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Abstract. Time synchronization is one of the most crucial issues that must be addressed in 

developing quantum key distribution (QKD) systems. It not only lets the transmitter and the 

receiver to assign a sequence number to each event and then do correct basis reconciliation, but 

also allows to increase signal-to-noise ratio. Time synchronization in satellite communications 

is especially complicated due to such factors as high loss, signal fading and Doppler effect. In 

this work, a simple, efficient and robust algorithm for time synchronization is proposed. It was 

tested during experiments on QKD between Micius, the world’s first quantum communications 

satellite, and an optical ground station located in Russia. The obtained synchronization 

precision lies in the range from 467 to 497 ps. The authors compare their algorithm for time 

synchronization with the previously used methods. The proposed approach can also be applied 

to terrestrial QKD systems. 

1.  Introduction 

The idea of quantum cryptography is not based on computational complexity of mathematical 

algorithms, but on the laws of physics. The idea was first announced in 1984 by Bennett and Brassard, 

who proposed the first quantum cryptography protocol, BB84 [1]. An experimental implementation of 

quantum key distribution was first demonstrated in 1989 [2]. In that experiment, qubits were encoded 

in photon’s polarization and the photons were transmitted through 32.5 cm on an optical table. Since 

then, the technology has been widely developed. In particular, distance between shared parties has 

increased significantly. Thus, free-space QKD over 144 km was experimentally demonstrated using 

decoy-state BB84 protocol [3]. Recently, using twin-field QKD protocol, quantum key exchange 

through optical fiber over to 833.8 km was implemented [4]. Although the obtained results are 

outstanding in terrestrial QKD, secret key rate is of ~10-2 bit/s, which is barely attractive from the 

point of view of practical applications. The only reasonable way to build a truly global, 

intercontinental, quantum network to date is using of artificial satellites as trusted nodes between 

remote ground stations. In 2016, the first such satellite, Micius, was launched into its orbit, which was 

followed by experiments on satellite-to-ground QKD [5–7], entanglement distribution [8], 

entanglement-based QKD [9] and quantum teleportation [10]. 

Time synchronization is one of the most crucial factors in distributing a quantum key. It not only 

allows Alice and Bob to assign an absolute sequence number to each event and then do correct basis 

reconciliation. Also, precise synchronization can significantly increase signal-to-noise ratio. In 

satellite QKD, synchronization is especially complicated due to such factors as signal fading, high loss 

and Doppler effect. In QKD systems, synchronization can be implemented, for instance, by means of 

electrical signal [11] or a global navigation satellite system (GNSS) [3]. The most common method is 
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light synchronization, which implies transmitting intense light pulses at the same wavelength [12] or at 

a different one [5,13–16]. Also, there is an elegant solution that is based only on analysis of detected 

quantum signal and does not require any additional hardware [17]. Recently, this approach was 

successfully adopted to real satellite-to-ground QKD [18]. A similar method had been utilized by 

another team although the intensity of optical signal was of several orders of magnitude higher than 

one that corresponds to a single photon level [19]. In this work, we propose another approach, which is 

more simple to implement and does not require any complex mathematical calculations. It was shown 

to provide at least 1.5 better synchronization accuracy than previously used methods at processing data 

from a whole quantum communication session. 

The structure of this paper is as follows: in section “Theory”, we provide a general description of 

the problem of synchronization and a detailed description of our algorithm; in section “Experiment 

and Results”, we present experimental data obtained using our synchronization method during QKD 

between Micius satellite and an optical ground station (OGS) at Zvenigorod observatory; finally, we 

draw inferences in section “Conclusions”. 

2.  Theory 

2.1.  Formulation of the problem 

Let Alice send quantum states with a period of 𝑇𝑞 so that photon 𝑖 is released at time 𝑇𝑞 ⋅ 𝑖. Since 

Alice’s clock can be fast or slow, actual time of photon emission is 
𝜈0

𝜈𝐴
⋅ 𝑇𝑞 ⋅ 𝑖. Here, the following 

notations are introduced: 𝜈𝐴 is the frequency of Alices’s clock and 𝜈0 is the frequency of an absolutely 

accurate clock. In general, there can be a time offset 𝑡0
𝐴 and emission time 𝑡𝑖 has therefore to be 

written as 

 𝑡𝑖 = 𝑡0
𝐴 +

𝜈0

𝜈𝐴
⋅ 𝑇𝑞 ⋅ 𝑖 (1) 

It should be noted that equation (1) implies that 𝜈𝐴 does not depend on time. Generally, the frequency 

of Alice’s clock can change with time: 𝜈𝐴 = 𝜈𝐴(𝑡). Thus, in the most general case, instead of (1), one 

must write 

 1

𝜈0
∫ 𝜈𝐴(𝜂)𝑑𝜂

𝑡𝑖

𝑡0
𝐴 = 𝑇𝑞 ⋅ 𝑖 (2) 

The aspects related to clock drift will be discussed later in this article. Hereinafter, we assume, unless 

otherwise specified in the text, that the frequencies of Alice’s and Bob’s clocks change slowly enough 

so that these changes can be neglected in considered time intervals. 

Since Alice and Bob are spatially separated, there is some signal propagation time 𝑡𝑝. 

Consequently, Bob receives photons at times 𝑡𝑖
𝑅 determined by the following expression: 

 𝑡𝑖
𝑅 = 𝑡0

𝐴 +  
𝜈0

𝜈𝐴
⋅ 𝑇𝑞 ⋅ 𝑖 + 𝑡𝑝 (3) 

As Bob uses his own clock with a frequency of 𝜈𝐵 and a time offset of 𝑡0
𝐵, he expects to receive 

photon 𝑖 at time 

 𝑡𝑖
𝑅,𝐸𝑋𝑃 = 𝑡0

𝐵 + 
𝜈0

𝜈𝐵
⋅ 𝑇𝑞 ⋅ 𝑖 (4) 

It is obvious that the discrepancy between 𝑡𝑖
𝑅,𝐸𝑋𝑃

 and 𝑡𝑖
𝑅 should at least not exceed 

𝑇𝑞

2
. Otherwise, Bob 

assigns indexes to received photons incorrectly. 

If Alice and Bob have adjusted their clocks so that 𝑡0
𝐵 = 𝑡0

𝐴 + 𝑡𝑝, i.e. the 1st photon (𝑖 = 0) comes 

exactly at the moment when Bob is waiting for it, the difference between 𝑡𝑖
𝑅,𝐸𝑋𝑃

 and 𝑡𝑖
𝑅 is written as 

 𝑡𝑖
𝑅,𝐸𝑋𝑃 − 𝑡𝑖

𝑅 = 𝑇𝑞 ⋅ 𝑖 ⋅ 𝜈0 ⋅ (
1

𝜈𝐵
−

1

𝜈𝐴
) (5) 
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Since |𝑡𝑖
𝑅,𝐸𝑋𝑃 − 𝑡𝑖

𝑅| should be less than 
𝑇𝑞

2
, if taking (5) into consideration, maximum index 𝑖𝑀𝐴𝑋 so 

that quantum key distribution is yet feasible can be found: 

 𝑖𝑀𝐴𝑋 ⋅ 𝜈0 ⋅ |
1

𝜈𝐵
−

1

𝜈𝐴
| =

1

2
 (6) 

Low difference in clock frequencies has not been implied so far. However, in most cases, relative 

difference is quite small. If one defines 𝜀𝐴 and 𝜀𝐵 as follows: 

 𝜈𝐴/𝐵 = 𝜈0 ⋅ (1 + 𝜀𝐴/𝐵), (7) 

 𝜀𝐴/𝐵 ≪ 1. (8) 

Thus, 𝑖𝑀𝐴𝑋 can be expressed from (6) and, if taking into account (7) and (8), it can be written as 

follows: 

 𝑖𝑀𝐴𝑋 =
1

2|𝜀𝐴−𝜀𝐵|
 (9) 

The upper bound for |𝜀𝐴 − 𝜀𝐵| is the accuracy of the clocks multiplied by 2 and the value of 𝑖𝑀𝐴𝑋 can 

thus be estimated. For instance, if best quartz oscillators, which have an accuracy of ~10-7, were 

utilized, 𝑖𝑀𝐴𝑋 would be of ~2.5×106. At a repetition rate of quantum states of 100 MHz, this 

corresponds to a time interval of ~25 ms. It means Alice and Bob have to synchronize their clocks 

somehow at least once every 25 ms. Using of light pulses for such synchronization is widely used 

[5,12–16]. Thus, Micius satellite is equipped with a beacon laser generating 0.9 ns light pulses at a 

repetition rate of ~10 kHz, which also serve synchronization purposes. Theoretically, Alice and Bob 

could use atomic clocks, which are much more accurate, and thus increase 𝑖𝑀𝐴𝑋 by several orders of 

magnitude. However, in satellite communications, this would not make sense due to Doppler effect. If 

a satellite is moving in its orbit at a speed of 𝑣𝑆𝐴𝑇, Doppler shift can be roughly estimated as 
𝑣𝑆𝐴𝑇

𝑐
. 

Thus, it does not make sense to utilize clocks with an accuracy much better than 
𝑣𝑆𝐴𝑇

𝑐
, which is ~10-5 

for artificial satellites. However, if the trajectory of a satellite is known with sufficient accuracy, 

Doppler shift can be compensated explicitly by subtracting time delays. In this paper, we propose 

another approach, which is based on a simple and robust algorithm of simultaneous compensation of 

both clock bias and Doppler shift and does not require the trajectory of a satellite to be known. 

2.2.  The proposed approach 

2.2.1.  Description of the synchronization method. It is supposed that there is a sequence of 𝑁 synchro 

pulses and Alice records the corresponding emission times 𝑡𝑖𝐴, 𝑖 = 0 … 𝑁 − 1. Here and below, 

subscript A (B) means the marked time is measured with Alice’s (Bob’s) clock. Using a photodetector, 

Bob detects synchro pulses sent by Alice. Also, Bob detects single photons and assigns two indexes, 𝑖 
and 𝑗, to all detection events: 𝑖 is the number of the closest synchro pulse followed by the event, and 𝑗 

is the sequence number of the event among all ones that occurred between synchro pulses 𝑖 and 𝑖 + 1: 

see Fig. 1. Alice sends Bob values of 𝑡𝑖𝐴 through a public communication channel. So, if he knew 

(𝑡𝑖𝑗 − 𝑡𝑖)
𝐴

, he could find quantum state numbers 𝑛𝑖𝑗 using this expression: 

 𝑛𝑖𝑗 =
𝑡𝑖𝐴+(𝑡𝑖𝑗−𝑡𝑖)

𝐴

𝑇𝑞
 (10) 

Therefore, the task of synchronization is reduced to correct determination of (𝑡𝑖𝑗 − 𝑡𝑖)
𝐴

. 
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Figure 1. Schematic representation of synchro pulses (s) and quantum signal (q) on the timeline. 

First, it is necessary to calculate the time when Bob is receiving synchro pulse 𝑖. As Alice and Bob 

are spatially separated, there is signal propagation time 𝑡𝑝, which depends largely on time in satellite 

communications. Also, there is a random error 𝛿𝑡𝑖
𝑟𝑎𝑛𝑑 caused by imperfection of the measuring 

equipment, mainly by timing jitter of the photodetector. So, times when Bob receives synchro pulses 

𝑡𝑖
𝑅 can be written as: 

 𝑡𝑖
𝑅 = 𝑡𝑖 + 𝑡𝑝(𝑡𝑖) + 𝛿𝑡𝑖

𝑟𝑎𝑛𝑑 (11) 

Similarly to (11), times when Bob receives quantum states with indexes 𝑖, 𝑗 are written as: 

 𝑡𝑖𝑗
𝑅 = 𝑡𝑖𝑗 + 𝑡𝑝(𝑡𝑖𝑗) + 𝛿𝑡𝑖𝑗

𝑟𝑎𝑛𝑑 (12) 

Some point 𝑡𝑘 such that all points 𝑡𝑖 and 𝑡𝑖𝑗 lie in some neighborhood of this point (𝑡𝑘 − 𝛿𝑡, 𝑡𝑘 + 𝛿𝑡) 

can be considered and 𝑡𝑝(𝑡) can be expanded into Taylor series keeping quadratic terms: 

 𝑡𝑝(𝑡𝑖) = 𝑡𝑝(𝑡𝑘) + 𝑡𝑝
′ (𝑡𝑘) ⋅ (𝑡𝑖 − 𝑡𝑘) +

1

2
⋅ 𝑡𝑝

′′(𝑡𝑘) ⋅ (𝑡𝑖 − 𝑡𝑘)2 (13) 

 𝑡𝑝(𝑡𝑖𝑗) = 𝑡𝑝(𝑡𝑘) + 𝑡𝑝
′ (𝑡𝑘) ⋅ (𝑡𝑖𝑗 − 𝑡𝑘) +

1

2
⋅ 𝑡𝑝

′′(𝑡𝑘) ⋅ (𝑡𝑖𝑗 − 𝑡𝑘)
2 (14) 

If we subtract (11) from (12) and use expansion (13) and (14), we will get 

 𝑡𝑖𝑗
𝑅 − 𝑡𝑖

𝑅 = 

= (𝑡𝑖𝑗 − 𝑡𝑖) ⋅ {1 + 𝑡𝑝
′ (𝑡𝑘) + 𝑡𝑝

′′(𝑡𝑘) ⋅ (𝑡𝑖 − 𝑡𝑘) +
1

2
⋅ 𝑡𝑝

′′(𝑡𝑘) ⋅ (𝑡𝑖𝑗 − 𝑡𝑖)} + 𝛿𝑡𝑖𝑗
𝑟𝑎𝑛𝑑 − 𝛿𝑡𝑖

𝑟𝑎𝑛𝑑 (15) 

It is obvious that the 3rd and 4th terms in the curly braces can be discarded if 𝑡𝑝
′′ ⋅ 𝛿𝑡 ≪ 𝑡𝑝

′ . Below, we 

will show that this condition is met during the whole communication time except a negligibly small 

(≲10 ms) area near the moment when the sign of Doppler shift is changing. It should be noted that the 

2nd term in the curly braces, 𝑡𝑝
′ , is also extremely small in this area and the change of 𝑡𝑝 may therefore 

not be considered in this area at all. Thus, we are eligible to discard quadratic terms in (15) and, if 

considering that Alice and Bob use their own clocks for measuring time intervals, (15) can be written 

as 

 𝜈0

𝜈𝐵
⋅ (𝑡𝑖𝑗

𝑅 − 𝑡𝑖
𝑅)𝐵 =

𝜈0

𝜈𝐴
⋅ (𝑡𝑖𝑗 − 𝑡𝑖)

𝐴
⋅ (1 + 𝑡𝑝

′ (𝑡𝑘)) + 𝛿𝑡𝑖𝑗
𝑟𝑎𝑛𝑑 − 𝛿𝑡𝑖

𝑟𝑎𝑛𝑑 (16) 

Expressing (𝑡𝑖𝑗 − 𝑡𝑖)
𝐴

 from (16) we will get: 

 (𝑡𝑖𝑗 − 𝑡𝑖)
𝐴

=
𝜈𝐴

𝜈𝐵
⋅

1

1+𝑡𝑝
′ (𝑡𝑘)

⋅ (𝑡𝑖𝑗
𝑅 − 𝑡𝑖

𝑅)𝐵 +
𝜈𝐴

𝜈0
⋅ (𝛿𝑡𝑖

𝑟𝑎𝑛𝑑 − 𝛿𝑡𝑖𝑗
𝑟𝑎𝑛𝑑) (17) 
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Random errors 𝛿𝑡𝑖
𝑟𝑎𝑛𝑑 and 𝛿𝑡𝑖𝑗

𝑟𝑎𝑛𝑑 are not known, but we can make a reasonable assumption that their 

expected values are equal to 0. Then, if we introduce notation 𝐶𝑘 =
𝜈𝐴

𝜈𝐵
⋅

1

1+𝑡𝑝
′ (𝑡𝑘)

, we can write (17) as 

 (𝑡𝑖𝑗 − 𝑡𝑖)
𝐴

= 𝐶𝑘 ⋅ (𝑡𝑖𝑗
𝑅 − 𝑡𝑖

𝑅)𝐵 (18) 

Similarly to (15), for two adjacent synchro pulses, 𝑖 and 𝑖 + 1, we can get 

  

𝑡𝑖+1
𝑅 − 𝑡𝑖

𝑅 = 𝛿𝑡𝑖+1
𝑟𝑎𝑛𝑑 − 𝛿𝑡𝑖

𝑟𝑎𝑛𝑑 + 

 + (𝑡𝑖+1 − 𝑡𝑖) ⋅ {1 + 𝑡𝑝
′ (𝑡𝑘) + 𝑡𝑝

′′(𝑡𝑘) ⋅ (𝑡𝑖 − 𝑡𝑘) +
1

2
⋅ 𝑡𝑝

′′(𝑡𝑘) ⋅ (𝑡𝑖+1 − 𝑡𝑖)} (19) 

One can consider the following sum: 𝑆𝑘 = ∑ {(𝑡𝑖+1
𝑅 − 𝑡𝑖

𝑅)𝐵 − (𝑡𝑖+1 − 𝑡𝑖)𝐴}𝑁−2
𝑖=0 . On the one hand, it is 

obvious that 

 𝑆𝑘 = (𝑡𝑁−1
𝑅 − 𝑡0

𝑅)𝐵 − (𝑡𝑁−1 − 𝑡0)𝐴 (20) 

On the other hand, using (19) and neglecting quadratic terms again, one can show that: 

 𝑆𝑘 =
𝜈𝐵

𝜈𝐴
⋅ (𝑡𝑁−1 − 𝑡0)𝐴 ⋅ (1 + 𝑡𝑝

′ (𝑡𝑘)) − (𝑡𝑁−1 − 𝑡0)𝐴 +
𝜈𝐵

𝜈0
⋅ (𝛿𝑡𝑁−1

𝑟𝑎𝑛𝑑 − 𝛿𝑡0
𝑟𝑎𝑛𝑑) (21) 

From (20) and (21), we can get 

 (𝑡𝑁−1
𝑅 − 𝑡0

𝑅)𝐵 =
𝜈𝐵

𝜈𝐴
⋅ (1 + 𝑡𝑝

′ (𝑡𝑘)) ⋅ (𝑡𝑁−1 − 𝑡0)𝐴 +
𝜈𝐵

𝜈0
⋅ (𝛿𝑡𝑁−1

𝑟𝑎𝑛𝑑 − 𝛿𝑡0
𝑟𝑎𝑛𝑑) (22) 

Assuming that the expected values of 𝛿𝑡0
𝑟𝑎𝑛𝑑 and 𝛿𝑡𝑁−1

𝑟𝑎𝑛𝑑 are equal to 0, since 
𝜈𝐵

𝜈𝐴
⋅ (1 + 𝑡𝑝

′ (𝑡𝑘)) ≝
1

𝐶𝑘
, 

𝐶𝑘 can be expressed from (22): 

 𝐶𝑘 =
(𝑡𝑁−1−𝑡0)𝐴

(𝑡𝑁−1
𝑅 −𝑡0

𝑅)
𝐵

 (23) 

𝐶𝑘 is thus found and sequence numbers of quantum states 𝑛𝑖𝑗 can now be calculated using (10) and 

(18). Thus, the proposed algorithm is extremely simple for implementing. All that is to be done is to 

split communication time into short time intervals so that the change of Doppler shift within these time 

periods can be neglected. Then, it is necessary to find 𝐶𝑘 for each time interval using (23) and finally 

calculate sequence numbers of quantum states. 

2.2.2.  Synchronization precision. Minimum N. Synchronization precision is a statistical value that can 

be determined by variance of (𝑡𝑖𝑗 − 𝑡𝑖)𝐴. It can be shown that the discrepancy between calculated and 

true value of (𝑡𝑖𝑗 − 𝑡𝑖)𝐴 is 

 𝛿(𝑡𝑖𝑗 − 𝑡𝑖)
𝐴

=
𝜈𝐴

𝜈0
⋅ (𝛿𝑡𝑖𝑗

𝑟𝑎𝑛𝑑 − 𝛿𝑡𝑖
𝑟𝑎𝑛𝑑) +  

 +
𝜈𝐵

𝜈0
⋅

(𝑡𝑁−1−𝑡0)𝐴

(𝑡𝑁−1
𝑅 −𝑡0

𝑅)
𝐵

2 ⋅ (𝑡𝑖𝑗
𝑅 − 𝑡𝑖

𝑅)
𝐵

⋅ (𝛿𝑡0
𝑟𝑎𝑛𝑑 − 𝛿𝑡𝑁−1

𝑟𝑎𝑛𝑑) (24) 

As one can see, the 2nd term in (24) is ~
1

𝑁
 and it therefore tends to 0 at 𝑁 → ∞. At the same time, the 

1st term does not depend on 𝑁. This means that, if 𝑁 is large enough, we can neglect the 2nd term and 

only consider the 1st one. If we divide the 2nd component by the 1st one, we will get 
𝜈𝐵

𝜈0
⋅

(𝑡𝑁−1−𝑡0)𝐴⋅(𝑡𝑖𝑗
𝑅−𝑡𝑖

𝑅)
𝐵

(𝑡𝑁−1
𝑅 −𝑡0

𝑅)𝐵
2 ⋅

𝛿𝑡0
𝑟𝑎𝑛𝑑−𝛿𝑡𝑁−1

𝑟𝑎𝑛𝑑

𝛿𝑡𝑖𝑗
𝑟𝑎𝑛𝑑−𝛿𝑡𝑖

𝑟𝑎𝑛𝑑 or, neglecting small values, 
(𝑡𝑖𝑗

𝑅−𝑡𝑖
𝑅)

𝐵

(𝑡𝑁−1
𝑅 −𝑡0

𝑅)
𝐵

⋅
𝛿𝑡0

𝑟𝑎𝑛𝑑−𝛿𝑡𝑁−1
𝑟𝑎𝑛𝑑

𝛿𝑡𝑖𝑗
𝑟𝑎𝑛𝑑−𝛿𝑡𝑖

𝑟𝑎𝑛𝑑. Since 



IC-MSQUARE-2023
Journal of Physics: Conference Series 2701 (2024) 012017

IOP Publishing
doi:10.1088/1742-6596/2701/1/012017

6

 

 

 

 

 

 

(𝑡𝑖𝑗
𝑅−𝑡𝑖

𝑅)
𝐵

(𝑡𝑁−1
𝑅 −𝑡0

𝑅)
𝐵

≲
1

𝑁
, we can conclude that 𝑁 ≳ 10 is sufficient to exclude the 2nd term from consideration. 

Next, if we assume that 𝛿𝑡𝑖
𝑟𝑎𝑛𝑑 and 𝛿𝑡𝑖𝑗

𝑟𝑎𝑛𝑑 are two independent normally distributed random values, 

𝛿𝑡𝑖𝑗
𝑟𝑎𝑛𝑑 − 𝛿𝑡𝑖

𝑟𝑎𝑛𝑑 is also a normally distributed random value, with expected value of 0 and variance of 

𝜎2 = 𝜎𝑖
2 + 𝜎𝑖𝑗

2 , where 𝜎𝑖 is determined by timing jitter of the photodetectors used for detection of 

synchro pulses at the satellite and at the OGS, whereas 𝜎𝑖𝑗 is determined by timing jitter of the single 

photon detectors used for detection of quantum signal and a finite width of quantum pulses. Thus, the 

best synchronization precision that can be attained using our method is 

 √𝜎𝑃𝐷,𝑆𝐴𝑇
2 + 𝜎𝑃𝐷,𝑂𝐺𝑆

2 + 𝜎𝑆𝑃𝐷
2 + 𝜎𝐿

2 (25) 

where 𝜎𝑃𝐷,𝑆𝐴𝑇 and 𝜎𝑃𝐷,𝑂𝐺𝑆 characterize timing jitter of the photodetectors used for detection of 

synchro pulses at the satellite and the OGS correspondingly, 𝜎𝑆𝑃𝐷 characterizes timing jitter of the 

single photon detectors, and 𝜎𝐿 corresponds to the width of quantum pulses. 

2.2.3.  Maximum N and 𝛿𝑡. As we showed above, the area that contains all of 𝑁 synchro pulses under 

consideration must be small enough so that we can neglect the change of Doppler shift within this 

area: 𝛿𝑡 ≪
𝑡𝑝

′

𝑡𝑝
′′  (26). For calculation of 

𝑡𝑝
′

𝑡𝑝
′′ we use a simple model. First, we assume that a satellite is 

moving in a strictly circular orbit (eccentricity = 0). Also, we do not consider Earth rotation since even 

near the equator the corresponding speed is much less than satellite one. Finally, we only consider a 

zenith pass. The calculated time dependence of 
𝑡𝑝

′

𝑡𝑝
′′ is presented in Fig. 2a. If we consider a sequence 

with minimum number of pulses, which is ≳ 10 as was shown above, it corresponds to 𝛿𝑡 ≳ 1𝑚𝑠 at a 

repetition rate of synchro pulses of 10 kHz. Then (26) is correct during the whole pass except a small 

area of ≲ 10𝑚𝑠 near the point where the sign of Doppler shift is changing. However, as one can see in 

Fig. 2b, Doppler shift is extremely small within this area, ≲ 10−9, and may therefore not be taken into 

consideration at all. 

 

Figure 2. 
𝑡𝑝

′

𝑡𝑝
′′  (a) and 𝑡𝑝

′  (b) during zenith pass of a satellite with an eccentricity of 0 and an altitude of 

500 km. Earth rotation is not considered. 𝑡𝑝
′  and 𝑡𝑝

′′ are the 1st and the 2nd derivatives of signal 
propagation time. 

2.2.4.  Physical meaning of 𝐶𝑘. A low value of clock bias has not been implied so far. However, in 

most cases, the difference between clock frequencies is relatively small (7,8). The absolute value of 
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𝑡𝑝
′ , which is Doppler shift up to multiplication by -1, does not exceed ~10-5 for satellites, i.e. it brings a 

slight perturbation too. 𝐶𝑘 can thus be expanded into Taylor series near 0 keeping only linear terms: 

𝐶𝑘 = 1 + 𝜀𝐴 − 𝜀𝐵 − 𝑡𝑝
′ (𝑡𝑘). Thus, at low deviations, 𝐶𝑘 − 1 characterizes to what extend Alice’s 

clock is fast relative to Bob’s one, including Doppler shift. 

2.2.5.  Reduction to the original method. Minimum possible 𝑁 that can be in the above algorithm is 2. 

At 𝑁 = 2, 𝐶𝑘 is determined as 
(𝑡1−𝑡0)𝐴

(𝑡1
𝑅−𝑡0

𝑅)
𝐵

. Consequently, (18) can be written as (𝑡0𝑗 − 𝑡0)
𝐴

=

(𝑡1−𝑡0)𝐴

(𝑡1
𝑅−𝑡0

𝑅)
𝐵

⋅ (𝑡0𝑗
𝑅 − 𝑡0

𝑅)𝐵, which is identical to the main equation of the original synchronization method 

used by the team of USTC [15]. It should be noted that, at 𝑁 = 2, the 2nd term in (24) becomes 

comparable with the 1st one and cannot therefore be neglected anymore. Consequently, 

synchronization precision is distinct from that obtained above for large 𝑁. 

3.  Experiment and results 

3.1.  Experimental setup 

The above algorithm was tested at experiments on QKD between Micius satellite and an OGS at 

Zvenigorod observatory (55°41'56''N, 36°45'32''E, 180 m above msl). Micius satellite was launched in 

2016, after which satellite-to-ground QKD [5–7], entanglement distribution [8], entanglement-based 

QKD [9], quantum teleportation [10] and some other experiments [20] were carried out. The satellite 

is equipped with a 530 nm beacon laser that sends 0.9 ns light pulses at a repetition rate of ~10 kHz, 

which are also used for synchronization purposes. The OGS is a 0.6 m telescope coupled with the rest 

of optics: mainly, it includes a guide scope with a wide field-of-view camera for course tracking, a fast 

steering mirror and a narrow field-of-view camera for fine tracking, a dichroic mirror, a spectral filter 

and a quantum receiver with passive basis selection. Four single photon detectors with a timing jitter 

of 350 ps FWHM are used for detection of photons in four possible states of polarization. A more 

detailed description of the OGS can be found in previous publications [21–23]. 

3.2.  The obtained results 

A typical time dependence of 𝐶𝑘 − 1 obtained during a satellite pass is presented in Fig. 3 (gray 

curve). The obtained coefficients 𝐶𝑘 are used for calculation of (𝑡𝑖𝑗 − 𝑡𝑖)
𝐴

 (18). The corresponding 

distribution of detection events over time is presented in Fig. 4. In the experiments on QKD, the 

obtained synchronization precision varies from 536 ps on March 1, 2022 to 593 ps on March 10, 2022. 

We showed above (25) that the best theoretical value of synchronization precision that can be attained 

using our algorithm is equal to √𝜎𝑃𝐷,𝑆𝐴𝑇
2 + 𝜎𝑃𝐷,𝑂𝐺𝑆

2 + 𝜎𝑆𝑃𝐷
2 + 𝜎𝐿

2. Since both quantum and synchro 

signal are detected with single photon detectors of the same type at the OGS, it can be written as 

 √𝜎𝑃𝐷,𝑆𝐴𝑇
2 + 2𝜎𝑆𝑃𝐷

2 + 𝜎𝐿
2  

The timing jitter of the single photon detectors utilized in the experiments is 350 ps FWHM. The pulse 

width of quantum signal is 200 ps [5]. If neglecting the timing jitter of the photodetector at the 

satellite, the best possible synchronization precision is of about 230 ps. As one can notice, the values 

obtained experimentally are significantly higher. The discrepancy is apparently caused by finite width 

of synchronization pulses and limited power of synchronization signal. As a result, the detector does 

not always trigger exactly on the rising edge of a synchro pulse and has some non-zero probability of 

being triggered during some time behind it. Indeed, it was shown that intensity fluctuations of 

synchronization light can lead to a significant synchronization error under certain conditions [24]. A 

detailed study of this phenomenon is beyond the scope of this work and it can be a topic of a separate 

research. 

(26)
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Figure 3. Relative difference between transmitter’s and receiver’s clock frequencies obtained during 

QKD on March 9, 2022. Blue curve: Doppler shift calculated from the satellite trajectory determined 
by means of SGP4 model. Gray curve: 𝐶𝑘 − 1 determined by analysis of synchro signal. Black curve 
is obtained by subtracting Doppler shift from 𝐶𝑘 − 1. 

 

Figure 4. Distribution of events number over time, 𝑟𝑒𝑚 (𝑡𝑖𝐴 + (𝑡𝑖𝑗 − 𝑡𝑖)
𝐴

+
𝑇𝑞

2
, 𝑇𝑞) −

𝑇𝑞

2
, during 

QKD on March 9, 2022. Gray dots – zero-order approximation, (𝑡𝑖𝑗 − 𝑡𝑖)
𝐴

= (𝑡𝑖𝑗
𝑅 − 𝑡𝑖

𝑅)𝐵. Black dots 
– our synchronization method. All detection events between UTC2022-03-09T22.09.47 and 
UTC2022-03-09T22.14.08 (261s) are considered. 

 

As the satellite and the OGS are equipped with GNSS receivers providing a reference clock signal 

(Pulse-per-Second or PPS), clock bias can be monitored directly analyzing time offsets of PPS tags. 

Maximum values of speed of clock drift 𝜀𝐴
′  and 𝜀𝐵

′  observed during the quantum communication 

sessions are presented in Table 1. One can see that Alice’s frequency is changing at least one order of 

magnitude faster than Bob’s one. Also, Alice’s frequency is always drifting one direction (decreasing). 

This is apparently because the clock generator at the satellite is not thermostabilized and is being 

heated after the electronics starts operating. Nevertheless, maximum speed of clock drift observed in 

the experiments is at least one order of magnitude less than the rate of Doppler shift change, which is 

of ~10-7 sec-1. As was shown above, the 1st derivative of Doppler shift, equal to the 2nd derivative of 

signal propagation time, 𝑡𝑝
′′, is small enough to neglect quadratic corrections and only consider linear 

terms. Consequently, since the speed of clock drift is ≲10-8 sec-1, we can neglect the corresponding 

quadratic terms as well. 
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Table 1. Summary of the experiments on QKD between Micius and the OGS at 
Zvenigorod observatory. 

Date Start time of 
QKD session, 

UTC+0 

QKD 
time, 
sec 

Elevation 
asc/desca, ° 

Maximum 
|𝜀𝐴

′ |, sec-1 
Maximum 
|𝜀𝐵

′ |, sec-1 
Synchronization 

precision, ps 

March 1, 2022 

UTC2022-03-
01T22.12.28 222 28.5 / 23.0 7.3×10-9 2.0×10-10 536 

March 9, 2022b 

UTC2022-03-
09T22.09.47 261 20.8 / 23.2 7.4×10-9 7.7×10-11 571 

March 10, 2022 

UTC2022-03-
10T21.46.26 249 25.6 / 23.6 7.3×10-9 4.6×10-10 593 

a Elevation when quantum signal began / ceased to be received 
b Instead of a truly random sequence, photon states were modulated by a pre-known sequence with 

a length of 42 949 672 960 states. 

Besides the above method for calculation of clock bias, we also use another approach, which is 

based on analysis of synchro signal. As we showed above, at small deviations, 𝐶𝑘 = 1 + 𝜀𝐴 − 𝜀𝐵 −
𝑡𝑝

′ (𝑡𝑘). Thus, 𝜀𝐴 − 𝜀𝐵 can be calculated as 𝐶𝑘 − 1 + 𝑡𝑝
′ (𝑡𝑘). Coefficients 𝐶𝑘 are determined by 

analysis of synchro signal as was described above, whereas 𝑡𝑝
′  can be calculated if the trajectory of a 

satellite is known. We calculate the trajectory of Micius by means of SGP4 model and TLE data taken 

from sources of free access. As an instance, the time dependencies of 𝐶𝑘 − 1 (gray curve) and −𝑡𝑝
′  

(blue curve) obtained on March 9, 2022, are presented in Fig. 3. After subtracting −𝑡𝑝
′  from 𝐶𝑘 − 1, 

we obtain the black curve, which displays the mutual frequency drift of Alice’s and Bob’s clocks. In 

our experiments, during the whole communication time, maximum discrepancy between found thus 

𝜀𝐴 − 𝜀𝐵 and the same value found by analysis of PPS signal does not exceed 5%. 

It should be noted that our algorithm for synchronization does not require any knowledge about the 

trajectory of a satellite. Using of GNSS receivers is not necessary too. The only purpose of the 

considerations above is to demonstrate fairness in our assumptions made at the beginning of the paper 

that frequencies of Alice’s and Bob’s clocks can be considered as time-independent constants. 

3.3.  Comparison with other methods 

In previous experiments with Micius satellite, when using the original synchronization method, 

synchronization precision lies in the range 854–1041 ps, whereas for “Qbit4Sync” method, it lies in 

the range 711–988 ps [18]. As single photon detectors with the same timing jitter are utilized in the 

experiments, one is eligible to compare the results directly. On average for all satellite passes, our 

algorithm shows a synchronization precision 1.7 and 1.5 times better than that obtained with the 

original method and “Qbit4Sync” method correspondingly. 

Direct comparison of our algorithm with “Qubit4Sync” method was also carried out at 1s intervals. 

Applying “Qubit4Sync” algorithm was performed by USTC. The summary of the obtained results is 

presented in Table 2. As one can notice, synchronization precision at 1s intervals is improved 

significantly. For our synchronization method, it changes by 15% on average. For the method of 

USTC, the difference is 1 order of magnitude more, i.e. much more significant. If comparing the two 

methods with each other at 1s intervals, “Qubit4Sync” demonstrates 1.3 times better accuracy than our 

algorithm. 
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Table 2. Direct comparison of the proposed method (MCQT) with “Qubit4Sync” method 

(USTC) at 1s intervals. 

Date Start of 1s 
interval, UTC+0 

Synchronization precision, ps Sifted key rate, kbps 

MCQT USTC MCQTa USTCb Maximumb 

March 1, 2022 

UTC2022-03-
01T22.14.40 467 373 13.4 14.1 15.7 

March 9, 2022c 

UTC2022-03-
09T22.12.36 480 369 8.58 9.08 10.1 

March 10, 2022 

UTC2022-03-
10T21.48.55 497 380 17.2 18.3 20.4 

a 2ns time-gate filter is applied. 
b Calculated under the assumption of a normal distribution 
c Instead of a truly random sequence, photon states were modulated by a pre-known sequence with a 

length of 42 949 672 960 states. 

We estimated to what extent the difference between the two methods impacts on secret key rate. 

For our estimations, we made two assumptions. First, the time distribution of error is normal, and 

second, the same time-gate filter, 2 ns, is applied. According to our calculations, if the algorithm of 

USTC were used, sifted key rate would increase by no more than 6%: see Table 2 for details. Besides 

sifted key rate, the change of quantum bit error rate (QBER) should also be taken into account since 

both parameters affect secret key rate. For instance, QBER obtained at 1s interval since UTC2022-03-

09T22.12.36, on March 9, 2022, is of 1.18%. Only 0.54% is due to noise triggering. The other errors, 

0.64%, are due to finite polarization extinction ratio caused by imperfection of the optics and are 

therefore not impacted by signal-to-noise ratio and consequently by synchronization precision. 

Considering the two assumptions above, one can show that, if the method of USTC were used, error 

rate due to noise triggering would decrease to 0.51% and the overall QBER would decrease to 1.15%. 

The change of QBER is thus negligibly small and would therefore not have any significant effect on 

secret key rate. Thus, under the given conditions, improvement in accuracy by 1.3 times would 

provide the gain in key rate of only 6%. 

4.  Conclusions 

A simple, efficient and robust algorithm for time synchronization in satellite quantum communications 

is proposed. It does not imply the trajectory of satellite is known and does not require any complex 

mathematical calculations. The algorithm was tested during experiments on QKD between Micius 

satellite and an optical ground station at Zvenigorod observatory. During the experiments, maximum 

clock bias between Alice’s and Bob’s clocks, including Doppler shift, was of about 10-4. The obtained 

synchronization precision does not exceed 0.5 ns. 

The results of comparison with other synchronization methods are not unambiguous. At short (1s) 

time intervals, “Qubit4Sync” method developed by USTC demonstrates 1.3 times better accuracy than 

our algorithm. Despite this, the gain in quantum key rate does not exceed 6%. If applying our method 

for processing data from a whole quantum communication session, which typically lasts several 

hundred seconds, it shows at least 1.5 times better synchronization precision than any of the 

previously used methods. 

The proposed approach implies neither the use of a GNSS, nor even the fact that synchronization 

pulses and quantum signal must be clocked from the same generator. The authors believe that it can be 

utilized for time synchronization not only in satellite-based quantum communications but also in 

terrestrial systems for QKD. 
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