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Introduction

The Universe we live in consist mainly of matter. Locally this is evident from observations,
since the amount of antimatter, present in for instance cosmic rays, is so small that it can
be considered zero. The region of pure matter can be estimated to be of size of the present
horizon. Indeed if antimatter was present in a considerable amount, it would collide with
matter, causing large gamma bursts to be emitted. These are not detected and it is
confident that the amount of antimatter can be neglected. If the asymmetry is just local,
matter and antimatter has to be separated with a size given by the current horizon. This
corresponds to causally disconnected region in the Early Universe. Therefore it is not
possible to have a mechanism for separating matter and antimatter on the large scale
needed!.

The totally asymmetric Universe today, corresponds to a tiny asymmetry in the early
Universe. Analysis of the primordial nucleosynthesis gives a ratio of baryon density to
entropy density of

A=" =4 x107" 10710 (0.1)
S

Above a temperature of twice the mass of the fermion ¢ the process v <> ¢q is in equi-
librium, and one can deduce that in the early Universe there was one extra baryon per
billion baryon-antibaryon pair.

The symmetric description of antiparticles and particles in the physical theories, lead
us to wonder how there can be an asymmetry. It seems very subtle to explain the small
asymmetry. One could assume that the initial condition of the Universe was asymmetric
with respect to the number of baryons and antibaryons. From a physical point of view,
this is not appealing, we would like to be able to explain it by means of a physical theory,
and the dynamics of the early Universe. In this way the baryon asymmetry could be
considered a remnant of the early Universe.

In 1966 Sakharov [4] was the first to discussed the possibility of generating a baryon
asymmetry of the Universe in terms of particle theory. During the past decades much
work have been done in explaining this asymmetry. Various scenarios have been proposed
at different time periods and energy scales. I will mainly consider the scale of ~ 100 GeV.
At this scale the electroweak phase transition took place, and one might hope that it will
provide us with the possibility of generating an asymmetry.

The baryon number is to a very high degree a conserved quantum number at the low
energy scale, present in today’s Universe. As we shall see the electroweak baryon number
is not conserved on the quantum level due to the chiral anomaly. In fact the baryon
violating processes are fast at high temperatures, offering an opportunity to explain the
asymmetry, since these are naturally a needed ingredient in a baryogenesis mechanism.

!Inflationary model may give a locally asymmetric Universe



An important implication of the high rate is that any asymmetry created before the
electroweak phase transition is washed out, unless special conditions are satisfied.

The standard model is known to fit experiments very well at the energy scale we can
probe now. An interesting question is whether it is capable of explaining the observed
baryon asymmetry. If not a new theory will have to be proposed. Choosing a baryogenesis
scenario, and fitting it to the observed asymmetry, gives the possibility to put constraints
on the parameters of a theory. In this sense we may consider the baryon asymmetry as a
test of a theory at high energies, since a “real” physical theory should be able to predict
it. What we can observe as remnants from the early Universe is a nice addition to high
energy experiments.

In this thesis I give an overview of the current status of electroweak baryogenesis
studies. My own work has been concerning an area related to this subject, which is
determining the sphaleron barrier of the SU(2) Higgs theory. The sphaleron configuration
and its connection to baryon violating processes in the electroweak theory is described in
detail, while the electroweak phase transition and baryogenesis scenarios will be treated
on a more heuristic level.



Chapter 1

Basics of electroweak theory

In this chapter the electroweak theory is described with emphasis on aspects of interest
for baryogenesis.

1.1 Weinberg-Salam theory

The Weinberg-Salam theory unifies the electromagnetic and weak interaction. The theory
describes the electroweak sector of the standard model, and is a SU(2); x U(1)y gauge
theory, with spontaneous symmetry breaking. The symmetry breaking is obtained by a
coupling to a Higgs field ®, which is a doublet complex field conventionally written as

¢ (x)
d(x) = , Y(P)=1, 1.1
0= (%0 @ 1)
where ¢T () and ¢°(z) are complex scalar fields, and Y is the weak hypercharge. Through-
out this paper we will use the metric g,, = diag(1, <1, <1, <1). The bosonic part of the
Weinberg-Salam Lagrangian is given by

1 v, 1 v
L= 505 TEWP™ 41, 1+ (D,8)/ (D) &V (@10) (1:2)

where F,, = 0,A, ©0,A, + [A,, A)] is the SU(2) field strength tensor, and f,, =
Oty 0,0, is the U(1) field tensor. The SU(2) gauge fields can be expanded in terms
of the Lie algebra elements by A, (z) = «igT'“Af;, where a = 1,2,3 is the SU(2) colour
index, also known as weak isospin. The covariant derivative is given by

D, = 0,1 <igT* A} @ig'%au . (1.3)
The gauge group is not simple, and we need two coupling constants, g for SU(2) and ¢’
for U(1). Normally we will take half the Pauli-matrices as generators for the Lie algebra,
T = %aa. The weak hypercharge operator Y, can be written in terms of the electric
charge ) and the third component of the weak isospin T3, by the relation Y = 2(Q <1I3).
The potential for the Higgs field is described by a quartic self coupling,

2

V(0'D) = A\(dTD @%)2 (1.4)



The Higgs field is needed to give mass to the gauge fields in a gauge invariant way. When
then Higgs field acquires a vacuum expectation value v, the symmetry of the Lagrangian is
spontaneously broken, since the vacuum is no longer gauge invariant. But the Lagrangian
is still gauge invariant as it should. The SU(2); symmetry is completely broken, by the
vacuum expectation value of the Higgs field

@ =lam = (2 ) (15)

V2
Now defining

1
We=—
YoV2

we get the fields for the charged W particles. The Weinberg angle 0y is given by

(A, TiA%), (1.6)

2

g
cos(by) = ———— . 1.7
From this we may write the neutral Z field, and the photon field B,,,
Z, = sin(Ow)a, <cos(w) A B, = cos(Bw)ay, + sin(fw) A, . (1.8)

It is easily seen that the covariant derivative gives rise to a mass term for the gauge fields.
Using 1.5

2
1 g - 1
(D,®)!(D") = 50° <§Wu W+ 3(g" + g’Q)ZuZ“> : (1.9)

where we get My, = %vg and My = %v\/g2 + ¢". The photon field is left massless.
The fermionic content of the standard model consists of 3 generations with 2 doublets
each, one quark doublet and one lepton doublet. The first generation is

i (2)

The quark doublet further comes in three different colors, arising from the SU(3) gauge
group of the standard model. In total there are 24 fermions. A crucial point of the
electroweak theory, is the gauge fields does not couple to the full fermion field, but to the
chiral fermions,

ur = %(1 SY5)u Up = %(1+75)u, (1.11)
where uy, is the left handed field, and ug is the right handed field. The coupling to these
components of the fermion fields is not equal, in fact for the case of the SU(2) gauge field
the right handed part totally decouples. For simplicity the fermionic Lagrangian is only
written for the quark doublet ) of the first generation, with analog contribution from the

other doublets,
[ v
L = < dr > X (1.12)

We will also collect the right handed fields in doublets, even though they transform as
singlets under the SU(2) group. The fermionic part of the Weinberg-Salam Lagrangian
is given by

_ _ Y
Ly = Yriy"Dyyr, + i (0, ©ig 5%)%{
~ f(u)(l/;L‘i’UR + ﬂR(i’W)L) @f(d)(JR‘I’TQ/)L + 1/;L‘I>dR) . (1.13)

6



Here ® = i0,®*. An implicit sum over the three SU(3) colors is meant for the quarks
doublets. Also the fermions acquire a mass, due to the Yukawa coupling to the Higgs field

1 1
(u) (d)
m, = — v, myg = v . 1.14

Note that the Lagrangian 1.13 is an approximation, since the quarks with electric charge
<:% is mixed with the Kobayashi-Maskawa matrix K

d d
s |=K| s (1.15)
v b

The mixing of the quarks can give rise to CP violation, if K has a complex phase.
The full Lagrangian for the electroweak theory is

L=Lr+Ly+ Lo+ L, (1.16)

where L. contains the counterterms that have to be added when the theory is renormal-
ized, and L, is a gauge fixing term, that makes it possible to define a propagator for the
gauge fields. Since we are not going to use these terms, they will not be described in any
detail.

The Lagrangian is invariant under the gauge transformations

A,(@)U (@) A, () U (@) S(0,U (@)U (@) | (1.17)
O(z) — U(2)d(z) (1.18)
bla) = Ul)ile) (1.19)

where U(x) € SU(2). And a U(1) gauge transformation
a,(x) = a,() ©id,alr), ®@@) = @d(x), P(r) — *Dp(z) . (1.20)

where a(x) is a arbitrary scalar function. The only unknown parameter of the Weinberg-
Salam theory is the Higgs self coupling .

1.2 The vacuum structure of SU(2)

For the purpose of studying electroweak baryogenesis, it is a good approximation to
neglect the U(1) gauge fields in the Weinberg-Salam theory. This is equivalent to putting
the Weinberg angle to zero, since in this limit the U(1) fields totally decouple. As we
shall see, baryon number violating processes are associated with a transition of the SU(2)
gauge fields between topologically different vacuum states. The U(1) gauge group has a
topologically trivial vacuum structure with a unique vacuum state, and for this reason
it will only enter the dynamics of baryon violating processes. Hence for the rest of this
chapter we will restrict ourself to a SU(2) gauge theory. In the present section the Higgs
field and the fermions are disregarded as well.

The vacuum structure of the SU(2) gauge theory turns out to be rather complicated,
in the sense that there is a discrete set of classically vacua, that cannot be transformed

7



continuously into one another, without passing through non vacuum states. To see this
we rotate to Euclidean time (zy — <izy), so that space time equals R*. The Euclidean
Lagrangian in the pure SU(2) theory is

1

L == 2—92 TI'FMVFHV . (].2].)

Hence the vacuum condition for a pure Yang-Mills theory reads
VreR': F,(x)=0 (1.22)

If F,,(x) vanishes in some open connected neighbourhood of x, then A,(z) is a pure
gauge, i.e.
F.(z)=0&3U(x): A,(z) =0,U(x)U " (z) . (1.23)

Indeed if F,,(z) = 0 in a region around =, then the integral of A, along a curve C,
starting at zy and ending at x, does not depend on the curve. The path ordered integral

Uz) = Pexp( /C Ay (2')d,) (1.24)

is independent of C. This U will therefore satisfy the pure gauge form for A,. It is
easily seen that the opposite statement is true, since if A, is a pure gauge then the field
strength tensor obviously vanishes. This shows that a vacuum state is a pure gauge in
the whole Euclidean space. Therefore a vacuum state can be represented by the matrix
U(z) € SU(2) defined for all z in R™.

Given a U € SU(2), it can be written in terms of the Lie algebra su(2), which is
spanned by the Pauli matrices.

U = eieo = cos(|e)] + i-222

el sin(le]) = apl + idd (1.25)

(0%

and since det U = 1 we have
ag+ai+a;+a;=1, (1.26)

showing that U can be represented by a point on the three sphere S3. This implies
that SU(2) is topologically equivalent to S®. Generally, a configuration having a finite
Euclidean action, must approach a pure gauge at infinity. Choosing the boundary condi-
tions such that U — 1 at spatial infinity,

lim U(x) =1, (1.27)
|z| =00

lim A,(x) =0, (1.28)
|z|—o00

allows us to compactify Euclidean space R* to S®. Hereby U(z), representing a vacuum
state, defines a map from S? to itself,

U: S*— SU((2) ~ S*. (1.29)

The vacuum states can be characterized as laying in m3(S%) = Z, where Z is the set of
integer numbers. The degenerate vacuum states are physically equivalent but topologically
distinct. Topologically the vacuum states can be divided into different homotopy classes,

8



classified by the integer winding number, that counts the number of times S? is mapped
onto itself. The winding number n is given by

n(U) =

QMQ/QJEMTﬂaU)_%@Uﬂf%mUﬂfl. (1.30)

An example is given, where we choose the temporal gauge Ay = 0. There is still the
freedom of choosing a time independent gauge transformation dyU(z) = 0, since this will
leave Ay invariant,

Ag(x) = Aj(x) = U H2)Ap(2)U(2) U (2)U '(x) =0. (1.31)

The vacuum states will be described by a time independent potential satisfying
Ai(7) = QU (@)U (D). (1.32)
For instance, with A an arbitrary scale parameter, and
U(7) = &% (@2422)3

: (1.33)

the corresponding pure gauge vacuum is a n = 1 vacuum state.
Generally, to a four dimensional configuration with finite Euclidean action, we can
assign the topological charge () of the configuration

0= / d'x TeF,, B® | Fr = Lo, (1.34)

1672

where F,“, is the dual tensor. It is clearly a gauge invariant quantity. The topological
charge can be written as a total derivative, since

TvF,, F* = 0,K" (1.35)

where

KH = 2em07 Ty(AYQPAT + 2/3AY AP A7) . (1.36)
This can easily be seen. Using F,, = [D,, D,] we get
TeF, B = 36" Te(9,4, ©0,A4, + [A,, A)) (0,4, 0,4, + [Ay, A])

= Lemer (4 (9,4,0,A,) + 4 TeA, A, (0,4,) +4 Te(9,4,)A,A,)
= 2¢ (Tr0,A,0,A, +2 Tr(0,A,)A,A,) . (1.37)

Because of the cyclic property of the trace we have
0, K, = 2" Tr[(0,A4,)(0,A,) +2(0,A,)A,A,] (1.38)

which completes the proof. Note that expanding the field strength tensor in the Lie
algebra elements, F),, = <igFj, T, we have that F, = 0, A} <0, A} +gea,37AﬁAZ. Then

K, in terms of the Lie algebra elements, reads
]- a a 1 a (&
Kﬂ - <:>§g2qug(AVFpg @ggﬁabcAVAZAg) . (139)



Using 1.35 and 1.34 the topological charge becomes

_ 4
Q= IW /d 29, K, (1.40)
The Chern-Simons number N¢g is defined by
1 i o 2 i ai
Nes = 7= / Pk’ = — / Ay Tr(AP A+ ZA A AY) (1.41)

A large gauge transformation is one that cannot be continuously deformed into the iden-
tity, and it will change the Chern-Simons number by an integer amount, since we have
that a gauge transformation with U € SU(2) changes N¢g as

Ne¢s — Neg +

T / ey Te(@U)U™ (O;U) U (0U)U™" = Nes + n(U) . (1.42)
The local, or small, gauge transformations are those that can be continuously transformed
into the identity, and they will leave N¢g invariant. Calculating the Chern-Simons number
for the vacuum states, one finds that it equals the winding number. Between two neigh-
bouring vacuum states there must be an energy barrier, since they cannot be transformed
into one another without passing through non-vacuum states. In the next chapter we
will shown that the barrier is finite!, allowing the gauge field to make transitions between
the vacuum states. The Chern-Simons number may be regarded as a parameter for the
configuration space. Performing a large gauge transformation changes the Chern-Simons
number by an integer amount, while the energy is invariant. The configuration space
therefore has a periodic energy barrier with respect to the Chern-Simons number with
period 1. The vacuum states are situated at the integer points.

For an evolution of a gauge field configuration, we can define the topological charge
as a function of time by

Qt) = 1617T2 | 't [ e, (1.43)

This is not a Lorentz invariant quantity since it depend on the time. Transforming to a
gauge where K vanish at infinity we get

3 70
167r2 [/d oK

The topological charge is gauge invariant, implying that the difference between N¢g(t)
and Ngg(0) is gauge invariant, even under large gauge transformation. Let us consider
vacuum transitions, where the gauge fields evolve from a vacuum configuration at ¢ = 0
with winding number n(0) and ending in another with n(¢). Then choosing the temporal
gauge Ay = 0, we have equation 1.44 is satisfied, and

Q) = + / dt / KdS = Nes(t) < Nes(0) . (1.44)

Q = n(t) ©n(0) . (1.45)

The topological charge for a vacuum transition will be an integer number.

'In the SU(2) Higgs theory

10



1.3 Instantons

Let us estimate the probability for quantum tunnelling through the energy barrier between
adjacent vacua |n) and |[n+1). In a semi-classical approximation the tunnelling amplitude
T; is given in terms of the Euclidean action, with use of the Feynman-Kac formula

T, = (nle T n 4+ 1) = /DA#e’SE , (1.46)

where T is the temperature, and the fields are integrated over closed loops of length 1/7.
For T' — 0 we expect the integral to be dominated by a solution that minimizes the
Euclidean action.

The instanton [50] solution provides us with such a configuration. It is a solution
to the 4-dimensional Euclidean field equations, and hence minimizes the action. Again
denoting FEuclidean time x4, it can be written as

2

T _
L= m(auU)U b (1.47)
where 72 = 22 + 7%, and
o Tatuo (1.48)
T

The arbitrary constant A, defines the instanton size. The size is not fixed since the
Euclidean action

1
56 =53 / d*c TvF,, F, (1.49)

is invariant when scaling the fields A”(z) — vA(vx). The instanton is self dual F,, = F,,
and it follows immediately from the Bianchi identity Duﬁu = 0, that the field equation
D,F, = 0 is satisfied. We have that for 2, — o0 the instanton configuration is equal to
a pure gauge vacuum with winding number n, and for z; — oo it is a vacuum state with
winding number n + 1. Hence the topological charge is

Q=n(t=sx0)En(t=00)=1. (1.50)

The instanton interpolates between the two different vacuum states, and we must have
that for the intermediate state F),, # 0. Therefore the instanton has an energy bump,
which is not classically allowed. It describes the tunnelling between two neighbouring
vacua.

A general bound on the action can be obtained using the inequality

Tr(F,, <F,,)*>0. (1.51)
In Euclidean space we have F ;wF w = FuF,, giving
TF,,F,, > TrF,F,, . (1.52)

Inserting the topological charge, we get the bound

Sp > 89—7562 : (1.53)

11



The instanton being self dual, satisfies the equality in 1.51, and the action is
_ 8w

= ? .

Using equation 1.46, the transition rate for quantum tunnelling between two inequivalent
vacua ? is suppressed by a very small number

Se (1.54)

1672
T, x exp(<:>—72r) ~ 107 1% (1.55)
9

The quantum tunnelling probability between the vacuum states is so small that it can be
neglected.
Now adding a Higgs doublet to the theory the action reads
1 2

Sp = /d4x(2—92 TeF P 4 (D) (Du®) + A@1® &2)?) (1.56)

The vacuum configurations are now given by

A, =0,UU", (1.57)
@:iU[O] . (1.58)

Also the Higgs field can be characterised by a winding number, if p(z) = (¢16} —|—¢2¢§)% #*
0 throughout space. This condition allows us to write the Higgs field in the matrix form

o) = | S gt | =00, (159

where U € SU(2). The winding number of this matrix represents the winding number of
the Higgs field.

Ny =n(U) . (1.60)
We see that for a vacuum transition, this implies that for the Higgs field somewhere on
the path there exist a point where ®(z) = 0. Otherwise U is defined everywhere and will
change continuously as the field evolve, yielding a constant winding number. In particular
the instanton interpolating between vacuum states will have & = % for x4 — +o00, and
for some x, there most be a zero point of the Higgs field. But scaling the Higgs field
®(r) — ®°(x) = ®(sz), the action for the potential term will scale as

(@ (z)) = éSE(q)(x)) | (1.61)

The solution that minimizes the Euclidean action, and having topological charge equal
to one, will therefore have the Higgs field at the vacuum expectation value everywhere,
except at one point, where it is zero. This solution, being singular, is not a physical
configuration, and in this sense, the instanton solution does not exist in the SU(2) Higgs
theory. There is no physical solution that minimizes the action, but it is possible to find
configurations with an Euclidean action arbitrarily close to 3—7;, and it is concluded that
the quantum transition rate between different vacuum sectors is unchanged.

2This rate applies only for zero temperature.
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1.4 The chiral anomaly

In this section we will look at anomalies in the electroweak theory. With an anomaly we
understand a classical symmetry which is not preserved at the quantum level. This can
come about since in the quantum theory the path integral includes fields that do not obey
the classical field equations. The non-conservation of the baryonic current is due to the
asymmetric coupling to chiral fermions in the SU(2) sector, and is therefore related to the
chiral anomaly. For this reason we will now derive the anomaly of the axial current. The
interaction between the fermions and the gauge fields is described by the Lagrangian

L = iy, D"y, . (1.62)

It is invariant under a global chiral transformation

P(w) = e b(x) = P(x)e™r (1.63)
and we have the classically conserved Nother current
Jn = Vyurst (1.64)

Note that this is true only for massless fermions. But under a local chiral transformation,
with @ = «a(z) the Lagrangian will change as

6L = <)y, 500t a(r) . (1.65)
Therefore B
5[0, 0, 4] = © [ d*va(2)d, 4 () (1.66)
It would be natural to expect that the expectation value,
_ | DUDYD A, j5 (2) €St Aul
(0"jp(2)) = A ST
[ DYDYDA,esv:Al

(1.67)

would be zero even in the quantum theory, since otherwise the functional measure cannot
be invariant under the formally unitary transformation given by 1.63, with o« — «(z). As
shown in the following, this however is not true.

We will follow the derivation of Fujikawa [6, 47], who first showed that the chiral
anomaly can be obtained non-perturbatively in the path integral approach. This is done
by observing that the functional measures D1 and D of the fermionic fields are not
invariant under an infinitesimal chiral transformation. During the calculation we rotate
to Euclidean space, where the Lagrangian reads

L = <ipy, Dby, - (1.68)

The idea is to expand the fermionic fields over a complete orthotogonal basis, consisting
of the eigenstates of the covariant derivative operator Jp,. After the Wick rotation the
operator D, is hermitian in the Hilbert space of (doublet) spinors, and the eigenstates
will form a complete set,

Y(@) = andu() , =3 ¢h(2)by (1.69)

13



where {¢,} is a set of eigenfunctions for the covariant derivative operator,

17 Dyudn(x) = Antn(2) (1.70)

with the orthonormality property

/d‘*xqs;gqsm - (1.71)

The path integral is defined as the integral where () is varied over all possible spinors,
therefore

| PiDw = [T dbu [ dan (1.72)

It is clear that .4, will not change under the chiral transformation. Performing a local
chiral transformation of the spinors, we have

P(x) = @754 = Z (@) UnPn (T Z a,, dm () . (1.73)
Using relation 1.71 the new coefficient is extracted,
a,, = /d‘lxd)T Zem‘ 75an¢)n Z/d‘lxqﬁ 75an¢n ZC’mnan .
(1.74)

With this definition, C),,, is infinite in its labels, but assuming that there is only a finite
number of of eigenfunctions, it becomes a finite matrix. Similarly we get

= Z/d4fc5n¢f(l“) g, (1 Zb Crum - (1.75)

The coefficients b, and a,, are Grassmann variables and we have, for x and y Grassmann
n-vectors, and A a complex matrix.

r=Ay = d"v = (det A) 'd"y . (1.76)
For the functional measure 1.72 we can formally write

Hdb' Hda (det C) ] db, [ ] dam (1.77)

For an infinitesimal local chiral transformations «(z), the Taylor expansion of the Matrix
C reads

C=I+a+0(?, a= / d'zid (2)(2) Vs bm(z) - (1.78)

Then
(det C) o2 triogc __ — o2 tra+o(a?) _ e—2ifd4xa DI o (2)v56n (z) (1.79)
The sum Y, ¢! (2)y50,(z) is not well defined and to evaluate the expression a gauge

invariant regularization should be imposed. This can be done by providing a cutoff M in
the eigenvalues A,, since these are gauge invariant,

Z¢T T) Ve )2¢n(x) , M — . (1.80)

14



Putting back <iv,D, = <ilp) and using the Dirac notation ¢,(z) = (x|n) we get

—iD

> ol (x) %e’( ) du(z) = > (n|z) %e(

S

) (z|n)
= Tr <|x>*y5e( ) (x|) , (1.81)

where trace is taken over the whole Hilbert space. The state |n) can be Fourier expanded
in plane waves

2

> o) 756(%) on(z) = TI“/ (322;4756i”$6(%) e (1.82)

n

where the trace is now over the doublet spinor indices. In order to evaluate this, we write

@Z as
1 1
pi = qufVVDuDV = §{7ua7V}DuDV + Q[quafVV]DuDV
1 1
= 0,D,D, + Zhﬂ’ Y|D,D, <:>Z[%’ YulDuD,
1 1
= D’ + Z[f)’ua VV][DW D,,] =D’ + Z[f)/ua ”VV]FW
1

= D? 5 Fu (1.83)

where 0, = £[v,,7,]. Now, for a function f(z) we have

e~ PP f(1) = e_ip‘”Du(ipueip’”f(x) + eimDuf(x))
= e’ipm(wze’ipwf(x) + 2ipue’i”$Dﬂf(x) + e’i”mD#Du

(<p® + 2ip,D, + D?) f () (1.84)
and . .
e” "Dy, D,Je""" f(x) = [Dy, Dy f () . (1.85)
In total we have . .
e—szﬂzezp:v — (@2 + 2ipuDu +p2) ) (186)
From the Taylor expansion of the exponential function we get
AN < 1 . (P\" . 1 Dy o \"
—ipT M pTr __ = —ipx [ TR 1pT __ s —ipx T K _ipx
e e( )e —;::0”!6 <M> e —nz:()n!<e A € ) : (1.87)
hence ,
Pu p2 24 2ip
e_ip‘”e(ﬁ) e (1.88)

Plugging this into formula 1.82, and expanding the in powers on M, we obtain

S 61 (@) el ) 60(0)

d'p _»* p?+2ip,D,  D*+ 2ip,D,)* 1




The gaussian integral of the exponential gives

dp _»2 M
/(277)46 MZ = ok (1.90)

In the limit of M — oo the term with O(5}) will vanish. In this limit the two first
terms would be divergent, but we have Try; = 0 and Trvys0,, = 0. The third term
gives rise to a finite integral. The only nonzero contribution coming from the term with
tr(Y50w0p0) = €uvpo- This gives

2y’ 11
Zd)T ’)/56( )¢n(x) = S5 tr (V50,00 pe) TrE ), Fpe

(27)2 8
|
= o TRl (1.91)
Using 1.79 we finally obtain
/ DYDY — / DYDpes? / d*za(z) TeF,, F* | (1.92)

This will contributribute to the change of the effective action under a local chiral trans-
formation, Rotating back to Minkowski space, and using 1.66 we get

5841 = /d4xa ) TvF,, F <:>/ d'zva(2)0,58 (7). (1.93)

The local chiral transformation is just a change of variables, and we must have (§5¢//) = 0.
This gives the anomalous axial current

1 .
Out = g5 TFu F" . (1.94)

We see that it is indeed possible to have a non vanishing anomaly.

1.5 The baryon number

The baryon number B, defined as the number of baryons b minus the number of an-
tibaryons b, is not a conserved quantity in the electroweak theory, as was realized by
't Hooft in 1976 [5]. This is an entirely non-perturbative effect. Considering massless
fermions we have the interaction Lagrangian

L= i D"y (1.95)
where i is a doublet index. Generally the fermion number N for a doublet (i) is given by
NO = / Bt (1.96)

The baryon number is defined to be % 5 for a quark, giving B® = 1/3N . The theory
has n; = 12 classically conserved Abehan currents, where 9 of them are associated with
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the conservation of the number of quarks and come from the symmetry given by the
transformation

v oo ey, (197
b oo e,

Similarly we have 3 conserved currents, by substituting the lepton number L in 1.97,
where L =1 for a lepton. We define the current J{) for the doublet ¢

i me i 7(i i 176G i
T = 0001 = 09700 50030500 (1.98)

If 4(i) is a lepton doublet then J{) is the leptonic current, if it a quark doublet J( equals
three times the baryonic current. The corresponding charge is the fermion number

NGO = / Pz (1.99)

The currents 1.98 are not conserved in the quantum theory, by using equation 1.94 we
get
. 1 ~ ~ 1

M = 15 TEW P Y = 57, (1.100)
where the total baryonic current is obtained by summing over the three different gen-
eration of quarks, and their colour index, which cancels with the factor of 1/3 for the
definition of the baryon number for a quark. Similarly the leptonic current is given by
the sum over the three lepton generations. In total we may write

N ~
B L f v
oM =0, = = TrF,, F* | (1.101)
where Ny is the number of generations. The lepton and baryon currents have the same
anomaly, and it is clear that the electroweak theory still preserves B < L.

From the equation 1.100 we get

PN = / &Pzd® J§ (1.102)
p 1 _
SN / Prd P + / Ay ey P (1.103)
1 3
/ drms TeF, (1.104)

where we assumed that the currents vanish at infinity. We see that it is possible to change
the number of fermions if the gauge fields evolve in such a way that

t 1 .
3 v
/0 dt/d v TeF, 7 £0. (1.105)

This is the topological charge of equation 1.44. The change of the fermion number is
therefore related to the topological charge by

ANP = Q(t) . (1.106)
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Figure 1.1: The barrier between different vacuum sectors when neglecting the fermions.
I instanton tunnelling. S sphaleron transition. Here Ej,, is the energy of the sphaleron.

For vacuum transitions ()(t) is an integer, given by the difference in the winding numbers.
In the temporal gauge we get

Relation 1.35 allow us to define a conserved current

- N 1
B B f B
Jﬂ = ‘]u @1672[‘“ = ‘]u <:>—87T26Wp(,

giving the conserved charge

Tr(AY9P A7 + §A”APA”) | (1.108)

ljg; / 1Ko = B = NpNes . (1.109)
This current, though, is not gauge invariant under large gauge transformation, and no
physical meaning can be given to it.

We see that associated with a process where the bosonic fields jumps between different
vacuum sectors, there will be a change in the baryon number. If the gauge fields evolve
from one vacuum, say with Nog = 0, to a neighbouring one with Nog = +(<)1, then the
baryon number will change with +(<)3. Even though it is the asymmetry of the fermions
we are interested in explaining, they can be neglected in a first approximation, since the
violation of the fermion number is governed by the bosonic fields. Neglecting the fermions
and the U(1) gauge group is a widely used approximation when studying baryogenesis.
Baryon number violation has never been detected experimentally, but at low energies and
temperatures, the only possibility for an evolution of the bosonic fields between different
vacua, is by quantum tunnelling. It was shown in section 1.3 that these processes are
highly suppressed. The baryon number is a good quantum number at low temperatures.

The form of the energy barrier between the topologically distinct vacua, and especially
the height, is therefore of importance when studying baryogenesis, since it will determin-
ing the transition rate between the vacuum sectors. In the next chapter the sphaleron
solution is describes, which represents the top of the barrier when neglecting the fermions.
The height of the barrier is therefore given by the energy of the sphaleron. At high tem-
perature, there are large thermal fluctuations, and one might expect that the gauge fields
has sufficient energy to pass the barrier classically, as shown in figure 1.1. Processes where
the gauge field evolves classically are known as sphaleron transitions. When including the
fermion the pictures looks a bit different, as is described in chapter 4.

B &
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Chapter 2

The sphaleron configuration

The sphaleron configuration of the SU(2) Higgs model and its properties are described in
this chapter. The sphaleron configuration is thought as being representing the top of the
barrier between two neighbouring topological distinct vacua, and is therefore important
when discussing baryon violating processes. It was first found by Dashen, Hasslacher and
Neveu (DHN) [7], but the relation of the sphaleron to the topology of configuration space
and baryon violation was founded by Klinkhammer and Manton (KM) [9].

2.1 Static configurations

We want to investigate the barrier between topologically distinct vacua, in the case where
the fermions are neglected. A point on the barrier, for a given Chern-Simons number,
is the minimum classical static energy of the bosonic fields. The top of the barrier is
represented by the maximum energy configuration on a minimal® energy path from one
vacua to a neighbouring one. Assuming that we have such a configuration, it will be
a non-trivial static solution to the Euler-Lagrange equations. This property is realized
by the sphaleron configuration, as we will show in the following sections. For static
configurations Ay, can consistently be set to zero. Given the Lagrangian 1.2, the energy
functional for static configurations is
2

E= /d%iF;;F;; + 1k + (D) (D) + A(@1D & 2), (2.1)
where f;; = 0;a; <0;a; is the field tensor for the U(1) gauge field. The field equations
reads

(D;Fyj)* = <5ig[®l0" D@ <(D,@) 0 0] (2.2)
where (D;F;;)* = 0;Ff; 4 ge®**AYEf;. For the U(1) field we get
9;fij = ©4ig'['D;d <(D;@)! 9] (2.3)
and for the Higgs field
D;D;® =2\(¢'0 s10%)® . (2.4)
Let us see how the energy varies when the fields are scaled with the parameter s.
A’(x) = sA(sz) Q°(x) = P(sx) . (2.5)

1Strictly speaking this should be the infimum
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The contribution to the energy from the pure Yang-Mills term, when using the gauge
group SU(2), scales as

E(A(z)) = / B Te(F2(x)) = / 03 (sx) Tr(F2 (s1)) (2.6)
— /d%s Tr(afoAJ(sx)as—xin(sx) + [Ai(sx), A;(sz)])?  (2.7)

3 3 —2 178 2 _ 1 s
- @E/dxs Te(s 2Fy(0)* = SB(A'(x)) (2.8)

There is no non-trivial static solution in pure Yang Mills theory, since the energy varies
monotonically with the scaling parameter. The only static solution is the vacuum. How-
ever, the energy from the interaction term scales oppositely,

E(A(z), ®(x /d%s + Ai(s2))®(s2))? = sE(A*(z), ®*(x)) (2.9)

0sx;

and the pure scalar field energy scales as

2

/ Prs \@(sz) ®(s1) @%)2 = SE(®(x)) . (2.10)

When scaling the Higgs field down the energy is lowered. We see that in the coupled
gauge Higgs model the energy diverges both as s — oo and s — 0. There is a fixed s
that minimizes the energy, in contrast to both the pure Yang-Mills theory and the pure
scalar theory. We can therefore talk about the height of the barrier. The size, and hence
the energy, of a non-trivial static configuration is determined. Note that in turn, it was
found in section 1.3, that the instanton solution to the four dimensional Euclidean field
equations, due to scaling properties, is not physically existing in this theory.

2.2 Non-contractible loops in Weinberg-Salam the-
ory

In this section we will study the topology of the configuration space in the Weinberg-
Salam theory without fermions. We want to consider only physically different states, and
collect the configurations in gauge orbits. We regard all configurations, which can be
obtained from a given configuration by a gauge transformation?, as equivalent. Consider
the manifold consisting of all finite energy, static field configurations {4, (), ®(x)} and let
E be the functional on the manifold, defined by the classical energy of the configuration.
This manifold has a unique vacuum, since we work with gauge orbits. The question is
whether there exist non-contractible loops on the manifold passing through the vacuum.
A non-contractible loop is one that cannot be continuously transformed into a point. We
collect the loops at the vacuum configuration in homotopy classes. For a given loop C'
there will exists some maximum energy when going around the loop. We define Ey as
being the infimum of the maximum energies for loops in a non-contractible homotopy
class H

Ey = érelgmceme. (2.11)

2Including large gauge transformations
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Figure 2.1: Configuration space collected in gauge orbits, with the energy (E) vertically.
The dashes curve is the non-contractible loop going through the sphaleron solution (S).

Note that a solution to this equation will have a negative energy mode, since the vacuum
have less energy. A priori it is not known whether there exist non-contractible loops in the
Weinberg-Salam theory, and if so, we cannot be sure of the existence of a configuration
that will have exactly the energy Ey, since the manifold in question is infinite dimensional,
and the minimum might not be realized. If however such a solution exist, the energy of
the configuration will be the height of the barrier between topologically distinct vacua.
The non-contractible loops in the manifold where we have gauge orbits corresponds to a
path of configurations between topologically distinct vacua. The sphaleron configuration
satisfies 2.113. A solution to equation 2.11 will be a saddle-point of the energy functional,
and therefore a solution to the classical field equations. Being a saddlepoint it is classically
unstable, but since it satisfies equation 2.11, it is clear that it can only have one unstable
direction. Indeed if there were two unstable directions, it would be possible to construct
a lower energy configuration in the same homotopy class, by continuously deforming
the configuration along one of the unstable directions, which contradicts the assumption
E = FEy. The negative energy direction of the sphaleron correspond to the directions of
the Chern-Simons number. This picture of the configuration space is schematically shown
in figure 2.1.

As was shown by N. Manton [8], it is indeed possible to construct non-contractible
loops in the Weinberg-Salam theory. In the following we will give an explicit example of a
non-contractible loop. For this purpose we write the four real components of the complex
Higgs doublet as a four vector

¢,

[ @ +iw, | @,
d = l <I>3+i<1>4] : re=| g | - (2.12)

o,

It is convenient to work with spherical coordinates. The gauge should be fixed completely,
and by choosing the polar gauge A, = 0 there is no further local gauge freedom. To
obtain a finite energy solution, the Higgs field must approach its vacuum value at infinity.
Assuming that the limiting Higgs field ®%},, is a smooth function of the polar angles ¢, 8,

the requirement reads
v
OFa(p,0)] = — . 2.13
9e(0.0) = (2.13)

SFor My < 12Myy
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By making a global gauge transformation, we impose that it should be in the form

v |0
O (p, 0 =0) = — . 2.14
This gives the unique vacuum state
Dyac(z) vl Avac(z) =0 (2.15)
€Tr) = — , xTr) = . .
vacC \/E 1 vacC

We want to construct a closed loop at this vacuum state. Note that the remaining global
U(1) gauge freedom cannot affect the homotopy class of this loop, since it is a continuous
transformation. The asymptotic Higgs field maps three dimensional space at infinity, to
the Higgs vacuum manifold, which by equation 2.13, is equivalent to the three sphere S*

(with radius %) Hence &%, can be regarded as a map from the two sphere S? to S°.

Let 7 € [0,7] be a parameter for the loop C, for 7 = 0 and 7 = 7 all of S? is mapped
into the vacuum state. Going around the loop C we therefore go through a continuous
family of maps given by ®%,.. By associating a point (7, 8, ¢) with the point p(7, 6, ¢) on
S3, given by

p(7,0,0) = (sin 7 sin 0 cos ¢, sin 7 sin @ sin @, sin® 7 cos § + cos® 7, sin 7 cos 7(cos O <:>1)) ,
(2.16)
this family of maps is then equivalent to a single map Y(p) = ®Fu(7(p), 0(p), ¢(p) from
S3 to itself. Naturally it has to be checked that this map, and the inverse maps 7(p), 0(p),
¢(p) are well defined. Every point in the domain of S? is reached by at least one point
(7,0, ), and the maps 0(p) and (p) are unique points in S?. Further more the map 7(p)
is unique, when restricted to the interval |0, 7[, except for the point (0,0,1,0). Even for
this point though, the mapping is unambiguous. In fact when p = (0,0, 1,0), 6 has to be
0, and the gauge fixing implies that for all 7 the point # = 0 is mapped to (0,0, 1,0). The
map T : S? — S is indeed well defined.
Recall that maps from S* to S® can be classified by an integer number, equivalent to
the winding number of the map (73(5*) = Z). A map with non-zero degree is provided
by the identity map, which has winding number one. This gives a asymptotic Higgs field

(2.17)

% — sin 7 sin fe'¥
~ | e7™(cos p + isin pcos 6)

Now, the gauge field will have to approach a pure gauge asymptotically, in order to give
a finite energy configuration. It is natural to define

= =0, UU T, AY =<0, UU ", (2.18)
where (@)
g | (@) o
U= [‘:)(@1)0)* o5 ] : (2.19)

This will insures that the covariant derivative term in the energy, given by equation 2.1
vanishes asymptotically as it must. A non-contractible loop in the manifold can now be
constructed as

0

O =000 | i) conp

] + h(r)®> | (2.20)
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Ag= Ay, A,=f(NA®, A, =0. (2.21)

The energy will be finite for suitable choices of f and h, and these must satisfy the
boundary conditions f(0) = h(0) =0 and f — 1,h — 1 as r — oo.

As already mentioned the non-contractible loops defines a path from one vacuum to
a topologically distinct one, when the gauge fixing is relaxed. Indeed if we imposed the
condition that at spatial infinity the configuration should be the unitary vacuum, and
7 = 0 is the unitary vacuum then the configuration for 7 = 7 would be a pure gauge
A;i(z) = ©9;U(x)U (z), where U(z) cannot be continuously transformed into the unit
matrix.

This shows the existence of non-contractible loops in the SU(2) Higgs theory, and it
makes it likely that there exist non-trivial static solution to the field equations. The only
obstacle to this is that, since the manifold is infinite dimensional, the solutions to equation
2.11 might “escape” to infinity. Finding a non-trivial static solution analytically is not
an easy task, but by making certain ansatze for the configurations and minimizing the
energy functional, it is possible to construct an approximation to the solution to equation
2.11, and obtain an upper bound for the energy.

2.3 The SU(2) Higgs sphaleron

We are searching for a non-trivial static solution to the field equations. In order to be
able to perform analytic calculations, we put restrictions on the possible forms of the
Higgs and gauge fields. The ansatz must be such that we get a finite energy solution, and
compatible with the classical field equations. First we restrict ourselves to SU(2). This,
as already mentioned is equivalent to the Weinberg-Salam theory for fy, = 0. A simple
ansatz can be made by assuming fields of the form

Ao — @2—2 Flgor)a U™ (U)~" (2.22)
o = %h(gvr)Uoo [ (1) ] : (2.23)

where f and h are function of the radial distance r, and

(2.24)

[>® — 1 T3 T+ 7:1‘2
r <1 +Zl‘2 T3 '

These fields are compatible with the classical equations of motion, given by equation 2.2
and 2.4. We see that for h — 1 and f — 1 when £ — oo the fields will approach their
vacuum values at spatial infinity, as they should to obtain finite energy. A more general
ansatz will be considered later. The energy is given by formula 2.1, where the term with
fij is zero, since we disregard the U(1) gauge group. The energy density is spherically
symmetric as shown in appendix A. Introducing the dimensionless radial distance £ = gur,
the energy functional becomes

B2 [ [4<f'>2 + G LS+ 380 + e/ + i%gw S1)?|de,
(2.25)
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where the prime denote differentiation with respect to £&. We are searching for functions
f and h that minimizes the energy, and from variational calculus this can be obtained by

d dE dFE
s ). 2.2
JE I & T 0 (2.26)
The field equations for the dynamical variables are
8
8f" (:)§2[f(1 sf1e2f)+h2(1&f) =0 (2.27)
and p )
d_§(§2h,) =2h(1 & f)* + ?fzh(h? &1). (2.28)

If these equations are satisfied, the field equations 2.2 and 2.4 are satisfied. The configu-
ration given by 2.22, 2.23 and with f and h solution to the above differential equations,
is what we will call the sphaleron solution in SU(2) Higgs theory. The negative energy
direction is outside the class of configurations satisfying the ansatz 2.22 and 2.23, making
the sphaleron a local minimum of the energy functional 2.25. It is still only a saddlepoint
of the full energy functional. As we shall see later it is possible to lower the energy by
non-charge conjugation invariant perturbations.

It is not easy to solve the pair of non-linear coupled differential equations analytically,
but by searching for solutions numerically it was found by DHN [7] that there is only one
solution. The functions f and h are shown in figure 2.2 Asymptotically the fields will
behave as

f(&) = ag? for £ — 0, (2.29)
fl=1 <:>cexp(<:>%§) for & — oo, (2.30)
h(E) = be for & =0, (2.31)

h(€) =1 <:>g exp(&n/2)1/g%€) for £ — oo, (2.32)

where a,b,c and d are constants that can be determined by solving the differential equations
2.27 and 2.28. We see that the energy density is exponentially decreasing, and hence the
sphaleron is localized. The Higgs field is zero at the core of the sphaleron, as it must be
in order to change the winding number. In this sense the sphaleron can be regarded as
interpolating between the two different vacua. The vacua of the broken and the symmetric
phase. From equation 2.25 we see that the energy can be written in the form
M

Ban = 2 B(5). (2.33)
The factor B dependents on the Higgs mass. An upper bound on the sphaleron energy can
be found by assuming a simplified form for the functions f and h. This was done by KM
[9], by basically letting the functions be given by the asymptotic behaviour and requiring
that they are continuously differentiable. In this way they obtained the bound 3.12 at
A = 0 and the highest value 5.44 for A — oo. It is seen that B varies slowly as a function
of the Higgs mass. A better bound was found in ref. [15], by solving the differential
equations numerically, They found B = 3.04 at A = 0, and B = 3.64 for My = My.
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Figure 2.2: The functions f and h for A = ¢g%. Reproduced from ref. [27]

The diameter of the sphaleron was estimated to be 2 <3 M;;'. The sphaleron energy is

therefore roughly given by 10 TeV.

We have shown that the sphaleron solution exist in the pure SU(2) theory, and one
expects that it possible to continuously deform the solution to the full Weinberg-Salam
theory without fermions. To see the effects of the U(1) gauge group on the sphaleron,
we consider the case of small Weinberg angle ©y,. The SU(2) and Higgs fields can be

approximated by their values for Oy = 0. The U(1) field a;, though, will be non-zero.
(2.34)

The change in energy can then be written as
1 .
1Jiilig <aii

AE = /d3x
(2.35)

D; = 0, & 3igo® AL

where
ji = ©5ig (8'D,® = D;id) @,
In the energy change 2.34 we have neglected the second order term in a; from the covariant
(2.36)

derivative. Using the field equation 2.3 we have
. 1
/d3mi1i = §/d3$fijfij

therefore the energy change will be negative,
1
AF = o} /d?’a;fijfij . (2.37)
(2.38)

The current j is found by inserting 2.22 and 2.23
R (&) (1 &
OUETE) ., o)

r

This acts as a source for a, and the energy density of the sphaleron is no longer spherically

symmetric, but only axially symmetric. For Oy, # 0 the sphaleron will have a magnetic
moment. In ref. [10] the sphaleron energy at the physical mixing angle Oy = 0.5 was
obtained. The energy was found to differ from the pure SU(2) Higgs sphaleron by less than
1%. Indeed the SU(2) sphaleron is a good approximation to the electroweak sphaleron.
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2.4 Topological charge of the sphaleron

To find the topological charge of the sphaleron, we choose a gauge where ffde = 0,
to have no contribution from the surface term. Using formula 1.44, and assuming that
the sphaleron configuration is obtained from an evolution of a vacuum configuration at
t = <00, we get

1 3, .70
Q:167T2/de vn, neZ. (2.39)
First we perform a rigid rotation and a gauge transformation by changing U* — U,
0 1 o| 0 1| . oy
U—[IO]U [@L 0]—20 z. (2.40)

in the formulae 2.22 and 2.23. The sphaleron solution is then written as

2f

A? = @gﬁembxb R (241)

v 0
b=—hic- 7 . 2.42
e 1Y 28

Further more we make a gauge transformation through

U#) = exp(3i0(r)d - 7)
O(r)

5. O
= cos—— +i0 - Z'sin % : (2.43)

Provided that ©(0) = 0 and that O(r) goes sufficiently fast to = as r — oo, the integral
of K is zero. The gauge field configuration becomes
[1<2f(gur)]cosO(r) <1 [L<2f(gur)]sinO(r) 1do

A? = or €iabTp T+ o (61'(1 @i‘ii‘a) + §E$i$a .
(2.44)

The topological charge in this gauge is equal to the Chern-Simons number and can now
be obtained from the formula

2 1
NCS(Sphaleron) = @12? / dgl'ﬁijk (A;‘@AZ + ggﬁabcA?A?-Az> . (245)

In appendix A this integral is calculated. The topological charge density turns out to be
spherically symmetric, and the sphaleron has half integer topological charge

Q(sphaleron) = % +n, nedz. (2.46)

The sphaleron lies halfway between the topologically distinct vacua. This fit well with
the picture of the sphaleron as representing the barrier height, as shown in figure 1.1.
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Figure 2.3: The Dirac energy levels of the fermions as a function of time, when the gauge
fields perform a vacuum transition.

2.5 Fermionic level crossing

As the bosonic fields evolve from one vacuum to another topological distinct one, the
Dirac energy levels of the fermions will shift. We can view the baryon violation, as
the consequence of one fermionic energy level crossing zero, turning an antifermion into
a fermion or vice versa. This simple picture is shown in figure 2.3. Assuming that
the gauge fields passes through the sphaleron, then the zero crossing take place at the
sphaleron configuration, since the fermions have a zero mode there.

We want to show that the fermions have a normalizable zero mode in the background
of the sphaleron solution. Let us consider the case of a fermion doublet with degenerate
mass Mp, given in terms of the Yukawa coupling m. Using the representation of the Dirac
matrices 0

g
- [ oo ] | (2.47)
we can reduce the spinors to two components, and the zero energy Dirac equations in the
background of the sphaleron solution becomes

i0" (0 igo" ALy Smdiy) emdby) =0, (2.48)
io" O+ m®t, =0, (2.49)
io Oy +m®t, =0, (2.50)

where ® and A are given by equation 2.42 and 2.41, and vy, is a left handed doublet, and
ng), 1/)5? are right handed singlets. The following ansatz for the fermions will be made

¢L,ab = Eabu(r) > 1/)%,)@() = q)anabw(r) ) ¢§§,Lb = éOaEabw(T) ) (251)

where &5 = [?2]. With this ansatz we get

2/(8)

r

(Dru(r) + w4 Meh(€)w(r)) =0, (2.52)

!
L @ru(r) + Mrh(€)u(r) =0, (2.53)
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since the equations 2.49 and 2.50 are identical. Let us look at the case were Mpr = 0. The
equation in u(r) is easily integrated

f(gvr)

r

u(r) = N exp(<2 /Or0 )dr (2.54)

From the asymptotic behaviour of the function f, see equation 2.29, we have

u(r) = exp(<£?) for & — 0,

u(r) =r=2 for £ — o0 (2.55)

We see that each left handed fermion doublet has a zero modes in the sphaleron back-
ground. In the case of Mg # 0 the equations 2.52 and 2.53 can be rewritten as two
decoupled second order differential equation for w(r) and wu(r), and the solutions yields
a normalizable zero mode [12]. For the physical case of a fermion doublet with nonde-
generate masses, one cannot use the spherically symmetric ansatz for the fermions fields,
but only an axially symmetric ansatz. It is shown in ref. [13] that the zero modes is
still normalizable [13]. When the gauge fields passe through the sphaleron, one fermionic
energy level will therefore cross zero, and the baryon number is violated.

2.6 General spherical symmetric ansatz

The most general spherical symmetric ansatz can be written, in the temporal gauge, as

1
A? = %mfaijfj + fBgE:r) ((57,] <:>72i72a) + fcggnr) fifa ) (256)
AL =0, (2.57)
b — % (H(r) + i3 - K (r)) l ; ] . (2.58)

The sphaleron solution found previously in section given equation 2.41 and 2.42, is iden-
tical to this ansatz for f = (1 < f4) , h = K and the last three functions vanishing
identically. Under charge conjugation the function f, and H are left invariant, while fg,
fo, K changes sign. The latter terms are therefore charge conjugation odd. This ansatz
give rise to the spherical symmetric energy density [16]

M 1
po= S [arlgp(i e s (i fofC)Q + (f;’;@fofC)Q
+ (K2 + H2)(1 + fi + ff;. + %fg,) + 2fA(K2 <:>H2) SAfsHE (2.5

M 2
& 2ufo(K'H &KH') + 20*(H? + K?) + 5 (—MH> (H? + K? =1)?)
w

where x = My r. The gauge is not complete fixed by this ansatz, indeed the form of the
ansatz is invariant under the transformation

U(r) =exp(i©(r)d - 7) , (2.60)

where ©(r) is an arbitrary radial function. This gauge freedom, allows us to fix one of
the functions. For the sphaleron solution to be possible, the length of Higgs field should
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not be fixed. Using the radial gauge ;A7 = 0, setting fc = 0, the field equations can
be obtained from 2.59, given four coupled differential equations. Searching for solutions
to these differential equations for small Higgs masses only the sphaleron solution of the
previous section is found [14], showing that there is only one static solution besides the
vacuum state. In the next section we will discus the case of large Higgs masses.

An important point for allowing the interpretation of the sphaleron solution as the top
of the barrier, is that it has only one negative mode. As mentioned earlier the sphaleron is
not a local minimum of the energy functional 2.59. We will consider small perturbations
of the sphalerons solution with charge conjugation odd fluctuations, i.e. fg, fc and K,
since we know that within the charge conjugation invariant ansatz the energy cannot be
lowered. Hence the change in energy has the form

E(anfBafC’aKaH) = Esph+5E(07fBaf0707H)
- EwH@/daz\Iﬁqu, (2.61)
«

where U = (§f5,0 fc, K), and Q can be obtained from equation 2.59. This can be written
as an eigenvalue equation for the 3 by 3 matrix €2, and it has been shown [15, 16] by a
numerically study of the eigenvalues for €2, that for small Higgs masses the sphaleron
only has one unstable direction. Assuming that there is no asymmetric negative mode,
the sphaleron will satisfies equation 2.11 and is therefore indeed the top of the barrier.
For large Higgs masses some of the positive energy modes cross zero and the sphaleron
acquire more negative modes. This property gives rise to new static solutions, and the
sphaleron is no longer the top of the barrier.

2.7 Bisphalerons

For large Higgs masses the sphaleron bifurcates and the structure of the configuration
space becomes very rich. To see this we will choose the gauge K = 0, and the classical
equations of motion become

c’fly = P?H(1efa)+22fpfo+ falaft <o), (2.62)
?fy = Hfp+2fifc+ falafe < fe), (2.63)

M
PH' = &2eH + 3H(fi+ [+ 3f2) & fa + 3o HIH 1) . (2:64)
w

Since f/, is not present in the energy functional, we get the constraint equations

_Sfafs+ fafh
CH 24 f5+ 7
/

vfe = 2fpefe(l+ 2:6%) : (2.66)

fe (2.65)

Using the spherical symmetric ansatz it is possible to choose two set of boundary condi-
tions to the differential equations and obtain a finite energy static solutions. The term
H?(1 < f4)? in the energy functional vanish at the origin for either H(0) = 0 or f4 = 1.
The first set

fa(0)=eL,  faloo) =1,
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Figure 2.4: Configuration space collected in gauge orbits for My > 12My with the
energy (FE) vertically. The sphaleron solution (S) is no longer the lowest energy state
for non-contractible loops. The lowest energy state is now degenerate and given by the
bisphalerons (BS and BS*).

fB(0) =0, fr(o0) =0, (2.67)
H(0)=0, H(x)=1,

is consistent with the sphaleron solution. The second set

fa(0) =1, fa(oo) =1,
fz(0) =0, fr(00) =0, (2.68)
H'(0) =0, H(x)=1,

gives rise to new solutions called bisphalerons or deformed sphalerons. When My <
12My, these solutions are identical to the sphaleron solution [15, 11]. The condition
H'(0) = 0 is forcing H to rapidly approach 0 when My approach 12My, from above,
but in general the Higgs field is non-zero throughout space. It is possible, though, to
construct a non-contractible loop* through the bisphalerons [15], and somewhere on the
path the Higgs field will be zero, since this is a necessary conditions for having a non-
contractible loop. The bisphalerons are not charge conjugation invariant, since fp will
be non vanishing, and comes in charge conjugate pairs. They have lower energy than the
sphaleron, and the topological charge is not a half integer. The configuration space, where
the configurations are collected in gauge orbits, develops a “hill” with the sphaleron at
the top, and the bisphalerons are now degenerate solutions to equation 2.11, as shown in
figure 2.4.

For higher values of My the sphaleron will acquire more negative energy directions,
and branches of bisphalerons emerge, the next branch starting at My = 137My,. This is
just the start of an infinite sequence. As the Higgs mass approach infinity the number of
static solutions rises logarithmically. The nth branch of bisphalerons will have n negative
modes. The first branch of bisphalerons have only one negative mode, and hence for
mpg > 12My, the minimal energy path from one vacuum to another is passing through
the bisphalerons and not the sphaleron. The energy of the lowest bisphaleron differs only
little from the sphaleron energy, for My — oo the difference is about 8%.

“In gauge orbit configuration space
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2.8 The sphaleron barrier

The barrier between the topological distinct vacua has been studied from different ap-
proaches. For My < 12Myy this barrier is called the sphaleron barrier for natural reasons.
One way is to minimize the function

M
H=E+ TWnNCS , (2.69)

where 7 is a Lagrange multiplier. In ref. [16, 14] this was done using the general spherical
symmetric ansatz. This method will yield the extremal path. It will always pass through
the sphaleron and the bisphalerons if they exits, causing the barrier to bifurcate for Higgs
masses above 12Myy, and the barrier is not monotonic as a function of Ngog. Therefore
this approach will not give the minimal energy path for large Higgs masses.

Another approach was considered in ref. [17], where the path was constructed from
a gradient method. Also here the general spherical symmetric ansatz was used. Having
a configuration C, the new configuration C is found by going in the negative gradient
direction

C=CeiC, (2.70)

where dC is in the steepest descent direction. Starting at the sphaleron or bisphaleron the
corresponding barrier is then obtained. The sphaleron barrier having a maximum energy
larger than the bisphaleron barrier. The barriers obtained in this way is smooth and
monotonic, but we have two different barriers, giving obtained from the bisphalerons, that
yields the minimal energy path. The path going through the bisphaleron is not symmetric
around Nes = 3, but they can be obtained from one another by the transformation
E — FE and Ngg — 1 < Neg. In this sense one barrier corresponds to the path taken by
the gauge fields when a fermion is created, and the other barrier when an antifermion is
created.

For My = Mpg the two sphaleron barriers obtained from the extremal and gradient
methods are both symmetric and differs very little, although the extremal path is steeper
than the gradient path, but they both end at the sphaleron configuration.

Summarizing the properties of the sphaleron, it can be characterized as a charge
conjugation invariant, static solution to the classical field equations. The Higgs field is
zero at the core of the solution, and the sphaleron has half integer topological charge.
The solution exist for all values of the Higgs mass, but only for small Higgs masses does it
represent the top of the barrier between topological distinct vacua. The physical interest in
the sphaleron is due to the last property, which makes the connection to baryon violating
processes.
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Chapter 3

Lattice simulation of the sphaleron
barrier

The finite energy barrier between topologically inequivalent vacua for the SU(2) Higgs
theory, also called the sphaleron barrier, is simulated on a lattice for My, = My using
the Hamiltonian formulation.

A configuration with a given Chern-Simons number is generated, this configuration will
have to high temperature and hence energy. It is subsequently cooled down by a modified
gradient method, in order to keep the Chern-Simons number fixed. In this process the
energy is minimized, and the potential barrier will be reached after sufficiently long time
of cooling. In particular, by choosing N¢gg = %, the sphaleron configuration is obtained.

Due to recent lattice simulations of the baryon violation rate, it is of interest to
determine the lattice effects on the sphaleron, especially how the energy changes with the
lattice parameters. This work is mainly concerning these aspects of the sphaleron. These
simulations offers the opportunity to study configurations with an arbitrary Chern-Simons
number, allowing to determine the form of the barrier.

The computer code used for the simulations was kindly provided to me by Alexander
Krasnitz. Some modifications of the program were done by myself.

3.1 Continuum Hamiltonian formulation

To study the sphaleron barrier, we need only to consider classical physics, since it is
determined by the minimum classical energy. Here the Hamiltonian formulation of the
SU(2) Higgs model is used. In this chapter we will use the Higgs potential

V(0TD) = e\(dTd <v?)?. (3.1)

With these conventions the classical masses are given by my = 2vv/A and my = %gv.
The Hamiltonian is obtained from the Lagrangian by a Legendre transformation

H=r1'¢+1I5A% &L, (3.2)
where the conjugate momenta are

o oL
06 9, A

™

= A* = E~. (3.3)



We will work in the temporal gauge Ay = 0, and one finds

]. (8% [0} ]- o o
H = 5E}Ef + 1F3FS + |7°] + (D;®)1(D;®) + A(®1® <) . (3.4)

LYY

Let x generally denote any canonical coordinates. The Hamiltonian equation of motion
are given by the Possion brackets
t={H,z}. (3.5)

For the pure Yang-Mills theory these reads

A = B~ EY = DI (3.6)

3.2 Lattice formulation

One way of doing non-perturbative calculations is by means of lattice gauge field theory
simulations. When putting the system on a lattice, it is in principle possible to directly
compute expectation values. But normally the number of possible configuration on the
lattice is too big for a direct calculation. Nevertheless it might be indirectly estimated
with a Monte-Carlo technique, where the configurations are generated with a probability
according to their weight in the expectation value. A continuum limit can then be obtained
by letting the lattice spacing approach zero, while fine tuning the coupling constants.

Lattice simulation has turn out to be a powerful tool for studying non-perturbative
physics, and has been used to calculated the transition rate between topological distinct
vacua in the electroweak theory, from which the baryon violation rate is extracted. Here
the sphaleron is studied on a lattice, and we would like to determine the effect of this
discretization. It will be important for the estimating the lattice artifacts on the baryon
violation rate.

Let us consider a lattice { z | x € aZ3}, were we denote a site by z, and a is the distance
between two neighbouring sites. Our goal is to obtain a lattice Hamiltonian, which for
small lattice spacings a converges to the continuum Hamiltonian given by equation 3.4.
We will denote = + aé;, where é; is a unit vector in the ¢ direction, as x + 1.

First we will consider a pure SU(2) theory. In a lattice formulation, it is no longer
convenient to work with the gauge-fields themselves. Instead one works with the parallel
transporters or link matrices U,; € SU(2). The link matrices are related to the gauge
fields by

Uys = exp(ead;(x)) = exp(iag%aA?(x)) , (3.7)

where we use the notation that U,; is the parallel transporter from site  + 7 to x. The
gauge fields can then be represented by an assignment of U, ; on each link on the lattice.
The link matrices obey the relation ij:i,_i = U, ;. Since the gauge group SU(2) is unitary,
we have that U;H,_i = Uy,,. One defines the plaquette Ug at a site  and in the directions
i, j by the smallest possible loop on the lattice

UD = Uw,i,j = Um,z’Ueri,jUw+i+j,fiUm+j,*j . (38)

A standard form for the magnetic part of the Hamiltonian is given in terms of the pla-
quettes by

1
> (1&Re Trlo) = 3 (1 S1Re TiU,,,) (3.9)

= <]
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where N = Trl = 2. In the following we will shown that it converges to the continuum
magnetic part of the Hamiltonian, if the coupling constant is chosen correctly. Using

Ai(z +7) = Ai(z) + adj(z) + O(a?) , (3.10)
and the Cambell-Baker-Hausdorff formula
eAeB ~ pATB+3[AB , (3.11)
where we have left out higher order terms in A, B. Hence

Uy.ij = exp &a’(Fij(z) + O(a)) . (3.12)

Since the matrix in the exponential is hermitian, the real trace of the plaquette reads

Re T, = 5 Tr(Upiy+ Ul )
ot
= Trl+ Tr(F;(z))? + O(a®) . (3.13)
In the limit a — 0 formula 3.9 becomes
1 a* 2 5
— /d3 — Tr(Fj;(zx )? 4+ 0(a”))
— / d%m Tr(Fij(x)) +O(a?) . (3.14)

Comparing to the continuum Hamiltonian we see that choosing ¢?a = 4 will give the
wished property of the lattice Hamiltonian. In the present simulation a = 1, giving g = 2.

The representation of the electric field on the lattice is again an assignment FE;
on each link. The electric field can be chosen such that they generate right covariant
derivative. For the pure Yang-Mills theory we therefore have the standard Kogut-Susskind
Hamiltonian

Hyy =53 BPE} +3 (1 e5Re Trlh) . (3.15)
] |
The equations of motion for the lattice system are given by
: OH
U={H,U}=c— 3.16
(={H,U} =&5 B (3.16)
: oOH
Ef={H, B} = — 3.17
[ { Pt } 0Ul ) ( )
where we denote a link (z,¢) by the subscript {. One finds
EY = @% Tr <aaU[f 3 UDI> : (3.18)
0y

The sum is over the four plaquettes that contain U; and start at x, as shown in figure
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Figure 3.1: Left the matrix ) 5 . Up uses for the time derivative of the electric field E, ;.
Right the matrix used for the calculatlng the magnetic field. The lines of the plaquettes
are shifted for clarity.

3.1. For the plaquettes we have the equations of motion
Uy = <iErU0” . (3.19)

To represent the scalar field we assign a complex doublet field ®, on each lattice site.
The potential term is easily formulated on the lattice,

V(@) = M@l d, 0v?)?. (3.20)
The covariant derivative term can be expressed as
D;®(z) —» Oy U, P, ~ O(x + aé;) (1 ©ad;(x))P(z) = a(0; + 4)P(x) . (3.21)

The canonical momenta of the Higgs field are substituted by =, living on each site. In
total the Hamiltonian for the SU(2) Higgs system becomes

H= HYM+Z|7T$|2+Z|<I>I+J U, ;0.2 + AV (|2, . (3.22)

z,j

It is possible to formulate the concept of local gauge invariance on a lattice. A local gauge
transformation is given by

(I)w — Vw(I)w ) Uw,i — VwUm,iV$+i ) (323)

where V, € SU(2).
When calculating the energy of a configuration, we are only interested in the static
energy given by

Fyor = 2(1@27&3 TeUo) + > (Prri ©Ui00) (D0 €U P,) + Y MPLD, +0%)? (3.24)

z,8,j

The static energy density at a site x can be written as the symmetric expression

1
E@star = 38> > = TtlU,,;; + A\(®[ @, &0v?)?
k ij#k
1
+ 60/P, + Z 5(‘1314‘%% + q)I:Jri(I)eri)
= Z{ r— zx (I):v i + (Ux,x-l—iq)x-i-i)fq)x} ) (325)

where the matrix >, ;. Us; is shown is figure 3.1. This formula is used for calculating
the energy density.
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START

Load configuration

(fresh or file)
NCS<target : sign=1 Guide sign= 1: NCS>target
sign=-1: NCS<target
NCS > target : sign=-1 NCS

YES
NO

NO

= E~ constant CO”S"‘T"' ned
cooling

YES

END

Figure 3.2: Flow diagram of the program. c is an input parameter.

3.3 Description of the program

First T will give an overview of the program used. The following sections provide more
detailed information of the most important algorithms. A flow diagram of the program is
shown in figure 3.2. Since we are only interested in the static properties of a configuration,
the conjugate momenta of the fields are not needed. A configuration consists of the set
of {U,,} assigned on every link of the lattice, and {®,} on every site. A finite lattice
with N points in each space direction is used. Periodic boundary condition are imposed,
giving every site a neighbour in each direction. We start with a configuration close to a
vacuum state, deviation from the vacuum is needed since this is a stable configuration.
The initial configuration is generated such that all Higgs doublets are put to the vacuum
value, and all link variables, except around one site, are put to the identity matrix. The
last three link variables are set to random SU(2) matrices. This configuration is then
guided in the direction of a target value N{5 of the Chern-Simons number. During
the guidance N¢g is measured, allowing to determine when Ngg passes its target value,
and the guidance is stopped. Then the configuration undergoes constrained cooling,
where it looses energy, and the value of Ngg is close to constant. The static energy
of the configuration is calculated at regular intervals. The whole point is to obtain a
configuration that has constant energy even though the constrained cooling algorithm is
used. Such a configuration minimizes the static energy, and is a point on the potential
barrier. The constrained cooling, though, is not keeping the Chern-Simons number fixed.
If the configuration goes too far from Nge?®, it is guided back again. When the guidance
is used, the configuration will pick up energy, slowing down the process of reaching the
barrier.
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3.4 Evolution

Let us first see how the link matrices are updated. This should be performed in such a
way that they preserve the SU(2) form. It is convenient to write the derivative of U as

Ui = i0°UgUp, - (3.26)

In the weak field limit the expansion of the link matrices given by 3.7 is

. . dAY, ,
Uwi = ZO’a—’Uwi = ZO’aE:?iUmZ' s (327)
) dt ) 3 ’
and it follows that ‘
Upi = Bz - (3.28)

The electric field is given in term of the time derivative of the link variables.
We discretize time by choosing a time step At, and equation 3.26 is integrated numer-
ically with a second order Runge-Kutta algorithm

e A
Unilt + 3A1) = Unilt) explio®U2,()5)
Upi(t + A1) = Uyi(t) exp(io®U2;(t + 3At)At) . (3.29)

With this updating the new set of link variable should in principle belong to SU(2).
Due to the finite computer accuracy, there are small deviations from the SU(2) form.
Consequently a reunitarization is performed with regular intervals. The evolution of the
Higgs field is also integrated numerically by the Runge-Kutta method.

3.5 Measuring the Chern-Simons number

For a given configuration {U,®} it is not possible to give a direct measurement of the
Chern-Simons number on the lattice [20, 21]. One way to go around this problem is to
cool the gauge fields down to a vacuum configuration, where the Chern-Simons number
is known to be an integer. During the cooling it is possible to measure the change in
the Chern-Simons number. The Chern-Simons number is only dependent on the gauge
fields, so the Higgs field is left unchanged. Since the integer value of the Chern-Simons
number is not known, the program simply uses N.s(vacuum) = 0. A configuration close
to Nes = 0.5 can roll down to both the vacuum at Ngog = 0 and at Neog = 1, giving two
different output values. This has caused some technical problems. The gauge fields are

cooled by the gradient method
U, = e—2
Tl 3U$,Z
The configuration is pushes in negative gradient direction of the Hamiltonian, lowering
the energy. A vacuum configuration should be reached after sufficiently long time of
cooling. The algorithm is stopped when the energy of the configuration is reduced by a
factor 2 x 10* compared to the initial configuration, and the final configuration should
be close to a vacuum state. Note that the gradient methods is equal to the equation of

(3.30)
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motion, where we have replace second order in At with first order in the fictitious time
used here. Using equation 3.18 the derivative of the link matrix becomes

=U Y Uy, . (3.31)
o

Let us consider how the change of Chern-Simon number can be calculated. In the
continuum we have,

Noo(t) < Noy (0 / / SpEo e 32
(1) < L [ar [ (3.32)

For smooth fields, which is always the case in the continuum, this implies

dNCS 3 a pra
- 3%2 / dBrFe Fre (3.33)
Using the identity .
Fr P = Qeu”p"Flf‘yFlf‘U EAEY - BY (3.34)

the time derivative of the Chern-Simons number can then be expressed in terms of the
electric and magnetic field as

dNCS _ 3 2,0 7,Q
— 87r2/de () B (z) . (3.35)

The problem is reduced to finding an expression for the magnetic and electric fields on
the lattice. The magnetic field can be obtained from the link variables, as is evident form
equation 3.12. Let us deduce the corrections terms. From Stokes theorem we have

A, dx, = | F;:ds. 3.36
pTy j
s

The plaquette at x is a closed loop S

Upij = exp(/ &F;(2')ds) = exp(©F;;a® <:>/ 0jFijrjads + ...) . (3.37)
S S
Defining the magnetic field as

k,a
Bm

OO:EI .

0 Y Usiy) - (3.38)

1,7 %k

where 1, j, k is chosen such that €;; = 1, the first moment will cancel due to symmetry
of the plaquettes. Hence yielding a better definition of the magnetic field. Note that the
magnetic field is only assigned to a site.

The electric field is obtained from the time derivative of the link matrices, by using
the equations 3.31 and 3.28 one finds

o
Ex,i -

w%

Z Us) . (3.39)

But the electric field lives on a link, and we will therefore parallel transport the field going
out of x down to = giving

2B = 5 Tr (0°Ups(EL,0”)UL) + B2

(3.40)
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Here we use the notation that E}* means the electric field assigned to a site, and EJ;
is assigned to a link. The final expression for the change of the Chern-Simons number
becomes

1 -
ANpg = At— E» B 3.41
cs 52 %: 2By (3.41)

In the continuum the topological charge dependents only on the final and the initial
gauge fields configurations, but on the lattice this turns out not to be exact, since the
expression for d]\;fs is not a total time derivative. Obviously the fields are not smooth on
the lattice. This means that the measurement of Ngg with this method, depends on the
path taken to reach a vacuum, and not just on the initial configuration.

The definition of FMVF’“’ was later changed to include next-to-nearest neighbours for
the electric field, and plaquettes with 2 link matrices on each side. This was done in order

to make the expression closer to a total time derivative.

3.6 Guidance of the Chern-Simons number

To make it possible to obtain a configuration with a specific Chern-Simons number, the
link variables should be updated in such a way that the sign of ANgg is known. A
procedure for this is by update the link matrices with a magnetic field corresponding to a
link, such that it transforms covariantly. The magnetic field obtained from formula 3.38
is only situated at a single lattice site . In order to get the magnetic field associated
with a link, we parallel transform the magnetic field from the link above and add it to
the magnetic field at site z,

B, =5 Tx (0°U} ,BY0U,) + By, . (3.42)

Updating the link matrices with this magnetic field, that is choosing U:;j‘Z = By, gives us
Ey, = By, see equation 3.28. Again the magnetic field B is living on a link, and we have

use the same technique as last for calculating AN¢g, hence

FMVFW x Y (2B:i’a + (PD)(Bg,;;) + (PU)( gizz)) B >0, (3.43)
and hereby )
ANCS 0.8 AtFw,F/W (344)

where (PD) means parallel transporting the link variable down, and (PU) means parallel
transporting it up. This expression is clearly positive for At > 0, and the value of N¢g
is raised. Correspondently it is possible to lower the value of Ngg by choosing a negative
time step At < 0. This algorithm allows us to guide a configuration in a certain direction
of N¢g, and the magnitude of the time step determines how close to the target value the
final configuration will get.

As mention earlier the Chern-Simons number depends on the path. To check that
the measure for Ngg is reasonable, it is measured from two different path during the
guiding of a configuration. One is the above described, and the other by measuring N¢g
just before and after the guidance of N¢g, by the cooling algorithm described in section
3.5. Performing these measurement should give us an idea of how good the operator for
FWF‘“’ is on the lattice.
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It was found that they agree extremely well for small Chern-Simons numbers, and
also for configurations with Ngg ~ 0.5 if the energy of the configuration is sufficiently
high. But for configurations close to the sphaleron, the discrepancy is fairly large. This
is expected since the weak field limit, used to obtain formula 3.28, is not a good approxi-
mation around the sphaleron. Here the derivative of the fields are large. For instance in
the continuum the Higgs field goes to zero at the core of the sphaleron.

3.7 The constrained cooling algorithm

This algorithm is designed for cooling down the configuration with the constrain Ngg ~
constant.
The Higgs field is cooled down by the gradient method

, OH
Py = —. (3.45)
Od},
Giving .
d, = <203+ \N®l D, ©0?), + U, ; By + Ul

CDZZ

D, (3.46)

again decreasing the energy.

But for the link variables we cannot simply use the steepest descent method, since
the Chern-Simons number would change. Note that having added the Higgs doublet, the
electric field corresponding to the gradient method would be

B =3 Tr <(:)WO‘ZUD > +2Re ((Pgss) (i0™ (U )1 ®s)) (3.47)

0y

We will modify this algorithm, by adding an extra term to the electric field

B . E%.
E T, sza

E:? _Ea T8 )
Z BaZBa )

(3.48)

where E7; is given by equat1on 3.47, and By, is given by equation 3 42. Since as already

explained we can associate E with the electrlc field, we have ZxE B=0 during the
iteration, and hence clearly N¢g is constant. However, the numerical integration will not
be exact, and the Chern-Simons number is not totally fixed.

3.8 Discussion

The goal of the simulations is to find the potential barrier, and to study the lattice effects
on the sphaleron configuration. There are two sources of conflicting error when using a
finite lattice. The finite size effect, which arises since the object studied cannot fit on
the lattice, and the lattice artifacts arising when the lattice is too coarse to determine
the object studied. To minimize the finite size effect one should choose a large physical
volume of the lattice, whereas the lattice artifacts are lowered for small lattice spacings,
yielding a smaller physical volume for a fixed number of lattice points.
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Since we are interested in studying the sphaleron, the lattice size should be large
compared My}, see section 2.3. We have the formulas

My, = %gv , My =2V, (3.49)
with ¢ = 2. Choosing A sets the ratio between the Higgs mass and the W mass. The
masses are then determined by the value for the higgs expectation value v. This allow us
to set the correlation length which is given by the inverse of the smallest mass.

To determine the lattice effects on the sphaleron the following method is used. Varying
v and N in such a way that the physical size is kept constant, allows us to compared the
sphaleron energy for different coarseness. Let us denote the sphaleron energy for physical
volume LMy = NaMy and coarseness aMy by Egp,(LMyw,aMy ). The continuum
sphaleron energy at a finite volume is obtained, by extrapolating the energy as a function
of the coarseness. The values for E,,,(LMy,0) are then extrapolated to infinite volume,
giving the physical sphaleron energy FE,;,(c0,0). Furthermore the dependence on the
Higgs mass could be studied, but because of time limitations all simulations were done
for My, = Mpy. For this choice of Higgs mass the bisphalerons are not present. The
barrier will therefore be symmetric around Ngg = %, see section 2.8. Hence only barrier
points with Ngg < % are found. It was found that the barrier is indeed symmetric, by
checking for a few values.

The SU(2) sphaleron has already been studied on the lattice in ref. [19], with the use
of saddle point cooling. The lattice artifacts were found to be described by the formula

Egn(LMy,aMy) = Egpn (LM ,0) + By (aMy)? + Ey(aMy)* . (3.50)
The values obtained for physical volumes 3.8 4.8, was E; ~ <0.3 and Ey; ~ <0.3 for
My = Mpy. The volume dependence was found to be exponential decreasing
—MwL

Eggn(LMyy, 0) = Eqpn(00,0) + 18,150

(3.51)

where Ejp;,(00) = 3.6406Myy /o was found, deviating very little from the continuum cal-
culations. The finite volume effects will tend to increase the energy, whereas the lattice
artifacts will decrease the energy.

The needed computer time for obtaining data, was found too large for a detailed
study of the sphaleron configuration on the lattice. The main problem being the cooling
algorithm for measuring N¢g. It was by far the most time consuming element in the
program. In particular near the sphaleron configuration a large number of cooling steps
were needed to get a final configuration close to a vacuum state, see appendix B figure B.3.
An example is shown in figure 3.3. By examining the configuration during the cooling,
it was found that after some steps it reach a stable size. The gradient method therefore
causes the configuration to approach an eigenstate of the Hamiltonian, where the energy
slowly decreases. This made it rather difficult to arrive at any data, and only a few results
have been obtained. As an example it took over 1 month of real computer time to obtain
the sphaleron configuration for N = 16, where I would estimate the measurement of N¢g
to account for more than 80% of the time. It is also quite difficult to chose the time
step for the guidance algorithm. If it is too large Ngg will end up far form the target
value, and a small time step changes the Chern-Simons number too slowly. It was further
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Figure 3.3: Left the energy as a function of the cooling step during a measurement of
Ne¢s. Note that the time goes from right to left. Right ANgg as a function of the cooling
step. The cooling time step was 0.01.

found that the change in Ngg was relative large during a constrained cooling step near the
sphaleron configuration. Here the derivatives of the fields are large, making the numerical
integration less precise, hence N¢g is not fixed.

At low value of Ngg these problems are not present at the same extend. The con-
strained cooling is keeping the Chern-Simons number reasonable fixed, and the cooling
algorithm for measuring Ncg needs less steps to reach a vacuum state. More barrier
points are therefore obtained with small Chern-Simons number.

Another note to the technical discussion is that at first it seemed like a reasonable
idea to generated the barrier configuration at values of N¢g close to one half, by guiding
the final sphaleron configuration. This would give the initial configuration a lower energy
than if a new lattice was used. But it was found quicker to start from a new configuration,
since the sphaleron configuration is very stable.
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Figure 3.4: The static energy as a function of the cooling step during constrained cooling.

Here for N = 15, My = 2/3.

In general the energy falls very rapidly when the constrained cooling is started. After
a while the decrease in energy is slowing down considerably. Together with what have
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been said above about problems around the sphaleron configuration, make it evident
that the sphaleron configuration is hard to obtain. But an estimate of the sphaleron
energy can be found, without quite reaching the sphaleron configuration. This is done by
extrapolating the energy as a function of the cooling step. An example is provided for
N =15, My, = 2/3. By extrapolating the cooling curve 3.4 to an exponential decay

f(z) =a+bexp(eexx) (3.52)
the following values of the parameters a, b, ¢ was found

a = 7.24428 + /< 0.000458614
b = 0.00198827 + /< 1.90333¢ <05
¢ = 0.0625032 + /< 9.42603¢ <05 (3.53)

giving a sphaleron energy Esph/% = 3.459. The curve is seen to fit well with an expo-
nential decrease. This method suffers from the systematic error coming form the change
of N¢s during the constrained cooling. It was found that this method is only possible if
a reunitarization of the link matrices were performed after each constrained cooling step.
If the reunitarization is done with a larger interval, the energy was clearly found to be
falling due to the reunitarization, as shown in appendix B, figure B.4. An explanation of
this can be that boundary link matrices, i.e. the links far from the core of the sphaleron,
differs “little” but still sufﬁ(nently enough from the identity matrix. This would effect
the energy, since the 1 <35 LRe TrUg would not be zero, and this will happen for a lot of
boundary matrices.

3.9 The slope of the barrier near the vacuum states

We estimate the slope of the barrier curve close to the vacuum states. In this area we
expect that there is a linear dependence of the static energy on the Chern-Simons number.
It seems reasonable to assume that the non-abelianity of the theory is not important.
Therefore we will simply evaluate the slope for the Abelian U(1) theory, but with the
difference to ordinary electromagnetism, that there is a coupling to a Higgs field. Being
close to the vacuum states, this coupling simply gives rise to a mass term for the gauge
field. In this case the Hamiltonian for static configurations reads

1 1
_1 / $oB’ + tm?, / drA? (3.54)
By Fourier transforming to momentum space
H = Z (p” + miy)a' (p)a'(€p) . (3.55)
The Chern-Simons number can in the case of a massless gauge field be written as [34]

cs — ﬁelmn Zpmei(p)nej(q))lai(p)aj(q)) ) (356)

where a’(p) is the field for a photon with momentum p and transverse polarization e. The
photon fields obey a'(p) = a’(<p)*. Now, the massive W-particle also has a longitudinal

43



polarization state. But gauge invariance of Ngg! insures us that it is independent of the
longitudinal state, so we assume that the given formula is still valid.

The formula for Ngg clearly only contributes for ¢ # 7. We want to minimize the
Hamiltonian under the constrain that H = ANgg, where A is the slope. Equivalently
we want to maximize Ngg for fixed energy, and it is sufficient to do this for a separate
momentum mode p. For Ngg to be real, a’(p)a’(<p) has to be purely imaginary. We
obtain a maximum value of N,.; when the modulus of the two fields are the same, and for
a reel we have

a'(p)=a , a*(&p) =ia. (3.57)

Let the three vectors p, €2(p) and €'(&p) form a right-handed coordinate system. For
simplicity we can take the x-axis to be parallel with the momentum p. Then we finally
get

1
Nes = W|p|a2 : (358)
The static energy for this momentum mode is then given by
212N,
Bua = a7+ mly) = =i 07 i) (3.59)
p

which has its minimum value for p = my,. Plugging this in the slope reads
Fgar = 47%my Ny (3.60)

On the lattice momenta are discretized, p = = ,n = 1..N, and it will not always be
possible to have a momentum exactly equal to my,. But since the first Brillouin zone
B={p|<n <p<r}isdense on the lattices used, the momentum will be close to myy.

This analysis was carried out in U(1) theory. Roughly speaking we can say that
changing to SU(2) only gives another three ways of making the momentum mode p = myy,
thereby making the mode degenerate, but which degree is excited is not of importance.

A number of simulation with different lattice size N and My, = 1 was carried out.
The final results for the slope are in given below

N 10 12 14 16 18 20
A2 | 12.498 | 12.504 | 12.547 | 12.539 | 12.540 | 12.518

This fit well with the predicted value 47 ~ 12.5664.

The result for the slope was obtained for Ngog ~ 0.01. For these small values of the
Chern-Simons number the curve fits well with a linear form going through (0, 0). Since the
constrained cooling algorithm is not keeping N¢g totally fixed, the slope was plotted as a
function of the constrained cooling step, in order to determine when a constant value was
reached. Some of these curves can be seen in appendix B. The results are obtained with a
definition of F'F including next-to-nearest neighbours. With AN¢g given by the formula
3.41, the slope was found to be ~ 13.7. For N = 14 a rather unusual final configuration
was obtain, where it developed two hills, see appendix B figure B.2. It was run with three
different initial configurations, without changing the final result.

! Nos is gauge invariant in the Abelian theory
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3.10 Results

The potential barrier obtained for N = 16 is seen in figure 3.5, and for N = 24 in
figure 3.6. Continuum calculations of the barrier have been done in ref. [17, 16], using
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Figure 3.5: The static energy potential for N = 16, My = 1, with E,,, = 3.179My /a.
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Figure 3.6: The static energy potential for N = 24, My, = 1/2, with E,,, = 3.553My /a.

a spherical symmetric ansatz. The barrier energy is found to deviate more from the
continuum results as N, goes up, with a large discrepancy for N = 16 at the sphaleron.
The continuum sphaleron energy is 3.64 My /«. For small Chern-Simons numbers the
results agree well with the continuum calculations, which is also evident from the slope
near the vacuum states. Both barriers are close to the extremal path barrier for small
Chern-Simons numbers, and are in this region steeper than the gradient barrier, see section
2.8.

The lattice artifacts will lower the energy, because in the discretization energy is
lost. In figure 3.7 the final sphaleron configuration for N = 16 and My, = 1 is shown
by plotting a plane through the core of the sphaleron. The two other possible slices
through the core of the sphaleron looks similar, and the sphaleron can be said to be
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spherical symmetric, to the extend possible on a lattice. The spherical symmetry is the
key assumption in continuum calculations. The Higgs field is very close to its vacuum
value at the boundary, and the energy density is close to zero. The finite size effects are
therefore small for this configuration. But the lattice artifacts are seen to be large. It is
clearly seen that Higgs field is not zero at core, in fact it is ~ 0.3. From the energy density
we see that the “top” of the sphaleron is cut off by the discretization. For the sphaleron
configuration obtained for N = 24 and My = 1/2, shown in figure 3.8, we see a Higgs
field quite close zero at the core, and the energy density has a regular top. By comparing
the two sphalerons it is clear that the lattice artifacts tends to decrease the energy of the
sphaleron. The configurations for small values of Ngog are smoother and consequently a
better approximation to the continuum configuration, see appendix B, figure B.7 to B.10.
For all barrier points a spherical symmetric configuration was found. We can conclude
that the lattice artifacts are increasing as a function of Ngg, and a very coarse lattice will
consequently have a flat barrier top, as is also seen from the two barriers in figure 3.5 and
3.6. Therefore taking this into account the barrier agrees well with the continuum results.

Energy density

Figure 3.7: A plane through the core of sphaleron configuration for N = 16. Left the
magnitude of the scalar field. Right the energy density.
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Figure 3.8: A plane through the core of sphaleron configuration for N = 24. Left the
magnitude of the scalar field. Right the energy density.

The magnitude of the Higgs field at the core of the sphaleron is shown in table 3.1, in
the cases where the sphaleron was reached. We see a strong dependence on the coarseness
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N 10 12 16 18 24
Myya 1 1 1 2/3 0.5
Min. V®T®/v | 0.29604 | 0.30918 | 0.30567 | 0.19268 | 0.11756

Table 3.1: Magnitude of normalized Higgs field.

N 12| 14| 16 18| 24
Mya 1| 6/7| 3/4] 2/3| 1/2
Egpn /™ | 3.223 | 3.235 | 3.361 | 3.4647 | 3.553

Table 3.2: Egy, as a function of the lattice coarseness for physical volume LMy = 12

of the lattice. Both finite volume effect and lattice artifacts will cause the sphaleron to
differ from zero at the core, but here the finite size effects are small.

An attempt to estimate the physical sphaleron energy was maid. The volume depen-
dence of the sphaleron energy described by 3.51, gives hardly any notable effect on the
energy, for the physical volumes used in the present simulations. For the physical volume
LMy, = 12, the sphaleron energy as a function of the coarseness of the lattice is shown in
table 3.2. Plotting the sphaleron energy as a function of the lattice coarseness, one sees
that the curvature changes around N = 16. It would be natural that this happens, since
the sphaleron energy must approach zero when the coarseness increases, and it will no
longer fit the form 3.50. Therefore only the last three points was extrapolated by using
3.50, where the last term is omitted. This rather naive extrapolation yields

E(12,0) = 3.7103 <0.60(Mya)? . (3.61)

For the physical volume LMy = 10, Ey,, as a function of the the lattice coarseness is
shown in table 3.3. Again fitting to a form with just the first term in 3.50 gives

E(10,0) = 3.6530 <0.41( Myya)? (3.62)

These results are accompanied with a lot of uncertainty. For instance only a few points
have been used in the extrapolation. Furthermore there is an uncertainty in the value of
Nes, as described in section 3.5, and the method, described in section 3.8, for determining
Espn(LMy, aMy) suffers from a systematic error. Therefore, within the uncertainty, the
energy is most probably in agreement with the continuum value 3.64.

N 10| 15| 20| 25
My a 1| 2/3] 1/2| 2/5
Egpn /2w | 3.250 | 3.459 | 3.552 | 3.595

Table 3.3: Ep, as a function of the lattice coarseness for physical volume LMy = 10
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Chapter 4

Baryogenesis

In this chapter we want to consider the possibility of generating a baryon asymmetry
within the electroweak theory. The asymmetry is given by the ratio
ny <=ng Ny

A= ~— =4x10"" 10717 (4.1)
S S

where n, is the density of baryons, and s the entropy density. In the early Universe, this
corresponds to one extra fermion per about one billion fermion-antifermion pair. It was
realized by Sakharov, that the asymmetry might be generated dynamically in the early
Universe.

4.1 Sakharov’s conditions

In his paper [4] Sakharov stated three necessary conditions for a plausible scenario that
can explain the asymmetry.

1. Baryon number non conservation.
2. C and CP violation.

3. Deviation from thermal equilibrium.

The first conditions is obvious, if we assume that the Universe started with an equal
number of particles and antiparticles.

The second condition can be explained in the following way. C violation is necessary
in order to violate the baryon number. Further more, we have that the baryon number
B = b <b transforms under CP as

(CP)B(CP)™' = &B . (4.2)

If there is no C'P violation the processes which create a net number of baryons, will have
the same rate as the processes which create a net number of antibaryons.

If there is thermal equilibrium we have from the CPT theorem that the Hamiltonian H
is invariant under C'PT. At finite temperature the baryon number is given by a thermal
average, and we have

(B) = Tr(e?"B)
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= Tr(e?"B(CPT)(CPT))
= Tr(e " (CPT)B(CPT) ")
= <(B), (4.3)

since the baryon number is odd under (C'PT). Hence (B) = 0 and there must be processes
out of thermal equilibrium to create an asymmetry.

The possibility of explaining the baryon asymmetry from a cosmological context has
been the subject of much work in past decades. The sphaleron comes into play, when
the possibility of electroweak baryogenesis is studied, this is our main interest, although
many scenarios have been proposed. The first models used grand unified theories (GUT)
to obtain C'P violation, and the GUT phase transition to get processes out of thermal
equilibrium. In many of these models the decay of lepto-quarks were the source for
baryogenesis. It was shown that in some grand unified theories it is indeed possible to
create a sufficient amount of baryonic excess. There are various sources, though, that in
the cosmological evolution will wash out this asymmetry. The inflationary epoch, where
the Universe is exponential expanding, will dilute any previous existing asymmetry by an
exponential factor. Therefore if one believes in the inflationary scenario, the asymmetry
must be created after inflation. Since the GUT phase transition temperature, is before the
inflationary epoch, this will rule out the GUT scenarios, unless the reheating temperature
after inflation is again at the GUT scale. This has been shown not to be possible to
obtain [2]. A much stronger argument that rules out GUT scenarios is that the baryon
violation rate in the standard electroweak model, before the electroweak phase transition,
is so high that it will wash out any previously existing asymmetry. Although if a B + L
violation is generated at the GUT scale, this will not be erased by electroweak processes,
and remains another possibility for explaining the observed asymmetry [24]. Assuming
that there is no B + L violation, a scenario for baryon generation, must be realized at or
after the electroweak phase transition.

As was realized in ref. [26] the electroweak sector of the minimal standard model has
all the required conditions for a baryogenesis scenario. At sufficient high temperature, we
expect the electroweak theory to violate the baryon number, as will be described in the
following. Experimental confirmation of baryon number violating processes is still lacking,
but it is likely that it will be seen in future accelerators due to the instanton tunnelling
[3]. The chiral coupling to fermions give C violation and experimentally CP violation
has been found for the kaons. If the electroweak phase transition is of first order strong
deviations from thermal equilibrium are expected. The electroweak phase transition is
probably the latest moment when deviations from thermal equilibrium are sufficiently
large for creating the observed asymmetry. The advantage of electroweak baryogenesis is
that it mainly relies on known physics. In addition the problem of inflation is no longer
present.

4.2 The electroweak phase transition

At sufficiently high temperature, the symmetry of the Higgs potential is restored, giving a
vacuum expectation value v = 0 for the Higgs field. This phase of the electroweak theory is
called symmetric, since the vacuum is invariant under the transformation ® — U®. In the
broken phase the Higgs field has a vacuum expectation value that differs from zero, and the
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V(o)

Figure 4.1: The effective potential for a first order phase transition

vacuum is no longer gauge invariant. In the standard cosmological model, with a Big Bang
scenario, the Universe evolves from an initial hot stage and cools down as the Universe
expands. At some point in the early Universe a phase transition must have occurred,
going from the symmetric phase to the broken phase. The order of the electroweak phase
transition (EPT) is of crucial importance for the electroweak baryogenesis scenarios. The
order parameter is the length of the Higgs field ((I>JV(I>)% = ¢ or, equivalently, the Higgs
expectation value v.

A first order phase transition is characterized by a jump in the order parameter when
going from one phase to the other. For the EPT the Higgs expectation value is 0 in the
symmetric phase, and jumps discontinuously to a value v # 0 in the broken phase. The
evolution of the effective potential for the Higgs field, shown in figure 4.2, starts with a
single minimum at ¢ = 0, but as temperature decreases a new minimum develops. The
temperature where it first occurs is denoted 7,. The minimum at ¢ = 0 is still the global
one, and is therefore the classical vacuum state. As temperature drops further the critical
temperature 7T, is reached, where the two minima for effective potential are degenerate.
For a first order phase transition there is an energy barrier between the two minima. For
temperatures below 7., the minimum at ¢ # 0 is the true vacuum state. In the case where
the energy barrier between the two minima is sufficiently high, it will cause the Higgs field
to be trapped in the former global minimum, which is often called the false vacuum state.
The Higgs field will stay there until the barrier becomes so low that the fields can tunnel
through or thermally pass the barrier. This phenomenon is known as supercooling. The
height of the barrier is a measure of the strength of the transition, and a strong transition
has a high barrier. Bubbles of the new phase will emerge at a temperature close to 1",
and expand until they fill the whole Universe. At T' = T_ the energy barrier between
the two minima disappears and the false vacuum can classically roll down to the global
minimum at v # 0.

In a second order phase transition the picture looks somewhat different. At the critical
temperature there is no barrier and the Higgs field will continuously go from the zero
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expectation value, to a non-zero expectation value. There is no bubble nucleation, which
is the source of non-thermal equilibrium. If a second order transition occurred it has been
argued [25] that electroweak baryogenesis is not possible.

A major problem in calculating quantities for the EPT, is that perturbation theory is
not reliable for high temperatures, and eventually breaks down in the symmetric phase.
At finite temperature the propagator presents a sum of two terms, the standard zero
temperature propagator and a temperature dependent term which reflects the presence of
particles in a heat bath. The latter term is proportional to the bose distribution function.
At finite temperature the relevant expansion parameter is therefore g?ng(E) instead of

g?, where
1

el/T &1
is the bose distribution, and FE is the typical energy of the process. This accounts for
the bose amplification. In the broken phase there is an infrared cutoff coming from the
vector boson mass my,. For processes E < T, we have ng(E) ~ L and perturbation
theory is valid if Q%T < 1. In the symmetric phase perturbation theory renders a massless
gauge particle, there is no infrared cutoff and the expansion parameter can be arbitrary
large, causing perturbation theory to break down. For a small mass of the Higgs boson,
perturbation theory of the effective potential of the Higgs field may work up to the critical
temperature. We will here look at some perturbative estimates, that give symmetry
restoration at high temperature.
The effective potential is given in terms of the classical fields ¢,

np(E) = (4.4)

Vig) =Y 6, V= 0), (45)
n=1 """

where , (™ are the 1PI Diagrams. Substituting ¢ = v/2(®'®) in equation 1.4, the effective
potential for the Higgs field at tree level and with leading orders in temperature is [22, 48]

Vi(p,T) = 2& @gv% + e (4.6)

where

_2MY + MZ 4+ 2M7

N 4v? '
In this calculation all fermions, except the top quark, are neglected. The top quark with
mass M; = 182 Gev is by far the heaviest and will give the largest contribution. Here
v is the zero temperature expectation value ~ 241.6 GeV. This potential gives rise to a
second order phase transition. The temperature dependent term in ¢? has opposite sign
with respect to the constant one, and for very large temperatures the mass of the Higgs
field becomes positive. The symmetry is no longer broken. The critical temperature when
this happens is

(4.7)

Y

T? (4.8)
Y
The Higgs field vacuum expectation value is varying continuously,

(p(T)) =0 for T >T. (4.9)

1

T2 2
(H(T)) = v (1 @1—2> for T<T,. (4.10)

v
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Calculating the effective potential to one loop, yields a first order phase transition,
since we get a term with ¢3, coming from the interaction with the gauge fields. For a
light Higgs boson

A A VT? 2M3, + M}
V(p,T) = Z¢* &v*¢” + — ¢ &M T M= _—Z 4.11
The critical and lower instability temperature is
Av? T?
T? = A , T? = — - (4.12)
0% 1 ©2ME /Ay

The Higgs field vacuum expectation value will jump discontinuously when reaching the
critical temperature. The jump in the order parameter can be characterized with
o(T.) M

=21, 4.13
T ) (4.13)

We see that the strength of the transition gets weaker when the Higgs mass increases.
The best perturbative estimate of the critical temperature calculated to two loop level is
currently 173.3 GeV for my = 80 GeV [48]. Qualitatively the perturbative estimate are
correct, but the numerical values differs from the non-perturbatively values.
The phase transition can be studied non-perturbatively with lattice gauge theory, and
a number of Monte-Carlo simulations have been performed. Many of these simulation
are done in the purely bosonic theory, due to problems with treating chiral fermions
on a lattice. A great advantage regarding the computer time is obtained by going to
dimensionally reduced 3D theory, which should be valid for high temperatures. In general
it is possible to integrate out the temperature by going to the Euclidean theory, in this way
an effective theory can be obtained. For many theories, including the standard electroweak
theory, the effective Lagrangian for the phase transition can then be described by a pure
SU(2) x U(1) gauge group and a Higgs doublet,
Ly=2FaFs+ 37,1+ (D®)(Di®) + m2ed + Mg (01D)? (4.14)

LY

where the factor of 7! has been scaled into the coupling constants and fields. A special
method using both perturbation theory and lattice simulation of the three dimensionally
reduced theory has been shown to give very accurate results for the parameters of the
phase transition. Concerning the phase transition, only static properties of the bosonic
Green’s function are relevant, and using the Euclidean Matsubara formulation of finite
temperature field theory, it is possible to relate the three dimensional coupling constants
to the four dimensional ones. This is done by requiring that the two and four point Green’s
functions of the two theories, where these are calculated perturbatively, are matching each
other to some accuracy [39]. Here effect of fermions are included, since they contribute
to the three dimensional coupling constants. Shaposhnikov et. al. [40, 41] have recently
calculated latent heat, critical temperature, and order of the transition by simulating
the 3D dimensionally reduced theory. Their results yields a first order transition in the
minimal standard model for a Higgs mass smaller than the critical value mj; < 80 GeV,
and the strength increasing with decreasing my. At the critical mass the transition
becomes second order, and above it there is no phase transition but a regular cross over,
where the two phases cannot be distinguished.
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4.3 Baryon non-conservation at high temperature

In section 1.5 we saw that baryon number changing processes were related to an evolution
in the bosonic fields. As a first approximation we will therefore neglect the fermions.
The baryon violation rate is obtained by calculating the transition rate of the fields
between topologically distinct vacua in a pure gauge Higgs theory. At zero temperature
the fields will have to tunnel through the barrier and, as shown in section 1.2, the rate is
suppressed by a huge factor. At finite temperature there are thermal fluctuations of the
fields above the barrier, and it is possible to cross the barrier classically. The fields will
be thermally distributed according to the Boltzmann distribution e #/7, and the rate of
baryon violation is supposedly unsuppressed when the temperature is comparable to the
barrier height.

The height of the barrier varies with temperature. It was shown by Kunz et. al. [22],
that the sphaleron energy at finite temperature is well approximated by the formula

v(T)

ESPh(T) = Eszoh(T = 0) U(O)

(4.15)

This was obtained using two different temperature dependent potentials for the Higgs
field. In the case of the potential given by 4.6, the energy of the sphaleron can be found
by scaling the zero temperature sphaleron solution and its energy is given exactly by
formula 4.15. Using the potential 4.11 the energy is still in good agreement with this

equation. We may write
My (T)

Eyn(T) = “2LBOVg?) (4.16)
where the factor B runs from 3.04 at A = 0 to 5.44 for A — oo. The coupling constant
should be taken as the temperature dependent running coupling constant.

Clearly the probability rate of crossing the barrier is dominated by configurations
passing close to the sphaleron, since these requires the least energy. A simple estimate of

the rate at non-zero temperature, when considering Boltzmann suppression, gives
o~ e BB (4.17)

where § = % This result is quite clear, since the exponential just counts the number of
states with an energy higher than the barrier. The rate in the broken phase is therefore
exponentially suppressed. It would give us a rate of order unity when 7" ~ T, since the
sphaleron energy goes to zero. Later we will calculate the pre factors to the exponential
in 4.17.

Since there is no barrier between the vacua in the symmetric phase, we would expect
a very high baryon violation rate in this phase.

4.4 Scenarios for electroweak baryogenesis

A number of scenarios have been proposed, where the electroweak phase transition is
used to create an asymmetry. Kuzmin, Rubakov and Shaposhnikov were the first to
consider the possibility of electroweak baryogenesis [26]. It is essential for the electroweak
baryogenesis scenarios that the phase transition is of first order. For a second order
transition, where the Higgs vacuum expectation is varying continuous, any BAU generated
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Figure 4.2: CP violation in the bubble wall causes more antiparticles to be reflected than
particles.

during the transition will be erased. As will be shown later baryon violating processes
in equilibrium tend to equalize the number of baryons and antibaryons. Right after a
second order transition the barrier is still absent, and the sphaleron transitions are fast,
diluting any BAU. Further more for a second order transition it is hard to create a source
for thermal deviation, and it is generally believed that it is not be possible to create
enough BAU. A strong first order transition is therefore necessary both for the creation
of a BAU and for it to survive. The electroweak baryogenesis scenarios are build on
the assumptions that the baryon violation rate is rapid in the symmetric phase, whereas
the baryon violating processes in broken phase are practically turned off. In this way a
creation of a baryon asymmetry of the Universe (BAU) during the phase transition will
not be erased by subsequently sphaleron transitions.

The first order transition will proceed through nucleation of bubbles of the new phase,
i.e. the broken phase. The bubbles of broken phase will be created near to the instability
point for the minimum at ¢ = 0, at temperature 7_, and they will expand with a velocity
close to the speed of light. There must be an interface wall between the broken phase
inside the bubble and the outside where ¢ ~ 0. This interface region is called the domain
wall, and it is the motion of the wall through the plasma that causes deviations from
thermal equilibrium.

A nice mechanism for the generation of the BAU, was suggested by Cohen, Kaplan and
Nelson [2], using a CP-violating interaction of fermions with the domain wall of a bubble.
In this way, the reflection coefficient of the antifermions is larger than for the fermions (see
figure 4.2). The rate of baryon violating processes in the symmetric phase is supposed
to be so fast, that the excess of antifermions is strongly diluted, again equalizing the
number of fermions and antifermions. The bubble of broken phase is thereby filled with
fermions, since the baryon number is assumed to be conserved in this phase. The bubbles
expand and will eventually fill the whole Universe, which will be left charge asymmetric.
Calculating the exact amount of BAU generated with this mechanism is not easy. The
bubble nucleation rate and the structure of the domain wall, their velocity and the density
of particles will have to be evaluated. One might wonder if it is at all possible to create
enough BAU. One thing among others is the need for sufficiently strong CP violation.

In the minimal standard model the source of CP violation originates from Yukawa
couplings between quarks and the Higgs field,
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The Kobayashi-Maskawa matrix (K) describes the mixing of the quarks, and contains a
CP violating phase dcp. Experimentally the CP violation from the K matrix is found to
be so small that it is hard to generate the observed amount of BAU. In extended versions
of the Standard model, other sources for CP violation are possible. In the two Higgs
model a CP violating term is generated in the scalar sector.

We see that there are possible mechanisms for creating a BAU at the EPT, if the
assumption about the baryon violation rate in the respective phases are for filled. This
will be investigated in the following sections.

4.5 The rate in the broken phase

We will estimate the pre factors to the exponential 4.17, by considering small fluctuations
around the sphaleron, here the energy functional can be approximated by

H = Ey, @%w%x% +> %wfxf +> %pf , (4.19)
i i

where x;, p; are canonical coordinates for the configuration space. We have z_ o« N¢g,
since w_ is the negative mode of the sphaleron,

For each gauge Higgs field configuration {A,, @}, we can define a gauge sector to which
they belong, by cooling the configuration down by the steepest descent equations

0A;  dH

5= L (4.20)
00  dH
= = et (4.21)

The equation are started from the initial configuration {A,, ®}, and, as the fictitious time
t goes to infinity, the fields will reach a static configuration A7, ®>°. Some configurations
will reach a vacuum state and we define the gauge sector to which they belong by the
integer winding number of the vacuum configuration. The sphaleron being a static so-
lution, is also a possible candidate for the final configuration!. Configurations ending at
the sphaleron, or at one of the gauge copies, are situated on the surface with z_ = 0,
called the separatrix surface. It is separating the different gauge sectors. If we start out
with a configuration on the separatrix, then as time evolves it will almost definitely go
to a gauge sector and stay there for a while, according to the projection of its momenta
on the normal to the surface. The rate of going from one gauge sector to another, can
therefore be calculated from the probability flux through the separatrix. In this section
we use a semiclassical method to calculate the probability flux.

First let us regard the case of a system with only one degree of freedom, and a quantum
particles in a double well, see figure 4.3. The doublewell is an approximation to the
periodic energy barrier in the Chern-Simons number, where we only consider one barrier
(see figure 1.1). Supposing that we start with a set of particles in thermal equilibrium in
the left vacuum. The rate of passing over the barrier is then given by the probability of
being at the barrier and having the right direction times the rate at which the barrier is

!The steepest descent equations are imagined to be integrated with infinite precision
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Figure 4.3: Double well

crossed,
, = (0(z0)pO(p)) (4.22)
Bl V(a
_ Jdpdegge o VN6 (20)pO (p) (4.23)
- 1 —Bip24+V(x ) )
fdpdxﬁe Blzp*+V (z)]
Assuming a gaussian form for the potential V(z) = fwiz® around the vacuum, and
performing the gaussian integrals we get
, = ;}—"e*ﬁUO , (4.24)
T

where V' (z,) = Uy is the height of the barrier. This is related to the imaginary part of
the free energy. We have the free energy

F=ThZ, (4.25)

where Z is the partition function, and it will pick up a small imaginary part from the
contribution of the negative mode. We may write

12 1 2.2
tmp ~ 70 barrier _ gl dpdze? 0T T, (4.26)
Zo [ dpdzezr’+awie® 2w_ ’
where 7 is the partition function around the left vacuum. The rate is then
= P = = banrier | (4.27)
T T 20
Adding more dimensions, the free energy changes as
dpidz; 3P; + swia} ;
J dpidz; exp(&P(507 + 5wia)) _ wio (4.28)

[ dpidz; eXP(%(%P% + %wfoxf)) Cowi

but the same factor will appear in the expression for the rate , . Hence formula 4.27 can
be generalized to field theories. The top of the barrier in our case is represented by the
sphaleron, giving

. w_ Istph

= —_— . 4.29
== (129
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The rate is therefore given in terms of the partition function around the sphaleron in a
gaussian approximation, and of the vacuum partition function.

At high temperature the theory becomes effectively three dimensional. The Euclidean
action for the SU(2) Higgs model reads

Sp— ["at [ oLy = [ at [@a(LFe e 4 (D,0) (Dd) + A(@1D )2
E_U xE_O 4;“/;“/(#)(#)_'_( <:}ﬁ)(

In the high temperature limit 3 < 1 the integration limit /3 is very close to zero and the
fields can be considered time independent. The integration simply gives a multiplication
with 3 and when scaling the field and coordinate

4.30)

a MW a v
o — xuMW s AH — 714“ y b — ﬁ@ s (431)

the three dimensional action becomes

Sy = BMW /d3 1pe F* 4+ 2(D,®)!(D,®) +%62(q>’fq> &1)%), (4.32)

4= pr= pv

where € = %H = Z‘gﬁ The masses are temperature dependent and this can be taken into

account by changlng the Higgs expectation value, to its temperature dependent form

o(T) = v(0) (1 @T—Zf , (4.33)

which gives a sphaleron energy of the form of equation 4.15. The effective three dimen-
sional coupling constant g3 is related to the four dimensional one through

2
2 9

g3 = ————— . 4.34

P BMw(T) (4:34)

For temperatures T < My (T')/« an expansion in g3 should be reliable. But also the

lower limit 7" > My, should be imposed in order to justify the three dimensional theory.

Again, we approximating the Lagrangian with a gaussian form around the sphaleron

‘Cgph = £3,sph + (6¢)TQsph(5¢) (435)

where ¢ generally denotes the gauge and Higgs fields, and (), is the operator for small
fluctuations, defined as the second functional derivative of the action around the sphaleron.
We do the same around the vacuum

£8 = (5¢)'Q0(59) - (4.36)

Assuming no zero modes we therefore get the following formula,

wo. [ detQ2\*
:—I BEsph 4.
’ (detm > ‘ (4.37)

sph
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The sphaleron, though, has zero modes, arising from the symmetries of the solution.
The sphaleron is translational and rotational invariant, giving rise to 6 zero modes. The
integration of the zero modes gives

NV =V]] (% / d3x(6¢)2>% , (4.38)

where N is a normalisation factor and V is a factor proportional to the volume of the
symmetry group. Since the factors of g=2? no longer cancel in the determinants, we get

w_ det 2 \ 2
y = g(NrotV;‘ot) (Ntr‘/tr)gi;GIm <ﬁ920h> eiﬂESph (439)
sp

when including the zero modes. The prime on the determinant denotes that the zero
modes should be excluded. Further more Vj,. = VM3, when going back to dimensionfull
quantities, therefore

w_
, g(Nrotwot)NtrVMSV(gZT)’%e’ﬁESPh , (4.40)

where x is the ratio of the determinants. The zero mode integration factor can be esti-
mated using the sphaleron solution. In [27] the values Ny, = 26, and N, Vot = 5.3 X 103
was obtained from the integration inserting the sphaleron solution.

In these calculations a number of approximation has been done, and the expression
for the rate cannot be trusted near the critical temperature. The main assumption of
the calculation is that the dominant contribution to the baryon violation processes passes
through configuration in the neighbourhood of the sphaleron. At high temperature the
dominating configuration is not necessarily the sphaleron, even though it has the least
energy. The size of the sphaleron, being ~ M, is diverging when approaching the critical
temperature if we have a second order phase transition. But also for a first order transition
will the size of the sphaleron be large, close to the transition. Thermal fluctuations with
size &~ T~ !, might be favoured, having a much smaller size. We see that in this case the
energy of the Higgs field can be neglected, since scaling the sphaleron down to a small
size will course the energy term involving the Higgs field to decrease rapidly, see equation
2.10. This will put an upper limit on the valid temperature range for the calculation. The
gaussian approximation is no longer valid and we have to consider interactions as well.
We might also expect a damping effect from the plasma that exists at high temperatures.

4.6 Dilution of the baryon number

So far we have neglected the fermions. Including the fermions, the baryon violating
processes will tend to erase any baryonic or antibaryonic excess. The free energy of the
fermions created in the transition between the vacuum sectors, will cause the effective
potential to raise (see figure 4.4). In the case of a baryonic or leptonic excess, the rates in
the the two directions are no longer equal. The excess is described by chemical potentials
up for the baryons and py, for the leptons. The effective action is modified by

0S = <:>78(,UB + ML)NFNCS y (441)
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Figure 4.4: The effective potential between the different vacuum sectors when including
fermions.

The sphaleron has Ngg = %, as shown in section 2.4. The baryonic increasing/decreasing
processes pick up a factor

exp(iﬁ%(uB + pr)) (4.42)

The difference between the rates, in the case where u/T < 1, is

Each transition changes the baryon number with Ny, so we get the following relation
between the baryon number B and the rate , ,

dB

o = ANy + o), (4:44)

and the chemical potential can be obtained from standard statistical physics [27]

2 L
— 2B ~ 32 4.45
B = 2Nf/8 K NfBV ( )

Supposing that we have B <L = 0, then

dB 3y 13B
ab 4.46
= <" Np—- 57 (4.46)
The rate should be compared to expansion rate of the Universe
= 1.66N, ffT2 /My, (4.47)

where M,y is the Planck mass and N.ss is the effective number of massless degrees of
freedom. If the rate is higher than the expansion rate of the Universe, then the baryon
violating processes will be in thermal equilibrium. Baryon violating processes in equilib-
rium, will equalize the number of baryons and antibaryons. Therefore any asymmetry
created in an earlier stage of the Universe would be washed out. We will now consider
when, in the cosmological evolution, the baryon violating processes are in equilibrium.
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4.7 The rate in the symmetric phase

In the symmetric phase, where the vector bosons are massless, the sphaleron solution
does not exist and there is no barrier between the vacua. Due to the infrared divergences
it is not possible to do perturbative analytic calculations. The interactions are strongly
coupled at small momenta. But in turn we might justify a classical treatment of the
baryon violation rate in this phase, for very high temperatures.

To get an idea of the form of the rate at temperature 7" > T, the instanton solution
at x4 = 0 can be helpful [29, 27],

a €ijalj
d=0, Al = 55'2]4— ol (4.48)

where A is the size of this configuration and its energy the maximum of the instanton
energy, Foa: o 5 This configuration shares a lot of properties with the sphaleron.
It is a saddle point of the energy functional, it has one negative mode and it has half
integer topological charge. Since this solution is indeed sphaleron-like, we calculate the
transitions rate like before, but in addition we must perform integration over the size .
The rate is estimated by assuming a gaussian form of the Lagrangian. The solution is

independent of Euclidean time and we get the three dimensional action
_F _

The sphaleron-like solution has 6 zero modes, but in addition we get another factor of g%\
in the ratio of the two determinants, since we do not perform a gaussian integration in
the A direction. The rate then reads

7
A\ w_ 1 )2
= [ == = N, SBYV)N, e FBmas 4.
) )\ 271' (ng)\> H( rotv;"ot)()\ V) tr€ ( 50)
The negative mode will have w_ ~ %, and hence
AN /1 \7
. X KN (Nyot Viot)V (Ta)4 767m (m)
1
_ NTNTOX/;,OVT4/d 2, % _ 1
KN (Nyot Viot)V (T'@t) ze 27, 2=
= &Ny (NyotViar)V (Ta)?, (). (4.51)
The rate get the form
’V = k(aT)*, (4.52)

where the constant factors have been absorbed into x. This form can be obtained by
scaling arguments [28], and it is not just a property of the special solution 4.48. A
priori, the numerical value of £ may be so small that fermion number is to a good extend
conserved in the symmetric phase. However, a number of simulations of the classical
theory suggest that « is of order 1. This would imply, with the use of equation 4.46 and
4.47, that for temperatures

T. < T < 01Mya* ~ 10GeV (4.53)
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the electroweak baryon violating processes are in thermal equilibrium, and any excess of
baryon or antibaryons will be erased. But can the classical rate be trusted?

We may argue that the dominant transitions can be treated classically. In the non-
Abelian theories it is possible to have magnetic screening effects, where a magnetic mass is
dynamically generated for the spatial gauge fields. However, it is not possible to calculated
such a magnetic mass within perturbation theory, since there will be equal contribution
from all orders. It is expected that non-perturbative effects will somehow “heal” the
theory by creating a magnetic mass of order my,,, ~ oT [38, 48]. The form can be
induced from purely dimensional arguments, since o1 is the only relevant scale at low
momenta. Lattice simulations in [31] shows that m,,e, = 0.47¢*T. This is in very good
agreement with simulations of the dimensionally reduced 3D theory [42]. The magnetic
mass was found to be constant in the symmetric phase, where my = 80 GeV was used,
which shows that it can be calculated from a pure Yang-Mills theory.

Topological transitions of the gauge fields are believed to be dominated by fields with

a typical size ~ —=. Generally, a configuration having size  will pass an energy barrier

of magnitude F iTl /ar and large r will be energetically favoured. It is unlikely, though,
that the size of the fields exceeds the inverse of the magnetic mass. We then expect the
dominant contribution to come from configurations with size m;ﬁlg. The magnetic mass
will again provide a barrier between the different gauge vacuum sectors. The associated
Boltzmann suppression factor e #%s| where Fj is the energy of a sphaleron-like configu-
ration in the symmetric phase, is temperature independent, due to the linear dependence
of the magnetic mass on the temperature. Since the relevant modes p = o7 has a high
occupation number, classically being % = é, the rate can be well determined with a
classical treatment.

Another indication of the relevance of the classical theory is seen by comparing the
effective action for the classical theory and the dimensionally reduced theory, see equation
4.14. Tt is believed that the leading quantum effects on the rate, can be obtained by using

the temperature dependent coupling constants.

4.8 Real time simulations

We see that in the symmetric phase a simplification to the classical theory is reason-
able. Unfortunately the classical theory suffers from ultraviolet Raleigh-Jeans divergences,
which might turn up in the calculation of the rate. Discretizing space-time by putting the
system on a lattice, provide an ultraviolet cutoff 1/a, where a is the lattice spacing. A
natural thing is therefore to do lattice gauge theory simulations of the classical theory, in
order to obtain the baryon violation rate. Hopefully x will not be dependent on the cutoff,
otherwise more complicated methods would have to be implemented. It was suggested
[36] to integrate out the hard momentum loops and obtain an effective Hamiltonian for
small momenta, so as to take properly into account the high momenta modes.

The main idea of the simulation for obtaining x numerically, is the determination of the
time evolution of the topological charge. We know that transitions having Q(t) = 1 will
be accompanied by baryon violation. But (Q(¢) will consist of both thermal fluctuations
around the vacuum states, that will not give rise to a baryon violation, and an evolution
between the different gauge sectors increasing Q(¢) by an integer amount. For large ¢
fluctuations not contributing to fermion violations are neglectible in the mean square of
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the topological charge. The fields are expected to perform a random walk in the periodic
potential and, for large ¢, we may write

(Q))r =, Vi, (4.54)

where , is the diffusion rate per unit volume. The topological charge is averaged over a
classical thermal distributed set of gauge field configurations,

2 . fDAZG_H’BQz(t)
(Q))r = DAcHT (4.55)

The first micro canonical real time simulations was done of the SU(2) Higgs model in [33].
A configuration consisting of the gauge fields A; and ¢, and their canonical conjugate
momenta % = II; and % = 7, was simulated on a lattice. The Hamiltonian in temporal
gauge is

H = 1E'E} + {FAFS + 1% + Did? + M?¢? + Ao’ (4.56)
The fields are evolved according to the canonical equations of motion. In addition the
Gauss constraint, arising from variations with respect to Ay

O E* &2c" AP E¢ = i(¢plo'r onlo®e) , (4.57)

has to be imposed. Since the Gauss constraint commutes with the Hamiltonian, all con-
figurations obtained by classical evolution of the field equations will satisfy the constraint,
if the initial configuration does. The set of initial configurations should be created in such
a way that they respects the Gauss constraint and further are distributed in accordance
with the Gibbs distribution e /7. This was obtained by the using the standard Monte
Carlo technique, where the configurations are updated with the Metropolis algorithm,
with a Gauss constraint multiplier added to the Hamiltonian. The Gauss constrained was
therefore only for filled to some accuracy, and was a source of uncertainty. The topological
charge can be obtained as a function of the discrete time, by calculating the Chern-Simons
number, as described in section 3.5. It was found that Q(¢) lays in plateaus for a while
and then makes rapid transitions to a new plateau. Since, as mentioned in section 3.5, the
Chern-Simons number is not a total time derivative on the lattice, the jumps in Q(t) is not
exactly giving by an integer number. But the simulations clearly showed that there are
transitions between the different vacuum sectors. The simulations was in fine agreement
with the random walk picture. The value of k was extracted using formula 4.52. Due to
the noisy data, it was not possible to obtain a continuum limit. However a value x > 0.4
was indicated.

The need for a large lattice size, in order to fit the sphaleron in the broken phase,
makes it difficult to do simulations in this phase, and compare with the existing an-
alytical calculations. The abelian U(1) Higgs model in 1+1 dimension, has the same
quantitative features as the SU(2) Higgs model, with a periodic vacuum structure and
fermion violation. Here the numerical simulation have been performed and are in good
agreement with analytic calculations of the rate from sphaleron transitions, performed in
the same way as described in section 4.5. Naively one would expect the same to be found
for the SU(2) Higgs theory.

Ambjorn and Krasnitz [34] has recently obtained the value of x in the pure SU(2)
theory, again by simulations of the classical theory. The Gauss constrain now reads

OB &2 ALES = 0 (4.58)
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The initial set of fields were thermalized by a Langevin set of equation [35], obeying
the Gauss constrain exactly. The rate fitted the form 4.52 well and k was found to be
independent of the lattice spacing for sufficiently small values, which indicated that the
finite continuum limit was reached. Further finite size effects was eliminated. Let N
denote the number of lattice site in one direction. When %, exceeded twice the magnetic
mass, k£ was found to be independent of this ratio, which fits well with the idea of the
dominant contribution coming for configurations with size ~ my,q,. These are strong
arguments for the reliability of the value, and it was numerically given by

k = 1.09 + 0.04 (4.59)

At very high temperature T' > T, the scalar field decouples, having a thermal mass ~ ¢T',
much greater than ¢?7T', justifying a pure Yang-Mills theory in this limit. It is therefore
well established that the topological transitions are fast enough to wash out any baryonic
excess in the symmetric phase.

In ref. [37] the diffusion rate was calculated in the SU(2) Higgs model, by using an
effective classical Hamiltonian, where the parameters was determined by comparison with
dimensional reduction. The results was in agreement with the value found in [34] for the
pure SU(2) theory, in the symmetric phase. A value of My = My, was used. In the
broken phase it was found that the rate only decreased a factor 5, which is a factor of 650
higher than the existing analytic calculations, as described in section 4.5. The rate was not
found to be dependent on the lattice spacing. The sphaleron energy enters exponentially
in the transition rate, and since it is decreasing with the coarseness of the lattice, a coarse
lattice would tend to make the rate higher. The question is whether this can explain
the discrepancy. From the lattice artifacts of the sphaleron energy in [19], a factor of
less than 2 of systematic error in the value of k is indicated. The large factor between
the analytic result calculated from the sphaleron transitions, and the results from the
computer simulations cannot be explained by the lattice artifacts of the sphaleron. But
since the dimensional reduction is not a good approximation in the broken phase, because
the temperature is low in this phase, the validity of the method is unclear. Furthermore
dimensional reduction is what indicates that the quantum rate is well approximated by the
classical one. The authors stated other sources of uncertainty. A finite renormalization
factor was neglected, and this might give a substantial correction. It definitely needs some
clarification, before the result in [37] can be trusted. If these results are to be trusted, the
baryon violation rate get a significant contribution by non-sphaleron processes, causing the
rate to be high enough, even in the broken phase, to eliminate a surplus of baryons. This
would force a plausible scenario to take place later than the electroweak phase transition,
or by B + L violation at an earlier stage.

4.9 Bounds on the Higgs mass

In order that a BAU created at the EPT is kept till now, it is necessary that the baryon
violation rate by sphaleron transitions after the phase transition is sufficiently low. This
can give us a bound on the Higgs mass. Experimentally the lower bound for the Higgs
mass is currently my > 65 GeV.

We saw in section 4.5, that the suppression factor after the EPT is proportional to
e #Psen . The sphaleron energy given by formula 4.15 will increase for a larger vacuum
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expectation value of the Higgs field, and we understand that a high v is needed after
the phase transition. This is equivalent to a strong phase transition, since a high barrier
will keep the Higgs field in the false vacuum for a long time, and the expectation value
of Higgs field increases with decreasing temperature. The transition to the true vacuum
will take place close to the temperature 7_ where the barrier disappears. However, the
energy, gained from the transition to the true vacuum will reheat the system, and these
effects will have to be included when the temperature 7™ right after the phase transition
is estimated.

Requirering that the sphaleron transitions decouples, by going out of thermal equilib-
rium, right after the transitions Shaposhnikov derived bound

ESph (T*)

> 45 4.60
T* ? ( )

which has to be satisfied for a BAU to survive till now. This is found by using equation
4.40 and 4.47. The inequality is not satisfied for the minimal standard model. The
simulation of the EPT for the dimensionally reduced theory by Shaposhnikov et. al.,
shows that the EPT for the minimal standard model is not strong enough to generate the
observed BAU, for any value of the Higgs mass [3]. The fact that the minimal standard
model cannot explain the observed asymmetry has been established for some time, since
the bound on the Higgs mass was already in disagreement with experiments.

This turn us to search for extensions of the standard model, where a stronger phase
transition is possible. Both the two-Higgs model and some supersymmetric models have
an area of parameter space, where this is realized.
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Conclusion

From the study of electroweak baryogenesis it is nowadays believed, that the minimal
standard model is not capable of explaining the observed baryon asymmetry of the Uni-
verse. The bounds on the Higgs mass from demanding the sphaleron transition rate to be
turned off after the phase transition, cannot be satisfied in the minimal standard model.
The baryon violation rate for the electroweak processes in the symmetric phase, at least
for temperatures far above the critical temperature, is well established to be so high that
it will wash out any preexisting asymmetry. The rate in the broken phase is mainly deter-
mined by the sphaleron energy, but the numerical value of the rate is still to be obtained
by real time simulations. Extended models, like the two Higgs doublet theory, can give
an upper bound on the lowest Higgs mass, within the experimental limit.

The remaining possibilities for explaining the observed baryon asymmetry, is therefore
including extensions of the standard model where electroweak baryogenesis is used, and
a GUT model where B 4 L violating processes are present.
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Appendix A

A.1 Energy of the sphaleron

The energy is given by

2

E= /d3x1F°‘F°‘ (Did>)T(Di<I>)+)\(d>Td>(:>%). (A1)

LYY

We want to show that for these ansitze 2.22 and 2.23 the energy density is spherical
symmetric. Starting with the pure gauge field contributions. The expressions for the field
strength tensor is to long to be quoted, and only the final energy density is written

1
E(A) = &5 Tr(F;Fy)

2¢?
= () (UL NP + 200,10, + 2030, 0. + 200, 10.1

+a2(0, )7 + Y20, 1)? + 22(0.1)?)

= Rfaen ). (A2)

Changing to & = gur we obtain

[ ey = [ EGyamrar = 070 ot enp +e(Lymae, (a3

&g dg

which is the first two terms in formula 2.25. The covariant derivative term gives rise to
the contribution to the energy density

£(@.4) = (L s F)F + ) (a0
and we get
[et)dn = [T pP+ G (A5)

which is the next two term in the energy. The potential energy term for the Higgs field

is easily seen to give
2 2 4

v v
~

E=AN=h o) =—(el) (A.6)
and we see that the last term in equation 2.25 is obtained.

2 2
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A.2 Topological charge of sphaleron

The topological charge, given by

2 1
Q= el [ dwe (2043 + SgeanATALAL) | (A7)

is calculated for the sphaleron configuration

A8 = A )eiacie + B(r)(8ia Siia) + C(r)inda | (A8)
where
A - [1<:>2f(gvr)g]rcos@(r)<:>1, )
Blr) = [1@2f(91;7;)]sin@(7"), (A.10)
c(r) = %%. (A11)

First we will evaluate the term
el]kAfajAZ . (A12)

USiIlg 8j£k = %(5]']c @Z%ijk) we get

@AZ = (@-A)ekadi"d + (6]8) (6ka @Zﬁkiﬁa) + (8]0):%k:%a
C&B

A . o a S
+ 7€kad(5jd <:>l‘jl'd) + [((Sjk <:>IL']CIL'Z')IL'G + (5]'(1 <:>l'j$a)l‘k] . (A13)

However when contracting with €;;;,Af a lot of the term gives zero. For instance we get
for the term with (0;A)

EijkA?(ajA)Ekadi'd = (@A)A?((Smdjd <:>5id5ja)-'i.d = (a]A)Ag((SwlA'] <:>5ja:i.i) . (A]_4)

But we have
(&'ai'j <:>5jai'i)€iaei'e = &¢ijelile = 0, (A.15)

since €;4, is antisymmetric in ¢ and e and Z;Z. is symmetric. There will be no contribution
from the A term in Ay. Further

((Siaii'j <:>6jaj7i)j7ii'a = (jfj <:>j7]) =0 (A16)
((Siafi'j <:>5jaii)5,~a = 3.’1?'] <:>.'i'j = 2.’1?'] R (A].?)

and we get the contribution 2z;B(0;A).
The term with (0;B) is non-zero only for the A term in A{

eijkAeiaejje(ajB)(ska = A(ajB)Gz'jaﬁmefe (A-18)
= A(ajB)(@2)6jelA'e = <:>23%]A(6]B) . (A]_g)

The term with (0;C) is easily seen to give zero, since the structure in the #’s is always
symmetric in some indices, and contracted with the € symbol this gives zero.
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Now the term with %, we get

A o A .
EijkAg?Ekad((sjd <:>1‘de) = Az 7(6ia5jd <:>5id5ja)(6jd <:>1‘de) (A20)
A
= A??(?)(Sza <:>6ia(:%)2 <:>5ia + ii'ai'i) (A21)
A .
= A?_((Sia =+ l‘afL'i) . (A22)
T
We have
(6ia + i‘a:i.i) 6iaei'e =0 (A23)
(G0 + Foity) Toiti = 2 (A.24)
(62'11 + i'a:%i) 5ai =4 ) (A25)

given a contribution 22 (C + B).
The term with % gives a similar result. Noting that €;;;(0,x <Tr%;)T, = 0, we are
left with
CeB A LCeB
ez'jkAi T((Sja <:>£Uj$a)l'k = Az Tﬁiakxk , (A26)
and we have
CiakThCigele = 207 . (A.27)

This gives us the contribution 2@%1. The rest of the term gives zero. In total we may
therefore write

ekafajAg = 4% + 2.’i'J [B(aJA) <:>A(833)] (A28)
_ 4’470 +2(B(3,A) S A(9,B)], (A.20)

since 0;A(r) = 2,0, A(r) by the chain rule.
Now we will calculate the term

GijkeabcA?AgAz . (A30)

An investigation yields that all cubic terms vanish, and from the cross terms we get the
following contributions. From the term with two A’s and one C

EijkEabcEiaali'alEj'be-'i'e-'i'lc-'i'c = Ez'jl~c€]'bf3((Sic-'i'b <:>5ibi'c)i'ei'ki'c (A31)
= (6z’e6kb <:>6z'b6ke) (52'02%1, ﬁéibjc)jeiﬁkiﬁc (A32)
= (oot + Ol Fodinde = 2 . (A.33)

This will appear three times, so in total we get the contribution 6A2C. From the term
with two B’s and one C

€ijk€abe(0ia STiTq)(0jp STjTp)ThTe = €ijk€abeliadjpTrTe (A.34)

= Gabkﬁabciﬁki’c =2. (A35)
Hence this give rise to 6B2C, and the final result yields
€ijreabc AT AV AL = 6(A” 4+ B*)C . (A.36)
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Indeed we see that the topological charge density is spherical symmetric
9 5 AC
Q=o2 /W dr ( (A2 + BY)C + 4= 1 2[B(0,4) A, B)]) . (A3T)

It it easily seen that ¢g drops out, and by redefining the function A — gA and the same
for B and C, we may write

(0,4) = 2 <<:>2 fos© (1 2f) sin@§ @A) | (A.38)

r

and

(arB) = %

d
<<:>2f' sin® + (1 <2f)sin @d—(j <:>B> : (A.39)

We get

B(0,A) ©A(0,B) = iz <<:>2f' sin © < (1 <:>2f)2§ + (1 <2f) cos @%) . (A.40)

T

Further ) 40
(A7 + B)C = ((192f)” + 12(1 ©2f) cos©) =, (A.41)
r dr
and AC 1 e

The gives the following integrand
1 d® do
I= ( (1<2f)cos @d— <:>2d— <4f"sin @) (A.43)
72
and the topological charge reads

1 do _dO
Q-@E/dr < 1<:>2f)cos@d— <:>2d— s4f! sm@) (A.44)

We have that ©(c0) =7, ©(0) =0, f(0) =0 and f(co) = 1, hence by partial integrating
the last term the surface term will vanish

/ dr (4 f' sin ©) = <[ f sin O] + / draf (sin ©)' / dr4fcos€d—@ (A.45)

The remaining integral cancels with the fcos© term in A.44, hence

1 do 1 1 1
Q @E/dr (cos© & )dr S [sin ©® <06, 5" = 5 (A.46)

The topological charge of the sphaleron is a half integer.
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Appendix B

Data

Data obtain from the program is shown in this appendix.

T
"slope.10" —

T
“slope.20" —

396

395

394

39.3

! L L L L L L L L L
0 10 20 30 40 50 60 0 100 200 300 400 500 600

Figure B.1: The slope as a function of the cooling step . The left graph is for N = 20,
My, =1 The right graph is for N = 10, My, = 1. Here the change in the curve is due to
change of the cooling step parameter in the program.

energy density field

000000000
okNwruON®OR

Figure B.2: A configuration with Ngg ~ 0.1 for L = 14, My = 1 Left the normalized
scalar field squared. Right the energy density.
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Figure B.3: The static energy as a function of Nog during the constrained cooling. Around
the sphaleron configuration the measurement of the Chern-Simons number is extremely
difficult. The maximum step-size for the cooling algorithm is 7500, and still to low for a
correct value of Ngog. For the point with Nog =~ 0.415, the cooling algorithm reaches a
final configuration far from a vacuum state (Eygq = 0.43). Since Ngg goes outside the
allowed region, going from Ngg ~ 0.415 to Ngg ~ 0.517 in the lower “nearly” horizontal
line, guidance is used and not constrained cooling.
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Figure B.4: The static energy as a function of time, during the constrained cooling, with
time going from right to left. Clear jumps are seen every fifth time, corresponding to the
reunitarization of the link matrices.
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Figure B.5: The sphaleron configuration for N = 12 and My, = 1. Mininimum value of
(®1®)3 /v = 0.30918. Energy of configuration E,,;, = 3.223Myy /. Chern-Simons number
Nes = 0.500. Left the normalized magnitude of scalar field squared. Right the energy
density, which is does not vanish at the boundary.

energy density

Oo0o0000000
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Figure B.6: The sphaleron configuration for N = 10 and My, = 1. Mininimum value of
(®1®)3 /v = 0.29604. Energy of configuration E,,;, = 3.250 My /o. Chern-Simons number
Nes = 0.506. Left the normalized magnitude of scalar field squared. Right graph the
energy density, which is different from zero at the boundary.
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Figure B.7: A configuration on the barrier for N

Energy of configuration E = 0.123My,/«. Left the normalized magnitude of scalar field

squared. Right the energy density.
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Figure B.8: A configuration on the barrier for N = 16 and My,

Energy of configuration E = 2.152My,/«. Left the normalized magnitude of scalar field

squared. Right the energy density.
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Figure B.9: A configuration on the barrier for N = 24 and My, = 1/2 with N¢g = 0.0083.
Energy of configuration E = 0.104My, /. Left the normalized magnitude of scalar field
squared. Right the energy density.
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Figure B.10: A configuration on the barrier for N = 24 and My = 1/2 with N¢g = 0.186.
Energy of configuration E = 2.05My,/«. Left the normalized magnitude of scalar field
squared. Right the energy density.
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