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Abstract. Time synchronization is one of the most crucial issues that must be addressed in
developing quantum key distribution (QKD) systems. It not only lets the transmitter and the
receiver to assign a sequence number to each event and then do correct basis reconciliation, but
also allows to increase signal-to-noise ratio. Time synchronization in satellite communications
is especially complicated due to such factors as high loss, signal fading and Doppler effect. In
this work, a simple, efficient and robust algorithm for time synchronization is proposed. It was
tested during experiments on QKD between Micius, the world’s first quantum communications
satellite, and an optical ground station located in Russia. The obtained synchronization
precision lies in the range from 467 to 497 ps. The authors compare their algorithm for time
synchronization with the previously used methods. The proposed approach can also be applied
to terrestrial QKD systems.

1. Introduction

The idea of quantum cryptography is not based on computational complexity of mathematical
algorithms, but on the laws of physics. The idea was first announced in 1984 by Bennett and Brassard,
who proposed the first quantum cryptography protocol, BB84 [1]. An experimental implementation of
quantum key distribution was first demonstrated in 1989 [2]. In that experiment, qubits were encoded
in photon’s polarization and the photons were transmitted through 32.5 cm on an optical table. Since
then, the technology has been widely developed. In particular, distance between shared parties has
increased significantly. Thus, free-space QKD over 144 km was experimentally demonstrated using
decoy-state BB84 protocol [3]. Recently, using twin-field QKD protocol, quantum key exchange
through optical fiber over to 833.8 km was implemented [4]. Although the obtained results are
outstanding in terrestrial QKD, secret key rate is of ~1072 bit/s, which is barely attractive from the
point of view of practical applications. The only reasonable way to build a truly global,
intercontinental, quantum network to date is using of artificial satellites as trusted nodes between
remote ground stations. In 2016, the first such satellite, Micius, was launched into its orbit, which was
followed by experiments on satellite-to-ground QKD [5-7], entanglement distribution [8],
entanglement-based QKD [9] and quantum teleportation [10].

Time synchronization is one of the most crucial factors in distributing a quantum key. It not only
allows Alice and Bob to assign an absolute sequence number to each event and then do correct basis
reconciliation. Also, precise synchronization can significantly increase signal-to-noise ratio. In
satellite QKD, synchronization is especially complicated due to such factors as signal fading, high loss
and Doppler effect. In QKD systems, synchronization can be implemented, for instance, by means of
electrical signal [11] or a global navigation satellite system (GNSS) [3]. The most common method is
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light synchronization, which implies transmitting intense light pulses at the same wavelength [12] or at
a different one [5,13—16]. Also, there is an elegant solution that is based only on analysis of detected
quantum signal and does not require any additional hardware [17]. Recently, this approach was
successfully adopted to real satellite-to-ground QKD [18]. A similar method had been utilized by
another team although the intensity of optical signal was of several orders of magnitude higher than
one that corresponds to a single photon level [19]. In this work, we propose another approach, which is
more simple to implement and does not require any complex mathematical calculations. It was shown
to provide at least 1.5 better synchronization accuracy than previously used methods at processing data
from a whole quantum communication session.

The structure of this paper is as follows: in section “Theory”, we provide a general description of
the problem of synchronization and a detailed description of our algorithm; in section “Experiment
and Results”, we present experimental data obtained using our synchronization method during QKD
between Micius satellite and an optical ground station (OGS) at Zvenigorod observatory; finally, we
draw inferences in section “Conclusions”.

2. Theory

2.1. Formulation of the problem
Let Alice send quantum states with a period of T, so that photon i is released at time Ty - i. Since

Alice’s clock can be fast or slow, actual time of photon emission is :—0 - Tq - i. Here, the following
A

notations are introduced: v, is the frequency of Alices’s clock and vy is the frequency of an absolutely
accurate clock. In general, there can be a time offset t and emission time t; has therefore to be
written as

ti=tg+:—:-Tq-i (1)

It should be noted that equation (1) implies that v, does not depend on time. Generally, the frequency
of Alice’s clock can change with time: v4 = v4(t). Thus, in the most general case, instead of (1), one
must write

1 rt; .
%ftgl va(m)dn = Ty i 2

The aspects related to clock drift will be discussed later in this article. Hereinafter, we assume, unless
otherwise specified in the text, that the frequencies of Alice’s and Bob’s clocks change slowly enough
so that these changes can be neglected in considered time intervals.

Since Alice and Bob are spatially separated, there is some signal propagation time t.

Consequently, Bob receives photons at times t; determined by the following expression:
R _ 4 .
ti—t§+i-Tq-L+tp (3)

As Bob uses his own clock with a frequency of vg and a time offset of t5, he expects to receive
photon i at time

REXP _ ,B , V .

t; —t0+i-Tq-z )

. . : T, .
It is obvious that the discrepancy between t;°**” and t¥ should at least not exceed ?". Otherwise, Bob

assigns indexes to received photons incorrectly.
If Alice and Bob have adjusted their clocks so that t& = t§ + tp, 1.e. the 1st photon (i = 0) comes

exactly at the moment when Bob is waiting for it, the difference between th EXP and tR is written as
REXP R _ ; 1 1
ti —t; —Tq'l'Vo'(g—a) (5)
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REXP _

Since |ti tLR | should be less than 7'7, if taking (5) into consideration, maximum index ip4x SO

that quantum key distribution is yet feasible can be found:
11

VB Va

1

=1 (6)

Low difference in clock frequencies has not been implied so far. However, in most cases, relative
difference is quite small. If one defines &4 and €5 as follows:

Va/p = Vo - (1+ SA/B)a (7
gA/B « 1. (8)

Imax * Vo

Thus, iyax can be expressed from (6) and, if taking into account (7) and (8), it can be written as
follows:

1

2|leq—epl

9)

The upper bound for |e4 — €5| is the accuracy of the clocks multiplied by 2 and the value of iy4x can
thus be estimated. For instance, if best quartz oscillators, which have an accuracy of ~107, were
utilized, iy would be of ~2.5x10° At a repetition rate of quantum states of 100 MHz, this
corresponds to a time interval of ~25 ms. It means Alice and Bob have to synchronize their clocks
somehow at least once every 25 ms. Using of light pulses for such synchronization is widely used
[5,12-16]. Thus, Micius satellite is equipped with a beacon laser generating 0.9 ns light pulses at a
repetition rate of ~10 kHz, which also serve synchronization purposes. Theoretically, Alice and Bob
could use atomic clocks, which are much more accurate, and thus increase iy 45 by several orders of

magnitude. However, in satellite communications, this would not make sense due to Doppler effect. If

a satellite is moving in its orbit at a speed of vssr, Doppler shift can be roughly estimated as vs%.

CAT, which is ~107

for artificial satellites. However, if the trajectory of a satellite is known with sufficient accuracy,
Doppler shift can be compensated explicitly by subtracting time delays. In this paper, we propose
another approach, which is based on a simple and robust algorithm of simultaneous compensation of
both clock bias and Doppler shift and does not require the trajectory of a satellite to be known.

IMax =

Thus, it does not make sense to utilize clocks with an accuracy much better than Zs

2.2. The proposed approach

2.2.1. Description of the synchronization method. It is supposed that there is a sequence of N synchro
pulses and Alice records the corresponding emission times t;4, { = 0..N — 1. Here and below,
subscript A (B) means the marked time is measured with Alice’s (Bob’s) clock. Using a photodetector,
Bob detects synchro pulses sent by Alice. Also, Bob detects single photons and assigns two indexes, i
and j, to all detection events: i is the number of the closest synchro pulse followed by the event, and j
is the sequence number of the event among all ones that occurred between synchro pulses i and i + 1:
see Fig. 1. Alice sends Bob values of t;4 through a public communication channel. So, if he knew
(ti i — ti)A’ he could find quantum state numbers n;; using this expression:

_ tiA+(tij_ti)A

ij = T, (10)

Therefore, the task of synchronization is reduced to correct determination of (tl- i — ti)A‘



IC-MSQUARE-2023 IOP Publishing

Journal of Physics: Conference Series 2701(2024) 012017  doi:10.1088/1742-6596/2701/1/012017
> e q > q4q qa
Alice
i-1 i-1,0 i-1,1 i i0 il i2 i+l

Bob ‘

-1 i-1,0 i1l i 00 il i2 i+l

Y

Figure 1. Schematic representation of synchro pulses (s) and quantum signal (q) on the timeline.

First, it is necessary to calculate the time when Bob is receiving synchro pulse i. As Alice and Bob
are spatially separated, there is signal propagation time t,,, which depends largely on time in satellite

communications. Also, there is a random error 6t/*™@ caused by imperfection of the measuring
equipment, mainly by timing jitter of the photodetector. So, times when Bob receives synchro pulses
tR can be written as:

tf =t + t,(t) + 67" (11)
Similarly to (11), times when Bob receives quantum states with indexes i, j are written as:
th =ty + tp(ti;) + 677 (12)

Some point t;, such that all points ¢; and t;; lie in some neighborhood of this point (t; — 8¢, ¢ + 6t)
can be considered and t,(t) can be expanded into Taylor series keeping quadratic terms:

I 1 n
tp(t) = tp(t) + tp(te) - (& — ti) +5 -ty (t) - (6 — ti)? (13)
1 1 " 2
tp(tij) = tp(tr) + tp(te) - (tij — ti) + 5t (t) - (8 — tic) (14)
If we subtract (11) from (12) and use expansion (13) and (14), we will get
th—tf =
=(t; —t;)- {1 + b, () +ty (8) - (8 — ) + % by () - (tij — ti)} + 6t} — stfene (15)

It is obvious that the 3rd and 4th terms in the curly braces can be discarded if t;) - 6t < t;,. Below, we
will show that this condition is met during the whole communication time except a negligibly small
(<10 ms) area near the moment when the sign of Doppler shift is changing. It should be noted that the
2nd term in the curly braces, t, is also extremely small in this area and the change of t,, may therefore

not be considered in this area at all. Thus, we are eligible to discard quadratic terms in (15) and, if
considering that Alice and Bob use their own clocks for measuring time intervals, (15) can be written
as

:—Z . (tl}j - tLR)B = :—Z . (tij - ti)A . (1 + té)(tk)) + 5tirjand _ 6t{and (16)
Expressing (tl-]- - ti)A from (16) we will get:

_va 1 R _ +R va . rand _ gsrand
(tij — ti)A = E . —1+t1’0(tk) . (tij t; )B + vo (6ti 8tij (17)
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Random errors §t7*"¢ and § t-r-a”d are not known, but we can make a reasonable assumption that their

expected values are equal to 0. Then, if we introduce notation C;, = :jA Ty Ve can write (17) as
B 14
R _ 4R
(ti; — ti)A =C - (4 —t)B (18)

Similarly to (15), for two adjacent synchro pulses, i and i + 1, we can get

thy — of = [ - 6end +

! n 1 n
+ (iv1 — ) - {1 + () + 1ty (8) - (& = tr) + 5t () - (tir — ti)} (19)
One can consider the following sum: S, = YN {(tl+1 te — (tis1 — t) A}. On the one hand, it is
obvious that
Sk = (ty-1 = t§H)p — (ty—1 — to)a (20)

On the other hand, using (19) and neglecting quadratic terms again, one can show that:
Sie =2 (tn-y = to)a - (1+ tp(6)) = (tw—y = to)a + 32+ (SR — 8t5*) - (21)
A
From (20) and (21), we can get

(o1 = s = 2 (14 65(t)) - (twor — toda + 22+ (623 — 5e°nd)  (22)

. 1
Assuming that the expected values of 5t5*"¢ and 5t5*** are equal to 0, since z—B : (1 +tp, (tk)) £
A k

Cy can be expressed from (22):

(tn-1—to)a
C, = 23
k (tli\el—l_ttl)?)B ( )
C 1s thus found and sequence numbers of quantum states n;; can now be calculated using (10) and

(18). Thus, the proposed algorithm is extremely simple for implementing. All that is to be done is to
split communication time into short time intervals so that the change of Doppler shift within these time
periods can be neglected. Then, it is necessary to find C;, for each time interval using (23) and finally
calculate sequence numbers of quantum states.

2.2.2. Synchronization precision. Minimum N. Synchronization precision is a statistical value that can
be determined by variance of (t;; — t;) 4. It can be shown that the discrepancy between calculated and

true value of (t;; — t;)4 is

( t) _va (8trand 6tirand) +

+32 Loatols (t —tR) - (8tpemd — sepand (24)
(tN 1 to )B B
As one can see, the 2nd term in (24) is ~ ﬁ and it therefore tends to 0 at N — co. At the same time, the

Ist term does not depend on N. This means that, if N is large enough, we can neglect the 2nd term and

only consider the Ist one. If we divide the 2nd component by the 1st one, we will get :—B~
0

R R R R
(tN_l_tO)A’(tU_ti )B L Sl 1 or, neglecting small values (tij_ti )B L L Since
(tl}\?l—l_ttl)?)%? 5trand 6trand g g ’ (tl}\?l—l_tg)g é'tf]and Stlrand
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(e5-2),
(tN 1 -t ) B
Next, if we assume that 5§t/ and 6tirj‘md are two independent normally distributed random values,

8 tlr]“nd 5t7%% is also a normally distributed random value, with expected value of 0 and variance of

0% =o0? + o2 j» where o; is determined by timing jitter of the photodetectors used for detection of

synchro pulses at the satellite and at the OGS, whereas o;; is determined by timing jitter of the single
photon detectors used for detection of quantum signal and a finite width of quantum pulses. Thus, the
best synchronization precision that can be attained using our method is

1
, we can conclude that N = 10 is sufficient to exclude the 2nd term from consideration.

2 2 2 2
\/ Opp,sat T Opp,ocs T Ospp T 0}, (25)

where 0pp sar and opp ggs characterize timing jitter of the photodetectors used for detection of
synchro pulses at the satellite and the OGS correspondingly, aspp characterizes timing jitter of the
single photon detectors, and o;, corresponds to the width of quantum pulses.

2.2.3. Maximum N and &t. As we showed above, the area that contains all of N synchro pulses under
consideration must be small enough so that we can neglect the change of Doppler shift within this

ty . ty . . .
area: 0t < t—f’, (26). For calculation of t—ﬂ we use a simple model. First, we assume that a satellite is
p 14
moving in a strictly circular orbit (eccentricity = 0). Also, we do not consider Earth rotation since even

near the equator the corresponding speed is much less than satellite one. Finally, we only consider a

I

zenith pass. The calculated time dependence of > 1s presented in Fig. 2a. If we consider a sequence
p

with minimum number of pulses, which is = 10 as was shown above, it corresponds to 6t = 1ms at a
repetition rate of synchro pulses of 10 kHz. Then (26) is correct during the whole pass except a small
area of S 10ms near the point where the sign of Doppler shift is changing. However, as one can see in
Fig. 2b, Doppler shift is extremely small within this area, S 10, and may therefore not be taken into
consideration at all.

a b
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Figure 2.2 ,, (a) and t,, (b) during zenith pass of a satellite with an eccentricity of 0 and an altitude of
500 km. Earth rotation is not considered. t,, and t,,; are the 1st and the 2nd derivatives of signal
propagation time.

2.2.4. Physical meaning of C. A low value of clock bias has not been implied so far. However, in
most cases, the difference between clock frequencies is relatively small (7,8). The absolute value of
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tp, which is Doppler shift up to multiplication by -1, does not exceed ~107 for satellites, i.e. it brings a
slight perturbation too. Cj can thus be expanded into Taylor series near 0 keeping only linear terms:
Cx =1+ ¢4 —eg — ty(ty). Thus, at low deviations, €, — 1 characterizes to what extend Alice’s
clock is fast relative to Bob’s one, including Doppler shift.

2.2.5. Reduction to the original method. Minimum possible N that can be in the above algorithm is 2.

At N =2, C is determined as %. Consequently, (18) can be written as (to i to)A =
1% B
((;;_:‘;))A . (tgj — t®)p, which is identical to the main equation of the original synchronization method
1-%/)p

used by the team of USTC [15]. It should be noted that, at N = 2, the 2nd term in (24) becomes
comparable with the Ist one and cannot therefore be neglected anymore. Consequently,
synchronization precision is distinct from that obtained above for large N.

3. Experiment and results

3.1. Experimental setup

The above algorithm was tested at experiments on QKD between Micius satellite and an OGS at
Zvenigorod observatory (55°41'56"N, 36°45'32"E, 180 m above msl). Micius satellite was launched in
2016, after which satellite-to-ground QKD [5-7], entanglement distribution [8], entanglement-based
QKD [9], quantum teleportation [10] and some other experiments [20] were carried out. The satellite
is equipped with a 530 nm beacon laser that sends 0.9 ns light pulses at a repetition rate of ~10 kHz,
which are also used for synchronization purposes. The OGS is a 0.6 m telescope coupled with the rest
of optics: mainly, it includes a guide scope with a wide field-of-view camera for course tracking, a fast
steering mirror and a narrow field-of-view camera for fine tracking, a dichroic mirror, a spectral filter
and a quantum receiver with passive basis selection. Four single photon detectors with a timing jitter
of 350 ps FWHM are used for detection of photons in four possible states of polarization. A more
detailed description of the OGS can be found in previous publications [21-23].

3.2. The obtained results

A typical time dependence of C, — 1 obtained during a satellite pass is presented in Fig. 3 (gray
curve). The obtained coefficients Cj, are used for calculation of (ti = ti)A (18). The corresponding
distribution of detection events over time is presented in Fig. 4. In the experiments on QKD, the
obtained synchronization precision varies from 536 ps on March 1, 2022 to 593 ps on March 10, 2022.
We showed above (25) that the best theoretical value of synchronization precision that can be attained

using our algorithm is equal to \/ Opp,sar + Opp0cs + 0gpp + 0. Since both quantum and synchro

signal are detected with single photon detectors of the same type at the OGS, it can be written as

\[ UgD,SAT + ZG.SZPD + ULZ (26)

The timing jitter of the single photon detectors utilized in the experiments is 350 ps FWHM. The pulse
width of quantum signal is 200 ps [5]. If neglecting the timing jitter of the photodetector at the
satellite, the best possible synchronization precision is of about 230 ps. As one can notice, the values
obtained experimentally are significantly higher. The discrepancy is apparently caused by finite width
of synchronization pulses and limited power of synchronization signal. As a result, the detector does
not always trigger exactly on the rising edge of a synchro pulse and has some non-zero probability of
being triggered during some time behind it. Indeed, it was shown that intensity fluctuations of
synchronization light can lead to a significant synchronization error under certain conditions [24]. A
detailed study of this phenomenon is beyond the scope of this work and it can be a topic of a separate
research.
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Figure 3. Relative difference between transmitter’s and receiver’s clock frequencies obtained during
QKD on March 9, 2022. Blue curve: Doppler shift calculated from the satellite trajectory determined
by means of SGP4 model. Gray curve: C, — 1 determined by analysis of synchro signal. Black curve
is obtained by subtracting Doppler shift from C;, — 1.
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Figure 4. Distribution of events number over time, rem (tiA + (t;; — ti)A +%,Tq) —%, during
QKD on March 9, 2022. Gray dots — zero-order approximation, (t;; — tl-)A = (tf — tf)p. Black dots

— our synchronization method. All detection events between UTC2022-03-09T22.09.47 and
UTC2022-03-09T22.14.08 (261s) are considered.

As the satellite and the OGS are equipped with GNSS receivers providing a reference clock signal
(Pulse-per-Second or PPS), clock bias can be monitored directly analyzing time offsets of PPS tags.
Maximum values of speed of clock drift €4, and &5 observed during the quantum communication
sessions are presented in Table 1. One can see that Alice’s frequency is changing at least one order of
magnitude faster than Bob’s one. Also, Alice’s frequency is always drifting one direction (decreasing).
This is apparently because the clock generator at the satellite is not thermostabilized and is being
heated after the electronics starts operating. Nevertheless, maximum speed of clock drift observed in
the experiments is at least one order of magnitude less than the rate of Doppler shift change, which is
of ~107 sec’!. As was shown above, the 1st derivative of Doppler shift, equal to the 2nd derivative of
signal propagation time, t,,, is small enough to neglect quadratic corrections and only consider linear
terms. Consequently, since the speed of clock drift is S10® sec™!, we can neglect the corresponding
quadratic terms as well.
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Table 1. Summary of the experiments on QKD between Micius and the OGS at
Zvenigorod observatory.

Date Start time of QKD Elevation Maximum Maximum Synchronization
QKD session, time, asc/desc?, ° |e4l, sect  |egl, sect precision, ps
UTC+0 sec

UTC2022-03-

March 1, 2022 01T22.12.28 222 285/23.0 7.3x10° 2.0x1010 536
UTC2022-03-

March 9, 2022° 09T22.09.47 261 20.8/23.2 7.4x10° 7.7x101 571
UTC2022-03-

March 10,2022  10T21.46.26 249 256/23.6 7.3x10° 4.6%x101° 593

2 Elevation when quantum signal began / ceased to be received
® Instead of a truly random sequence, photon states were modulated by a pre-known sequence with
a length of 42 949 672 960 states.

Besides the above method for calculation of clock bias, we also use another approach, which is
based on analysis of synchro signal. As we showed above, at small deviations, €, =1+ &4 — €5 —
ty(ty). Thus, &4 —ep can be calculated as Cy — 1 +t,(t). Coefficients C, are determined by
analysis of synchro signal as was described above, whereas t,, can be calculated if the trajectory of a
satellite is known. We calculate the trajectory of Micius by means of SGP4 model and TLE data taken
from sources of free access. As an instance, the time dependencies of C — 1 (gray curve) and —t,,
(blue curve) obtained on March 9, 2022, are presented in Fig. 3. After subtracting —t;, from C; — 1,
we obtain the black curve, which displays the mutual frequency drift of Alice’s and Bob’s clocks. In
our experiments, during the whole communication time, maximum discrepancy between found thus
&4 — €p and the same value found by analysis of PPS signal does not exceed 5%.

It should be noted that our algorithm for synchronization does not require any knowledge about the
trajectory of a satellite. Using of GNSS receivers is not necessary too. The only purpose of the
considerations above is to demonstrate fairness in our assumptions made at the beginning of the paper
that frequencies of Alice’s and Bob’s clocks can be considered as time-independent constants.

3.3. Comparison with other methods

In previous experiments with Micius satellite, when using the original synchronization method,
synchronization precision lies in the range 854—1041 ps, whereas for “Qbit4Sync” method, it lies in
the range 711-988 ps [18]. As single photon detectors with the same timing jitter are utilized in the
experiments, one is eligible to compare the results directly. On average for all satellite passes, our
algorithm shows a synchronization precision 1.7 and 1.5 times better than that obtained with the
original method and “Qbit4Sync” method correspondingly.

Direct comparison of our algorithm with “Qubit4Sync” method was also carried out at 1s intervals.
Applying “Qubit4Sync” algorithm was performed by USTC. The summary of the obtained results is
presented in Table 2. As one can notice, synchronization precision at 1s intervals is improved
significantly. For our synchronization method, it changes by 15% on average. For the method of
USTC, the difference is 1 order of magnitude more, i.e. much more significant. If comparing the two
methods with each other at 1s intervals, “Qubit4Sync” demonstrates 1.3 times better accuracy than our
algorithm.
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Table 2. Direct comparison of the proposed method (MCQT) with “Qubit4Sync” method
(USTC) at 1s intervals.

Sate Start of 1s Synchronization precision, ps Sifted key rate, Kops
interval, UTC+0  vcQT USTC ~ MCQT® USTC® Maximum®

UTC2022-03-

March 1, 2022 01T22.14.40 467 373 13.4 141 15.7
UTC2022-03-

March 9, 2022° 09T22.12.36 480 369 8.58 9.08 10.1
UTC2022-03-

March 10, 2022 10T21.48.55 497 380 17.2 18.3 20.4

2 2ns time-gate filter is applied.

b Calculated under the assumption of a normal distribution

¢ Instead of a truly random sequence, photon states were modulated by a pre-known sequence with a
length of 42 949 672 960 states.

We estimated to what extent the difference between the two methods impacts on secret key rate.
For our estimations, we made two assumptions. First, the time distribution of error is normal, and
second, the same time-gate filter, 2 ns, is applied. According to our calculations, if the algorithm of
USTC were used, sifted key rate would increase by no more than 6%: see Table 2 for details. Besides
sifted key rate, the change of quantum bit error rate (QBER) should also be taken into account since
both parameters affect secret key rate. For instance, QBER obtained at 1s interval since UTC2022-03-
09T22.12.36, on March 9, 2022, is of 1.18%. Only 0.54% is due to noise triggering. The other errors,
0.64%, are due to finite polarization extinction ratio caused by imperfection of the optics and are
therefore not impacted by signal-to-noise ratio and consequently by synchronization precision.
Considering the two assumptions above, one can show that, if the method of USTC were used, error
rate due to noise triggering would decrease to 0.51% and the overall QBER would decrease to 1.15%.
The change of QBER is thus negligibly small and would therefore not have any significant effect on
secret key rate. Thus, under the given conditions, improvement in accuracy by 1.3 times would
provide the gain in key rate of only 6%.

4. Conclusions

A simple, efficient and robust algorithm for time synchronization in satellite quantum communications
is proposed. It does not imply the trajectory of satellite is known and does not require any complex
mathematical calculations. The algorithm was tested during experiments on QKD between Micius
satellite and an optical ground station at Zvenigorod observatory. During the experiments, maximum
clock bias between Alice’s and Bob’s clocks, including Doppler shift, was of about 10*. The obtained
synchronization precision does not exceed 0.5 ns.

The results of comparison with other synchronization methods are not unambiguous. At short (1s)
time intervals, “Qubit4Sync” method developed by USTC demonstrates 1.3 times better accuracy than
our algorithm. Despite this, the gain in quantum key rate does not exceed 6%. If applying our method
for processing data from a whole quantum communication session, which typically lasts several
hundred seconds, it shows at least 1.5 times better synchronization precision than any of the
previously used methods.

The proposed approach implies neither the use of a GNSS, nor even the fact that synchronization
pulses and quantum signal must be clocked from the same generator. The authors believe that it can be
utilized for time synchronization not only in satellite-based quantum communications but also in
terrestrial systems for QKD.
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