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Introduction

The Universe we live in consist mainly of matter. Locally this is evident from observations,
since the amount of antimatter, present in for instance cosmic rays, is so small that it can
be considered zero. The region of pure matter can be estimated to be of size of the present
horizon. Indeed if antimatter was present in a considerable amount, it would collide with
matter, causing large gamma bursts to be emitted. These are not detected and it is
con�dent that the amount of antimatter can be neglected. If the asymmetry is just local,
matter and antimatter has to be separated with a size given by the current horizon. This
corresponds to causally disconnected region in the Early Universe. Therefore it is not
possible to have a mechanism for separating matter and antimatter on the large scale
needed1.

The totally asymmetric Universe today, corresponds to a tiny asymmetry in the early
Universe. Analysis of the primordial nucleosynthesis gives a ratio of baryon density to
entropy density of

� =
nb
s
= 4� 10�11 � 10�10 (0.1)

Above a temperature of twice the mass of the fermion q the process 
 $ q�q is in equi-
librium, and one can deduce that in the early Universe there was one extra baryon per
billion baryon-antibaryon pair.

The symmetric description of antiparticles and particles in the physical theories, lead
us to wonder how there can be an asymmetry. It seems very subtle to explain the small
asymmetry. One could assume that the initial condition of the Universe was asymmetric
with respect to the number of baryons and antibaryons. From a physical point of view,
this is not appealing, we would like to be able to explain it by means of a physical theory,
and the dynamics of the early Universe. In this way the baryon asymmetry could be
considered a remnant of the early Universe.

In 1966 Sakharov [4] was the �rst to discussed the possibility of generating a baryon
asymmetry of the Universe in terms of particle theory. During the past decades much
work have been done in explaining this asymmetry. Various scenarios have been proposed
at di�erent time periods and energy scales. I will mainly consider the scale of � 100 GeV.
At this scale the electroweak phase transition took place, and one might hope that it will
provide us with the possibility of generating an asymmetry.

The baryon number is to a very high degree a conserved quantum number at the low
energy scale, present in today's Universe. As we shall see the electroweak baryon number
is not conserved on the quantum level due to the chiral anomaly. In fact the baryon
violating processes are fast at high temperatures, o�ering an opportunity to explain the
asymmetry, since these are naturally a needed ingredient in a baryogenesis mechanism.

1In
ationary model may give a locally asymmetric Universe
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An important implication of the high rate is that any asymmetry created before the
electroweak phase transition is washed out, unless special conditions are satis�ed.

The standard model is known to �t experiments very well at the energy scale we can
probe now. An interesting question is whether it is capable of explaining the observed
baryon asymmetry. If not a new theory will have to be proposed. Choosing a baryogenesis
scenario, and �tting it to the observed asymmetry, gives the possibility to put constraints
on the parameters of a theory. In this sense we may consider the baryon asymmetry as a
test of a theory at high energies, since a \real" physical theory should be able to predict
it. What we can observe as remnants from the early Universe is a nice addition to high
energy experiments.

In this thesis I give an overview of the current status of electroweak baryogenesis
studies. My own work has been concerning an area related to this subject, which is
determining the sphaleron barrier of the SU(2) Higgs theory. The sphaleron con�guration
and its connection to baryon violating processes in the electroweak theory is described in
detail, while the electroweak phase transition and baryogenesis scenarios will be treated
on a more heuristic level.
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Chapter 1

Basics of electroweak theory

In this chapter the electroweak theory is described with emphasis on aspects of interest
for baryogenesis.

1.1 Weinberg-Salam theory

The Weinberg-Salam theory uni�es the electromagnetic and weak interaction. The theory
describes the electroweak sector of the standard model, and is a SU(2)L � U(1)Y gauge
theory, with spontaneous symmetry breaking. The symmetry breaking is obtained by a
coupling to a Higgs �eld �, which is a doublet complex �eld conventionally written as

�(x) =

 
�+(x)
�0(x)

!
; Y (�) = 1 ; (1.1)

where �+(x) and �0(x) are complex scalar �elds, and Y is the weak hypercharge. Through-
out this paper we will use the metric g�� = diag(1;�1;�1;�1). The bosonic part of the
Weinberg-Salam Lagrangian is given by

Lb =
1

2g2
TrF��F

�� � 1
4
f��f

�� + (D��)
y(D��)� V (�y�) ; (1.2)

where F�� = @�A� � @�A� + [A�; A�] is the SU(2) �eld strength tensor, and f�� =
@�a� � @�a� is the U(1) �eld tensor. The SU(2) gauge �elds can be expanded in terms
of the Lie algebra elements by A�(x) = �igT �A��, where � = 1; 2; 3 is the SU(2) colour
index, also known as weak isospin. The covariant derivative is given by

D� = @�I � igT �A�� � ig0
Y

2
a� : (1.3)

The gauge group is not simple, and we need two coupling constants, g for SU(2) and g0

for U(1). Normally we will take half the Pauli-matrices as generators for the Lie algebra,

T � = 1
2�

�. The weak hypercharge operator Y , can be written in terms of the electric
charge Q and the third component of the weak isospin T3, by the relation Y = 2(Q� I3).
The potential for the Higgs �eld is described by a quartic self coupling,

V (�y�) = �(�y�� v2

2
)2 (1.4)
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The Higgs �eld is needed to give mass to the gauge �elds in a gauge invariant way. When
then Higgs �eld acquires a vacuum expectation value v, the symmetry of the Lagrangian is
spontaneously broken, since the vacuum is no longer gauge invariant. But the Lagrangian
is still gauge invariant as it should. The SU(2)L symmetry is completely broken, by the
vacuum expectation value of the Higgs �eld

h�i0 = h0j�j0i =
 

0
vp
2

!
: (1.5)

Now de�ning

W�
� =

1p
2
(A1

� � iA2
�) ; (1.6)

we get the �elds for the charged W particles. The Weinberg angle �W is given by

cos(�W ) =
g2p

g2 + g02
: (1.7)

From this we may write the neutral Z �eld, and the photon �eld B�,

Z� = sin(�W )a� � cos(�W )A3
� ; B� = cos(�W )a� + sin(�W )A3

� : (1.8)

It is easily seen that the covariant derivative gives rise to a mass term for the gauge �elds.
Using 1.5

(D��)
y(D��) = 1

2v
2

 
g2

2
W�
� W

+� + 1
4(g

2 + g02)Z�Z�

!
; (1.9)

where we get MW = 1
2vg and MZ = 1

2v
p
g2 + g02. The photon �eld is left massless.

The fermionic content of the standard model consists of 3 generations with 2 doublets
each, one quark doublet and one lepton doublet. The �rst generation is 

u
d

!
;

 
e
�e

!
: (1.10)

The quark doublet further comes in three di�erent colors, arising from the SU(3) gauge
group of the standard model. In total there are 24 fermions. A crucial point of the
electroweak theory, is the gauge �elds does not couple to the full fermion �eld, but to the
chiral fermions,

uL =
1
2(1� 
5)u ; uR = 1

2(1 + 
5)u ; (1.11)

where uL is the left handed �eld, and uR is the right handed �eld. The coupling to these
components of the fermion �elds is not equal, in fact for the case of the SU(2) gauge �eld
the right handed part totally decouples. For simplicity the fermionic Lagrangian is only
written for the quark doublet  of the �rst generation, with analog contribution from the
other doublets,

 L =

 
uL
dL

!
: (1.12)

We will also collect the right handed �elds in doublets, even though they transform as
singlets under the SU(2) group. The fermionic part of the Weinberg-Salam Lagrangian
is given by

Lf = � Li

�D� L + � Ri


�(@� � ig0
Y

2
a�) R

� f (u)( � L ~�uR + �uR ~�
y L)� f (d)( �dR�

y L + � L�dR) : (1.13)
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Here ~� = i�2�
�. An implicit sum over the three SU(3) colors is meant for the quarks

doublets. Also the fermions acquire a mass, due to the Yukawa coupling to the Higgs �eld

mu =
1p
2
f (u)v ; md =

1p
2
f (d)v : (1.14)

Note that the Lagrangian 1.13 is an approximation, since the quarks with electric charge
�1

3
is mixed with the Kobayashi-Maskawa matrix K

0
B@ d0

s0

b0

1
CA = K

0
B@ d
s
b

1
CA (1.15)

The mixing of the quarks can give rise to CP violation, if K has a complex phase.
The full Lagrangian for the electroweak theory is

L = Lf + Lb + Lc + Lg (1.16)

where Lc contains the counterterms that have to be added when the theory is renormal-
ized, and Lg is a gauge �xing term, that makes it possible to de�ne a propagator for the
gauge �elds. Since we are not going to use these terms, they will not be described in any
detail.

The Lagrangian is invariant under the gauge transformations

A�(x)U(x)A�(x)U
�1(x)� (@�U(x))U

�1(x) ; (1.17)

�(x)! U(x)�(x) ; (1.18)

 (x)! U(x) (x) ; (1.19)

where U(x) 2 SU(2). And a U(1) gauge transformation

a�(x)! a�(x)� i@��(x) ; �(x)! ei�(x)�(x) ;  (x)! ei�(x) (x) : (1.20)

where �(x) is a arbitrary scalar function. The only unknown parameter of the Weinberg-
Salam theory is the Higgs self coupling �.

1.2 The vacuum structure of SU (2)

For the purpose of studying electroweak baryogenesis, it is a good approximation to
neglect the U(1) gauge �elds in the Weinberg-Salam theory. This is equivalent to putting
the Weinberg angle to zero, since in this limit the U(1) �elds totally decouple. As we
shall see, baryon number violating processes are associated with a transition of the SU(2)
gauge �elds between topologically di�erent vacuum states. The U(1) gauge group has a
topologically trivial vacuum structure with a unique vacuum state, and for this reason
it will only enter the dynamics of baryon violating processes. Hence for the rest of this
chapter we will restrict ourself to a SU(2) gauge theory. In the present section the Higgs
�eld and the fermions are disregarded as well.

The vacuum structure of the SU(2) gauge theory turns out to be rather complicated,
in the sense that there is a discrete set of classically vacua, that cannot be transformed

7



continuously into one another, without passing through non vacuum states. To see this
we rotate to Euclidean time (x0 ! �ix4), so that space time equals R4. The Euclidean
Lagrangian in the pure SU(2) theory is

L =
1

2g2
TrF��F

�� : (1.21)

Hence the vacuum condition for a pure Yang-Mills theory reads

8x 2 R4 : F��(x) = 0 (1.22)

If F��(x) vanishes in some open connected neighbourhood of x, then A�(x) is a pure
gauge, i.e.

F��(x) = 0, 9U(x) : A�(x) = @�U(x)U
�1(x) : (1.23)

Indeed if F��(x) = 0 in a region around x0, then the integral of A� along a curve C,
starting at x0 and ending at x, does not depend on the curve. The path ordered integral

U(x) = P exp(
Z
C
A�(x

0)dx0�) (1.24)

is independent of C. This U will therefore satisfy the pure gauge form for A�. It is
easily seen that the opposite statement is true, since if A� is a pure gauge then the �eld
strength tensor obviously vanishes. This shows that a vacuum state is a pure gauge in
the whole Euclidean space. Therefore a vacuum state can be represented by the matrix
U(x) 2 SU(2) de�ned for all x in R4.

Given a U 2 SU(2), it can be written in terms of the Lie algebra su(2), which is
spanned by the Pauli matrices.

U = ei���� = cos(j�j)I + i
����
j��j sin(j�j) = a0I + i~a~� (1.25)

and since detU = 1 we have
a20 + a21 + a22 + a23 = 1 ; (1.26)

showing that U can be represented by a point on the three sphere S3. This implies
that SU(2) is topologically equivalent to S3. Generally, a con�guration having a �nite
Euclidean action, must approach a pure gauge at in�nity. Choosing the boundary condi-
tions such that U ! 1 at spatial in�nity,

lim
jxj!1

U(x) = 1 ; (1.27)

lim
jxj!1

A�(x) = 0 ; (1.28)

allows us to compactify Euclidean space R4 to S3. Hereby U(x), representing a vacuum
state, de�nes a map from S3 to itself,

U : S3 ! SU(2) � S3 : (1.29)

The vacuum states can be characterized as laying in �3(S
3) = Z, where Z is the set of

integer numbers. The degenerate vacuum states are physically equivalent but topologically
distinct. Topologically the vacuum states can be divided into di�erent homotopy classes,
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classi�ed by the integer winding number, that counts the number of times S3 is mapped
onto itself. The winding number n is given by

n(U) =
1

24�2

Z
d3x�ijk Tr(@iU)U

�1(@jU)U
�1(@kU)U

�1 : (1.30)

An example is given, where we choose the temporal gauge A0 = 0. There is still the
freedom of choosing a time independent gauge transformation @0U(x) = 0, since this will
leave A0 invariant,

A0(x)! A00(x) = U�1(x)A0(x)U(x)� @0U(x)U
�1(x) = 0 : (1.31)

The vacuum states will be described by a time independent potential satisfying

Ai(~x) = �@iU(~x)U�1(~x) : (1.32)

For instance, with � an arbitrary scale parameter, and

U(~x) = ei�~��~x=(x
2+�2)

1
2 ; (1.33)

the corresponding pure gauge vacuum is a n = 1 vacuum state.
Generally, to a four dimensional con�guration with �nite Euclidean action, we can

assign the topological charge Q of the con�guration

Q =
1

16�2

Z
d4x TrF�� ~F

�� ; ~F �� = 1
2�
����F�� ; (1.34)

where ~F�� is the dual tensor. It is clearly a gauge invariant quantity. The topological
charge can be written as a total derivative, since

TrF�� ~F
�� = @�K

� ; (1.35)

where
K� = 2����� Tr(A�@�A� + 2=3A�A�A�) : (1.36)

This can easily be seen. Using F�� = [D�; D�] we get

TrF�� ~F
�� = 1

2
����� Tr(@�A� � @�A� + [A�; A�])(@�A� � @�A� + [A�; A�])

= 1
2�
���� (4 Tr(@�A�@�A�) + 4 TrA�A�(@�A�) + 4 Tr(@�A�)A�A�)

= 2����� ( Tr@�A�@�A� + 2 Tr(@�A�)A�A�) : (1.37)

Because of the cyclic property of the trace we have

@�K� = 2����� Tr [(@�A�)(@�A�) + 2(@�A�)A�A�] ; (1.38)

which completes the proof. Note that expanding the �eld strength tensor in the Lie
algebra elements, F�� = �igF �

��T
�, we have that F �

�� = @�A
�
� �@�A��+ g���
A��A
�. Then

K�, in terms of the Lie algebra elements, reads

K� = �1
2
g2�����(A

a
�F

a
�� �

1

3
g�abcA

a
�A

b
�A

c
�) : (1.39)
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Using 1.35 and 1.34 the topological charge becomes

Q =
1

16�2

Z
d4x@�K� : (1.40)

The Chern-Simons number NCS is de�ned by

NCS =
1

16�2

Z
d3xK0 =

1

8�2

Z
d3x�ijk Tr(A

i@jAk +
2

3
AiAjAk) : (1.41)

A large gauge transformation is one that cannot be continuously deformed into the iden-
tity, and it will change the Chern-Simons number by an integer amount, since we have
that a gauge transformation with U 2 SU(2) changes NCS as

NCS ! NCS +
1

24�2

Z
d3x�ijk Tr(@iU)U

�1(@jU)U
�1(@kU)U

�1 = NCS + n(U) : (1.42)

The local, or small, gauge transformations are those that can be continuously transformed
into the identity, and they will leaveNCS invariant. Calculating the Chern-Simons number
for the vacuum states, one �nds that it equals the winding number. Between two neigh-
bouring vacuum states there must be an energy barrier, since they cannot be transformed
into one another without passing through non-vacuum states. In the next chapter we
will shown that the barrier is �nite1, allowing the gauge �eld to make transitions between
the vacuum states. The Chern-Simons number may be regarded as a parameter for the
con�guration space. Performing a large gauge transformation changes the Chern-Simons
number by an integer amount, while the energy is invariant. The con�guration space
therefore has a periodic energy barrier with respect to the Chern-Simons number with
period 1. The vacuum states are situated at the integer points.

For an evolution of a gauge �eld con�guration, we can de�ne the topological charge
as a function of time by

Q(t) =
1

16�2

Z t

0
dt
Z
d3x@�K

� : (1.43)

This is not a Lorentz invariant quantity since it depend on the time. Transforming to a
gauge where ~K vanish at in�nity we get

Q(t) =
1

16�2

�Z
d3xK0

�t
0
+
Z t

0
dt
Z
S

~KdS = NCS(t)�NCS(0) : (1.44)

The topological charge is gauge invariant, implying that the di�erence between NCS(t)
and NCS(0) is gauge invariant, even under large gauge transformation. Let us consider
vacuum transitions, where the gauge �elds evolve from a vacuum con�guration at t = 0
with winding number n(0) and ending in another with n(t). Then choosing the temporal
gauge A0 = 0, we have equation 1.44 is satis�ed, and

Q = n(t)� n(0) : (1.45)

The topological charge for a vacuum transition will be an integer number.

1In the SU(2) Higgs theory
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1.3 Instantons

Let us estimate the probability for quantum tunnelling through the energy barrier between
adjacent vacua jni and jn+1i. In a semi-classical approximation the tunnelling amplitude
Tt is given in terms of the Euclidean action, with use of the Feynman-Kac formula

Tt = hnje�H=T jn+ 1i =
Z
DA�e�SE ; (1.46)

where T is the temperature, and the �elds are integrated over closed loops of length 1=T .
For T ! 0 we expect the integral to be dominated by a solution that minimizes the
Euclidean action.

The instanton [50] solution provides us with such a con�guration. It is a solution
to the 4-dimensional Euclidean �eld equations, and hence minimizes the action. Again
denoting Euclidean time x4, it can be written as

A� =
� 2

� 2 + �2
(@�U)U

�1 ; (1.47)

where � 2 = x24 + ~x2, and

U =
x4 + i~x~�

�
: (1.48)

The arbitrary constant �, de�nes the instanton size. The size is not �xed since the
Euclidean action

SE =
1

2g2

Z
d4x TrF��F�� (1.49)

is invariant when scaling the �elds A�(x)! �A(�x). The instanton is self dual ~F�� = F��,
and it follows immediately from the Bianchi identity D�

~F� = 0, that the �eld equation
D�F� = 0 is satis�ed. We have that for x4 ! �1 the instanton con�guration is equal to
a pure gauge vacuum with winding number n, and for x4 !1 it is a vacuum state with
winding number n + 1. Hence the topological charge is

Q = n(t = �1)� n(t =1) = 1 : (1.50)

The instanton interpolates between the two di�erent vacuum states, and we must have
that for the intermediate state F�� 6= 0. Therefore the instanton has an energy bump,
which is not classically allowed. It describes the tunnelling between two neighbouring
vacua.

A general bound on the action can be obtained using the inequality

Tr(F�� � ~F��)
2 � 0 : (1.51)

In Euclidean space we have ~F�� ~F�� = F��F�� , giving

TrF��F�� � TrF�� ~F�� : (1.52)

Inserting the topological charge, we get the bound

SE � 8�

g2
Q : (1.53)
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The instanton being self dual, satis�es the equality in 1.51, and the action is

SE =
8�

g2
: (1.54)

Using equation 1.46, the transition rate for quantum tunnelling between two inequivalent
vacua 2 is suppressed by a very small number

Tt / exp(�16�2

g2
) � 10�160 (1.55)

The quantum tunnelling probability between the vacuum states is so small that it can be
neglected.

Now adding a Higgs doublet to the theory the action reads

SE =
Z
d4x(

1

2g2
TrF��F

�� + (D��)
y(D��) + �(�y�� v2

2
)2) : (1.56)

The vacuum con�gurations are now given by

A� = @�UU
�1 ; (1.57)

� =
vp
2
U

"
0
1

#
: (1.58)

Also the Higgs �eld can be characterised by a winding number, if �(x) = (�1�
�
1+�2�

�
2)

1

2 6=
0 throughout space. This condition allows us to write the Higgs �eld in the matrix form

�(x) =

"
�2 �1

���1 ��2

#
= �(x) ~U(x) ; (1.59)

where ~U 2 SU(2). The winding number of this matrix represents the winding number of
the Higgs �eld.

NH = n( ~U) : (1.60)

We see that for a vacuum transition, this implies that for the Higgs �eld somewhere on
the path there exist a point where �(x) = 0. Otherwise ~U is de�ned everywhere and will
change continuously as the �eld evolve, yielding a constant winding number. In particular
the instanton interpolating between vacuum states will have � = vp

2
for x4 ! �1, and

for some x4 there most be a zero point of the Higgs �eld. But scaling the Higgs �eld
�(x)! �s(x) = �(sx), the action for the potential term will scale as

SE(�
s(x)) =

1

s4
SE(�(x)) : (1.61)

The solution that minimizes the Euclidean action, and having topological charge equal
to one, will therefore have the Higgs �eld at the vacuum expectation value everywhere,
except at one point, where it is zero. This solution, being singular, is not a physical
con�guration, and in this sense, the instanton solution does not exist in the SU(2) Higgs
theory. There is no physical solution that minimizes the action, but it is possible to �nd
con�gurations with an Euclidean action arbitrarily close to 8�

g2
, and it is concluded that

the quantum transition rate between di�erent vacuum sectors is unchanged.

2This rate applies only for zero temperature.
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1.4 The chiral anomaly

In this section we will look at anomalies in the electroweak theory. With an anomaly we
understand a classical symmetry which is not preserved at the quantum level. This can
come about since in the quantum theory the path integral includes �elds that do not obey
the classical �eld equations. The non-conservation of the baryonic current is due to the
asymmetric coupling to chiral fermions in the SU(2) sector, and is therefore related to the
chiral anomaly. For this reason we will now derive the anomaly of the axial current. The
interaction between the fermions and the gauge �elds is described by the Lagrangian

L = i � L
�D
� L : (1.62)

It is invariant under a global chiral transformation

 (x)! ei�
5 ; � (x)! � (x)ei�
5 ; (1.63)

and we have the classically conserved N�other current

j5� =
� 
�
5 (1.64)

Note that this is true only for massless fermions. But under a local chiral transformation,
with � = �(x) the Lagrangian will change as

�L = � � 
�
5 @
��(x) : (1.65)

Therefore
�S[ � ;  ;A�] = �

Z
d4x�(x)@�j

�
5 (x) : (1.66)

It would be natural to expect that the expectation value,

h@�j5�(x)i =
R D � D DA�@�j5�(x)eiS[ � ; ;A�]R D � D DA�eiS[ � ; ;A�]

(1.67)

would be zero even in the quantum theory, since otherwise the functional measure cannot
be invariant under the formally unitary transformation given by 1.63, with �! �(x). As
shown in the following, this however is not true.

We will follow the derivation of Fujikawa [6, 47], who �rst showed that the chiral
anomaly can be obtained non-perturbatively in the path integral approach. This is done
by observing that the functional measures D and D � of the fermionic �elds are not
invariant under an in�nitesimal chiral transformation. During the calculation we rotate
to Euclidean space, where the Lagrangian reads

L = �i L
�D� L : (1.68)

The idea is to expand the fermionic �elds over a complete orthotogonal basis, consisting
of the eigenstates of the covariant derivative operator =D�. After the Wick rotation the
operator =D� is hermitian in the Hilbert space of (doublet) spinors, and the eigenstates
will form a complete set,

 (x) =
X
n

an�n(x) ; � =
X
n

�yn(x)�bn ; (1.69)
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where f�ng is a set of eigenfunctions for the covariant derivative operator,
� i
�D��n(x) = �n�n(x) ; (1.70)

with the orthonormality property Z
d4x�yn�m = �nm : (1.71)

The path integral is de�ned as the integral where  (x) is varied over all possible spinors,
therefore Z

D � D =
Y
m

d�bm
Y
n

dan : (1.72)

It is clear that A� will not change under the chiral transformation. Performing a local
chiral transformation of the spinors, we have

 0(x) = ei�(x)
5 =
X
n

ei�(x)
5an�n(x) =
X
m

a0m�m(x) : (1.73)

Using relation 1.71 the new coe�cient is extracted,

a0m =
Z
d4x�ym(x)

X
n

ei�(x)
5an�n(x) =
X
n

Z
d4x�ym(x)e

i�(x)
5an�n(x) =
X
n

Cmnan :

(1.74)
With this de�nition, Cmn is in�nite in its labels, but assuming that there is only a �nite
number of of eigenfunctions, it becomes a �nite matrix. Similarly we get

�b0m =
X
n

Z
d4x�bn�

y(x)ei�(x)
5�n(x) =
X
n

�bnCnm : (1.75)

The coe�cients �bn and an are Grassmann variables and we have, for x and y Grassmann
n-vectors, and A a complex matrix.

x = Ay ) dnx = (detA)�1dny : (1.76)

For the functional measure 1.72 we can formally write

Y
n

d�b0n
Y
m

da0m = (detC)�2
Y
d�bn

Y
dam (1.77)

For an in�nitesimal local chiral transformations �(x), the Taylor expansion of the Matrix
C reads

C = I + �̂ +O(�2) ; �̂ =
Z
d4xi�yn(x)�(x)
5�m(x) : (1.78)

Then

(detC)�2 = e�2 tr logC = e�2 tr�̂+O(�2) = e�2i
R
d4x�(x)

P
n
�yn(x)
5�n(x) (1.79)

The sum
P
n �

y
n(x)
5�n(x) is not well de�ned and to evaluate the expression a gauge

invariant regularization should be imposed. This can be done by providing a cuto� M in
the eigenvalues �n, since these are gauge invariant,

X
n

�yn(x)
5e
�(�nM )

2

�n(x) ; M !1 : (1.80)
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Putting back �i
�D� = �i=D and using the Dirac notation �n(x) = hxjni we get
X
n

�yn(x) 
5e
�
�
�i =D�
M

�2
�n(x) =

X
n

hnjxi 
5e
�
=D�
M

�2
hxjni

= Tr

0
@jxi 
5e

�
=D�
M

�2
hxj
1
A ; (1.81)

where trace is taken over the whole Hilbert space. The state jni can be Fourier expanded
in plane waves

X
n

�yn(x) 
5e

�
=D�
M

�2
�n(x) = Tr

Z d4p

(2�)4

5e

�ipxe

�
=D�
M

�2
eipx ; (1.82)

where the trace is now over the doublet spinor indices. In order to evaluate this, we write
=D2
� as

=D2
� = 
�
�D�D� =

1
2f
�; 
�gD�D� +

1
2 [
�; 
�]D�D�

= ���D�D� +
1
4 [
�; 
�]D�D� � 1

4 [
�; 
�]D�D�

= D2 + 1
4 [
�; 
�][D�; D�] = D2 + 1

4 [
�; 
�]F��

= D2 � i

2
���F�� ; (1.83)

where ��� =
i
2
[
�; 
�]. Now, for a function f(x) we have

e�ipxD2eipxf(x) = e�ipxD�(ip�e
ipxf(x) + eipxD�f(x))

= e�ipx(�p2e�ipxf(x) + 2ip�e
�ipxD�f(x) + e�ipxD�D�

= (�p2 + 2ip�D� +D2)f(x) (1.84)

and
e�ipx[D�; D�]e

�ipxf(x) = [D�; D�]f(x) : (1.85)

In total we have
e�ipx=D2

�e
ipx = (�p2 + 2ip�D� + =D2) : (1.86)

From the Taylor expansion of the exponential function we get

e�ipxe

�
=D�
M

�2
eipx =

1X
n=0

1

n!
e�ipx

 
=D�

M

!n
eipx =

1X
n=0

1

n!

 
e�ipx

=D�

M
eipx

!n
; (1.87)

hence

e�ipxe

�
=D�
M

�2
eipx = e�

p2

M2 e
=D2

+2ip�D�

M2 : (1.88)

Plugging this into formula 1.82, and expanding the in powers on M , we obtain

X
n

�yn(x) 
5e

�
=D�
M

�2
�n(x)

=
Z d4p

(2�)4
e�

p2

M2 Tr 
5

 
1 +

=D2 + 2ip�D�

M2
+
(=D2 + 2ip�D�)

2

2!M4
+O

�
1

M6

�!
:(1.89)
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The gaussian integral of the exponential gives

Z d4p

(2�)4
e�

p2

M2 =
M4

(2�)2
: (1.90)

In the limit of M ! 1 the term with O( 1
M6 ) will vanish. In this limit the two �rst

terms would be divergent, but we have Tr
5 = 0 and Tr
5��� = 0. The third term
gives rise to a �nite integral. The only nonzero contribution coming from the term with
tr(
5������) = �����. This gives

X
n

�yn(x) 
5e

�
=D�
M

�2
�n(x) = � 1

(2�)2
1

8
tr(
5������) TrF��F��

= � 1

16�2
TrF�� ~F�� : (1.91)

Using 1.79 we �nally obtain

Z
D � D !

Z
D � D e i

8�2

Z
d4x�(x) TrF�� ~F

�� : (1.92)

This will contributribute to the change of the e�ective action under a local chiral trans-
formation, Rotating back to Minkowski space, and using 1.66 we get

�Seff = � 1

8�2

Z
d4x�(x) TrF�� ~F

�� �
Z
d4x�(x)@�j

�
5 (x) : (1.93)

The local chiral transformation is just a change of variables, and we must have h�Seffi = 0.
This gives the anomalous axial current

@�j
�
5 = � 1

8�2
TrF�� ~F

�� : (1.94)

We see that it is indeed possible to have a non vanishing anomaly.

1.5 The baryon number

The baryon number B, de�ned as the number of baryons b minus the number of an-
tibaryons �b, is not a conserved quantity in the electroweak theory, as was realized by
't Hooft in 1976 [5]. This is an entirely non-perturbative e�ect. Considering massless
fermions we have the interaction Lagrangian

L =
X
i

i � (i)
L 
�D

� (i)
L ; (1.95)

where i is a doublet index. Generally the fermion number N i for a doublet (i) is given by

N
(i)
f =

Z
d3x � y (1.96)

The baryon number is de�ned to be 1
3
for a quark, giving B(i) = 1=3N

(i)
f . The theory

has nL = 12 classically conserved Abelian currents, where 9 of them are associated with
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the conservation of the number of quarks and come from the symmetry given by the
transformation

 ! ei�(B) ; (1.97)
� ! � ei�(B) ;

Similarly we have 3 conserved currents, by substituting the lepton number L in 1.97,
where L = 1 for a lepton. We de�ne the current J (i)

� for the doublet  (i)

J (i)
� = � 

(i)
L 
� 

(i)
L = � (i)
� 

(i) � 1
2
� (i)
�
5 

(i) (1.98)

If  (i) is a lepton doublet then J (i)
� is the leptonic current, if it a quark doublet J (i)

� equals
three times the baryonic current. The corresponding charge is the fermion number

N
(i)
f =

Z
d3xJ

(i)
0 : (1.99)

The currents 1.98 are not conserved in the quantum theory, by using equation 1.94 we
get

@�J (i)
� =

1

16�2
TrF�� ~F

�� ; ~F �� = 1
2�
����F�� ; (1.100)

where the total baryonic current is obtained by summing over the three di�erent gen-
eration of quarks, and their colour index, which cancels with the factor of 1=3 for the
de�nition of the baryon number for a quark. Similarly the leptonic current is given by
the sum over the three lepton generations. In total we may write

@�JB� = @�JL� =
Nf

16�2
TrF�� ~F

�� ; (1.101)

where Nf is the number of generations. The lepton and baryon currents have the same
anomaly, and it is clear that the electroweak theory still preserves B � L.

From the equation 1.100 we get

@0N
(i)
f =

Z
d3x@0J

(i)
0 (1.102)

= �
Z
d3x@iJ

(i)
i +

Z
d3x

1

16�2
TrF�� ~F

�� (1.103)

=
Z
d3x

1

16�2
TrF�� ~F

�� ; (1.104)

where we assumed that the currents vanish at in�nity. We see that it is possible to change
the number of fermions if the gauge �elds evolve in such a way that

Z t

0
dt
Z
d3x

1

16�2
TrF�� ~F

�� 6= 0 : (1.105)

This is the topological charge of equation 1.44. The change of the fermion number is
therefore related to the topological charge by

�N
(i)
f = Q(t) : (1.106)
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Figure 1.1: The barrier between di�erent vacuum sectors when neglecting the fermions.
I instanton tunnelling. S sphaleron transition. Here Esph is the energy of the sphaleron.

For vacuum transitions Q(t) is an integer, given by the di�erence in the winding numbers.
In the temporal gauge we get

�NB = �NL = Nf (NCS(t)�NCS(0)) : (1.107)

Relation 1.35 allow us to de�ne a conserved current

~JB� = JB� �
Nf

16�2
K� = JB� �

1

8�2
����� Tr(A

�@�A� +
2

3
A�A�A�) : (1.108)

giving the conserved charge

B � NF

16�2

Z
d3xK0 = B �NFNCS : (1.109)

This current, though, is not gauge invariant under large gauge transformation, and no
physical meaning can be given to it.

We see that associated with a process where the bosonic �elds jumps between di�erent
vacuum sectors, there will be a change in the baryon number. If the gauge �elds evolve
from one vacuum, say with NCS = 0, to a neighbouring one with NCS = +(�)1, then the
baryon number will change with +(�)3. Even though it is the asymmetry of the fermions
we are interested in explaining, they can be neglected in a �rst approximation, since the
violation of the fermion number is governed by the bosonic �elds. Neglecting the fermions
and the U(1) gauge group is a widely used approximation when studying baryogenesis.
Baryon number violation has never been detected experimentally, but at low energies and
temperatures, the only possibility for an evolution of the bosonic �elds between di�erent
vacua, is by quantum tunnelling. It was shown in section 1.3 that these processes are
highly suppressed. The baryon number is a good quantum number at low temperatures.

The form of the energy barrier between the topologically distinct vacua, and especially
the height, is therefore of importance when studying baryogenesis, since it will determin-
ing the transition rate between the vacuum sectors. In the next chapter the sphaleron
solution is describes, which represents the top of the barrier when neglecting the fermions.
The height of the barrier is therefore given by the energy of the sphaleron. At high tem-
perature, there are large thermal 
uctuations, and one might expect that the gauge �elds
has su�cient energy to pass the barrier classically, as shown in �gure 1.1. Processes where
the gauge �eld evolves classically are known as sphaleron transitions. When including the
fermion the pictures looks a bit di�erent, as is described in chapter 4.
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Chapter 2

The sphaleron con�guration

The sphaleron con�guration of the SU(2) Higgs model and its properties are described in
this chapter. The sphaleron con�guration is thought as being representing the top of the
barrier between two neighbouring topological distinct vacua, and is therefore important
when discussing baryon violating processes. It was �rst found by Dashen, Hasslacher and
Neveu (DHN) [7], but the relation of the sphaleron to the topology of con�guration space
and baryon violation was founded by Klinkhammer and Manton (KM) [9].

2.1 Static con�gurations

We want to investigate the barrier between topologically distinct vacua, in the case where
the fermions are neglected. A point on the barrier, for a given Chern-Simons number,
is the minimum classical static energy of the bosonic �elds. The top of the barrier is
represented by the maximum energy con�guration on a minimal1 energy path from one
vacua to a neighbouring one. Assuming that we have such a con�guration, it will be
a non-trivial static solution to the Euler-Lagrange equations. This property is realized
by the sphaleron con�guration, as we will show in the following sections. For static
con�gurations A0 can consistently be set to zero. Given the Lagrangian 1.2, the energy
functional for static con�gurations is

E =
Z
d3x14F

�
ijF

�
ij +

1
4fijfij + (Di�)

y(Di�) + �(�y�� v2

2
) ; (2.1)

where fij = @iaj � @jai is the �eld tensor for the U(1) gauge �eld. The �eld equations
reads

(DjFij)
a = �1

2 ig[�
y�aDi�� (Di�)

y�a�] ; (2.2)

where (DjFij)
a = @jF

a
ij + g�abcAbjF

c
ij. For the U(1) �eld we get

@jfij = �1
2
ig0[�yDi�� (Di�)

y�] ; (2.3)

and for the Higgs �eld
DiDi� = 2�(�y�� 1

2v
2)� : (2.4)

Let us see how the energy varies when the �elds are scaled with the parameter s.

As(x) = sA(sx) ; �s(x) = �(sx) : (2.5)

1Strictly speaking this should be the in�mum
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The contribution to the energy from the pure Yang-Mills term, when using the gauge
group SU(2), scales as

E(A(x)) = � 1

2g2

Z
d3x Tr(F 2

ij(x)) = � 1

2g2

Z
d3(sx) Tr(F 2

ij(sx)) (2.6)

= � 1

2g2

Z
d3xs3 Tr(

@

@sxi
Aj(sx)

@

@sxj
Ai(sx) + [Ai(sx); Aj(sx)])

2 (2.7)

= � 1

2g2

Z
d3xs3 Tr(s�2F s

ij(x))
2 =

1

s
E(As(x)) : (2.8)

There is no non-trivial static solution in pure Yang Mills theory, since the energy varies
monotonically with the scaling parameter. The only static solution is the vacuum. How-
ever, the energy from the interaction term scales oppositely,

E(A(x);�(x)) =
Z
d3xs3((

@

@sxi
+ Ai(sx))�(sx))

2 = sE(As(x);�s(x)) (2.9)

and the pure scalar �eld energy scales as

E(�(x)) =
Z
d3xs3�(�(sx)y�(sx)� v2

2
)2 = s3E(�s(x)) : (2.10)

When scaling the Higgs �eld down the energy is lowered. We see that in the coupled
gauge Higgs model the energy diverges both as s ! 1 and s ! 0. There is a �xed s
that minimizes the energy, in contrast to both the pure Yang-Mills theory and the pure
scalar theory. We can therefore talk about the height of the barrier. The size, and hence
the energy, of a non-trivial static con�guration is determined. Note that in turn, it was
found in section 1.3, that the instanton solution to the four dimensional Euclidean �eld
equations, due to scaling properties, is not physically existing in this theory.

2.2 Non-contractible loops in Weinberg-Salam the-

ory

In this section we will study the topology of the con�guration space in the Weinberg-
Salam theory without fermions. We want to consider only physically di�erent states, and
collect the con�gurations in gauge orbits. We regard all con�gurations, which can be
obtained from a given con�guration by a gauge transformation2, as equivalent. Consider
the manifold consisting of all �nite energy, static �eld con�gurations fA�(x);�(x)g and let
E be the functional on the manifold, de�ned by the classical energy of the con�guration.
This manifold has a unique vacuum, since we work with gauge orbits. The question is
whether there exist non-contractible loops on the manifold passing through the vacuum.
A non-contractible loop is one that cannot be continuously transformed into a point. We
collect the loops at the vacuum con�guration in homotopy classes. For a given loop C
there will exists some maximum energy when going around the loop. We de�ne EH as
being the in�mum of the maximum energies for loops in a non-contractible homotopy
class H

EH = inf
C2H

max
C

E : (2.11)

2Including large gauge transformations
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Figure 2.1: Con�guration space collected in gauge orbits, with the energy (E) vertically.
The dashes curve is the non-contractible loop going through the sphaleron solution (S).

Note that a solution to this equation will have a negative energy mode, since the vacuum
have less energy. A priori it is not known whether there exist non-contractible loops in the
Weinberg-Salam theory, and if so, we cannot be sure of the existence of a con�guration
that will have exactly the energy EH , since the manifold in question is in�nite dimensional,
and the minimum might not be realized. If however such a solution exist, the energy of
the con�guration will be the height of the barrier between topologically distinct vacua.
The non-contractible loops in the manifold where we have gauge orbits corresponds to a
path of con�gurations between topologically distinct vacua. The sphaleron con�guration
satis�es 2.113. A solution to equation 2.11 will be a saddle-point of the energy functional,
and therefore a solution to the classical �eld equations. Being a saddlepoint it is classically
unstable, but since it satis�es equation 2.11, it is clear that it can only have one unstable
direction. Indeed if there were two unstable directions, it would be possible to construct
a lower energy con�guration in the same homotopy class, by continuously deforming
the con�guration along one of the unstable directions, which contradicts the assumption
E = EH . The negative energy direction of the sphaleron correspond to the directions of
the Chern-Simons number. This picture of the con�guration space is schematically shown
in �gure 2.1.

As was shown by N. Manton [8], it is indeed possible to construct non-contractible
loops in the Weinberg-Salam theory. In the following we will give an explicit example of a
non-contractible loop. For this purpose we write the four real components of the complex
Higgs doublet as a four vector

� =

"
�1 + i�2

�3 + i�4

#
; �Re =

2
6664
�1

�2

�3

�4

3
7775 : (2.12)

It is convenient to work with spherical coordinates. The gauge should be �xed completely,
and by choosing the polar gauge Ar = 0 there is no further local gauge freedom. To
obtain a �nite energy solution, the Higgs �eld must approach its vacuum value at in�nity.
Assuming that the limiting Higgs �eld �1RE , is a smooth function of the polar angles '; �,
the requirement reads

j�1Re('; �)j =
vp
2
: (2.13)

3For MH < 12MW
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By making a global gauge transformation, we impose that it should be in the form

�1('; � = 0) =
vp
2

"
0
1

#
: (2.14)

This gives the unique vacuum state

�vac(x) =
vp
2

"
0
1

#
; Avac(x) = 0 : (2.15)

We want to construct a closed loop at this vacuum state. Note that the remaining global
U(1) gauge freedom cannot a�ect the homotopy class of this loop, since it is a continuous
transformation. The asymptotic Higgs �eld maps three dimensional space at in�nity, to
the Higgs vacuum manifold, which by equation 2.13, is equivalent to the three sphere S3

(with radius vp
2
). Hence �1Re can be regarded as a map from the two sphere S2 to S3.

Let � 2 [0; �] be a parameter for the loop C, for � = 0 and � = � all of S2 is mapped
into the vacuum state. Going around the loop C we therefore go through a continuous
family of maps given by �1Re. By associating a point (�; �; ') with the point p(�; �; ') on
S3, given by

p(�; �; ') =
�
sin � sin � cos'; sin � sin � sin'; sin2 � cos � + cos2 �; sin � cos �(cos � � 1)

�
;

(2.16)
this family of maps is then equivalent to a single map �(p) = �1Re(�(p); �(p); '(p) from
S3 to itself. Naturally it has to be checked that this map, and the inverse maps �(p), �(p),
'(p) are well de�ned. Every point in the domain of S3 is reached by at least one point
(�; �; '), and the maps �(p) and '(p) are unique points in S2. Further more the map �(p)
is unique, when restricted to the interval ]0; �[, except for the point (0,0,1,0). Even for
this point though, the mapping is unambiguous. In fact when p = (0; 0; 1; 0), � has to be
0, and the gauge �xing implies that for all � the point � = 0 is mapped to (0; 0; 1; 0). The
map � : S3 7! S3 is indeed well de�ned.

Recall that maps from S3 to S3 can be classi�ed by an integer number, equivalent to
the winding number of the map (�3(S

3) = Z). A map with non-zero degree is provided
by the identity map, which has winding number one. This gives a asymptotic Higgs �eld

�1 =

"
sin � sin �ei'

e�i�(cos�+ i sin� cos �)

#
: (2.17)

Now, the gauge �eld will have to approach a pure gauge asymptotically, in order to give
a �nite energy con�guration. It is natural to de�ne

A1� = �@�Û Û�1 ; A1' = �@'Û Û�1 ; (2.18)

where

Û =

"
(�12 )

� �11
�(�11 )� �12

#
: (2.19)

This will insures that the covariant derivative term in the energy, given by equation 2.1
vanishes asymptotically as it must. A non-contractible loop in the manifold can now be
constructed as

� = [1� h(r)]

"
0

exp(�i�) cos�
#
+ h(r)�1 ; (2.20)
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A� = f(r)A1� ; A' = f(r)A1' ; Ar = 0 : (2.21)

The energy will be �nite for suitable choices of f and h, and these must satisfy the
boundary conditions f(0) = h(0) = 0 and f ! 1; h! 1 as r!1.

As already mentioned the non-contractible loops de�nes a path from one vacuum to
a topologically distinct one, when the gauge �xing is relaxed. Indeed if we imposed the
condition that at spatial in�nity the con�guration should be the unitary vacuum, and
� = 0 is the unitary vacuum then the con�guration for � = � would be a pure gauge
Ai(x) = �@iU(x)U�1(x), where U(x) cannot be continuously transformed into the unit
matrix.

This shows the existence of non-contractible loops in the SU(2) Higgs theory, and it
makes it likely that there exist non-trivial static solution to the �eld equations. The only
obstacle to this is that, since the manifold is in�nite dimensional, the solutions to equation
2.11 might \escape" to in�nity. Finding a non-trivial static solution analytically is not
an easy task, but by making certain ans�atze for the con�gurations and minimizing the
energy functional, it is possible to construct an approximation to the solution to equation
2.11, and obtain an upper bound for the energy.

2.3 The SU (2) Higgs sphaleron

We are searching for a non-trivial static solution to the �eld equations. In order to be
able to perform analytic calculations, we put restrictions on the possible forms of the
Higgs and gauge �elds. The ansatz must be such that we get a �nite energy solution, and
compatible with the classical �eld equations. First we restrict ourselves to SU(2). This,
as already mentioned is equivalent to the Weinberg-Salam theory for �W = 0. A simple
ansatz can be made by assuming �elds of the form

A�i �
� = �2i

g
f(gvr)@iU

1(U1)�1 ; (2.22)

� =
vp
2
h(gvr)U1

"
0
1

#
; (2.23)

where f and h are function of the radial distance r, and

U1 =
1

r

"
x3 x1 + ix2

�x1 + ix2 x3

#
: (2.24)

These �elds are compatible with the classical equations of motion, given by equation 2.2
and 2.4. We see that for h ! 1 and f ! 1 when � ! 1 the �elds will approach their
vacuum values at spatial in�nity, as they should to obtain �nite energy. A more general
ansatz will be considered later. The energy is given by formula 2.1, where the term with
fij is zero, since we disregard the U(1) gauge group. The energy density is spherically
symmetric as shown in appendix A. Introducing the dimensionless radial distance � = gvr,
the energy functional becomes

E =
2MW

�

Z 1

0

"
4(f 0)2 +

8

�2
[f(1� f)]2 + 1

2�
2(h0)2 + [h(1� f)]2 + 1

4

�

g2
�2(h2 � 1)2

#
d� ;

(2.25)
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where the prime denote di�erentiation with respect to �. We are searching for functions
f and h that minimizes the energy, and from variational calculus this can be obtained by

d

d�

dE

df 0
� dE

df
= 0 : (2.26)

The �eld equations for the dynamical variables are

8f 00 � 8

�2
2[f(1� f ](1� 2f) + h22(1� f) = 0 (2.27)

and
d

d�
(�2h0) = 2h(1� f)2 +

�

g2
�2h(h2 � 1) : (2.28)

If these equations are satis�ed, the �eld equations 2.2 and 2.4 are satis�ed. The con�gu-
ration given by 2.22, 2.23 and with f and h solution to the above di�erential equations,
is what we will call the sphaleron solution in SU(2) Higgs theory. The negative energy
direction is outside the class of con�gurations satisfying the ansatz 2.22 and 2.23, making
the sphaleron a local minimum of the energy functional 2.25. It is still only a saddlepoint
of the full energy functional. As we shall see later it is possible to lower the energy by
non-charge conjugation invariant perturbations.

It is not easy to solve the pair of non-linear coupled di�erential equations analytically,
but by searching for solutions numerically it was found by DHN [7] that there is only one
solution. The functions f and h are shown in �gure 2.2 Asymptotically the �elds will
behave as

f(�) = a�2 for � ! 0 ; (2.29)

f(�) = 1� c exp(�1
2
�) for � !1 ; (2.30)

h(�) = b� for � ! 0 ; (2.31)

h(�) = 1� d
�
exp(�

q
2�=g2�) for � !1 ; (2.32)

where a,b,c and d are constants that can be determined by solving the di�erential equations
2.27 and 2.28. We see that the energy density is exponentially decreasing, and hence the
sphaleron is localized. The Higgs �eld is zero at the core of the sphaleron, as it must be
in order to change the winding number. In this sense the sphaleron can be regarded as
interpolating between the two di�erent vacua. The vacua of the broken and the symmetric
phase. From equation 2.25 we see that the energy can be written in the form

Esph =
MW

�
B(

�

g2
) : (2.33)

The factor B dependents on the Higgs mass. An upper bound on the sphaleron energy can
be found by assuming a simpli�ed form for the functions f and h. This was done by KM
[9], by basically letting the functions be given by the asymptotic behaviour and requiring
that they are continuously di�erentiable. In this way they obtained the bound 3.12 at
� = 0 and the highest value 5.44 for �!1. It is seen that B varies slowly as a function
of the Higgs mass. A better bound was found in ref. [15], by solving the di�erential
equations numerically, They found B = 3:04 at � = 0, and B = 3:64 for MH = MW .
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Figure 2.2: The functions f and h for � = g2. Reproduced from ref. [27]

The diameter of the sphaleron was estimated to be 2� 3 M�1
W . The sphaleron energy is

therefore roughly given by 10 TeV.
We have shown that the sphaleron solution exist in the pure SU(2) theory, and one

expects that it possible to continuously deform the solution to the full Weinberg-Salam
theory without fermions. To see the e�ects of the U(1) gauge group on the sphaleron,
we consider the case of small Weinberg angle �W . The SU(2) and Higgs �elds can be
approximated by their values for �W = 0. The U(1) �eld ai, though, will be non-zero.
The change in energy can then be written as

�E =
Z
d3x14fijfij � aiji ; (2.34)

where
ji = �1

2 ig
0(�yDi��Di�)

y� ; Di = @i � 1
2ig�

aAai : (2.35)

In the energy change 2.34 we have neglected the second order term in ai from the covariant
derivative. Using the �eld equation 2.3 we haveZ

d3xaiji =
1
2

Z
d3xfijfij (2.36)

therefore the energy change will be negative,

�E = �1
4

Z
d3xfijfij : (2.37)

The current ~j is found by inserting 2.22 and 2.23

~j = 1
2g

0v2
h2(�)(1� f(�))

r2
(�x2; x1; 0) : (2.38)

This acts as a source for a, and the energy density of the sphaleron is no longer spherically
symmetric, but only axially symmetric. For �W 6= 0 the sphaleron will have a magnetic
moment. In ref. [10] the sphaleron energy at the physical mixing angle �W = 0:5 was
obtained. The energy was found to di�er from the pure SU(2) Higgs sphaleron by less than
1%. Indeed the SU(2) sphaleron is a good approximation to the electroweak sphaleron.
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2.4 Topological charge of the sphaleron

To �nd the topological charge of the sphaleron, we choose a gauge where
R ~KdS = 0,

to have no contribution from the surface term. Using formula 1.44, and assuming that
the sphaleron con�guration is obtained from an evolution of a vacuum con�guration at
t = �1, we get

Q =
1

16�2

Z
d3xK0 + n ; n 2 Z : (2.39)

First we perform a rigid rotation and a gauge transformation by changing U1 ! U ,

U =

"
0 1
1 0

#
U1

"
0 i
�i 0

#
= i~� � ~̂x : (2.40)

in the formulae 2.22 and 2.23. The sphaleron solution is then written as

Aai = � 2f

gr2
�iabxb ; (2.41)

� =
vp
2
hi~� � ~x

"
0
1

#
: (2.42)

Further more we make a gauge transformation through

U(~x) = exp(1
2
i�(r)~� � ~̂x)

= cos
�(r)

2
+ i~� � ~̂x sin �(r)

2
: (2.43)

Provided that �(0) = 0 and that �(r) goes su�ciently fast to � as r ! 1, the integral

of ~K is zero. The gauge �eld con�guration becomes

Aai =
[1� 2f(gvr)] cos�(r)� 1

gr
�iabx̂b +

[1� 2f(gvr)] sin�(r)

gr
(�ia � x̂ix̂a) +

1

g

d�

dr
x̂ix̂a :

(2.44)
The topological charge in this gauge is equal to the Chern-Simons number and can now
be obtained from the formula

NCS(sphaleron) = � g2

16�2

Z
d3x�ijk

�
Aai @jA

a
k +

1

3
g�abcA

a
iA

b
jA

c
k

�
: (2.45)

In appendix A this integral is calculated. The topological charge density turns out to be
spherically symmetric, and the sphaleron has half integer topological charge

Q(sphaleron) = 1
2 + n ; n 2 Z : (2.46)

The sphaleron lies halfway between the topologically distinct vacua. This �t well with
the picture of the sphaleron as representing the barrier height, as shown in �gure 1.1.
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Figure 2.3: The Dirac energy levels of the fermions as a function of time, when the gauge
�elds perform a vacuum transition.

2.5 Fermionic level crossing

As the bosonic �elds evolve from one vacuum to another topological distinct one, the
Dirac energy levels of the fermions will shift. We can view the baryon violation, as
the consequence of one fermionic energy level crossing zero, turning an antifermion into
a fermion or vice versa. This simple picture is shown in �gure 2.3. Assuming that
the gauge �elds passes through the sphaleron, then the zero crossing take place at the
sphaleron con�guration, since the fermions have a zero mode there.

We want to show that the fermions have a normalizable zero mode in the background
of the sphaleron solution. Let us consider the case of a fermion doublet with degenerate
massMF , given in terms of the Yukawa couplingm. Using the representation of the Dirac
matrices


i =

"
0 �i
��i 0

#
; (2.47)

we can reduce the spinors to two components, and the zero energy Dirac equations in the
background of the sphaleron solution becomes

i�i(@i � ig�aAai ) L �m� 
(1)
R �m~� 

(2)
R = 0 ; (2.48)

i�i@i 
(1)
R +m�y L = 0 ; (2.49)

i�i@i 
(2)
R +m~�y L = 0 ; (2.50)

where � and ~A are given by equation 2.42 and 2.41, and  L is a left handed doublet, and
 
(1)
R ;  

(2)
R are right handed singlets. The following ansatz for the fermions will be made

 L;ab = �abu(r) ;  
(1)
R;ab = �0a�abw(r) ;  

(2)
R;ab = ~�0a�abw(r) ; (2.51)

where �0 = [ 0
1
]. With this ansatz we get

1

r
(@ru(r) +

2f(�)

r
u+MFh(�)w(r)) = 0 ; (2.52)

1

r
(@rw(r) +MFh(�)u(r) = 0 ; (2.53)
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since the equations 2.49 and 2.50 are identical. Let us look at the case were MF = 0. The
equation in u(r) is easily integrated

u(r) = N exp(�2
Z r0

0

f(gvr)

r
)dr (2.54)

From the asymptotic behaviour of the function f , see equation 2.29, we have

u(r) = exp(��2) for � ! 0 ;

u(r) = r�2 for � !1 : (2.55)

We see that each left handed fermion doublet has a zero modes in the sphaleron back-
ground. In the case of MF 6= 0 the equations 2.52 and 2.53 can be rewritten as two
decoupled second order di�erential equation for w(r) and u(r), and the solutions yields
a normalizable zero mode [12]. For the physical case of a fermion doublet with nonde-
generate masses, one cannot use the spherically symmetric ansatz for the fermions �elds,
but only an axially symmetric ansatz. It is shown in ref. [13] that the zero modes is
still normalizable [13]. When the gauge �elds passe through the sphaleron, one fermionic
energy level will therefore cross zero, and the baryon number is violated.

2.6 General spherical symmetric ansatz

The most general spherical symmetric ansatz can be written, in the temporal gauge, as

Aai =
1� fA(r)

gr
�aij r̂j +

fB(r)

gr
(�ij � r̂ir̂a) +

fC(r)

gr
r̂ir̂a ; (2.56)

Aa0 = 0 ; (2.57)

� =
vp
2
(H(r) + i~� � r̂K(r))

"
0
1

#
: (2.58)

The sphaleron solution found previously in section given equation 2.41 and 2.42, is iden-
tical to this ansatz for f = 1

2
(1 � fA) , h = K and the last three functions vanishing

identically. Under charge conjugation the function fA and H are left invariant, while fB,
fC , K changes sign. The latter terms are therefore charge conjugation odd. This ansatz
give rise to the spherical symmetric energy density [16]

E =
MW

�

Z
dx( 1

2x2
(f 2
A + f 2

B � 1)2 + (f 0A +
fBfC
x

)2 + (f 0B �
fAfC
x

)2

+ (K2 +H2)(1 + f 2
A + f 2

B + 1
2
f 2
C) + 2fA(K

2 �H2)� 4fBHK (2.59)

� 2xfC(K
0H �KH 0) + 2x2(H 02 +K 02) + 1

2

�
MH

MW

�2

x2(H2 +K2 � 1)2) ;

where x =MW r. The gauge is not complete �xed by this ansatz, indeed the form of the
ansatz is invariant under the transformation

U(r) = exp(i�(r)~� � ~x) ; (2.60)

where �(r) is an arbitrary radial function. This gauge freedom, allows us to �x one of
the functions. For the sphaleron solution to be possible, the length of Higgs �eld should
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not be �xed. Using the radial gauge xjA
a
j = 0, setting fC = 0, the �eld equations can

be obtained from 2.59, given four coupled di�erential equations. Searching for solutions
to these di�erential equations for small Higgs masses only the sphaleron solution of the
previous section is found [14], showing that there is only one static solution besides the
vacuum state. In the next section we will discus the case of large Higgs masses.

An important point for allowing the interpretation of the sphaleron solution as the top
of the barrier, is that it has only one negative mode. As mentioned earlier the sphaleron is
not a local minimum of the energy functional 2.59. We will consider small perturbations
of the sphalerons solution with charge conjugation odd 
uctuations, i.e. fB, fC and K,
since we know that within the charge conjugation invariant ansatz the energy cannot be
lowered. Hence the change in energy has the form

E(fA; fB; fC ; K;H) = Esph + �E(0; fB; fC ; 0; H)

= Esph +
MW

�

Z
dx	y
	 ; (2.61)

where 	 = (�fB; �fC ; �K), and 
 can be obtained from equation 2.59. This can be written
as an eigenvalue equation for the 3 by 3 matrix 
, and it has been shown [15, 16] by a
numerically study of the eigenvalues for 
, that for small Higgs masses the sphaleron
only has one unstable direction. Assuming that there is no asymmetric negative mode,
the sphaleron will satis�es equation 2.11 and is therefore indeed the top of the barrier.
For large Higgs masses some of the positive energy modes cross zero and the sphaleron
acquire more negative modes. This property gives rise to new static solutions, and the
sphaleron is no longer the top of the barrier.

2.7 Bisphalerons

For large Higgs masses the sphaleron bifurcates and the structure of the con�guration
space becomes very rich. To see this we will choose the gauge K = 0, and the classical
equations of motion become

�x2f 00A = x2H2(1� fA) + 2xf 0BfC + fB(xf
0
C � fC) ; (2.62)

x2f 00B = x2H2fB + 2xf 0AfC + fA(xf
0
C � fC) ; (2.63)

x2H 00 = �2xH 0 + 1
2
H(f 2

A + f 2
B + 1

2
f 2
C)� fAH + 1

2

MH

MW

x2H(H2 � 1) : (2.64)

Since f 0C is not present in the energy functional, we get the constraint equations

fC = x
�f 0AfB + fAf

0
B

x2H2=2 + f 2
B + f 2

A

; (2.65)

xf 0C = 2fB � fC(1 + 2x
H 0

H
) : (2.66)

Using the spherical symmetric ansatz it is possible to choose two set of boundary condi-
tions to the di�erential equations and obtain a �nite energy static solutions. The term
H2(1� fA)

2 in the energy functional vanish at the origin for either H(0) = 0 or fA = 1.
The �rst set

fA(0) = �1 ; fA(1) = 1 ;
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Figure 2.4: Con�guration space collected in gauge orbits for MH > 12MW with the
energy (E) vertically. The sphaleron solution (S) is no longer the lowest energy state
for non-contractible loops. The lowest energy state is now degenerate and given by the
bisphalerons (BS and BS�).

fB(0) = 0 ; fB(1) = 0 ; (2.67)

H(0) = 0 ; H(1) = 1 ;

is consistent with the sphaleron solution. The second set

fA(0) = 1 ; fA(1) = 1 ;

fB(0) = 0 ; fB(1) = 0 ; (2.68)

H 0(0) = 0 ; H(1) = 1 ;

gives rise to new solutions called bisphalerons or deformed sphalerons. When MH <
12MW these solutions are identical to the sphaleron solution [15, 11]. The condition
H 0(0) = 0 is forcing H to rapidly approach 0 when MH approach 12MW from above,
but in general the Higgs �eld is non-zero throughout space. It is possible, though, to
construct a non-contractible loop4 through the bisphalerons [15], and somewhere on the
path the Higgs �eld will be zero, since this is a necessary conditions for having a non-
contractible loop. The bisphalerons are not charge conjugation invariant, since fB will
be non vanishing, and comes in charge conjugate pairs. They have lower energy than the
sphaleron, and the topological charge is not a half integer. The con�guration space, where
the con�gurations are collected in gauge orbits, develops a \hill" with the sphaleron at
the top, and the bisphalerons are now degenerate solutions to equation 2.11, as shown in
�gure 2.4.

For higher values of MH the sphaleron will acquire more negative energy directions,
and branches of bisphalerons emerge, the next branch starting at MH = 137MW . This is
just the start of an in�nite sequence. As the Higgs mass approach in�nity the number of
static solutions rises logarithmically. The nth branch of bisphalerons will have n negative
modes. The �rst branch of bisphalerons have only one negative mode, and hence for
mH > 12MW the minimal energy path from one vacuum to another is passing through
the bisphalerons and not the sphaleron. The energy of the lowest bisphaleron di�ers only
little from the sphaleron energy, for MH !1 the di�erence is about 8%.

4In gauge orbit con�guration space
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2.8 The sphaleron barrier

The barrier between the topological distinct vacua has been studied from di�erent ap-
proaches. ForMH < 12MW this barrier is called the sphaleron barrier for natural reasons.
One way is to minimize the function

H = E +
MW

�
�NCS ; (2.69)

where � is a Lagrange multiplier. In ref. [16, 14] this was done using the general spherical
symmetric ansatz. This method will yield the extremal path. It will always pass through
the sphaleron and the bisphalerons if they exits, causing the barrier to bifurcate for Higgs
masses above 12MW , and the barrier is not monotonic as a function of NCS. Therefore
this approach will not give the minimal energy path for large Higgs masses.

Another approach was considered in ref. [17], where the path was constructed from
a gradient method. Also here the general spherical symmetric ansatz was used. Having
a con�guration C, the new con�guration ~C is found by going in the negative gradient
direction

~C = C � �C ; (2.70)

where �C is in the steepest descent direction. Starting at the sphaleron or bisphaleron the
corresponding barrier is then obtained. The sphaleron barrier having a maximum energy
larger than the bisphaleron barrier. The barriers obtained in this way is smooth and
monotonic, but we have two di�erent barriers, giving obtained from the bisphalerons, that
yields the minimal energy path. The path going through the bisphaleron is not symmetric
around NCS = 1

2 , but they can be obtained from one another by the transformation
E ! E and NCS ! 1�NCS. In this sense one barrier corresponds to the path taken by
the gauge �elds when a fermion is created, and the other barrier when an antifermion is
created.

For MW = MH the two sphaleron barriers obtained from the extremal and gradient
methods are both symmetric and di�ers very little, although the extremal path is steeper
than the gradient path, but they both end at the sphaleron con�guration.

Summarizing the properties of the sphaleron, it can be characterized as a charge
conjugation invariant, static solution to the classical �eld equations. The Higgs �eld is
zero at the core of the solution, and the sphaleron has half integer topological charge.
The solution exist for all values of the Higgs mass, but only for small Higgs masses does it
represent the top of the barrier between topological distinct vacua. The physical interest in
the sphaleron is due to the last property, which makes the connection to baryon violating
processes.
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Chapter 3

Lattice simulation of the sphaleron

barrier

The �nite energy barrier between topologically inequivalent vacua for the SU(2) Higgs
theory, also called the sphaleron barrier, is simulated on a lattice for MW = MH using
the Hamiltonian formulation.

A con�guration with a given Chern-Simons number is generated, this con�guration will
have to high temperature and hence energy. It is subsequently cooled down by a modi�ed
gradient method, in order to keep the Chern-Simons number �xed. In this process the
energy is minimized, and the potential barrier will be reached after su�ciently long time
of cooling. In particular, by choosing NCS =

1
2
, the sphaleron con�guration is obtained.

Due to recent lattice simulations of the baryon violation rate, it is of interest to
determine the lattice e�ects on the sphaleron, especially how the energy changes with the
lattice parameters. This work is mainly concerning these aspects of the sphaleron. These
simulations o�ers the opportunity to study con�gurations with an arbitrary Chern-Simons
number, allowing to determine the form of the barrier.

The computer code used for the simulations was kindly provided to me by Alexander
Krasnitz. Some modi�cations of the program were done by myself.

3.1 Continuum Hamiltonian formulation

To study the sphaleron barrier, we need only to consider classical physics, since it is
determined by the minimum classical energy. Here the Hamiltonian formulation of the
SU(2) Higgs model is used. In this chapter we will use the Higgs potential

V (�y�) = ��(�y�� v2)2 : (3.1)

With these conventions the classical masses are given by mH = 2v
p
� and mW = 1p

2
gv.

The Hamiltonian is obtained from the Lagrangian by a Legendre transformation

H = �i _� + ��
�
_A�� � L ; (3.2)

where the conjugate momenta are

� =
@L
@ _�

; �� =
@L
@� _A��

= _A�� = E�
� : (3.3)
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We will work in the temporal gauge A0 = 0, and one �nds

H = 1
2E

�
i E

�
i +

1
4F

�
ijF

�
ij + j�2j+ (Di�)

y(Di�) + �(�y�� v2)2 : (3.4)

Let x generally denote any canonical coordinates. The Hamiltonian equation of motion
are given by the Possion brackets

_x = fH; xg : (3.5)

For the pure Yang-Mills theory these reads

_A�i = E�
i ; _E�

i = �DjF ji (3.6)

3.2 Lattice formulation

One way of doing non-perturbative calculations is by means of lattice gauge �eld theory
simulations. When putting the system on a lattice, it is in principle possible to directly
compute expectation values. But normally the number of possible con�guration on the
lattice is too big for a direct calculation. Nevertheless it might be indirectly estimated
with a Monte-Carlo technique, where the con�gurations are generated with a probability
according to their weight in the expectation value. A continuum limit can then be obtained
by letting the lattice spacing approach zero, while �ne tuning the coupling constants.

Lattice simulation has turn out to be a powerful tool for studying non-perturbative
physics, and has been used to calculated the transition rate between topological distinct
vacua in the electroweak theory, from which the baryon violation rate is extracted. Here
the sphaleron is studied on a lattice, and we would like to determine the e�ect of this
discretization. It will be important for the estimating the lattice artifacts on the baryon
violation rate.

Let us consider a lattice f x j x 2 aZ3g, were we denote a site by x, and a is the distance
between two neighbouring sites. Our goal is to obtain a lattice Hamiltonian, which for
small lattice spacings a converges to the continuum Hamiltonian given by equation 3.4.
We will denote x+ aêi, where êi is a unit vector in the i direction, as x + i.

First we will consider a pure SU(2) theory. In a lattice formulation, it is no longer
convenient to work with the gauge-�elds themselves. Instead one works with the parallel
transporters or link matrices Ux;i 2 SU(2). The link matrices are related to the gauge
�elds by

Ux;i = exp(�aAi(x)) = exp(iag
��

2
A�i (x)) ; (3.7)

where we use the notation that Ux;i is the parallel transporter from site x + i to x. The
gauge �elds can then be represented by an assignment of Ux;i on each link on the lattice.
The link matrices obey the relation U�1

x+i;�i = Ux;i. Since the gauge group SU(2) is unitary,

we have that U y
x+i;�i = Ux;i. One de�nes the plaquette U2 at a site x and in the directions

i, j by the smallest possible loop on the lattice

U2 = Ux;i;j = Ux;iUx+i;jUx+i+j;�iUx+j;�j : (3.8)

A standard form for the magnetic part of the Hamiltonian is given in terms of the pla-
quettes by X

2

(1� 1

N
Re TrU2) =

X
x;i�j

(1� 1
2
Re TrUx;i;j) ; (3.9)
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where N = TrI = 2. In the following we will shown that it converges to the continuum
magnetic part of the Hamiltonian, if the coupling constant is chosen correctly. Using

Ai(x+ j) = Ai(x) + a@j(x) +O(a2) ; (3.10)

and the Cambell-Baker-Hausdor� formula

eAeB ' eA+B+ 1

2
[A;B] ; (3.11)

where we have left out higher order terms in A, B. Hence

Ux;i;j = exp�a2(Fij(x) +O(a)) : (3.12)

Since the matrix in the exponential is hermitian, the real trace of the plaquette reads

Re TrUx;i;j = 1
2 Tr(Ux;i;j + U y

x;i;j)

= TrI +
a4

2
Tr(Fij(x))

2 +O(a5) : (3.13)

In the limit a! 0 formula 3.9 becomes

X
2

(1� 1

N
Re TrUx;i;j) =

X
x;i;j

a4

4N
Tr(Fij(x))

2 +O(a5)

! 1

a3

Z
d3x(

a4

4N
Tr(Fij(x))

2 +O(a5))

=
Z
d3x

a

4N
Tr(Fij(x))

2 +O(a2) : (3.14)

Comparing to the continuum Hamiltonian we see that choosing g2a = 4 will give the
wished property of the lattice Hamiltonian. In the present simulation a = 1, giving g = 2.

The representation of the electric �eld on the lattice is again an assignment Ex;i
on each link. The electric �eld can be chosen such that they generate right covariant
derivative. For the pure Yang-Mills theory we therefore have the standard Kogut-Susskind
Hamiltonian

HYM = 1
2

X
l

E�
l E

�
l +

X
2

�
1� 1

2Re TrU2
�
: (3.15)

The equations of motion for the lattice system are given by

_Ul = fH;Ulg = � @H

@E�
l

; (3.16)

_E�
l = fH;E�

l g =
@H

@Ul
; (3.17)

where we denote a link (x; i) by the subscript l. One �nds

_E�
l = � i

2
Tr

 
��U y

l

X
2l

U2l

!
: (3.18)

The sum is over the four plaquettes that contain Ul and start at x, as shown in �gure
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Figure 3.1: Left the matrix
P
2x;i

U2 uses for the time derivative of the electric �eld Ex;i.
Right the matrix used for the calculating the magnetic �eld. The lines of the plaquettes
are shifted for clarity.

3.1. For the plaquettes we have the equations of motion

_Ul = �iE�
l Ul�

� : (3.19)

To represent the scalar �eld we assign a complex doublet �eld �x on each lattice site.
The potential term is easily formulated on the lattice,

V (j�j2) = �(�yx�x � v2)2 : (3.20)

The covariant derivative term can be expressed as

Di�(x)! �x+i � Ux;i�x ' �(x + aêi)� (1� aAi(x))�(x) = a(@i + Ai)�(x) : (3.21)

The canonical momenta of the Higgs �eld are substituted by �x, living on each site. In
total the Hamiltonian for the SU(2) Higgs system becomes

H = HYM +
X
x

j�xj2 +
X
x;j

j�x+j � Ux;j�xj2 + �V (j�xj2) : (3.22)

It is possible to formulate the concept of local gauge invariance on a lattice. A local gauge
transformation is given by

�x ! Vx�x ; Ux;i ! VxUx;iVx+i ; (3.23)

where Vx 2 SU(2).
When calculating the energy of a con�guration, we are only interested in the static

energy given by

Estat =
X
2

(1� 1
2Re TrU2)+

X
x;i;j

(�x+i�Ux;i�x)y(�x+i�Ux;i�x)+
X
x

�(�yx�x+v
2)2 (3.24)

The static energy density at a site x can be written as the symmetric expression

E(x)stat = 3�X
k

X
i;j 6=k

1

8
TrUx;i;j + �(�yx�x � v2)2

+ 6�yx�x +
X
i

1
2(�

y
x�i�x�i + �yx+i�x+i)

� X
i

n
(Ux�i;x�x)

y�x�i + (Ux;x+i�x+i)
y�x

o
; (3.25)

where the matrix
P
i;j 6=k Ux;i;j is shown is �gure 3.1. This formula is used for calculating

the energy density.
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END

sign= -1: NCS<target
sign=   1: NCS>target

Figure 3.2: Flow diagram of the program. c is an input parameter.

3.3 Description of the program

First I will give an overview of the program used. The following sections provide more
detailed information of the most important algorithms. A 
ow diagram of the program is
shown in �gure 3.2. Since we are only interested in the static properties of a con�guration,
the conjugate momenta of the �elds are not needed. A con�guration consists of the set
of fUx;ig assigned on every link of the lattice, and f�xg on every site. A �nite lattice
with N points in each space direction is used. Periodic boundary condition are imposed,
giving every site a neighbour in each direction. We start with a con�guration close to a
vacuum state, deviation from the vacuum is needed since this is a stable con�guration.
The initial con�guration is generated such that all Higgs doublets are put to the vacuum
value, and all link variables, except around one site, are put to the identity matrix. The
last three link variables are set to random SU(2) matrices. This con�guration is then
guided in the direction of a target value N target

CS of the Chern-Simons number. During
the guidance NCS is measured, allowing to determine when NCS passes its target value,
and the guidance is stopped. Then the con�guration undergoes constrained cooling,
where it looses energy, and the value of NCS is close to constant. The static energy
of the con�guration is calculated at regular intervals. The whole point is to obtain a
con�guration that has constant energy even though the constrained cooling algorithm is
used. Such a con�guration minimizes the static energy, and is a point on the potential
barrier. The constrained cooling, though, is not keeping the Chern-Simons number �xed.
If the con�guration goes too far from N target

CS , it is guided back again. When the guidance
is used, the con�guration will pick up energy, slowing down the process of reaching the
barrier.
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3.4 Evolution

Let us �rst see how the link matrices are updated. This should be performed in such a
way that they preserve the SU(2) form. It is convenient to write the derivative of U as

_Ux;i = i�� _U�
x;iUx;i : (3.26)

In the weak �eld limit the expansion of the link matrices given by 3.7 is

_Ux;i = i��
dA�x;i
dt

Ux;i = i��E�
x;iUx;i ; (3.27)

and it follows that
_U�
x;i = E�

x;i : (3.28)

The electric �eld is given in term of the time derivative of the link variables.
We discretize time by choosing a time step �t, and equation 3.26 is integrated numer-

ically with a second order Runge-Kutta algorithm

Ux;i(t+
1
2
�t) = Ux;i(t) exp(i�

� _U�
x;i(t)

�t

2
)

Ux;i(t +�t) = Ux;i(t) exp(i�
� _U�

x;i(t+
1
2
�t)�t) : (3.29)

With this updating the new set of link variable should in principle belong to SU(2).
Due to the �nite computer accuracy, there are small deviations from the SU(2) form.
Consequently a reunitarization is performed with regular intervals. The evolution of the
Higgs �eld is also integrated numerically by the Runge-Kutta method.

3.5 Measuring the Chern-Simons number

For a given con�guration fU;�g it is not possible to give a direct measurement of the
Chern-Simons number on the lattice [20, 21]. One way to go around this problem is to
cool the gauge �elds down to a vacuum con�guration, where the Chern-Simons number
is known to be an integer. During the cooling it is possible to measure the change in
the Chern-Simons number. The Chern-Simons number is only dependent on the gauge
�elds, so the Higgs �eld is left unchanged. Since the integer value of the Chern-Simons
number is not known, the program simply uses Ncs(vacuum) = 0. A con�guration close
to NCS = 0:5 can roll down to both the vacuum at NCS = 0 and at NCS = 1, giving two
di�erent output values. This has caused some technical problems. The gauge �elds are
cooled by the gradient method

_Ux;i = �@HY M

@Ux;i
: (3.30)

The con�guration is pushes in negative gradient direction of the Hamiltonian, lowering
the energy. A vacuum con�guration should be reached after su�ciently long time of
cooling. The algorithm is stopped when the energy of the con�guration is reduced by a
factor 2 � 104 compared to the initial con�guration, and the �nal con�guration should
be close to a vacuum state. Note that the gradient methods is equal to the equation of
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motion, where we have replace second order in �t with �rst order in the �ctitious time
used here. Using equation 3.18 the derivative of the link matrix becomes

_Ul = U y
l

X
2l

U2l : (3.31)

Let us consider how the change of Chern-Simon number can be calculated. In the
continuum we have,

Ncs(t)�Ncs(0) = � g2

32�2

Z t

o
dt
Z
d3xF �

��
~F ��� : (3.32)

For smooth �elds, which is always the case in the continuum, this implies

dNCS

dt
= � g2

32�2

Z
d3xF �

��
~F ��� : (3.33)

Using the identity
F �
��
~F ��� = 1

2
�����F �

��F
�
�� = �4 ~E� � ~B� ; (3.34)

the time derivative of the Chern-Simons number can then be expressed in terms of the
electric and magnetic �eld as

dNcs

dt
=

g2

8�2

Z
d3xEi;�(x)Bi;�(x) : (3.35)

The problem is reduced to �nding an expression for the magnetic and electric �elds on
the lattice. The magnetic �eld can be obtained from the link variables, as is evident form
equation 3.12. Let us deduce the corrections terms. From Stokes theorem we haveI

A�dx� =
Z
S
Fijds : (3.36)

The plaquette at x is a closed loop S

Ux;i;j = exp(
Z
S
�Fij(x0)ds) = exp(�Fija2 �

Z
S
@jFijxjads+ :::) : (3.37)

De�ning the magnetic �eld as

Bk;�
x = � i

8
Tr(��

X
i;j 6=k

Ux;i;j) : (3.38)

where i; j; k is chosen such that �ijk = 1, the �rst moment will cancel due to symmetry
of the plaquettes. Hence yielding a better de�nition of the magnetic �eld. Note that the
magnetic �eld is only assigned to a site.

The electric �eld is obtained from the time derivative of the link matrices, by using
the equations 3.31 and 3.28 one �nds

E�
x;i = � i

2
Tr(��

X
2l

U2) : (3.39)

But the electric �eld lives on a link, and we will therefore parallel transport the �eld going
out of x down to x giving

2Ei;�
x = 1

2 Tr
�
��Ux;i(E

�
x;i�

�)U y
x;i

�
+ E�

x�i;i : (3.40)
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Here we use the notation that Ei;�
x means the electric �eld assigned to a site, and E�

x;i

is assigned to a link. The �nal expression for the change of the Chern-Simons number
becomes

�NCS = �t
1

2�2

X
x

Ei;�
x Bi;�

x (3.41)

In the continuum the topological charge dependents only on the �nal and the initial
gauge �elds con�gurations, but on the lattice this turns out not to be exact, since the
expression for dNCS

dt
is not a total time derivative. Obviously the �elds are not smooth on

the lattice. This means that the measurement of NCS with this method, depends on the
path taken to reach a vacuum, and not just on the initial con�guration.

The de�nition of ~F��F
�� was later changed to include next-to-nearest neighbours for

the electric �eld, and plaquettes with 2 link matrices on each side. This was done in order
to make the expression closer to a total time derivative.

3.6 Guidance of the Chern-Simons number

To make it possible to obtain a con�guration with a speci�c Chern-Simons number, the
link variables should be updated in such a way that the sign of �NCS is known. A
procedure for this is by update the link matrices with a magnetic �eld corresponding to a
link, such that it transforms covariantly. The magnetic �eld obtained from formula 3.38
is only situated at a single lattice site x. In order to get the magnetic �eld associated
with a link, we parallel transform the magnetic �eld from the link above and add it to
the magnetic �eld at site x,

B�
x;i =

1
2 Tr

�
��U y

x;iB
i;�
x ��Ux;i

�
+Bi;�

x+i : (3.42)

Updating the link matrices with this magnetic �eld, that is choosing _U�
x;i = B�

x;i, gives us

E�
x;i = B�

x;i, see equation 3.28. Again the magnetic �eld B̂ is living on a link, and we have
use the same technique as last for calculating �NCS, hence

~F��F
�� /X

x

�
2Bi;�

x + (PD)(B�
x+i;i) + (PU)(B�

x�i;i)
�
�Bi;�

x � 0 ; (3.43)

and hereby
�NCS / �t ~F��F

�� (3.44)

where (PD) means parallel transporting the link variable down, and (PU) means parallel
transporting it up. This expression is clearly positive for �t > 0, and the value of NCS

is raised. Correspondently it is possible to lower the value of NCS by choosing a negative
time step �t < 0. This algorithm allows us to guide a con�guration in a certain direction
of NCS, and the magnitude of the time step determines how close to the target value the
�nal con�guration will get.

As mention earlier the Chern-Simons number depends on the path. To check that
the measure for NCS is reasonable, it is measured from two di�erent path during the
guiding of a con�guration. One is the above described, and the other by measuring NCS

just before and after the guidance of NCS, by the cooling algorithm described in section
3.5. Performing these measurement should give us an idea of how good the operator for
F�� ~F

�� is on the lattice.
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It was found that they agree extremely well for small Chern-Simons numbers, and
also for con�gurations with NCS ' 0:5 if the energy of the con�guration is su�ciently
high. But for con�gurations close to the sphaleron, the discrepancy is fairly large. This
is expected since the weak �eld limit, used to obtain formula 3.28, is not a good approxi-
mation around the sphaleron. Here the derivative of the �elds are large. For instance in
the continuum the Higgs �eld goes to zero at the core of the sphaleron.

3.7 The constrained cooling algorithm

This algorithm is designed for cooling down the con�guration with the constrain NCS '
constant.

The Higgs �eld is cooled down by the gradient method

_�x = � @H

@�yx
: (3.45)

Giving
_�x = �2(3 + �(�yx�x � v2))�x + Ux;i�x+i + U y

x�i;i�x�i ; (3.46)

again decreasing the energy.
But for the link variables we cannot simply use the steepest descent method, since

the Chern-Simons number would change. Note that having added the Higgs doublet, the
electric �eld corresponding to the gradient method would be

E�
x;i =

1
2 Tr

 
�i��X

2l

U2)

!
+ 2Re

�
(�x+i)

y(i��(Ux;i)y�x)
�
: (3.47)

We will modify this algorithm, by adding an extra term to the electric �eld

Ê�
x;i = E�

x;i �
P
xB

�
x;iE

�
x;iP

xB
�
x;iB

�
x;i

B�
x;i ; (3.48)

where E�
x;i is given by equation 3.47, and B�

x;i is given by equation 3.42. Since as already

explained we can associate ~̂E with the electric �eld, we have
P
x
~̂E � ~B = 0 during the

iteration, and hence clearly NCS is constant. However, the numerical integration will not
be exact, and the Chern-Simons number is not totally �xed.

3.8 Discussion

The goal of the simulations is to �nd the potential barrier, and to study the lattice e�ects
on the sphaleron con�guration. There are two sources of con
icting error when using a
�nite lattice. The �nite size e�ect, which arises since the object studied cannot �t on
the lattice, and the lattice artifacts arising when the lattice is too coarse to determine
the object studied. To minimize the �nite size e�ect one should choose a large physical
volume of the lattice, whereas the lattice artifacts are lowered for small lattice spacings,
yielding a smaller physical volume for a �xed number of lattice points.
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Since we are interested in studying the sphaleron, the lattice size should be large
compared M�1

W , see section 2.3. We have the formulas

MW =
1p
2
gv ; MH = 2

p
�v ; (3.49)

with g = 2. Choosing � sets the ratio between the Higgs mass and the W mass. The
masses are then determined by the value for the higgs expectation value v. This allow us
to set the correlation length which is given by the inverse of the smallest mass.

To determine the lattice e�ects on the sphaleron the following method is used. Varying
v and N in such a way that the physical size is kept constant, allows us to compared the
sphaleron energy for di�erent coarseness. Let us denote the sphaleron energy for physical
volume LMW = NaMW and coarseness aMW by Esph(LMW ; aMW ). The continuum
sphaleron energy at a �nite volume is obtained, by extrapolating the energy as a function
of the coarseness. The values for Esph(LMW ; 0) are then extrapolated to in�nite volume,
giving the physical sphaleron energy Esph(1; 0). Furthermore the dependence on the
Higgs mass could be studied, but because of time limitations all simulations were done
for MW = MH . For this choice of Higgs mass the bisphalerons are not present. The
barrier will therefore be symmetric around NCS = 1

2
, see section 2.8. Hence only barrier

points with NCS <
1
2
are found. It was found that the barrier is indeed symmetric, by

checking for a few values.
The SU(2) sphaleron has already been studied on the lattice in ref. [19], with the use

of saddle point cooling. The lattice artifacts were found to be described by the formula

Esph(LMW ; aMW ) = Esph(LMW ; 0) + E1(aMW )2 + E2(aMW )4 : (3.50)

The values obtained for physical volumes 3:8 � 4:8, was E1 ' �0:3 and E2 ' �0:3 for
MW =MH . The volume dependence was found to be exponential decreasing

Esph(LMW ; 0) = Esph(1; 0) + 18:1
e�MWL

MWL
; (3.51)

where Esph(1) = 3:6406MW=� was found, deviating very little from the continuum cal-
culations. The �nite volume e�ects will tend to increase the energy, whereas the lattice
artifacts will decrease the energy.

The needed computer time for obtaining data, was found too large for a detailed
study of the sphaleron con�guration on the lattice. The main problem being the cooling
algorithm for measuring NCS. It was by far the most time consuming element in the
program. In particular near the sphaleron con�guration a large number of cooling steps
were needed to get a �nal con�guration close to a vacuum state, see appendix B �gure B.3.
An example is shown in �gure 3.3. By examining the con�guration during the cooling,
it was found that after some steps it reach a stable size. The gradient method therefore
causes the con�guration to approach an eigenstate of the Hamiltonian, where the energy
slowly decreases. This made it rather di�cult to arrive at any data, and only a few results
have been obtained. As an example it took over 1 month of real computer time to obtain
the sphaleron con�guration for N = 16, where I would estimate the measurement of NCS

to account for more than 80% of the time. It is also quite di�cult to chose the time
step for the guidance algorithm. If it is too large NCS will end up far form the target
value, and a small time step changes the Chern-Simons number too slowly. It was further
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Figure 3.3: Left the energy as a function of the cooling step during a measurement of
NCS. Note that the time goes from right to left. Right �NCS as a function of the cooling
step. The cooling time step was 0.01.

found that the change in NCS was relative large during a constrained cooling step near the
sphaleron con�guration. Here the derivatives of the �elds are large, making the numerical
integration less precise, hence NCS is not �xed.

At low value of NCS these problems are not present at the same extend. The con-
strained cooling is keeping the Chern-Simons number reasonable �xed, and the cooling
algorithm for measuring NCS needs less steps to reach a vacuum state. More barrier
points are therefore obtained with small Chern-Simons number.

Another note to the technical discussion is that at �rst it seemed like a reasonable
idea to generated the barrier con�guration at values of NCS close to one half, by guiding
the �nal sphaleron con�guration. This would give the initial con�guration a lower energy
than if a new lattice was used. But it was found quicker to start from a new con�guration,
since the sphaleron con�guration is very stable.
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Figure 3.4: The static energy as a function of the cooling step during constrained cooling.
Here for N = 15, MW = 2=3.

In general the energy falls very rapidly when the constrained cooling is started. After
a while the decrease in energy is slowing down considerably. Together with what have
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been said above about problems around the sphaleron con�guration, make it evident
that the sphaleron con�guration is hard to obtain. But an estimate of the sphaleron
energy can be found, without quite reaching the sphaleron con�guration. This is done by
extrapolating the energy as a function of the cooling step. An example is provided for
N = 15, MW = 2=3. By extrapolating the cooling curve 3.4 to an exponential decay

f(x) = a+ b exp(�c � x) (3.52)

the following values of the parameters a, b, c was found

a = 7:24428 + =� 0:000458614

b = 0:00198827 + =� 1:90333e� 05

c = 0:0625032 + =� 9:42603e� 05 (3.53)

giving a sphaleron energy Esph=
MW

�
= 3:459. The curve is seen to �t well with an expo-

nential decrease. This method su�ers from the systematic error coming form the change
of NCS during the constrained cooling. It was found that this method is only possible if
a reunitarization of the link matrices were performed after each constrained cooling step.
If the reunitarization is done with a larger interval, the energy was clearly found to be
falling due to the reunitarization, as shown in appendix B, �gure B.4. An explanation of
this can be that boundary link matrices, i.e. the links far from the core of the sphaleron,
di�ers \little" but still su�ciently enough from the identity matrix. This would e�ect
the energy, since the 1 � 1

2Re TrU2 would not be zero, and this will happen for a lot of
boundary matrices.

3.9 The slope of the barrier near the vacuum states

We estimate the slope of the barrier curve close to the vacuum states. In this area we
expect that there is a linear dependence of the static energy on the Chern-Simons number.
It seems reasonable to assume that the non-abelianity of the theory is not important.
Therefore we will simply evaluate the slope for the Abelian U(1) theory, but with the
di�erence to ordinary electromagnetism, that there is a coupling to a Higgs �eld. Being
close to the vacuum states, this coupling simply gives rise to a mass term for the gauge
�eld. In this case the Hamiltonian for static con�gurations reads

H = 1
2

Z
d3xB2 + 1

2m
2
W

Z
d3xA2

i : (3.54)

By Fourier transforming to momentum space

H =
X
p

1
2(p

2 +m2
W )a

i(p)ai(�p) : (3.55)

The Chern-Simons number can in the case of a massless gauge �eld be written as [34]

Ncs =
1

4�2i
�lmn

X
p

pme
i(p)ne

j(�p)lai(p)aj(�p) ; (3.56)

where ai(p) is the �eld for a photon with momentum p and transverse polarization ei. The
photon �elds obey ai(p) = ai(�p)�. Now, the massive W-particle also has a longitudinal
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polarization state. But gauge invariance of NCS
1 insures us that it is independent of the

longitudinal state, so we assume that the given formula is still valid.
The formula for NCS clearly only contributes for i 6= j. We want to minimize the

Hamiltonian under the constrain that H = �NCS, where � is the slope. Equivalently
we want to maximize NCS for �xed energy, and it is su�cient to do this for a separate
momentum mode p. For NCS to be real, ai(p)aj(�p) has to be purely imaginary. We
obtain a maximum value of Ncs when the modulus of the two �elds are the same, and for
a reel we have

a1(p) = a ; a2(�p) = ia : (3.57)

Let the three vectors ~p; ~e 2(p) and ~e 1(�p) form a right-handed coordinate system. For
simplicity we can take the x-axis to be parallel with the momentum ~p. Then we �nally
get

Ncs =
1

2�2
jpja2 : (3.58)

The static energy for this momentum mode is then given by

Estat = a2(p2 +m2
W ) =

2�2Ncs

jpj (p2 +m2
W ) ; (3.59)

which has its minimum value for p = mW . Plugging this in the slope reads

Estat = 4�2mWNcs : (3.60)

On the lattice momenta are discretized, p = �
n
; n = 1::N , and it will not always be

possible to have a momentum exactly equal to mW . But since the �rst Brillouin zone
B = fp j � � < p � �g is dense on the lattices used, the momentum will be close to mW .

This analysis was carried out in U(1) theory. Roughly speaking we can say that
changing to SU(2) only gives another three ways of making the momentummode p = mW ,
thereby making the mode degenerate, but which degree is excited is not of importance.

A number of simulation with di�erent lattice size N and MW = 1 was carried out.
The �nal results for the slope are in given below

N 10 12 14 16 18 20

�=MW

�
12.498 12.504 12.547 12.539 12.540 12.518

This �t well with the predicted value 4� ' 12:5664.
The result for the slope was obtained for NCS ' 0:01. For these small values of the

Chern-Simons number the curve �ts well with a linear form going through (0; 0). Since the
constrained cooling algorithm is not keeping NCS totally �xed, the slope was plotted as a
function of the constrained cooling step, in order to determine when a constant value was
reached. Some of these curves can be seen in appendix B. The results are obtained with a
de�nition of ~FF including next-to-nearest neighbours. With �NCS given by the formula
3.41, the slope was found to be � 13:7. For N = 14 a rather unusual �nal con�guration
was obtain, where it developed two hills, see appendix B �gure B.2. It was run with three
di�erent initial con�gurations, without changing the �nal result.

1NCS is gauge invariant in the Abelian theory
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3.10 Results

The potential barrier obtained for N = 16 is seen in �gure 3.5, and for N = 24 in
�gure 3.6. Continuum calculations of the barrier have been done in ref. [17, 16], using
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Figure 3.5: The static energy potential for N = 16, MW = 1, with Esph = 3:179MW=�.
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Figure 3.6: The static energy potential for N = 24, MW = 1=2, with Esph = 3:553MW=�.

a spherical symmetric ansatz. The barrier energy is found to deviate more from the
continuum results as Ncs goes up, with a large discrepancy for N = 16 at the sphaleron.
The continuum sphaleron energy is 3.64 MW=�. For small Chern-Simons numbers the
results agree well with the continuum calculations, which is also evident from the slope
near the vacuum states. Both barriers are close to the extremal path barrier for small
Chern-Simons numbers, and are in this region steeper than the gradient barrier, see section
2.8.

The lattice artifacts will lower the energy, because in the discretization energy is
lost. In �gure 3.7 the �nal sphaleron con�guration for N = 16 and MW = 1 is shown
by plotting a plane through the core of the sphaleron. The two other possible slices
through the core of the sphaleron looks similar, and the sphaleron can be said to be
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spherical symmetric, to the extend possible on a lattice. The spherical symmetry is the
key assumption in continuum calculations. The Higgs �eld is very close to its vacuum
value at the boundary, and the energy density is close to zero. The �nite size e�ects are
therefore small for this con�guration. But the lattice artifacts are seen to be large. It is
clearly seen that Higgs �eld is not zero at core, in fact it is � 0:3. From the energy density
we see that the \top" of the sphaleron is cut o� by the discretization. For the sphaleron
con�guration obtained for N = 24 and MW = 1=2, shown in �gure 3.8, we see a Higgs
�eld quite close zero at the core, and the energy density has a regular top. By comparing
the two sphalerons it is clear that the lattice artifacts tends to decrease the energy of the
sphaleron. The con�gurations for small values of NCS are smoother and consequently a
better approximation to the continuum con�guration, see appendix B, �gure B.7 to B.10.
For all barrier points a spherical symmetric con�guration was found. We can conclude
that the lattice artifacts are increasing as a function of NCS, and a very coarse lattice will
consequently have a 
at barrier top, as is also seen from the two barriers in �gure 3.5 and
3.6. Therefore taking this into account the barrier agrees well with the continuum results.
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Figure 3.7: A plane through the core of sphaleron con�guration for N = 16. Left the
magnitude of the scalar �eld. Right the energy density.
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Figure 3.8: A plane through the core of sphaleron con�guration for N = 24. Left the
magnitude of the scalar �eld. Right the energy density.

The magnitude of the Higgs �eld at the core of the sphaleron is shown in table 3.1, in
the cases where the sphaleron was reached. We see a strong dependence on the coarseness

46



N 10 12 16 18 24

MWa 1 1 1 2/3 0.5

Min.
p
�y�=v 0.29604 0.30918 0.30567 0.19268 0.11756

Table 3.1: Magnitude of normalized Higgs �eld.

N 12 14 16 18 24

MWa 1 6/7 3/4 2/3 1/2

Esph=
MW

�
3.223 3.235 3.361 3.4647 3.553

Table 3.2: Esph as a function of the lattice coarseness for physical volume LMW = 12

of the lattice. Both �nite volume e�ect and lattice artifacts will cause the sphaleron to
di�er from zero at the core, but here the �nite size e�ects are small.

An attempt to estimate the physical sphaleron energy was maid. The volume depen-
dence of the sphaleron energy described by 3.51, gives hardly any notable e�ect on the
energy, for the physical volumes used in the present simulations. For the physical volume
LMW = 12, the sphaleron energy as a function of the coarseness of the lattice is shown in
table 3.2. Plotting the sphaleron energy as a function of the lattice coarseness, one sees
that the curvature changes around N = 16. It would be natural that this happens, since
the sphaleron energy must approach zero when the coarseness increases, and it will no
longer �t the form 3.50. Therefore only the last three points was extrapolated by using
3.50, where the last term is omitted. This rather naive extrapolation yields

E(12; 0) = 3:7103� 0:60(MWa)
2 : (3.61)

For the physical volume LMW = 10, Esph as a function of the the lattice coarseness is
shown in table 3.3. Again �tting to a form with just the �rst term in 3.50 gives

E(10; 0) = 3:6530� 0:41(MWa)
2 (3.62)

These results are accompanied with a lot of uncertainty. For instance only a few points
have been used in the extrapolation. Furthermore there is an uncertainty in the value of
NCS, as described in section 3.5, and the method, described in section 3.8, for determining
Esph(LMW ; aMW ) su�ers from a systematic error. Therefore, within the uncertainty, the
energy is most probably in agreement with the continuum value 3.64.

N 10 15 20 25

MWa 1 2/3 1/2 2/5

Esph=
MW

�
3.250 3.459 3.552 3.595

Table 3.3: Esph as a function of the lattice coarseness for physical volume LMW = 10
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Chapter 4

Baryogenesis

In this chapter we want to consider the possibility of generating a baryon asymmetry
within the electroweak theory. The asymmetry is given by the ratio

� =
nb � n�b

s
' nb

s
= 4� 10�11 � 10�10 ; (4.1)

where nb is the density of baryons, and s the entropy density. In the early Universe, this
corresponds to one extra fermion per about one billion fermion-antifermion pair. It was
realized by Sakharov, that the asymmetry might be generated dynamically in the early
Universe.

4.1 Sakharov's conditions

In his paper [4] Sakharov stated three necessary conditions for a plausible scenario that
can explain the asymmetry.

1. Baryon number non conservation.

2. C and CP violation.

3. Deviation from thermal equilibrium.

The �rst conditions is obvious, if we assume that the Universe started with an equal
number of particles and antiparticles.

The second condition can be explained in the following way. C violation is necessary
in order to violate the baryon number. Further more, we have that the baryon number
B = b� �b transforms under CP as

(CP )B(CP )�1 = �B : (4.2)

If there is no CP violation the processes which create a net number of baryons, will have
the same rate as the processes which create a net number of antibaryons.

If there is thermal equilibrium we have from the CPT theorem that the HamiltonianH
is invariant under CPT . At �nite temperature the baryon number is given by a thermal
average, and we have

hBi = Tr
�
e��HB

�
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= Tr
�
e��HB(CPT )�1(CPT )

�
= Tr

�
e��H(CPT )B(CPT )�1

�
= �hBi ; (4.3)

since the baryon number is odd under (CPT ). Hence hBi = 0 and there must be processes
out of thermal equilibrium to create an asymmetry.

The possibility of explaining the baryon asymmetry from a cosmological context has
been the subject of much work in past decades. The sphaleron comes into play, when
the possibility of electroweak baryogenesis is studied, this is our main interest, although
many scenarios have been proposed. The �rst models used grand uni�ed theories (GUT)
to obtain CP violation, and the GUT phase transition to get processes out of thermal
equilibrium. In many of these models the decay of lepto-quarks were the source for
baryogenesis. It was shown that in some grand uni�ed theories it is indeed possible to
create a su�cient amount of baryonic excess. There are various sources, though, that in
the cosmological evolution will wash out this asymmetry. The in
ationary epoch, where
the Universe is exponential expanding, will dilute any previous existing asymmetry by an
exponential factor. Therefore if one believes in the in
ationary scenario, the asymmetry
must be created after in
ation. Since the GUT phase transition temperature, is before the
in
ationary epoch, this will rule out the GUT scenarios, unless the reheating temperature
after in
ation is again at the GUT scale. This has been shown not to be possible to
obtain [2]. A much stronger argument that rules out GUT scenarios is that the baryon
violation rate in the standard electroweak model, before the electroweak phase transition,
is so high that it will wash out any previously existing asymmetry. Although if a B + L
violation is generated at the GUT scale, this will not be erased by electroweak processes,
and remains another possibility for explaining the observed asymmetry [24]. Assuming
that there is no B + L violation, a scenario for baryon generation, must be realized at or
after the electroweak phase transition.

As was realized in ref. [26] the electroweak sector of the minimal standard model has
all the required conditions for a baryogenesis scenario. At su�cient high temperature, we
expect the electroweak theory to violate the baryon number, as will be described in the
following. Experimental con�rmation of baryon number violating processes is still lacking,
but it is likely that it will be seen in future accelerators due to the instanton tunnelling
[3]. The chiral coupling to fermions give C violation and experimentally CP violation
has been found for the kaons. If the electroweak phase transition is of �rst order strong
deviations from thermal equilibrium are expected. The electroweak phase transition is
probably the latest moment when deviations from thermal equilibrium are su�ciently
large for creating the observed asymmetry. The advantage of electroweak baryogenesis is
that it mainly relies on known physics. In addition the problem of in
ation is no longer
present.

4.2 The electroweak phase transition

At su�ciently high temperature, the symmetry of the Higgs potential is restored, giving a
vacuum expectation value v = 0 for the Higgs �eld. This phase of the electroweak theory is
called symmetric, since the vacuum is invariant under the transformation �! U�. In the
broken phase the Higgs �eld has a vacuum expectation value that di�ers from zero, and the
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Figure 4.1: The e�ective potential for a �rst order phase transition

vacuum is no longer gauge invariant. In the standard cosmological model, with a Big Bang
scenario, the Universe evolves from an initial hot stage and cools down as the Universe
expands. At some point in the early Universe a phase transition must have occurred,
going from the symmetric phase to the broken phase. The order of the electroweak phase
transition (EPT) is of crucial importance for the electroweak baryogenesis scenarios. The

order parameter is the length of the Higgs �eld (�y�)
1

2 = � or, equivalently, the Higgs
expectation value v.

A �rst order phase transition is characterized by a jump in the order parameter when
going from one phase to the other. For the EPT the Higgs expectation value is 0 in the
symmetric phase, and jumps discontinuously to a value v 6= 0 in the broken phase. The
evolution of the e�ective potential for the Higgs �eld, shown in �gure 4.2, starts with a
single minimum at � = 0, but as temperature decreases a new minimum develops. The
temperature where it �rst occurs is denoted T+. The minimum at � = 0 is still the global
one, and is therefore the classical vacuum state. As temperature drops further the critical
temperature Tc is reached, where the two minima for e�ective potential are degenerate.
For a �rst order phase transition there is an energy barrier between the two minima. For
temperatures below Tc, the minimum at � 6= 0 is the true vacuum state. In the case where
the energy barrier between the two minima is su�ciently high, it will cause the Higgs �eld
to be trapped in the former global minimum, which is often called the false vacuum state.
The Higgs �eld will stay there until the barrier becomes so low that the �elds can tunnel
through or thermally pass the barrier. This phenomenon is known as supercooling. The
height of the barrier is a measure of the strength of the transition, and a strong transition
has a high barrier. Bubbles of the new phase will emerge at a temperature close to T�,
and expand until they �ll the whole Universe. At T = T� the energy barrier between
the two minima disappears and the false vacuum can classically roll down to the global
minimum at v 6= 0.

In a second order phase transition the picture looks somewhat di�erent. At the critical
temperature there is no barrier and the Higgs �eld will continuously go from the zero
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expectation value, to a non-zero expectation value. There is no bubble nucleation, which
is the source of non-thermal equilibrium. If a second order transition occurred it has been
argued [25] that electroweak baryogenesis is not possible.

A major problem in calculating quantities for the EPT, is that perturbation theory is
not reliable for high temperatures, and eventually breaks down in the symmetric phase.
At �nite temperature the propagator presents a sum of two terms, the standard zero
temperature propagator and a temperature dependent term which re
ects the presence of
particles in a heat bath. The latter term is proportional to the bose distribution function.
At �nite temperature the relevant expansion parameter is therefore g2nB(E) instead of
g2, where

nB(E) =
1

eE=T � 1
(4.4)

is the bose distribution, and E is the typical energy of the process. This accounts for
the bose ampli�cation. In the broken phase there is an infrared cuto� coming from the
vector boson mass mW . For processes E < T , we have nB(E) � T

E
, and perturbation

theory is valid if g
2T
E
� 1. In the symmetric phase perturbation theory renders a massless

gauge particle, there is no infrared cuto� and the expansion parameter can be arbitrary
large, causing perturbation theory to break down. For a small mass of the Higgs boson,
perturbation theory of the e�ective potential of the Higgs �eld may work up to the critical
temperature. We will here look at some perturbative estimates, that give symmetry
restoration at high temperature.

The e�ective potential is given in terms of the classical �elds �c,

V (�c) = �
1X
n=1

1

n!
�nc�

(n)(pi = 0) ; (4.5)

where �(n) are the 1PI Diagrams. Substituting � =
p
2(�y�) in equation 1.4, the e�ective

potential for the Higgs �eld at tree level and with leading orders in temperature is [22, 48]

V (�; T ) =
�

4
�4 � �

2
v2�2 + 1

2
T
2�2 ; (4.6)

where


 =
2M2

W +M2
Z + 2M2

t

4v2
: (4.7)

In this calculation all fermions, except the top quark, are neglected. The top quark with
mass Mt = 182 Gev is by far the heaviest and will give the largest contribution. Here
v is the zero temperature expectation value ' 241:6 GeV. This potential gives rise to a
second order phase transition. The temperature dependent term in �2 has opposite sign
with respect to the constant one, and for very large temperatures the mass of the Higgs
�eld becomes positive. The symmetry is no longer broken. The critical temperature when
this happens is

T 2
c =

�v2



: (4.8)

The Higgs �eld vacuum expectation value is varying continuously,

h�(T )i = 0 for T > Tc (4.9)

h�(T )i = v

 
1� 
T 2

�v2

! 1

2

for T < Tc : (4.10)
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Calculating the e�ective potential to one loop, yields a �rst order phase transition,
since we get a term with �3, coming from the interaction with the gauge �elds. For a
light Higgs boson

V (�; T ) =
�

4
�4 � �

2
v2�2 +


T 2

2
�2 �M1T�

3 ; M1 =
2M3

W +M3
Z

4�v3
: (4.11)

The critical and lower instability temperature is

T 2
� =

�v2



; T 2

c =
T 2
�

1� 2M2
1 =�


: (4.12)

The Higgs �eld vacuum expectation value will jump discontinuously when reaching the
critical temperature. The jump in the order parameter can be characterized with

�(Tc)

Tc
= 2

M1

�
: (4.13)

We see that the strength of the transition gets weaker when the Higgs mass increases.
The best perturbative estimate of the critical temperature calculated to two loop level is
currently 173:3 GeV for mH = 80 GeV [48]. Qualitatively the perturbative estimate are
correct, but the numerical values di�ers from the non-perturbatively values.

The phase transition can be studied non-perturbatively with lattice gauge theory, and
a number of Monte-Carlo simulations have been performed. Many of these simulation
are done in the purely bosonic theory, due to problems with treating chiral fermions
on a lattice. A great advantage regarding the computer time is obtained by going to
dimensionally reduced 3D theory, which should be valid for high temperatures. In general
it is possible to integrate out the temperature by going to the Euclidean theory, in this way
an e�ective theory can be obtained. For many theories, including the standard electroweak
theory, the e�ective Lagrangian for the phase transition can then be described by a pure
SU(2)� U(1) gauge group and a Higgs doublet,

L3 =
1
4F

a
ijF

a
ij +

1
4fijfij + (Di�)

y(Di�) +m2
3�

y� + �3(�
y�)2 ; (4.14)

where the factor of T�1 has been scaled into the coupling constants and �elds. A special
method using both perturbation theory and lattice simulation of the three dimensionally
reduced theory has been shown to give very accurate results for the parameters of the
phase transition. Concerning the phase transition, only static properties of the bosonic
Green's function are relevant, and using the Euclidean Matsubara formulation of �nite
temperature �eld theory, it is possible to relate the three dimensional coupling constants
to the four dimensional ones. This is done by requiring that the two and four point Green's
functions of the two theories, where these are calculated perturbatively, are matching each
other to some accuracy [39]. Here e�ect of fermions are included, since they contribute
to the three dimensional coupling constants. Shaposhnikov et. al. [40, 41] have recently
calculated latent heat, critical temperature, and order of the transition by simulating
the 3D dimensionally reduced theory. Their results yields a �rst order transition in the
minimal standard model for a Higgs mass smaller than the critical value m�

H < 80 GeV,
and the strength increasing with decreasing mH . At the critical mass the transition
becomes second order, and above it there is no phase transition but a regular cross over,
where the two phases cannot be distinguished.
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4.3 Baryon non-conservation at high temperature

In section 1.5 we saw that baryon number changing processes were related to an evolution
in the bosonic �elds. As a �rst approximation we will therefore neglect the fermions.
The baryon violation rate is obtained by calculating the transition rate of the �elds
between topologically distinct vacua in a pure gauge Higgs theory. At zero temperature
the �elds will have to tunnel through the barrier and, as shown in section 1.2, the rate is
suppressed by a huge factor. At �nite temperature there are thermal 
uctuations of the
�elds above the barrier, and it is possible to cross the barrier classically. The �elds will
be thermally distributed according to the Boltzmann distribution e�E=T , and the rate of
baryon violation is supposedly unsuppressed when the temperature is comparable to the
barrier height.

The height of the barrier varies with temperature. It was shown by Kunz et. al. [22],
that the sphaleron energy at �nite temperature is well approximated by the formula

Esph(T ) = Esph(T = 0)
v(T )

v(0)
(4.15)

This was obtained using two di�erent temperature dependent potentials for the Higgs
�eld. In the case of the potential given by 4.6, the energy of the sphaleron can be found
by scaling the zero temperature sphaleron solution and its energy is given exactly by
formula 4.15. Using the potential 4.11 the energy is still in good agreement with this
equation. We may write

Esph(T ) =
MW (T )

�
B(�=g2) ; (4.16)

where the factor B runs from 3:04 at � = 0 to 5:44 for � ! 1. The coupling constant
should be taken as the temperature dependent running coupling constant.

Clearly the probability rate of crossing the barrier is dominated by con�gurations
passing close to the sphaleron, since these requires the least energy. A simple estimate of
the rate at non-zero temperature, when considering Boltzmann suppression, gives

� ' e��Esph(T ) ; (4.17)

where � = 1
T
. This result is quite clear, since the exponential just counts the number of

states with an energy higher than the barrier. The rate in the broken phase is therefore
exponentially suppressed. It would give us a rate of order unity when T ' Tc, since the
sphaleron energy goes to zero. Later we will calculate the pre factors to the exponential
in 4.17.

Since there is no barrier between the vacua in the symmetric phase, we would expect
a very high baryon violation rate in this phase.

4.4 Scenarios for electroweak baryogenesis

A number of scenarios have been proposed, where the electroweak phase transition is
used to create an asymmetry. Kuzmin, Rubakov and Shaposhnikov were the �rst to
consider the possibility of electroweak baryogenesis [26]. It is essential for the electroweak
baryogenesis scenarios that the phase transition is of �rst order. For a second order
transition, where the Higgs vacuum expectation is varying continuous, any BAU generated
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Figure 4.2: CP violation in the bubble wall causes more antiparticles to be re
ected than
particles.

during the transition will be erased. As will be shown later baryon violating processes
in equilibrium tend to equalize the number of baryons and antibaryons. Right after a
second order transition the barrier is still absent, and the sphaleron transitions are fast,
diluting any BAU. Further more for a second order transition it is hard to create a source
for thermal deviation, and it is generally believed that it is not be possible to create
enough BAU. A strong �rst order transition is therefore necessary both for the creation
of a BAU and for it to survive. The electroweak baryogenesis scenarios are build on
the assumptions that the baryon violation rate is rapid in the symmetric phase, whereas
the baryon violating processes in broken phase are practically turned o�. In this way a
creation of a baryon asymmetry of the Universe (BAU) during the phase transition will
not be erased by subsequently sphaleron transitions.

The �rst order transition will proceed through nucleation of bubbles of the new phase,
i.e. the broken phase. The bubbles of broken phase will be created near to the instability
point for the minimum at � = 0, at temperature T�, and they will expand with a velocity
close to the speed of light. There must be an interface wall between the broken phase
inside the bubble and the outside where � ' 0. This interface region is called the domain
wall, and it is the motion of the wall through the plasma that causes deviations from
thermal equilibrium.

A nice mechanism for the generation of the BAU, was suggested by Cohen, Kaplan and
Nelson [2], using a CP-violating interaction of fermions with the domain wall of a bubble.
In this way, the re
ection coe�cient of the antifermions is larger than for the fermions (see
�gure 4.2). The rate of baryon violating processes in the symmetric phase is supposed
to be so fast, that the excess of antifermions is strongly diluted, again equalizing the
number of fermions and antifermions. The bubble of broken phase is thereby �lled with
fermions, since the baryon number is assumed to be conserved in this phase. The bubbles
expand and will eventually �ll the whole Universe, which will be left charge asymmetric.
Calculating the exact amount of BAU generated with this mechanism is not easy. The
bubble nucleation rate and the structure of the domain wall, their velocity and the density
of particles will have to be evaluated. One might wonder if it is at all possible to create
enough BAU. One thing among others is the need for su�ciently strong CP violation.

In the minimal standard model the source of CP violation originates from Yukawa
couplings between quarks and the Higgs �eld,

�LKf
(d)dR�+ �LIf

(u)uR + h.c. (4.18)
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The Kobayashi-Maskawa matrix (K) describes the mixing of the quarks, and contains a
CP violating phase �CP . Experimentally the CP violation from the K matrix is found to
be so small that it is hard to generate the observed amount of BAU. In extended versions
of the Standard model, other sources for CP violation are possible. In the two Higgs
model a CP violating term is generated in the scalar sector.

We see that there are possible mechanisms for creating a BAU at the EPT, if the
assumption about the baryon violation rate in the respective phases are for �lled. This
will be investigated in the following sections.

4.5 The rate in the broken phase

We will estimate the pre factors to the exponential 4.17, by considering small 
uctuations
around the sphaleron, here the energy functional can be approximated by

H = Esph � 1
2!

2
�x

2
� +

X
i

1
2!

2
i x

2
i +

X
i

1
2p

2
i ; (4.19)

where xi, pi are canonical coordinates for the con�guration space. We have x� / NCS,
since !� is the negative mode of the sphaleron,

For each gauge Higgs �eld con�guration fA�;�g, we can de�ne a gauge sector to which
they belong, by cooling the con�guration down by the steepest descent equations

@Ai
@t

= � dH
dAi

; (4.20)

@�

@t
= � dH

d�y
: (4.21)

The equation are started from the initial con�guration fA�;�g, and, as the �ctitious time
t goes to in�nity, the �elds will reach a static con�guration A1� ;�

1. Some con�gurations
will reach a vacuum state and we de�ne the gauge sector to which they belong by the
integer winding number of the vacuum con�guration. The sphaleron being a static so-
lution, is also a possible candidate for the �nal con�guration1. Con�gurations ending at
the sphaleron, or at one of the gauge copies, are situated on the surface with x� = 0,
called the separatrix surface. It is separating the di�erent gauge sectors. If we start out
with a con�guration on the separatrix, then as time evolves it will almost de�nitely go
to a gauge sector and stay there for a while, according to the projection of its momenta
on the normal to the surface. The rate of going from one gauge sector to another, can
therefore be calculated from the probability 
ux through the separatrix. In this section
we use a semiclassical method to calculate the probability 
ux.

First let us regard the case of a system with only one degree of freedom, and a quantum
particles in a double well, see �gure 4.3. The doublewell is an approximation to the
periodic energy barrier in the Chern-Simons number, where we only consider one barrier
(see �gure 1.1). Supposing that we start with a set of particles in thermal equilibrium in
the left vacuum. The rate of passing over the barrier is then given by the probability of
being at the barrier and having the right direction times the rate at which the barrier is

1The steepest descent equations are imagined to be integrated with in�nite precision
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crossed,

� = h�(xo)p�(p)i (4.22)

=

R
dpdx 1

2��h
e��[

1

2
p2+V (x)]�(x0)p�(p)R

dpdx 1
2��h

e��[
1

2
p2+V (x)]

: (4.23)

Assuming a gaussian form for the potential V (x) = 1
2
!2
0x

2 around the vacuum, and
performing the gaussian integrals we get

� =
!o
2�
e��U0 ; (4.24)

where V (xo) = U0 is the height of the barrier. This is related to the imaginary part of
the free energy. We have the free energy

F = T lnZ ; (4.25)

where Z is the partition function, and it will pick up a small imaginary part from the
contribution of the negative mode. We may write

ImF � T
ImZbarrier

Z0
= T

R
dpdxe

1

2
p2� 1

2
!2�x

2
�+U0R

dpdxe
1

2
p2+ 1

2
!2
0
x2

=
!0T

2!�
e��U0 ; (4.26)

where Z0 is the partition function around the left vacuum. The rate is then

� =
!��
�

ImF =
!�
�

ImZbarrier
Z0

: (4.27)

Adding more dimensions, the free energy changes as

R
dpidxi exp(��(12p2i + 1

2
!2
i x

2
i ))R

dpidxi exp(��(12p2i + 1
2
!2
i0x

2
i ))

=
!i0
!i

; (4.28)

but the same factor will appear in the expression for the rate �. Hence formula 4.27 can
be generalized to �eld theories. The top of the barrier in our case is represented by the
sphaleron, giving

� =
!�
�

ImZsph
Z0

: (4.29)
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The rate is therefore given in terms of the partition function around the sphaleron in a
gaussian approximation, and of the vacuum partition function.

At high temperature the theory becomes e�ectively three dimensional. The Euclidean
action for the SU(2) Higgs model reads

SE =
Z �

0
dt
Z
d3xLE =

Z �

0
dt
Z
d3x(14F

a
��F

a
�� + (D��)

y(D��) + �(�y�� v2p
2
)2 : (4.30)

In the high temperature limit � � 1 the integration limit � is very close to zero and the
�elds can be considered time independent. The integration simply gives a multiplication
with � and when scaling the �eld and coordinate

x� ! x�MW ; Aa� !
MW

g
Aa� ; �! vp

2
� ; (4.31)

the three dimensional action becomes

S3 =
�MW (T )

g2

Z
d3x(1

4
F a
��F

a
�� + 2(D��)

y(D��) +
1
2
�2(�y�� 1)2) ; (4.32)

where � = MH

MW
= 2

p
2�
g

. The masses are temperature dependent and this can be taken into
account by changing the Higgs expectation value, to its temperature dependent form

v(T ) = v(0)

 
1� T 2

T 2
c

! 1

2

; (4.33)

which gives a sphaleron energy of the form of equation 4.15. The e�ective three dimen-
sional coupling constant g3 is related to the four dimensional one through

g23 =
g2

�MW (T )
: (4.34)

For temperatures T � MW (T )=� an expansion in g3 should be reliable. But also the
lower limit T �MW should be imposed in order to justify the three dimensional theory.

Again, we approximating the Lagrangian with a gaussian form around the sphaleron

Lsph3 = L3;sph + (��)y
sph(��) (4.35)

where � generally denotes the gauge and Higgs �elds, and 
sph is the operator for small

uctuations, de�ned as the second functional derivative of the action around the sphaleron.
We do the same around the vacuum

L0
3 = (��)y
0(��) : (4.36)

Assuming no zero modes we therefore get the following formula,

� ' !0

�
Im

 
det 
2

0

det 
2
sph

! 1

2

e��Esph (4.37)
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The sphaleron, though, has zero modes, arising from the symmetries of the solution.
The sphaleron is translational and rotational invariant, giving rise to 6 zero modes. The
integration of the zero modes gives

NV = V
Y�

1

2��h

Z
d3x(��)2

� 1

2

; (4.38)

where N is a normalisation factor and V is a factor proportional to the volume of the
symmetry group. Since the factors of g�2 no longer cancel in the determinants, we get

� ' !�
2�

(NrotVrot)(NtrVtr)g
�6
3 Im

 
det 
2

o

det0
2
sph

!1

2

e��Esph (4.39)

when including the zero modes. The prime on the determinant denotes that the zero
modes should be excluded. Further more Vtr = VM3

W when going back to dimensionfull
quantities, therefore

� ' !�
2�

(NrotVrot)NtrVM
6
W (g2T )�3�e��Esph ; (4.40)

where � is the ratio of the determinants. The zero mode integration factor can be esti-
mated using the sphaleron solution. In [27] the values Ntr = 26, and NrotVrot = 5:3� 103

was obtained from the integration inserting the sphaleron solution.
In these calculations a number of approximation has been done, and the expression

for the rate cannot be trusted near the critical temperature. The main assumption of
the calculation is that the dominant contribution to the baryon violation processes passes
through con�guration in the neighbourhood of the sphaleron. At high temperature the
dominating con�guration is not necessarily the sphaleron, even though it has the least
energy. The size of the sphaleron, being�M�1

W , is diverging when approaching the critical
temperature if we have a second order phase transition. But also for a �rst order transition
will the size of the sphaleron be large, close to the transition. Thermal 
uctuations with
size � T�1, might be favoured, having a much smaller size. We see that in this case the
energy of the Higgs �eld can be neglected, since scaling the sphaleron down to a small
size will course the energy term involving the Higgs �eld to decrease rapidly, see equation
2.10. This will put an upper limit on the valid temperature range for the calculation. The
gaussian approximation is no longer valid and we have to consider interactions as well.
We might also expect a damping e�ect from the plasma that exists at high temperatures.

4.6 Dilution of the baryon number

So far we have neglected the fermions. Including the fermions, the baryon violating
processes will tend to erase any baryonic or antibaryonic excess. The free energy of the
fermions created in the transition between the vacuum sectors, will cause the e�ective
potential to raise (see �gure 4.4). In the case of a baryonic or leptonic excess, the rates in
the the two directions are no longer equal. The excess is described by chemical potentials
�B for the baryons and �L for the leptons. The e�ective action is modi�ed by

�S = ��(�B + �L)NFNCS ; (4.41)
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fermions.

The sphaleron has NCS =
1
2
, as shown in section 2.4. The baryonic increasing/decreasing

processes pick up a factor

exp(��Nf

2
(�B + �L)) (4.42)

The di�erence between the rates, in the case where �=T � 1, is

�Nf(�B + �L)� : (4.43)

Each transition changes the baryon number with Nf , so we get the following relation
between the baryon number B and the rate �,

dB

dt
= ��N2

f (�B + �L)� (4.44)

and the chemical potential can be obtained from standard statistical physics [27]

�B ' 9

2Nf
�2B

V
; �L ' 2

Nf
�2 L

V
: (4.45)

Supposing that we have B � L = 0, then

dB

dt
= ��3Nf

13

2

B

V
� : (4.46)

The rate should be compared to expansion rate of the Universe

��1
U = 1:66N

1

2

effT
2=Mpl ; (4.47)

where Mpl is the Planck mass and Neff is the e�ective number of massless degrees of
freedom. If the rate is higher than the expansion rate of the Universe, then the baryon
violating processes will be in thermal equilibrium. Baryon violating processes in equilib-
rium, will equalize the number of baryons and antibaryons. Therefore any asymmetry
created in an earlier stage of the Universe would be washed out. We will now consider
when, in the cosmological evolution, the baryon violating processes are in equilibrium.
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4.7 The rate in the symmetric phase

In the symmetric phase, where the vector bosons are massless, the sphaleron solution
does not exist and there is no barrier between the vacua. Due to the infrared divergences
it is not possible to do perturbative analytic calculations. The interactions are strongly
coupled at small momenta. But in turn we might justify a classical treatment of the
baryon violation rate in this phase, for very high temperatures.

To get an idea of the form of the rate at temperature T > Tc, the instanton solution
at x4 = 0 can be helpful [29, 27],

� = 0 ; Aai =
�ijaxj
~x2 + �2

; (4.48)

where � is the size of this con�guration and its energy the maximum of the instanton
energy, Emax / 1

��
. This con�guration shares a lot of properties with the sphaleron.

It is a saddle point of the energy functional, it has one negative mode and it has half
integer topological charge. Since this solution is indeed sphaleron-like, we calculate the
transitions rate like before, but in addition we must perform integration over the size �.
The rate is estimated by assuming a gaussian form of the Lagrangian. The solution is
independent of Euclidean time and we get the three dimensional action

S3 =
�

g2�

Z
d�L3(�) ; � = x� : (4.49)

The sphaleron-like solution has 6 zero modes, but in addition we get another factor of �
g2�

in the ratio of the two determinants, since we do not perform a gaussian integration in
the � direction. The rate then reads

� =
Z d�

�

!�
2�

 
1

g2T�
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2

�(NrotVrot)(�
�3V )Ntre

��Emax : (4.50)

The negative mode will have !� � 1
�
, and hence

� / �Ntr(NrotVrot)V (T�)4
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e�
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1
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= �Ntr(NrotVrot)V (T�)4
Z
dze�zz

13

2 ; z =
1

��T
= �Ntr(NrotVrot)V (T�)4�(15

2
) : (4.51)

The rate get the form
�

V
= �(�T )4 ; (4.52)

where the constant factors have been absorbed into �. This form can be obtained by
scaling arguments [28], and it is not just a property of the special solution 4.48. A
priori, the numerical value of � may be so small that fermion number is to a good extend
conserved in the symmetric phase. However, a number of simulations of the classical
theory suggest that � is of order 1. This would imply, with the use of equation 4.46 and
4.47, that for temperatures

Tc < T < 0:1Mpl�
4 ' 1012GeV (4.53)
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the electroweak baryon violating processes are in thermal equilibrium, and any excess of
baryon or antibaryons will be erased. But can the classical rate be trusted?

We may argue that the dominant transitions can be treated classically. In the non-
Abelian theories it is possible to have magnetic screening e�ects, where a magnetic mass is
dynamically generated for the spatial gauge �elds. However, it is not possible to calculated
such a magnetic mass within perturbation theory, since there will be equal contribution
from all orders. It is expected that non-perturbative e�ects will somehow \heal" the
theory by creating a magnetic mass of order mmag ' �T [38, 48]. The form can be
induced from purely dimensional arguments, since �T is the only relevant scale at low
momenta. Lattice simulations in [31] shows that mmag = 0:47g2T . This is in very good
agreement with simulations of the dimensionally reduced 3D theory [42]. The magnetic
mass was found to be constant in the symmetric phase, where mH = 80 GeV was used,
which shows that it can be calculated from a pure Yang-Mills theory.

Topological transitions of the gauge �elds are believed to be dominated by �elds with
a typical size � 1

�T
. Generally, a con�guration having size r will pass an energy barrier

of magnitude E = 1=�r and large r will be energetically favoured. It is unlikely, though,
that the size of the �elds exceeds the inverse of the magnetic mass. We then expect the
dominant contribution to come from con�gurations with size m�1

mag. The magnetic mass
will again provide a barrier between the di�erent gauge vacuum sectors. The associated
Boltzmann suppression factor e��Es , where Es is the energy of a sphaleron-like con�gu-
ration in the symmetric phase, is temperature independent, due to the linear dependence
of the magnetic mass on the temperature. Since the relevant modes p = �T has a high
occupation number, classically being T

E
= 1

�
, the rate can be well determined with a

classical treatment.
Another indication of the relevance of the classical theory is seen by comparing the

e�ective action for the classical theory and the dimensionally reduced theory, see equation
4.14. It is believed that the leading quantum e�ects on the rate, can be obtained by using
the temperature dependent coupling constants.

4.8 Real time simulations

We see that in the symmetric phase a simpli�cation to the classical theory is reason-
able. Unfortunately the classical theory su�ers from ultraviolet Raleigh-Jeans divergences,
which might turn up in the calculation of the rate. Discretizing space-time by putting the
system on a lattice, provide an ultraviolet cuto� 1=a, where a is the lattice spacing. A
natural thing is therefore to do lattice gauge theory simulations of the classical theory, in
order to obtain the baryon violation rate. Hopefully � will not be dependent on the cuto�,
otherwise more complicated methods would have to be implemented. It was suggested
[36] to integrate out the hard momentum loops and obtain an e�ective Hamiltonian for
small momenta, so as to take properly into account the high momenta modes.

The main idea of the simulation for obtaining � numerically, is the determination of the
time evolution of the topological charge. We know that transitions having Q(t) = 1 will
be accompanied by baryon violation. But Q(t) will consist of both thermal 
uctuations
around the vacuum states, that will not give rise to a baryon violation, and an evolution
between the di�erent gauge sectors increasing Q(t) by an integer amount. For large t

uctuations not contributing to fermion violations are neglectible in the mean square of
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the topological charge. The �elds are expected to perform a random walk in the periodic
potential and, for large t, we may write

h(Q(t))2iT ' �V t ; (4.54)

where � is the di�usion rate per unit volume. The topological charge is averaged over a
classical thermal distributed set of gauge �eld con�gurations,

h(Q(t))2iT =

R DAie�H�Q2(t)R DAie�H� : (4.55)

The �rst micro canonical real time simulations was done of the SU(2) Higgs model in [33].
A con�guration consisting of the gauge �elds Ai and �, and their canonical conjugate
momenta dAi

dt
= �i and

d�
dt
= �, was simulated on a lattice. The Hamiltonian in temporal

gauge is
H = 1

2
Ea
i E

a
i +

1
4
F a
ijF

a
ij + �2 +Di�

2 +M2�2 + ��4 (4.56)

The �elds are evolved according to the canonical equations of motion. In addition the
Gauss constraint, arising from variations with respect to A0

@iE
a
i � 2�abcAbiE

c
i = i(�y�a� � �y�a�) ; (4.57)

has to be imposed. Since the Gauss constraint commutes with the Hamiltonian, all con-
�gurations obtained by classical evolution of the �eld equations will satisfy the constraint,
if the initial con�guration does. The set of initial con�gurations should be created in such
a way that they respects the Gauss constraint and further are distributed in accordance
with the Gibbs distribution e�H=T . This was obtained by the using the standard Monte
Carlo technique, where the con�gurations are updated with the Metropolis algorithm,
with a Gauss constraint multiplier added to the Hamiltonian. The Gauss constrained was
therefore only for �lled to some accuracy, and was a source of uncertainty. The topological
charge can be obtained as a function of the discrete time, by calculating the Chern-Simons
number, as described in section 3.5. It was found that Q(t) lays in plateaus for a while
and then makes rapid transitions to a new plateau. Since, as mentioned in section 3.5, the
Chern-Simons number is not a total time derivative on the lattice, the jumps in Q(t) is not
exactly giving by an integer number. But the simulations clearly showed that there are
transitions between the di�erent vacuum sectors. The simulations was in �ne agreement
with the random walk picture. The value of � was extracted using formula 4.52. Due to
the noisy data, it was not possible to obtain a continuum limit. However a value � > 0:4
was indicated.

The need for a large lattice size, in order to �t the sphaleron in the broken phase,
makes it di�cult to do simulations in this phase, and compare with the existing an-
alytical calculations. The abelian U(1) Higgs model in 1+1 dimension, has the same
quantitative features as the SU(2) Higgs model, with a periodic vacuum structure and
fermion violation. Here the numerical simulation have been performed and are in good
agreement with analytic calculations of the rate from sphaleron transitions, performed in
the same way as described in section 4.5. Naively one would expect the same to be found
for the SU(2) Higgs theory.

Ambj�rn and Krasnitz [34] has recently obtained the value of � in the pure SU(2)
theory, again by simulations of the classical theory. The Gauss constrain now reads

@iE
a
i � 2�abcAbiE

c
i = 0 (4.58)
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The initial set of �elds were thermalized by a Langevin set of equation [35], obeying
the Gauss constrain exactly. The rate �tted the form 4.52 well and � was found to be
independent of the lattice spacing for su�ciently small values, which indicated that the
�nite continuum limit was reached. Further �nite size e�ects was eliminated. Let N
denote the number of lattice site in one direction. When N

�
, exceeded twice the magnetic

mass, � was found to be independent of this ratio, which �ts well with the idea of the
dominant contribution coming for con�gurations with size � mmag. These are strong
arguments for the reliability of the value, and it was numerically given by

� = 1:09� 0:04 (4.59)

At very high temperature T � Tc the scalar �eld decouples, having a thermal mass � gT ,
much greater than g2T , justifying a pure Yang-Mills theory in this limit. It is therefore
well established that the topological transitions are fast enough to wash out any baryonic
excess in the symmetric phase.

In ref. [37] the di�usion rate was calculated in the SU(2) Higgs model, by using an
e�ective classical Hamiltonian, where the parameters was determined by comparison with
dimensional reduction. The results was in agreement with the value found in [34] for the
pure SU(2) theory, in the symmetric phase. A value of MH = MW was used. In the
broken phase it was found that the rate only decreased a factor 5, which is a factor of 650
higher than the existing analytic calculations, as described in section 4.5. The rate was not
found to be dependent on the lattice spacing. The sphaleron energy enters exponentially
in the transition rate, and since it is decreasing with the coarseness of the lattice, a coarse
lattice would tend to make the rate higher. The question is whether this can explain
the discrepancy. From the lattice artifacts of the sphaleron energy in [19], a factor of
less than 2 of systematic error in the value of � is indicated. The large factor between
the analytic result calculated from the sphaleron transitions, and the results from the
computer simulations cannot be explained by the lattice artifacts of the sphaleron. But
since the dimensional reduction is not a good approximation in the broken phase, because
the temperature is low in this phase, the validity of the method is unclear. Furthermore
dimensional reduction is what indicates that the quantum rate is well approximated by the
classical one. The authors stated other sources of uncertainty. A �nite renormalization
factor was neglected, and this might give a substantial correction. It de�nitely needs some
clari�cation, before the result in [37] can be trusted. If these results are to be trusted, the
baryon violation rate get a signi�cant contribution by non-sphaleron processes, causing the
rate to be high enough, even in the broken phase, to eliminate a surplus of baryons. This
would force a plausible scenario to take place later than the electroweak phase transition,
or by B + L violation at an earlier stage.

4.9 Bounds on the Higgs mass

In order that a BAU created at the EPT is kept till now, it is necessary that the baryon
violation rate by sphaleron transitions after the phase transition is su�ciently low. This
can give us a bound on the Higgs mass. Experimentally the lower bound for the Higgs
mass is currently mH > 65 GeV.

We saw in section 4.5, that the suppression factor after the EPT is proportional to
e��Esph. The sphaleron energy given by formula 4.15 will increase for a larger vacuum
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expectation value of the Higgs �eld, and we understand that a high v is needed after
the phase transition. This is equivalent to a strong phase transition, since a high barrier
will keep the Higgs �eld in the false vacuum for a long time, and the expectation value
of Higgs �eld increases with decreasing temperature. The transition to the true vacuum
will take place close to the temperature T� where the barrier disappears. However, the
energy, gained from the transition to the true vacuum will reheat the system, and these
e�ects will have to be included when the temperature T � right after the phase transition
is estimated.

Requirering that the sphaleron transitions decouples, by going out of thermal equilib-
rium, right after the transitions Shaposhnikov derived bound

Esph(T
�)

T �
> 45 ; (4.60)

which has to be satis�ed for a BAU to survive till now. This is found by using equation
4.40 and 4.47. The inequality is not satis�ed for the minimal standard model. The
simulation of the EPT for the dimensionally reduced theory by Shaposhnikov et. al.,
shows that the EPT for the minimal standard model is not strong enough to generate the
observed BAU, for any value of the Higgs mass [3]. The fact that the minimal standard
model cannot explain the observed asymmetry has been established for some time, since
the bound on the Higgs mass was already in disagreement with experiments.

This turn us to search for extensions of the standard model, where a stronger phase
transition is possible. Both the two-Higgs model and some supersymmetric models have
an area of parameter space, where this is realized.
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Conclusion

From the study of electroweak baryogenesis it is nowadays believed, that the minimal
standard model is not capable of explaining the observed baryon asymmetry of the Uni-
verse. The bounds on the Higgs mass from demanding the sphaleron transition rate to be
turned o� after the phase transition, cannot be satis�ed in the minimal standard model.
The baryon violation rate for the electroweak processes in the symmetric phase, at least
for temperatures far above the critical temperature, is well established to be so high that
it will wash out any preexisting asymmetry. The rate in the broken phase is mainly deter-
mined by the sphaleron energy, but the numerical value of the rate is still to be obtained
by real time simulations. Extended models, like the two Higgs doublet theory, can give
an upper bound on the lowest Higgs mass, within the experimental limit.

The remaining possibilities for explaining the observed baryon asymmetry, is therefore
including extensions of the standard model where electroweak baryogenesis is used, and
a GUT model where B + L violating processes are present.
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Appendix A

A.1 Energy of the sphaleron

The energy is given by

E =
Z
d3x14F

�
ijF

�
ij + (Di�)

y(Di�) + �(�y�� v2

2
) : (A.1)

We want to show that for these ans�atze 2.22 and 2.23 the energy density is spherical
symmetric. Starting with the pure gauge �eld contributions. The expressions for the �eld
strength tensor is to long to be quoted, and only the �nal energy density is written

E(A) = � 1

2g2
Tr(FijFij)

= � 1

2g2
(� 8

r4
)(2[f(1� f)]2 + 2yz@zf@yf + 2xz@xf@zf + 2xy@yf@xf

+x2(@xf)
2 + y2(@yf)

2 + z2(@zf)
2)

=
4

r4g2
([2f(1� f)]2 + r2(

df

dr
)2) : (A.2)

Changing to � = gvr we obtain

Z
E(r)d3x =

Z
E(r)4�r2dr =

Z 16�v

�2g
(2[f(1� f)]2 + �2(

df

d�
)2)d� ; (A.3)

which is the �rst two terms in formula 2.25. The covariant derivative term gives rise to
the contribution to the energy density

E(�; A) = v2

r2
([h(1� f)]2 + 1

2
r2(

dh

dr
)2) (A.4)

and we get Z
E(r)d3x =

Z 4�v

g
([h(1� f)]2 + 1

2
�2(

dh

d�
)2)d� ; (A.5)

which is the next two term in the energy. The potential energy term for the Higgs �eld
is easily seen to give

E = �(
v2

2
h2 � v2

2
)2 =

v4

�
(h2 � 1)2 (A.6)

and we see that the last term in equation 2.25 is obtained.
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A.2 Topological charge of sphaleron

The topological charge, given by

Q = � g2

16�2

Z
d3x�ijk

�
Aai @jA

a
k +

1

3
g�abcA

a
iA

b
jA

c
k

�
; (A.7)

is calculated for the sphaleron con�guration

Aai = A(r)�iaex̂e +B(r)(�ia � x̂ix̂a) + C(r)x̂ix̂a ; (A.8)

where

A(r) =
[1� 2f(gvr)] cos�(r)� 1

gr
; (A.9)

B(r) =
[1� 2f(gvr)] sin�(r)

gr
; (A.10)

C(r) =
1

g

d�

dr
: (A.11)

First we will evaluate the term
�ijkA

a
i @jA

a
k : (A.12)

Using @jx̂k =
1
r
(�jk � x̂ix̂k) we get

@jA
a
k = (@jA)�kadx̂d + (@jB)(�ka � x̂kx̂a) + (@jC)x̂kx̂a

+
A

r
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C � B

r
[(�jk � x̂kx̂i)x̂a + (�ja � x̂jx̂a)x̂k] : (A.13)

However when contracting with �ijkA
a
i a lot of the term gives zero. For instance we get

for the term with (@jA)

�ijkA
a
i (@jA)�kadx̂d = (@jA)A

a
i (�ia�jd � �id�ja)x̂d = (@jA)A

a
i (�iax̂j � �jax̂i) : (A.14)

But we have
(�iax̂j � �jax̂i)�iaex̂e = ��ijex̂ix̂e = 0 ; (A.15)

since �ije is antisymmetric in i and e and x̂ix̂e is symmetric. There will be no contribution
from the A term in Aai . Further

(�iax̂j � �jax̂i)x̂ix̂a = (x̂j � x̂j) = 0 (A.16)

(�iax̂j � �jax̂i)�ia = 3x̂j � x̂j = 2x̂j ; (A.17)

and we get the contribution 2xjB(@jA).
The term with (@jB) is non-zero only for the A term in Aai

�ijkA�iaex̂e(@jB)�ka = A(@jB)�ija�iaex̂e (A.18)

= A(@jB)(�2)�jex̂e = �2x̂jA(@jB) : (A.19)

The term with (@jC) is easily seen to give zero, since the structure in the x̂'s is always
symmetric in some indices, and contracted with the � symbol this gives zero.
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Now the term with A
r
, we get

�ijkA
a
i

A

r
�kad(�jd � x̂jx̂d) = Aai

A

r
(�ia�jd � �id�ja)(�jd � x̂jx̂d) (A.20)

= Aai
A

r
(3�ia � �ia(x̂)

2 � �ia + x̂ax̂i) (A.21)

= Aai
A

r
(�ia + x̂ax̂i) : (A.22)

We have

(�ia + x̂ax̂i) �iaex̂e = 0 (A.23)

(�ia + x̂ax̂i) x̂ax̂i = 2 (A.24)

(�ia + x̂ax̂i) �ai = 4 ; (A.25)

given a contribution 2A
r
(C +B).

The term with C�B
r

gives a similar result. Noting that �ijk(�jk � x̂kx̂i)x̂a = 0, we are
left with

�ijkA
a
i

C � B

r
(�ja � x̂jx̂a)x̂k = Aai

C � B

r
�iakx̂k ; (A.26)

and we have
�iakx̂k�iaex̂e = 2x̂2 : (A.27)

This gives us the contribution 2C�B
r
A. The rest of the term gives zero. In total we may

therefore write

�ijkA
a
i @jA

a
k = 4

AC

r
+ 2x̂j[B(@jA)� A(@jB)] (A.28)

= 4
AC

r
+ 2[B(@rA)� A(@rB)] ; (A.29)

since @jA(r) = x̂j@rA(r) by the chain rule.
Now we will calculate the term

�ijk�abcA
a
iA

b
jA

c
k : (A.30)

An investigation yields that all cubic terms vanish, and from the cross terms we get the
following contributions. From the term with two A's and one C

�ijk�abc�iadx̂d�jbex̂ex̂kx̂c = �ijk�jbe(�icx̂b � �ibx̂c)x̂ex̂kx̂c (A.31)

= (�ie�kb � �ib�ke)(�icx̂b � �ibx̂c)x̂ex̂kx̂c (A.32)

= (�cex̂k + �kex̂c)x̂ex̂kx̂c = 2 : (A.33)

This will appear three times, so in total we get the contribution 6A2C. From the term
with two B's and one C

�ijk�abc(�ia � x̂ix̂a)(�jb � x̂jx̂b)x̂kx̂c = �ijk�abc�ia�jbx̂kx̂c (A.34)

= �abk�abcx̂kx̂c = 2 : (A.35)

Hence this give rise to 6B2C, and the �nal result yields

�ijk�abcA
a
iA

b
jA

c
k = 6(A2 +B2)C : (A.36)
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Indeed we see that the topological charge density is spherical symmetric

Q = � g2

16�2

Z
4�r2dr

�
6(A2 +B2)C + 4

AC

r
+ 2[B(@rA)� A(@rB)]

�
: (A.37)

It it easily seen that g drops out, and by rede�ning the function A ! gA and the same
for B and C, we may write

(@rA) =
1

r

 
�2f 0 cos�� (1� 2f) sin�

d�

dr
� A

!
; (A.38)

and

(@rB) =
1

r

 
�2f 0 sin� + (1� 2f) sin�

d�

dr
�B

!
: (A.39)

We get

B(@rA)� A(@rB) =
1

r2

 
�2f 0 sin�� (1� 2f)2

d�

dr
+ (1� 2f) cos�

d�

dr

!
: (A.40)

Further

(A2 +B2)C =
1

r2

�
(1� 2f)2 + 1� 2(1� 2f) cos�

� d�
dr

; (A.41)

and
AC

r
=

1

r2
((1� 2f) cos�� 1)

d�

dr
: (A.42)

The gives the following integrand

I =
1

r2

 
2(1� 2f) cos�

d�

dr
� 2

d�

dr
� 4f 0 sin�

!
; (A.43)

and the topological charge reads

Q = � 1

4�

Z
dr

 
2(1� 2f) cos�

d�

dr
� 2

d�

dr
� 4f 0 sin�

!
: (A.44)

We have that �(1) = � , �(0) = 0 , f(0) = 0 and f(1) = 1, hence by partial integrating
the last term the surface term will vanish

Z
dr(�4f 0 sin�) = �4[f sin�]10 +

Z
dr4f(sin�)0 =

Z
dr4f cos �

d�

dr
: (A.45)

The remaining integral cancels with the f cos � term in A.44, hence

Q = � 1

4�

Z
dr2(cos�� 1)

d�

dr
= � 1

2�
[sin�� �]10 =

1

2�
� =

1

2
: (A.46)

The topological charge of the sphaleron is a half integer.
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Appendix B

Data

Data obtain from the program is shown in this appendix.
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Figure B.1: The slope as a function of the cooling step . The left graph is for N = 20,
MW = 1 The right graph is for N = 10, MW = 1. Here the change in the curve is due to
change of the cooling step parameter in the program.

0

5

10
0

5

10

0.9989
0.999

0.9991
0.9992
0.9993
0.9994
0.9995
0.9996
0.9997
0.9998
0.9999

x

y

scalar field

0

5

10
0

5

10

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

x

y

energy density field

Figure B.2: A con�guration with NCS ' 0:1 for L = 14, MW = 1 Left the normalized
scalar �eld squared. Right the energy density.
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Figure B.3: The static energy as a function ofNCS during the constrained cooling. Around
the sphaleron con�guration the measurement of the Chern-Simons number is extremely
di�cult. The maximum step-size for the cooling algorithm is 7500, and still to low for a
correct value of NCS. For the point with NCS ' 0:415, the cooling algorithm reaches a
�nal con�guration far from a vacuum state (Estat = 0:43). Since NCS goes outside the
allowed region, going from NCS ' 0:415 to NCS ' 0:517 in the lower \nearly" horizontal
line, guidance is used and not constrained cooling.
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Figure B.4: The static energy as a function of time, during the constrained cooling, with
time going from right to left. Clear jumps are seen every �fth time, corresponding to the
reunitarization of the link matrices.
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Figure B.5: The sphaleron con�guration for N = 12 and MW = 1. Mininimum value of
(�y�)

1

2 =v = 0:30918. Energy of con�guration Esph = 3:223MW=�. Chern-Simons number
NCS = 0:500. Left the normalized magnitude of scalar �eld squared. Right the energy
density, which is does not vanish at the boundary.
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Figure B.6: The sphaleron con�guration for N = 10 and MW = 1. Mininimum value of
(�y�)

1

2 =v = 0:29604. Energy of con�guration Esph = 3:250MW=�. Chern-Simons number
NCS = 0:506. Left the normalized magnitude of scalar �eld squared. Right graph the
energy density, which is di�erent from zero at the boundary.
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Figure B.7: A con�guration on the barrier for N = 16 and MW = 1 with NCS = 0:0098.
Energy of con�guration E = 0:123MW=�. Left the normalized magnitude of scalar �eld
squared. Right the energy density.
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Figure B.8: A con�guration on the barrier for N = 16 and MW = 1 with NCS = 0:191.
Energy of con�guration E = 2:152MW=�. Left the normalized magnitude of scalar �eld
squared. Right the energy density.

74



0 5 10 15 20 0
5

10
15

20
0.994
0.995
0.996
0.997
0.998
0.999

1

scalar field

0 5 10 15 20 0
5

10
15

20

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Energy density

Figure B.9: A con�guration on the barrier for N = 24 andMW = 1=2 with NCS = 0:0083.
Energy of con�guration E = 0:104MW=�. Left the normalized magnitude of scalar �eld
squared. Right the energy density.
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