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Abstract

This thesis explores the nonperturbative physics of three-dimensional gauge field theories
with varying amounts of supersymmetry through an analysis of their one-dimensional topo-
logical substructures.

In the setting of four supercharges, we consider the topological quantum mechanics of
Wilson lines in pure Chern-Simons theory. We reframe the perturbative renormalization of
observables in this theory in terms of a localization principle associated with an underlying
N = 2 supersymmetry. This perspective allows the otherwise perturbative corrections to be
interpreted as nonperturbative consequences of a non-renormalization theorem.

In the setting of eight supercharges, we develop an approach to the study of Coulomb
branch operators in 3D N = 4 gauge theories and the deformation quantization of their
Coulomb branches. To do so, we leverage the existence of a 1D topological subsector whose
operator product expansion takes the form of an associative and noncommutative algebra on
the Coulomb branch. For “good” and “ugly” theories in the Gaiotto-Witten classification,
we exhibit a trace map on this algebra, which amounts to a procedure for computing exact
correlation functions of a class of local operators, including certain monopole operators, on
S3. We introduce a “shift operator” formalism for constructing correlators on S? by gluing
hemispheres HS?, and we show how to recover our results by dimensionally reducing the
line defect Schur index of 4D N = 2 gauge theories. We use our results to study 3D mirror
symmetry and to characterize monopole bubbling effects in nonabelian gauge theories. In
the process, we arrive at a physical proof of the Bullimore-Dimofte-Gaiotto abelianization

description of the Coulomb branch.
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Chapter 1

Introduction and Summary

1.1 Motivation

By extending the square root operation to the entirety of the real numbers, all polynomial
equations are rendered soluble. The applications of the resulting theory of complex analysis
have percolated through mathematics over the past several centuries. While the practical
utility of complex numbers in (classical) physics has been appreciated since the early days
of electrodynamics, a physicist in the time of William Rowan Hamilton may very well have
objected to the ontological necessity of introducing the fictitious v/—1. After all, numbers
measured in the lab are real. Must a reasonable description of nature make essential reference
to unobservable quantities? It was not until the advent of quantum mechanics that complex
numbers took on a more foundational role [4], ensuring that the Schrodinger equation (unlike
the heat equation) is invariant under time reversal. Regardless of whether complex numbers
are emergent or written into the “source code” of nature, they have come to form part of
our “user interface” for understanding the quantum world.

Similar ontological questions echo in the present day. The symmetries of the world as
we know it are described by the Poincaré algebra, which unifies spacetime translations and

Lorentz transformations. There exist hypothetical extensions of Poincaré symmetry whose



signatures have so far eluded observation. One such extension is supersymmetry. While the
study of supersymmetry faces no shortage of phenomenological justifications (ranging from
the solution of the electroweak hierarchy problem to grand unification), the following simple

reason may be compelling enough:
Supersymmetry is to Poincaré symmetry as the complexr numbers are to the reals.

Indeed, the super-Poincaré algebra arises quite literally from taking the “square root” of
translations. Pursuing this analogy, theories with greater degrees of supersymmetry exhibit
scalar moduli spaces with increasingly constrained geometries (Ké&hler, hyperkdhler, ...),
leading to mathematical structures that generalize the complex numbers, namely quater-
nions and octonionsﬂ Just as Hurwitz’s theorem (which establishes R, C, H, and O as the
only normed division algebras over the reals) tells us that there is a limit to how far these
generalizations can go, there is a limit to the amount of supersymmetry that a relativistic
quantum field theory can have[]

As with complex numbers, we may be agnostic about whether supersymmetry is funda-
mental in nature. And like complex numbers, supersymmetry is often hidden, simplifying
physical arguments and appearing in unexpected contexts. A rather prosaic example of a su-
persymmetry is the Becchi-Rouet-Stora-Tyutin (BRST) symmetry familiar from quantizing
ordinary gauge theories.

Another example comes from elementary quantum mechanics: the problem of an elec-
trically charged particle in the field of a magnetic monopole [6]. This example turns out to
contain important notions that will recur throughout this thesis, so we pause to discuss it
in some detail. For simplicity, we take the particle to have unit charge and constrain it to

move on a sphere S? of unit radius around the monopole. Its Hamiltonian is

1 -,
H=——(V—iA)?,o 1.1
(V= AP, (11)
!The octonions are an exceptional case, appearing in 10D maximal supersymmetry [5].
2Qur discussion here is restricted to rigid (as opposed to local) supersymmetry. The limit on the number
of supercharges follows from the Weinberg-Witten theorem in 4D, combined with dimensional reduction or
“oxidation.”




where A is an appropriate vector potential. For concreteness, we take

~  j(14cosh) .

A_— 1.2
rsin @ ¥ (1.2)

which is divergenceless and singular along the positive z-axis. Here, j denotes the magnetic

charge. The standard angular momentum operators

= : .0 0 0 o 0
D=—i (— sin g — cos p cot 08@ COS P75 — sin ¢ cot 08g0 8@) (1.3)

satisfying [D;, D;] = i€ Dy, do not commute with H. Rather, the “good” angular momenta

(accounting for the contribution from the electromagnetic field) are

- - Jgr o= sinf cos ¢ sinfsin ¢
L=— 1A — =D+ 1.4
i (V= )+ (1—0086 1—cosf’ )’ (14)
which likewise satisfy [L;, L;] = i€;;, L. We may then diagonalize H as follows:
He (2= ) = (e +1) - ), (1.5)
T oM RADY Vi J '

where ¢ is an integer or half-integer. To determine which levels ¢ are allowed, note that ro-
tations transform |¢,m) only into states of the same ¢. Writing |6, o) = e~L3?e~iL20|0 = (),

the position-space wavefunction of a state |¢, m) is therefore
<97(70|€7 m> = elmwzdﬁm’m(e)<9 = OM» m/>a (16)

with coefficients given by Wigner d-matrices. But L3|0 = 0) = —j|0 = 0), so by considering

the matrix element (# = 0|L3|¢, m’), we derive the selection rule
(0 =0[¢,m'y =0 for m" # —j. (1.7)

In particular, (6, p|¢,m) = 0 unless

> 1j]. (1.8)

These are the allowed levels, each occurring once, with ¢ being an integer or half-integer

according to the quantized value of j (which we take to be positive for simplicity).



The above system has a spectral gap proportional to 1/M. Taking the massless limit
M — 0 (and adding a constant —j/2M to H, if we like), all states except for those with
¢ = j decouple. To elucidate the physical significance of this limit, note that the theory at

finite M can be obtained from the classical Lagrangianﬁ
. . M ) - 2.2
L:j(1+0039)g0+?(9 + sin® 0¢p*). (1.11)
In this form, the M — 0 limit is trivial: (1.11]) becomes
Lo = j(1+ cosO)p. (1.12)

The massless theory (1.12)) has phase space S?, equipped with a locally exact symplectic
(volume) form w:

w=jsinfdp ANdd =dy, x=j(1+ cosb)dp. (1.13)

The action, Sy = [ x, computes j times the area enclosed by a trajectory in phase spaceﬁ
Moreover, the half-integral quantization of the coefficient j follows from the Dirac quanti-
zation condition. Namely, any closed curve C' C S? can be completed to two different disks
D; and Dy with 0D, = 0D, = C, and consistency of the path integral requires that

eifox = st o pifew 21 e | W= 4rj € 202, (1.14)

5’2

The operators (J, Jy,J,) = j(sinf cos p,sinfsin g, cos#), when quantized, satisfy the fa-
miliar angular momentum algebra. Finally, since the phase space is compact, quantizing it

yields a finite-dimensional Hilbert space with 2j + 1 states |7, m), all eigenstates of J..

3The term linear in ¢ may seem irrelevant, as the corresponding classical Hamiltonian is simply
H= %(9’2 + sin? #p?). (1.9)
However, it affects the canonical momenta
7o = j(1 + cosf) + Msin®0p, mp = M, (1.10)

from which the quantum Hamiltonian (|1.1)) is obtained by writing ((1.9) in terms of ((1.10)) and quantizing.
4In the chosen gauge (1.2)), the enclosed area lies in the patch excluding the North pole.
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Hopefully, the motivation behind our choice of notation for “j” is now clear. Starting
from a charged particle in a monopole field, we have derived one of the simplest examples
of a topological quantum field theory (TQFT), one with trivial Hamiltonian: the famous
Wess-Zumino term for quantization of spin (the Lagrangian ((1.12)) is a Wess-Zumino term
because its variation under global SU(2) is a total derivative).

This simple quantum mechanical problem has another surprise in store: it is secretly
supersymmetric. One hint in this direction is that the semiclassical approximation to the
(J.-twisted) path integral of the massless theory is exact: it computes the character
of the spin-j representation of SU(2). This one-loop exactness has a good explanation [7].
We obtained as the massless limit of , thus projecting out all excited states. But
we could just as well have considered the supersymmetric counterpart of the theory ,
which contains equal numbers of bosonic and fermionic excited states. The contributions of
these excited states to the supersymmetric partition function (or flavored Witten index [§])
cancel regardless of the mass, leaving only the contributions of the supersymmetric ground
states. This latter perspective reveals the one-loop exactness of the theory to be a
consequence of the principle of supersymmetric localization.

The above example presents a connection between supersymmetry and topology in the
context of gauge theory. This entire thesis consists of variations on this theme. Apart
from supersymmetric theories, two other special classes of quantum field theories feature
prominently in our discussion. First, topological field theories represent a first step beyond
quantum mechanics, being particularly easy to quantize and to axiomatize. Second, confor-
mal field theories exhibit a different kind of enhancement of Poincaré symmetry, allowing
kinematics to strongly constrain correlation functions. All three classes of theories — su-
persymmetric, topological, and conformal — provide similar windows into nonperturbative
physics, including rigorous understanding of the path integral, exact results in some situa-

tions, and “beyond-Lagrangian” techniques for studying theories with multiple Lagrangian



descriptions or none at all. Much of our discussion focuses on cases where these three classes
overlap, giving rise to what are known as cohomological and superconformal field theories.
Our investigation is divided into two complementary parts. Chapter [2| concerns nonlocal
operators in supersymmetric Chern-Simons theories, while Chapter [3| concerns local opera-
tors in supersymmetric non-Chern-Simons theories. The phenomena in these chapters are
characterized by the existence of four and eight supercharges, respectively, thus manifesting
aspects of the Kéahler and hyperkahler geometry mentioned at the beginning. The common
thread in both of these chapters, as anticipated by the lengthy example above, is the notion
of the magnetic monopole. Our main setting is three spacetime dimensions, but we also en-
counter structures in one, two, and four dimensions, whether through dimensional reduction,

boundaries, or defects within a bulk theory.

1.2 Monopoles as Wilson Lines

Chapter [2| presents a synthesis of viewpoints on an old subject. It represents a particular

attempt to make good on a quantum-field-theoretic analogue of Hadamard’s quote that

“The shortest path between two truths in the real [non-supersymmetric| domain

passes through the complex [supersymmetric] domain.”

We argue that the well-known perturbative “Weyl shifts” in pure Chern-Simons theory with
simple, compact gauge group can be understood in a unified way by embedding the theory
in an N = 2 supersymmetric completion. This is accomplished by introducing an auxiliary
fermionic symmetry with the aid of generalized Killing spinors. This point of view explains
how the quantum corrections persist nonperturbatively in a wide class of observables that are
otherwise not one-loop exact, yields a conceptually simpler explanation for the Weyl shifts
than that obtained in early literature (involving path integral anomalies [9]), and clarifies
what it means for N'= 0 and N/ = 2 Chern-Simons theory to be “equivalent” at the level of

line operators.



What role do monopoles play in any of this? Observables in Chern-Simons theory are
configurations of Wilson lines. Wilson lines are usually thought of as labeled by representa-
tions of the gauge group GG. But more fundamentally, a Wilson line describes the infrared
(IR) limit of a quantum particle moving on a coadjoint orbit of GG, in the presence of a back-
ground magnetic field given by the coadjoint symplectic form. This interpretation is valid in
any gauge theory, and it lies at the core of our analysis. In fact, we have already seen how
the story goes for G = SU(2), where the Wilson line quantum mechanics reduces to nothing
other than that of a particle on S? = SU(2)/U(1) in a monopole field. Thus the physics
of Wilson lines is revealed to be a generalization of that of the humble magnetic monopole.
This viewpoint on Wilson lines as 1D sigma models occurs naturally in many contexts, not

the least of which being quantum gravity [10] [11].

1.3 Monopoles and Supersymmetry

Among supersymmetric theories, those with eight supercharges occupy a “sweet spot” be-
tween computability and nontriviality. In Chapter [3, we describe a comprehensive approach
to the study of Coulomb branch operators in 3D N = 4 gauge theories. One outcome of this
work is the first computation of exact correlation functions involving arbitrary numbers of
local defect operators in 3D gauge theories. These operators are the dynamical counterparts
of BPS 't Hooft-Wilson loops in 4D N = 2 gauge theories. Central to our techniques is
the fact that all 3D N = 4 superconformal field theories (SCFTs) have two protected 1D
topological sectors, one associated with the Higgs branch and one with the Coulomb branch
[12, 13]. The operator algebras of these sectors yield intricate information about the geome-
try of the vacuum manifold. While the Higgs branch sector has a Lagrangian description [14],
the Coulomb branch sector presents significant new challenges because it involves monopole
operators, which are local disorder operators that cannot be expressed as polynomials in the

Lagrangian fields.



In [2] B], we solve the Coulomb branch topological sector of both abelian and nonabelian
3D N = 4 gauge theories. Our techniques combine supersymmetric localization on hemi-
spheres and the algebraic properties of the resulting hemisphere wavefunctions. We use our
results to prove abelian mirror symmetry (an IR duality that exchanges Higgs and Coulomb
branches, classical and quantum effects, and order and disorder operators) at the level of
two- and three-point functions of half-BPS local operators, to derive precise maps between
half-BPS operators across nonabelian 3D mirror symmetry, and to compute previously un-
known Coulomb branch chiral rings and their deformation quantizations. Our formalism
gives a concrete way to determine the coefficients that quantify nonperturbative “monopole
bubbling” effects in nonabelian gauge theoriesﬂ namely, they should be fixed by algebraic
consistency of the operator product expansion (OPE) within the Coulomb branch topological
sector. Previously, there existed no general algorithm for obtaining these coefficients (direct
localization computations of bubbling in 4D N = 2 theories have been performed only for
unitary gauge groups with fundamental and adjoint matter [17, 18, 19, 20]). Finally, taking
the commutative limit of our construction (the 1D OPE) provides a ground-up derivation of

the abelianization description of the Coulomb branch proposed in [21].

°In which the Goddard-Nuyts-Olive (GNO) charge [I5] of a singular monopole is screened away from the
insertion point by small 't Hooft-Polyakov monopoles [16].
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Chapter 2

Topological Sigma Models in

Chern-Simons Theory

2.1 Introduction

Our goal in this chapter is to argue that certain properties of three-dimensional Chern-
Simons theory can be understood in a unified way by regarding the theory as an effective
description of an N = 2 supersymmetric completion.

The application of supersymmetry to topological field theories has a long history. For in-
stance, both the topological invariance and semiclassical exactness of observables in Witten-
type (cohomological) TQFTs have long been recognized as consequences of a fermionic BRST
symmetry [22]. The BRST supersymmetry is a restatement of the underlying general co-
variance of the theory: the subtraction of ghost degrees of freedom guarantees the absence
of excited states. By contrast, our approach relies on a further auxiliary supersymmetry.
The relevant fermions obey the spin-statistics theorem. At finite Yang-Mills coupling, they
result in an infinite tower of states with equal numbers of bosonic and fermionic degrees
of freedom, which make no net contribution to supersymmetric observables. However, they

have the additional effect of shifting the number of vacuum states. We will argue that this



shift, combined with the localization principle afforded by the auxiliary fermionic symmetry,
provides a natural framework in which to understand some features of correlation functions
in bosonic Chern-Simons theory that are obscure from the point of view of perturbation

theory.

2.1.1 Old Perspectives

Let us first recall what is known. It has long been understood that induced Chern-Simons
terms are one-loop exact because higher-order corrections (via an expansion in i ~ 1/k)
cannot, in general, respect the quantization condition on the level [23,24]. One manifestation
of this fact is that quantum observables in pure Chern-Simons theory with simple gauge
group GG and level k > 0, possibly involving Wilson loops in irreducible representations of G
labeled by highest weights A, are naturally viewed as functions not of the “bare” parameters
(suitably defined), but of

k—k+h, AX=>X+p (2.1)

where h is the dual Coxeter number and p is the Weyl vector of G. For example, when
G = SU(2), the shifts read k — k + 2 and j — j + 1/2, and the latter appears at the level

of representation theory in the SU(2) Weyl character

o= § ol o

m=—j
which (up to a j-independent prefactor) takes the form of a sum over m = +(j + 1/2), as
familiar from equivariant localization formulas (see [25], 26] and references therein). These
shifts can be thought of as quantum corrections.

By now, exact results for Chern-Simons theory have been obtained by various methods
that give different ways of understanding the level shift: aside from surgery and 2D CFT
[27], these include abelianization on circle bundles over Riemann surfaces [28, 29], nonabelian

localization [30, 31], and supersymmetric localization [32], B3]. Of particular relevance to

10



the last approach (such as when performing supersymmetric tests of non-supersymmetric
dualities [34], [35]) is the fact that correlation functions in pure N' = 2 and N’ = 0 Chern-
Simons coincide up to a shift of the above form: in the A = 2 Chern-Simons action at level
k + h, all superpartners of the gauge field are auxiliary, and performing the Gaussian path
integral over these fields leads to an effective N/ = 0 Chern-Simons action at level k.

While A, unlike k, does not appear in the bulk Lagrangian, the associated shift similarly
lends itself to a Lagrangian point of view via an auxiliary system attached to the Wilson
line, obtained by quantizing the coadjoint orbit of A. In fact, as we will explain, the weights
A in N = 2 Chern-Simons theory are subject to a “non-renormalization principle” similar
to that of k, as can be seen by localizing the corresponding 1D N = 2 theories on Wilson
lines[] The essence of the 1D localization argument appears in the prototypical system of
a massless charged particle on S? in the field of a magnetic monopole, which we examined
in the introduction to this thesis. In [7], it is shown using a hidden supersymmetry that
the semiclassical approximation to the path integral for the monopole problem is exact.
The upshot is a derivation of the Weyl character formula for SU(2) from supersymmetric
quantum mechanics. The same strategy of localizing an apparently purely bosonic theory
has many modern incarnations: see, for example, [37]. Part of our discussion involves giving
a slightly more modern formulation of the treatment of the monopole problem in [7], while

embedding it into Chern-Simons theory.

2.1.2 New Perspectives

Our goal is to explain how supersymmetric localization provides a structural understanding
of the aforementioned exact results in the sense that the essential mechanism for both shifts,
in the supersymmetric context, is identical in 3D and in 1D.

While the renormalized parameters in (2.1)) are one-loop exact, general observables in

the A/ = 0 theory are not, reflecting the fact that Chern-Simons theory is conventionally

13D N > 2 theories are precisely those whose holomorphy properties allow them to be constrained by
non-renormalization theorems [36].

11



formulated as a Schwarz-type rather than a Witten-type TQFT (but note that after a suitable
topological twist, gauge-fixed Chern-Simons theory does furnish an example of the latter
[33]). The real power of supersymmetry lies in its ability to explain how the shifts persist
nonperturbatively in a wide class of observables. Enhancing both the 3D Chern-Simons
action and the 1D coadjoint orbit action for Wilson loops with A/ = 2 supersymmetry gives
one access to a localization argument that ensures that correlation functions depend only on
the bare couplings appearing in the respective actions. This is a sort of non-renormalization
principle. These two supersymmetrizations are not independent, as there exists a precise
map between fields in the bulk and fields on the line. The supersymmetric, coupled 3D-1D
path integral can be evaluated exactly, and after adjusting for induced Chern-Simons terms
from integrating out the auxiliary fermions (in 3D and in 1D), we immediately deduce the
exact result in the corresponding bosonic theory, including the famous shifts. In this way,
a one-loop supersymmetric localization computation reproduces an all-loop result in the
bosonic theory. This reasoning leads to a conceptually simpler explanation for than
that originally obtained from anomalies in the coherent state functional integral [9].
Making the above statements precise requires fixing unambiguous physical definitions of
the “bare” parameters k and \: for example, via the coefficient of the two-point function in
the associated 2D current algebra and canonical quantization of the coadjoint orbit theory,
respectivelyﬂ Having done so, the shifts in & and A arise in a unified fashion from jointly
supersymmetrizing the 3D bulk theory and the 1D coadjoint orbit theory, giving rise to three

equivalent descriptions of the same theory:

2An intrinsically bulk definition of k is as follows. For positive integer k, the Hilbert space of Chern-
Simons theory with simply connected G on a Riemann surface ¥ is isomorphic to H(M, £F) where M is the
moduli space of flat G-connections on ¥ and L is the basic line bundle over M in the sense of having positive
curvature and that all other line bundles over M take the form £™ for some integer n [24]. For example, for
simple, connected, simply connected G and ¥ = T2, M is a weighted projective space of complex dimension
rank G and £ = O(1) (whose sections are functions of degree one in homogeneous coordinates on M). In
the N = 1 and N = 2 settings, fermions have the effect of tensoring £F with K'/? or K to give £F~"/2
or LF=" respectively, where K = £~" is the canonical bundle of M. Note that these fermions effectively
implement the metaplectic correction in geometric quantization [38 [39].
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1. The bosonic Chern-Simons theory has level £ and Wilson loops
Try Pexp (i%Aud:L’“) : (2.3)
2. The supersymmetric Chern-Simons theory has level k£ + h and Wilson loops

Try Pexp {z %(Audx“ - iads)} : (2.4)
where o is the real scalar in the vector multiplet.

3. The coadjoint orbit description of half-BPS Wilson loops coupled to the bulk supersym-
metric theory has level £ + h and weight A\ + p from the start; these parameters are
not renormalized. The trace in is replaced by an appropriate supertrace in a 1D
theory containing an auxiliary complex fermion . In the standard presentation of a

supersymmetric Wilson loop, the fermion ¢ has already been integrated out.

One would in principle expect to be able to match all observables between these descrip-
tions, not only those that are protected (BPS) and hence calculable using supersymmetric
localization, because the path integral over the auxiliary fields can be performed exactly
(shifting (kK 4+ h, A+ p) — (k, \) and setting o = 0, respectively). The main limitation of
our analysis is that we are able to demonstrate this equivalence only for correlation func-
tions of Wilson loops that are BPS with respect to the bulk supersymmetry (for which the
integration contour implicit in (2.4) is subject to certain constraints).

Our approach involves introducing an auxiliary fermionic symmetry with the aid of gen-
eralized Killing spinors, allowing the localization procedure to be carried out on arbitrary
Seifert manifolds. The underlying geometric structure that makes this possible is a trans-
versely holomorphic foliation, or THF [40] 41]. It is worth contrasting this approach with
that of [33], which avoids assuming the existence of Killing spinors by using a contact struc-
ture to define the requisite fermionic symmetry. A contact structure exists on any compact,

orientable three-manifold. It is, locally, a one-form x for which k A dk # 0; a metric can al-
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ways be chosen for which kA dk is the corresponding volume form, i.e., such that x1 = K Adk
and *x = dk. The dual vector field v such that ¢, = 1 and ¢,dx = 0 is known as the Reeb
vector field. It was found in [33] that to carry out the localization, the corresponding Reeb
vector field must be a Killing vector field, which restricts this approach to Seifert manifolds
(as in [31]); this approach was generalized in [42] to Chern-Simons theories with matter.
Therefore, while the geometric basis for our approach differs from that for the cohomolog-
ical localization of [33, 42], the domain of applicability is the same. Our focus, however, is
different: the compensating level shift from auxiliary fermions was ignored in [33], noted in
[42], and essential in neither.

We begin by reviewing some background material and setting our conventions in Sections
and We then carry out the analysis for Wilson lines very explicitly for G = SU(2)
in Section (we comment briefly on the generalization to arbitrary G at the end). Using
the description of these lines as 1D N = 2 sigma models, we compute the effective action for
fermions at both zero and finite temperature, canonically quantize the system, and present
the localization argument in 1D. In Section [2.5 we show how to embed this story in bulk 3D
N = 2 Chern-Simons theory. Crucially, while we expect N' = 0 and N' = 2 Chern-Simons to
be equivalent by integrating out the extra fields in the vector multiplet, the equivalence only
holds if we take into account both the shift of the level and the weight (as discussed further
in Section . In Section we describe how to generalize the aforementioned analysis of

a Wilson line in flat space to various classes of compact three-manifolds.

2.2 N =0 Chern-Simons Theory

Let M3 be a compact, oriented three-manifold and let G be a simple, compact, connected,
simply connected Lie group. The latter two assumptions on G ensure that any principal

G-bundle P over M? is trivial, so that the Chern-Simons gauge field A is a connection on
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all of P. It then suffices to define the Lorentzian N’ = 0 G}~¢ Chern-Simons action by

k 2i
Scs = — Tr(A/\dA—EZA/\A/\A). (2.5)

- 47 M3
We normalize the trace such that the norm squared of the longest root is two.

In flat Minkowski space, we have the A/ = 2 Lagrangians

2i -
Los|riz = % Tr [EWP (A”aVAp - EZAMAZ,AP) — 2N — 2Da} , (2.6)
1 1 o1 1, .
Lymlpre = — Tr _ZF’“’FM — §DM0D“U + §D + M DA —iXo, A ) . (2.7)
g

These are written in the convention where the generators T¢ are Hermitian.ﬂ We sometimes

switch from Lorentzian to Euclidean signature when natural, namely when computing the

supersymmetric index (Section [2.4.3)) and when working in curved space (Section [2.6).

2.2.1 Perturbation Theory

The level of the pure N' = 2 CS theory whose correlation functions reproduce those of the
corresponding N = 0 theory is ky—s = ky—o + h (kay=o > 0 by assumption). This we
refer to as the “fermionic shift”: the IR effective action Seg[A, m] for two adjoint Majorana
fermions with real mass m, minimally coupled to a G-gauge field, is Scs at level hsign(m)
[43, [44]. Specifically, consider the sum of and . The resulting theory has a mass
gap of m = kg?/2m. At large k (m > ¢?), we may integrate out all massive superpartners
of the gauge field. Assuming unbroken supersymmetry, the result is the low-energy effective
theory of zero-energy supersymmetric ground states. Of course, the fact that integrating
out A induces L5 at level —h (among other interactions), along with the assumption
that N/ = 2 SUSY is preserved quantum-mechanically, is only a heuristic justification for
the renormalization of the coefficient of £52 to k — h. This expectation is borne out by

computing the one-loop perturbative renormalization of couplings [45].

SWLOG, we may take k > 0 because time reversal (equivalently, spacetime orientation reversal in Eu-
clidean signature) flips the overall sign of (2.6)), i.e., the sign of the bosonic Chern-Simons term, the sign of
the gaugino mass term, and the sign of the pseudoscalar o.
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The fermionic shift discussed above is entirely separate from any “bosonic shift” that
might arise from gauge dynamics (as found in, e.g., [46], which effectively integrates out
the topologically massive W-boson). Such a shift does not affect the number of vacuum
states. Indeed, it is an artifact of regularization scheme: in the Yang-Mills-Chern-Simons
regularization (which preserves supersymmetry, and which we use throughout), the IR level
is shifted by +h relative to the bare level, while dimensional regularization yields no such
shift [23]. It is, nonetheless, a convenient conceptual slogan that & is renormalized to k+h at
one loop in N'= 0 YM-CS, so that k is not renormalized in AN/ > 2 YM-CS. The important
point is that for N' > 2 supersymmetry, integrating out the gauginos in the 3D YM-CS
Lagrangian yields a shift of —h, which is twice the shift of —h/2 in the N' =1 case [45].

Given a precise physical definition of the level k, such as those presented in the intro-
duction, a more substantive “bosonic” shift of the form mentioned above is that exhibited
by correlation functions of A" = 0 Chern-Simons theory as functions of k. This can already
be seen in the semiclassical limit [27]. At large k, we may expand to quadratic order
around a flat connection Ay. The semiclassical path integral evaluates to its classical value
weighted by the one-loop contribution e’™(40)/2T( A;) where T(Ay) is the Ray-Singer torsion

of Ayg. The Atiyah-Patodi-Singer index theorem implies that the relative n-invariant

S (n(40) — n(0)) = “1(40), 2.9

where I(A4g) = 1Scs(Ao), is a topological invariant. The large-k partition function is then

7 — imn(0)/2 Z ez(k+h)1(Ag“))T(A(()a))’ (2.9)

6
where the sum (assumed finite) runs over gauge equivalence classes of flat connections. This
is how the shift & — k+h, which persists in the full quantum answer, appears perturbatively.
The phase 1(0) depends on the choice of metric. However, given a trivialization of the tangent

bundle of M?, the gravitational Chern-Simons action g,y (g) has an unambiguous definition,
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and upon adding a counterterm %Igrav(g) to the action, the resulting large-k partition
function is a topological invariant of the framed, oriented three-manifold M? [27].

Thus a framing of M? fixes the phase of Z. Aside from the framing anomaly of M3
itself, there exists a framing ambiguity of links within it. This point will be important in our
application: the supersymmetric framing of a BPS Wilson loop differs from the canonical
framing, when it exists, because the point splitting that determines the self-linking number
must be performed with respect to another BPS loop [32].

To make concrete the utility of supersymmetry, take as an example N = 0 SU(2); on

S3. A typical observable in this theory, such as the partition function

Z(S%) = Lsin( T ) (2.10)

k+2 k+2

receives contributions from all loops (for a review of large-k asymptotics of Chern-Simons
invariants, see [47]). On the other hand, a one-loop supersymmetric localization computation
in NV =2 SU(2)s.2 on S? handily yields the all-loop non-supersymmetric result , up
to a framing phase. The bulk of our discussion will focus on more complicated observables

that include Wilson loops.

2.2.2 Beyond Perturbation Theory

As known since [27], there exist completely general nonperturbative techniques for computing
observables in the N' = 0 theory, based on surgery, and thus checks of any results obtained
via supersymmetry.

To give a few examples of nonperturbative results computed by these means (stated in
the canonical framing), consider Gy=o on S3. Let S;; be the representation of the modular

transformation S on 7T in the Verlinde basis for Hy2. Then

Z(5%) = Spo = ! vol A\ P ) (ale) 2.11
(5°) = 0= G myor2 \ ol Ag H A K (2.11)
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while for an unknotted Wilson loop in an irreducible representation R;,

. Z(Ss,RZ) . S()Z' . H Sln(?T()t()\—Fp)/(k' + h))

WI="26% = 5w~ L utmaln) e+ 1) 212

Here, a runs over positive roots and A is the highest weight of R;. The expressions in terms
of S-matrix elements were deduced in [27], while the explicit formulas in (2.11)) and ([2.12))
are consequences of the Weyl denominator and character formulas [48]E| In particular, for

SU(2),
B 2 (2t +1)(25 + D)7
Sij = TR { e

(2.13)
where 7, j label the spins of the corresponding representations (thus giving (2.10))), and for
an unknotted Wilson loop in the spin-j representation,

 Sog _ @M UTYD sin((2 + /(K +2))
TS0 a@P-q 7 sm(n/(k+2))

(W) (2.14)

where ¢ = €27/ (k+2),

In some observables, highest weights of integrable representations of the Gy theory appear
not due to explicit Wilson loop insertions, but rather because they are summed over. Indeed,
the shift in A already appears in the partition function on X x S, which computes the
dimension of the Hilbert space of the Chern-Simons theory on X and hence the number of
conformal blocks in the corresponding 2D rational CFT. The answer is famously given by
the Verlinde formula, which for arbitrary compact G, reads [2§]

dim V., = (|Z(G)|(k + y)rank Gyg—1 Z H(l — g2mia(ie)/(k+h)y1=g (2.15)

AEAL «
where g is the genus of ¥ and Ay denotes the set of integrable highest weights of Gy. While
our focus is on Wilson loops, it turns out that the appearance of A + p in Z(3 x S!) comes

“for free” in our approach, without the need to adjust for any 1D fermionic shifts, which

4The result for Z(S®) follows from consistency between two different ways of gluing together two copies
of a solid torus D? x S*: one trivially to get S? x S', and another with an S transformation on the boundary
to get S3. More generally, by inserting Wilson lines in these solid tori, one obtains the expectation value of
the Hopf link as a normalized S-matrix element.
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is consistent with the fact that the weights in (2.15]) are not associated with Wilson loops.

This fact has already been appreciated in prior literature.ﬂ

2.3 Wilson Loops and Coadjoint Orbits

2.3.1 The Orbit Method

A central ingredient in our analysis is the fact that a Wilson loop over a curve v in M3 is a
path integral for a 1D Chern-Simons theory whose classical phase space is a coadjoint orbit
of G, with the corresponding representation R arising by the orbit method [27]. We will be
interested in the case of compact G, where this construction is also known as Borel-Weil-Bott
quantization. The philosophy is that one can eliminate both the trace and the path ordering
from the definition of a Wilson loop in a nonabelian gauge theory at the cost of an additional
path integral over all gauge transformations along ~.

To make this description explicit, we draw from the exposition of [31]. We would like to
interpret a Wilson loop as the partition function of a quantum-mechanical system on v with

time-dependent Hamiltonian. In the Hamiltonian formalism, this is a matter of writing

Wg(y) = Trg Pexp (Z'éA) = Try T exp <—z’ f; H) (2.16)

where the Hilbert space H is the carrier space of the representation R, H generates trans-
lations along ~, and the time evolution operator is the holonomy of the gauge field. In the

path integral formalism, this becomes
Wr(y) = /DU e/ (AR (2.17)

where U is an auxiliary bosonic field on 7, A is the highest weight of R, and the restriction of

the bulk gauge field A|, is a background field in the (operator-valued) path integral over U.

®Supersymmetric localization has been used to compute the Verlinde formula in genus zero [49] and in
arbitrary genus [50} [5I], reproducing the result of [28] for Zps = dim Hp2 when g = 1.
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Since the definition of a Wilson loop is independent of any metric on [ it is not surprising
that the action Sy will turn out to describe a topological sigma model.

The Borel-Weil-Bott theorem identifies the irreducible representation R with the space
of holomorphic sections of a certain line bundle over the coadjoint orbit Oy, C g* of A, which
(in the generic case) is isomorphic to the flag manifold G/T" where T is a maximal torus of
G. In physical terms, it states that R is the Hilbert space obtained by quantizing O,. We
are therefore led to consider the quantum mechanics of a particle on O, given by a 1D sigma
model of maps U : S' — O,, where the compact worldline is identified with v C M?3. To
ensure that O, (rather than T*0,) appears as the classical phase space, the action for U
must be first-order in the time derivative along S'. Moreover, on general grounds, it should
be independent of the metric on S?.

There is an essentially unique choice of action that fulfills these wishes. For convenience,
we identify A via the Killing form as an element of g rather than g*, so that O, C g is the
corresponding adjoint orbit (henceforth, we shall not be careful to distinguish g and g*). We
assume that A is a regular weight, so that O\ = G//G, where G\ = T'. The (left-invariant)
Maurer-Cartan form @ is a distinguished g-valued one-form on G that satisfies df+0 A6 = 0.
We obtain from it two natural forms on G, namely the real-valued presymplectic one-form

O, and the coadjoint symplectic two-form vy:
0=g'dgc N(G)®g, 0, =i Tr(\) € Q(Q), vy = dOy € O*(Q). (2.18)

Both ©, and v, descend to forms on O,. The weight A\ naturally determines a splitting of
the roots of GG into positive and negative, positive roots being those having positive inner

product with A\. Endowing O, with the complex structure induced by this splitting makes

6This is not true of its supersymmetric counterparts.
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O, a Kéhler manifold, with Kéahler form v, of type (1, l)ﬂ Now consider the action

S\(U) = %S U6y = 7{5 1(@A)md5j ar. (2.19)

The second expression (written in local coordinates U™ on O,) is indeed first-order in deriva-
tives, so that the solutions to the classical EOMs are constant maps U, as desired.
To be concrete, we may think of U as parametrizing gauge transformations. Using the

1

isomorphism G/G, = O, given by gG — gAg™!, we lift U to a map g : S* — G, so that

S\(U) = zji Tr(Ag~'dg). (2.20)

From ([2.20f), we see very explicitly that the canonical symplectic form vy on O,, given in
, takes the form dm, A dg where the components of g are canonical coordinates. The
fact that \ € g is quantized as a weight of G implies that is independent of the choice
of lift from O, to GG. Namely, ¢ is only determined by U up to the right action of GG; under
a large gauge transformation g — gh where h : S' — G, the integrand of changes by
dTr(Alog h) and the action changes by an integer multiple of 27 | Thus ©) descends (up to
exact form) to @,. The path integral is over all maps U in LO,, or equivalently, over
all maps ¢ in LG/LG) (accounting for the gauge redundancy).
To couple to the bulk gauge field, we simply promote dg to dag = dg —iA|, - g:

S\(U, Al,) = 17{

Tr(Ag~tdag). (2.21)
Sl

Prescribing the correct gauge transformations under G x T' (with T" acting on the right and

G acting on the left), the 1D Lagrangian transforms by the same total derivative as before.

"This is usually phrased as a choice of Borel subalgebra b O t, so that the coadjoint orbit is isomorphic to
G¢/B where B is the corresponding Borel subgroup and the roots of B are defined to be the positive roots
of G; then representations are labeled by their lowest weights. We instead adhere to the “highest weight”
conventions of [31].

8From the geometric quantization point of view, the quantization of ) is necessary for the existence of a
prequantum line bundle £(\) over Oy, with curvature v. Each X in the weight lattice gives a homomorphism
px : T — U(1), which can be used to construct an associated line bundle £(\) = G x,, C over G/T, so that
the Hilbert space is the space of holomorphic sections of £(A). Then ©) is a connection on L(\).
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The first-order action , in the absence of a background gauge field, can be thought
of as describing the IR limit of a charged particle on O, in a magnetic field v,. In complete
analogy to 3D Chern-Simons theory, the irrelevant two-derivative kinetic terms have the
effect of renormalizing A to A + p at one loop, and upon supersymmetrizing the theory, the
fermion effective action provides a compensating shift by —p.ﬂ We will substantiate this

interpretation for G = SU(2) in exhaustive detail.

2.3.2 Wilson/’t Hooft Loops in Chern-Simons Theory

While the coadjoint representation of a Wilson loop holds in any gauge theory, it is especially
transparent in Chern-Simons theory, where it can be derived straightforwardly via a surgery
argument [52]. Consider Chern-Simons on S* x R?, where the Wilson line wraps the S* at a
point on the R?. Cutting out a small tube around ~ and performing a gauge transformation
g, the action changes by

ik

AS = -~
27 aM3

Tr(Ag—'dg). (2.22)

Set § = €'® where €*™@ = 1 (this gauge transformation is singular along the loop; t is the
coordinate along v and ¢ the coordinate around it). To define a gauge-invariant operator,

1

average over § — gg and A — gAg~! — idgg~! where g = g(t), whereupon this becomes

AS = ik/Tr(ag(@t —iA)g ) dt, (2.23)
v

where we have performed the ¢ integral and shrunk the boundary to a point. Finally, replace
g by ¢g~t. Hence ko must be quantized as a weight X. This derivation illustrates that Wilson
and 't Hooft/vortex [53], 54], (55] loops are equivalent in pure Chern-Simons theory.

To summarize, consider a bulk theory with gauge group G and the 1D Lagrangian

Lip =i Tr[Ag (9, — iA)g] (2.24)

9As in 3D, the effect of these fermions can be compared to that of the metaplectic correction in geometric
quantization, which states that wavefunctions should not be viewed as sections of £(A), but rather as half-
densities valued in £()\), meaning that they belong to £(\) @ K'/2 = L(\ — p) where K'/? is a square root
of the canonical bundle of O, [38].
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where g € G, A = A|,, and X\ € t (properly, A € t*). Since A is Hermitian in our conven-
tions, the factor of ¢ ensures that the coadjoint orbit action is real. The Lagrangian ([2.24])

transforms by a total derivative under t-dependent G x T gauge transformations
g — h[ghq«, A— thth — i&thghzl, (225)

namely i Tr(Ad; log h,.), where hy is the restriction of a G-gauge transformation in the bulk
and h, € T. Hence \ is quantized to be a weight of G. The T-gauge symmetry restricts the
degrees of freedom in g to G/T. Quantizing ¢ in this Lagrangian leads to the Wilson line.
Strictly speaking, the global symmetry of the model that we gauge to obtain
is G/Z(G), since the center is already gauged. This should be contrasted with the
global symmetry G x G/Z(G) of a particle on a group manifold with the usual kinetic term

Tr((g~'g)?), which consists of isometries of the bi-invariant Killing metric on G.

2.4 Wilson Loops in N = 2 Chern-Simons Theory

We now show that properly defining half-BPS Wilson loops in A/ = 2 Chern-Simons theory
ensures that their weights are not renormalized, in direct parallel to the non-renormalization
of the bulk Chern-Simons level. This involves enhancing the sigma model of the previous
section with 1D N = 2 supersymmetry in a way compatible with bulk 3D N = 2 supersym-

metry.

2.4.1 Shift from Line Dynamics
N = 2 Coadjoint Orbit

We work in Lorentzian 1D N = 2 superspace with coordinates (¢,, %) (see Appendix[A.1]).
Implicitly, we imagine a quantum-mechanical system on a line embedded in RY2, but we will
not need to pass to 3D until the next section. Our primary case study is G = SU(2). We

first construct, without reference to the 3D bulk, an SU(2)-invariant and supersymmetric

23



coadjoint orbit Lagrangian from the 1D N = 2 chiral superfield
d = ¢+ 0y — 00T (2.26)
descending from bulk super gauge transformations and the 1D A = 2 vector superfields
Vi = a; + Oy — 0T] + 007 A, (2.27)

obtained from restrictions of the bulk fields to the Wilson line, which extends along the 0
direction in flat space. Here, i = 1,2,3 label the su(2) components in the /2 basis; ¢ is
a complex scalar and v is a complex fermion; a;, A; are real scalars and ); are complex
fermions; and the relevant SUSY transformations are given in and .

We begin by writing in a form more amenable to supersymmetrization, namely in
terms of a complex scalar ¢ that parametrizes the phase space SU(2)/U(1) = CP'. Take
A= —jo3 with j € %Zzo, which fixes a Cartan; then

g= ( _“B Z ) PP =1 (2.28)
is subject to a U(1) gauge redundancy g ~ ge®s. We identify variables via the Hopf map

SU(2) — S?, followed by stereographic projection:
(2.29)

This map respects the chosen U(1) gauge equivalence: (a,b) — (ae®, be=%). Let us gauge-fix
the U(1) action on the right by taking b = r real. Since |a|* + r? = 1, r is only determined
by a up to a sign (reflecting the ambiguity in the action of SU(2) on S?). Note that the

gauge fixing breaks down when |a| = 1 (r = 0). Accounting for the sign ambiguity, we have

a ¢ SURI S (2.30)

Iy Y A e v

The relative minus sign is important for ensuring equivariance of the map from a to ¢ with

(Zs:_

respect to the action of SU(2). Let us fix the overall sign to “(a,r) = (+,—).” This is a
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one-to-one map between the interior of the unit disk |a| < 1 and the ¢-plane that takes the
boundary of the disk to the point at infinity. To couple the ¢ degrees of freedom to the
gauge field, we work in the basis ¢/2, so that

A A —iA
g4t 3 S (2.31)
2\ A, +idy —As

where the three su(2) components A, 5 5 are real. Then the non-supersymmetric 1D coadjoint

orbit Lagrangian ([2.24])) can be written as £ip = j£ where L = Ly + L4 and

P (99" — 919
Lo = %Tr()\g 1,9) = % (2.32)
1 -1 _ (A1 +ids)¢ + (Ay —ids)ol — As(1 — |9]?)
Ly = ; Tr(A\g™ Ag) = { urE : (2.33)

Note that with Hermitian generators, the Killing form given by Tr is positive-definite.

By promoting ¢ to ®, we find that the supersymmetric completion of L is

s g ilegl —ole) gty _ 2
EO_/dHK_ e e K=o+ (9P (2.34)

We have covered CP' with patches having local coordinates ® and 1 /®, so that K is the
Kahler potential for the Fubini-Study metric in the patch containing the origin.

To gauge Ly in a supersymmetric way and thereby obtain the supersymmetric comple-
tion of L requires promoting the A; to V;, which is more involved. Having eliminated the
integration variable g in favor of ¢, let us denote by g what we called h, in . Writing

finite and infinitesimal local SU(2) transformations as

P AT R (2.35)
b a MT—Q 1_’%3 ’

finite and infinitesimal gauge transformations take the form

A— gAg_l — igg_l < 5SU(2)AZ' = EijkAjek + éi, (236)
d+b 1
o — % — 5SU(2)(I) - EiXia (X17X27X3) = 5(2(1 - (1)2)7 I+ (I)272i(1))7 (237)
— a
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where the holomorphic SU(2) Killing vectors X; satisty [X;0s, X;0¢] = €;j5Xx0p. Then

5SU(2)K = 61(«7_; + ‘/T::L)? (beQaFS) = (_Z<D> CD, Z) (238)

DO | —

(any purely imaginary F3 would do, but our choice leads to the “canonical” Noether cur-
rents transforming in the adjoint representation). To implement the Noether procedure, we

promote the real ¢; to complex chiral superfields A;:

The corresponding change in £, can be read off from

where the SU(2) Noether currents (Killing potentials) are the real superfields

i X;®F 1 O+ o (D — D) 1— |
Ji=———iF;, = (J1,0,J3) == | — ,— , , 2.41
e 5 = et =3 (e Ty i) @4
which satisfy J? = 1/4 and
1 _ ) _ 1 _
(SSU(Q)JZ‘ = _Eeijk(Aj + A])Jk + Z(Aj — AJ)J]JZ — Z(Al — Az) (242)
This generalizes dsi(2)J; = —€ij1€jJi for real €;. Now, if we could find a counterterm I' such

that sy = i(A; — A;)J;, then we would be done: the supersymmetric completion of £

would be the minimally gauged supersymmetric CP* model £ = Lo + £4 where

Note that £ is invariant under local SU(2) because, in light of (2.40), the total variation
of K + 1T takes the form of a Kahler transformation. There exists a standard procedure for

constructing such a I' [56]. Its exact form is

1
F=2AcmaM@%@ (2.44)
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where O; = X;0p — X;0pt. For our purposes, it suffices to work in Wess-Zumino gauge,
where the bulk vector superfield is nilpotent of degree three (Vi1 = 0) and its restriction to
the line is nilpotent of degree two (V% = 0): namely, V; = 00TA;. In this gauge, we have
I' = 2V;J;, so that £ reduces to the non-manifestly supersymmetric Lagrangian Lo + £4.
In arbitrary gauge, £ contains terms of arbitrarily high order in the dimensionless bottom

component of V.

Effective Action

To compute the effective action generated by integrating out ¢, we add an SU(2)-invariant

kinetic term for ¢ (with a dimensionful coefficient) as an ultraviolet (UV) regulator:

v g i@ —YT) + 49t 2i(dTe — ¢To)wly D@D
L —/d 0K = — SENTBE — SENrRE , K :—<1+|®’2)2. (2.45)

Note that since D® = 1) — 2i07d + 00T transforms in the same way under SU(2) as its

bottom component ¢, K’ is automatically invariant under global SU(2). We want to gauge

K'. With chiral superfield gauge transformation parameters, we have (note DX; = 2F; D®)
Ssuy K’ = —i(A; — AD)J! — (DAL — DYATTT) (2.46)

where J! are the bosonic Noether currents associated to K’ and the I; are fermionic:

iX;(D®)1

J==2K"J;, I=—"——r. 2.47
Z 1+ [BF)? 247

There exists a counterterm I satisfying
dsue I’ = i(A; — A)J, +i(DAL; — DALY, (2.48)

which takes the form
211 Al +iA Al —iAy)et — As(1 — |¢)?
/dQQF/: ¢@/J22 (A +iA9)p + (A —i 22)¢ 3( 9]°) L (2.49)
(1+]9f?) 1+ 9|
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in Wess-Zumino gauge, such that the Lagrangian

. Adot
EIZ/dQH(K/—FFI)Eﬁd,—#—F“' (250)

(written in Wess-Zumino gauge) is invariant under local SU(2), where

il —gly)  2Lyly
v L+]oP)2  (1+]g?)?

(2.51)

is itself invariant under local SU(2) (it is possible to construct I using a general prescrip-
tion for the full nonlinear gauging of supersymmetric sigma models with higher-derivative
terms) Thus the “--” in £’ contains only dimension-two terms not involving v, namely
the couplings to A; necessary to make the two-derivative term in ¢ invariant under local
SU(2). Making the scale p of the higher-dimension terms explicit, consider

s 1 269!
Lo = jL— =L =jL D+ —22 . 2.52

where we have integrated by parts. Performing the path integral over v generates the one-
loop effective action
trlog D = :I:%/dtﬁ. (2.53)

«

The regularization-dependent sign is fixed to “—” by canonical quantization, leading to a

shift j — j — 1/2. The “--” terms in £’ decouple at low energies (1 — o).

2.4.2 Shift from Canonical Quantization

Canonical quantization of the N/ = 2 quantum mechanics provides another perspective on

the shift in j. Here, we set A; = 0, whence

‘Z|Ai=0 = 207 E/’Aizo = El; (254)

0Tn [1], we describe how to gauge a global symmetry (under which the fields do not transform in a linear
representation) at the nonlinear level while preserving global SUSY.
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so that the full Lagrangian is Z:tot|A,-:0 =Ly — iﬁ’ = Lp + Lr where L and Ly describe

1D sigma models with S? target space:

) L A (2.55)
Lo | iedt—elo) | Wty il - diy) |
) [ p(L+192) | (1+]9[*)? - 2u(1 + |¢[2)2 (2.56)

For later convenience, we have added a total derivative, parametrized by o € R, to Lp. Its
meaning is as follows: Lp describes a charged particle on S? in the field of a monopole of
charge oc 7, with the scale ;1 € R>( proportional to its inverse mass and « parametrizing
the longitudinal gauge of the monopole vector potential. We define the gauges S, F, and
N by setting o = (0, 7,27), respectively. We refer to Lg as the “bosonic system” and to
Lg + Lp as the corresponding “supersymmetric system.” We now summarize the results of
quantizing the theories Lg and L + Lr. As when computing the effective action, we use

the 1/p terms as a technical aid; they have the effect of enlarging the phase space.

Bosonic System

As a warmup, consider Lg alone. At finite p, the phase space is (2 + 2)-dimensional and the

quantum Hamiltonian can be written as

H; =

J

=

(L = ) =

N =

(L0 +1) —5%). (2.57)

Here, L? = }(L L_ + L_Ly) + L2 and we have defined the operators

0 _ 0 2P +all— o)

_ 20
BT 0% o oE
0 no 0 25[0P +a(l—|9P) .
0 0 .
L3:¢8_¢_¢T87¢T_(‘7_a)’

which satisfy [Ls, L+] = +L, [Ly,L_] = 2L3. The spectrum is constrained to ¢ > j by

an Ls selection rule, with each level ¢ appearing once; the eigenfunctions of the associated
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generalized angular momentum are monopole spherical harmonics. As p — oo, all states
except those with ¢ = j decouple. Rather than taking the decoupling limit © — oo in
Lp, which projects out all but the spin-j states, setting 7 = 0 yields the rigid rotor. Its
Hamiltonian is given in terms of the Laplace-Beltrami operator Ag2, whose spectrum is
—{(¢ + 1) with degeneracy 2¢ + 1 for ¢ > 0.

The bosonic theory with = oo (Lg = jLo, in S gauge) is the well-known Wess-Zumino
term for quantization of spin that we have already discussed. The action computes the solid
angle enclosed by a trajectory on the sphere, and the Dirac quantization condition requires
that the coefficient j be a half-integer. Quantizing the compact phase space S? yields 25 + 1
states |7, m), all eigenstates of Ls. Indeed, at ;1 = 0o, the phase space is (1 + 1)-dimensional

and we can write

. (0% .
Ly =—¢%0s+(2j —a)p, L_=0,+ g, Ly =¢0y — (j — ). (2.59)
The wavefunctions are ¢, ..., ¢*~®, the eigenvalues range from —j to j in integer steps,

and L = j(j+1).

Supersymmetric System

For Lp + Lp, let us keep p finite (work in the full phase space) and set a = 0. Write

__¥v
VE(L+[0])

which satisfies {x, x'} = 1 upon quantization. The supercharges are represented by differ-

X = (2.60)

ential operators as

_y (2 12 T_T<_6_<j—1/2>¢>
o=u(g- k) @ (o U)o

which are adjoints with respect to the Fubini-Study measure. The Hamiltonian is

H = %{Q,QT} = Hypn1p i x = 50 = 1/2) = 5L = G+ 1/2)( - 1/2)) (2:62)
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where L; = E|j+XTX_1/2. On the Hilbert space (L?(S?,C) ® |0)) @ (L?(S?,C) ® x'|0)),

- ( Hj 15— p(j —1/2)/2 0 ‘ ) (2.63)
0 Hjirpp+p(i +1/2)/2
:H(am+w—o—wmo+wm L ) 260
2 0 Ci(ly+1) — (5 —1/2)(F +1/2)

where ¢, > j —1/2 and ¢; > j + 1/2. There are 2j bosonic ground states at ¢, = j — 1/2.

This fixes the sign of the previous path integral calculation.

2.4.3 Shift from 1D Supersymmetric Index

To make contact with bulk Wilson loops, we compute both the non-supersymmetric twisted

partition function and the flavored Witten index
In—o = Tr(e PHe#ls) [y = Tr[(—1)F e PH e=(Es)s] (2.65)

by working semiclassically in the Euclidean path integral. Let

_J(gdt—od) o o 261
Lpp=""17 PIERR (¢ dﬂ) T 0P (2.66)
oot —9fo | yly W — ity
j —_— 2.67
P = I TRy | T 1oRE Tt 2u 1 [op) (2.67)

denote the Euclideanized versions of Lg and L, with dots denoting 7-derivatives. Then

with boundary conditions twisted by e**% or e**(E1)s as appropriate. While both In—y and
Iy —5 are known from canonical quantization, our goal here is to introduce the localization
argument via what amounts to a derivation of the Weyl character formula as a sum of
two terms coming from the classical saddle points with a spin-independent prefactor coming

from the one-loop determinants.
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We first compute Ix—( in the bosonic problem. We set ;1 = co and work in the E gauge
(not to be confused with “E' for Euclidean”) for convenience, where

_ j(pd" — ¢T9)

e = p ‘%aT log ( ¢ ) . (2.69)

of

We restrict the path integral to field configurations satisfying ¢(7 + ) = €*¢(7), for which

/B dr 0. log (i) = 2iz (2.70)
o o) T |

With this restriction, the action is extremized when ¢ = ¢ € {0,000} (the two fixed points
of the Lj action). We see that Lp glo = ijz/0 and Lg glec = —1jz/F. First expand around
¢aq = 0 with perturbation A: ¢ = ¢q + A = A, where A satisfies the twisted boundary

condition. Its mode expansion takes the form

1 « :
A = ﬁ Z Anel(Qﬂ'nJrZ)T/ﬁ’ (271)

from which we obtain simply

B B ) ) 27 [e’¢)
/ dr L lo(a :j/ dr (AAT — ATA) = —% > @2mn+ 2)| A% (2.72)
0 0

Thus the one-loop factor from expanding around ¢, = 0 is

eaz+b —iz/2

 sin(z/2) T 2i sin(z/2)

(2.73)

Z1100plo = €xXp [— Z log(2mn + z)

n=—oo
where the integration constants a,b parametrize the counterterms by which different regu-
larization schemes differ; is the only choice consistent with canonical quantization.
Free-field subtraction (normalizing the functional determinant, sans zero mode, at finite u
and then taking p — o00) yields the same answer. Indeed, accounting for the 1/p term in
(2-66)), the kinetic operator for bosonic fluctuations A is —2(j8,+02 /) where the eigenvalues

of 0, are i(2mn + z) /3, giving the regularized product

1 sinh(Buj/2) Bumoo € /liDiz/2

Pracerlo = G50, ¥ 02) = diem(e/)smb((Bpi +2)D)  2ism(a/2)

. (2.74)
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Now note that taking ¢ — 1/¢ leaves Lp p in E gauge ([2.69) invariant (with the 1/p term
in (2.66) being invariant by itself) while taking z — —z in the boundary condition for the

path integral. Hence

iz/2
e
Z—oo oo — Z—oo =2 — A . A 2.75
1-1 p| ( 1-1 p|0)| — 2281]:1(2/2) ( )
and it follows that
i(j+1/2)z _ ,—i(j+1/2)z : : 1/2
oo = S P00 7,y = © e _sin((+1/2)2) o76)

2isin(z/2) ~ sin(z/2)

0,00
This is, of course, a special case of the Duistermaat-Heckman formula for longitudinal rota-
tions of S?, with the contribution from each fixed point weighted by the appropriate sign.
As a consequence, the index is an even function of z (invariant under the Weyl group Z,),
as it must be, because the Hilbert space splits into representations of SU(2).

We now compute Iy—o, keeping p finite. In the supersymmetric problem, the E gauge
corresponds to choosing the Kahler potential log(1 + |®[*) — 1 log|®[?, which is invariant
under & — 1/®. In component fields, the Lagrangian is Lg g+ Lr g with o = j. Expanding
in both bosonic fluctuations A and fermionic fluctuations = (¢ = 1 + = = Z) gives

(Lpg + Lep)|onz iz = j(AAT — ATA + 212) + %AAT + i(ETE —z=t5).  (2.77)
The part of the Lagrangian quadratic in fluctuations, as written above, is supersymmetric
by itself. Twisted boundary conditions in the path integral are implemented by (L )3, which

satisfies [(Ls)s, ¢] = ¢ and [(Ly)s, %] = ¢. The moding for the fermionic fluctuations

1 < :
- Z Enez(27rn+z)7'/ﬁ (278)

n=—oo

[1]

is integral because at z = 0, the insertion of (—1)" would require periodic boundary condi-

tions for fermions on the thermal circle. Hence the fermions contribute a factor of

exp [ _i log (%Z—Jz - m)] (2.79)
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t0 Zi100plo- To take the Su — oo limit, we perform free-field subtraction:

: _ T (2 +2)/Bu—ij _ sin((iBuj — 2)/2) Bu—oo G/1iDiz/
det(j+0-/m) = [] Do B = smliBi/2) e 2. (2.80)

n=—oo

Taking j positive, this reduces to a phase of €”*/2. By similar reasoning to that in the bosonic

case, we conclude that

sin(jz)
Iy = ———. 2.81
M= sin(z/2) (2.81)
Again, this is the only answer consistent with canonical quantization. Thus in the super-
symmetric theory, the one-loop shift of j due to the bosons (+1/2) exactly cancels that due

to the fermions (—1/2).

Localization in 1D

In both the bosonic and supersymmetric theories, direct comparison to canonical quanti-
zation shows that the semiclassical (one-loop) approximation for the index is exact. It is
natural to ask why this should be so, and supersymmetry provides an answer. While the
exactness in the bosonic case can only be heuristically justified by the Dirac quantization
condition on j, it can be rigorously justified by appealing to the supersymmetric case.

In its most basic form, the localization principle starts from the fact that a Euclidean
partition function deformed by a total variation of some nilpotent symmetry ¢ (6% = 0) of

both the action and the measure is independent of the coefficient of this deformation:

az() _

Z(t) = / Do etV — —

/ DO (e 5PHVY) = 0. (2.82)

If the bosonic part of 0V is positive-semidefinite, then as t — oo, the path integral localizes
to 0V = 0. For a given field configuration with §V = 0, one can compute a semiclassical
path integral for fluctuations on top of this background, and then integrate over all such

backgrounds to obtain the exact partition function.
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In our case, the quadratic terms arising from perturbation theory are already (Q + QY)-
exact, without the need to add any localizing terms. Indeed, we computd™|that &(5(¢f¢)) and
§(5(11)) are precisely the quadratic expressions (at O(u®) and O(u™1), respectively)
that we integrate over the fluctuations A, = to compute the one-loop factors in the index
In—o. As we take the coefficient of either the §(5(¢'¢)) term or the 6(5(¢)T¢)) term to oo, the
original Lagrangian Lg g+ L g becomes irrelevant for the one-loop analysis, but since these
terms have the same critical points as the original Lagrangian, the result of the localization
analysis coincides with that of the original Lagrangian, proving that the path integral for the
latter is one-loop exact.E Furthermore, the final result is independent of the coefficient of
either term. This has a simple explanation: the regularized bosonic and fermionic functional

determinants (2.74) and (2.80]) have a product which is independent of Sy, namely

det(j+0-/p) 1
det(jO, +02/u)  2isin(z/2)

(2.83)

Hence the one-loop factor has the same limit whether Sy — oo or Sy — 0.

Finite Temperature

We have shown in Lorentzian signature and at zero temperature that integrating out the
fermions in the supersymmetric theory with isospin J (2J bosonic ground states) yields an
effective bosonic theory with isospin j = J — 1/2 (25 + 1 bosonic ground states), which is
consistent with the equality of In—o(j) in (2.76) and Iy—o(J) in (2.81)).

The index, however, is computed at finite temperature. The temperature can only enter
the effective action through the dimensionless combination Su, and this dependence must

disappear in the limit ;4 — co. Therefore, the statement of the preceding paragraph must be

1Tn Euclidean signature,
Sp=0cp=ep, 60" =0.4¢" = —€ YT, S =050 =2e"¢, YT =T = —2ep!

where 60 = [¢Q + ¢'QT, O] and ¢+ are Grassmann-even.
2Note that the bosonic part of the §(§(¢¢)) term is not positive-semidefinite; indeed, it is imaginary. We
are implicitly using a stationary phase argument.
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independent of temperature. Let us show this directly at finite temperature by mimicking
the index computation, thereby giving an alternative and cleaner derivation of ([2.53)).
We first perform a field redefinition ¢’ = /(1 + |$|?) (the associated Jacobian determi-

nant cancels in regularization). Integrating by parts then gives

o
= 9+ Lop +j, Lop= M (2.84)

Lep=y""Dy'. D

In Euclidean signature, the eigenfunctions of D are simple:

f(1) = exp {(A — JuT — / dr’ 504 : (2.85)
With periodic (supersymmetric) boundary conditions for the fermions, the eigenvalues are
27 A
Ao =7+ %JFA, A= / dr Lo, nel. (2.86)
H 0

Free-field subtraction then gives

det(d,/p+j+ Lop/p)  Yp J+ @rin+A)/Bu e (1 — eAtoud)

det(0-/p + j) - J+2min/Bu 1 — ebfri

n=—

(2.87)

Upon taking j — oo, this becomes e/lDA4/2 whose exponent has the correct sign because
the Euclidean action appears with a minus sign in the path integral.

Note that while this computation seemingly fixes the sign outright, our regularization
crucially assumes a positive sign for pu. Moreover, different regularization schemes lead to
different global anomalies in the effective action [57,[58]. These ambiguities can be phrased as
a mixed anomaly between the “charge conjugation” symmetry taking 2 — —z and invariance
under global gauge transformations z — z + 27n for n € Z [5§] (as we will see shortly, z
can be interpreted as a background gauge field). To fix the sign of the shift unambiguously
(i.e., such that the effective action computation is consistent with the index), we appeal to
canonical quantization. In other words, in the Hamiltonian formalism, we demand that the

SU(2) symmetry be preserved quantum-mechanically.
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Background Gauge Field

The quantities (2.65)) are useful because the twisted index with vanishing background gauge
field is in fact equivalent to the untwisted index with arbitrary constant background gauge
field. To see this, set ;1 = oo for simplicity. To restore the background gauge field, we simply

take Ly — Lp + jL 4, or equivalently
Lprp— Lpgr—jLa, (2.88)

with £4 in (2.33) (note that L4 p = —La4, where the gauge field is always written in
Lorentzian conventions). With A; = 0, the bosonic index Iy corresponds to the parti-
tion function for Lp g on S* with twisted boundary conditions implemented by the quantum
operator Ls. Clearly, Ix—y can also be viewed as a thermal partition function for a deformed

Hamiltonian with periodic boundary conditions:

izly _ o ijz1—|oP

Inv_o =Tr(e™P"), H,=H— = H+ . 2.89
o= e ; 5T IoP 2
This corresponds to a path integral with the modified Lagrangian

.. 1 _ 2

ij21- 19 (2.90)

BEt — .
B 1+]¢l?
Setting z = 8 A3, we recover precisely (Lg g — jLa)|a,=4,-0, S0 we deduce from ([2.76)) that

f — J§ dr (Lp,E—iLA) Ay =Ag=0 _ sinh((j + 1/2)8A43)
/D¢ boe ~ sinh(BA3/2) (2.91)

with periodic boundary conditions implicit. But for a constant gauge field, we can always
change the basis in group space to set A, = Ay = 0. Letting |A] = (3, A2)'/? denote the

norm in group space, we conclude that

T — Jydr(Lp.e—iLa) _ sinh((j + 1/2)B]A]) I
/ng Doe L = b (GIA]2) |3 (2.92)

13While we inferred this result from the SU(2) symmetry of the twisted partition function, it can also be
seen directly from a semiclassical analysis of the Euclidean Lagrangian.
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Setting L‘g{% = jLor and noting that Tr; e*F4i/i = T, ePl41%s  this result can be written
more suggestively as
B

/DQSTngexp {—/0 dr (L}% — 2jA;J;) | = Tx; e PAi (2.93)
where on the left, the J; are interpreted as classical Noether currents and on the right, they
are interpreted as quantum non-commuting matrices (the Hermitian generators of SU(2)
in the spin-j representation). Hence the path integral for the 1D quantum mechanics with
constant background gauge field computes a Wilson loop of spin j with constant gauge field
along the S, i.e., the character of the spin-j representation. This identification holds even
for arbitrary background gauge field because one can always choose a time-dependent gauge
such that the gauge field is constant along the loop; the only invariant information is the
conjugacy class of the holonomy around the loop. Indeed, a Wilson loop can be thought of
as a dynamical generalization of a Weyl character.

The above arguments can be carried over wholesale to the supersymmetric index In—o,
since the (Ly); rotate into each other under global SU(2). The fermions modify the repre-
sentation in which the trace is taken, and (as we will see) the fact that a particular linear
combination of the bulk gauge field and the auxiliary scalar ¢ appears in the quantum me-
chanics is reflected in the appearance of these fields in the supersymmetric path-ordered

expression.

2.5 Coupling to the Bulk

We now take a top-down approach to the quantum mechanics on the line by restricting the
3D N = 2 multiplets to 1D A = 2 multiplets closed under SUSY transformations that
generate translations along the line, which we take to extend along the 0 direction in R'? (as
in the previous section, aside from Section , we work in Lorentzian signature). We thus

identify the components of the 1D vector multiplet with restrictions of the bulk fields; in
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principle, the 1D chiral multiplet ® of the previous section descends from bulk super gauge
transformations.

Our conventions for SUSY in RY? are given in Appendix The linear combination
of supercharges that generates translations along the line is Q = (Q +iQ2)/v/2 (any choice
Q= 1Q1 + Qs with |¢1]* = ||*> = 1/2 and ;¢ purely imaginary would suffice), which
satisfies {Q2,Q} = —2P, = 2H for vanishing central charge. Therefore, to restrict to the

line, we choose the infinitesimal spinor parameter £ such that

Q= 610s— 601 — w0 —> (61.6) = %{iw, W) (2.94)

where w is some fiducial Grassmann parameter (note that Q) has suppressed spinor indices,
while w does not). In terms of the linear representations of the supercharges on 3D and
1D N = 2 superspace ((A.13) and (A1), respectively), we compute that for superfields
whose only spacetime dependence is on the 0 direction, 1D N = 2 SUSY transformations

are implemented by £€Q — £Q = wQ + wQ! with § = \%(91 —16?) and 0y = \%(891 + i0p2).

2.5.1 Linearly Realized SUSY on the Line

With all auxiliary fields necessary to realize SUSY transformations linearly, a 3D N = 2

vector multiplet (V' = V1) takes the form
by 1 2 . 1—2 . N7 ~
V:C+9x—9)(+§9 (M+@N)—§0 (M —iN) —ifbo — 6y 0A,
e 02 1 . L o7 L
+ 1070 /\—57" X | —i6°0 /\—57"’ X +§99 D—§3C

where V = VT etc., and all bosonic components are real. A 3D N = 2 chiral multiplet

(2.95)

(D,® = 0) takes the form

_ 1 .- L
O = A—i04"00,A — ~020%0° A + /200 — %8207“ 1)+ 0°F (2.96)

4 V2
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where the scalar components are complex. Bulk (3D) SUSY acts on the vector and chiral

multiplets as in Appendix For f any complex 3D fermion, it is convenient to set

Jit+ife Ji—ife
V2 V2 o

We find that the 3D N = 2 vector multiplet restricts to the following 1D N = 2 multiplets:

fl fl/ =

(2.97)

e a 1D vector {—C, Y, 0+ Ap},

e a 1D chiral {(N +iM)/2, N —idyX"} (and its conjugate antichiral),

e and a 1D chiral {(iD — 9y0)/2, 0o \"} (and its conjugate antichiral).

We find that the 3D A = 2 chiral multiplet restricts to the following 1D N = 2 multiplets:
e a 1D chiral {4, —v/2¢'}

e and a 1D antichiral {F, —v/20y1"}.

The above 1D N = 2 multiplets transform according to (A.6) and (A.8)) with e = w. Note

that x, A, ¢ in 3D each restrict to two independent complex fermions in 1D.

2.5.2 Nonlinearly Realized SUSY on the Line

We will arrive at a bulk interpretation of the quantum-mechanical variables ¢, in Wess-
Zumino gauge, which partially fixes “super gauge” while retaining the freedom to perform
ordinary gauge transformations. To this end, it is useful to work in terms of the correponding
nonlinearly realized supersymmetry (SUSY’) transformations.

In Wess-Zumino gauge, a 3D N = 2 vector multiplet takes the form
_ _ L 1 .
Viwz = —iffo — 04"0A,, + 62O\ — i00\ + 59292D. (2.98)

Bulk (3D) SUSY” acts on the vector multiplet as
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8 A, = i(Evuh + EuN),
O\ = —ilD — iy"D,0 — 3,6 F,,, (2.99)
&'\ =i€D + iy"ED,0 — Lt LF,,,
0'D = —(E" DX — €9 D) + [EA + €N, o]
where D,(-) = 0,(-) — i[A,, ()] and F,, = 0,4, — 0,4, —i[A,, A)]. Bulk (3D) SUSY” acts

on a fundamental chiral multiplet as

VA =—V2y,
0 = —V26F + iV29"ED, A + iV 2E0 A, (2.100)
§'F = iv/267" D,ip — iV20E) — 2iENA
where D,,(-) = 0,(-) —iA,(-). SUSY’ transformations close off shell into the algebra
(62, 0¢] (+) = —2i(69"C + €4"C) D) — 2i(£C — £C)o - (1) (2.101)

on gauge-covariant fields where, e.g., o - (-) = [0, (-)] for o, F,,, \, A\, D and o - (-) = o(:) for
A 1, F. The above transformation laws and commutators can be obtained by dimensional
reduction from 4D.

The 3D SUSY’ transformations restrict to the line as follows. We again use the notation
(2.97). For the vector multiplet, defining the SUSY’-covariant derivative D{(-) = Dy(-) —
ilo, ()] = 0o(+) — i[o + Ao, (+)], which satisfies &' D(-) = Dyd'(+) and Djo = Dyo, we obtain

the following (rather degenerate) restricted multiplets in 1D:
e a 1D vector {0,0,0 + A},
e a 1D adjoint chiral {0, \'} (and its complex conjugate),

e and a 1D adjoint chiral {(iD — D}o)/2, D))"} (and its complex conjugate).
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For a fundamental chiral multiplet, defining the SUSY’-covariant derivative D{(-) = Dy(-) —
io(-) = 0o(+) — i(o + Ag)(+), which satisfies ' Dj(-) = Dyd'(+), we obtain a single restricted

multiplet in 1D, namely
e a 1D fundamental chiral {4, —v/2¢'},

whose scalar component is associated with bulk gauge transformations. All of the above 1D
N = 2 chiral multiplets transform according to (A.10) with e = w and Dy — D{. On a 1D

chiral multiplet, the 1D SUSY’ algebra is realized as

(67, 0")(-) = —2i(en’ + €'n)Dy(") (2.102)

n Ve

for (-) = ¢,1, while § acts trivially on a 1D vector multiplet in Wess-Zumino gauge.

One would expect to write a coupled 3D-1D action

S3p.ip = /d3£l} Los+J / dtﬁ (2103)

that is both supersymmetric and gauge-invariant (under SUSY’ and ordinary gauge trans-
formations), with the transformation of the 1D action compensating for any boundary terms
induced along the line in the transformation of the 3D action. However, in Wess-Zumino

gauge, Lcs in (2.6) has the following SUSY’ variation:
k o -
§Los = Eau Tr[ie"? (A + E7A) A, + 2(E9* N — EH N\ ) o). (2.104)

This induces a boundary term along the line only if the fields are singular as the inverse of
the radial distance to the line. Since they are not, it suffices to show that the 1D action is

itself invariant under appropriately defined 1D SUSY’ transformations.

2.5.3 Nonlinearly Realized SUSY in the Sigma Model

To carry out this last step, we specialize to SU(2). For the vector multiplet, the bulk and

line variables are identified as a; = —C;, ¥; = X}, A; = 0; + (Ap);. The quantum mechanics
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Z',|WZ = ,C~0 + L 4 is invariant under the 1D SUSY’ transformations

'p = e,

0 = =2ie’ (¢ — §A1(1 = ¢*) — 3As(1+ ¢%) — iAs99), (2.105)
which satisfy the algebra

(6,016 = —2i(enT + €M) (¢ — LA_ + LA % — iAs0),
[0, 0/ = —2i(en’ + ') (V) + i(Ayd — As)), (2.106)

[0 0L = —2i(en’ + eln) (7 — i(A_gT — A)yT).

The adjoint action of SU(2) on its Lie algebra induces an action on S?, which explains the
appearance of the SU(2) Killing vectors in §’t). Explicitly, at the level of scalar components,
the map between the adjoint (gauge parameter) chiral superfield S = s+60f —i007s = S /2
and the (scalar) SU(2)/U(1) coset chiral superfield ® = ¢ + ¢ — i081¢ is

s sin 0 cos
—s2 | < | sinfsing | < ¢ = (2.107)

s cos 0

by stereographic projection (note that this only makes sense for s real). In terms of angles,

1.2
et = 2 1 tan(0/2) =

[sP* = (%)

|s| — 53
|s| + 83

(2.108)

To translate between the adjoint action and linear fractional transformations, one must flip
the sign of the second Killing vector: that is, one must identify /2 with (€7, —€5, €3). The
action of SU(2) is then as expected: writing € = ¢0%/2 and s = s%0%/2, we have with ¢

infinitesimal that

g=1+ie = gsg ' =s+ile,s] = dspes’ = e'Fsle". (2.109)
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Under the given map (12.107), this is equivalent to dgy(2)¢ = €;2;. Now we check that SUSY’

acts correctly. Nailvely, we have for the components of S that (with A = A%*/2)

ds=c¢f,

§'f = —2iel (5 —i[A, 5]), (2.110)

but to make sense of SUSY’ transformations for real s, we must take f real and e purely

imaginary (though S itself is not real):

§'s = ief,

§'f = —2¢(s —i[A, 5)), (2.111)

where €, f are real Grassmann variables. In terms of chiral superfields, the desired map is

St — 482

="
S| — 53

= ¢+ 0y — 007 . (2.112)
Upon substituting for §’s* and & f*, the §’ variations of ¢ = ¢(s%, f*) and ¢ = (s%, f*) are

'p = iey,
3 = —2e(¢p — LAY(1 — ¢?) — LA (1 4 ¢?) — iA39), (2.113)

as expected (for our choice of ¢).

2.6 Generalization to Curved Space

We now describe how to generalize this story to certain compact Euclidean spaces [59].
The fact that the Chern-Simons partition function on Seifert manifolds admits a matrix
model representation is well-known [47, 48, [60], and has been discussed in the framework
of nonabelian localization in [31], B0]. By now, the computation of observables in N' = 2

Chern-Simons theory via supersymmetric localization [61] is also a well-established tech-
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nique, having been generalized from SCFTs [32] (such as pure N’ = 2 Chern-Simons theory
[62]) to non-conformal theories with a U(1)z symmetry [63], 64].

Both the N/ = 0 and N = 2 theories are topological, so their observables are metric-
independent. In the N' = 0 case, the introduction of a metric is usually regarded as a
“necessary evil” for the purposes of gauge-fixing and regularization. In the N/ = 2 case,
the metric plays a more essential role in computing observables because it determines which
observables are compatible with supersymmetry and therefore accessible to localization tech-
niques. Seifert loops (i.e., Wilson loops along the Seifert fiber direction) can give different
knots depending on the choice of Seifert fibration. For instance, depending on the choice of
Seifert fibration on S3, the half-BPS sector can contain Wilson loop configurations with the
topology of Hopf links or torus links [31].

Well-studied backgrounds include squashed spheres with SU(2) x U(1) [65] [66] or U(1) x
U(1) [40,67, 68] isometry, lens spaces [69], and more general Seifert manifolds [33, [42], 511 [70].
With appropriate boundary conditions, localizing on a solid torus D? x S [71], [72] makes
contact with supersymmetric analogues of the gluing and Heegaard decompositions usually
encountered in the context of Chern-Simons theory [73] [74] [75] [76]. We now formulate the
quantum mechanics on Wilson loops in these general backgrounds (concrete examples can

be found in [I]).

2.6.1 Supergravity Background

In the 3D N = 2 context, the background supergravity formalism of [77] allows for the
construction of a scalar supercharge by partially topologically twisting the U(1) gz symmetry
of the N/ = 2 algebra, when M? admits a transversely holomorphic foliation (THF) [59, 40].
The relevant supergravity theory is “new minimal” supergravity, defined as the off-shell
formulation of 3D supergravity that couples to the R-multiplet of a 3D N/ = 2 quantum
field theory with a U(1)g symmetry. Its rigid limit gives rise to the supersymmetry algebra

and multiplets in [40]. The bosonic fields in new minimal supergravity are the metric g,,,, the
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R-symmetry gauge field ALR), a two-form gauge field B,,,, and the central charge symmetry
gauge field C),. It is convenient to let H and V), denote the Hodge duals of the field strengths
of B, and C}, respectively.

For 3D N = 2 theories with a U(1)g symmetry, [40] classifies the backgrounds that
preserve some supersymmetry. In particular, to preserve two supercharges of opposite R-
charge, the three-manifold M3 must admit a nowhere vanishing Killing vector K*. If K*
is real, then M?3 is necessarily an orientable Seifert manifold. We focus on the case of a
real, nowhere vanishing Killing vector K*, but we do not restrict the orbit to be a Seifert
fiber. Under these assumptions, it suffices to consider backgrounds with V,, = 0, so that the

conditions for the existence of a rigid supersymmetry are

(V, — A = —%H%g, (V4 iAfNE = —lHyug (2.114)

These are the generalized Killing spinor equations, under which & and é have R-charges +1,

respectively. The corresponding SUSY’ transformations with V,, = 0 [59] are

' Ay = i(Evuh + EN),
ON=—i{(D—oH) — iv"¢{D,0o — —\/__ Py, EF ., (2.115)

&'\

i€(D — oH) +iv"éD,0 — /G Py, EF,,,

D = =D, (67X — €4 X) + [EA + €N o] + H(EX =€)
for the vector multiplet and

VA = —V2,
01 = —/26F 4 in29"ED, A + i/260 A — iV/2AHEA, (2.116)
'F = i2D,(Ey")) — iV208) — 2ENA + iV2(A — 2)HEY
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for a fundamental chiral multiplet of dimension A. The covariant derivative is now
D,=V,—iA, —irA (2.117)

where r is the R-charge of the field on which it acts. The transformations (2.115]) and ([2.116))

furnish a representation of the algebra su(1|1). We also have at our disposal

1. - -
0¢0z Tr (gM = iDa) = &Ly, (2.118)
1 1 1 . - - P
Lyy =Tr ZFWFW + §DMUD“J - §(D — 0H)? —iMy" Dy + i)o, N + §H/\)\

as a convenient localizing term, where we have omitted the Yang-Mills coupling.

If the generalized Killing spinor equations have at least one solution, then M? admits
a THF. The existence of solutions to both equations implies that K* = 57“5 is a nowhere
vanishing Killing vector. Assuming that K* is real, we can find local (“adapted”) coordinates

(1@, z,z) such that K = 81; and
ds” = (0 + a(z,2) dz +a(z, 2) d2)? + (=, 2) d= dz (2.119)

where a is complex and ¢ is real (following [59], we have normalized the metric such that
|K'|? = 1, which does not affect results for supersymmetric observables). Coordinate patches
are related by transformations of the form ¢/ = ¢ + a(z, 2), 2/ = (2), Z = (%) with a real

and [ holomorphic. We choose the vielbein
et = %c(z, Z)(dz+dz), €*= %c(z, 2)(dz—dz), € =di+a(z,2)dz+a(z z)dz, (2.120)
for which the corresponding spin connection (determined from de® + w®, A € = 0) is
w? = —w! = Fe® + (wp)?, wB=—wP=-Fe', '=-wl=-F¢ (2121
where we have defined
i(0za — 0,a)

5 , (wop)™? = —(wyp)* = —=(0.cdz — D:cdz) (2.122)

1
c

F.(z,2) =
¢
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with wep being the spin connection associated to e!, e? for the 2D metric ¢® dz dz. Note that

F, is independent of the choice of chart, while wop is not. We have on spinorﬁ that

1 ) 1
Vy=0,— §Fa7u S’ (Faei + §(W2D);1L2) 73 Y (2.123)

where the dots indicate matrix multiplication rather than spinor contraction (see Appendix

A.2). Hence if we take

1
H=—iF,, A®=_ (Fae3 + 5(wQD)12> : (2.124)

then the generalized Killing spinor equations (2.114)) are solved by

1 . 0
§=x<0>, §=x<1> (2.125)

in a basis where v* = zo®r ™! (here, as in the definition of K*, we really mean the commuting
spinors | and 3 lo). In particular, &, € are constant in the chosen frame, and since z € SU (2),

we have both & = ¢T and €]o€T|o = 1. Regardless of basis, we have

K* = (§|0)7a(g|0) = ( 0 —1 >7a ( (i ) = 0%, (2.126)

so that K = 81/;.

2.6.2 Localizing “Seifert” Loops

We now describe how bulk V,, = 0 SUSY’ restricts to BPS Wilson loops. To summarize,
our assumption that M3 admits a real, nowhere vanishing Killing vector restricts it to be a
Seifert manifold. On any such manifold, it is possible to define a 3D N = 2 supergravity
background with V, = 0, in which the Killing spinors take a simple form. Namely, we work in
local coordinates (12, z, %) such that K = 9; and the metric takes the standard form (2.119):

upon choosing the frame ([2.120) and the background fields H and A® as in (2.124)), the

WY, = (0, + wzbaab)lﬁ where 0% = £[y%,7].
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generalized Killing spinor equation D,n = —%H v (with D, as in (2.117)) has solutions
n =& € of R-charge +1 as in (2.125).

However, the integral curves of the Killing vector field may not be compact. Therefore,
local coordinates adapted to the Killing vector do not necessarily define a Seifert fibration of
M?3. Thus the Wilson loops that we consider, while supported on the Seifert manifold M3,
are not necessarily Seifert loops. The quotation marks in the title of this subsection serve to
emphasize that the term “Seifert loop” (in the sense of [31]) is a misnomer.

To begin, consider a Euclidean 3D N = 2 Wilson loop along a curve v [62, 68]:

W = Trg Pexp {z f(Audx“ — iads)] = Trg Pexp li]{dT (A, at —iold])| . (2.127)
v

v

The BPS conditions following from ([2.115]) take the same form on any background geometry:

nfy —£=0, nfyl+E=0, (2.128)

with n#* = ¢#/|%| being the unit tangent vector to . They are satisfied when n* = —K*.
Hence a BPS Wilson loop preserving both supercharges under consideration lies along an
integral curve of K*.

To determine how bulk SUSY”’ restricts to these BPS Wilson loops, note that even after
demanding that the Killing spinors &, ¢ be properly normalized, we still have the freedom to

introduce a relative phase between them (the overall phase is immaterial). Therefore, let us

keep ¢ as in (2.125), with K# = 4#¢T, and write
. 0 ;
E=pr| )=l =1 (2.129)

The linear combinations of 3D fermions that appear in the 1D multiplets depend on the
gamma matrix conventions. For simplicity, we work in the basis 7* = ¢ (a = 1,2,3).

According to the above discussion, we fix (n!,n? n®) = (0,0,—1). Restoring Grassmann
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parameters, we have

w 3 0
S ()= ). (2.130)

&2 0 & pw
To restrict the SUSY’ transformations (2.115)) and (2.116)), we drop dependence on the 1
and 2 directions and consider only the component of the gauge field along the loop. Along

the loop, frame and spacetime indices are equivalent since e3 = 1. For the vector multiplet,

it is convenient to define the 1D SUSY’-covariant derivative
Dj(-) = 05(") — i[As +io, ()] (2.131)

on both scalars and spinors, which satisfies §'Dj(-) = D56'(+) and Do = Dso. Note that
Dj(-) and D3(-)+ o, (+)] coincide on scalars, but not on spinors; note also that in 1D, we need
not diffeomorphism-covariantize the derivative acting on spinors because the spin connection

is trivial. In our supergravity background and frame, we have on spinors that

1 (1

where 7, = 1,2. Moreover, it follows from the V,, = 0 SUSY" algebra that the gauginos A, A

have R-charges F1, so (2.117) and (2.132)) give

1 ~ ~ 1.~ -
Dg/\l = (93>\1 + §H/\1 — i[Ag, )\1], Dg/\g = (93>\2 — §H/\2 — i[A3, )\2] (2133)

Specializing to our specific & €, we obtain from (2.115) (using (2.131) and (2.133])) the

following restricted multiplets in 1D:
e A 1D vector {0,0, A3 + io} where §'(As + io) = 0.

e Two independent 1D adjoint chirals (not related by complex conjugation) {0, Ay} and
{O, 5\1} where (5//\2 = 6/5\1 =0.

The remaining fields do not comprise good multiplets for any p. It turns out that for a 3D

chiral to restrict to a 1D chiral, we must choose p = i. Indeed, consider a fundamental chiral
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multiplet of dimension A. The corresponding 1D SUSY’-covariant derivative is
Dj(+) = 05(-) — i(As +io)(-), (2.134)

which satisfies ' Dj(-) = D46'(+). From the V,, = 0 SUSY” algebra, we see that A, 1, F' have

R-charges —A,1 — A2 — A, respectively, so that

D3A = (95 — iAs +iAA{D) A,
(2.135)

D3¢1 = V3¢1 - iA3l/)1 - i(l - A)AéR)%

with Vsi; as in (2.132). Substituting our specific £, ¢ into (2.116), using (2.134)), and

choosing both p =i and A = 0, we obtain a single restricted multiplet in 1D, namely a 1D
fundamental chiral {A, —v/2¢,} where

FA=w(=V2) (2.136)

§'(—V2¢h) = 20D} A.
The remaining transformation rules do not close.

The key point is that the transformation rules for the restricted 1D multiplets are in-
dependent of the supergravity background fields and take exactly the same form as in flat
space. The fields are a priori complex, and Dj is not Hermitian because it involves a com-
plexified gauge field. After imposing reality conditions in the path integral, we want o purely

imaginary, Az purely real, and D purely imaginary; the fermions remain independent.

2.7 Matching /' =0 and N =2 Line Operators

So far, we have explained the quantum-mechanical non-renormalization of the weight only
for certain classes of BPS observables in pure N' = 2 Chern-Simons, which can be computed
via localization on three-manifolds that admit a real, nowhere vanishing Killing vector. This
amounts to an explanation of the renormalization of the weight for a similarly restricted set

of observables in the corresponding N = 0 theory, namely those links deformable to BPS
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configurations. It may be possible to achieve a more general understanding by localizing on
a solid torus [I]. In this section, we make some further comments on the correspondence

between N' = 0 and N = 2 observables.

2.7.1 (Non-)Renormalization

To substantiate the claim that the natural UV completion of Chern-Simons theory should
have N/ = 2 supersymmetry, it is (as mentioned in the introduction) important to fix un-
ambiguous definitions of the level k and the representation A\. Throughout, we have used
the canonical definition that the k& in N’ = 0 G}, Chern-Simons theory is the level of the
corresponding 2D WZW model, where it appears in correlation functions and has a precise
physical meaning. Relative to this definition, the level that appears in the Chern-Simons
braiding matrix with parameter ¢ is k+h. This shift is independent of regularization scheme,
i.e., the question of how the renormalized coupling depends on the bare coupling. Said differ-
ently, our k = kppys is what determines the dimension of the Hilbert space and changes sign
under time reversal, while Ky + 1 is what appears in correlation functions. The relation of
kphys to some UV parameter Apare (€.8., Via kphys = Kbare + 1 O Kphys = Kbare) 1S @ question of
regularization scheme and not physically meaningful.

On the other hand, A determines the conjugacy class of the holonomy around a Wilson

—2miMk - as measured by another loop that links it. This relation, derived from the

loop to be e
classical EOMs, receives quantum corrections. For example, in the case of SU(2) (and using
our convention for A from Section , the classical and quantum holonomies are e?*73/k
and 20U +1/2)73/(k+2) " pegpectively. To interpret the statement that “\ is not renormalized”
in the N' = 2 setting, it should be kept in mind that Wilson loops are typically written

not in terms of the bare A, but rather in terms of an effective A that corresponds to having

integrated out the fermions along the line.
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2.7.2 Equivalence Relations

It is worth noting that there exists a one-to-one correspondence between line operators in
the bosonic and supersymmetric theories only if we take into account both shifts.

As can be seen in canonical quantization, the distinct Wilson lines in pure Chern-Simons
theory are in one-to-one correspondence with the ground states of the theory on a torus. To
explain what “distinct” means, we must identify the precise equivalence classes of Wilson
lines that map to these ground states. SU(2), Chern-Simons on a torus has k + 1 ground
states labeled by half-integers j = 0,...,k/2. These can equivalently be viewed as the k + 1
primary operators in the SU(2);, WZW model. From the 3D point of view, however, a Wilson
line can carry any spin j. To respect the 2D truncation, all such lines fall into equivalence
classes labeled by the basic lines j = 0,...,k/2. The equivalence relations turn out to be a

combination of Weyl conjugation and translation [9]:
Jj~—=3, Jj~j+k (2.137)

For general G, line operators are subject to equivalence relations given by the action of the
affine Weyl group at level & (W x kA},, A}, being the coroot lattice of G), whose fundamental
domain we refer to as an affine Weyl chamber and which contains all inequivalent weights
(corresponding to integrable representations of @k)

Now consider the correlation functions of these lines. Two basic observables of SU(2)y
Chern-Simons on S? are the expectation value of an unknotted spin-j Wilson loop and the

expectation value of two Wilson loops of spins j, j' in a Hopf link:

_ Soj
3007

S
(W;Wj)n=o = o~ (2.138)

<W7>N =0 Sao

Recall that the modular S-matrix of SU(2); is given by (2.13) in a basis of integrable
representations. The formulas (2.138]) apply only to Wilson loops with j within the restricted
range 0,...,k/2. Indeed, (2.13) is not invariant under the equivalence relations ([2.137).

Nonetheless, let us naively extend these formulas to arbitrary j, j’. The first positive value
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of j for which (W;) = 0 is that immediately above the truncation threshold: j = (k +1)/2.
More generally, from , it is clear that a line of spin j and a line of spin j + k + 2
have identical correlation functions, while lines with 7 = n(k/2 4+ 1) — 1/2 for any integer n
vanish identically. Here, one should distinguish the t¢rivial line j = 0, which has (W) = 1
and trivial braiding with all other lines, from nonexzistent lines, which have (W;) = 0 and
vanishing correlation functions with all other lines. On the other hand, a line with j and a
line with j 4+ k/2 + 1 have the same expectation value and braiding, up to a sign. In other
words, at the level of correlation functions, SU(2); Wilson lines are antiperiodic with period
k/2+ 1.

An analogous antiperiodicity phenomenon holds for arbitrary simple, compact G. In the
WZW model, the fusion rule eigenvalues (computed from the S-matrix elements) are equal
to the finite Weyl characters of G, evaluated on some special Cartan angles that respect the
truncation of the relevant representations [78]. For example, in SU(2)y, )\En) = Sin/Son is
the Weyl character x,(f) in evaluated at /2 = (2n + 1)n/(k+2) forn = 0,...,k/2,
chosen such that the Weyl character of spin ¢ = (k 4 1)/2 vanishes.

The (anti)periodicity of S under j — j + (k + 2)/2 can be understood in terms of the
renormalized parameters K =k + 2 and J = j + 1/2 (see also [38]). In the N = 2 theory, a

2miJos /K

J Wilson line has holonomy e , so the equivalence relations are

Jr—J, Je~J4+K < je~—1—3j jr~j+k+2. (2.139)

The inequivalent values of j are —1/2,...,(k + 1)/2. The extremal values j = —1/2 and
j = (k+1)/2 correspond to identically zero line operators, and the remaining values are the
same as in the A/ = 0 formulation. In other words, in contrast to for N'=0 SU(2)%
on S3, we have for N' =2 SU(2)x on S? that

<WJWJ/>N:2 SJJI = — S1n K (2140)

SJJ/ 2 . |:(2J)(2J,)7T:|
— , 1 I 5
S%% K
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where the bare J must satisfy J > 1/2 for supersymmetry not to be spontaneously broken.
In the supersymmetric theory, labeling lines by J = 1/2,... (k+ 1)/2, the J = 0 line does
not exist due to the vanishing Grassmann integral over the zero modes of the fermion in
the N = 2 coadjoint orbit sigma model. The conclusion is that the N' = 2 theory has the
same set of independent line operators as the A/ = 0 theory. In the N/ = 2 formulation, the
S-matrix Sj; is explicitly invariant under the equivalence relations .

For general G, let A = A+ p and K = k + h. Then A, modulo the action of the affine
Weyl group at level K, takes values in an affine Weyl chamber at level K. Those A = A —p
for A at the boundary of the chamber correspond to nonexistent lines, while those for A in
the interior are in one-to-one correspondence with weights in the affine Weyl chamber at
level k [9].

It would be interesting to understand both shifts from an intrinsically 2D point of view,
namely to translate the equivalence between (J, K') and (j, k) into an equivalence between

ordinary and super WZW models [79, 80, 81].

2.8 General Gauge Groups

Using SU(2) as a case study, we have supersymmetrized the coadjoint orbit quantum me-
chanics on a Wilson line in flat space from both intrinsically 1D and 3D points of view,
providing several complementary ways to understand the shift in the representation j. We
have described how to extend this understanding to certain compact Euclidean manifolds.
For arbitrary simple groups, one has both generic and degenerate coadjoint orbits, corre-
sponding to quotienting G by the maximal torus 7" or by a Levi subgroup L D T (see [82] and
references therein). For example, the gauge group SU (N +1) has for a generic orbit the phase
space SU(N+1)/U(1)Y, a flag manifold with real dimension N2+ N (corresponding to a reg-
ular weight); on the other hand, the most degenerate orbit is SU(N +1)/(SU(N) x U(1)) =

S2N+1 /61 = CPY, which has 2N real dimensions and a simple Kéhler potential (correspond-
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ing to a weight that lies in the most symmetric part of the boundary of the positive Weyl
chamber). The quantization of the phase space CP" is well-known and can be made very
explicit in terms of coherent states [25]. The Fubini-Study metric for CPY follows from
covering the manifold with N + 1 patches with the Kahler potential in each patch being the
obvious generalization of that for SU(2). In principle, one can carry out a similar analysis
with SU(N + 1) Killing vectors. We simply remark that in general, the shift of a funda-
mental weight by the Weyl vector is no longer a fundamental weight, so one would need a
qualitatively different sigma model than the original to describe the coadjoint orbit of the
shifted weight. An option is not to work in local coordinates at all, along the lines of [31]

(however, this approach seems harder to supersymmetrize).
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Chapter 3

Topological Sectors in

Non-Topological Gauge Theories

In this chapter, we turn our attention to the Coulomb branch, or the vector multiplet moduli
space, of 3D N = 4 gauge theories. For the sake of exposition, we proceed by algebraic means,
eschewing Lagrangians and avoiding analytic localization computations (or simply quoting
the results thereof) wherever possible. This quick route to our results complements the more

rigorous approach outlined in [2 [3].

3.1 Overview

Three-dimensional gauge theories contain local defect operators called monopole operators,
which are defined by requiring certain singular behavior of the gauge field near the insertion
point. These operators play important roles in the dynamics of these theories, such as in
establishing IR dualities between theories with different UV descriptions (see, e.g., [83], [84]).
Because these operators are not polynomial in the Lagrangian fields, they are difficult to
study even in perturbation theory, and most studies so far have focused on determining only

their quantum numbers [83, 85, 86, 87, 88, 89, 00, [0, 02} (03, 04}, (05, 96| [07].
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In supersymmetric theories, one can construct BPS monopole operators by assigning
additional singular boundary conditions for some of the scalars in the vector multiplet. For
such BPS monopoles, some nonperturbative results are known: for instance, in N = 4
theories, their exact conformal dimension was determined in [84] 98, 99, 100] for “good” or
“ugly” theories (a 3D N = 4 gauge theory is classified as good, bad, or ugly if the minimum
of the set of monopole operator dimensions, computed using the UV R-symmetry, is > 1,
< 0, or = 1/2, respectively [98]). We develop nonperturbative techniques for calculating
correlation functions of certain BPS monopole operators in 3D N = 4 QFTs.

We focus on Lagrangian 3D N = 4 gauge theories constructed from vector multiplets
and hypermultiplets. These theories do not allow for the presence of Chern-Simons terms.
For a matter representation of sufficiently large dimension, these theories flow in the IR to
interacting SCFTs, whose correlation functions are generally intractable. However, these
theories also contain one-dimensional protected subsectors whose correlation functions are
topological [12, 13]. As we demonstrate shortly, computations in these subsectors become
tractable. While 3D N' = 4 SCFTs generally have two distinct protected topological sectors,
one associated with the Higgs branch and one with the Coulomb branch, it is the Coulomb
branch sector that contains monopole operators and that will be the focus of our work (the
Higgs branch sector was studied in [I4]). From the 3D SCFT point of view, the information
contained in either of the two protected sectors is equivalent to that contained in the (n < 3)-
point functions of certain half-BPS local operators in the SCFT [12], 13].

The Coulomb (Higgs) branch protected sector consists of operators in the cohomology of
a supercharge Qc (QH ) that is a linear combination of Poincaré and conformal supercharges.
As such, one may think that the protected sector mentioned above is emergent at the IR
fixed point, and therefore inaccessible in the UV description. This is indeed true for SCFTs
defined on R3. However, if one defines the QFT on S? instead of on R?, then the protected
sector becomes accessible in the UV because on S?, the square of Q° does not contain special

conformal generators. Indeed, Poincaré and special conformal generators are mixed together
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when mapping a CFT from R? to S3. The square of Q° includes an isometry of S® that fixes
a great circle, and this is the circle where the 1D topological quantum mechanics (TQM)
lives.

Previous work [I4] used supersymmetric localization on S® to derive a simple Lagrangian
description for the 1D Higgs branch theory. The Coulomb branch case is more complicated
because it involves monopole operators. We describe how to compute all observables within
the 1D Coulomb branch topological sector of a 3D N = 4 gauge theory by constructing
“shift operators” whose algebra is a representation of the OPE of the 1D TQM operators
(also known as twisted(-translated) Coulomb branch operators, for reasons that will become
clear). Having explicit descriptions of both the Higgs and Coulomb branch 1D sectors allows
for more explicit tests of 3D mirror symmetry, including the precise mirror map between
half-BPS operators of dual theories.

The 1D TQM provides a “quantization” of the ring of holomorphic functions defined on
the Coulomb branch M. This can be explained as follows. The 3D theories that we study
have two distinguished branches of the moduli space of vacua: the Higgs branch and the
Coulomb branch. These are each parametrized, redundantly, by VEVs of gauge-invariant
chiral operators whose chiral ring relations determine the branches as complex algebraic va-
rieties. While the Higgs branch chiral ring relations follow from the classical Lagrangian,
those for the Coulomb branch receive quantum corrections. The Coulomb branch is con-
strained by extended SUSY to be a generically singular hyperkéhler manifold of quaternionic
dimension equal to the rank of G, which, with respect to a choice of complex structure, can
be viewed as a complex symplectic manifold. The half-BPS operators that acquire VEVs on
the Coulomb branch, namely Coulomb branch operators (CBOs), consist of monopole opera-
tors, their dressings by vector multiplet scalars, and operators built from the vector multiplet
scalars themselves (monopole operator VEVs encode those of additional scalar moduli, the
dual photons). All of the holomorphic functions on M¢ are given by VEVs of the subset of

CBOs that are chiral with respect to an A/ = 2 subalgebra. Under the OPE, these operators

29



form a ring, which is isomorphic to the ring C[M ] of holomorphic functions on M¢. It was
argued in [I3] that because the operators in the 1D TQM are in one-to-one correspondence
with chiral ring CBOs, the 1D TQM is a deformation quantization of C[M¢]. Indeed, the
1D OPE induces an associative but noncommutative product on C[Mc] referred to as a
star product, which in the limit 7 — oo (r being the radius of S?) reduces to the ordinary
product of the corresponding holomorphic functions, and that at order 1/r gives the Poisson
bracket of the corresponding holomorphic functions.

Both the quantization of [13] in the “Q+5” cohomology and our quantization on a sphere
are realizations of the older idea of obtaining a lower-dimensional theory by passing to the
equivariant cohomology of a supercharge, which originally appeared in the context of the
Q-deformation in 4D [101] (see also [102]) and was applied to 3D theories in [103], 104 [105].

Our procedure for solving the 1D Coulomb branch theory uses a combination of cutting
and gluing techniques [106], [107], supersymmetric localization, and a consistency requirement
that we refer to as polynomiality. We first cut S® into two hemispheres HS% along an
equatorial S*> = GHS? orthogonal to the circle along which the 1D operators live (see
Figure . Correlators are then represented by an inner product of wavefunctions generated
by the path integral on HS? with insertions of twisted CBOs. In [2], it was shown that it
suffices to consider such wavefunctions V. (Bgps) with operator insertions only at the tip of
H S_f’c, and evaluated on a certain class of half-BPS boundary conditions Bgps. Insertions of
twisted CBOs anywhere on the great semicircles of HS? can then be realized, up to irrelevant
QC-exact terms, as simple shift operators acting on this restricted class of wavefunctions. It
was shown in [2] that these shift operators can be fully reconstructed from general principles
and knowledge of W (Bgps). In addition, their algebra provides a faithful representation
of the star product. Finally, one can determine expectation values (i.e., one can define an
evaluation map on C[Mc], known as the trace map in deformation quantization) by gluing

U, (Bgps) and V_(Bgpsg) with an appropriate measure.
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HS?

Figure 3.1: Gluing two hemispheres HS? = B3 to obtain S®. The 1D TQM lives on the
S' parametrized by the angle ¢ (thick orange line). This circle intersects the equatorial
S? = 9HS? at two points identified with its North (V) and South (S) poles.

The fact that the star product can be determined independently of evaluating correlators
is very useful. First, calculating correlators using the above procedure involves solving matrix
integrals, while the star product can be inferred from the comparatively simple calculation of
the wavefunctions Wy (Bgps). Second, the matrix models representing correlators diverge for
“bad” theories in the sense of Gaiotto and Witten [98]. Nevertheless, the H.S* wavefunctions
and the star product extracted from them are well-defined even in those cases. Therefore,
our formalism works perfectly well even for bad theories, as far as the Coulomb branch and
its deformation quantization are concerned.

We also provide a new way of analyzing “monopole bubbling” [16]. Monopole bubbling
is a phenomenon whereby the charge of a singular monopole is screened to a lower one by
small 't Hooft-Polyakov monopoles. In our setup, this phenomenon manifests itself through
the fact that our shift operators for a monopole of given charge contain contributions propor-

tional to those of monopoles of smaller charge, with coefficients that we refer to as bubbling

61



coefficients. While we do not know of a localization-based algorithm for obtaining these
coefficients in general, we propose that the requirement that the OPE of any two 1D TQM
operators should be a polynomial in the 1D operators uniquely determines the bubbling
coefficients, up to operator mixing ambiguities (direct localization computations of bubbling
in 4D were undertaken in [17, I8, T08] and refined by [19] 109, 20]).

The main mathematical content of this work is a construction of deformation quantiza-
tions of Coulomb branches of 3D N = 4 theories that also satisfy the truncation condition
of [13] in the case of good or ugly theories, as a consequence of the existence of the natural
trace map (the one-point function). By taking the commutative limit, we recover the ordi-
nary Coulomb branch of the theory in the form of the “abelianization map” proposed by
[21]. Therefore, our approach also provides a way to derive the abelianization proposal of
[21] from first principles.

Our strategy in this chapter is to deduce our results for correlators of twisted CBOs by
dimensionally reducing the Schur index of 4D N = 2 theories enriched by BPS ’t Hooft-
Wilson loops [110, 108, T11]. The 4D line defect Schur index can be computed by a path
integral on S% x St. To preserve supersymmetry, the defects (which wrap the S') should be
inserted at points along a great circle in S®. Upon dimensional reduction on the S!, the line

defects become twisted CBOs in the 3D dimensionally reduced theory.

3.2 Preliminaries

3.2.1 N =4 Theories on S°

We study 3D N = 4 gauge theories with gauge group G and matter representation R ® R.
They consist of a vector multiplet V valued in the Lie algebra g = Lie(G) and a hypermul-
tiplet H valued in a (generally reducible) unitary representation R of G, where H can be
written in terms of half-hypermultiplets taking values in R @ R. The theory could also be

deformed by real masses and FI parameters, which we set to zero for simplicity. We denote
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by t a fixed Cartan subalgebra of g, W the Weyl group, A the set of roots, Ay the weight
lattice, and Ay}, the coweight lattice.

We place such theories supersymmetrically on the round S® of radius 7. The sphere is
a natural setting for deformation quantization of moduli spaces because the Coulomb and
Higgs branches in such a background can be viewed as noncommutative, with 1/r playing
the role of a quantization parameter. As with the 2D Q-background in flat space [21], the
result is an effective compactification of spacetime to a line.

Furthermore, quantized Coulomb and Higgs branch chiral rings are directly related to
physical correlation functions. In particular, they encode the OPE data of the BPS operators
in the IR superconformal theory, whenever it exists. This relation equips the star product
algebra of observables with a natural “trace” operation (the one-point function of the QFT)
as well as a natural choice of basis in which operators are orthogonal with respect to the
two-point function and have well-defined conformal dimensions at the SCFT point.

The N' = 4 supersymmetry algebra on S? is s = su(2|1), ® su(2|1), or its central ex-

tension § = su(2[1), ® su(2|1),, whose central charges correspond to supersymmetric mass

and FI deformations of the theory. In the flat-space limit » — oo, § becomes the N/ = 4
super-Poincaré algebra. The even subalgebra of s contains the su(2), ® su(2), isometries
of S3, whose generators we denote by J op and J, C(xﬁ, as well as the R-symmetry subalgebra

u(l), ® u(l), generated by R, and R,.. The odd generators are denoted by =) and Q).

The commutation relations of J ., Ry, ol+) ar

. 1

79, 79) = ey, 179, 9] = 2 (emQ(ﬁ“) + %ngi)) , (3.1)
i 1

[Rp, Q)] = +Q(), (o, gy = -2 (Jw + eaﬁRg) (3.2)

where we have set

JY = _(Jl(z) * iJQ(Z)) J?EZ) . (3.3)
af = Jéz) Jl(e) iy JQ(e)

The generators of su(2|1), obey the same relations with ¢ — 7.
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It is convenient to exhibit S3 as an S! fibration over the disk D? with the fiber shrinking

at the boundary. We embed S% in R* as 377, X? = 72 and parametrize the X; by
X, +iXy =rcosfe™, Xy+iX, = rsinbe, (3.4)

where 6 € [0,7/2] and ¢, 7 € [—7,7]. In these coordinates, sin fe’? parametrizes the unit

disk, and €' the S! fiber. We use the notation
P=—(Js+J5), P,=—Js+J; (3.5)

to denote two particular U(1) isometries of S%, where the fixed-point locus of P; is the great
p-circle S}D and P, is a rotation along S}a. After conformally mapping to flat space, P, would
be a rotation that fixes the image of S;, which is a line.

The 3D N = 4 superconformal algebra osp(4]4), with R-symmetry subalgebra so(4) =
su(2)y @ su(2)c, contains s as a subalgebra. This embedding is parametrized by a choice of

u(l), & u(l), inside su(2)y & su(2)¢, which is specified by the Cartan elements

ho € su(2)y, 'y € su(2)c, (3.6)

where a,b,... = 1,2 (a,b,... = 1,2) label the fundamental irrep of su(2)y (su(2)c). Here,
h,? and Edi, are traceless Hermitian matrices satisfying h,°h.> = 8,° and h%:h¢; = 6%;. They
determine a relation between the generators Ry, R, of u(1), ®u(1), and the generators R,’,

}_%di) of su(2)y & su(2)c:
1 1, . 1 1
§(Rg + Rr) = §ha Rb = RH, §(Rg — Rr) = §h bR & = RC- (37)

Our convention is that

h’ = —o?, Edb = —0o°. (3.8)

Different choices of h,h are related by conjugation with SU(2)y x SU(2)c and determine

which components in the triplets of FI and mass parameters can be present on the sphere.
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The vector multiplet transforms in the adjoint representation of G and has components
V= (A;u )\aada (I)al}7 Dab)a (39)

consisting of the gauge field A,, gaugino A4, and scalars ®.; = ®;, and Dy, = Dy,, which
transform in the trivial, (2,2), (1,3), and (3,1) irreps of the su(2)y @ su(2)c R-symmetry,

respectively. The hypermultiplet transforms in the R of G and has components

H = (Qay aa; wada Jad) (31())

where qq, ¢, are scalars transforming as (2, 1) under the R-symmetry and as R, R under G,
respectively, while ¥, {Ead are their fermionic superpartners and transform as (1,2) under
the R-symmetry.

Supersymmetry transformations and supersymmetric actions for V, H can be found in
[14, 2]. The gauged hypermultiplet action Shyper[H, V] preserves the full superconformal
symmetry osp(4]4). The super Yang-Mills action Syy[V] preserves only the subalgebra s.
The theory Shyper|H, V] has flavor symmetry group Gy x G¢, whose Cartan subalgebra we
denote by ty@tc. The factor Gy acts on the hypermultiplets, while G¢ = Hom(m(G), U(1))
(possibly enhanced in the IR) contains the topological U(1) symmetries that act on monopole
operators. It is possible to couple the theory to a supersymmetric background twisted vector
multiplet in to, which on S? leads to a single FI parameter ¢ for every U(1) factor of the
gauge group (as opposed to an su(2)y triplet on R?). Similarly, one can introduce real masses
for the hypermultiplets by turning on background vector multiplets in tyz. On S®, there is a
single real mass parameter for every generator in ty (as opposed to an su(2)¢ triplet on R?).
In the presence of nonzero real mass and FI parameters, s is centrally extended by charges
Zy and Z, for the respective factors of the superalgebra. The central charges are related to

the mass/FI parameters by

1 1 -
(Zo+ Z,) =im € ity,  —(Z— Z,) =i € itc. (3.11)
r T
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3.2.2 Q"/“_Cohomology

We now introduce twisted operators and their corresponding topological sectors. The SUSY

algebra § contains two particularly interesting superchargesﬂ

Q" = Q"+ Qi + o ) + oy, (3.12)
QC _ gﬂ-i—) + QY—H + Qéf—) + Q(;_). (313)
They satisfy the relations
Hy2 _ A e cya A T
(@7 = TP Re+ird), (QF) = TP+ Rug +iri). (3.14)

The quantities Z and m stand for FI and mass deformations, i.e., central charges of 5. The
most important features of Q7 and Q¢ emerge when we consider their equivariant cohomol-
ogy classes in the space of local operators. The operators annihilated by QF are the so-called
twisted-translated Higgs branch operators (HBOs), whose OPE encodes a quantization of
the Higgs branch; such operators were studied in [14]. Correspondingly, the cohomology
of QY contains twisted-translated Coulomb branch operators. Such operators must be in-
serted along the great circle Sé fixed by (Q%)2, and their OPE encodes a quantization of the

Coulomb branch. Specifically, the properties
{(Q",.. }y=P,+Ry+irm, {Q° ..} =P,+Ro+ir (3.15)
motivate the definitions of the twisted translations
P! =P,+Ry, PS=P,+Re, (3.16)

which are Q- (or QY-) closed operations and can therefore be used to translate cohomol-
ogy classes along S}. Furthermore, when m = 0 (or ¢ = 0), the twisted translation ﬁf
(or 135 ) is exact under Qf (or Q). The twisted-translated cohomology classes then be-

come independent of the position ¢ along the circle. It follows that each supercharge Q/¢

'Here, we set 3 = 1 relative to [T4 [2].
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has an associated 1D topological sector of cohomology classes: the OPE of these twisted
HBOs/CBOs is an associative but noncommutative product, since there exists an ordering
along the line.

To be concrete, recall that in 3D N = 4 SCFTs, half-BPS operators are labeled by their
charges (A, 7, ju,jc) under the bosonic subalgebra s0(3,2) @ su(2)y @ su(2)c of osp(4/4).

They are Lorentz scalars (j = 0) and can be classified as either HBOs (A = jy, jo = 0)

or CBOs (A = j¢, ju = 0), which we write with su(2)x/c spinor indices as (’)g o
125
o<

(@1--a2is)

) and
. In a Lagrangian theory, HBOs are precisely gauge-invariant polynomials in the

hypermultiplet scalars g,, ¢,, while CBOs consist of the vector multiplet scalars ®,; and

b

(dressed) monopole operators Ma1~"(i2jc'

To define operators in the cohomology at arbitrary ¢, one simply applies the appropriate

twisted translation in (3.16)). For an HBO (’)i - the corresponding twisted-translated

az;

operator is given by

_ " cos £
O () = u™(p) - - un (@)Oﬁ...@m(@, u = < ‘ ;) : (3.17)
sin £
For a CBO Odc1--~d2jc7 the corresponding twisted-translated operator is given by
. ) ) . , 1 ele/2
= ™ %2 . . a _ _~
O%(p) = v () - v (0)0G, ay, (), 0 VAR (3.18)

The precise expressions for u® and v® in and follow from our definition of the
algebra s via the Cartan elements for su(2)p/c. Because the translations in are
accompanied by R-symmetry rotations, the twisted operators , at ¢ = 0 and
¢ # 0 are both in chiral rings, but with respect to distinct Cartan elements of su(2)y (or
su(2)¢). Since cohomology classes at different points ¢ are not mutually chiral, they may

have nontrivial SCFT correlators ]

2Due to the definition of twisted translations, both v and v from and are antiperiodic under
@ — @+27. Therefore, twisted translations give antiperiodic operators on the circle for half-integral R-spins.
Antiperiodic observables are only single-valued on the double cover of Si,. We deal with this ambiguity by
inserting a “branch point” at ¢ = +m, in the presence of which all observables become single-valued. For
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These twisted operators are interesting for at least two reasons. First, their two- and
three-point functions fix those of HBOs and CBOs in the full 3D theory, by conformal sym-
metry and R-symmetry. Second, at any fixed ¢, twisted operators in the cohomology of
QH/C are in one-to-one correspondence with elements of the Higgs/Coulomb branch chiral
ring. The position-dependent R-symmetry polarization vector u or v fixes a complex struc-
ture on the corresponding branch, so that the operators are chiral with respect to an N' = 2
superconformal subalgebra of osp(4/4) whose embedding depends on the vector [

So far, we have classified operators in the cohomology within SCFTs. In practice, we need
a definition of such operators along RG flows on S®, where only s C osp(4|4) is preserved.
Along the flow, the su(2)y ¢ symmetries are broken to their u(1) g Cartans. The operators
ot and O¢ are still present, but their different a;,a; = 1,2 components are no

ay--a; ay--a2;j

longer related by su(2) g ¢, and their correlators therefore need not respect these symmetries
away from the fixed point. However, the twisted operators and are still in the
cohomology, and this notion is well-defined along the flow. Furthermore, O () and O ()
are not chiral with respect to any N' = 2 subalgebra of s preserved along the flow; they
become chiral with respect to certain such subalgebras of osp(4|4), which is only realized at

the fixed point. Nevertheless, they are half-BPS under s.

3.2.3 Monopole Operators

Our primary interest is in monopole operators in the cohomology of QY so it behooves us
to give a careful definition of these objects. Half-BPS monopole operators were first defined
for 3D N = 4 theories in [84]. The twisted-translated monopole operators that we study are

essentially those of [84] undergoing an additional SU(2)¢ rotation as we move along S, [2].

each observable, we pick its sign at ¢ = 0, and if we ever have to move an observable @ or O past the
branch point, then it picks up an extra sign of (—1)%# or (—1)%c.

3Functions on the Coulomb branch are in one-to-one correspondence with Coulomb branch operators.
For instance, the operators Og1 d25g correspond to a spin-jo multiplet of functions under su(2)c. With
respect to the su(2)c polarization v, one can identify i 2ic OF o 88 the holomorphic component
of this multiplet of functions, and one can regard the corresponding operator as chiral.

68



A monopole operator is a point-like source of magnetic flux in 3D spacetime [83]. For
semisimple GG, the monopole charge b is a cocharacter of G, referred to as the GNO charge
[15]. A cocharacter is an element of Hom(U(1),G)/G = Hom(U(1),T)/W. Passing from
the element of Hom(U(1),T)/WW to the map of algebras R — t, we see that cocharacters
can also be identified with Weyl orbits in the coweight lattice Ay, C t of G, i.e., in the
weight lattice of the Langlands dual group “G. Since every Weyl orbit contains exactly
one dominant weight (lying in the fundamental Weyl chamber), it is conventional to label
monopole charges by dominant weights of “G [21]. Let b € t be such a dominant weight of
L@. Then a bare monopole operator is defined by a sum over Wb, the Weyl orbit of b, of
path integrals with singular boundary conditions defined by elements of Wb. Specifically,
the insertion of a twisted-translated monopole operator at a point ¢ € Si, is defined by the

following singular boundary conditions for F),, and ®;:

dy* b A
*l byTy’Z , By = —(Dy) ~ —me_w, Py ~ 0, (3.19)

where it is understood that one must compute not a single path integral, but rather a sum
of path integrals over field configurations satisfying with b ranging over the full Weyl
orbit of a given dominant weight. Here, “~” means “equal up to regular terms” and y*
are local Fuclidean coordinates centered at the monopole insertion point. The origin of
is that twisted-translated monopoles are chiral with respect to the N' = 2 subalgebra
defined by the polarization vector v at any given . This requires that the real scalar in

the A/ = 2 vector multiplet diverge as b| near the monopole [84] and results in nontrivial

2ly

profiles for the AN/ = 4 vector multiplet scalars near the insertion point. This background

can alternatively be viewed as a solution to the Q¢ BPS equations, with a Dirac monopole

singularity *F ~ byTjgu
We denote such twisted-translated monopole operators by M?®(y), or simply M®. The

QC-cohomology, in addition to M’(¢) and gauge-invariant polynomials in ®(¢), contains

monopole operators dressed by polynomials P(®), which we denote by [P(®)M?®]. Because
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monopoles are defined by sums over Weyl orbits, [P(®)M?] is not merely a product of P(®)
and M?®, but rather:

[P(®)M"] = L Z P(®") x (charge-(w - b) monopole singularity), (3.20)

Wel S5

where ® means that as we sum over the Weyl orbit, we act on the P(®) insertion as well.
Because M?" breaks the gauge group at the insertion point to the subgroup G, C G that
preserves b, P(®) must be invariant under the G actionﬁ Also, to avoid overcounting, we
divide by the order of the stabilizer of b in W]

At this point, we pause to mention some subtleties inherent to the above definition:

e First, note that the Weyl group acts canonically on the Cartan subalgebra t, but it does
not have a natural action on the full Lie algebra g where ® is valued. Nonetheless, the
action of W = N(T)/Z(T) on a Gp-invariant polynomial P(®) is unambiguous because,
for b € t, Z(T) C Gy. Hence the action of w € N(T)/Z(T) on P(®) is well-defined, and

this is the action that appears in (3.20)).

e Second, the action of the Weyl group on the dressing factor differs from its action on b.
This is because global (and gauge) symmetries act in opposite ways on order and disorder
operators, i.e., on fields and their boundary conditions [2]. In our case, if we act on b by

w € W (that is, b — w - b), then we should act on ® by w™': & s ®¥ =w™! . .

To conclude, by b in [P(®)M?], we mean some weight of G within the given Weyl orbit,
though not necessarily the dominant one. The polynomial P(®) appearing inside the square
brackets is always the one attached to the charge-b singularity (whether or not b is domi-
nant), whereas the Weyl-transformed singularities w - b are multiplied by Weyl-transformed

polynomials, as in ([3.20)).

4After localization, @ takes values in tc, whence the Gy-invariance of P(®) boils down to Wy-invariance.
But the summation in automatically averages P(®) over W, C W. Therefore, later on, when we write
formulas in terms of ® € tc, we can insert arbitrary polynomials P(®) in [P(®)M?"].

®Sums over Weyl orbits do not require a factor of [Wy| ™', as >, oy F(0) = ﬁ > wew F(w-b).
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3.2.4 Topological Quantum Mechanics

To summarize, 3D N = 4 SCFTs have two protected subsectors that each take the form
of a topological quantum mechanics [12] 13]. The associative operator algebra of the TQM
is a deformation quantization of either the Higgs or Coulomb branch chiral ring. Each 1D
sector can be described as the equivariant cohomology of an appropriate supercharge. The
corresponding cohomology classes are called twisted Higgs or Coulomb branch operators.

The OPE within each sector takes the form of a noncommutative star product

p—0t

Oi * Oj = lim Ol(O)OJ((,O) = Z CAH_Aj_AkcijkOk (321)
k

where, for theories placed on S, the quantization parameter ¢ is the inverse radius of the
sphere: ¢ = 1/r. In addition to associativity, the star product inherits several conditions
from the physical SCFT, namely [I3]: truncation or shortness (the sum in terminates
after the term of order (2™™(4443)) due to the SU(2)y or SU(2)¢ selection rule, evenness
(swapping O; and O; in takes ( — —() inherited from the symmetry properties of
the 3D OPE, and positivity from unitarity (reflection positivity) of the 3D SCFT.

The question remains: do there exist effective methods to perform computations within
these protected sectors of 3D N = 4 theories on the sphere? The answer is yes, as we
now describe. When the SCFT admits a UV Lagrangian description, the Higgs branch
sector is directly accessible by supersymmetric localization, but the Coulomb branch sector
includes monopole operators, which are disorder operators that cannot be represented in
terms of the Lagrangian fields. For this reason, the known methods for computing OPE
data within these two sectors look qualitatively different. Combining the prescriptions for
computing observables in the Higgs and Coulomb branch sectors gives a way to derive precise
maps between half-BPS operators across 3D mirror symmetry, and to compute previously
unknown quantizations of Higgs and Coulomb branch chiral rings. For convenience, we
review both prescriptions below. The analysis of the Higgs branch sector was the subject of

[14], while the analysis of the Coulomb branch sector is the main subject of this chapter.

71



Higgs Branch Formalism

The operators that comprise the Higgs branch topological sector are gauge-invariant poly-
nomials in antiperiodic scalars Q (), Q(¢) on S;, which are twisted versions of the hyper-
multiplet scalars qq, G, transforming in the fundamental of su(2)y and in R, R of G. The

correlation functions of these twisted HBOs O;(¢) can be computed within a 1D Gaussian

theory [14] with path integral

Zy = /DQ DQ exp {47rr/d<p Q(0, + U)Q] , (3.22)

in terms of which the S? partition function is

det! 4;(2sinh(7o))

1 | ;
Lo =—— [ d d = do det! ;.(2sinh Zy=d ) )
S3 ’W| [ /’I’(O.)7 /’L(U) o de adj( Sl (7'('0')) g detR(2 COSh(WU))

(3.23)

Namely, an n-point correlation function (O1(¢1) -+ - O, () on S* can be written as

(O1(01) - Oulpn)) = — / d1(0) (01 (1) - Onlpn))s (3.24)

- (Wl Zsa J,
in terms of an auxiliary correlator (O;(¢1) -+ On(pn))s at fixed o. The latter is computed

via Wick contractions with the 1D propagator

sgn 12 + tanh(mo)
— e

Tov12 = — 3.25
- y P12 Y1 — P2, ( )

(Q(%)Q(%»a = G, (p12) =

derived from H

Coulomb Branch Formalism

The operators in the Coulomb branch topological sector consist of the twisted scalar ®(¢) =

®.;(¢)vi?, bare monopoles M®(y), and dressed monopoles [P(®)M°(y)].

6Wick contractions between elementary operators at coincident points are performed using

_ tanh(mo)
8mr

(QP)Q(#))o = Go(0) = (3.26)

to resolve normal-ordering ambiguities.
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A method for computing all observables within the Coulomb branch TQM was obtained
in [2, B3] by constructing a set of shift operators, acting on functions of o € t and B € Ay,
whose algebra is a representation of the 1D OPED We find that ®(p) is represented by a

simple multiplication operator

. .
@z;(a+%B)et¢;:t®C. (3.27)

On the other hand, the shift operator describing a dressed monopole is constructed as

[P(®)M > P( )M (3.28)

‘Wbl weW
where W, is the stabilizer of b in W, with the Weyl sum reflecting the fact that a physical
magnetic charge is labeled by the Weyl orbit of a coweight b. For a given coweight b, we
define the abelianized (non-Weyl-averaged) monopole shift operator

=M+ >z (@ (3.29)

vl<[o]

where the sum is taken over coweights shorter than b and the rational functions Z* (&),
dubbed abelianized bubbling coefficients, account for nonperturbative effects in nonabelian
gauge theories in which the GNO charge of a singular monopole is screened away from the
insertion point by smooth monopoles of vanishing size [16]. It was proposed in [3] that the
abelianized bubbling coefficients are fixed by algebraic consistency of the OPE within the

Coulomb branch topological sector. Finally, M? is an abelianized monopole shift operator

that represents a bare monopole singularity in the absence of monopole bubbling:
_1)(pb) 4 1 .
[T,cr [_( - (5 +irp- @), ] :
_ oer | s 09):) b(30,400) (3.30)

Mb
_1)ledq
HaEA [(T\CZT (ZTO‘/ ’ q))(a-b)+:|

where ()4 = max(z,0), (z), = I'(z + n)/I'(x), and powers of r encode scaling dimensions.

"WLOG, all expressions are given in the “North” picture, as will be explained in Section
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With the above shift operators in hand, the S? correlator of twisted CBOs O;(;), inserted

at points ¢; along Sé with 0 < 1 < --- < ¢, <, can be computed as

1
(O1(¢1) - On(ipn))gs = W%:/dau(a, B)U(0, B)O; --- 0, Uo(0, B)  (3.31)

where the operators on the right are understood to be the shift operators corresponding to
O; and (1)gs = 1 (we do not make a notational distinction between a shift operator and the

twisted CBO that it represents). We have introduced the empty hemisphere wavefunction

L

HpER \/Lg*ﬂr(z ip-o)

HaeA \/ngr(l —ia - o)

\IJ()(O', B) = 5370 (332)

as well as the gluing measureﬂ

o= T (459« (%52)

acAt

. B
BlpB r (% +ip-o+ |02 |>
2

111 Bl

pER F(%—ip-o—FT)
(3.33)

While the matrix model converges only for theories with a sufficiently large matter
representation (i.e., good and ugly theories [08]), the shift operators can always be used to
compute star products in the Coulomb branch TQM.

Note that in writing , we have assumed (WLOG) that all operators are inserted
within the upper hemisphere HS? (0 < ¢ < 7), in which case the sum over B collapses to
the B = 0 term. In the “South” picture, the order of the shift operators would be reversed,
yielding the same correlator. In general, the correlator can be written as an inner product
of hemisphere wavefunctions with arbitrary insertions (see Section [3.3.1).

Note also that the shift operators do not depend on the insertion point. This must be the
case because the correlators are topological and depend only on the order of the insertions,
which is reflected in nontrivial commutation relations between shift operators.

Finally, in the commutative limit r — oo, the algebra of shift operators reduces to the

Coulomb branch chiral ring and we recover the abelianization description of the Coulomb

8The gluing measure is familiar from the results of N = (2, 2) localization on S? [112, [113] 114, 115]. The
supercharge used in [I13] for localization is precisely our Q.
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branch proposed in [21]. In this limit, the operators e=>(2%95) turn into generators e[b] of

the group ring C[A}},], which act trivially on functions of ® but satisfy the relations
e[bl]e[bg} = G[bl + bg] (334)

We find that M? itself has a well-defined 7 — oo limit ]’

~ 0]
lim M°* = M? = HPER (—ip- @)

r—00 HaGA (-ZOé . (I))(a-b)+

e[b], (3.35)

as do the abelianized bubbling coefficients Z (®).

3.3 Shift Operators

We now turn to our main task: a derivation of the Coulomb branch formalism.

3.3.1 From HS? to S°

Only a very restricted class of twisted CBO correlators on S? is amenable to a direct local-
ization computation [2]. A less direct approach is to endow the path integral on S* with
extra structure by dividing it into path integrals on two open halves. These path integrals
individually prepare states in the Hilbert space of the theory on S2?. The advantage of this
procedure is that it allows for operator insertions within S® to be implemented by acting on
these boundary states with operators on their associated Hilbert spaces.

Specifically, the round S® is glued from two hemispheres, HS% and HS?. Gluing cor-
responds to taking (V_|W,), where |V ) € Hg> and (V_| € H{, are states generated at
the boundaries of the two hemispheres. For a certain quantization of the theories of interest

on S?, this operation can be represented as an integral over a finite-dimensional space of

9The expression (3.35) holds for semisimple G. Otherwise, it would have some residual r-dependence.
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half-BPS boundary conditions, which results in a simple gluing formula [2]:

(W_|0,) = ﬁ > /tdau(a, B) (V_|o, B)(o, B|¥,). (3.36)

Here, p(o, B) is the gluing measure given by the one-loop determinant on S? (see (3.33)),
and (V_|o, B), (o, B|¥ ) are the hemisphere partition functions with prescribed boundary
conditions determined by o € t and B € A}, C t. The boundary conditions parametrized
by o, B are half-BPS boundary conditions on bulk fields preserving 2D (2,2) SUSY on S?,
namely an su(2|1) subalgebra of s containing Q°. These boundary conditions specify the
magnetic flux B € A}, through the boundary S2.

We cut along the great S? located at ¢ = 0 and ¢ = £x. Correspondingly, we denote
by HS? and HS? the hemispheres with 0 < ¢ < 7 and —7 < ¢ < 0, respectively. In terms
of the su(2|1), & su(2|1), supercharges o) and Qgi), the su(2|1) subalgebra preserved by

this cut is conjugate to diag [su(2|1), @ su(2|1),] and generated by
=0, =9 Fo (3:37)

Our Coulomb branch supercharge Q° = Qf + Q5 is indeed part of this algebra.

The empty HS? path integral generates an su(2|1)-invariant state on the boundary S2.
Moreover, the SO(3) isometry is unbroken by insertions of scalar local operators at the
tip of HS3. In fact, it turns out that the full su(2|1) symmetry is preserved by insertions
of twisted CBOs at the tip of HS3. On the other hand, insertions of twisted-translated
operators along the great semicircle of HS® away from the tip generally break the su(2[1)
symmetry. However, by fusing such operators, we can reduce calculations involving generic
insertions to those involving only su(2|1)-invariant insertions, without any loss of generality.
These configurations generate su(2|1)-invariant states ¥4 on 0HS3.

The gluing formula holds as long as the states W, are annihilated by Q¢. This is
true for the state at the boundary of the empty hemisphere, and remains valid if we insert

QC-closed observables inside. Such insertions can be represented as operators acting on
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the empty hemisphere partition function. It remains to determine how ®(y) and dressed

monopoles act on the hemisphere partition function.

3.3.2 HS? Wavefunction sans Bubbling

The form of the hemisphere partition function with insertions of local Q%-closed observables
can be motivated (if not directly computed) by supersymmetric localization. Because cor-
relation functions are topological, we can move all insertions to the tip of the hemisphere
and replace them by an equivalent composite operator located there. It suffices to consider
a bare monopole at the tip, as it is trivial to include insertions of gauge-invariant monomials
in the scalar ®(p) anywhere along S_.

We place the monopole of charge b at (6, ¢) = (7/2,7/2), which is the tip of the hemi-
sphere, by imposing there. We also impose appropriate conditions at the boundary of
the hemisphere, which we do not write explicitly. The Q¢ BPS equations, which we also do
not write explicitly, have an “abelian” solution that exists iff the boundary (flux) coweight
B lies in the Weyl orbit of the monopole charge b. This solution has vanishing fields in the
hypermultiplet as well as vanishing fermions in the vector multiplet, while the bosons in the

vector multiplet take the form:

o 1B
Dy =0, ®i3=irDy =irDyp=—, & =Py = :
. . . # H . 2ry/1 — sin® fsin®
B ind
At =2 ik —— Y (3.38)
2 \ /1 —sin?0sin? ¢

where A~ is defined everywhere on the hemisphere except the interval 7/2 < ¢ < 7 at
0 = m/2; similarly, A" is defined everywhere except on 0 < p < 7/2, § = 7/2. The abelian
solution has the feature that all fields with nontrivial VEVs on the localization locus
are vector multiplet fields valued in t. In other words, the VEVs look as though the gauge

group were actually T, the maximal torus of G.
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One can use the Q%-exact Yang-Mills action for localization [14}, 2] and to compute the
relevant one-loop determinants in the background of (3.38). From the results of [2], we infer

that the hypermultiplet contributes

L+pB| -
Zhyper_H 1 F( 2p —Zp-U)
-loop T :
1 1% peRT|P2B\ /271-

(3.39)

An indirect derivation of the vector multiplet one-loop determinant will be presented in

Section [3.3.5l The answer is given by

ZVeC

1-loop

- 11 i V2 , (3.40)

a€EA F(1+W_ﬁ—la0>

Therefore, the contribution from the abelian solution to the hemisphere partition function

with a monopole labeled by a coweight b € Ay}, C t inserted at the tip is given by

1 I|pd| .
HpGR lp-t/] r < 2 o

Z(b;0,B) = > dpy WT;* i =" Z(Vi0,B), (341)
Y EWb acA WF (1 + = - U) Y EWb

where the dp enforces that the flux sourced by the monopole equals the flux exiting through
S2. We have introduced the notation Z, for an “incomplete” partition function that does not
include a sum over the Weyl orbit of b. Note that ¥y(o, B) in is simply Z,(0; 0, B).
In general, Z as given above is not the full answer because for nonabelian G, the BPS
equations might have additional solutions. They correspond to screening effects that go by

the name of “monopole bubbling” [16].

3.3.3 HS? Wavefunction avec Bubbling

Close to the monopole insertions, the Q¢ BPS equations behave as Bogomolny equations on
R3 with a monopole singularity at the origin. Such equations have “screening solutions” in
addition to the simple abelian “Dirac monopole” solution mentioned above. Such solutions,
while characterized by a monopole singularity with b € Ay, at the origin, behave at infinity as

a Dirac monopole of a different charge v € Ayj,. Such solutions exist only when v is a weight
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in the representation with highest weight b such that |v| < [b|. For given b and v, let ¢ denote
the length scale over which the screening takes place. As ¢ — 0, the solution approaches
a Dirac monopole of charge v everywhere on R? except for an infinitesimal neighborhood
of the origin. This solution can be thought of as a singular (Dirac) monopole screened by
coincident and infinitesimally small smooth ('t Hooft-Polyakov) monopoles; the latter have
GNO charges labeled by coroots. It is natural to suppose that such solutions also exist on
S3: while at finite ¢ they are expected to receive 1/r corrections compared to the flat-space
case, in the ¢ — 0 limit, they should be exactly the same bubbling solutions as on R3.
Since the BPS equations require monopole solutions to be abelian away from the insertion
point, only when ¢ — 0 can new singular solutions arise. Since such a solution behaves as
an abelian Dirac monopole of charge v almost everywhere, it is convenient to factor out
Z(v; 0, B) computed in the previous subsection, and to say that the full contribution from

the “b — v” bubbling locus is given by
Zmono(b,v; 0, B)Z (v; 0, B), (3.42)

where Z,,0no characterizes the effect of monopole bubbling. To be precise, a monopole inser-
tion is defined by a sum over singular boundary conditions (3.19): therefore, the contribution

of the bubbling locus actually takes the form

Z z2 (b,v';0,B)Zy(v; 0, B) (3.43)

mono

b'ewWb
v EWv

where b and v are coweights representing magnetic charges, and we sum over their Weyl
orbits. We refer to the quantity Z2® (¥, v';0, B) as an “abelianized bubbling coefficient.”

mono

These coeflicients are expected to behave under Weyl reflections in the following way:

Z% (w-bw-v;w-o,w-B) =2 (bv;0,B), weW. (3.44)

mono mono
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Now we can write the complete answer for the hemisphere partition function:

(0,BlWy) = Z(bio, B)+ > > Ziw,(V,v50,B)Zo(v'; 0, B), (3.45)

mono

[v|<|b] B'EWD

v EWwD
where U, represents the state generated at the boundary of the hemisphere with a physical
monopole of charge b inserted at the tip. Here, the first sum runs over dominant coweights

v satisfying |v| < |b|, while the second sum runs over the corresponding Weyl orbits.

The localization approach to the computation of Zon0(b, v; 0, B) is quite technical [17, (18|
108, [19, 20]. We do not attempt a direct computation of Zyon,(b,v; 0, B) or Z22 (b, v; 0, B)

here. Instead, we describe a roundabout way to find them from the algebraic consistency of

our formalism.

3.3.4 Shift Operators for HS?

We now derive how insertions of local Q%-closed observables are represented by operators
acting on the hemisphere wavefunction, up to the so-far unknown bubbling coefficients. The
easiest ones are polynomials in ®(¢). We can think of them as entering the hemisphere either
through the North pole (¢, 6) = (0,7/2) or through the South pole (¢, 8) = (7, 7/2). Then
we simply substitute the solution into the definition of ®(y) either for 0 < ¢ < 7/2 or

for m/2 < p < m. We find that ®(¢p) is represented by the North and South pole operators

, .
Dus =~ (a + %B) € tc, (3.46)

where B should be thought of as measuring B € A) at the boundary 52
From the structure of the partition functions above, it is clear that the shift operators

representing insertions of nonabelian monopoles take the following form:

=Y My Y Zn W vio B)MY. (3.47)

b WD o] <|b| b'EWD
v’ €EWv
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Here, M? is an abelianized (non-Weyl-averaged) shift operator that represents the insertion
of a bare monopole singularity with coweight b, and whose definition ignores bubbling phe-
nomena. The inclusion of the Z2"  takes care of screening effects, and summing over Weyl
orbits corresponds to passing to cocharacters, i.e., true physical magnetic charges. The ex-
pression represents nothing other than the abelianization map proposed in [2I]: the
full nonabelian operator M? is written in terms of the abelianized monopoles M? acting on
wavefunctions (o, B) on t x A).

It remains to determine the expressions for M° acting on wavefunctions ¥ (o, B). Again,
there are separate sets of operators that implement insertions through the North and South

poles. These generate isomorphic algebras, and they are uniquely determined by the following

set of consistency conditions:

1. They should shift the magnetic flux at which ¥ (o, B) is supported by b € Ayj,.

2. They should commute with @ at the opposite pole, i.e., [M%, ®5] = [M5, ®n] = 0.
3. They should commute with another monopole at the opposite pole, i.e., [M%, M g’] = 0.
4. When acting on the vacuum wavefunction, the result should agree with (3.41)).
This set of conditions determines the North and South shift operators to be
[yer [% (5 +ire: (I)N/S)(ip'b)J ¢t (E300+05)

(—1)Fedy /.
aEA [ ,,|)a-b\/2 (ZTO‘ ' q)N/S)(ia.b)J

Mys = (3.48)

By counting powers of r—1, it follows that the dimension of a charge-b monopole is A, =

L (S perlp bl = Lacala-bl).
The shift operators satisfy an important multiplication property that allows one to gen-

erate monopoles of arbitrary charge from a few low-charge monopoles:

MY % M2 = Py, 4,(®) M3+ for dominant b; and by, (3.49)
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and similarly for the South pole operators, where P, ;,(®) is some polynomial in ®. We
use x to denote products as operators (in particular, shift operators act on the ®-dependent
prefactors in My g), emphasizing that they form an associative noncommutative algebra. In
fact, holds slightly more generally than for dominant weights: if A, is some choice
of positive roots, then holds whenever (b; - «)(be - @) > 0 for all @ € A,. The
property ensures that in the product of two physical bare monopoles, the highest-
charge monopole appears without denominators. If in addition, b; and by satisfy (b; - p)(bs -

p) > 0 for all matter weights p € R, then a stronger equality holds:
MY % MY = Myt (3.50)

Finally, for general b; and by, we have:

HpGR(_ip . <I>N)(P'bl)++(P-b2)+*(P'(b1+b2))+

MY« MY = M2 4 O(1)r). (3.51)

[T en(—ic - @y )leb)st(abz)p—(a(brtba)

These are precisely the abelian chiral ring relations of [2I]. Note that (3.35) immediately
implies (3.51)).

3.3.5 From S° x S! to S*

Our results for “unbubbled” partition functions can be derived by dimensionally reducing
supersymmetric indices of 4D N = 2 theories on S® x S'. The operators constructed from
() lift to supersymmetric Wilson loops wrapping the S*, while monopole operators lift to
supersymmetric 't Hooft loops on Sl.m For simplicity, let us first set the radius r of S to 1
and denote the circumference of S* by 3. To restore r, we simply send 5 — 3/r.

Since the one-loop determinant for hypermultiplets is known from [2], we concern our-
selves with determining the vector multiplet contribution. This can be done in a theory with

any conveniently chosen matter content. We can always choose the matter content in such a

10To preserve supersymmetry, the line defects that decorate the Schur index can only be inserted above
points along a great circle of 3 [I10} [I11]. While we will not do so here, one can explicitly construct the
map between line defects in the 4D Schur index and twisted CBOs on S® [2].
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way that both the 4D N = 2 and the 3D N = 4 theories are conformal. The corresponding

4D index is known as the Schur index. The Schur index [116] is defined as
Z(p) = Try, (-1 p" " (3.52)

where the trace is taken over the Hilbert space of the 4D theory on S® and R is the Cartan
generator of the su(2) R-symmetry, normalized so that the allowed charges are quantized in
half-integer units. In the path integral description, Z(p) evaluated when p = e=# is given by
an S% x S! partition function, with S* of circumference $ and with an R-symmetry twist
by €% as we go once around the S'. This S® x S! partition function is invariant under
all 4D superconformal generators that commute with £ — R, or in other words, that have
E = R. One can easily list these generators and check that they form an su(2|1) & su(2|1)
superalgebra. Thus the superconformal index is invariant under su(2|1) ®su(2[1). It is
also invariant under all continuous deformations of the superconformal theory: in particular,
it is independent of gyy and can be computed at weak coupling.

One can additionally insert an 't Hooft loop of GNO charge b (taken to be a dominant
coweight) wrapping S' at one pole of S* and the oppositely charged loop at the opposite
pole of S3. The result for this modified index in a general 4D N = 2 gauge theory, up to a
sign and ignoring the bubbling effect, is [10§]:

1 = dA; ia-h, 1ot i i
L) = gy / I 5 QEHA(l—e p'% )| PEIL(e™ )] PE[L(e™ p)). (3.53)

where PE is the plethystic exponential defined as PE[f(z)] = exp [ZOO f (In)], I, is the

n=1 n

contribution from the N' = 2 vector, and I}, is the contribution from the A/ = 2 hyper in the

representation R:

1411 p§+‘P—;"
L,(GZ/\l,p) - _9 Z eza.A’ ]h(emi’p) _ Z - (ezp-)\ + e—zp)\)‘ (3‘54)
acadj — P ver - P

83



Using the identity exp [— > n(%qn)] = (a;q) where (a;q) = [[,—,(1 — ag") is the ¢-

Pochhammer symbol, we can rewrite Z,(p) as

. a-b| i |ee-b|
70) (p; p)?r(@) /ﬂ P | Haea [(l_em e )(6 At ;p)z} (3.55)
b\P) = — o1 | | P : p .
Wyl ] 2m HPGR(eip.,\p%Jr\Tfl;p)<6_zp.,\p%+\7fl;p)

We would like to determine the 3D hemisphere partition function. We first reduce the index
to the S? partition function, and then we use the gluing formula to recover the
hemisphere partition function as the square root of the absolute value of the integrand. One
can then fix signs by consistency with gluing.

To dimensionally reduce , we take the f — 0 limit, where in addition to setting

p = e ?, we scale the integration variable accordingly:
A= pfo et (3.56)

The angular variable A (parametrizing the maximal torus T C G) then “opens up” into an

affine variable o € t. To take the limit, one needs the following identities [2]:

! 5 x—% L X : = 2—71-37%
p)  © B \/%F( JA+0(B),  (pip) =4/ 3 (1+0(8)), (3.57)
which give

o i=1 aEAT
5% 1+]p:b) 2
P
HpER MF< 2 L U)
2nr 2

X 5 (3.58)
g%
HaeA Vot

as 8 — 0. In (3.58)), we restored the radius r of S by dimensional analysis.
The exponential prefactor in (3.58)) is precisely the Cardy behavior of [117]. In the

integrand, we recognize the one-loop contribution of the hypermultiplet to the S® partition
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function,

2
1 L+ |p-b .

5 ,b|F< 5 —ip-oll , (3.59)
o2

multiplied by BIPTM The remaining factor in the integrand must be proportional to the

hyper o
Zl-loop, S3 (0) - H

PER

one-loop contribution of the vector multiplet to the S® partition function. Assuming that
the one-loop vector multiplet contribution comes multiplied by B (by analogy with the

hypermultiplet factor), we conclude that it is equal to

o-bl2
vec HaeA+ ((Oé ‘ 0-)2 + %>
Zl loop, SB( ) = R (360)

a-b .
[Toca —\/ﬂil%b‘r <1+ % —za-a)

The S? partition function is then given by the expression

rank(G)
vec hyper
% = doi | Z00p, 53(0) 2 00p, 53(0)- (3.61)
|Wb| P,

Note that using this method, the overall normalization of Z, is ambiguous, but we propose
that the correct expression is given by (3.61)). This expression passes the check that when

b =0, it reduces to the S partition function derived in [32], namely

[Tocas 4sinh®(ra - o)
Z = ; = . .62
A H ) Men2eoshinp o) 362

Now we use ((3.59) and to verify the hemisphere one-loop determinants given in ([3.39)
and . To do so, we use the gluing formula as well as the explicit expression
for the gluing measure in . It immediately follows that the hypermultiplet and vec-
tor multiplet contribute and to the hemisphere partition function, respectively.
The hypermultiplet contribution (3.39)) was previously determined by an explicit computa-
tion of the one-loop determinant on the hemisphere [2]. We have bypassed the analogous

computation for the nonabelian vector multiplet by means of the above argument.
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3.4 Dressing and Bubbling

We have derived the structure of bare monopoles, up to the bubbling coefficients. We now
extend this construction to dressed monopoles, focusing on the case of simple G.

If the dressing polynomial P(®) is G-invariant, then it is a valid Q“-closed observable on
its own. This makes the definition of the corresponding dressed monopole essentially trivial:
we simply “collide” two separate observables P(®) and M°", which within our formalism

means multiplying them as operators acting on the hemisphere wavefunction:
[P(®)M"] = P(d) x M". (3.63)

If P(®) is only invariant under a subgroup Gy, then P(®) does not make sense as a sepa-
rate observable. In the absence of bubbling, we would simply define the dressed monopole
[P(P)MP] = Wy 3" oy P(@¥)M™?, but the presence of bubbling makes such a simple

definition incomplete.

3.4.1 Primitive Monopoles

A general dressed monopole operator takes the form

[P(®)M"] = ! | > P@)M - (3.64)

’Wb wew

where the ellipses stand for bubbling contributions. We show that for fixed b, there exists a

set of primitive dressed monopoles that generate all others via star products.

Definition 1. Dressed monopoles [Py (®)M°], [P(P)MP], ..., [P,(P)M"] are called primi-
tive (of charge b) if they form a basis for the free module of dressed charge-b monopoles over

the ring of G-invariant polynomials. This means that by taking linear combinations

Z Qi(®)  [P(®)M”] (3.65)
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where the Q;(®) are G-invariant polynomials, we obtain dressed monopoles with all possible
leading terms of the form ([3.64)), and furthermore, that p is the minimum number that makes
this possible. We will always assume P;(®) = 1, so that the first primitive monopole is the

bare monopole itself.

Example. In SU(2) gauge theory, the Weyl group is Zs, which takes b — —b and & — —®.
A dressed monopole of charge b takes the form P(®)M® + P(—®)M~° + (bubbling). In this

case, there are only two primitive dressed monopoles for each b:
M = M+ M~" + (bubbling), [®MP) = &(M® — M~°) + (bubbling). (3.66)

Any other dressed monopole can be defined as

pamy] = 2O +2P<_q)) s @) ;(I)P(_q)) * [DM"). (3.67)

To describe primitive monopoles, it suffices to classify the Weyl-invariant leading terms

in (559,

Proposition 1. Let G be a simple Lie group, W its Weyl group, and b a dominant coweight
(a magnetic charge). Then there exists a set of primitive monopoles (of magnetic charge b)

[P (D) MP], [Po(P)MP], ... [Bp(P)MP], where p = W] is the size of the Weyl orbit of b.

Proof. Consider p°, a representation of W spanned as a C-linear space by the Weyl orbit of

the coweight b. We write it in terms of shift operators M™? w € W, as
p* = Spanc{M"“|w € W}. (3.68)

The Cartan subalgebra t, in which ® is valued, is an irreducible rank(G)-dimensional rep-
resentation of WW. But recall from the discussion after (3.20]) that w € W acts in opposite
ways on b and ®. Thus ® transforms in the dual representation t*, and the dressing factor

P(®) transforms in the algebra C[t] of polynomial functions on t. This implies that dressed
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monopoles are classified by the invariant subspace )Y inside the following WW-module:
Ry, = Clt] @ p. (3.69)
It is known [I18] that the structure of C[t] as a W-module is
Clt] = C[)"Y ®¢ C[W)] (3.70)
where C[WV] is the regular representation, realized on a W-invariant subspace of C[t]. Hence
Ry = Cl"” @c (CW] @c o). (3.71)

A C[t]V-basis of )" is a set of primitive dressed monopoles of magnetic charge b.
Since C[W)] contains each irreducible representation p; of W exactly dim(p;) times, we
have by Schur’s lemma that (C[W)] @¢ p;)" = C4m(). Upon decomposing p? into irreducible

components, this immediately gives
W o dim(ph)
(CW] & p') " = CmeD. (3.72)
Hence there are exactly dim(p®) = |[Wb| primitive dressed monopoles of charge b. O

We have now classified the leading terms in dressed monopoles. Such leading terms must
be extended by the appropriate bubbling contributions to give physical dressed monopoles.

We now turn to the study of these bubbling contributions.

3.4.2 Abelianized Monopole Bubbling

Suppose we have found a set of polynomials P, ..., Py such that the dressed monopoles
[P;(®)M°®] form the primitive set for a given magnetic charge b, in the sense explained in
the previous subsection. That is, [Wy|™' Y cpp Bi(®¥)M®™?P for i = 1,..., [Wb| form a basis
for R}V (the space of dressed charge-b monopoles) over C[t]"V (the algebra of gauge-invariant

polynomials in ®). We show that there exists a special bubbled and abelianized monopole
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shift operator M® = M+ ... such that

[Py(P)M”] = Z Py(D¥)M™?. (3.73)

| wEW
The left-hand side has the following structure: for each i,
[P(®) M W Z Py(9” M“’b+ — Z > v (@) M. (3.74)
wew |v\<\b\ wew
The V>~ are rational functions of ® € t¢ that encode the bubbling data. By combining
and , we obtain a system of linear equations for M wh e W:
S R(@)M =" B(@)MU + Y YT v M (3.75)
wew wew v|<[b] wEW
A solution exists because the matrix of coefficients P;(®") is nondegenerate.m
The solution to takes precisely the form (3.29). The Zi (®) are rational functions
of ® € t¢ that account for monopole bubbling. They do not have any invariance property
under the action of W. We may extend them to non-dominant b by postulating the following

transformation property:

Zzzbb—m) v(q)) Zl?iv(q)w% (376)

consistent with (3.44)). We refer to these functions as abelianized bubbling coefficients.

The expression for M™? can be obtained from the expression for M® by a Weyl reflection:

MU= MU+ Nz ()M = M YT 28, ()M (3.77)

vl <[] vl <[]

Having established the existence of abelianized and bubbled monopoles M b one can very

easily construct arbitrary dressed monopoles as in (3.28]).

"By construction, [Wy|™t >, oy Pi(@¥)M™? for i = 1,...,dim(p") form a basis over C[]"Y. This implies
that the rows of the matrix in question are linearly independent over Weyl-invariant polynomials C[t]"V, which
can be shown to imply linear dependence over rational functions C(t).
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3.4.3 The Abelianization Map

Before putting the notion of abelianized bubbling to work, let us comment on how it fits
into the context of previous studies.

One approach to understanding the geometry of the Coulomb branch of a 3D N = 4
theory was proposed in [21]. Let M2l C M denote the generic points on the Coulomb
branch where the gauge group G is broken to its maximal torus T. Using the fact that the
chiral ring is independent of gauge couplings, it was argued in [2I] that the abelianized chiral
ring C[M2°!] can be determined by integrating out the massive W-bosons at one loop, ig-
noring nonperturbative effects. This ring is generated by (VEVs of) dressed chiral monopole
operators of T, the complex scalars ®, (a =1,...,r), and the inverses of the W-boson com-
plex masses a(®) for all roots v € A. At points on M where a nonabelian subgroup of G
is restored, some a(®) — 0 and hence C[M2P°!] becomes ill-defined. Nonperturbative effects
cannot be ignored at such points.

These nonperturbative effects are encoded in the so-called abelianization map, which
expresses a chiral monopole operator M in the nonabelian theory as a linear combination
of monopole operators M in the low-energy abelian gauge theory, with coefficients being
meromorphic functions of the complex abelian vector multiplet scalars. In our notation, this
map takes precisely the form or, before Weyl-averaging, (3.29). The abelianization
map realizes C[M] as the subring of C[M2°!] generated by the operators on the RHS of
(3.47). To obtain C[M,], all we need are the abelianized bubbling coefficients Z2". These
bubbling coefficients ensure that C[M,] closes without needing to include «(®)~!, so that
it is well-defined everywhere on M.

The shift operators that we construct allow us to directly compute the OPE of chiral
monopole operators within a cohomological truncation of a given 3D N = 4 gauge theory.
As explained in the introduction, this OPE encodes information about the geometry of
the Coulomb branch beyond the chiral ring data. In particular, our shift operators give a

concrete realization of the abelianization map of [21], allowing us to determine the bubbling
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coefficients from the bottom up. In our approach, the bubbling coefficients so obtained can
further be used as input to calculate SCF'T correlators via the gluing formula of Section
[3.3.11

In fact, previous formulations of the abelianization map do not distinguish between
the abelianized bubbling coefficients Z*" and certain coarser, Weyl-averaged counterparts
thereof, denoted by Zono:

Zha (@)= D Zih (®) = M= > MY+ Y Zh ()M (3.78)
b EWD Y EWD vl<[b]
Even the Z,,,,, remain inaccessible to direct localization computations except in a few classes
of examples, namely G = U(N) with fundamental and adjoint hypermultiplets [I8], [108].
The fact that the previously considered Weyl-averaged bubbling coefficients Z,,n, can be
written in terms of the more basic Z2" is one of the key observations of our work, and the
computability of Z2P is one of our main results.

For a bare monopole, decomposing Z,ono into Z2* is merely a rewriting of the Weyl sum.
However, the refinement of bubbling by abelianized bubbling turns out to be crucial for con-
structing dressed monopoles. Given a bare monopole, its abelianized bubbling coefficients
allow us to construct all of its dressings in a way that guarantees closure of the star algebra.
As we discuss next, our claim is that the closure of this algebra, or “polynomiality,” deter-
mines Z2" uniquely up to operator mixing, in a sense to be made precise. By taking star
products of (dressed) monopoles whose bubbling coefficients are known, one can inductively

extract Zmono for all pairs of monopole charges (b, v) with v < b.

3.5 Bubbling from Polynomiality

The algebra of quantum Coulomb branch operators, A¢, consists of gauge-invariant poly-
nomials P(®) in the Q-closed variable ®(y¢) and dressed monopole operators [F'(®)M?].

The subleading (bubbling) terms in [F(®)M°"] can involve rational functions of ®, but the
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leading term must be built solely from the polynomial F'(®). This is the assumption of poly-
nomiality, which is motivated by the expectation that the VEVs of operators in A¢s should
be algebraic functions on the Coulomb branch.

If we neglect to include bubbling terms in the definition of [F(®)M?®], then polynomiality
in general fails: operator products of such observables produce denominators that do not
cancel. We conjecture that polynomiality fully determines the algebra A¢, up to the natural

ambiguity of operator mixing.

3.5.1 Mixing Ambiguity

In quantum field theories, an arbitrarily chosen basis of observables need not be diagonal
with respect to the two-point function, nor does it need to diagonalize the dilatation operator
in the case of a CFT. Observables can mix with others of the same dimension, and on curved
spaces, they can also mix with those of lower dimension, the difference being compensated
for by background fields. The mixing patterns often depend on short-distance ambiguities
that must be resolved in the end by diagonalizing the two-point function.

The presence of operator mixing implies that in our problem, it is natural to construct

Ac modulo r-dependent basis changes of the form

OO0+ Y Lo, (3.79)

o
|0n[<|O]
where O,, has dimension Ap — n (other quantum numbers, if present, should be preserved
by such transformations). We have further imposed the condition |O,,| < |O] that the GNO
charge b of O “can bubble” into the GNO charge v of O,, meaning that |v| < |b| and
that v belongs to the “G-representation of highest weight b. This is because we wish to
think of the leading term of a dressed monopole [P(®)M?"] as canonically defined, and the

subleading (bubbling) terms as possibly ambiguous. One might recognize redefinitions of
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the form (3.79)), without the restriction |0, | < |O|, as typical “gauge” transformations in
deformation quantization [13].

We refer to as the mixing ambiguity in the definition of dressed monopoles. Such
shifts significantly alter the bubbling coefficients V?~¥(®) appearing in [P(®)M?]: they can
be shifted by polynomials or by multiples of other bubbling terms, which translates into
complicated rational ambiguities of the abelianized bubbling coefficients Z° (®). We argue

that Ac is uniquely determined by polynomiality up to mixing ambiguities of the form (3.79)).

3.5.2 Minuscule Monopoles

The simplest case is that in which the algebra A is generated by monopole operators in
minuscule representations of “G. Such monopoles cannot bubble because for minuscule
coweights b, there are no v such that |v| < |b| and b — v is a coroot. For such monopoles, we
have simply

[P(®IM"] = ﬁ > P(@")M™?. (3.80)

wEW

Higher-charge monopole operators might contain bubbling terms, but they are easily deter-
mined by taking products of lower-charge monopoles. Such cases were previously addressed
in the literature using different methods, and essentially comprise the main examples in [21]
because abelianization has a simpler structure in these cases.

Theories with minuscule generators include those with gauge group PSU(N), whose
Langlands dual is SU(N): the fundamental weights of SU(V) are minuscule and thus cannot
bubble. Another example is U (V) gauge theory, since U(N) is self-dual and its fundamental
weights are also minuscule.

We now discuss the more interesting theories with no minuscule generators, limiting

ourselves to the case of lowest rank (the strategy is similar for general gauge groups).
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3.5.3 Rank-One Theories

The only rank-one gauge theory with no minuscule generators is SU(2) gauge theory. The
dual group is SO(3), so the lowest monopole operator corresponds to the vector representa-
tion of SO(3). In a normalization where the weights of SU(2) are half-integers and products
of weights with monopole charges (cocharacters, or dominant coweights) are integers, the
minimal monopole has b = 2. It can bubble to the identity, because 0 < |b| and b — 0 is a

root. The abelianized monopole operator takes the form

M? = M* + Z(®) (3.81)

with a single abelianized bubbling term, a function Z(®). Knowledge of Z(®) allows one to
construct arbitrary dressed monopole operators of charge 2, and ultimately, by taking star
products of the latter, monopoles of arbitrary charge.
The dressed monopole is constructed as
[P(®)M?] = P(®)M? + P(—D)M 2

= P(®)M?* + P(—®)M > + P(®)Z(®) + P(—®)Z(—9P). (3.82)
Clearly, the primitive dressed monopoles in this case are

M? = M>+ M~ + Z(®) + Z(—9),

[DM?] = D(M? — M%)+ ®(Z(®) — Z(—d)). (3.83)

Using (3.30), we compute the following star products of these primitive monopoles with the

Weyl-invariant polynomial ®:

_/\/12*@2: (CI)——) MQ
T

[DM?] % D? = (cb - §)2 DM*| + ;Al(dﬂ), (3.84)
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where we have defined

L A(®7) = 5(2(2) + Z(-9)) + T R(2(®) - Z(~®)) € T[],
LA(®7) = 0(Z(B) - Z(~9) + 9(Z(0) + Z(~) €CH, (3.85)

which are necessarily Weyl-invariant polynomials in ® € su(2) by the polynomiality condi-
tion. Recall that the operator mixing ambiguity allows one to shift the bubbling coefficients
Z(®)+ Z(—®) and ®(Z(®) — Z(—P)) by arbitrary Weyl-invariant polynomials whose de-
grees are fixed by dimensional analysis. Using the freedom to shift ®(Z(®) — Z(—®)), we
can eliminate Ag(®?). We can then solve for Z(®):

iA,(D?)

Z(®) = S

(3.86)

We still have the freedom to shift Z(®) + Z(—®) by a Weyl-invariant polynomial in a way
that preserves X(Z(®) + Z(—®)) + i®(Z(P) — Z(—P)) (because we have fixed the latter

expression by demanding Ay = 0). This gives one the freedom to shift Z(®) by

P41
— r @2 )
V(@) (3.87)

AZ(D)

with V(®?) an arbitrary Weyl-invariant polynomial. Adding this ambiguity to (3.86) gives

—iA;(D?) + 4(P% + L)V (9?)
8P (P — 1) '

Z(®) = (3.88)

For any A;(®?), there exists a unique V(®?) such that the numerator does not depend on

® € su(2). Therefore, by completely fixing the mixing ambiguity, we find that
Z(P) = ———. (3.89)

The value of the dimensionful constant ¢ depends on the matter content of the theory. To

fix it, we demand that the expression

M2 [ M) — [(® — 2i /1) M?] % M? (3.90)
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satisfy the polynomiality constraint. For simplicity, we take the theory to have Ny funda-

mental and N, adjoint hypermultiplets, so that a charge-b monopole has dimension
b
A, = |2_’Nf + |b|(N, — 1). (3.91)

A straightforward computation with shift operators shows that (3.90) evaluates to

8ic2rs 1 /i @\ g Wa /4 2Na
o [ — 4P — 4+ ® b D). (3.92
(1 +r292)2 * [2(13 (27’ * 2) <2r * ) (27’ i ) * ) (3.92)

If Ny > 1, then the second term on the right is a Weyl-invariant polynomial and the only
non-polynomial piece is %, implying that only ¢ = 0 is consistent with polynomiality.

However, if Ny = 0, then one finds that the poles at ® = 4i/r vanish when
= (2r) e = c=+£(2r) 2N, (3.93)

The sign of ¢ remains undetermined, and indeed, a choice of sign is simply a choice of basis

for the algebra Ac. We find it convenient to fix the sign so that
c = (—d4r?) e, (3.94)

This value of ¢ agrees with that for SO(3) gauge theory with adjoint matter, which admits
the minuscule monopole M! and in which we can define M? = M! x« M! and [PM?] =
[®M!] x M. Alternatively, we can obtain SU(N) gauge theory by gauging the topological
U(1) symmetry of a U(N) theory with the same matter content, whose minuscule monopoles
and their dressed versions do not bubble. Proceeding along these lines gives the same value
for c as in ((3.94).

To summarize, we find that the bubbling coefficient in SU(2) gauge theory with funda-
mental and adjoint matter, up to the operator mixing ambiguity, takes the form

0 if Nf > 0,
Z(®) = (3.95)

(car?) N on
w if Nf = 0,
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which determines M2 = M? + Z(®).

3.6 Application: SU(2) SQCD

Let us apply the results of the previous section in some simple examples involving SU(2)

gauge theory with matter.

3.6.1 (Quantized) Chiral Rings

To see how our formalism can be used to derive the chiral ring relations obeyed by Coulomb
branch operators as well as their quantizations, consider again the example of SU(2) gauge
theory with N, fundamental and NN, adjoint hypermultiplets (the following discussion gener-
alizes easily to arbitrary matter content [I19]). We restrict to the case Ny > 0. In this case,
we showed in Section [3.5.3|that the abelianized bubbling coefficient Z3%,(®) is a polynomial.
Hence, up to operator mixing, we can set all bubbling coefficients to zero.

The Coulomb branch chiral ring is generated by the two primitive monopoles of minimal
charge b = 2, as well as the Casimir operator ®* (since the Cartan is one-dimensional, we

regard ¢ as a complex number). We write them as
U=2N"YM*+ M2, V=2l oM - M), W = o2 (3.96)

where Ay = Ny +2N, —2, Ay = Ny +2N, — 1, and Ay = 2. Using the corresponding shift
operators obtained from (3.30]), we find that

2
VAU W U = POW) + UV, (3.97)

where all products are understood to be star products and P(W) is a polynomial in W:

2Ng

(2) (W) () (9 2)
2VW

PW) = + (i —i). (3.98)
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To leading order in 1/r, we reproduce
V2 UPW = Wl (3.99)

which is the defining equation of a Dy, oy, singularity ((3.99) could have been obtained
directly using the commutative limit of shift operators). When N+ 2N, > 2, the theory is
good and the Coulomb branch is a hyperkahler cone. The generators (3.96) also satisfy the

relations

4 4 4 2
—Uu, YW, = Wl = 3V, U, V], = —;zﬁ +Q(W), (3.100)

r2

4
UW], ==V —
r

where Q(W) is a polynomial in W given by

2Ng

i) (v ) (v )]

We see that (3.97) and (3.100) do not depend only on the combination N; + 2N, that

QW)

+ (i o —i). (3.101)

determines the Coulomb branch, so the theories under consideration provide examples of
different quantizations of the same chiral ring. Note, however, that the 1/r terms in (3.100)),
like the chiral ring relation (3.99)), do depend only on Ny + 2N,: thus the Poisson structure

on Dy, 1an, is the same for all of the distinct quantizations.

3.6.2 Correlation Functions and Mirror Symmetry

Our shift operator formalism also makes correlation functions of twisted CBOs eminently
computable, and therefore allows for refined tests of 3D mirror symmetry [120, 121, 122].
3D mirror symmetry is an IR duality of A/ = 4 theories that exchanges the Higgs and
Coulomb branches of dual pairs [I20]. The duality is nontrivial for several reasons: while
the Higgs branch is protected by a non-renormalization theorem and can be fixed classically
from the UV Lagrangian [30], the Coulomb branch receives quantum corrections; the duality
exchanges order operators and disorder operators; and nonabelian flavor symmetries visible

in one theory may be accidental in the dual. At the same time, N' = 4 supersymmetry
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allows for calculations of protected observables that led to the discovery of the duality and
to various tests thereof, such as the match between the IR metrics of the Coulomb and Higgs
branches [122], scaling dimensions of monopole operators [84], various curved-space partition
functions [123, [124] [51], expectation values of loop operators [53 [54], and the Hilbert series
[125].

Consider the following simple example, again involving SU(2) SQCD. It is known that
SU(2) SQCD with Ny = 3 is dual to U(1) SQED with Ny = 4, because both theories are
mirror dual to the U(1)* necklace quiver gauge theoryH Their Coulomb branch is given by
C?/Z,: it has three holomorphic generators X', )V, and Z subject to the chiral ring relation
XY = Z* The generators have dimensions Az = 1 and Ay = Ay = 2. Let us identify X,
Y, and Z in the SQCD theory.

As before, we work in conventions where B € 27Z. To compute correlation functions, we

use that the vacuum wavefunction (3.32) is

LD (e)r(He))? sinh(mo /2
Yol2, B) = 950 ;12(1( —2icr))1“((12+ )i]cr) = 0n03, coslflz(ﬂ/a ;2) (3.102)
and that the gluing measure is
(o, B) = % (02 + B{) : (3.103)
Using |[W)| = 2, this gives the S® partition function
7 = 1/da (o, 0)¥o(a,0)* = L, (3.104)
2 12772

in agreement with the S* partition function of the four-node quiver theory and SQED with
four flavors [2].

The Coulomb branch chiral ring operators are gauge-invariant products of ® and GNO
monopoles with b € 2Z. The smallest-dimension such operator is the monopole M?2. This

operator has A = 1, so it should correspond to Z in the four-node quiver theory. Matching

12Tndeed, these are two of the simplest mirror symmetries of ADE type [120]: D3 = Aj.
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Z . . 1 <i

There are three operators with A = 2: M? « M?, tr & (represented by 55 (0 + iB/2)? in
the North picture), and the dressed monopole ®M?. Clearly, M?x M? = (47)2Zx Z, so we

expect to obtain X and ) as linear combinations of tr ®* and ®M?2. We find that

X = 6417T2 (tr ®? — 4AM? 5 M? — 2—7102 + 2i (<I>/\/l2 - ;MQ)) : (3.106)
V= 612 (tr P2 — 4AM? « M? — % — 24 (@/\/P — %QW)) (3.107)
obey the following relations:
X 2= X D E———y  Xxy- (z + i)4. (3.108)
4dmr 4dmr 8mr ),

These are precisely the relations obeyed in the four-node quiver theory. In addition, one can
check that (X) = (Y) = (Z) = 0, just as in the four-node quiver theory. The last relation
in (3.108)) shows that the Coulomb branch is indeed C?/Z;.

3.7 Application: Abelian Mirror Symmetry

At a formal level, 3D mirror symmetry for abelian gauge theories was derived in [126], and a
concrete map between the operators of a given such theory and its mirror dual can be found,
e.g., in [2I]. Our construction allows us to go beyond the operator map and show that the
correlation functions, or equivalently the star product, match precisely across the duality.
Here, we outline a strategy for matching all twisted HBO/CBO correlators in arbitrary
abelian mirror pairs, amounting to a proof of abelian 3D mirror symmetry at the level of two-
and three-point functions of half-BPS local operators. Throughout this section, we leave all

correlators unnormalized (i.e., we omit an overall factor of 1/7) and set r = 1.
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Any abelian 3D N = 4 gauge theory consisting of only ordinary or twisted multiplets
has a known abelian mirror dual: therefore, the 1D topological theory for twisted HBOs in
such a theory gives a completely general prescription for computing correlators of twisted
CBOs in its mirror dual. On the other hand, shift operators provide a completely general
prescription for computing correlators of twisted CBOs in any such theory directly. To show

that these two prescriptions give identical results for all correlators consists of two steps:

1. Prove this statement for the fundamental abelian mirror symmetry: namely, an arbitrary
twisted HBO correlator in the free massive hyper is equal to the corresponding twisted

CBO correlator in SQED; with matching FI parameter.

2. Show how to obtain twisted CBO correlators in a general abelian theory from those of the
free hyper/SQED;, namely as sums of products of two-point functions, integrated over

appropriate subsets of mass/FI parametersF_g]

We carry out the first step in Section by proving that all twisted correlators match
across the basic duality between a free hyper with mass m and SQED; with FI parameter
m. An illustration of the second step can be found in Appendix F of [2], which contains
a proof that all twisted CBO correlators in SQED y match the corresponding twisted HBO
correlators in the N-node abelian necklace quiver (in this case, the map between CBOs and
HBOs is very simple, and we derive explicit formulas for all correlators). In principle, our
arguments can be extended to match correlators of twisted HBOs and CBOs in arbitrary

abelian mirror pairs.

3.7.1 Mass and FI Parameters

Before diving into calculations, we first review how the shift operator prescription works in
the presence of mass and FI deformations, which we have so far set to zero. Real masses

modify the vacuum wavefunctions, the gluing measure, and the multiplicative factors in the

13All abelian mirror pairs can be deduced from the fundamental one by gauging global symmetries [126]
(see also [127]).
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monopole shift operators via 0 — o+m. On the other hand, FI parameters modify the gluing
measure by a factor of e 8™ %7 for each U (1) factor in the gauge group. Moreover, in the
non-conformal case, correlators take the form of topological correlators dressed with simple
position-dependent factors. The latter are fixed by symmetry (see and (3.16)), and
the shift operator prescription allows us to compute the topological parts, which we denote
by ()top- In particular, mass (FI) parameters leave the topological nature of CBO (HBO)
correlators unchanged while making HBO (CBO) correlators non-topological. For an n-point
function of twisted Higgs/Coulomb branch operators, each global (flavor/topological) U(1)
symmetry contributes a factor of e~¢2i=1%¢i where ¢; is the charge of the i operator in the

correlation function and ( is the associated mass/FI parameter.ﬁ

3.7.2 Example: Abelian A-Series

Let us illustrate how these rules work in one of the simplest examples of mirror symmetry,
namely the duality between SQEDy and the abelian necklace (affine Ay_;) quiver gauge
theory with gauge group U(1)"/U(1) [120]. The latter theory has N U(1) gauge nodes, N
bifundamental hypermultiplets, and no matter charged under the diagonal U(1). Each of
these theories has a Higgs branch that is mapped to the Coulomb branch of the other. We
focus on the map between the Higgs branch of the N-node quiver theory and the Coulomb
branch of SQEDy. Namely, we match the three-point function of a monopole X9, anti-
monopole Y7 and (composite) product of twisted scalars (Z?), in SQEDy to its mirror.
This correlator will be a useful base case in the arguments to follow.

To set up the notation, note that the partition functions of the two theories can be seen
to agree as follows. For SQEDy (whose hemisphere wavefunctions W(e, B) are functions of

o € Rand B € Z), we have

o O
[2 cosh(mr)]N 2N/ml (%)

14Gtrictly speaking, our conventions require an extra factor in the map between mass and FI parameters:
m > —4n(.

(3.109)
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On the necklace quiver side, we have

Z = /d,u(a) :/ (1;[1 da]) 5 (%;O—J Zs, (3.110)

N

N N 1
Zy = / (E DQ); DQj) exp (47T7“/d90;Qj(8s0 + UJ'—LJ')QJ) - H 2 cosh( ’

P TOj-14)

where 0;_11 = 0,1 — 0; and 0y = on. To evaluate this integral, we appeal to the following

trick. If Fj(o) are arbitrary functions whose Fourier transforms F () are defined by

Fi(o) = /dT 6_2”iUTE(T), Fi(r) = /da e Fi(0), (3.111)

then the following cyclic convolution identity holds:

/ (HdO'j> ) (%ZO&) HF]‘(O']‘_L]‘) = /dT HE(T) (3112)
Using with
1 ~ 1
Filo) = 2 cosh(7o)’ Fi(r) = 2 cosh(wT) (3.113)

for all 7 shows that (3.110)) is precisely equal to (3.109)).
We denote by X', ), Z both the generators of the Higgs branch chiral ring of the N-node

quiver theory and those of the Coulomb branch chiral ring of SQED y, to emphasize that their
correlation functions match. These operators satisfy X+) = Z¥ +O(1/r), corresponding to
a quantization of the C?/Zy singularity. Having mapped the chiral ring generators between

the two theories, one can construct the mapping of composite operators using the OPE.

Masses in SQED y /FI Parameters in N-Node Quiver

FI parameters in the abelian necklace quiver correspond to real masses for the Cartan of the

SU(N) flavor symmetry in SQEDy. For massive SQEDy, we use

N T(1/2+i(o +my)) Bo(o. B) _6Boﬂr(1/2—i(a+m]))

o) = v a B =ie s mn) 11 NGT ’

(3.114)

I=1
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with the mass parameters m; satisfying Z?Ll my; = 0. We take the Coulomb branch chiral

ring generators to be

1 1
= CTrMy Y=

1
(—4m)N/2

-1 zzicb. 3.115
M, g (3.115)

The corresponding North shift operators (appropriately modified by m;) are

My =

N .
B-1 ; ; B
1T (T —i(o + ml))] e 2079 M =290 dy =0+ % (3.116)

I=1

Using (3.115)) and (3.116)), we compute that for ¢ > gy > 3,

» . . [ do(io)? al [ ,(i(c+my) — £+ 1/2)
((27). ()X (22) V" (i25)) = / <47T>qN+p£[1[ e tm) —ts } (3.117)

in SQEDy. On the necklace quiver side, we write the N FI parameters (of which N — 1 are
independent) as (; = w;—1 — w; subject to the condition »_;w; = 0. We now define

X=QiQn, Y=0Qi-Qun, (2").=]](QiQ;+iw), (3.118)

j=1
assuming for simplicity that p < N. The definition of (2P), is the natural one from the
point of view of the D-term relations (the parameters w; resolve the geometry of the Higgs

branch). The integration measure in (3.110) is modified as

87r Wj0j i1

H - 2cosh(moy 1)’

(3.119)

while the 1D propagator (3.25)) (which is sensitive to mass parameters) remains unchanged.

Counting Wick contractions carefully yields the basic three-point function

(27).(00) X9 (02) V" (i23)) = (@) / a(05) T Gy (920)"
, =P (3.120)
X H(Gaa,a+1 (O)Ggu,a+1 (9023) + qGUa,aJrl (@21)G0a,u+1 ((1013>>G0'a,a+1 (9023>q71'
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Assuming that @1 > @9 > 3, we may use (3.112), the identity

(sgn o1 + tanh(ro) )™ - L [H <(23 —1)sgn i — 1d )] ;7 (3.121)

2 cosh(mo) m! |4 wdo ) | 2cosh(mo)
J=1

27'r7,o'7'

integration by parts, and m = [dr 35— 2cosh(w) to simplify (3.120)) to

dr (i7)" ﬂ[ i —dmon =g+ 1))

<(Zp)*<301>Xq(902)yq(903)> = / (47r)qN+p 2008h(7T(7‘—47Tw[))

This matches the SQEDy result if we identify m; <> —4nwwy.

FI Parameters in SQEDy/Masses in N-Node Quiver

Mass parameters in the abelian necklace quiver correspond to FI parameters in SQEDy.
Consider adding a real mass associated to the U(1) flavor symmetry of the necklace quiver
under which Q;, Q; carry charge +1 /N. In practice, this means replacing all instances of
0;i+1 by 0j 11 +m/N in the 1D theory computations. Using the identity

/(Hd@) 5 (%ZUJ HF]-(O—]-,J-+1 +m/N) = /dm%WHﬁj(T), (3.123)

which is the appropriate modification of (3.112]), we obtain (with @1 > ws > ¢3)

dr e27rim7' (

((ZP).(01) X (02) YV (93) ) top = / (dm) ™7 2 cosh(xr))¥ H it—j+1/2)%. (3.124)

This matches the expression

—\Pdo eQmma

((Z27):(01) X (02) V*(3) ) top :/( (247{-)(]1\74‘1’ (0, 0)Wo(a, 0)[My MOV (0, B)]|p=0
(3.125)

on the SQEDy side.

3.7.3 Proof: Basic Mirror Duality

With this warmup complete, we now match all twisted correlators in SQED; with FI param-

eter ¢ and a free hyper of mass m = —4n(. In the free hyper theory, correlation functions
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of X =0Q,Y =0, Z=QQ are computed using the measure

do d(o)
d = 3.126
o) 2 cosh(mm)’ ( )
and Wick contractions are performed using the o-independent Green’s function
~ sgn 1o + tanh(mm) s
Glp12) = (Qe1)Q(2)) = — e : (3.127)

8

Correlators are no longer topological due to the factor of e™"%12.
In matching all correlators, let us focus only on the topological parts (as the position-

dependent parts match trivially). We wish to show that

!

<S>t0p, SQED1 = <S>top, free hyper (3128)

where S is some operator string in X', ), Z and operators appearing in correlation functions
are understood to be in descending order by insertion point (i.e., p; > -+ > ¢,). Shift

operators in SQED; with FI parameter ¢ give

n

(O Oy o, = /da 6*8”2“"#(0, 0)Wo(a,0)[(On)5F -+ (01 ¥o(0, B)]|s=0  (3.129)

where O; € {X,Y, Z} and

B—-1 e~ 39, —08 e20-+ 08 i iB
Xn=|—7—10| —5 =——7", 2ZN=-— — . 3.130

Here, the notation Z? is understood to mean p adjacent insertions of Z at separated points,

which is equivalent to a single insertion of the composite operator (Z?),. On the other hand,

the 1D theory for the free hyper with mass m gives

—2miTo
PL .. (MPn —_ 2mimT € PL . (M)Pn 131
(OPL ... O, o / dre / 10 ooy (OF - O) (3.131)

where w(s) denotes the sum of all full Wick contractions of the operator string s and Wick

contractions are performed using the “topological” propagators

_ £1 + tanh(no) oo tanh(mo)

G — —
* 8 ’ 0 8

(3.132)
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We proceed by induction. In the previous subsection, we established the base case
<Zquyq>top, SQED; — <Zquyq>t0p7 free hyper- (3133)

Now fix some S and suppose we have established that (S)iop, sqED; = (S)top, free hyper, as well
as a similar statement for all operator strings containing fewer operators than S. Consider
swapping two adjacent operators in S to form a new operator string §’. Starting from the
basic string ZPX?)4, one can obtain any other string by performing three types of swaps

(below, let Sp g denote substrings of S):

1. Let S = St XYSg, S’ = SLYX Sk, and Sy = S Sk.
2. Let S=S8.ZXSg, S’ = S X ZSR, and Sy = S X Sp.
3. Let S = S, 2YSk, ' = SLYZSR, and Sy = SV Sk.

In all three cases, the Wick contractions of the strings so defined are related in a simple way,

implying relations between the corresponding correlators in the free hyper theory:
L w(8) = w(8) + (G — G )uw(Ss) = w(S) + £w(Sy) = (Vo = (Sho + 1= (Soer-
2. w(S") = w(8) + (G4 — G )w(So) = w(S) — £w(So) = (S)op = (Shtop — 77 (S0)top-
3. Same as in case (1).

On the other hand, the shift operators (3.130)) for SQED; satisfy the commutation relations

1 1 1
[Xn, Yn] = o (XN, Zn] = EXNa YN, Zn] = —Eij, (3.134)

implying that the correlators in SQED; satisfy identical relations in the three cases:
L (8 top = (S)top + 1= (S0)top-

2. (8 top = (S)top — 75 (S0} top-

3. Same as in case (1).
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By the induction hypothesis, (S)top and (Sp)top both match in SQED; and the free hyper,

which immediately implies that (S)iop, sqED; = (S”)top, free hyper, as desired.

3.8 Summary

We have presented a shift operator formalism that allows for the computation of correlation
functions of Coulomb branch operators in good and ugly 3D N = 4 gauge theories. Such
correlation functions can be used to derive how Higgs and Coulomb branch operators map
across 3D mirror symmetry. Using our formalism, we are able to derive the precise normal-
ization factors in the mirror map and to distinguish operators that could mix on the basis
of symmetries.

At a structural level, our formalism provides an alternative route to the abelianization
description of the Coulomb branch and clarifies the meaning of the “abelianization map” [21].
Our approach further provides an algebraic way to determine previously unknown monopole
bubbling coefficients, based on symmetries and algebraic consistency of the OPE. It avoids
the technicalities of previous analytic bubbling computations [17], 18] 19, 20].

Finally, shift operators provide a powerful way to compute the Coulomb branch chiral
rings of 3D N = 4 gauge theories as well as their quantizations. When the moduli space is a
hyperkahler cone, previously known techniques for extracting generators and ring relations
— such as the Hilbert series [125, [128], abelianization |21} 129], and the type IIB realization
[130] of 3D mirror symmetry [I31] — work well. In other situations, such as in bad theories,
the chiral ring has not been as thoroughly studied. We expect such theories to present good

opportunities for applications of our formalism.
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Chapter 4

Conclusion and Outlook

We conclude by mentioning some possible extensions of the work described here.

4.1 Knot Polynomials from Matrix Models

As observed in Appendix E of [I], 3D N = 2 supersymmetry provides an efficient analytic
(as opposed to surgery-based) method to compute certain knot polynomials. However, this
approach is restricted to very special classes of links, such as Hopf links and torus links in
S3 (depending on the Seifert fibration that one chooses).

On the other hand, 3D N = 4 supersymmetry allows for the construction of 1/4-BPS
Wilson loops supported on arbitrary curves in R? by appropriate twisting [132]. It should
also be possible to construct such loops on S3, preserving two supercharges. Thus it may
be possible to derive a matrix model for expectation values of 1/4-BPS Wilson loops of
arbitrary shape in 3D N = 4 theories on S®. In the case of A" = 4 Chern-Simons theory,
such a matrix model would compute knot polynomials of arbitrary links.

The major caveat with this approach is that such loops may have a more complicated
localization locus than in the 1/2-BPS case. Indeed, they may not localize to simple matrix

integrals.
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4.2 Complete Solution of 1D Topological Sectors

Aside from further applications of the TQM techniques in [14, 2 B] to 3D N = 4 gauge
theoriesﬂ a number of structural questions present interesting avenues for future work. For
one, it would be interesting to determine the relation between the monopole bubbling terms
obtained using our method and those obtained by dimensional reduction of 4D results [I8].
While preliminary comparisons performed in [3] found that the two agree up to operator
mixing and normalization factors, a more systematic understanding is needed.

But perhaps the most outstanding open problem from [2} 3] is to extend our construction
to N = 4 gauge theories with Chern-Simons couplings, such as those of Gaiotto-Witten [98],
ABJ(M) [133| [134], and others [I35, 136]. Such theories contain both ordinary and twisted
hypermultiplets and vector multiplets. One class of examples for which the generalization is
straightforward is that of abelian gauge theories with BF couplings [137]: see [2].

A potential outcome of a solution to this problem — or perhaps even a solution strategy
— is the formulation of a unified algebraic treatment of the Higgs and Coulomb branch
topological sectors. For abelian theories, some hints as to this additional structure come
from the fact that one can use an integral transform (which in the rank-one case, takes
the form of a Fourier-Mellin transform [107]) to translate between shift operators for the
Coulomb branch and shift operators for the Higgs branch. One might speculate that such a

“mirror transform” generalizes to nonabelian theories with the aid of harmonic analysis.

IFor example, see [119] for precision studies of nonabelian ADE mirror symmetry along these lines.
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Appendix A

Conventions

Al 1D N =2

We work in Lorentzia 1D N = 2 superspace with coordinates (¢,6,0") and let ¢ be a
complex spinor parameter. The representations of the supercharges as differential operators

on superspace and the supercovariant derivatives are

Q=0y+i070,,  Qf =9, +i60,, (A1)

D=0y —i0'0,,  D'= 0y —if0,. (A.2)
The nonvanishing anticommutators are
{Q,0" = —{D, D'} = 2id,. (A.3)
A general superfield takes the form
2(t,0) = o(t) + 0p(t) + 0T (t) + 66T F(t), (A4)
with SUSY acting as 0= = (EQ + (—:T@T)E. The vector multiplet satisfies

V=V = V(t,0) = o(t) + 0(t) — 01T (t) + 00T F(t). (A.5)

1To Euclideanize the following, take 7 = it and iS = —Sg.
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The SUSY transformations of its components are
(60,00, 6F) = (et — €07, —ie'§ + €' F, —ie) — i), (A.6)
The chiral multiplet satisfies
DI® =0 = ®(t,0) = o(t) + Oap(t) — 001 (1) (A7)
The SUSY transformations of its components are

(66, 01)) = (e, —2iet ). (A.8)

To integrate over superspace, we use d*6 = df'dd.

The 1D SUSY’ transformations are derived as follows. In Wess-Zumino gauge, we have
Vwz = 00TF, which transforms under SUSY to V' = V|wz + 6V |wz. To preserve Wess-
Zumino gauge, we choose the compensatory super gauge transformation parameter ® = A

such that 0V |wz + 3 (@ + @) is O(667):
2V ® 2v’ ot

V' 5 e®e?e — V' = Vl]wz, (A.9)

which means that ¢’ acts trivially on the vector multiplet. For the chiral multiplet, only the

transformation rule for v is modified by taking dy — Dy:

(6'p,8") = (e, —2i€' Dyo), (A.10)

where the gauge field appearing in Dy is the single nonzero component of V|wz.

A2 3D N =2

We raise and lower spinor indices on the left by €*¥ = —e.5 (¢!2 = 1), with ¢y = €*1h, x5

(as in [I38]). This convention requires that we distinguish matrix multiplication (“-”) from
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spinor contraction (no symbol), which differ by a sign: 7% = —° - §E| By default, our
spinors are anticommuting; the notation “|o” applied to a Grassmann-odd spinor denotes its
Grassmann-even version. Spinors that would be conjugate (e.g., A, \) in Lorentzian signature
are independent in Euclidean signature (e.g., A, 5\) In Lorentzian signature, as in 1D, we
use o*,Z, 2! interchangeably to denote the complex conjugate of z. In Euclidean signature,
we use bars and stars interchangeably to denote complex conjugation, while daggers denote
Hermitian conjugation: (1) = (¢4)*.

In RY? (with signature —++), the 3D gamma matrices are

(=) ag = (=1,0",0%)ag, 50‘57%7%6 =" ey — €7 (Vo) s (A.11)

With lowered indices, these matrices are real and symmetric, so that v is real. We take

12— 1. The 3D N = 2 algebra is

{Qa, Qs = 2955 Pu + 2ieapZ, {Qa,Qs} = 0. (A.12)

The representations of the supercharges as differential operators on superspace and the

supercovariant derivatives are

0 - 0
Qa aga Z’yaﬁe a,LU Qa = _W + 1967,8048#7 <A13)
D, = 200 + 75 0°0,, D, = _8% - 26’67@8 (A.14)

We abbreviate 9, = 0/90%, 95 = 8/06” and define [ d*06%0*> = 1.

The SUSY transformations of the 3D A = 2 vector and chiral multiplets and
follow from applying §¢ = £Q — £Q to the corresponding superfields. The 3D SUSY’
transformations are derived as follows. Under SUSY, V|wz transforms into V' = V|wz +
6V |wz. To preserve Wess-Zumino gauge, we choose A such that 0V |wz + (A + A) is O(60)

and set the lowest component of A to zero. With these choices, and to first order in &, £, the

2We also sometimes use “” to denote multiplication in the appropriate representation of the gauge group:
for example, [D,,, D,](--+) = —iF,, - (---).
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’ /
2V A2V 6A

super gauge transformation e*¥ — ee truncates to
! !/ ]' A 1 !/ A
ViV —|—§(A—|—A)+§[V,A—A], <A15)

from which we read off (2.99)). SUSY” also modifies the chiral multiplet transformation laws
by terms involving vector multiplet fields, so that ® + §® — e=*(® + §®) and & + 6O —
(® 4 6®)e™, from which (2.100) follows.
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