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Abstract

A relativistic electron passing through an undulator
generates electromagnetic radiation at the expenses of its
own kinetic energy. This effect is usually not taken into
account if the number of periods of the undulator is
relatively small (100 - 200). However, at FEL facilities,
long installations have been built, planned or are under
construction, where many undulators are installed one
after another for a total of several thousand undulator
periods. For instance, the SASE1 and SASE2 lines at the
European XFEL will consist of 35 undulators with 124
periods each. In this case, because of the electron energy
decrease along its trajectory, the radiation from different
undulators will drop out of synchronism. As a result, the
radiation spectral line will be much wider. In the
presented report, this effect was analyzed analytically and
numerically for the case of spontaneous undulator
radiation. An expression for the critical number of
undulator periods, when the effect of electron energy loss
should be properly taken into account, is derived. It is
found that, for the case of the European XFEL, this
number is about 1400 periods.

INTRODUCTION

Travelling down the undulator, the electron transfers
part of its energy to the light wave and consequently
decreases its kinetic energy. This effect is of crucial
importance in free electron lasers. In this case, the beam
energy decreases with the undulator distance z, and the
undulator deflection parameter K should be tapered
accordingly to maintain the resonant condition in order to
both maintain minimal SASE bandwidth and not degrade
the gain. The idea of tapering the undulator period and/or
field amplitude along its axis was initially suggested in
[1], and now is widely covered in the literature (see, for
example, [2] and references therein). The spontaneous
radiation from such devices has been analyzed
analytically as well as numerically in [3 - 9].

Let us consider a non-tapered undulator with number of
periods N. An electron kinetic energy loss increases
proportionally with increasing number of undulator
periods N, and the electron moves out of the resonant
condition, broadening in such a manner spectral width of
undulator spontaneous radiation harmonic. On the other
hand, as larger is the number of undulator periods, as
narrower is the harmonic spectral width because it is
inversely proportional to N. It is apparent that at some
sufficiently large number of undulator periods N =N,
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the radiation energy loss will have a pronounced effect on
radiation harmonic spectral width.

In this contribution we analyze the undulator

spontaneous radiation spectral broadening due to radiation
1 34

energy loss. It has been shown that , ~—— |=—*.
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Here r, = 2.818-107" ¢m is the classical electron radius,

A
parameter, y is the electron reduced energy.

. 1s the undulator period, K is the undulator deflection

RADIATION ENERGY LOSS

For simplicity, we consider ultra-relativistic electron
propagating in a planar undulator with vertical sinusoidal

magnetic field (see Fig.1) B, (z)=B, Sin(zl z)» where
ﬂ/M

A, is the undulator period length.
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Figure 1: Sketch of a permanent magnet undulator.

The instantaneous radiation energy loss of the electron
is given by

o, 2
dt  3c
Here e is the electron charge, c¢ is the speed of light,

B = % r’cy’B; sinz(iﬁz(t)j . ¢))

u

and g are the electron reduced energy and acceleration.

Integrating over the period, we get the following
expression for the energy loss per one undulator period:

2
AE (period) 2%(181[( 2(1 + KZJ (2)

Here « is the fine structure constant, & =27 [/, is

2
photon energy of the fundamental, A =L 1+£ is
257 2
wavelength of the fundamental.
It can be easily derived from Eq. (2) that the relative
energy loss ¢ per one period is equal to:

_ Ay(period) _ Qr)’ /K 7,
% 3 A

u
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RADIATION SPECTRAL DISTRIBUTIONS

Let us consider the radiation field of a moving electron,
which is seen by the observer at time 7 and at the

observation point X~ ={x",y",z"} in the far-field zone,

SO z* tends to infinity. The far-field radiation component
is given by the following expression:

e [nxi(n=pw)=pmI )
(A=(n-p®)y’

Here, an*/‘X*‘, r(t) and ﬂ(,):M are the
cdt

E(r)=

electron trajectory and reduced velocity respectively. The

quantities B(¢t) and p(r) are to be evaluated at the

retarded time f which must obey the equation:
cz'=ct+‘X*—r(t)‘. 5)

It can be shown by direct calculations that:
() =7(0)+ [ (1= (n- B - (®)
0

The number of photons de,y with horizontal ( Xx)

and vertical ( y ) polarization, emitted by a single electron

during one passage through the undulator per solid angle
dQ per relative bandwidth 41/ is given by the Fourier

transform of the electric field given be Eq. (4):

dN., _dg(””j %
A

422

E, ()= [exp(i2mt/E, ,()dT- ®)
By changing the integration variable from 7 to
retarded time ¢ and using the electron longitudinal

coordinate z instead of ¢, we obtain the following results:
N2,

E ()= [expli®@()F, ,(2)dz- ©)

0

e [nx[(n-p)x I
B.(2)(1~(n 'ﬂ(z))f

F(z)=— 10)

c1>(z)— (1D

ﬁ ( )

For more detalls see [10]. It is significant that the
outlined above expressions are very general in nature and
can be applied for electrons which slowly change their
energy.

For simplicity, we will consider here the shape of the
radiation spectral line along the undulator axis: n,,=0.

For high—energy electrons (¥ >>1, K/y <<1) we have:
1+ 08,2 a2

7Z_Z

(())

D(7) = (12)
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Let z,=4,-(—1),
of the i -th period. We can conveniently split the integral

in Eq. (9) into integrals over periods:
N Gith

i=1,2,...N are the initial points

E"x,y(/l)ézll [exp(i@)F, , (2)dz (13)
D(z; +¢) :l;D(Z:l)+A(Di(g), (14)
M (6)=" I " ( Pl XS (15)
Substituting (14) and (15) we will get:
E"X,yw=iem(i®(zi)>é(i)x,}.<z>s (16)
(17)

ﬂ'u
Ey\., () = [eplA®,(6)F, ,(z, +¢)ds -
0

Numerical analysis shows that practically the functions

E;, () do not depend on the number of period (i) in

far-field approximation. As a result we have from (16):

E (D=1, E,, (1) (18)

1, ()= Zexp(i@(z,- DE

i=1

19)

Let y, be the electron reduced energy at the initial point

of the i -th period,

=7n1-06G-1). (20)
where J is given by Eq. (3).
We have from (14) and (15): @(z,)=0,
2
(s, =, (1+KJ : @n
Ay; 2

The direct solution for Egs. (20) and (21) is equal to:

2

(z,) =ﬂ‘; 1+ X i—na+si-2)- (22)
Ay, 2

If we neglect by the radiation energy lost that is putting

o=0 into (22), we obtain from (19) and (22) the

standard interfering function for undulator radiation with

perfectly periodical trajectory:

1) = S0). (23)
sin(p)
2
where ;, — ”/1“2 1+£ .
24y, 2

The additional term in the phase (22), which describes
the radiation energy loss at the wavelength of
fundamental, is equal to 275(i —1)(i—2). We can find the

from the

critical number of undulator periods N,

relation  2z5(N,  —1)(N,  —2)=2x, oObtaining the
estimation for N,
1
N, = 24)
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NUMERICAL SIMULATIONS

The simulations were performed with the European
XFEL parameters listed in the Table 1 (see [11]).

Table 1: European XFEL Parameters for Simulation

Electron beam energy 17.5 GeV
Undulator period A, 40 mm
Undulator deflection parameter K 4

Energy of fundamental harmonic &; 8078 eV
Number of undulator periods N 124

We can readily calculate from the foregoing equations:
The energy loss per one undulator period is equal to:

AE, (period)=8889 eV.
Relative energy loss & per one period is equal to:
S= Ay(period) _ 5.107-
e
Critical number of undulator periods N, is equal to:

N, =

loss

~1414.
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Figure 2: Normalized undulator radiation intensity without
energy loss (black curve) and with energy loss (red curve).
N =750 periods.
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Figure 3: Normalized undulator radiation intensity without
energy loss (black curve) and with energy loss (red curve).
N = 1400 periods.
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Figure 4: Normalized undulator radiation intensity without
energy loss (black curve) and with energy loss (red curve).
N = 2500 periods.

Figures 2—4 show the numerically calculated spectral
intensities along the axis of the undulators with 750, 1400
(which is close to N,,,,) and 2500 periods correspondently.

Calculations were carried out in the framework of
approach described above. The European XFEL undulator
parameters were used for simulations, see Table 1. These
numerical results clearly show that for undulator
spontaneous radiation the energy loss should be taken
properly into account if the number of undulator periods
is large enough. The simple estimation for critical number
of periods, given by Eq. (24), is in a good agreement with
results of numerical simulations, see Figures 2 - 4.
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