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Abstract We study the tidal forces and their effect in
Schwarzschild black hole surrounded with clouds of strings
and quintessence. Two horizons are present for this black
hole and the event horizon shrinks on increasing the values
of both, the string cloud and quintessence parameters. Tidal
forces in radial as well as angular directions are independent
of string cloud parameter a. Geodesic deviation equations are
devised and solved for this BH metric. For numerical repre-
sentation of the solutions of geodesic deviation equations
two different initial conditions have been applied. Results
are compared with that of Schwarzschild black hole metric.

1 Introduction

Black holes (BHs) are considered as the natural laboratories
to test our understanding of nature. Although BHs were first
theoretically devised but recent developments in the field are
continuously making them better observed scientific facts
rather than fiction. As BHs provide us the natural framework
to test and enhance the currently available scientific picture of
gravity, hence the study of their physical properties becomes
one of the most important initial steps in this direction. It
has been more than a century when BHs appeared as the
theoretical solution of Einstein’s field equations (EFE). First
such solution, known as Schwarzschild BH (SBH) [1] had
just one parameter i.e. BH mass. But the involved parameters
kept on increasing [2–5] with more generalised description
of the background gravitational field.

In this article we study the tidal forces and their effect in
the background of SBH surrounded with quintessence and
string cloud. Recent studies of null and timelike geodesics
around this BH spacetime have shown how the presence of
cloud of strings along with quintessence modifies the corre-
sponding geodesic structure [6–8]. As the presence of cloud
of strings originates from string theory and quintessence is
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considered as one of the potential candidate for dark energy
in the Universe, their combined incorporation as the solu-
tion of EFE gives some unique properties to the background
spacetime geometry. In order to trace these unique features
we opted to study the tidal forces and evolution of geodesic
deviation vectors around this BH metric. We have formulated
generalised geodesic deviation equations and solved them to
analyse the behaviour of geodesic deviation vectors in order
to look for the possible effects of the various parameters
involved therein.

The article is arranged as follows, in Sect. 2 SBH sur-
rounded with clouds of strings and quintessence metric and
its horizon structure is reviewed. In Sect. 3 the generalised set
up of first integrals of geodesic equations and effective poten-
tial is discussed in brief. In Sect. 4, the newtonian accelera-
tion for radially infalling neutral test particle is discussed in
detail along with the tidal forces. Generalised geodesic devi-
ation equations and their generalised and specific solutions
are discussed in Sect. 5. Conclusions and future directions
are presented in Sect. 6.

2 SBH spacetime in cloud of strings and quintessence

Spacetime metric for the spherically symmetric and static
BH in the background of cloud of strings and quintessence
[9,10] has the following form,

ds2 = f (r)dt2 − 1

f (r)
dr2 − r2

(
dθ2 + sin2 θdφ2

)
, (1)

where

f (r) =
(

1 − a − 2M

r
− q

r3ωq+1

)
, (2)

M represents the mass of the BH, ωq is the equation of
state parameter (EoS) for quintessence field, a is the string
cloud parameter and q is the quintessence parameter respec-
tively. The EoS parameter for the quintessence field ranges
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as, −1 < ωq < − 1
3 . In the absence of a and q the above

spacetime reduces to the SBH spacetime. Lapse function of
above metric given in Eq. (2) has two roots given by,

rq = 1 − a + √
a2 − 2a − 8Mq + 1

2q

re = 1 − a − √
a2 − 2a − 8Mq + 1

2q
. (3)

The mathematical condition on the involved parameters for
both of the above roots to be real is, 0 < q < a2−2a+1

8M
and 0 < a < 1. re is known as the event horizon for given
BH metric while rq is generally termed as the cosmologi-
cal horizon, which arises due to the quintessence term. The
event horizon acquires the respective value for SBH in the
prescribed limit.

Lapse function for above BH spacetime given in Eq. (2)
is presented graphically in Fig. 1. Left diagram shows the
effect of increasing the value of quintessence parameter q
on the horizon radius, for fixed values of M , a and wq , if
one increases the value of q within the allowed range, the
event horizon shrinks. Similar is the effect of the increment
of wq , for all other parameters having fixed values. One can
easily observe the possibility of the presence of two horizons
when cloud of strings and quintessence both are present from
Fig. 1. The detailed discussion of the horizon structure for
this BH metric can be found in [8].

3 First integrals of geodesic equations

The geodesic equations [11,12] and its constraint equations
are given by,

ẍμ + �
μ
νλ ẋ

ν ẋλ = 0, (4)

gμν ẋ
μ ẋν = e. (5)

Here dot denotes the differentiation with respect to the affine
parameter τ and xμ are the spacetime coordinates. Null and
timelike geodesics correspond to e = 0 and 1 respectively.
The geodesic equations for given BH metric take the follow-
ing forms,

ẗ + f ′(r)
f (r)

ṙ ṫ = 0, (6)

r̈ +
(

f ′(r) ṫ2 + f ′(r)−1 ṙ2 − 2r θ̇2 − 2r sin2 θ φ̇2

2 f −1(r)

)
= 0, (7)

θ̈ + 2

r
ṙ θ̇ − cos θ sin θ φ̇2 = 0, (8)

φ̈ + 2

r
ṙ φ̇ + 2 cot θ θ̇ φ̇ = 0, (9)

where the prime and dot denote the differentiation with
respect to r and t respectively. The time-like constraint on
the trajectories is given by

(
1 − a − 2M

r
− q

r3ωq+1

)
ṫ2 −

(
1 − a − 2M

r
− q

r3ωq+1

)−1
ṙ2

−r2(θ̇2 + sin2θφ̇2) = 1. (10)

Equations (6)–(10) forms the complete set for the study of
timelike geodesics in given background geometry.

3.1 Effective potential

For the constrained motion of test particles on equatorial
plane one can set θ = π/2 and with this one can integrate
Eqs. (6) and (9) which leads to:

ṫ = C1

f (r)
, (11)

φ̇ = C2

r2 , (12)

where the integrating constants C1 and C2 correspond to the
conserved total energy E and the conserved angular momen-
tum L of the test particle respectively. Substituting the above
Eqs. (11) and (12) along with θ = π/2 in the constraint
Eq. (10), the energy conservation equation for the time-like
geodesics reads as,

ṙ2

2
= E2 − Vef f

2
, (13)

where Vef f is defined as an effective potential and can be
expressed as,

Vef f (r) = f (r)

(
L2

r2 + 1

)

=
(

1 − 2M

r

)
+ L2

r2 − 2ML2

r3 −
(
a + q

r3wq+1

)

×
(

1 + L2

r2

)
. (14)

Here the first three terms come out to be exactly same as
that of the standard SBH case [12] (first term represents the
Newtonian gravitational potential, second term represents a
repulsive centrifugal potential and third term as a relativistic
correction of general relativity, i.e. proportional to 1/r3).

The extra term
(
a + q

r3wq+1

) (
1 + L2

r2

)
in Eq. (14) is due to

the presence of cloud of strings and quintessence scalar field
around the SBH.
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Fig. 1 Variation of lapse-function of unit mass SBH surrounded with
cloud of strings string and quintessence with radial distance form the
centre; left figure: a = 0.1, wq = −0.95 and different values of q as

mentioned in the diagram. Right figure: a = 0.1, q = 0.1 and different
values of wq as mentioned in the diagram solid line curve represents
the function for SBH

Fig. 2 Variation of radial tidal force of a unit mass SBH surrounded with cloud of strings and quintessence with radial distance from centre, left
figure: wq = −0.95 and different values of q as mentioned in the diagram. Right figure: q = 0.05 and different values of wq as mentioned in the
diagram

4 Newtonian acceleration for radial geodesics

For radial geodesics the equation of motion reduces to the
following form:

ṙ2 = E2 − f (r). (15)

Now for a particle falling freely from rest at some fixed posi-
tion b, one will have its initial energy E = √

f (r = b) [13].
Newtonian radial acceleration [14] is defined as:

A(R) ≡ r̈ , (16)

Using Eq. (15), it can be written as:

A(R) = −M

r3 −
(

3wq + 1

2

)
q

r3wq+1 . (17)

Equation (17) gives the mathematical formulae for the “New-
tonian radial acceleration” exerted by SBH surrounded with
cloud of strings and quintessence on any neutral test parti-
cle entering in its gravitational field. The effect of extra term

to that of SBH metric i.e. −
(

3wq+1
2

)
q

r3wq+1 will be exam-

ined more precisely in the next section with the analysis of
geodesic deviation. Although for Reissner Nordström BH
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Fig. 3 Variation of angular tidal force of a unit mass SBH surrounded with cloud of strings and quintessence with radial distance from centre, left
figure: wq = −0.95 and different values of q as mentioned in the diagram. Right figure: q = 0.05 and different values of wq as mentioned in the
diagram

Fig. 4 Variation of geodesic vectors for M = 1, q = 0.05, a = 0.3 and different mentioned values of wq ; left figure: radial geodesic vector with
ICI, right figure: angular geodesic vector with ICI; solid line curve represents the corresponding variation for SBH

metric such additional terms have established a long stand-
ing discussions on their relativistic effects [15–17].

Now one can look for the distance in the given background
geometry, from where a neutral test particle bounces back.
For this one has to calculate the root of E2(r = b)− f (r) = 0
[18]. For given spacetime this condition gives,

r(3wq+1)
(
q + 2Mb3wq

)
−

(
2Mr3wq + q

)
b(3wq+1) = 0, (18)

As the equation of state parameterwq can have values ranging
as −1 < wq < − 1

3 , the above Eq. (18) is solved analytically
for different allowed values of parameter wq . Interestingly it
has been found that this stopping radius does not depend on

the parameters a as well as wq . The radius depends only on
the quintessence parameter q as below:

Rstop = 2M

q
. (19)

4.1 Tidal forces acting in the SBH spacetime in the
background of clouds of strings and quintessence

Another interesting way to observe the effect of the pres-
ence of cloud of strings and quintessence field is to study
the geodesic deviation. It depicts the relative acceleration of
test particles falling freely in the gravitational field of any
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Fig. 5 Variation of geodesic vectors for M = 1, q = 0.05, a = 0.3 and different mentioned values of wq ; left figure: radial geodesic vector with
ICII, right figure: angular geodesic vector with ICII; solid line curve represents the corresponding variation for SBH

Fig. 6 Variation of geodesic vectors for M = 1, wq = −0.95, a = 0.1 and different mentioned values of q; left figure: radial geodesic vector with
ICI, right figure: angular geodesic vector with ICI; solid line curve represents the corresponding variation for SBH

BH. The study of geodesic deviation not only enables to
understand the physical effects of the gravitational field but
one can also get a clear idea about the effect of surrounding
cloud of strings and quintessence field on the geometry of the
spacetime. We have followed the method given in [18–21] in
order to derive the geodesic deviation equation (Jacobi field
equation),

D2ηa

Dτ 2 − Ra
bcdv

bvcηd = 0, (20)

where va represents a tangent vector to the geodesics and
ηa represents a connection vector between two neighbour-

ing geodesics. The tetrad basis for radial free-fall reference
frames have the following form:

ea0 =
(
E

f
,

√
E2 − f , 0, 1

)
; ea1 =

(
− E2 − f

f
, −E, 0, 1

)
;

ea2 =
(

0, 0,
1

r
, 0

)
; ea3 =

(
0, 0, 0,

1

r sin θ

)
. (21)

where eμ
α satisfy the normalisation condition eμ

α e
μ
β gμν =

ηαβ , here ηαβ is Minkowski metric. Further, the geodesic
deviation vector can also be represented as:

η̃ = eμ
ν ην. (22)
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Fig. 7 Variation of geodesic vectors for M = 1, wq = −0.95, a = 0.1 and different mentioned values of q; left figure: radial geodesic vector with
ICII, right figure: angular geodesic vector with ICII; solid line curve represents the corresponding variation for SBH

Substituting Eq. (22) into Eq. (20), equations for tidal forces
in free-fall frame can be written as:

η̈1̂ =
[

2M

r3 − q(3wq + 1)(3wq + 2)

r3wq+3

]
η1̂, (23)

η̈î =
[
−M

r3 + q(3wq + 1)

r3wq+3

]
ηî , (24)

where i = 2, 3, correspond to θ and φ directions respec-
tively. Geodesic deviation equation corresponding to time
coordinate i.e. η̈t̂ = 0 is insignificant. Equation (23) rep-
resents the tidal force in radial direction while the Eq. (24)
manifests the pressure or compression effects in the angular
directions. Radial as well as angular tidal forces due to this
BH spacetime depend on BH mass M , quintessence param-
eter q and EOS parameter wq while is independent of string
cloud parameter a. Figure 2 shows that radial tidal force in
SBH is always positive. As quintessence field is turned on,
although the qualitative nature of tidal force remains similar
but the curves shift downwards continuously with increasing
values of q as well as wq . As one approaches towards central
singularity, the force diverges which represents the infinite
radial stretching [12,18]. Figure 3 shows the non-zero angu-
lar tidal forces for different values of the parameters involved
therein. Angular force diverges to negative infinity as one
approaches to singularity, representing the infinite angular
compressing present there [12,18].

For more precise knowledge of relative acceleration of
infalling particles around such BH spacetime, one needs to
solve the geodesic deviation equations to find out the devia-
tion vectors in each direction.

Radial tidal force given in Eq. (23) vanishes at,

R0
r t f =

( q

4M
(3wq + 1)(3wq + 2)

)1/3wq
. (25)

If radial tidal force takes maximum value at Rmax
rt f . One

can infer from Eq. (23) that this distance is given by,

Rmax
rt f =

( q

6M
(3wq + 1)(3wq + 2)(3wq + 3)

)1/3wq
. (26)

Substituting Eq. (26) in Eq. (23) one can obtain the maximum
radial tidal force as,

η̈1̂ |max= M

(
2wq + 1

wq + 1

)[
6M

q(3wq + 1)(3wq + 2)(3wq + 3)

]1/wq
η1̂.

(27)

Angular tidal force given in Eq. (24) vanishes at,

R0
at f =

( q

2M
(3wq + 1)

)1/3wq
. (28)

Again if angular tidal force takes maximum value atRmax
at f .

One can infer from Eq. (24) that this distance is given by,

Rmax
at f =

( q

6M
(3wq + 1)(3wq + 3)

)1/3wq
. (29)

Substituting Eq. (29) in Eq. (24) one can obtain the maximum
angular tidal force as,

η̈î |max= −M

(
wq

wq + 1

) [
6M

q(3wq + 1)(3wq + 3)

]1/wq

ηî .

(30)
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5 Solutions of geodesic deviation equations

For radially freely infalling freely particles, the relation
between radial coordinate r and the affine parameter τ can
be obtained easily as,

dr

dτ
= −

√
E2 − f (r). (31)

With Eq. (31), one can rewrite the system of geodesics devi-
ation Eqs. (23)–(24), in term of radial coordinate derivative
as:

√
E2 − f (r)

d2η̂1

dr2 − 1

2

(
2M

r2 + q(3wq + 1)

r3wq+2

)
dη̂1

dr

=
(

4M

r3 + q(3wq + 1)(3wq + 3)

r3wq+3

)
η̂1, (32)

√
E2 − f (r)

d2η̂i

dr2 − 1

2

(
2M

r2 + q(3wq + 1)

r3wq+2

)
dη̂i

dr

+ 1

2r

(
2M

r2 + q(3wq + 1)

r3wq+2

)
η̂i = 0, (33)

where Eqs. (32) and (33) represent the radial and angular
components of geodesic deviation equation respectively. The
analytic solutions [18] of Eqs. (32) and (33) can be obtained
as,

η̂1 =
⎡
⎣A1 + B1

∫
dr

(E2 − 1 + a + 2M
r + q

r3wq +1
)3/2

⎤
⎦

×
√
E2 − 1 + a + 2M

r
+ q

r3wq + 1
, (34)

η̂i =
⎡
⎣Ai + Bi

∫
dr

r2
√
E2 − 1 + a + 2M

r + q
r3wq +1

⎤
⎦ r. (35)

where A1, B1, Ai and Bi are constants of integration. Both of
the above solutions are given in form of elliptical integrals.

Two types of initial conditions [19,20] are considered for
the numerical solutions of the geodesic deviation equations.
Both of these conditions represent particles starting at the
region outside the event horizon r = b > rH .

First initial condition ICI is,

ηα̂(b) = 1, η̇α̂(b) = 0, (36)

which correspond to test particle released from rest r = b >

rH (Figs. 4, 6). It implies that the 4-velocity component of
the test particle ṙ = 0 and thus the energy of the particles is
fixed i.e., E = f (b). Second kind of initial condition ICII is,

ηα̂(b) = 0, η̇α̂(b) = 1. (37)

which now corresponds to the particles ‘exploding’ at r =
b > rH (Figs. 5, 7). Under this initial condition,

ημ̂′(b) = 1√
E2

f (b) − 1
, (38)

where energy of the infalling test particle is not a fixed param-
eter. Thus energy of the particles also affects the kinemati-
cal evolution of the geodesic deviation vectors. It can be
observed from Figs. 6 and 7 that initially diverging radial
geodesics kept on diverging under both ICs although the
relative separation between neighbouring geodesics become
smaller as wq decreases within its allowed range.

Angular deviation vector decreases under ICI for SBH
while the neighbouring geodesics start diverging further as
wq increases further negatively. Under ICII, the variation
is qualitatively similar to corresponding variation for radial
geodesic vectors , although the magnitude of separation is
further weaker.

6 Conclusions

In this article, we have investigated the effect of tidal forces
and geodesic deviation vectors in SBH surrounded by cloud
of strings and quintessence field. Some of the important
results are summarised below:

(i) Two horizons are present around SBH surrounded with
cloud of strings and quintessence. BH event horizon
radius shrinks if parameters q, a and wq are increased
while other parameters are fixed.

(ii) Tidal forces in radial as well as angular directions are
independent of a. Qualitative nature of tidal forces is
similar to that of SBH.

(iii) Radial infinite stretching and angular infinite compress-
ing is present for any body approaching singularity.

(iv) Geodesic deviation around SBH surrounded with cloud
of strings and quintessence are devised and solved ana-
lytically in radial as well as transverse directions.

(v) Geodesic deviation equations are also solved numeri-
cally under two different initial conditions. It is observed
that radially diverging geodesics keep on diverging under
both of the applied ICs, although the magnitude of
separation reduces as wq becomes more negative or
quintessence parameter q increases.

(vi) Presence of cloud of strings along with quintessence
assists divergence in angular direction, as the initially
converging geodesics for SBH become diverging under
ICI while the behaviour of diverging geodesics is qualita-
tively similar to corresponding radial geodesics, although
the magnitude of vectors become smaller.
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This study would be helpful in understanding the grav-
itational field of SBH surrounded with cloud of strings
and quintessence. For more generalised discussions and
results we hope to report the related study of the rotating
counterpart in near future.
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