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Abstract—This work demonstrated a proof-of-concept use case
for the emerging quantum-centric supercomputing approaches
combining HPC resources with quantum computers. We pre-
sented a systematic implementation of hybrid quantum-classical
computational method for accelerating atomistic simulations
studying corrosion inhibition. We used aluminium surface with
screened inhibitor molecule on top. We combined density func-
tional theory (DFT) with quantum algorithm through an active
space embedding scheme. We chosen inhibitor molecules of 1,2,4-
Triazole and 1,2,4-Triazole-3-thiol. Our implementation lever-
aged the ADAPT-VQE algorithm with benchmarking against
classical DFT calculations, achieving binding energies of -0.386
eV and -1.279 eV for 1,2,4-Triazole and 1,2,4-Triazole-3-thiol,
respectively. The binding energy of the thiol derivative aligned
with experimental observations regarding sulfur-functionalized
inhibitors’ which could improve corrosion protection. The
methodology employed the orb-d3-v2 machine learning potential
for rapid geometry optimizations, followed by accurate DFT
calculations using CP2K with PBE functional and Grimme’s D3
dispersion corrections. CP2K is a robust DFT package that can
scale on HPC classical resources of CPUs and GPUs efficiently.
We also benchmarked against smaller systems and revealed that
StatefulAdaptVQE implementation achieves a 5-6×computational
speedup while maintaining accuracy. This work contributes to
the literature studying quantum-accelerated materials science
applied to periodic systems, demonstrating the viability of hybrid
quantum-classical approaches for studying surface-adsorbate
interactions in corrosion inhibition applications. In which, can
be transferable to other applications such as carbon capture on
metal oxide frameworks and solid-state battery materials studies.

Index Terms—HPC, DFT, quantum simulations, quantum
computing, quantum-centric supercomputing, adaptVQE, CP2K,
Corrosion Inhibition, atomistic simulations, ML potentials, Qiskit

I. INTRODUCTION

Metal surfaces in aerospace and automotive industries re-
quire effective protection against corrosion to enhance com-
ponent lifespan and efficiency [1], thus it has been studied ex-
tensively both experimentally [2]–[10] and theoretically [11]–
[14]. While chromium-based inhibitors historically provided
robust protective capabilities [15], environmental concerns
have driven a shift towards eco-friendly alternatives such as
smart coatings and organic inhibitors [2], [8], [15]. These
alternatives effectively form protective films on metal surfaces
while maintaining compatibility with surface alloys and mini-
mizing environmental impact [9]. Smart coating technologies

have further advanced the field by enabling real-time corrosion
monitoring, particularly crucial for aerospace and automotive
applications [7].

Computational methods have accelerated corrosion inhibi-
tion research. High-throughput electronic structure calcula-
tions and machine learning improve the screening of potential
inhibitor candidates [14]. Quantum computers, combined with
classical methods [16]–[18], offer enhanced accuracy and
computational efficiency. Recent advancements in quantum
computing have led to the development of hybrid quantum-
classical workflows that can handle periodic systems studied
with DFT workflows [19]. Thus, with the growing spread of
quantum hardware modalities and hardware, and already well-
established HPC centers, Quantum-centric supercomputers
have become a possibility, hence adding Quantum Processing
Units (QPUs) as another accelerator to the existing hardware.
In turn, this opened the possibility of building workflows to
accelerate materials science classical simulations and port part
of the calculations on the QPUs, with highly accurate and
expensive theory, making sure of seamless communication
between the two worlds [20]. This became possible using the
quantum embedding approach [21], [22]. This approach can
lead to the possibility of simulating relatively larger periodic
systems with hundreds of atoms. Worth mentioning, that only
a small fraction of those atoms can be computed currently on
the quantum accelerator, while the remaining is done on the
classical resources with classical methods.

Building on top of that, hereby, we specifically tailored
a workflow for atomistic simulations of corrosion processes.
Where, this work examines hybrid classical-quantum work-
flows for studying corrosion inhibition through simulations
and quantum computer experimentation. It also provides steps
and workflow to run such atomistic simulations on High Per-
formance Computing resources (HPC) together with quantum
simulations or quantum hardware. The case-study here is to
model inhibitor binding to Al surfaces. And we consider it
as a direct usecase that can benefit from the quantum-centric
supercomputing approach.

Quantum computing have the potential to advance R&D ef-
forts in quantum chemistry usecases. Where a hybrid quantum-
classical workflow approach is crucial to perform corrosion
inhibition calculations that integrate HPC systems that are
widely used in running atomistic calculation codes with quan-



tum computing accelerators that can perform high-accuracy
calculations through different SDKs such as Qiskit nature [23].
The framework we provide here demonstrate how quantum
resources can act as accelerators for high-accuracy calculations
in localized regions of large systems using quantum embed-
ding techniques [21], enabling it to perform high-accuracy
expensive methods that are at the top of Jacob’s ladder [24].
Applying this workflow to corrosion inhibition usecase let the
quantum embedding calculate a small fraction of the system
that is responsible for the most important part of the corrosion
inhibition action. Hybrid quantum-classical workflows could
be key to combining utilisation of high-accuracy methods
(running on the quantum part) with efficient methods (on
the classical part) for advancing HPC applications in material
science, balancing efficiency with accuracy [20], [25].

II. METHODOLOGY

In the following sections, we present our approach starting
from the inhibitor molecules choice for the suggested work-
flow then workflow details followed by calculational details
on both classical and quantum counterparts with overview on
the quantum embedding scheme.

A. Corrosion inhibitor molecule screening

Our inhibitor screening process leveraged the CORDATA
database [26], employing a multi-criteria approach to identify
promising candidates for both automotive and aerospace appli-
cations. The primary screening criteria focused on efficiency,
environmental stability, and structural characteristics suitable
for quantum computational analysis. We targeted inhibitors
demonstrating relative efficiencies above 90% in corrosion
prevention compared to Cr6+ for AA2024 [3] and stability in
the pH range of 5.5-7, which is most commonly encountered in
both automotive and aerospace environments [4]. Temperature
resilience requirements were specific to each industry: -30°C
to 70°C for automotive applications and -50°C to 120°C for
aerospace applications.

B. Candidate inhibitor molecules for our workflow

From our comprehensive screening, three candidates
emerged as particularly promising, as detailed in Table I. 1,2,4-
Triazole-3-thiol demonstrates broad effectiveness across both
AA2024 and AA7075 alloys, with its sulfur-containing func-
tionality showing particular affinity for copper-rich AA2024
[6]. Benzotriazole offers excellent efficiency and features an
aromatic ring structure that enhances surface adhesion [3].
2-Mercaptobenzimidazole combines both aromatic and sulfur
functionalities, providing effective performance across a wide
pH range [6].

We selected 1,2,4-Triazole-3-thiol as the primary candidate.
This choice was motivated by several factors: its balanced
molecular weight makes it suitable for quantum calculations
while maintaining computational feasibility; its demonstrated
effectiveness on both target alloys provides industrial rel-
evance; and its wide pH range stability ensures practical
applicability. The sulfur functionality makes it particularly

effective for AA2024 alloy, due to its higher copper content
[6], enabling us to study significant electronic interactions
within our quantum computational framework.

The structural simplicity of 1,2,4-Triazole-3-thiol, combined
with its proven inhibition efficiency, makes it an ideal candi-
date for developing our quantum computational methodology.
Although inhibitors are typically tested on alloy structures in
industrial applications, our calculations will use an Al structure
with Miller indices (111) [29], [30] instead of the alloy to
simplify quantum computations. This approach provides a
practical balance between computational tractability and real-
world applicability, a consideration particularly important for
establishing proof-of-concept in quantum chemistry calcula-
tions of corrosion inhibition mechanisms.

C. Workflow overview and screening details

In our model, we simplified the problem to the form of
molecule adsorption on top of a substrate. We simplified the
alloy substrate to be a simple Al substrate and modelled
the adsorption in vacuum. The larger the binding energy the
more efficient the inhibitor molecule to attach to the surface.
The screening process ideally utilizes multiple computational
tools in sequence. We performed initial filtering through the
CORDATA online platform using the criteria we described
above, where we narrowed down our research on effective
inhibitors when it comes to corrosion inhibition efficiency
while being relatively small, then our calculations can con-
verge faster, thus, will need relatively small Al substrate
to model the molecule on top then we avoid the effects
produced by periodic boundary conditions. Thus, we ended up
choosing two inhibitors from the Triazole family where proven
in experimental literature [6], [10]–[12] to be effective in
corrosion inhibition due to their suitable molecular geometry,
providing excellent corrosion prevention in various acidic
conditions [10]. A variety of substituents on the triazole ring
provide versatile inhibitory effects [10] as in 1,2,4-Triazole-3-
thiol [6], [10], [12]. Fig 1 gives a comprehensive overview on
the workflow steps that we are detailing in the remaining of
the method section.

D. Binding energy calculational details

Adhesion properties are crucial in studying corrosion inhibi-
tion mechanisms, as they directly influence inhibitor molecule
and Al surface interaction. Recent theoretical and experimental
studies have established strong correlations between molecular
adhesion strength and corrosion inhibition efficiency, par-
ticularly for triazole derivatives [31], [32]. González-Olvera
et al. [33] demonstrated that triazole derivatives exhibiting
strong surface adhesion demostrating superior corrosion pro-
tection properties. To quantify this interaction, we calcu-
late the binding energy through this equation (Ebinding =
Esupercell−Einhibitor−Esubstrate), where stronger binding energies
indicate more effective surface attachment and potentially
better corrosion inhibition efficiency. This approach aligns
with experimental observations by Winkler et al. [6] and



TABLE I
SELECTED CORROSION INHIBITORS AND THEIR KEY PROPERTIES

Inhibitor Molecular Temperature pH Efficiency Target Ring
Weight (g/mol) (K) Range (%) Alloys Structure

1,2,4-Triazole [6], [10] 69.07 298 8-10 90 AA2024 Yes
1,2,4-Triazole-3-thiol [6], [10], [12] 101.13 298 4-10 70-90 AA2024, AA7075 Yes
Benzotriazole [3] 119.12 298 7-10 90-98 AA2024 Yes
2-Mercaptobenzimidazole [6] 150.2 298 4-10 90 AA2024, AA7075 Yes
(THC) [27] 227.24 303 7 91-95 AA2024 Yes
Triazine-methionine [28] 502.70 298 7 95-99 AA2024 Yes

theoretical predictions [12], where stronger molecular ad-
hesion correlates with enhanced corrosion protection. The
relationship between binding energy and inhibition efficiency
has been further validated through combined theoretical and
experimental studies [31].

E. Communication between classical and quantum resources

Battaglia et al. [19] have implemented an effective interface
between CP2K and Qiskit nature allowing both codes to com-
municate messages; for implementation details refer to [34].
Figure 2 details how the communication is established and the
qiskit-nature steps. The implementation leverages the socket-
based communication protocol described by Battaglia et al.
[19], enabling seamless integration between CP2K’s classical
DFT calculations and Qiskit’s quantum algorithms. Figure 2
details how the communication is established and the qiskit-
nature steps.

F. Computational details for the classical part

The geometry optimization step for the supercell of Al
and adsorbates on top were performed using the orb-d3-
v2 ML potential model [35] which can be used directly
from [36]. We used CP2K code [37] for the DFT calculations
and used the Perdew-Burke-Ernzerhof (PBE) [38] exchange-
correlation functional within the generalized gradient approx-
imation (GGA) [39]. We employed the Gaussian and Plane
Waves (GPW) [40] method with a 500 Ry plane-wave cutoff
and a relative cutoff of 60 Ry, using double-zeta valence
polarized (DZVP-MOLOPT-GTH) basis sets optimized for
molecular systemsZ [41]. The van der Waals interactions,
crucial for accurate descriptions of inhibitor-surface interac-
tions, were accounted for through Grimme’s DFT-D3 dis-
persion correction scheme [42], using PBE as the reference
functional. The system was treated under periodic boundary
conditions with a vacuum gap of 25 Å in the z-direction to
prevent interactions between periodic images and give dipole
correction to the system. The surface was modeled using a
4×4 supercell of Al(111).

G. Computational details for active space embedding

Our computational approach combines classical DFT cal-
culations with quantum computing methods through an ac-
tive space embedding scheme implemented in CP2K [37] in
conjunction with Qiskit nature [23], [43]. The active space
was constructed with 2 active electrons in 5 orbitals around
the Fermi level, where the adsorption interactions between the

inhibitor and Al substrate predominantly occur. The electron
repulsion integrals (ERIs) for the active space were com-
puted using the full GPW method, maintaining periodicity
in all directions. SCF convergence was set to 1.0E-6 Ha,
with Broyden mixing [44] (α = 0.1, β = 1.5) employed to
accelerate convergence. The embedding scheme iterations had
convergency threshold of 1E-6 Ha.

The active space selection followed a systematic approach
combining multiple methodologies. We employed the ActiveS-
paceTransformer class as implemented in Qiskit, following
the framework described by Battaglia et al. [19] for periodic
systems. Meanwhile, the charge density difference (CDD)
approach of Gujarati et al. [45], can be used here as well
which is particularly effective for surface-adsorbate systems.
This hybrid approach ensures accurate representation of both
localized and periodic components of the electronic structure.
A more recent implementation that could be promising for
such periodic systems is described here by Weisburn et al. [46]
and implemented in [47].

H. Computational details for the quantum part

Our quantum computational approach centred on the
ADAPT-VQE algorithm [48], implemented through Qiskit
with some proof-of-concepts executed on Braket simulators as
detailed in the Appendix. The implementation follows recent
developments in hybrid quantum-classical embedding methods
developed by Battaglia et al. [19], particularly for periodic
systems. We run our workflow with the standard VQE (we
called vanilla VQE only) with the Unitary Coupled Cluster
Singles and Doubles (UCCSD) ansatz [49], AdaptVQE from
Qiskit with its dynamically constructed ansatz [50], [51],
and StatefulVQE from qiskit-nature-cp2k [34] incorporating
warm-starting techniques [22], [52]. We then expanded our
benchmarking to include adaptive algorithms: AdaptVQE with
gradient-based operator selection [48], Tetris-AdaptVQE fol-
lowing the SandboxAQ Tangelo implementation [53], and
StatefulAdaptVQE with its warm-starting capabilities [19].

Our ADAPT-VQE implementation included an operator
pool consisting of single and double fermionic excitations [48],
with convergence criteria set to an energy threshold of 1e-
6 Hartree and a gradient norm threshold of 1e-4. Classical
optimization was performed using SPSA (Simultaneous Per-
turbation Stochastic Approximation) [54] with a maximum of
1000 iterations, a learning rate of 0.005, and a perturbation
size of 0.05.
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Fig. 1. The computational workflow showing the interface between classical and quantum part with the steps shown together with the tools used.

I. HPC resource utilisation

We deployed our quantum algorithms on AWS HPC EC2 in-
stances ’hpc6a’ and ’hpc7a’ with 96 and 48 cores, respectively.
We used CP2K docker image with MPI compilation. For initial
circuit validation and algorithmic debugging, we used Qiskit’s
local simulator and Braket’s SV1 state vector simulator, which
provide high-fidelity quantum circuit simulation capabilities.
We used both simulators because we encountered convergence
issues with different VQE implementations. Worth mentioning
that the reported results are based on Qiskit simulations on
EC2 HPC instances.

III. RESULTS

The geometry-optimized structures of 1,2,4-Triazole and
1,2,4-Triazole-3-thiol adsorbed on the 4×4 Al substrate are
shown in Figs. 3. The optimization process, performed using
the orb-d3-v2 ML potential model, resulted in equilibrium

binding distances of 3.54Å for 1,2,4-Triazole and 3.21Å for
1,2,4-Triazole-3-thiol between the molecules and the substrate
surface.

To validate our hybrid quantum-classical approach, we
compared the binding energies calculated using both classical
DFT and two quantum computational methods: vanilla VQE
(normal VQE) and AdaptVQE, as summarized in Table III.
The results show excellent agreement between classical DFT
and AdaptVQE methods for both inhibitors, with AdaptVQE
yielding binding energies of -0.385508 eV and -1.279064
eV for 1,2,4-Triazole and 1,2,4-Triazole-3-thiol, respectively.
These values closely match the classical DFT results (-
0.385512 eV and -1.279063 eV). However, the vanilla VQE
implementation showed significant deviation, producing a no-
tably higher binding energy (-2.325986 eV) for 1,2,4-Triazole.

This discrepancy between vanilla VQE and AdaptVQE
results can be attributed to several factors in our computational
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Fig. 3. Side and top of view of geometry optimised supercell of 1,2,4-Triazole (on the left) and 1,2,4-Triazole-3-thiol (on the right). Both molecules are
optimised on top of Al substrate of size 4×4. The indicated binding distance was determined using the orb-d3-v2 ML potential model.

TABLE II
COMPARISON OF BINDING ENERGIES AND DISTANCES FOR DIFFERENT METHODS AND INHIBITORS

Method Inhibitor Binding Energy (eV) Binding Distance (Å)
Classical DFT 1,2,4-Triazole -0.385512 3.54
AdaptVQE 1,2,4-Triazole -0.385508 3.54
vanilla VQE only 1,2,4-Triazole -2.325986 3.54
Classical DFT 1,2,4-Triazole-3-thiol -1.279063 3.21
AdaptVQE 1,2,4-Triazole-3-thiol -1.279064 3.21

setup. First, the VQE-only case used a less stringent energy
convergence threshold for the DFT embedding scheme of 2E-
5. compared to the AdaptVQE implementation, using 1E-
6. This difference in convergence thresholds can lead to
premature convergence in the VQE case, potentially trapping
the algorithm in a local minimum that yields artificially high
binding energies. We have chosen to easen the convergency for
VQE only case as it was very slow to converge. Additionally,
the AdaptVQE implementation’s adaptive operator pool selec-
tion, guided by gradient-based criteria (with gradient threshold
of 1e-4), provides a more robust exploration of the quantum
state space compared to the fixed ansatz structure of vanilla
VQE. This advantage of AdaptVQE aligns with recent findings

by Grimsley et al. [48] regarding the superiority of adaptive
algorithms for electronic structure calculations.

Of particular note is the significantly stronger binding
energy observed for 1,2,4-Triazole-3-thiol (-1.279 eV) com-
pared to 1,2,4-Triazole (-0.386 eV), which can be attributed
to the additional sulfur functionality enhancing the surface
interaction. This observation aligns well with experimental
studies by Winkler et al. [6] and Swathi et al. [12], who
demonstrated that sulfur-containing triazole derivatives not
only exhibit enhanced corrosion inhibition efficiency but also
form more effective protective layers on metal surfaces. The
stronger binding energy correlates with the shorter equilibrium
binding distance (3.21Å vs 3.54Å) observed for the thiol



derivative, supporting experimental findings about sulfur’s
role in strengthening surface interactions and promoting more
effective surface passivation [10]. This behavior is consistent
with Swathi et al.’s [12] observations regarding the improved
adsorption characteristics of sulfur-functionalized inhibitors on
metal surfaces.

For more accurate results, we anticipate that expanding
the active space to include more orbitals in the AdaptVQE
calculation could lead to different binding energies com-
pared to the classical approach. Following the active space
construction approach of Battaglia et al. [19], we included
2 electrons in 5 orbitals (10 spin-orbitals in total) around
the Fermi level. However, while their active space primarily
captured localized defect states with one delocalized conduc-
tion band, our active space needs to describe the surface-
adsorbate interaction, where both localized molecular orbitals
from the inhibitor and delocalized surface states from the Al
substrate contribute to the bonding [55], [56]. This interaction
involves complex hybridization between molecular orbitals
and substrate states [57], particularly around the Fermi level,
suggesting that a larger active space might better capture these
electronic coupling effects in full, once we manage to run
wider active space calculation. Ofcourse considering bigger
active space will be associated with more fraction of the
calculation time spent on the Qiskit part, with the current
setup, the Qiskit part consumed 38% of the total time while
the remaining time on communication and CP2K is 62%. The
computational parameters and additional technical details are
provided in Table III in the Appendix.

IV. DISCUSSION

The implementation builds upon established methodologies
as implemented by Battaglia et al. in [19] while introducing
flexibility to deal with adsorption-substrate models in periodic
systems in quantum computing framework of Qiskit. We made
some effort to use the workflow on Braket as well. Our
results demonstrate that the hybrid quantum-classical approach
can model corrosion inhibitor interactions, providing a new
computational tool for the screening and development of
environmentally-friendly corrosion inhibitors in a quantum-
centric supercomputing paradigm. The strong correlation be-
tween our computed binding energies and experimental in-
hibition efficiencies reported in literature [10], [12] validates
our computational approach and suggests its potential utility
in future inhibitor design efforts. Yet, we would expect more
accuracy by the quantum method if more orbitals are included
in the calculations, more than the 5 orbitals used throughout
the calculations due to the computational bottlenecks. We
believe that our approach is a comprehensive proof-of-concept
for applying quantum-centric supercomputing to modelling 2D
systems in general.

Our implementation codes, input and output files are avail-
able in the attached supplementary materials to this submission
and available over github through [58], the specific codes and
datasets are available through [59]. For more details regarding
hardware and other simulators experimentation, please refer

to the relevant supplementary materials section in hardware
simulation. We also provided proof-of-concept for running the
applied methodology in this article to run on real hardware
(superconducting, ion trap).
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APPENDIX

A. Computational methods and parameters

Table III provides a detailed computational parameters and
methods used in this work including the proof-of-concept
calculations we detailing here in the appendix. The param-
eters were chosen to balance computational efficiency with
accuracy, particularly for the hybrid quantum-classical calcu-
lations of surface-adsorbate systems, such as the corrosion
inhibitor example here. Our classical computational approach
involved a two-step process of classical calculations then a
hybrid quantum-classical approach: geometry optimizations
were conducted using the Atomic Simulation Environment
(ASE) [60] with orb-d3-v2 ML potential model [35], [36],
which integrates Grimme’s D3 dispersion corrections directly
into their NN potential. Dispersion forces play a crucial role
in this system and the orb models have native support for
periodic systems making them especially suitable for our sur-
face calculations. Our shortlisted inhibitors contain aromatic
rings for π-π stacking interactions and demonstrate strong
electron transfer potential with Al [30], that was based on the
criteria we discussed in choosing inhibitors. We have chosen
a substrate of 4×4 to avoid the interactions between repeated
cells in the xy directions between the images of the inhibitor
molecule.

B. Quantum algorithm benchmarking

We conducted systematic benchmarking of various VQE
implementations to validate our computational approach and
establish optimal parameters for the surface-adsorbate calcula-
tions. We benchmarked various algorithms of calculating the
ground state energies using simpler systems using the LiH
molecule. The benchmarking process consisted of three main
components:

1) Standard VQE algorithm comparison: Initial bench-
marking compared three VQE implementations using LiH
as a test system. Results showed that AdaptVQE demon-
strated superior performance, reducing computational time by
approximately 50% while maintaining comparable accuracy
(Table IV). This efficiency gain aligns with recent findings by
Grimsley et al. [48] on the advantages of adaptive algorithms
for electronic structure calculations.

2) Adaptive VQE variant analysis: Further comparison of
different adaptive VQE implementations revealed that Statefu-
lAdaptVQE exhibited exceptional performance, achieving a 5-
6×speedup through its implementation of warm-starting tech-
niques [52] (Table V). The TetrisAdaptVQE implementation
showed limited improvement opportunities, with only 12×the
tetris feature applied in our test case.

Error mitigation assessment: To evaluate quantum hardware
implementation challenges, we conducted benchmarking stud-
ies using H2 as a test system across different execution envi-
ronments for AdaptVQE implementation in Qiskit (Table VI).
Our error mitigation strategy incorporated both readout error
mitigation techniques [64] and zero-noise extrapolation (ZNE)
[66], [68], implemented through the Mitiq package [67]. The

comparison between ideal simulation, noisy simulation using
FakeVigo device, and FakeVigo with ZNE revealed substantial
variations in ground state energies, from -1.1373 Ha in ideal
conditions to 0.4083 Ha under noise. The application of ZNE
significantly improved accuracy by recovering a ground state
energy of -1.0305 Ha, demonstrating the crucial importance
of error mitigation strategies in quantum hardware implemen-
tations. These results align with recent findings by Kandala et
al. [68] and Temme et al. [66], and we further validated them
through additional tests using local noisy simulators.

C. Active space analysis

Our active space selection methodology combined the Ac-
tiveSpaceTransformer implementation from Qiskit with the
embedding approach as implemented in CP2K code [37] as
detailed in their manual [69], utilizing the HARTREE-FOCK
model to calculate active space interaction Hamiltonian. Fol-
lowing the recent framework by Battaglia et al. [19], we
employed the CANONICAL method for orbital selection,
which orders orbitals based on their energy. This approach
proved particularly effective for our surface-adsorbate systems,
as the energy-ordered canonical orbitals naturally aligned with
the orbitals around the Fermi level that are crucial for the
adsorption process. The analysis revealed several significant
electronic contributions to the corrosion inhibition mechanism,
including the π-system of the triazole ring, the lone pair
electrons on the sulfur atom (specifically for 1,2,4-Triazole-
3-thiol), and the surface states at the Al(111) interface. These
electronic features and their interactions align well with ex-
perimental observations by Winkler et al. [6] and Swathi et
al. [12] regarding the mechanism of corrosion inhibition by
triazole derivatives, validating our computational approach to
active space selection.

D. The used Hamiltonian

The electronic Hamiltonian was constructed following the
second-quantized formalism [52]:

Ĥ =
∑
pq

hpqâ
†
pâq +

1

2

∑
pqrsgpqrsâ

†
pâ

†
râsâq (1)

where hpq and gpqrs represent the one- and two-electron
integrals computed within the active space. The fermionic
operators were mapped to qubit operators using the parity
mapping with two-qubit reduction [62], which was chosen for
its efficient handling of particle number conservation.

E. Simulation SDKs and hardware

We made some effort in running our simulations on Braket
SDK [70], [71] through the integration tool qiskit-braket-
provider [72]. We had to upgrade it to be compatible with
latest qiskit version 1.x for our special case of simulations as
in [73]. Though at the time of writing, simulations of this
chemistry hybrid use case with braket local simulation SV1,
IonQ Aria and IQM Garnet are still challenging for us, that
is why our results presented in the results section focused



TABLE III
SUMMARY OF COMPUTATIONAL METHODS AND PARAMETERS

Method/Component Details
Classical Calculations
Geometry Optimization ASE [60] with orb-d3-v2 model [36]
Dispersion Corrections Grimme’s D3 (integrated into neural network potential)
Surface Model Al(111) 4×4 supercell
DFT Calculations
Functional PBE [38] with GGA implementation [39]
Basis Set DZVP-MOLOPT-GTH (double-zeta valence polarized)
Method GPW [40], plane-wave cutoff: 500 Ry, relative cutoff: 60 Ry
van der Waals DFT-D3 [42] with PBE reference functional
Vacuum Gap 40 Å (z-direction)
Electronic Temperature 1000 K (Fermi-Dirac distribution)
SCF Convergence 1.0E-6 Ha, Broyden mixing (α = 0.1, β = 1.5)
Active Space Parameters
Configuration 2e, 5o (2 active electrons in 5 orbitals)
Selection Method ActiveSpaceTransformer (Qiskit implementation),

canonical orbital energy ordering selection [61]
Quantum Calculations
Primary Algorithm ADAPT-VQE [48] from Qiskit,

StatefulAdaptVQE from qiskit-nature-cp2k [34]
Qubit Mapping Parity with two-qubit reduction [62]
Convergence Criteria Energy threshold: 1e-6 Hartree, gradient norm: 1e-4
Classical Optimizer SPSA [54] (learning rate: 0.005,

perturbation size: 0.05, max iterations: 1000)
Quantum Hardware & Simulation
Simulators Qiskit local and Aer [63], Braket local and SV1
Hardware IonQ Aria (via AWS Braket), IQM Garnet
Error Mitigation Readout error mitigation [64] via Qiskit Runtime [65],

Zero-noise extrapolation [66] via Mitiq [67]

TABLE IV
COMPARISON OF VQE ALGORITHM PERFORMANCE

Algorithm Runtime (s) Ground State Energy (Ha)
VQE 3654 -7.8824
StatefulVQE 3134 -7.8824
AdaptVQE 1552 -7.8820

TABLE V
PERFORMANCE OF ADAPTIVE VQE VARIANTS

Algorithm Runtime (s) Ground State Energy (Ha)
AdaptVQE 1258 -7.8820
StatefulAdaptVQE 272 -7.8802
TetrisAdaptVQE 1493 -7.8820

on qiskit local simulations on HPC EC2 instances (Hpc6a,
Hpc7a) [74].

For actual quantum computations, we used IonQ’s Aria
quantum processor and IQM’s Garnet quantum processor,
accessed through the AWS Braket platform [70]. We managed
to use it only for the benchmarking phase on small systems
and not yet on our calculational cells.

TABLE VI
IMPACT OF ERROR MITIGATION ON GROUND STATE ENERGY

CALCULATIONS

Environment Ground State Energy (Ha)
Ideal Simulation -1.1373
FakeVigo (Noisy) 0.4083
FakeVigo + ZNE -1.0305

TABLE VII
BENCHMARKING RUNTIME OF QEOM/VQE OF H2

Environment Runtime (s)
qEOM qiskit local 6.42
qEOM braket local 319.13
qEOM braket SV1 981.43
qEOM braket SV1 via HybridJob 1255.07
VQE braket local 10.03
VQE braket SV1 931.74
VQE braket SV1 via HybridJob 833.83

F. Benchmarking runtime of Qiskit and Braket

To find the most efficient way to update our workflow, we
did some benchmarking of the runtime needed to calculate
qEOM and VQE of H2 for different setups. We measured
the runtime when calculating qEOM with qiskit natively with
local esitmator. After that we used the qiskit-native-provider
to bridge to braket and measured runtime for BraketLocal (on
local machine), SV1 (on-demand simulation) and SV1 in a
HybridJob (fully managed orchestration of hybrid quantum-
classical algorithms with priority queueing for quantum tasks
and automatic resource management). The last series of mea-
surements was done for calculation of VQE of H2 natively
in braket for BraketLocal, SV1 and SV1 in a HybridJob.
The results are shown in VII. So we need to improve the
performance by reducing the communication time, when using
real devices provided from AWS. Worthmentioning, a recent
benchmark for resource estimation can be found here [75] for
corrosion inhibition across different simulation scales.


