat de
n-punt functies de genererende functies van de Gromov-Witten-invarianten worden.

Een andere stelling houdt verband met de vergelijking van de kwantum-spectrale
kromme. In een aantal gevallen kan men bewijzen dat een bepaalde genererende functie,
de zogenoemde golffunctie, voldoet aan een kwantum-versie van de vergelijking voor de
spectrale kromme. We bewijzen dit voor de golffunctie van de Gromow-Witten-theorie
van een sfeer.

Een ander resultaat van dit proefschrift is een nieuw, zuiver combinatorisch bewijs
van de beroemde ELSV formule. Deze formule verbindt Hurwitzgetallen en de integralen
van Hodge, die in vele aspecten lijken op Gromov-Witten-invarianten. Het oorspronkeli-
jke bewijs en alle andere bewijzen van de ELSV formule gebruiken lastige meetkundige
redeneringen. In plaats daarvan bewijzen we eerst op een zuiver combinatorische manier
dat deze Hurwitzgetallen polynomen in de vertakkingsindexen zijn. Dan gebruiken we
dit resultaat om een spectrale kromme voor de Hurwitzgetallen af te leiden en vervol-
gens gebruiken we ons resultaat over de correspondentie tussen topologische recursie en
Gromov-Witten-theorie om een verbinding met de Hodgeintegralen te zien.

Ten slotte geven we een zuiver combinatorisch bewijs van het feit dat het probleem
van de berekening van zogenoemde twee-kleuren kaarten op oppervlakken ook door de
topologische recursie opgelost kan worden. Met een twee-kleuren kaart bedoelen we een
verdeling van een twee-dimensionaal oppervlak in polygonen gekleurd in twee kleuren,
zwart en wit, zodat de witte polygonen alleen aan zwarte polygonen mogen grenzen,
en omgekeerd. We bewijzen dat het aantal van dit soort kaarten is gegeven door de
topologische recursie van een bepaalde spetrale kromme.
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