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Abstract

We briefly review and further investigate the quanium group approach to
the specira of the diatomic molecules presented by the authors recently. The
vibraiien-rotational structures as well as the inieraciions of vibrations and
rotations are described in the quantum group theoreiic approach satisfacto-
rily. When Tayior ezpanded, the analytic formulae of the new approach re-
produce the resulis of nonlinear vibrating rotator model. For some perticular
states of randomly selected molecules, the parameters of the new approach
are computed to fit the phenomenological data to high sccuracies.

We also supply an analysis of the (pseudo-) potenticl implied in the new
model, and compare it with the conventional model of the local potential that
are applied 1n the explanation of the Dunham formula of energy spectra.

1This work is supported in part by the National Natural Science Foundation of China.
2Mailing address.
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|. Introduction

As is well known, most of the progresses in modern physics are accompanied with
the studies of symmetries. Quitely recently, much attentions have been directed to
the investigations on the quantum groups [1}{2][3][4][5][6} and Yang-Baxter equations
[74i8] which are deeply rooted in many physical theories [4][9]. The quantum groups
(in Jimbc's proposal [2]{4]) are single parameter deformations of Lie algebras, which
are convenient to be studied in the framework of Hopf algebra and non-commutative
geometry [3][10].

it is a widely accepted opinion that when the defcrmation parameter ¢ is not a
root of unity, it is 2 function of Planck constant #, e.g., lug o< 2. When & — 0,
q — 1 and the quantum group symmetries reduce to Lie group symmetries, while the
quantum systems revert to ciassical ones. As we pointed out [13][14][15][16], this is not
evident. In fact, the g-deformation and canonical quantization can be two independent
concepts. It is possible to find the g-deformed symmetries (with nontrivial Hopf algebra
structure [16]) in classical systems, and when the systems are canonically quantized,
one obtains quantum group symmetries in quantum systems. The quantum sysiems
described by quantum symmetries reduce to the quantum sysiems possess ordinary
Lie symimetries when the deformation parameter g equals one.

This viewpoint brings new possibilities to the studies of quantum groups as potea-
tial dynamica! symmetiies of physical systems. As the quantum groups, with respect
to their Lie counterparts, introduce independent parameters ¢'s, the new symmetrics
aliow violations of the Lie symmetries. When g's are not unity, the new symmaetries
are exact symimetries in the point of view of Hopf algebras and with well established
theory of representation and spectrum, but violations of the Lie symmetries occur.
The violations are smail if the deviations of ¢'s from unity are small. If the deviations
get greater, the violations get greater. The most well known model with the quantum
group symmetry is-the Heisenberg spin chain of XX Z type, where the difference of
Z from X induces the viclation of SU(2) symmetry. But the violation therein does
not break the symmetry of SU,(2), which is one of the best studied quantur groups.

In the attempts to find other systems in which the quantum groups are possible
dynamical symmetries, the authors iooked into the century old problem of the rotating
and vibrating diatomic molecule. It is well known thai 2t the jowest order approxi-
mation, the internal motion of the molecule is treated as two separated motions, i.e.,
the linear vibration and rigid rotation obeying the Lie symmetries (algebras) H(4) and
SU(2) respectively. But the deviations exist between the real motions in molecules and
the simple descriptions: these twe symmetries are violated. To fit the experimental
data, phenomenological treatments are introduced, which can be explained by anhar-
monic osciilator and non-rigid rotator or other sophisticated models {20][21}{22]{23].
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_Although these treatments are effective and well studied, the authors deem it benefi-
cial to find proper symmetries with analytic interpretations of the phenomenological
resolutions of such systems, and the quantum group symmetries are suggested as sat-
isfactory candidates to describe the violation of the Lie symmetries to certain order.

It is shown in this paper that the Dunham formula [19]

By(v,J) = thY;j (v+%):(J(J+1))j, (1

iy

for the vibration-rotationsl energy spectrum of the diatomic molecule, (with v and J
being the quantum numbers of vibration and rotation, and Y;; the Dunham coeffi-
cients) can be reproducad from the Taylor expansion of the quantum group theoreiic
formula. The specific character of this approach is that it does not go to the detail
of the binding pctential, but demonstrates that the energy levels and selection rules
are appropriate for any diatomic molecular-like systems that possess the Dunham-like
energy spectrum and are dominated by dipole degrees of freedom by using a spectrum
generating algebra focusing on the elementary quantity involved in the interaction and
not cn the interaction potential.

Although the new appreach does not need the explicit form of the binding potential,
we supply an explicit analysis of the (pseudo-) potential implied in the new model, and
compare it with the model of the conventional local potential applied in the explanation
of the Dunham formula of energy spectra.

Under the adiabatic condition, the Schrodinger equation for 2 diatomic molecule
i5 conventionally

h2 2

[_ 8wim, Vi~ 8nim

\v23 +V(1-)] % = E®, (2)

where m; and my, are masses for the nuclel, V is the effective potential between them.
in the center of mass frame the equation reads

(~5mm 77 4V0) ) = B, @

mymesq

‘where m = is the reduced rnass. As the variables can be separated, we have

i+ my

() = REYou(6,8), R(r) = 29(0), @)
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where Yj3,(6, ) are spheric harmenics. The tangent motion is rigid rotation described
by SU(2) algebra or isomorphically SO(3) algebra while the radial motion satisfies the
following equation, :

R? &2 J(J +1)h? _ _
{_87r2m dr? + 8m2mr? + V(r)} b =E. (3)

Under the lowest order approximation, the effective moment of inertia can be treated
as a constant. ¥ onc makes a further approximation of V(r) « r2, then (3) becomes
the motion equation for rigid rotation and another separate motion of linear vibrating
(i.e., the dumbell and lirear oscillator model), with the eigenvalues of Hamiltonian
easily given in the following

1
Eyr = hewe(v + 5) + heB.J(J + 1), (8)
with the Hamiltonian ]

H,. = hcw, (N + 5) + heB.C N

where C is the Casimir operator of the SU(2) algebra, and

B8 2rlmew 1

o= 427 e 2 ]
N= 872mcw, Oz o 2 (8)

is the particle number operator of the linear oscillator, where z = r — re is the change
of ihe internuclear distance from equilibrium position. In obtaining this simple model
one ignores the terms invoiving the quantum number of rotations, J. So it does not
provide the description of the vibration-rotational structures of diatomic molecules.

In fact, the observed spectra deviate qualitatively from that given by the above
model. In vibrational spectrum, the separations between the adjacent lines are not
exactly equidistant, but becoming narrower toward the shorter or longer wavelength.
To fit the experimental results better, one has to consider the nonlinsar modifications
to the simple harmonic oscillator model, which should be in the following form,

1 1\2 1\?
Eyy = hew, (v+§)—hcweme <v+§) + heweye (v+§) +--, 9)

which is (a special case of) Dunham formula (1)[19].

In rotational spectrum, the separations of the adjacent rotational energy levels are
not exactly that of dumbbell model, either. Small but important deviations arise.
To meet thé experimental results, one has to consider nonlinear r_nodiﬁcations to the
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dumbbell model. That is the Dunham formula with vanishing vibrational excitation in
the following form,

Erai = hCBeJ(J + 1) - I'lCDeJ2(J + 1)2 + . (10)
The most direct conjecture of the Hamiltonian should be as follows
H-rot = hCBeC— hCDeC2+..., (11)

where C is the Casimir operator of Lie algebra SU{2). Of course, one can also
interpret the above Hamiltonian ad a description of the vibrator with moment of inertia
dependent on the rotational excitations, such that the expansion of the latter coincides
with the newly proposed one [21][23][22]. But as we shown in [25][26]citemoleculed
and the following, an apparently alternaiive interpretation is that the power series in
J(J +1) is an expansion of a more compact formula in the quantum group theoretic
approach. '

Fine structure of spectra of the vibrating and rotating diatomic molecules shows
interactions between vibrations and rotations, 7.e., a simultaneous rotation and vibra-
tion occurs. For this reascn, a mode! in which simultaneous rotation and vibration
takes place, the vibrating rotates medel should be considered. In the picture of the
mode! of vibrating rotator, the rolationai constants B, I, --- in (10) should be
replaced by the vibration-rotational constants By, D, ---. To a first order (usually
satisfactory) approximation, the set of vibration-rotaticnai constants can be expressed
as

1
B, = Be—(xe(v—!«;)-i--"
1 (12)
D, = Do+fulv+3)+

where @, and B. are constants which are small compared to B, and D, respectively.

We obtain, accordingly, for‘the rotational energy levels in a given vibraticnal level
Epou(J) = heByJ(J 4+ 1) = heD, J3(J + 1) + - - (13)

By taking into account of vibration and rotation in this way, we obtain for the energy
levels of a vibrating rotator

Eur(va J) = Evib + Erot

hew, (v + 1) = hawez. (v + ;)2 + heweye (v + %)3 e (14)
+heBoJ(J +1) — heDJ*(J + 12 4---,
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or written into the following form

E,.(v, J) = hew, (v + %) — hewez, (v + ) + ho..aeyc W+ },
—heae(v+ 1)JI(J +1) — hefo(v + L+ (15)
TheB J(J + 1) — heD JH (T + 1) 4-- -

The thorough pheromenological description of vibrational and rotational structure
of diatomic molecules is given by Dunham formula, see (1) and [19]. A successfui
theoretic approach with quantum group symmetry H,(4) ® SU,.(2) must recover the
important leading terms of Dunham formula. Because of the interacticn between the
rotation and vibration in the mclecule, it is reasonable to. consider that the deformation
parameter of H,(4) may depend on the eigenvalue of the Casimir operator of SU,(2),
and vica versa.

As we addressed in the above about the constructions of the vibrational and rota-
ticnal Hamiltonians, the direct construction of the vibration-rotational system should
be

H(0,7) = he Y ¥ (N + %) Yy, (16)

which is an expansion in the generatcrs of the Heisenberg and SU(2) algebras.

in the previous publicaticns [24][25][26][27], we proposed the quantum group theo-
retic mode! possess the quantum group symmetries H,(4) and SU,(2). These guantum
group generators can be expressed in terms of the Lie counterparts. In this approach,
we actually did things in the inverse way: The Dunham formuiae (1,10,1) or the Hamii-
tonians (94,11,i6) were compactified into quantum group generators. \We derived the
coefficient constants, we, weZ,, Weye, Be, D, and o, B., appear in the formula (15),
i.e., Y10, Yoo, Yo, Yor, Yoz and ¥44, Y5 in the Dunham formulz (1), from the theoretic
approach of quantum group theory [24][25]{26][27].

Section |l is devoted to the proposal of the H,(4) symmetry to explain the pure
vibrational spectra, the SU{2) algebra for the pure rotational spectra is reviewed in
section I1l, and in section IV, the hybrid symmetry Hy(7)(4) ® SU(2) is reviewed as
a thorough description of the vibration-rotational spectra with the dependence of ¢
on the rotational excitation J characterizes the interaction between the rotation and
vibration. Section V presents some short discussions and remarks.

. Hy(4) Quantum Group Symmetry and the Vibrational Spectrum
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The Hamiltonian for g-oscillator system is [11][12][13]{14]{15]{16](28]
: ) . N
Hywio = 3 (agaq + aqa;) hevy (17)

where a,, a; are annihilation and creation operators for the deformed oscillator. These
operators are connected with the operators a,a' of the simple harmonic oscillator in
the following way

in 7
oo AT [N LD 18)
N1 Y TN+
where N = ala, [m], = 1%1:'5":_{2, 4 =Ingq and b an arbitrary constant. From the basic
commutation relations
Ha,all =1, [a,a] = fa!,a'] =0, (19)

we have the commutation relations for the g-oscillator system

leal] = IV + 140, = [V + 0],
N,a)) = —ag [N.al] =af.

i

(20)

This is the g-deformed oscillator algebra H,(4). According to [22], the Hopf operations:
coproduct, antipode 2nd counit can be defined for this algebra. Because it is neither
commutative nor co-commutative, H,(4) is a quantum group. The universal R-matrix
to the Yang-Baxter equation can also be constructed. The Hamiltonian (17) can be
written as

Hew = 3([N+bvl+ [N+ 1+ by]y) hevun
(21)

- hevyy . 1
" 2sinh(y/2) sinh (7 (N * 2 + M)) ‘

The energy levels for this system are

Epun = 2([v+ 14 b+ [v+bv]g) frcvuin,

Hsinh(v+%+b’y)

h-CVm'b
2sinh (7/2)’ |

We suppose the vibrationa! structure of diatomic molecules can be described by
the g-oscillator model. Then vibrational energy levels of the diatomic molecules is of
the form

where H =

Ew = Eo+E__u
: (23)
E, -}-Hsinh(v—i— 3 +b‘/)
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wiere Eg are the cnergy levels of electrons. The above equation can be Tayior-
expanded into

, i sinh (yc) ( 1 ) v sinh (ye) ( 1) 2
Evi'c = vib Y T sh — - '/ + = H
hev, {2smh ) + cosh (ye) (v + 5 + 5 vtg) +

2 3
7 cosh (ye) (H%) +} L B,
(24)

6
where ¢ = by. The leading terms coincide with (8) if the new paramcters are properly
chosen. The examples are given in table 2, where eighteen vibrational curves are
refitted in tabie 1 by the quantum group symmetric model.

The representations of quantum group H,(4) can be constructed in the following
way. The states are given by

o >>= (fo + bylh™* {af)" 0 > . (25)
The actions of the operators on the Fock states yield

aljv >> = \/[—'v+1+bﬂT§|v+1 >>,
aglv >> = v'[v +lplv =1 >>, (26)
0> = 0.

It is easy to sce that the above representation for quantum group H,(4) is isomorphic
to that for the ordinary harmenic oscillater algebra H(4). 3

(v + byl ™% (al) " [0 >,
@)™ (at)" 10>, (27)
= |Jv>.

o >>

where |v > are the Fock states for the ordinary harmonic oscillator. Therefore the
representation in coordinate space can be expressed exactly in Hermite polynoimiais,

Po(z) = NyHy(X)e X772, (28)
where X = Bz, x is the change of the internuclear distance from the equilibrivm
position, 8 = ((277)2 mcu,,/h)ll2 and N, = (y/x2vo!) ™/,

If the molecule in its equilibrium position has a dipole moment, as is always the case
for melecule consisting of unlike atoms, this dipcle moment changes if the internuclear

3For ¢ a root of unity, the properties of the representation are more complicated, see

(6][18}{15][28].
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distance changes. As a first order appzommatlon the dlpolp moment is assumed to
vary linearly with the internucten: : ie., M = My Az, where My is the
iwin position, and n/’ i:he rate of change of the dipcle
moment with the internuciear distance. Therefore the iransition matrix elements are

dipole moment in the equit!

s [~ - : N g f . . w2 . -
B = [ M de = Mobir + My BL/Xﬁﬂxwww%“dw(%\
By the recursion relation of the Hermite polynomial, the second term in the above
equation vanishes unless ©* = ¢v” & 1. Hence the selection rule for the g-oscillater is
Av = £1. Therefore the ;m-mred specira of g-oscillator is

([U 2+ by ,]! [U -+ JV] )V'uib' (30)

Vo=

oy

A dipcle moment p is induced n the diztomic sysiem when it is brought into an

external electric field. The magnitude of the resulting dirole moment is proporticnal
o that of this field. i.¢
S B FGEA
L{?f = 1]5.».""., . [ RE )
where « is called polarizability. The scatiering matrix elaments corresponding to
induced dipole moment are
Tt Coey
17 / @ ,p‘i}uuc7 132

where W, and W, are the time dependent wave funciions for g-osci'lator at states o'
and v" respectively. So there sheuld be the evolution fac*ors eZmilBufhyt o= imil By Rt
If
and ¢imieveiet in the functions U, 7 and p. So |[f)"" varies in ffeq.j\n Y CVeie +
E, — E,u)/h and amplitude
I "

17 IFI [¢ s atpndz. (33)

In a first order approximation, we may assume a finear variation of a with the dis-
piacement z from the equilibrium position,

o = Qpy + Ol},l', (34)
' ther_efore we have
Iﬁwﬂﬁ%/%%m+FM/wﬁwﬁ (39

Because of the orthogonality of the wave functions of g-oscillator, the first term in
the above equation is zero unless v’ = v, which gives the Reighley scattering. The
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integration in the second term vanishes unless v’ = v"” & 1. So the selection rule for
vibrational Raman spectrum is Av = £1. We obtain the vibratiocnal Raman spectrum
from the energy levels given in (18),

vk (B~ B) = v d (0424 bl — o+ bl v, (30)

where v/ is the wave number of the incident light.

The transitions between electronic states are involved in the spectra of visible and
ultraviolet regions. The vibrational spectrum of electronic transitions is

=T —T" =(T' — T") +(G' = G") = v, + v, (37)

where v, is a quantity depending on the transition between the electronic states. From
(18) we rewrite (37) into

ve=vet+ 3 {udy (0 + 14+ ]g 4+ [ +01e)

0 1 ", " U/ (38)
Vg (0" + 14 0'y"]gn + [0 + 677"] ) }

An investigation of the selection rules shows that for electronic iransitions there is nc
strict selection rule for the vibrational quantum number v. In principle, each vibrational
state of the upper electronic state can. be combined with each vibrational state of lower
electronic state, i.2., there is no restriction to the quantum numbers v and v” in (38),
and therefore (38) gives very complicated spectral structures.

If the quantum rumber »* in {38) is fixed, then the v" progression is formed. Ir
the v” progression the upper vikrztional state is fixed whiie the iower vibrationai state
is different. Mence (38) is rewritten into

v=1y — %Z- (w"+14 b"'y”]qu» + [e" + V" gn) Vi (39)

where the quantum number 2§ is v, plus the fixed vibrational spectrum in the upper
electronic state, and therefore a constant.

If the quantum number v” ic chosen to be a constant, then the v progression is
formed in which different vibrational state in an upper electronic state combining with
one vibraticnal state of lower electronic state. And it is therefore expressed in the
foliowing formula

1
v=1p+ 5 (0" + 1+ 0]y + o' + 67 )e) v, (40)

where 1/}, is v, minus the fixed vibrational spectrum of the lower electronic state, and
therefore a constant.
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We rewrite the formula for the infrared spectra of q—-oscii?ator into

t\;) 1 et

s
= g siohy (\ v -+

) (41)

where ¢y = 2—: +%+ byy. Similarly, the formula for vibrational Raman specira is vy
r.
into the following ferm

v=1uv+ Vyib th Eb +

L.)[.—»‘

The v" progression given in formula {39) can be rewniten as

" .
" Vyi . 10
vo= :—-,i’l’—; sinh " (n + = cj’) )
2sinh -y 2
where ¢f = bjy". The v’ progression (40) can be rewrite in the same way
V=) 4 — :"b sinh«y ( 4+ = ! + ¢ ) (44
0 2sinh ¢/ 2 72 ’ ’
where ¢} = b,

(J g]

lil. 50,(2) Quantum Group Symmetry and the Retational

The ¢-rotator model [25]j26], as an exactly sclvable system, is the g-defermed
rotator with the quantum group symmetry SU,(2). The Hamiltonian for this systerm
is, namely

Hy oo = B222 (45)

C,
2I’ ‘
where C, is the Casimir operator for the quantum group SU,(2). !n terms of the
generators of SU,(2), C, can be written as

Cy=J; I + [Tal75 + 1L, (46)

where JE, J? are generators of SU,(2).

As is well known n, quantum group SU,(2) is the q;deforfnaiioh of Lie algebfé SU(2)
with the following algebraic relations,

Uh I =127, 58 =+7. - (4D)



The Hopf operations, R-matrix and quantum Yang-Baxter equation can be constructed
[7]i8][1]{4] [2][9]. It can be shown that this quantum group can be realized by SU(2)
generators in the following way 4,

Jt = \I{Ja“I'j] T3 = J]qJ+

! (JB+i)JI°-1-))

- - J[a il -1 3], (45)
! (JP+i)JI2-1~j)’

o= 5

where j is 2n operator formally expressed as follows,

. 1 lsinh’y 172 \
J = —7 +sinh 1{——;— Cq+[§] ), {49)

7
d \ i q

where v = Ingq. C, can be expanded into a series of C, which is the Casimir operator
of the usual Lie group SU(2). i.c.,

6" T 360 3 90
which is similar to (17). The coincidence of the leading terms in the above equation
and (17) hints us the possibility of some applications of quantum group in simple
quantum systems.

- 4
= {1 — 2 ) (1 = —‘*72) c*+ 24%03 +o(y?),  (50)

When ¢ is not the root of unity, it is easy to see that the representation of SI7,(2)
can be chosen to be that of SU(2) (up to a phase factor)®. Therefore, representations
of quanium group SU,(2) are completely reducible, and the irreducible ones can be
ciassified according to the highest weights [5]. They can be chosen to be the spherica
harmonics , 7.e.,

B 1aa(7) = Yine(6, 6). (51)
The action of the generators of SU,(2) yields

TE m(E) = JlTF ML+ M+ 1,8 00(8),

While the action of the Casimir operator C, yields
, ) 2 )
C, ¥ (&) = ——[J]q[J +1],¥(%). (33)

4A phase factor can be added similarly to the case of g-oscillator, see [13){14]{15][16].
*When ¢ is the root of unity, odd things 1ay appear, see [6][15]{18][28].
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Hence the eigenvalues of the Hamiltonian of the g-rotator system are

. X
Eq—wl = S—ﬁ?f{']!q[*] + 1]q' (54)

This model is a non-rigid rotator, and the deformation parameter v is a variable to be
chosen phenomenologically which characterizes the non-rigidity. When v is zerc, the
above equation describes the rigid rotator with the constant moment of inertia I.

Now we are in the position to set up the ¢-rotator model for diatomic molecules.
As is always the case for molecules consisting of unlike atoms, there is an internal
dipole moment M with spatial components,

My, = Mpysindcosd,
Mo, = Mpsindsing, (55)
A’i{nz = AIO cos .

The dipole transition matrix elements are

R i”‘[’J”M" = My [ U7 sin b cos @ gndr,
IEYIRIAY L . . -~
-Rj MM = A/.fof ‘I”}'M’ sin 0 sin é\I/-Ju,\‘rudT, (50)
TAfr it "
l?'_,] AJTM fvfo f ‘I’}:M: COos e‘pJHMHdT,

where dr = sin #d0dé. Applying the recursion relation of the spherical harmonics, we
. 13 "o. .
can rewrite RJ'M7"M" into the following form,

Ri;M/Jquu = M, (GJ",ILI” f Y:]',JM,}':I,,_H ALY sin 0(19d¢+

. . (87)
ag—ymr [ Y5 A Y gnoam sin 9d9d¢) )
where _
(J +1)2 — M?
_ - MP 55
ad. J (27 + 1)(27 +3) (58)

From the crthogonality of the spherical harmonics, we learn that the above matrix
elements vanish unless J” = J’ 4+ 1, and this is true for R;,”M'J"M" and Rj/M'J"M"
also. Therefore the selection rule of the emission and absorption of the g-rotator model
is AJ = £1. The microwave and far-infrared emission (absorption) spectrum is of the

wave number
Eq—rot(J + 1) -E —rot('])
he ’ (59)
= B([J+2)[J + 1 = [J + 1[T]e)

<
!

hZ

where B = 8_772—[_}1—2
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When there is an externa! dectric field F, an induced dipole moment is formed
in the molecuie. Suppose that the external field is along z-axis, the induced dipole
moment zlong the z-axis is -

Pz = azzﬁz’ (60)
wherc a,; is a component of the polarizability tensor in the fixed frame. When ex-
pressed in terms of the pelarizability measured in the frame rotating with the molecules,

2
QX = al’ml‘m + (azmzm - Cl'zmxm)COS 9' (51)

Therefore the corresponding matrix elements are

[ i s = 0, / YippYynpgudr,
- (62)
+( CL'3-"vuzm - azmz'm ) /COS2 OY.;'A'I’)’-']”A'II"G’T‘
o
According to the recursion relations of the spherical harmonics, the above equation
can be wniten as

jl 272 ‘I’;Il‘{l ‘I’Jn_,\[nd'r

2 7211 Y -
= {axmf—"-ﬂ + (a=m3m - azm-”':m) [(a-’”y]‘!l') + (a.’"—l,]\l”) ]} j[ yJ'l‘l’f"“{J”]"-{"dT
; (83)
+{Qzpzm = Gornzin) QI Mr B4 M _/ Yy Xgnsapndr
F(F 2z = Crpzm) Q11,2498 _z A / YyppYyn_garadr.
The first term in the above equation vanishes unless J' = .77, i.e., it gives the lines
withcut shift; the second and third terms vanish unless J' = J"'+ 2, i.c., it gives
the shifted lines. The same rewsit can be obtained for the other two components.
Therefore the sclection rule for the rotational Raman specira is AJ = £2. The
rotationzal Raman spectrumi of the molecules can be expressed as
c i AY
y (_Eq—to'.("T + 2) - Eq--:ot{-]))
v = vy % b
iC
= W "3' B(i-’ + 31'4-[] + 2]:1 - {J 4_ l.lqi'!.!{’) *

where vy is the wave number of the incident photon.

The rotational spectra of diatomic molecules involve the electronic transitions and
vibrational transitions with the selection rule of that of ngid rotator, t.e., &AJ = 0,£1.




The rotational structures are

Ezly—rot(‘] + 1) - E;.

R branch: v = w+ e g=rot(J) ,
= v+t BI['] + 1]:1'[‘] + 2]9‘ - B”[J]q"[J + 1]0"’3

B )= B
Q branch: v = yy+ 2 i )hc q o ),

= vo+ B'[J + 1)p[Jly — BT[] + 1lgm;
E - I N
) P branch: v = v+ q"m"(J ]].l)c Eq—ro(.(‘])’
= Y+ B,[J]ql[J — 1],’.1 — B”[J]qn[,] + 1]911,

where v is a guantity depending on the electronic transitions and vibrational struc-
ture of the diatomic molecules. Since internuclear distances are different for different
electronic states, the I's are different. Therefore B’ and B” are different.lt should
be noticed that for different electronic states, we have chosen different deformation
naramcters in the above equation.

The infrared emission (absorption) spectrum of the g-rotator mode!, see (63), can
be rewritten as

v = Hsich2y(J 4+ 1) = Hsin25(J + 1), (66)

where H = - H =iH and 7 = —iv.

sinh vy’
The rotational Raman spectrum of this model (60) can be rewritten as
sinh2y(J + 3)

v = vy + B———-—2 = yy + 2H coshy - sinh 2y (J+é). (67)
sinh~y 2

In table 3, we give the infrared rotational absorption spectrum of the g-rotator
model for the HCI molecule. The corresponding parameters of the g-rotator model

in (70) are 5 = 0.010744 and H = 967.49(cm™). We notice that the spectrum of
the q-rotator model coincides with the observed one to satisfactory accuracies.

It is noticed that the infrared emission (absorption) spectrum, rotational Raman
spectrum and the rotational structures of electronic transitions and vibrations of the
molecule given by the g-rotator model in (69), (70) and (71) respectively revert to the
ones given by rigid rotator model when the deformation parameter ¢ equals 1.

V. Hy7y(4) ® SU(2) Symmetry and the Interactions
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of Vibrations and Rptations

In the above sections, we suggested the models possessing H,(4) and SU,(2)
quantum group symmetries to describe the vibrational and rotational struciures of
diatomic molecules separately, with the interaction between the two motions neglected.

However, a thorough treatment of vibrating and rotating diatomic molecules should
not avoid the interactions between vibrations and rotations, with the quantum group
symmetry H.(4) ® SU,(2), and the deformation parameters may be formal functions
of the elements of the other component in the tensor product. But the nontriviality
of the both components brings more ambiguities, since the simultaneous existences of
q and ¢’ introduce more parameters to the workers. Therefore from a practical point
of view, we proposed the hybrid symmetry of H,(4)® SU(2) with q 2 formal function
of the Casimir operator of SU(2) [27].

By assuming the deformation parameter g of H,(4) dependent on J(J + 1), the
eigenvalues of the Casimir operator of the rotational symmetry group SU(2), we sup-
ply a thorough quantum group theoretic treatment of vibrating and rotating diztomic
molecules. The coincidences between the predictions of the new model and the phe-
romenclogical formulae are remarkable. It should be stressed that the dependence of
deformation parameter ¢ on the quantum number of rotation, i.e., ¢ = ¢{(J), char-
acterizes the interaction between vibration and rotation. When J = 0, there is no
rotational excitation and so the results of anharmonic oscillator model [24],[25] are
recovered. On the other hand, when v = 0, there is no vibrational excitations and so
the results of non-rigid rotator model [25][26] can be cbtained. The results of the con-
ventional treatments in view of rotating vibrator are reproduced by the quantum group
theoretic approach, when the analytic formulae of the latter are Tayler-expanded.

We start from introduce the following kind of Hamiltorian describing the vibration
in the molecule

1y
HQ(J)_‘,“, = § (a“l(J)aq(J) + a.q('_])tlz(_])) hcu,,;b, (68)

where ¢ is a function cf the eigenvalues of Casimir operator of the rotational symmetry
group SU(2). The deformation parameter ¢ is no longer a constant, but rather a
variable depending on the spin of the representation of the rotational symmetry group
SU(2) i.e., ¢ = g(J). As can be seen in the following, the influence of ¢ on rotational
quantum number J is not trivial.

lt is obvious that this Hamiltonian commutes with H,,, the rotational Hamiltonian,
t.e., Hys)—uiv and H,,, have simultaneous eigenvalues. Hence the Hamiltonian that




describes the vibrational and rotational spectral structures of _diiatomic molecules with
the interaction of vibration and rotation is as follows

H,; = Hq(J)—uib + Hror
1 + ' i h2 (69)
= —2 (aq(J)aq(J) + aq(J)aq(J)) hcvym + ﬂ-c
‘where I is the moment of inertia, and C is the Casimir operator of the SU(2) algebra.
The commutation relations for the new kind of g-oscillator are [28][27]

= [N+1+0(D)y — IV + (Dl

[%(J)’ “f;(f)]
[N,aqu)} = =) [N»aim] = a0

(70)

qat—-q "

—- The Hepf operations: coproduct, antipode

where N = ala, and [m]; =
and counit can be constructed explicitly [28].

The energy levels for this system are

Buayen(®) = & (1414 (Do + o+ 11T leo) heven (7D

So the vibrational and rotational structure of diatomic molecules have the following
form

1 k2 '
En(v,]) =5 (o + 14 57Ny + o + bY(D)]ay) hevn + s/ +1D. (1)
The vibrational and rotational levels of the electronic state of diatomic molecules can

be written as

E = E;+ E,,

= Eo+*g* {[U + ()Y (Dlgy + [v+b(J)v(J) + ]']q(.l)} he + :—}J(J +1)

¢ h2
- hevy; . ' 1 h*
= B+ 55mny (79 () (v+3+eD)}+ 577 +1),

(73)
where ¢(J) = b(J)y(J) = 0if y = 0. When J =0, there is no rotational excitation,
and therefore

E = Eg+ Eq(J)_v,'b(v)
1 1 (74)
- i o4 = hevo,
Eo + 2sinh (70/2) sinh {% (v + 2 + CO)} 1 uib
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which is just the vibrational spectrum [24][26] When v = 0, there is no vibrational
excitaticn, and so

E = Eo+ Ey)-.s(0)
- hevy; . 3
— RSN 1°7 47! | S =
ﬁ2
+ﬂ.](J + l)s

which coincides with the leading terms in the formula of the g-rotator model possessing
SU,(2) symmetry. It should be noticed that when v = J = 0, we have

1 . 1
E=FE,+ W sinh {‘7(0) (5 + C(O))} hevyy (76)

which is T, the electronic term.

Although v and c are undetermined functions of J, we suppose they are in the
feliowing forms for simplicity

)

Y+ ’YIJ(J + l)s
b {77

A
<~

o
I

co+aJ(J +1),

then we have

cotaJ(J+ 1))} hevy;; (78)
n?
—=J(J+1).

+2IJ( +1)

The above equation is the general form of the vibrational rotational energy levels of
the diatomic molecule. The second term indicates the vibrational spectra with the
interaction of the rotational and vibrational motions, while the third describes the
rigid rotation. The total Hamiltonian for this system is

H = H, + Hy(3)-vis + Hror, (79)

which bears the symmetry of H,(4) ® SU(2), therefore the Hilbert space should be
constructed from the representations of the algebra H,(4) @ SU(2), i.e.,

O, = N,H,(X)e X" 2Y101(8, ), (80)
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As given in [24][25][26][27], the selection rule for infrared spectrum of the model viith
H,(4) ® SU(2) symmetry is identical to the model with H(4) ® SU(2) symmetry,
i.e., v can change by any integral amount although Av = +1 gives the most intense
transitions, and J can change only by unity. Of course Av = 0 is also allowed, but
this does not give rise to any rotational and vibrational spectrum but rather the pure
rotational one. If we now consider a particular transition from v’ to v”, the spectrum
(in wavenumber) should be
Yoib 1
v = Hib [2 (v’ + 3 +eot+al(J+ 1))]

2 {(ro+n J'(J'+1))/2)

vi 7 1 ne 4
—5—23[2(11 +-2'+Co+C1J (J +1))]

+B{J'(J'+1) = J'(J"+ 1)},

(81)
(ot "I H1)) /2

where B, = ;2 and the notation [z}, = [z], is applied for brevity.

From the selection ruie AJ =1 or —1, we have

ve = B2 ot a7+ DT+ D) s

LI G R R T (CAEY) | (82)

+B.{(J +1)(J +2) = J(J + 1)};

and

_ vy 1
o= YR+ itetalT=D)| o
Vyi ]
-4 [2 (v” +3+cot+al(J+ 1))]((’70+’YIJ(J+1_))/2) (83)

+B.{J(J -1) - J(J + 1)},
where J” is replaced by J. Since J can take a whole series of values, these two formulae
represent two series of lines, which are called the R and P branches respectively.

The selection rules for the Raman spectrum are just those obtained in the model
of linear oscillator and rigid rotator. The selection rule for the former is the same as
for the infrared spectrum, while for the latter is AJ = 0,+1. Accordingly for a given
vibrational transition, i.e., a given Raman vibrational band, there are three branches.
Their formulae are readily obtained from

vil 1
AV = Yvib [2 (’Ul + - + Co + Cljl(Jl"i‘ 1))]
2 2 ‘ (o I"(J'+1))
vil 1
_1/ b [2 (vu +=4co+ C]J"(J" + 1))] (84)
2 2 (o tm I7(J7+1))/2)

LB {J(J +1) = J"(J" + 1)},
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by substituting J' = J” + 2 (S branch), J' = J” — 2 (O branch) and J' = J” (@

branch) and redenoting J = J:

P

(An)s = “ [2(v'+%+cO+cl(J+2)(J+3))]

{(vo+m (J+2)(J+3))/2)
Vvib

—— [2 (v"+1+00+c1J(J’+1))] (85)
2 2 {(vo+v1J(J+1))/2)

+B,(4J +6), J=0,1,--;

3

y‘;b {2 (U' + % teot+ea(d -2)(J - 1))]

&

I

("ﬁ‘u)o
((vo+71 (J=2){J=1))/2)
— V;ib [2 (‘U” + % + ¢p + CI.I(J + 1)>] (86)
- - {(vot+mJ(J+1))/2)
+B(-4F+2), J=2,3,--;

bl

and

Y

(A = “E2(v+

5 + c0+c1.7(J+1)\

/ J {(o+nJ(J+1))/2)
i-!-coJrc,J(J-I—l))] , J=0,1,---
2 Heotmaa+nyz

(87)

Now we observe the vibrational and rotational structure involving electronic tran-
sitions, for which the spectrum is

no
o
-+ sV

v= (Eé — By + E;(J)--m'b - E;I(J)—uib + B, — E;;) /he, (8%)

where K, B¢ o, Bl and EY, B n)~vinr Ero; are the electronic energy and the
vibrationz! rotational terms of the upper and lower electronic states respectively.
By (y—uipe Elyy and B 1y—vitr Ery belong to different electronic states. The selec-
tion rules to be applied in the present case are those of the symmetric top. Unlike
the case of infrared specira, the present upper and lower states may have different
electronic angular momenta A. If at least one of the two states has nonzero A, then
the selection rule for Jis AJ = J'— J" = 0,+1. However, if A = 0 in both electronic
states, (z.e., the transition is 13 — 1% ). the transition with AJ = 0 is forbidden
and only the transitions with AJ = +1 appear, as for most infrared bands. Thus we
expect to have three or two series of lines (branches), whose wavenumbers are given
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by the following formulae respectively
R branch:
EL— Ef

v = -—

he .

Viib [ ( oY \
1¥b gy g+ (J+1)(T+2
5 T3 0 l( )( ))1 ((w-{,-‘.-‘v;(-]‘i-l)(-]*”))/z)

1"

. 1
_”‘21" [2 (v" + -4+ GIT+ 1))]

2
+{BY(J+2)(J +1) = BJJ(J +1)};

(G 040)/72)

(89)
and
Q branch:
Ey - Eg
he

Vb [o (0 L X | 0 4 1 90
+——[2('u-|——+c 'chJ-l.—l)l . (90)
2 g T ( ) J((73+7{J(J+1))/2)

P4

ﬂ'i_b " l. " o \.i
- [2(1; +.,'T'Co+-q~'7(-]+1)/J(

(~g+pI(I413)/2}

+ (B, - BY)J(J +1)
and

P branch:
E,— Eg

>
[y}

V,'b [ ( ! 1 7 \1.
10 o (4 =+ (I 1) (91)
27 4 ) ) J((vsw;u—m)/z)

SV

"
—V—;‘E [2 (v" + % ++IT+ 1))]

+{B'(J - 1)J - B/J(J +1)}.

(( A4 T(I+1))/2)

Now, we have a complete description of vibrating and rotating diatomic molecules

by the mode! suggested. Rewrite energy specirum in (78) into the following

v = A+ Bsioh{(y+mnJ(J+1) (v+i+etalll+ 1)} )
+B.J(J +1)
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Ko B= Vyib
he 2sinh (%70 + %'le(J + 1))

In table 4, we give parameters A, B, ¢g, ¢; and 7,, 7; in the mode! for some
randomiy selected moiecules and states. If one Taylor expands (92), the parameters
in the usual rotating oscillator model, T., we, wez., weye and . are reproduced. In
table 5, we show these parameters computed for the molecules and states listed in
tabie 4. It should be noticed that the data in table 3 coincide with the empirical ones
accurately [21].

where we denote A =

In (77), we only demonstrated the linear term of J(J +1), but ignored the kigher
order terms of J(J + 1). f we consider the contributions of terms of higher orders are
taken intc account, more accurzte results will be obtained to describe the vibration-
rotational structures,

Y =% +nJ(J+ 1)+ 7 (J(J+ 1)),
o) =co+er J(J+ 1)+ ¢ (J(J + 1))%,

The Tayicr expansion of the energy level formula reproduces 7., we, wez., wey, and
@, P, and D, accurately. In table 6, we give parameters 4, B, o, 71, 72 and ¢, ¢,
¢ for some randomiy selected molecules and states. Table 7 lists the leading torms cf
the Taylor expansions, computed for the indicated states of particular molecuies. Ali
the data coincide with experimental ones very satisfactorily [21}]22].

V. Discussions and Remarks

Quantum group as & beautifuli mathematical structure has been applied in scme
quantuin systems, such as the exacily solved statistical models, integrable quantum
systems and conformai field theories in recent years. More and more physicists pay
attentions to possible applications of quantum groups in other fields, for they are pe-
tential dynamical symmetries in the extensions of the above theories. In this paper,
we stressed the possibility that the vibrational and rotational structures in diatomic
molecules can be described pheromenologically by quantum groups. The vibrating
and rotating diatomic molecule can be described by quantum group theoretic ap-
proach compactly. All the results of anharmonic oscillator plus rigid rotator model and
vibrating rotator model can be reproduced from the Taylor expansions of the analytic
formulae of the quantum group theoretic approach. The fitting of the approach with
experimental data is satisfactory.
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The Dunham phehomené!ogical formula for vib'ratio:‘.'a‘fl_' excitations stimulates one
to propose the following Hamiltonian for th_e'mdlecuie‘i”n obviously: the most direct
Cway, ' ‘ L S S

FEERNPY M O e CINE L TN 0
hoyip = hew, kN +35) - hewexe \ N + 5} + heweye \N+5) +-- (94)
° \ <~ R 7 N =
This Hamiltonian describes a sysiem with nonlinear potentiai depending on the energy
level. If one rewrites h,; into ccordinates, one obtains

- pr B A .
huis = — o=y + 7, 93
872m Oz? . (95)
and
.1 o, 2 ' 1\ o
V= é (27wec) ma” — liciweTe (N + %) + hawy, (N + ;) 4+ .- (96)

it is obvious that V is the pseudc-potentia! that depends on the energy eigenvaiues.
This point ic clear if we rewrites the Schrodinger zquation into
B 9a)
Sz*m Oz

+ Veflaydlz) = E(a), (07)

where Vss(z) = l:f/d') 1~ is the effective potential. The pseudo-potential is currentiy
a common concept frequantly applied in theories of nuciear physics, and its dependence
on the states reveals a general feature of the dynamicai noriinearities in the realistic
systems.

The conventional medel of nonlinear osciflator zppiied to explain the Dunham
formula (9) (without rotational excitation) intreduces local potential of the following

type

U= %m (;}zrw',c)2 2+ ax® bz’ + -, (98)
where BU HU
1 1 [«
=== =— | = . 9
a 6 ( d-'l:a ) r=re ’ b 24 ( dz“ ) T=Te ( 9)

The energy eigenvalues are obtained by 2-nd order perturbation (to reproduce z.)
and 3-rd order perturbation (to reproduce ), while the wavefuactions of the linear
oscillater are modified by i-st and 2-nd order perturbations. As we require that the
energy spectra and the selection rules of the pseudc-potential model and the local
potential model ccincide, these two models are essentially identically effective, if one
ignores the differences between the the wavefunctions of the pseudo-potential model
(which are just those of the linear oscillator) and thase of the local potential model

180



(whick are the wavefunctions of the linear oscillator modified by 1-st and/or 2-nd
order perturbations). Because the smali differences between the wavefunctions yielded
from the two models are difficult to detect experimentally (if not in principle), one
has the freedom to favour either of the models. After all, we stress that the new
Hamiltonian in (94) is the most direct conjecture from the Dunham formula (9), and
is therefore meaningfull to be inverstigated, if one is not prejudiced against models
involving pseudo-potentials. The Hamiltonian (94) is invariant under transformations
of quantum symmetries®.

it should be emphasized that the Yang-Baxter equations associate to the quantum
groups are certainly (rather hidden) symmetries of the diatomic system, this is an
interesting topic without explicit formulation. The quantum groups’ induced currents
should also be found and explored in the newly set-up model, which may reveal some
hidden nature of the molecule. We hops the forth coming works along these lines
will support or finally verify definitely our idea that the quantum group symmetries
are dynamical symmetries in the system of the diatomic molecule, in other words, the
treatments presented in this paper are not merely phenomenological ones.

It is also worth noting that the nuclear shell model can also be extended by replacing
some or all of the thiee components by the g-deformed harmonic oscillator(s), and the
extended mode! will certainly give exact descriptions to the violations cf the spherical
symmetry of the spherically cymmetric system and the equidistancy of the energy
levels, and therefcre may be an ezactly selvable model suitable in dealing with the
structures of some deformed nuclei.

We end this paper by remarking that this quantum group theoretic approach can
be possioly applied in other fields of physics, such as the quasi-motecuiar structures in
heavy-ion resorances [29}{30], whick will be dealt with in our forth coming publication;

vy g
and the non-finear vibrations in the hydrogen bonds which are convestionally approx-
imated by the effective potentials of forms of Toda lattice potential, Leninard-Jones
potentiai and 2 — 2 potential {31]. This new approach will bring exact solutions of
wavefunctions and energy levels tc the considered systems, provided that the quantum
group symmetries are shown qualified az dynamical symmetries of these systems where
the SU(2) symmetry is apparently broken.
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Table captions

Table 1. The parameters are determined phenomenologically for the spectra of
the g-oscillator model to meet the vibrational spectra of some diatomic molecules
randomly selected.

Table 2. The parameters T,, w,, w.z. and w,y, reproduced. They meet the
observed values [21][22][23] very accurately.

Table 3.The comparison of the observed and calculated values fer HC! absorption
spectrum in the far infrared. The parameter ¥ is 0.010744 and H = 967.49(cm™1).

Table 4. The parameters are computed for the energy spectra of the g-oscillator
model to meet the vibrational energy spectra of some diatomic molecules and their
particular states randomly selected.

Table 5. The parameters T, w,, Wz, W Y. and a, reproduced. They meet the
‘observed values [21][22][23] very accurately. ’

Table 6. When the deperdences of ¢ and c on the rotational quantum number J
is modified by (J(J + 1))* terms, the parameters are computed for the energy spectra
of the g-oscillator model.

Table 7. The parameters T, we, WeTe, WeYe, e, Fe and D, reproduced. They
can be seen to meet the observed values [22] very accurately.
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Table 2.

Molecule State T. C W WeTe Wele
Agl"CP® | B 34 31606.92 | 281.0 6.00 —0.095
AT pyr™ A 35879.5 297.2 6.40 —0.527
AlPTCP Al 38254.0 449.96 4.37 —0.216
AP R19 Al 43935 822.9 8.5 —0.187
BUgy™ Al 33935.3 637.63 17.58 1.1
(BEH?™ |ATST | 394162 | 100641 | 8.49 ~0.16
Bi2® B 17742.3 132.21 0.3009 —0.000474
Bi?9Br® | A 20532.0 135.91 0.534 -0.1030
B2 35 B 22959.7 381.0 3.00 - 0.10
c}? c lﬂg 34261.9 1809.1 15.81 —4.02
cr BN, | 10306.26 | 1788.22 | 16.44 —0.5067
Cal®F1o Al 16482.1 592.0 3.427 0.0619
(CE)* |AI | 205069 |5648  |4.13 —0.038
CI3®F19 A 3 18956 313.48 2.217 —0.400
c201e ¢ 31 62299.4 1137.79 7.624 —0.1125
C'Sé33 B (1Hu) 13043.87 | 34.230 0.07799 —0.0001881
Cs;zs X 15, 0. 41.990 0.08005 —0.0001643
Csis gl Alxt 18405.2 204.0 —5.70 —0.350
Table 3.
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J | ve=p (cm—l) the e _ Vthe

0 20.79

1 41.57

3 83.03 | 83.06 -0.03

4 (104.1) | 103.75 0.35

5 124.3 | 124.39 -0.1

6 145.03 | 144.98 0.05

7 165.51 | 165.50 0.01

8 185.86 | 185.95 —0.09

9 206.38 | 206.30 0.08

10 226.50 | 226.57 —0.07

Table 4.

Molecule State A B Yo
Aul® H! AT+ 19868.80 16067.03 0.1188428
AuHT | X v+ | —752970.26 | T783168.35 | 1.0702055~*
AV H? | X 'S4 | —409785.87 | 439564.55 | 1.02805372
(BOHY)T | ATST | —152017.04 | 225454.84 | 1.2428208°2
(BePHY)r | X 1T+ | —1403198.58 | 1433874.68 7.5308293~3
(CIy* A | _5727029 | 92182.84 | 1.16744497
(CIB)* AT | 134.68506 | 34769.237 | 2.00918482
(CT°0MYF | B?5* | 05049.22 | 15154.84 | 3.370260~°

(croytr | X ot —88949.22 | 169548.88 | 1.377247972

(Mg®H?)* | AL 27825.20 29018.47 | 2.931283~2

(Mg¥H*)* | X 15t —39907.35 58603.67 | 2.858133~2

Table 4. (continued)
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Molecule State o] co ca
AuTH! A'S4 ] —3.437%] 4263415 | —1.157°
AuH' [ X 94 | —4.34710 | 120.74304 | —8.35~¢
Aul®H? | X '$+ | —3.71710 | 116.78317 | —4.83~°
(Be®HY)Y* | A'S*t| —2.517%] 81.746397 [ —9.71°°
(BeHY)* | X '+ | —-1.66"1° | 181.06518 | —9.91-¢
(CLB%)y*+ A | -1.31-19] 86.521301 | —5.62~7
(CcB3¥)*+ AMI| —1.147%| 31.316138 | —2.80~7
(C120%)+ | B 2%+ | —1.188 [ —56.17106 | —5.10~°
(CO¥)* | X *p+ 0.007° | 1067.7671 | —3.67"7
(Mg#HH)* | At | —1.4477] 9.622465 | —1.29-¢
(Mg*H:)* | X 'St | —2467%| 26.20894 | —5.45-6
Table 5.
Molecule State T, We WeT, Wele .
Aul® H1 A Dt | 27665.7 | 1669.55 | 55.06 —-3.93 0.249
Au7gt Xzt 0.0 | 2305.01 | 43.12| -0.044 | 0.2136
Aul®"H? X1zt 0.0 | 1634.98 | 21.655 | —0.0288 | 0.07614
(BeHY)* | A'S* |[39417.0 | 1476.1 14.8 | —0.038 | 0.1249
(Be*HY)* | X 15t 0.0 2221.7 39.79 | -0.021| 0.2935
(C13%)* A I 20797.3 572.3 5.32 | —0.013 | 0.0028
(CB®Y* A °TI | 20596.9 564.8 4.13 | -0.038 | 0.0017
(C?01)* | B 2xt | 45876.7 | 1734.18 | 27.927 0.3283 | 0.03025
(CH?O1)+ | X 25+ 0.0 | 2214.24 | 15.164 | —0.0007 | 0.01896
(Mg¥H*)* | A%+ | 35902.1 817.0 3471 -0.117 0.023
(Mg»H?*)* | X 1o+ 0.0 1226.6 16.3 | —0.i67 0.064
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Table 6.

Molecule State A B ~Yo 7 Y2
KD ATY | 16635.94 | 3943.851 | 5.17837 2 | —1.747" | —=7.947"
La'™®0' | C Iy, | 63859.96 | 52289.1 1.1899672 | —3.7371° 3.871%
La'™0" | A' "Ag/, | 71773.46 | 43052.08 | 1.00781~% —1.53710| 120718
La'*01'® A’2A3/2 28273.81 | 42532.06 | 1.72647°% | —1.5177| 117"
La™@0%® | A%+ | 20780.41 | 42532.06 | 1.72647-2 | —1.327° | —9.707*°
Table 6.(continued)
Molecule State Co c 2
KD AT | 12.78199 | -7.617° 1.857Y
La'™®0™ | C 1y, | —60.8124 ~2.75"7 | 1.707"
La®0® | A Ay | —117.2722 | 53377 | 3137
L0 | A7 Agjp | —27.27976 | ~1.62577 | —2.967%°
La®01 | A it | —27.27976 | —1.42177 | —1.4771
Table 7.
Molecule State T, we | wee Wele o, D, Be
KD AT | 10059.0 | 161.1 | 3.25 | —0.0720 | 0.0127 | 2.77°| 0.07%°
La™0® | C ’M,), | 22631.3 | 792.37 | 2.919 | 0.0187 | 0.0016 2.97°7| -3.57°
La™0™ | A"2A;,, | 8190.1 [ 773.87 | 3.229 | 0.0131 | 0.0016 29477} —2.77°
La'®0™ | A" ?Nyjp | T493.4 | 817.26 | 3.097 0.0406 | 0.0016 | 2.94°7 | —2.7°°
| Lal®0% | A'Dt 0] 817.26 | 3.097 | 0.0406 | 0.0014| 2.677 | 0.07%°
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