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Introduction

Relativistic heavy ion collisions at RHIC/BNL
and LHC/CERN have established the forma-
tion of a extremely hot and dense Quark-Gluon-
Plasma (QGP) [1-4]. Jets produced form hard
nucleon-nucleon collisions serve as an important
tool to infer the thermal and transport proper-
ties of the expanding QGP [5, 6]. These high-
transverse momenta p; partons while traversing
the QGP medium experience energy loss by elas-
tic and inelastic (via radiated gluons) collisions
and transverse momentum broadening. The jet-
medium interactions thus result in quenching of
the leading jet energy as well as to transport the
lost energy through the recoil of the radiated glu-
ons in the expanding QGP. Consequently, the full
jet reconstructed within a jet cone will comprise
of leading hadrons that are hadronized from the
jet partons and hadrons from the bulk-medium
excitation within the jet cone [7, 8].

The present study aims to explore jet quench-
ing and reconstruction of full jets within a jet cone
by developing a coupled (2+1)D relativistic vis-
cous hydrodynamic code [9] to treat the baseline
hydrodynamic medium evolution that combines
with Boltzmann parton transport for jet shower
evolution. The local temperature and the flow ve-
locity from the hydrodynamic medium determine
the longitudinal energy loss é and the transverse
momentum broadening ¢ for the jet shower evo-
lution. In turn, the local energy-momentum de-
posited by the jet during evolution in the QGP
provides a source term for the hydrodynamic evo-
lution equation.

Formalism

The full jets, consisting of leading and sub-
leading hadrons, is given by a distribution in
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energy and transverse momentum f;(w;, k? ) =
dN;(wi, k?,)/dw;dk?, . The entire information of
the energy and momentum of the leading and sub-
leading partons is contained in this three dimen-
sional distribution. As the jets’ cluster traverses
through the medium, f;(w;, k?),t) gets modified
as the original partons lose energy and newly
generated partons become part of f;(wi, k2 ,t).
The complete evolution of the jet partons through
the medium is studied through a set of coupled-
differential transport equations, with the follow-
ing generic form of equations:

d .0 1,
@fj(wjykfbt) = (ejawi + 4ijil>
x fi(wj k31, t)

dfiﬁ-(w-,kzﬁwi,ki)
dw;dk? L :
+Z/ T G Py i

Xfi(wh kzzlat)

dF-ﬁi(wi,kaW-,kzL)
_ d zde J 7 Jrvg
Zi / LT G d2hy y dt
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In this phenomenological equation, the first two
terms on the right-hand side indicate elastic pro-
cesses, and the other two terms indicate inelas-
tic losses. The first and second terms are the
change in f; (wj,kal,t) due to change of energy
and transverse momentum of the partons as it
traverses elastically in the medium. The third
term represents a gain term as it incorporates
inelastic transfer from i-th parton to j-th par-
ton. Similarly, the fourth term is a loss term due
to inelastic process of j-th parton to i-th par-
ton. The indices (i,j) refer to different species
of partons i.e. quarks as well as gluons. The
deposited energy-momentum from jets enter as
a source term J#(x) in the (2+1)D viscous hy-
drodynamic evolution equation for the energy-
momentum tensor 0, T"" (z) = J"(x).
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Results

The initial jet-shower transverse momenta and
their positions are taken from the AMPT trans-
port code [10]. The initial energy and transverse
momentum of each parton in the shower is repre-
sented a Gaussian profile that enters in the subse-
quent parton transport with elastic and in-elastic
collisions. We solve for f;(w;, ka |, 1) numerically,
using the Iterative-Crank-Nicholson method of
2"_order iteration.

Fig. 1 shows a representative elastic evolution
of f; (wj,k:jzbt), integrated for a time period of
0.5 — 10 fm. The peak of f;(w;, kJQl,t) shifts to-
wards lower energy as partons lose energy. This
trend shows the thermalisation of partons present
in the jet shower. Fig. 2 displays the elastic evo-
lution of fj(wj,ka | ,t) with respect to momen-
tum along y-axis. This figure suggest the trans-
verse momentum broadening of jets with time.
The peak of the distribution remains stationary
at k, = 0, indicating the high directionality of
the jet along r—axis.

Conclusion

We have developed a coupled relativistic jet
shower transport and viscous hydrodynamic de-
scription of the jet-induced medium excita-
tion/response. The main goal is to reconstruct
the full-jet to study the medium modification of
the energy-momentum distribution of light and
heavy flavor jets and the jet quenching. This
model can also be used to simultaneously char-
acterise the energy density fluctuations present in
the medium, as well as generate short wavelength
fluctuations that affects higher flow coefficients.
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FIG. 1: Time evolution of f;(w;, k3, ,t) with respect
to energy wj.
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FIG. 2: Time evolution of f;(w;, k7, ,t) with respect
to momenta k.
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