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RESUMO

Esta tese visa realizar um estudo acerca das frequências quasinormais das p-branas negras

utilizando um campo escalar de teste. No contexto da correspondência AdS/CFT estudamos

alguns aspectos da formação de estados supercondutores na teoria de campos definida na borda

do espaço-tempo de Gauss-Bonnet AdS d-dimensional.

Apresentamos a derivação das soluções das p-branas negras, bem como a análise de sua

estrutura causal. Revisamos o regime perturbativo da Relatividade Geral e a interpretação dos

modos quasinormais de um buraco negro em termos dos elementos que compõem a corres-

pondência AdS/CFT.

Estudamos a evolução de um campo escalar sem massa na geometria das p-branas negras

em detalhe, sendo que utilizamos o método semianalı́tico WKB e a integração caracterı́stica

(Problema de Goursat) para calcular as frequências quasinormais correspondentes. Por fim,

apresentamos uma expressão aproximada de um estado supercondutor na teoria de campos

definida na borda do buraco negro de Gauss-Bonnet AdS através do dicionário AdS/CFT.
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ABSTRACT

This thesis aims at studying the quasinormal frequencies of black p-branes using a scalar

field in the probe limit. In the context of AdS/CFT correspondence we study some aspects

regarding the formation of superconductor states in the field theory set on the AdS boundary of

the Gauss-Bonnet AdS spacetime.

We present the derivation of black p-brane solutions, as well as the analysis of its causal

structure. We review the perturbative regime of General Relativity and the interpretation of the

black hole quasinormal modes in terms of the correspondence AdS/CFT.

We study the evolution of a massless scalar field in the geometry of black p-branes in detail,

and we use the WKB method and the characteristic integration (Goursat’s problem) in order to

calculate the corresponding quasinormal frequencies. Ultimately, we present an approximate

expression for a superconductor state in the field theory defined in the AdS boundary of Gauss-

Bonnet AdS spacetime.
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“Por vezes à noite há um rosto

Que nos olha do fundo de um espelho

E a arte deve ser como esse espelho

Que nos mostra o nosso próprio rosto”

-Jorge Luis Borges

Arte Poética
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6.3 Campos clássicos definidos no bulk . . . . . . . . . . . . . . . . . . . . . . . 81

6.4 Soluções semianalı́ticas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
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são b = 0.5, L = 0 e β = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
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massa do campo escalar em d = 5. As quatro linhas de cima para baixo corres-

pondem ao valores de massa m2L2 =−4, −3, −2 e −1 respectivamente. . . . . 85



Lista de Tabelas

5.1 Frequências quasinormais escalares para p = 0, 1, 2, 3 e 4 com a = 2 e b = 0.5. 66

5.2 Frequências quasinormais escalares para p = 4, 5 e 6 com a = 2 e b = 0.5. . . 66
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Capı́tulo 1

Introdução

A Relatividade Geral é a teoria fı́sica mais bem sucedida em explicar o universo em larga

escala. Relaciona o conteúdo de energia e matéria de uma dada região do espaço-tempo com a

dinâmica de sua geometria. A equação que rege esta dinâmica é a equação de Einstein,

Gab +Λgab =
8πG
c4 Tab , (1.1)

onde o lado direito representa o conteúdo de energia e matéria e o esquerdo as propriedades

da geometria. São muitos os fenômenos fı́sicos descritos por estas equações. Podemos citar

o desvio da trajetória de raios luminosos devido a campos gravitacionais, o arraste do espaço-

tempo nas vizinhanças de corpos massivos em rotação, a previsão de ondas gravitacionais e,

talvez a previsão mais intressante, a da existência de buracos negros.

Buracos negros surgem naturalmente como soluções exatas das equações de Einstein. São

de grande importância para o entendimento da gravitação quântica, já que descrevem um estado

extremo da matéria: uma quantidade enorme de massa concentrada em uma região de volume

zero. Pelo lado astrofı́sico, os buracos negros são de suma importância pois aparecem como o

produto final do colapso gravitacional de estrelas massivas. Possı́veis candidatos incluem cor-

pos extremamente massivos e densos, cuja explicação teórica mais aceita é que sejam buracos

negros. Recentemente, estudos sobre a estrutura galáctica e observações de órbitas de corpos

indicam que em todas as galáxias espirais, tal como a Via Láctea, possuem um buraco negro

super massivo no seu bojo central.



14

As equações da Relatividade Geral são altamente não-lineares, devido a isso a utilização de

técnicas aproximativas é bastante comum. Em particular, para o estudo de perturbações em bu-

racos negros, a teoria de perturbações em Relatividade Geral é amplamente aplicada. Tal estudo

teve inı́cio com o trabalho de Regge e Wheeler [1] na década de 1950. Naquele trabalho, foi ana-

lisada a estabilidade do buraco negro de Schwarzschild usando para isto pequenas perturbações

em sua geometria usando técnicas que são empregadas até hoje nesse tipo de estudo. Outros

trabalhos pioneiros na mesma linha são os de Vishveshwara [2] e de Zerilli [3].

De um modo geral, perturbações devido a campos de teste ou mesmo a geometria nas

vizinhanças de horizonte de eventos de um buraco negro evoluem com frequências bem ca-

racterı́sicas denominadas frequências quasinormais. Este termo foi introduzido por Press [4].

As frequências quasinormais dependem exclusivamente dos parâmetros que definem a famı́lia

de buracos negros considerada, e não da perturbação inicial. Além disso, conforme será visto

em mais detalhes no presente trabalho, analisando o espectro quasinormal de um buraco negro

podemos descobrir se a solução é estável ou não frente a pequenas perturbações: se a parte

imaginária dessas frequências for positiva significa que as perturbações crescem com o tempo

tornando o sistema instável.

Além das aplicações em astrofı́sica, recentemente tem havido forte interesse no estudo dos

modos quasinormais no contexto da correspondência AdS/CFT (Anti-de Sitter/Conformal Field

Theory), proposta inicialmente por Maldacena [5]. Segundo esta conjectura, existe uma relação

de correspondência entre uma teoria de cordas num espaço-tempo do tipo AdS e uma teoria

de campos conforme sobre a fronteira desse espaço. De modo que buracos negros no espaço

AdS correspondem a um estado aproximadamente térmico na teoria de campos. Foi devido

ao trabalho de Horowitz e Hubeny [6] a primeira interpretação dos modos quasinormais em

termos da correspondência AdS/CFT. Nessa interpretação, perturbar um buraco negro significa

perturbar o estado térmico correspondente na teoria de campos. O tempo de amortecimento, isto

é, o tempo que este estado térmico da teoria de campos leva para voltar ao equilı́brio, é dado

pela parte imaginária da frequência quasinormal fundamental. Mais tarde, Birmigham et al [7]

mostraram que há uma concordância exata entre as frequências quasinormais de perturbações
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de vários spins do buraco negro BTZ(Bañados, Teitelboim, Zanelli) [8] e os pólos da função de

Green retardada das correspondentes perturbações na teoria conforme dual em duas dimensões,

definida na borda do espaço-tempo.

Um dos ingredientes fundamentais da corresponência AdS/CFT são as soluções das p-

branas negras. Tais soluções foram obtidas por Horowitz e Strominger [9] no limite de baixas

energias da teoria de cordas do tipo IIA/B. Como será tratado no capı́tulo 2 deste trabalho, as

p-branas negras podem ser interpretadas como buracos negros em 10 dimensões, já que, para

uma dada escolha de parâmetros, apresentam uma singularidade fı́sca coberta por um horizonte

de eventos, que também é uma superfı́cie de redshift infinito. No limite próximo do horizonte as

p-branas se reduzem ao espaco-tempo AdS, que no exemplo original de Maldacena [5] é usado

como dual gravitacional da teoria de Yang-Mills através do uso da correspondência AdS/CFT.

Além do escopo do estudo dos modos quasinormais, buracos negros AdS têm outras aplicações

no contexto da correspondência AdS/CFT. Em particular, o estudo de estados supercondutores

na teoria de campos dual, usando para isso um sistema gravitacional formado por um buraco

negro carregado AdS e um campo escalar carregado. Esta proposta é devida a Gubser [10].

Inúmeros outros trabalhos seguindo esta linha formam levados a cabo, veja a revisão de Her-

zog [11] e suas referências. Em particular, destacamos o estudo do efeito de correções na

curvatura da geometria do bulk na formação do estado supercondutor na borda [12].

O trabalho apresentado nesta tese consiste no estudo das frequências quasinormais das p-

branas negras com o objetivo de observar a estabilidade desses espaços-tempos. Analisaremos

a evolução de um campo escalar sem massa na vizinhança do horizonte e eventos através do

método semianalı́tico WKB e um método numérico baseado no problema de condições iniciais

caracterı́sticas. Outro ponto analisado nesta tese, é o da formação de um supercondutor ho-

lográfico tendo como dual gravitacional o buraco negro de Gauss-Bonnet AdS em d dimensões.

Os assuntos abordados estão divididos da seguinte maneira.

No capı́tulo 2 faremos uma revisão pormenorizada da derivação das soluções das p-branas

extremas e das p-branas negras e analisaremos a sua estrutura causal. O principal objetivo é

caracterizá-las como buracos negros em dimensões mais altas. Procuraremos pela localização
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das singularidades, horizontes de eventos e superfı́cies de redshift infinito.

No capı́tulo 3 faremos uma breve revisão da teoria de perturbações em Relatividade Geral e

definiremos modos quasinormais em termos de pólos das funções de Green retardadas. Também

apresentaremos os rudimentos dos dois métodos numéricos empregados neste trabalho para o

cálculo das frequências quasinormais das p-branas.

O capı́tulo 4 basicamente traz as motivações do porque estudar modos quasinormais no

contexto da correspondência AdS/CFT. Em particular a sua interpretação em termos dos pólos

das funções de Green retardadas da teoria de campos definida na borda AdS. Daremos ênfase ao

trabalho realizado por Son et al [13] que postularam uma prescrição para o cálculo das funções

de Green retardadas baseada apenas na análise da evolução de campos de teste no bulk.

No capı́tulo seguinte tratamos em detalhe as frequência quasinormais escalares das p-branas

extremas e negras que compõem o principal resultado desta tese.

O capı́tulo 6 trata do método semianalı́tico para a obtenção da densidade de um estado

supercondutor de uma teoria de campos definida na borda do espaço-tempo do buraco negro de

Gauss-Bonnet AdS.

Por fim, temos as conclusões do trabalho e as perspectivas futuras.



Capı́tulo 2

As p−Branas Negras

Estudaremos neste capı́tulo as soluções das p−branas negras. Tais objetos podem ser in-

terpretados como uma famı́lia de buracos negros extendidos em D dimensões caracterizada por

dois parâmetros.

Nosso ponto de partida será uma ação bem geral em D dimensões, para em seguida obter

as equações de movimento dos campos envolvidos. Por fim, faremos uma escolha adequada de

parâmetros e imporemos as simetrias convenientes para obtermos as p-branas negras. Seguire-

mos de perto as revisões de R. Argurio [14], K. Stelle [15] e a dissertação de L. Beviláqua [16].

2.1 Ação das p-branas e equações de movimento

Consideremos uma teoria clássica em D dimensões que inclua gravitação, um campo di-

latônico e uma n−forma intensidade de campo, cuja ação é dada por

I =
1

16πGD

∫
dDx

√
−g
[

R− 1
2

∂aΦ∂aΦ− eAΦ

2n!
F2

n

]
, (2.1)

sendo GD a constante da gravitação em D dimensões, A é a constante de acoplamento entre o

dı́laton e a n-forma, R o escalar de Ricci, g o determinante do tensor métrico gab, Φ o campo

escalar dilatônico e Fn a n-forma intensidade de campo. Os ı́ndices latinos a,b referem-se as

coordenadas de todo o espaço-tempo D-dimensional, isto é a,b = 0,1...,(D− 1) e o ı́ndice n
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representa a ordem da n-forma1.

Nosso ponto de partida para o estudo das p-branas negras será a ação acima descrita. O

primeiro aspecto a ser estudado é o das equações de movimento, que são obtidas utilizando-se

o princı́pio da mı́nima ação aplicado à cada um dos campos que compõem a teoria.

Começando pelo campo dilatônico Φ, a variação da ação I em relação a este campo é

δΦI =
1

16πGD

∫
dDx

√
−g

[
−1

2
δΦ

(
gab∂aΦ∂bΦ

)
−

δΦ
(
eAΦ)

2n!
F2

n

]
. (2.2)

Da total simetria do tensor métrico gab, o primeiro termo do integrando pode ser escrito

como −gab∂aΦ∂b(δΦ). O segundo termo pode ser escrito como − A
2n!e

AΦδΦ. Substituindo

estes dois resultados em (2.2), obtemos

δΦI =
1

16πGD

∫
dDx

√
−g
[
−gab∂aΦ∂b(δΦ)− A

2n!
eAΦ(δΦ)F2

n

]
. (2.3)

A primeira integral que aparece pode ser simplificada através de uma integração por partes.

Usando o resultado∫
dDx∂a[

√
−ggab∂bΦ(δΦ)] =

∫
dDx

√
−ggab∂aΦ∂b(δΦ)+

∫
dDx∂a(

√
−ggab∂bΦ)δΦ,

reescrevemos a primeira integral como2

∫
dDx

√
−ggab∂aΦ∂b(δΦ) =−

∫
dDx∂a[

√
−ggab∂bΦ]δΦ.

Com isso, a variação da ação em relação ao campo dilatônico fica

δΦI =
1

16πGD

∫
dDx

[
∂a
(√

−ggab∂bΦ
)
− A

√
−geAΦ

2n!
F2

n

]
δΦ.

Do princı́pio da mı́nima ação vem que δΦI = 0 para qualquer δΦ, o que implica na equação de

movimento para o campo dilatônico Φ

1√
−g

∂a

(√
−ggab∂bΦ

)
=

AeAΦ

2n!
F2

n . (2.4)

1Para n = 2 e D = 4, Fn é simplesmente o tensor de Maxwell F2 =
1
2 Fabdxa ∧dxb.

2No passo anterior, usamos a seguinte identidade ∇a[
√
−gTa] = ∂a[

√
−gTa], já que, sendo T a = gab∂bφ um

vetor, o objeto
√
−gT a é uma densidade tensorial de peso +1.
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Quando não há interação entre o campo dilatônico e a n-forma, isto é, quando A = 0, o

termo de fonte desta equação é zero. A equação resultante é a equação de Klein-Gordon para

um campo escalar sem massa.

Variando a ação (2.1) em relação ao tensor métrico gab obtemos

δgI =
1

16πGD

∫
dDx

[
δg(

√
−gR)− 1

2
δg(

√
−g∂aΦ∂bΦ)− eAΦ

2n!
δg(

√
−gF2

n )

]
. (2.5)

Explicitando a dependência do escalar de Ricci R na métrica gab como R = gabRab, o pri-

meiro termo do lado esquerdo da equação acima fica∫
dDxδg(

√
−gR) =

∫
dDx

√
−g
[
−1

2
gabR+Rab

]
δgab +

∫
dDx

√
−ggabδgRab ,

sendo que usamos o resultado δg
√
−g =−1/2

√
−ggabδgab.

O próximo passo é mostrar que a segunda integral do lado direito da equação acima pode

ser escrita como uma derivada total. O objetivo é usar o fato de que as variações dos campos

nos extremos é zero, para assim, anular esta integral.

Este trabalho é realizado lançando mão da equação de Palatini. Esta equação relaciona δgRab

com as primeiras derivadas das conexões métricas Γa
bc escritas em um sistema de coordenadas

tal que Γa
bc = 0 mas não suas derivadas. Além disso, derivadas covariantes e parciais ordinárias

coincidem. Esta equação é dada por

δgRab = ∇c [δgΓc
ab]−∇b

[
δgΓd

ad

]
.

Apesar dessa equação ter sido obtida em um particular sistema de coordenadas, o resultado é

uma equação tensorial, ou seja, podemos usá-la em qualquer outro sistema. Assim,∫
dDx

√
−ggabδgRab =

∫
ddx

√
−ggab

{
∇c [δgΓc

ab]−∇b

[
δgΓd

ad

]}
.

Usando o fato de que ∇c
[√

−gT a···
b···
]
=
√
−g∇cT a···

b··· e que ∇cgab = 0, a equação anterior fica∫
dDx

√
−ggabδgRab =

∫
ddx∇c

[√
−g
(

gabδgΓc
ab −gacδgΓd

ad

)]
.

O termo entre colchetes é uma densidade tensorial de peso +1, portanto usando o teorema da

divergência obtemos uma integral de superfı́cie. Da hipótese de que os campos se anulem nessa
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superfı́cie, obtemos o resultado que procurávamos,∫
dDx

√
−ggabδgRab = 0.

Logo a variação do termo de Einstein-Hilbert em relação à métrica é simplesmente∫
dDxδg

(√
−gR

)
=

∫
dDxGabδgab, (2.6)

sendo Gab = Rab −1/2gabR o tensor de Einstein.

Continuando, o próximo termo a ser considerado é a segunda integral de (2.5). Usando o

resultado para variação de
√
−g em relação à métrica, esta integral se escreve como∫

dDxδg

(
1
2
√
−ggab∂aΦ∂bΦ

)
=

∫
dDx

{√
−g
2

[
∂aΦ∂bΦ− 1

2
gab∂cΦ∂cΦ

]}
δgab. (2.7)

Por último temos a variação da n−forma Fn. Expandindo a última integral de (2.5), temos

− eAΦ

2n!

∫
dDxδg(

√
−gF2

n ) =−eAΦ

2n!

∫
dDx

[
δg(

√
−g)Fa1···anFa1···an +

√
−gδg(Fa1···anFa1···an)

]
,

usando o fato de que3

δg(Fa1···anFa1···an) = nFaa2···anF a2···an
b δgab,

e a expressão da variação de
√
−g, obtemos∫

dDx
{

eAΦ

2n!

[
1
2

gabF2
n −nFaa2···anF a2···an

b

]}
δgab. (2.8)

Substituindo o resultado acima e as expressões (2.6) (2.7) em δgI e em seguida usando o

princı́pio da mı́nima ação, obtemos a equação de movimento para o tensor métrico

Gab =
1
2

(
∂aΦ∂bΦ− 1

2
gab∂cΦ∂cΦ

)
− eAΦ

2n!

[
1
2

gabF2
n −nFaa2···anF a2···an

b

]
. (2.9)

Resta-nos encontrar a equação de movimento para a n-forma intensidade de campo Fn. Para

isso, vamos escrevê-la em termos do potencial An−1,

Fn = dAn−1,

3Neste ponto explicitamos a dependência na métrica da n-forma da seguinte maneira: F2
n =

ga1b1 · · ·ganbn Fa1···an Fb1···bn .
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sendo que d denota a derivada exterior4. Esta expressão em componentes fica Fa1···an = ∂[a1Aa2···an],

que para n = 2 se reduz ao conhecido tensor de Maxwell Fa1a2 = ∂a1Aa2 −∂a2Aa1 .

Em vista disso, a variação da ação I será tomada em relação ao potencial Am, ou seja,

δAmI =
1

16πGD

∫
dDx

√
−g
{
−eAΦ

2n!
δAm(F

2
n )

}
. (2.10)

A expressão de F2
n termos de Am é dada por

F2
n = n!(∂a1Aa2···an)F

a1···an .

Ainda precisamos calcular a variação da expressão acima em relação ao potencial Am. Nova-

mente, por simplicidade, calcularemos explicitamente para o caso n = 2,

δAm(F
abFab) = 2gacgbdδAm [∂cAd(∂aAb −∂bAa)] ,

que usado em (2.10), nos permite realizar uma integração por partes em cada termo do tipo

∂c(δAd)∂aAb, já que podemos escrever

√
−g∂c(δAd)∂aAb = ∂c

(√
−gδAd)∂aAb

)
−∂c

(√
−g∂aAb

)
δAd.

O primeiro termo do lado direito é uma derivada total, que integrada dá zero já que as variações

δAd nos extremos se anulam. Portanto, sobra apenas o segundo termo, ou seja,

δAmI(n = 2) =
1

16πGD

∫
dDx

{
∂a

[√
−geAΦFab

]}
δAb,

que implica na equação de movimento,

∂a

[√
−geAΦFab

]
= 0 .

O procedimento análogo pode ser feito no caso geral de uma n-forma Fn. O que se obtém é a

equação de movimento para a n-forma intensidade de campo Fn

∂a1

[√
−geAΦFa1···an

]
= 0. (2.11)

4Por exemplo, a derivada exterior de uma 1-forma ω = A jdx j, sendo A j as componentes de um campo vetorial

covariante e dx j deslocamentos infinitesimais, é uma 2-forma dω dada por dω = 1
2 (∂ jAk −∂kA j)dx j ∧dxk
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Assim, dos resultados (2.4), (2.9) e (2.11) e da identidade de Bianchi para a n-forma, o

nosso sistema de equações de movimento originadas da variação da ação (2.1) é

Gab =
1
2

(
∂aΦ∂bΦ− 1

2
gab∂cΦ∂cΦ

)
− eAΦ

2n!

[
1
2

gabF2
n −nFaa2···anF a2···an

b

]
, (2.12)

1√
−g

∂a

(√
−ggab∂bΦ

)
=

AeAΦ

2n!
F2

n , (2.13)

∂a1

[√
−geAΦFa1···an

]
= 0 , (2.14)

∂(a1Fa2···an) = 0 . (2.15)

2.2 A escolha do ansatz para soluções extensas

Procuraremos resolver o sistema de equações deduzido na seção anterior, impondo certas

restrições de simetria convenientes. Para tanto, faremos escolhas de ansatz apropriados para os

campos envolvidos, a saber, a métrica gab, o campo dilatônico Φ e a n-forma Fn.

Estamos interessados em soluções do tipo p-brana, que são soluções clássicas estendidas em

p direções. Consideraremos o espaço-tempo com D dimensões, sendo p destas as dimensões da

brana e (D− p) as dimensões do espaço-tempo ambiente (bulk). Representamos as p dimensões

da brana pelas coordenadas {xi} e as do bulk por t,zµ, sendo xi as p coordenadas tipo-espaço da

brana, t a coordenada tipo-tempo e zµ as (D− p− 1) coordenadas tipo-espaço do bulk. Deste

modo, todo o espaço-tempo é descrito pelas coordenadas

ya = {t,xi,zµ}, i = 1, · · · , p, µ = 1, · · · ,D− p−1.

Em nosso estudo consideraremos as p direções da brana todas equivalentes, de modo que

haja simetria de translação nessas direções. Como a brana tem uma posição definida em ter-

mos das coordenadas zµ a invariância por translações é quebrada nas direções espaciais que

compõem o bulk, com exceção da coordenada tipo-tempo. Isto implica que consideraremos

soluções estáticas. Além disso, postularemos que o bulk tenha simetria esférica.

Isto posto, o elemento de linha que usaremos como ansatz para o campo gravitacional será

ds2 = dŝ2 +C 2(r)dxidxi , (2.16)
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onde dŝ2 representa o elemento de linha do bulk, que, como foi dito, representa um espaço-

tempo (D− p)-dimensional estático dotado de simetria esférica. Desta forma, podemos escrever

dŝ2 =−B2(r)dt2 +F 2(r)dr2 + r2G2(r)dΩ2
d−2, (2.17)

sendo d o número de dimensões do bulk, isto é, d = D− p e dΩ2
d−2 o elemento de linha da

esfera (d −2)-dimensional.

Substituindo (2.17) em (2.16) temos explicitamente o elemento de linha total

ds2 =−B2(r)dt2 +F 2(r)dr2 + r2G2(r)dΩ2
d−2 +C 2(r)dxidxi . (2.18)

Notemos que se p= 0, o elemento de linha é simplesmente o de um espaço-tempo esfericamente

simétrico. Como nosso objetivo são soluções extensas que possuam horizonte de eventos, o

problema a ser resolvido neste caso é o de simplesmente encontrar soluções de buracos negros

esfericamente simétricos em d dimensões.

Uma escolha adequada para a n-forma intensidade de campo é o chamado ansatz elétrico,

que consiste na (p+2)-forma

Ftσ1···σpr = εσ1···σp∂rE(r) , (2.19)

sendo εσ1···σp a densidade tensorial de Levi-Civita5. Esta escolha para Fn satisfaz a identidade

de Bianchi trivialmente.

Devido à simetria esférica do bulk, o campo dilatônico deve depender apenas da coordenada

radial r, logo

Φ = Φ(r) . (2.20)

Lançando mão das escolhas feitas para os campos do nosso sistema, podemos explicitar as

equações de movimento para em seguida buscar algumas de suas soluções.

5A densidade de Levi-Civita εσ1···σp é uma densidade tensorial de peso +1 totalmente antissimétrica, cujo valor,

em qualquer sistema de coordenadas xi =
(
x1, · · · ,xp

)
, é +1 ou −1 se σ1 · · ·σp é uma permutação par ou ı́mpar de

1, · · · , p.
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A dinâmica da n-forma intensidade de campo Fn é regida pela equação (2.14). Utilizando o

ansatz elétrico para a (p+2)-forma nessa equação, obtemos6:

∂r

[
eAΦ (Gr)d−2

BF C p ∂rE(r)

]
= 0 ,

como se observa, o argumento da derivada é igual a uma constante. Chamando-a de Q, tiramos

o valor de ∂rE(r)

∂rE(r) = BF C pe−AΦ Q

(Gr)d−2 ,

que substituı́do em (2.19) nos dá a solução para a (p + 2)-forma intensidade de campo em

termos das componentes do tensor métrico e do campo de dı́laton

Ftσ1···σpr = εσ1···σpBF C pe−AΦ Q

(Gr)d−2 . (2.21)

Este resultado nos permite calcular os termos do lado direito das outras equações de movi-

mento que dependam de Fn. Para tanto, vamos colecionar algumas expressões:

F2
(p+2) = (p+2)!Ftσ1···σprF tσ1···σpr,

onde usamos o fato de que εσ1···σpεσ1···σp = (p+2)!.

Substituindo (2.21) na expressão acima, obtemos

F2
(p+2) =−(p+2)!e−2AΦ Q2

(Gr)d−2 . (2.22)

Outra expressão muito útil é

Faσ1···σp+2Fbσ1...σp+2
=−(p+1)!δ̂a

be−2AΦ Q2

(Gr)2(d−2)
, (2.23)

onde δ̂a
b = δa

t δt
b +δa

i δi
b +δa

r δr
b.

Devido ao fato do campo dilatônico depender apenas da coordenada radial, o lado esquerdo

da equação (2.13) é simplesmente

F −2
{

Φ′′+

[
(lnB)′+ p(lnC )′− (lnF )′+(d −2)(lnG)′+

(d −2)
r

]
Φ′
}
. (2.24)

6Também usamos o valor da raı́z do determinante da métrica
√
−g = BC pF (Gr)d−2 f (θα). As funções f (θα)

dependem das coordenadas angulares que compõem o elemento de linha esférico dΩ2
d−2 = dθ2

1 + sin2 θ1dθ2
2 +

· · ·+ sin2 θ1 · · ·sin2 θd−3dθ2
d−2. Estas funções se cancelam com o denominador fora da derivada.
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Usando a expressão (2.22) no lado direito de (2.13) e igualando ao resultado acima, obtemos a

equação de movimento do dı́laton em termos das componentes da métrica

F −2
{

Φ′′+

[
(lnB)′+ p(lnC )′− (lnF )′+(d −2)(lnG)′+

(d −2)
r

]
Φ′
}
=

−Ae−AΦ

2
Q2

(Gr)2(d−2)
. (2.25)

Vamos agora escrever explicitamente as equações de Einstein (2.12) em termos da métrica

(2.16) e usando as expressões (2.22), (2.23). Antes disso é útil reescrever o tensor de Einstein,

usando o escalar de Ricci, dado por

R =
1
2

∂cΦ∂cΦ+
eAΦ

n!
(2n−D)

(2−D)
F2

n .

As equações de Einstein são totalmente diagonais nesse sistema de coordenadas. Listamos

abaixo as equações na ordem Rt
t , Rxi

xi , Rr
r e Rθα

θα
,

F −2
{
−(lnB)′′− (lnB)′

[
(lnB)′+ p(lnC )′− (lnF )′+(d −2)(lnG)′+

(d −2)
r

]}
=

1
2

(
(n−1)− (D−2)

(D−2)

)
e−AΦQ2

(Gr)2(d−2)
,

(2.26)

F −2
{
−(lnC )′′− (lnC )′

[
(lnB)′+ p(lnC )′− (lnF )′+(d −2)(lnG)′+

(d −2)
r

]}
=

1
2

(
(n−1)− (D−2)

(D−2)

)
e−AΦ Q2

(Gr)2(d−2)
,

(2.27)

F −2
{
− (lnB)′′− p(lnC )′′− (lnB)

′2 − p(lnC )
′2 +(lnB)′(lnF )′+ p(lnC )′(lnF )′

−(d −2)
[
(lnG)′′+(lnG)

′2 +
2
r
(lnG)′− (lnG)′(lnF )′− 1

r
(lnF )′

]}
=

1
2

F −2(Φ)
′2 +

1
2

(
(n−1)− (D−2)

(D−2)

)
e−AΦQ2

(Gr)2(d−2)
,

(2.28)
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F −2
{
−
[

1
r
+(lnG)′

][
(lnB)′+ p(lnC)′− (lnF )′+(d −2)(lnG)′+

(d −2)
r

]
−(lnG)′′+

1
r2 +(d −3)

F 2

r2G2

}
=

1
2
(n−1)
(D−2)

e−AΦ Q2

(Gr)2(d−2)

. (2.29)

2.3 p-branas extremas

Neste ponto estamos em condições de obter a nossa primeira solução. Vamos resolver o

sistema de equações (2.25)-(2.29) para as chamadas p-branas extremas. Estas soluções são ca-

racterizadas por apenas um parâmetro, portanto quando formos resolver o sistema de equações

devemos atentar para o fato de não podermos introduzir nenhuma outra constante além daquela

introduzida em (2.21). Além disso, vamos simplificar as equações escolhendo o chamado cali-

bre isotrópico, que nada mais é que uma redefinição da coordenada radial r tal que

F = G ,

fazendo com que a métrica do bulk possa ser escrita simplesmente como a multiplicação da

função G2 por uma métrica plana em d dimensões.

Outra restrição que faremos é motivada pela semelhança do lado esquerdo das equações

(2.26) e (2.27). Vemos que estas equações são idênticas se tomarmos B = C . Tal escolha se

traduz na imposição da invariância de Lorentz SO(1, p) no volume-mundo7 da brana.

Com estas escolhas o ansatz (2.18) se reduz em

ds2 = B2 [−dt2 +dxidxi
]
+G2

[
dr2 + r2dΩ2

(d−2)

]
,

e o sistema de cinco equações (2.25)-(2.29) se reduz a quatro, dado que (2.26) e (2.27) se tornam

7Volume-mundo é a trajetória da p-brana no espaço-tempo, da mesma forma que uma partı́cula descreve uma

linha-mundo e uma corda uma folha-mundo.



2.3 p-branas extremas 27

idênticas:

− (lnB)′′− (d −2)
r

(lnB)′− (lnB)′
[
(p+1)(lnB)′+(d −3)(lnG)′

]
=

− d −3
2(D−2)

G−2(d−3) e−AΦQ2

r2(d−2)
,

(2.30)

− (p+1)(lnB)′′− (d −2)(lnG)′′− (p+1)(lnB)
′2 +(p+1)(lnB)′(lnG)′

−(d −2)
r

(lnG)′− 1
2
(Φ)

′2 =− d −3
2(D−2)

G−2(d−3) e−AΦQ2

r2(d−2)
,

(2.31)

−
[
(lnG)′+

1
r

][
(p+1)(lnB)′+(d −3)(lnG)′

]
− (lnG)′′− d −2

r
(lnG)′ =

(p+1)
2(D−2)

G−2(d−3) e−AΦQ2

r2(d−2)
,

(2.32)

Φ′′+
(d −2)

r
Φ′+Φ′ [(p+1)(lnB)′+(d −3)(lnG)′

]
=

−Ae−AΦ

2
G−2(d−3) Q2

r2(d−2)
.

(2.33)

Tomando a combinação {(p+1)× eq.(2.30)+(d −3)× eq.(2.32)}, obtemos a equação

φ′′+φ
′2 +

(2d −5)
r

φ′ = 0, (2.34)

onde definimos φ = (p+1)(lnB)+(d −3)(lnG). Uma solução para esta equação seria φ = b,

sendo b uma constante. Entretanto, estarı́amos violando a nossa hipótese de que a p-brana

seja extrema, isto é, uma solução que dependa apenas de um parâmetro. Então escolhemos

simplesmente b = 0 e temos

(p+1) lnB +(d −2) lnG = 0 ,

o que implica na relação

B(p+1)Gd−3 = 1. (2.35)
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Usando este resultado nas equações restantes, nosso sistema reduz-se a três equações para G e

Φ

(lnG)′′+
d −2

r
(lnG)′ =− (p+1)

2(D−2)
G−2(d−3) e−AΦQ2

r2(d−2)
, (2.36)

Φ′′+
(d −2)

r
Φ′ =−A

2
e−AΦG−2(d−3) Q2

r2(d−2)
, (2.37)

(D−2)(d −3)
(p+1)

(lnG)
′2 +

1
2

Φ
′2 =

1
2

e−AΦG−2(d−3) Q2

r2(d−2)
. (2.38)

Da combinação
{

A× eq.(2.36)− p+1
D−2 × eq.(2.37)

}
resulta

λ′′+λ′ = 0 , (2.39)

em que λ=A lnG− p+1
D−2Φ. Novamente, fixamos λ= 0 para que não apareçam novos parâmetros

na solução. Portanto,

A lnG − (p+1)
D−2

Φ = 0 ,

ou seja,

G = e
(p+1)
(D−2)Φ

. (2.40)

Desta forma, a equação restante (2.38) fica:[
(d −3)(p+1)+ 1

2A2(D−2)
]

A2(D−2)
Φ

′2 =
1
2

e−
2

A(D−2) [(d−3)(p+1)+ 1
2 A2(D−2)] Q2

r2(d−2)
.

Definindo o objeto ∆ = (d − 3)(p+ 1)+ 1
2A2(D− 2) e tomando a raiz quadrada da equação

acima, obtemos [
e

∆
A(D−2)Φ

]′
=±

√
∆

2(D−2)
|Q|

rd−2 ,

cuja integração resulta em

e
∆

A(D−2)Φ
= 1+

1
(d −3)

√
∆

2(D−2)
|Q|

rd−3 , (2.41)

em que usamos a condição de que o valor do campo Φ seja zero no infinito espacial r → ∞.

Além disso, o sinal do lado direito da equação anterior foi escolhido de forma que Φ não seja

singular para valores de r > 0.
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Mostra-se conveniente definirmos a seguinte função em termos de Φ:

H = 1+
1

(d −3)

√
∆

2(D−2)
|Q|

rd−3 ≡ 1+
hd−3

rd−3 ,

que implica em

eΦ = H
A(D−2)

∆ .

Desta forma, as componentes da métrica, o campo dilatônico e a (p+2)-forma intensidade de

campo ficam determinadas:

B = H − (d−3)
∆ , G = H

(p+1)
∆ , eΦ = H A D−2

∆ , Ftσ1···σpr =
Q
|Q|

√
2(D−2)

∆
(H −1)′. (2.42)

Portanto, a solução de uma p-brana extrema esfericamente simétrica é

ds2 = H −2 (d−3)
∆
(
−dt2 +dx2

1 + · · ·+dx2
p
)
+H 2 (p+1)

∆

(
dr2 + r2dΩ2

(d−2)

)
. (2.43)

No decorrer deste trabalho, analisaremos em detalhe as propriedades desta solução. Por hora,

vamos generalizá-la para o caso fora do limite extremo, isto é, considerando mais um parâmetro

nas soluções.

2.4 p-branas negras

Uma solução mais geral do que a que acabamos de obter pode ser encontrada se considerar-

mos que esta depende de mais um parâmetro além daquele que obtemos quando resolvemos a

equação para (p+2)-forma intensidade de campo.

Similarmente ao que foi feito no caso extremo, nosso ponto de partida será a métrica (2.18)

e o ansatz elétrico (2.19) para a (p+2)-forma. Com isto, o sistema de equações que temos que

resolver é o mesmo que no caso anterior (2.25)-(2.29). Entretanto, no caso extremo, observamos

que vale a relação

B p+1Gd−3 = 1 ,

com B = C e F = G , o que não é verdade no caso das p-branas negras. Neste caso, vamos

introduzir uma função f tal que

BC pF −1Gd−2 = f , (2.44)
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que generaliza a relação anterior, que é obtida tomando-se f = 1.

Observando o lado direito das equações (2.25)-(2.29) é útil definir o objeto

S 2 =
e−AΦ

2(D−2)
F 2G−2(d−3) Q2

r2(d−2)
, (2.45)

que permite-nos rescrever o sistema (2.25)-(2.29) como

(lnB)′′+
d −2

r
(lnB)′+(lnB)′(ln f )′ = (d −3)S 2 , (2.46)

(lnC )′′+
d −2

r
(lnC )′+(lnC )′(ln f )′ = (d −3)S 2 , (2.47)

(ln f )′′+(lnF )′′− (lnF )′(ln f )′− (lnF )
′2 +(lnB)

′2 + p(lnC )
′2 +(d −2)(lnG)

′2

+2
(d −2)

r
(lnG)′− d −2

r
(lnF )′+

1
2
(Φ)

′2 = (d −3)S 2 ,

(2.48)

(lnG)′′+
(d −2)

r
(lnG)′+(lnG)′(ln f )′+

1
r
(ln f )′+

(d −3
r

(1− F 2

G2 )

=−(p+1)S 2 ,

(2.49)

Φ′′+
d −2

r
Φ′+(ln f )Φ′ =−A(D−2)S 2 . (2.50)

É conveniente rescrever lnB e lnF nas formas

lnB = lnC + ln B̂, lnF = lnG + ln F̂ ,

onde vemos que o caso extremo é obtido tomando B̂ = 1 e F̂ = 1. Desta forma (2.46) fica

(ln B̂)′′+
(d −2)

r
(ln B̂)′+(ln B̂)′(ln f )′ = 0 , (2.51)

onde eliminamos S 2 usando a equação (2.47).

Inspirando-se no caso extremo, vamos considerar a seguinte combinação de equações (p+

1)×eq.(2.47)+(d−3)×eq.(2.49), com a definição do campo ψ = (p+1) lnC +(d−3) lnG .

Obtemos a equação diferencial

ψ′′+

[
(d −2)

r
+(ln f )′

]
ψ′+

(d −3)
r

[
(ln f )′+

(d −3)
r

(1− F̂ )

]
= 0 . (2.52)
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Nosso objetivo é encontrar uma solução que dependa de dois parâmetros, ou seja, vamos

reduzir nosso sistema a duas funções independentes. É plausı́vel, portanto, tomarmos ψ = 0 a

fim de obtermos uma relação entre C e G

C p+1Gd−3 = 1, (2.53)

já que no final dos cálculos relacionaremos Φ e G . A outra função independente que nos resta

é f . Observando que ln B̂ , ln F̂ e ln f são zero no limite extremo, é consistente tomarmos ln B̂

e ln F̂ proporcionais à ln f , ou seja,

ln B̂ = cB ln f , ln F̂ = cF ln f , (2.54)

onde cB e cF são constantes, que se relacionam por cB − cF = 1 devido à (2.44).

Escrevendo (2.51) em termos de ln f , obtemos

(ln f )′′+(ln f )
′2 +

(d −2)
r

(ln f )′ = 0 ,

que, fazendo a mudança (ln f )′ = g(r)
r , fica

g′ =−g2 +(d −3)g
r

. (2.55)

Integrada, dá o resultado

g(r) =
2µ(d −3)
rd−3 −2µ

.

Portanto,

f = 1− 2µ
rd−3 , (2.56)

sendo µ uma constante de integração, que é o parâmetro adicional que estávamos procurando,

para generalizarmos o caso extremo.

As constantes cB e cF são determinadas através da equação (2.52) fazendo ψ = 0,

(d −3)
r

[
(ln f )′+

(d −3)
r

(
1− e2cF ln f

)]
.

Usando f ′ = (d −3) 2µ
rd−2 =

d−3
r (1− f ) e cB − cF = 1, encontramos

cF =−1
2

, cB =
1
2

, (2.57)
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o que implica em

B̂ = f
1
2 , F̂ = f−

1
2 . (2.58)

Substituindo ψ = 0 em (2.52) e usando o resultado em (2.49) obtemos a equação

(lnG)′′

(p+1)
+

d −2
r

(lnG)′

(p+1)
+

(lnG)′

(p+1)
(ln f )′ =−S 2 ,

que se for comparada com a equação do dı́laton (2.50)

Φ′′

A(D−2)
+

(d −2)
r

Φ′

A(D−2)
+

Φ′

A(D−2)
(ln f )′ =−S 2 ,

justifica fortemente a seguinte igualdade entre G e Φ

G = e
(p+1)

A(D−2)Φ
, (2.59)

da mesma forma que no caso da p-brana extrema (2.40). Substituindo esta igualdade na definição

de S , obtemos

S 2 =
1

2(D−2) f
e−

2∆
A(D−2) Q2

r2(d−2)
.

Com isto, a equação do dı́laton (2.50) fica

Φ′′+
(d −2)

r
Φ′+(ln f )′Φ′ =− A

2 f
e−

2∆
A(D−2)Φ Q2

r2(d−2)
. (2.60)

Substituindo S 2 obtido acima na equação (2.48) e usando nesta a equação (2.49), obtemos

outra equação para Φ

∆
A(D−2)

Φ
′2 − (ln f )′Φ′ =

A
2 f

e−
2∆

A(D−2)Φ Q2

r2(d−2)
, (2.61)

que somada à equação anterior, fornece:(
e−

2∆
A(D−2)Φ

)′′
+

d −2
r

(
e−

2∆
A(D−2)Φ

)′
= 0 , (2.62)

cuja solução é do tipo

e−
2∆

A(D−2)Φ
= 1+

kd−3

rd−3 ≡ K . (2.63)

A constante kd−3 é determinada através da equação (2.61) usando a função f (4.8). Disto,

encontramos uma equação algébrica de segundo grau para kd−3, cuja solução é:

kd−2 =−µ+

√
µ2 +

∆
2(D−2)(d −3)2 Q2 . (2.64)
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A p-brana negra é totalmente caracterizada em termos das funções f e K e de dois parâmetros

Q(ou h) e µ:

B = f
1
2 K

d−3
∆ , C = K − d−3

∆ , F = f−
1
2 K

p+1
∆ , G = K

p+1
∆ ,

eΦ = K A D−2
∆ , Ftσ1···σpr =

Q
|Q|

√
2(D−2)

∆

√
1+

2µ
kd−3 (K

−1)′ . (2.65)

Note que para µ = 0, f = 1 obtemos o valor dessas funções no caso extremo (2.42). Isto posto,

temos a solução da p-brana negra:

ds2 = K −2 d−3
∆
(
− f dt2 +dy2

1 + · · ·+dy2
p
)
+K 2 p+1

∆ ( f−1dr2 + r2dΩ2
d−2) . (2.66)

2.5 Quadro de Einstein e o quadro de cordas

As soluções que obtivemos nas seções precedentes são puramente clássicas. O nosso ponto

de partida foi a ação (2.1), que consiste no termo canônico de Einstein-Hilbert e o termo cinético

de um campo escalar (dı́laton) e o acoplamento deste com uma n-forma intensidade de campo.

Entretanto, tal ação tem origem no setor bosônico da supergravidade, que por sua vez é a teoria

efetiva no limite de baixas energias da teoria de cordas (veja seção 2.7 de [17] e a seção 3.4

de [18]).

No presente trabalho, estamos interessados nas soluções de p-branas no limite de baixas

energias de um tipo particular de teoria de cordas, mas precisamente na teoria das cordas fecha-

das, que contém a gravitação no seu espectro de oscilações. Tais teorias são a teoria de cordas

do tipo IIB/IIA8 com D = 10, cuja ação do setor bosônico no limite de baixas energias é dada

pela ação da supergravidade em 10 dimensões [9]

S =
∫

d10x
√
−g
[

e−Φ (R+4∂aΦ∂aΦ)− 2e2αΦ

n!
F2

n

]
, (2.67)

8Estas teorias descrevem o espectro da corda aberta, sendo a teoria IIB é quiral e a IIA é não quiral. Além

disso, na teoria IIA, o número p de dimensões espaciais da brana é par e o da teoria IIB é ı́mpar. De fato, em nosso

trabalho, a questão da quiralidade não tem relevância já que estamos interessados apenas no setor bosônico. Em

vista disso, omitiremos a designação IIA/B.
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sendo R o escalar de Ricci, Φ o campo de dı́laton, Fn a n-forma intensidade de campo e α

uma constante. Comparando esta ação com a que consideramos para obter as equações de

movimento (2.1), vemos que os campos envolvidos são os mesmos. Entretanto, aparece um

termo de acoplamento entre o escalar de Ricci e o dı́laton ∼
∫

dDxe−ΦR. O que ocorre, é que a

métrica na ação da supergravidade está escrita no quadro de cordas, que nada mais é que uma

transformação conforme da métrica no quadro de Einstein. Esta última é a que consideramos

na ação inicial (2.1). O fator conforme que relaciona os dois quadros é eΦ/2.

Seja, portanto, gab a métrica no quadro de Einstein e gS
ab a métrica no quadro de cordas.

Elas relacionam-se por

gS
ab = e

Φ
2 gab . (2.68)

Pode-se mostrar que através de tal transformação conforme a ação da supergravidade (2.67)

recai na ação inicial (2.1). Desta forma, podemos traduzir tanto a solução da p-brana extrema

quanto a da negra para o quadro de cordas, tendo assim, soluções genuı́nas do setor bosônico

da supergravidade.

Para que obtenhamos as soluções tipo p-branas no quadro de cordas que aparecem no tra-

balho pioneiro de Horowitz e Strominger [9], transformaremos a métrica da p-brana extrema

(2.43) e da p-brana negra (2.66) para o quadro de cordas segundo (2.68) e em seguida faremos

uma transformação conveniente de coordenadas. Os detalhes dos cálculos seguem abaixo.

Passar a métrica da p-brana negra para o quadro de cordas consiste basicamente em mul-

tiplicar cada componente por K A D−2
2∆ . Além disso, definindo uma nova coordenada radial y

através da relação

yd−3 = rd−3 + kd−3 ,

assim como as funções

K+ = 1− ad−3

yd−3 , K− = 1− bd−3

yd−3 ,

com a = kd−3 +2µ e k− = k teremos

K = K −1
− , f = K+K −1

− .
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Estas definições nos permitem escrever a p-brana negra como

ds2 =−K+K
2 d−3

∆ −1
− dt2+K

2 d−3
∆

−
(
dx2

1 + · · ·+dx2
p
)
+K −1

+ K
−2 p+1

∆ − d−5
d−3

− dy2+K
A2 D−2

∆(d−3)
− y2dΩ2

d−2 .

(2.69)

No caso D = 10 com A = 3−p
2 , obtemos as p-branas negras descritas por Horowitz e Stro-

minger [9] e que são um dos ingredientes principais da correspondência AdS/CFT e que serão

nosso objeto de estudo:

ds2 =−K+

K
1
2
−

dt2 +K−
(
dx2

1 + · · ·+dx2
p
)
+

K
− 1

2−
5−p
7−p

−
K+

dy2 + y2K
1
2−

5−p
7−p

− dΩ2
8−p , (2.70)

2.6 Singularidade e horizonte de eventos

Esta seção é dedicada ao estudo da estrutura causal das p-branas negras dadas por (2.70).

Vamos determinar onde a métrica é singular e onde localizam-se os horizontes de eventos.

Para tanto, calcularemos o escalar de Kretschmann Rp(y) = RabcdRabcd , que é uma quantidade

escalar construı́da usando-se o tensor de curvatura Rabcd , portanto independente do sistema de

coordenadas. Os valores de y onde este objeto divergir, implica necessariamente na existência

de uma singularidade espaço-temporal neste ponto. Vamos sempre considerar o caso em que

a ≥ b.

O escalar de Kretschmann para a solução (2.70) é dado por

Rp(y) =
Pn(y)[

1−
(

k−
y

)7−p
]δp

, (2.71)

sendo que
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δp =



1
7−p [(1+ p)+2(5− p)]

se p for par.

30p
40 (p−1)(p−3)− p

6 (p−1)(p−5)+ 8p
35 (p−3)(p−5)

se p for ı́mpar,

(2.72)

e Pn(y) é um polinômio cujo grau n é menor que a potência do denominador para qualquer valor

de p < 7. Observando o denominador de Rp(y), vemos que este diverge para todo valor de p

no ponto y = b, indicando uma singularidade genuı́na neste ponto. Entretanto, Rp(y) é uma

constante em y = a, apesar de nesse ponto a componente gyy da métrica divergir e gtt ser zero.

Disto, concluı́mos tal divergência é apenas uma patologia do sistema de coordenadas.

Analogamente ao caso dos buracos negros esféricamente simétricos, a divergência da métrica

em y = a dá um indicativo de que esta hipersuperfı́cie é um horizonte de eventos. Além disso,

nos casos conhecidos de buracos negros com simetria esférica, o horizonte de eventos coincide

com a superfı́cie de redshift infinito. Vamos procurar por taı́s superfı́cies usando o caso do

buraco negro de Schwarzschild como auxiliar.

As superfı́cies de redshift infinito, para uma dada métrica, podem ser encontradas usando a

seguinte equação [19]

ν = ν0

√
g00(x

µ
f onte)

g00(xµ)
, (2.73)

que relaciona a frequência medida ν por um observador em repouso afastado da fonte, cuja

frequência de emissão, digamos de pulsos luminosos, é ν0. Para que tenhamos uma superfı́cie

de redshift infinito, a frequência ν deve ser zero, isto é, que a frequência emitida ν0 foi infinita-

mente atrasada devido a efeitos gravitacionais. Um exemplo disso é um observador em repouso

medindo a frequência emitida por algo que se aproxima do horizonte de eventos do buraco ne-

gro de Schwarzschild, emitindo periodicamente um pulso luminoso de frequência ν0. Em um

dado momento, tal observador levará um tempo infinito para receber o pulso luminoso emitido,

ele nunca saberá se o aparato atravessou o horizonte. É fácil perceber, que da equação (2.73), a
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igualdade

g00(x
µ
f onte) = 0, (2.74)

nos diz a localização de superfı́cies de redshift infinito. Usando a solução de Schwarzchild

como exemplo, a superfı́cie de redshift infinito aparece como

(1− 2M
r
) = 0, (2.75)

isto é, r = 2M define uma superfı́cie em que o redshift da radiação emitida nesta superfı́cie vai

ao infinito. O que significa que um observador no infinito espacial nunca detectará tal radiação.

É importante observarmos, que o fato de o redshift da radição ir ao infinito não caracteriza um

horizonte de eventos: corpos materiais ainda podem atravessar a superfı́cie de redshift infinito

a partir de qualquer lado da mesma. No caso de um horizonte de eventos, as geodésicas das

partı́culas fı́sicas só podem seguir uma direção para atravessar tal supefı́cie, sem em nenhuma

hipótese, pelo menos classicamente, poder voltar. É o que se chama de membrana de mão única.

Usando a expressão (2.73) na solução da p-brana negra (2.70), encontramos que a superfı́cie

onde ν → 0 ocorre quando

y = a, ∀ p , (2.76)

o que a caracteriza como uma superfı́cie de redshift infinito.

Vamos agora procurar por membranas de mão única, que são hipersuperfı́cies cujo vetor

normal ηa tem norma nula, ou seja, é um vetor nulo. As membranas de mão únicas representam

a região crı́tica onde os papéis de t como coordenada temporal e y como coordenada espacial

invertem-se.

Seja então uma hipersuperfı́cie dada pela equação u(x) = constante. A definição de vetor

normal ηa a uma superfı́cie u(xa) é

ηa =
∂u(xa)

∂xa ,

portanto em nosso caso teremos9

ηa = (0,1,0,0) ,

9Tomamos aqui as coordenadas xi da brana e as coordenadas angulares θα do bulk como constantes.
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e da condição de que este vetor normal seja nulo,

gabηaηb = 0,

vem que

gyy = 0 se y = a (2.77)

A superfı́cie y = a possui duas caracterı́sticas interessantes: é uma superfı́cie de redshift

infinito e também é uma membrana de mão única e como não há divergências no escalar de

Kretschmann esta superfı́cie é um horizonte de eventos. Concluı́mos que existe uma singula-

ridade real em y = b e que y = a é uma membrana de mão única não singular e também uma

superfı́cie de redshift infinito. A configuração p ≤ 6 com a > b pode ser interpretada como um

buraco negro em 10 dimensões.

Dessas considerações, vamos tratar de perturbações escalares na solução (2.70) usando as

técnicas comumente utilizadas no caso de buracos negros da Relatividade Geral.

No caso das p-branas extremas, isto é, quando a = b vemos que a singularidade fı́sica

em y = b e o horizonte de eventos concidem. Nesse caso temos uma singularidade nua em

y = a [20]. A única exceção é a 3−brana extrema, que continua tendo um horizonte de eventos

em y = a, mas agora a singularidade está em y = 0.

Quando tomamos o limite próximo do horizonte de eventos da métrica das p-branas negras,

isto é, na região em que y → a, esta métrica reduz-se ao produto AdSp+2 × S8−p no caso ex-

tremo e, para a > b obtem-se o produto AdSp+2 ×M8−p, sendo M8−p solução das equações

de Einstein [21]. Esse limite próximo do horizonte é bastante similar ao que aparece no caso

do buraco negro de Reissner-Nordström extremo. Neste caso temos o chamado universo de

Bertotti-Robinson, que é o produto AdS2 ×S2 [17].

É importante ressaltarmos como é a geometria nas vizinhanças do horizonte de eventos

da p-brana, pois é nesse regime que se dá a correspondência AdS/CFT. A grosso modo, são

esses espaços-tempos que realizam o lado gravitacional da correspondência. Todos eles são

originários da métrica da p-brana negra [5]. Este ponto será abordado novamente no capı́tulo 4.



Capı́tulo 3

Perturbações Lineares em Relatividade

Geral e Modos Quasinormais

Neste capı́tulo apresentaremos uma breve revisão da teoria de perturbações lineares em

espaços-tempos curvos, em particular aqueles que descrevem buracos negros. O objetivo prin-

cipal é o de estudar propriedades clássicas que caracterizam estados na vizinhança do equlilı́brio

desses espaços-tempos, através da propagação de campos teste nessa geometria.

Além disso, daremos uma introdução aos chamados modos quasinormais e sua relação com

a estabilidade de buracos negros, bem como sua interpretação em termos da correspondência

AdS/CFT. Definiremos os modos quasinormais usando a técnica de funções de Green aplica-

das a equações diferenciais parciais. Este caminho será adotado devido à imediata aplicação

desta definição para o caso do estudo de campos testes (escalar, eletromagnético, espinorial)

evoluindo em uma geometria de fundo e para flutuações em torno do equilı́brio da própria geo-

metria.

Apesar de estarmos interessados principalmente em aspectos da propagação de campos es-

calares na geometria das p-branas negras, é instrutivo gastarmos algum espaço descrevendo

as flutuações da própria geometria no regime linear, já que estas obedecem o mesmo tipo de

equação que aquelas que obtemos quando estudamos a dinâmica de campos teste.
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3.1 Relatividade Geral linearizada

A teoria da Relatividade Geral é uma teoria de gravitação que requer que o espaço-tempo

onde se desenvolvem os eventos fı́sicos seja definido por uma variedade diferenciável que pos-

sua uma métrica lorentiziana. Além disso, é necessário que as equações da relatividade especial

sejam válidas em um sistema inercial local.

A dinâmica do espaço-tempo, descrita pela relatividade geral, é vinculada ao seu conteúdo

de massa e energia. Matematicamente, esta relação é representada pelas equações de Einstein:

Gab +Λgab = 8πTab , (3.1)

sendo que Gab é o tensor de Einstein, gab a métrica do espaço-tempo, Λ é a constante cos-

mológica e Tab é o tensor energia-momento.

A equação tensorial (3.1) em 4 dimensões é um sistema de 10 equações diferenciais par-

ciais de segunda ordem não-lineares acopladas para as componentes da métrica gab. Devido

a esta complexidade, encontrar uma solução geral para este sistema é ainda um problema em

aberto. Entretanto, para sistemas dotados de uma certa dose de simetria, e outras hipóteses

simplificadoras, tais como estacionaridade, é possı́vel resolver as equações de Einstein analiti-

camente. Podemos citar a solução de Schwarzschild, que é a solução para um corpo massivo

esféricamente simétrico, e a solução de Reissner-Nordström no caso do mesmo sistema com

carga elétrica.

Em contrapartida, na maior parte dos casos não é possı́vel resolver (3.1) analiticamente.

Como na maioria dos ramos da fı́sica devemos utilizar técnicas aproximativas, onde destaca-

mos a teoria de perturbações. No caso da Relatividade Geral, isto significa aplicar um pequeno

deslocamento do equilı́brio a uma solução exata conhecida, desde que esta não seja substanci-

almente modificada. Mais precisamente, se ĝab é um tensor métrico que é solução exata das

equações de Einstein e hab uma pequena perturbação, então a solução perturbada será dada por

gab = ĝab +hab . (3.2)

Por simplicidade, vamos considerar como exemplo a solução de Schwarzschild. Substituindo a

decomposição (3.2) nas equações de Einstein (3.1) e desprezando os termos de segunda ordem
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nas componentes de hab, obtemos as equações que governam as perturbações hab na métrica

ĝab. Estas equações são simplificadas através de uma decomposição em harmônicos esféricos,

fornecendo duas classes distintas de soluções: as soluções axiais e as soluções polares1 [22].

Estas duas classes de soluções levam a equações diferenciais desacopladas, respectivamente:

−∂2Ψax

∂t2 + f (r)
∂
∂r

(
f (r)

∂Ψax

∂r

)
=VaxΨax , (3.3)

−
∂2Ψpol

∂t2 + f (r)
∂
∂r

(
f (r)

∂Ψpol

∂r

)
=VpolΨpol , (3.4)

onde os potenciais efetivos são dados por

Vax(r) = f (r)
[

l(l +1)
r2 − 6M

r3

]
, (3.5)

Vpol(r) =
2 f (r)

r3
9M3 +3λ2Mr2 +λ2r3(1+λ)+9M2λ

(3M+λr)2 , (3.6)

sendo M a massa do buraco negro, f (r) = 1 − 2M
r e λ = 1

2 [l(l +1)−2]. O potencial das

perturbações gravitacionais axiais Vax é também conhecido como potencial de Regge-Wheeler,

que foi obtido no trabalho pioneiro de Regge e Wheeler [1] que visava estudar a estabilidade

do horizonte de eventos do buraco negro de Schwarzschild contra pequenos deslocamentos do

equilı́brio. Este estudo foi completado por Zerilli [3] que estudou as perturbações polares ob-

tendo o potencial gravitacional polar Vpol chamado de potencial de Zerilli.

Consideraremos agora a evolução de um campo de teste escalar se propagando no espaço-

tempo dado pela solução de Schwarzschild. Como já mencionamos, o trabalho aqui desenvol-

vido se dará no âmbito do regime linear possibilitando-nos tratar o campo escalar como uma

perturbação evoluindo em um fundo fixo, e a retroação (reação de radiação) deste campo na

geometria desprezada.

Associado a este campo, temos o seu tensor energia-momento que está presente nas equações

de movimento. Não levar em conta a retroação deste campo significa que podemos desprezar o

seu respectivo tensor energia-momento. Logo, a métrica é mantida fixa, e somente as variáveis

1Esta nomeclatura deve-se ao modo como as perturbações se transformam por uma inversão espacial na coor-

denada azimutal φ: as axiais se transformam como (−1)l+1 e as polares como (−1)l , sendo l o número multipolar.



3.2 Modos quasinormais 42

de campo possuem uma dinâmica descrita pelas equações de movimento lineares. No caso do

campo escalar sem massa basta considerar a equação de Klein-Gordon

1√
−g

∂
∂xa

(√
−ggab ∂Ψ

∂xb

)
= 0 ,

que para o buraco negro de Schwarzschild se reduz a

− ∂2Ψl

∂t2 + f (r)
∂
∂r

(
f (r)

∂Ψl

∂r

)
=VescΨl , (3.7)

cujo potencial efetivo Vesc é dado por

Vesc(r) = f (r)
[

l(l +1)
r2 +

1
r

d f
dr

]
.

Temos então para cada modo l, uma equação parcial linear hiperbólica para a função Ψl(r, t)

que descreve a dinâmica da componente l do campo escalar Ψ(r, t). No decorrer deste traba-

lho, obteremos a equação que descreve a perturbação escalar na geometria das p-branas negras

introduzidas no capı́tulo anterior, de maneira análoga ao que foi feito aqui.

3.2 Modos quasinormais

Os modos quasinormais (mqn’s) são soluções das equações de perturbação, que possuem

frequências de oscilação caracterı́sticas complexas e satisfazem condições de contorno especı́ficas.

Apesar de serem definidos no contexto da teoria de perturbações de buracos negros, os mqn’s

se aplicam a outros sistemas fı́sicos dissipativos. Podemos exemplificar isto através de um sis-

tema formado por uma corda vibrando acoplada ao meio mecânico que a cerca, transmitindo

energia para esse meio. As frequências caracterı́sticas dessa corda decaem com o tempo devido

à dissipação com o meio.

Em Relativiade Geral, estas oscilações amortecidas foram observadas por Vishveshwara [2]

quando estudava a evolução de um pacote de ondas gaussiano na geometria de Schwarzschild.

Tal evolução consiste basicamente de três etapas, a primeira é um rápido pulso inicial, proce-

dido por oscilações amortecidas, denominadas modos quasinormais e, por fim, as oscilações

amortecidas dão lugar a um decaimento tipo lei de potência, como mostrado na Figura 3.1.
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Figura 3.1: Decaimento da perturbação gravitacional axial nas proximidades do buraco negro

de Schwarzschild, com M = 1 e l = 2.

O estágio intermediário, dominado pela oscilação quasinormal, possui frequências que de-

pendem apenas dos parâmetros que caracterizam o buraco negro, sendo totalmente indepen-

dente da perturbação inicial [23] [24] [25]. Além das condições inicias, devemos impor condições

de contorno adequadas para a obtenção dos mqn’s. Para espaços assintoticamente Miskowski

como o buraco negro de Schwarzschild ou as p-branas negras, o potencial V (r) é positivo e

se anula tanto no infinito espacial, quanto no horizonte de eventos. Portanto, a solução nessas

regiões será uma combinação de ondas planas

Ψ(r∗ →±∞)∼ e±iωr∗ , (3.8)

sendo r∗ a chamada coordenada tartaruga que é uma função da coordenada radial r e que a ma-

peia do intervalo (2M,∞) em (−∞,+∞). Disto, temos que os mqn’s são soluções das equações

de perturbação cujas frequências são complexas e que descrevem ondas apenas entrando no

horizonte de eventos e ondas puramente emergindo no infinito. Isto se justifica pelo fato de
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estarmos interessados na propagação de campos na região fora do horizonte de eventos, e não

desejamos que onda provenientes do infinito continuem a perturbar o buraco negro [24].

A questão da estabilidade das soluções define o sinal da parte imaginária das frequências

quasinormais ω = ℜ(ω)+ iℑ(ω). A perturbação inicial deve decair de maneira amortecida,

portanto para t → ∞, devemos ter e−iωt = e−iℜ(ω)teℑ(ω)t → 0, que somente será possı́vel se

ℑ(ω)< 0 .

A motivação inicial para o estudo dos mqn’s é astrofı́sica. Testar a estabilidade das soluções

frente pequenas oscilações em torno do equilı́brio e obter seu espectro para assim conhecer

os parâmetros fundamentais da solução, tais como massa, carga, momento angular no caso de

buracos negros ou raio, massa no caso de estrelas [23]. Entretanto, recentemente tem havido

grande interesse nas frequências quasinormais no âmbito da correspondência AdS/CFT. Se-

gundo essa conjectura, a parte imaginária da frequência quasinormal fundamental é o tempo de

termalização de uma teoria de campos conforme na fronteira do espaço-tempo AdS, no qual se

dá a correspondência. No próximo capı́tulo estudaremos em mais detalhes este ponto.

Formalmente, os mqn’s podem ser definidos como os pólos da função de Green associada

as equações de perturbação. Por questão de simplicidade, vamos tratar da propagação de um

campo escalar sem massa na geometria de Schwarzschild com d = 4. Tal campo obededece a

equação de Klein-Gordon,

DΨ(r∗, t)≡
[

∂2

∂t2 −
∂2

∂r2
∗
+V (r∗)

]
Ψ(r∗, t) = 0 .

Seguindo o trabalho de Ching et al [26], a evolução temporal do campo Ψ(r∗, t) descrito pela

equação acima pode ser escrita, para t > 0, como

Ψ(r∗, t) =
∫

dyG(r∗,y; t)
∂Ψ(y,0)

∂t
+

∫
dy

∂G(r∗,y; t)
∂t

Ψ(y,0) , (3.9)

sendo G(r∗,y; t) a função de Green retardada definida por

DG(r∗,y; t) = δ(t)δ(r∗− y) ,

e pela condição inicial G(r∗,y; t) = 0 para t < 0. A transformada de Fourier de G(r∗,y; t) é dada
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por

G̃(r∗, t) =
∫ ∞

0
dtG(r∗,y; t)eiωt , (3.10)

e satisfaz a equação

D̃G̃ ≡
[
−ω2 − ∂2

∂r2
∗
+V (r∗)

]
G̃ = δ(r∗− y) .

A função de Green G̃ pode ser expressa em termos de duas soluções linearmente indepen-

dentes da equação homogênea D̃Ψ̃ = 0. Sejam tais soluções denotadas por f (r∗,ω) e g(r∗,ω),

sendo que D̃ f (r∗,ω) = D̃g(r∗,ω) = 0. A função f (r∗,ω) é tal que satisfaz a condição de onda

entrando (ingoing) no horizonte de eventos e g(r∗,ω) as condições de ondas saindo (outgoing)

no infinito.

Sendo assim, a função de Green G̃ é escrita como

G̃(r∗,ω) =


f (r∗,ω)g(y,ω)

W (ω) para r∗ < y
f (r∗,y)g(r∗,ω)

W (ω) para r∗ > y

 ,

sendo W (ω) = g d f
dr∗

− f dg
dr∗

o wronskiano dessas duas soluções.

O wronskiano presente na equação (3.2) pode conter zeros, o que implica que as soluções

f (r∗,ω) e g(r∗,ω) correspondentes são linearmente dependentes. De fato, pela definição do

wronskiano, estas soluções são proporcionais entre si, consequentemente satisfazem ambas

as condições de contorno. Estas soluções são, por definição [26], os mqn’s cujo espectro de

frequências são identificados como os pólos da função de Green.

3.3 O método WKB

A aplicação do método WKB (Wentzer, Kramers, Brillouin) ao problema de encontrar as

frequências quasinormais foi realizada por Schutz e Will [27] e mais tarde melhorado por Iyer

e Will [28]. Mais recentemente Konoplya [29] extendeu a técnica WKB até a sexta ordem

da aproximação da função de onda em torno do pico do potencial na região próxima do hori-

zonte de eventos. Neste trabalho usaremos o método WKB de sexta ordem desenvolvido por

Konoplya.
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A motivação para usar a técnica WKB é a similaridade entre as equações que descrevem

as perturbações lineares em buracos negros e a equação de Schrödinger para uma barreira de

potencial. Em ambos os casos temos equações do tipo

d2ψ
dx2 +Q(x)ψ = 0 .

No caso dos buracos negros, ψ representa a parte radial do campo perturbativo, sendo que

consideramos a dependência temporal do tipo eiωt . A coordenada x é a coordenada tarta-

ruga r∗ cujo valor no horizonte de eventos é −∞ e +∞ no infinito espacial. A função Q(x) =

ω2 +V (x) é finita em x = ±∞, mas não necessariamente a mesma, e possui um máximo nas

vizinhanças do horizonte de eventos. Na Mecânica Quântica temos Q(x)= 2m
~2 [E −V (x)]. Desta

semelhança, vemos que podemos usar a técnica WKB para calcular as frequências ω do pro-

blema de perturbações em buracos negros.

Usando a extensão de Konoplya, a fórmula WKB que determina os modos quasinormais é

dada por

i
ω2 −V0√
−2V ′′

0
−

6

∑
j=2

Π j = n+
1
2
, n = 0,1,2,3 · · · , (3.11)

sendo V ′
0 a derivada em relação à r∗ do potencial no pico próximo do horizonte, ω a frequência

quasinormal, n o valor de sobreton (n = 0 dá o modo fundamental de oscilação e assim por

diante). Os termos Π j dependem do valor do potencial efetivo e suas derivadas (até a ordem 2 j).

Esta fórmula generaliza aquelas obtidas por Schutz e Will (Π2) e as de Iyer e Will (Π2 +Π3).

A forma explı́cita das correções Π j é dada no Apêndice A.

Usaremos a fórmula (3.11) em nosso estudo das frequências quasinormais devido à uma

perturbação escalar no espaço-tempo descrito pelas p-branas. Atentaremos para uma região de

parâmetros em que o potencial efetivo possua as caracterı́sticas necessárias para o uso dessa

técnica.
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3.4 Integração caracterı́stica

Este método de integração usa o sistema de coordenadas nulas

u = t − r∗ ,

v = t + r∗ ,

afim de estudar a evolução da perturbação Ψ que obedece uma equação do tipo

− ∂2ΨL

∂t2 +
∂2ΨL

∂r2
∗

+VL(r∗)ΨL = 0 . (3.12)

Na integração caracterı́stica, também chamada de problema de condições iniciais carac-

terı́sticas [30], especificam-se as condições iniciais do campo em hipersuperfı́cies nulas. Um

esquema especı́fico é o problema das duplas coordenadas nulas, que consiste em escrever a

equação de movimento (3.12) em termos das coordenadas nulas u e v. Com isso a equação de

movimento fica
∂2Ψ(u,v)

∂u∂v
=−1

4
V (r(u,v))Ψ(u,v). (3.13)

Desta forma, especificamos o campo na fronteira de um ângulo delimitado pelas semi-retas

u = u0(v ≥ v0) e v = v0(u ≥ u0). O próximo passo é discretizar o campo Ψ(u,v) em termos de

pontos no plano (u,v). O esquema será o que está ilustrado na figura (3.2).

Vemos nesta figura que o valor do campo Ψ no ponto N depende apenas do valor desse nos

pontos S, E e W . Dado um conjunto de condições iniciais nas retas u = 0 e v = 0, encontra-se o

valor de Ψ dentro de um ângulo formado por estas retas. Mais precisamente, o valor de Ψ(N) e

dado por [30]

Ψ(N) = Ψ(E)+Ψ(W )−Ψ(S)− V (S)∆u∆v
8

[Ψ(E)+Ψ(W )]+O(∆4) . (3.14)

Usando esta discretização, o algoritmo básico consiste em iterar a região de interesse, e apartir

de três pontos conhecidos, calcula-se o quarto. Feito isso, tem-se a evolução de Ψ para tem-

pos arbitrários, de forma que é possı́vel encontrar a região de oscilação quasinormal e fitar a

frequência quasinormal fundamental. O código numérico utilizado neste trabalho foi desenvol-

vido pelo nosso grupo de pesquisa e foi extensivamente discutido na Tese de C. Molina [30] e

aplicado em diversos trabalhos [31] [32] [33] [34].
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Figura 3.2: Região retangular no plano (u,v) delimitada pelos pontos N, S, E, W e C.



Capı́tulo 4

Interpretação dos MQN’s na

Correspondência AdS/CFT

Neste capı́tulo faremos uma breve revisão acerca das origens da correspondência AdS/CFT.

Daremos ênfase aos aspectos que consideramos importantes para o presente trabalho. Em espe-

cial à interpretação das frequências quasinormais em termos dessa correspondência. Apresenta-

remos qual o papel desempenhado pelas p-branas nesse contexto e a prescrição de Son-Starinets

para a obtenção das funções de Green, cujos pólos são interpretados como as frequências qua-

sinormais calculadas no bulk. Não iremos nos aprofundar nesse tema, apenas inserir o presente

trabalho no contexto da correspondência calibre/gravitação. Para mais detalhes, o leitor é con-

vidado a consultar as excelentes revisões de Ahorony et al [20] e Klebanov [21].

4.1 Origens da correspondência

A primeira realização da correspondência AdS/CFT, ou correspondência calibre/gravitação

para usar o termo mais abrangente, é devida ao trabalho pioneiro de Juan Maldacena [5].

Mostrou-se a correspondência entre uma teoria de cordas do tipo IIB no espaço-tempo AdS5 ×

S5 e a teoria supersimétrica de Yang-Mills N = 4.

A idéia principal da correspondência calibre/gravitação é, pelo menos em sua origem, a
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descrição da teoria de cordas através de teorias de calibre. A teoria de cordas teve sua origem

na década de 1970 como uma tentativa de se compreender a interação nuclear forte. Contudo,

devido ao surgimento da cromodinâmica quântica, que é até hoje a descrição padrão da interação

forte, a teoria de cordas perdeu apelo nessa área. Com isso, o tema dominante na área de cordas

passou a ser a unificação das forças fundamentais da fı́sica em uma única descrição, já que a

teoria de cordas, contém a Relatividade Geral em seu espectro. Portanto, a teoria de cordas

pode ser tomada como uma descrição para a gravidade quântica.

Com o advento da correspondência calibre/gravitação, pode-se dizer que a teoria de cordas

ganhou uma nova aplicação além do escopo da unificação das forças, que consiste em com-

preender fenômenos inerentes à teorias de calibre no regime em que os métodos perturbativos

perdem a validade.

Apesar do imenso sucesso da cromodinâmica quântica em detrimento da teoria de cordas na

descrição da interação forte, ainda restava a questão de como a ação de Yang-Mills poderia dar

uma descrição de cordas no limite em que o acoplamento é forte. A cromodinâmica quântica

descreve um méson como o estado ligado formado por um par quark e anti-quark, cuja interação

se dá através de glúons. As linhas de campo de tal interação formam um tubo de fluxo, em cujos

extremidades se encontram o quark/anti-quark. Este tubo de fluxo pode ser encarado com um

objeto fundamental, dando origem a intepretação do méson como sendo uma corda com uma

dada tensão. Sendo assim, vemos que deve haver uma relação entre as cordas (tubo de fluxo) e

a ação de Yang-Mills.

O trabalho de ’t Hooft [35] lançou mais luz sobre esta questão. Nesse trabalho é sugerida

uma relação entre teorias de calibre no limite de N (número de cores) muito grande e a teoria

de cordas. Foi mostrado que a expansão perturbativa da teoria de calibre se organiza da mesma

forma que na teoria de cordas também no limite perturbativo: soma de diagramas planares que

dependem do gênus g. Esta semelhança entre as duas expansões perturbativas é outro indicativo

da relação entre teorias de cordas e pelo menos algumas teorias de calibre.

A correspondência entre teorias de calibre e teorias de cordas ficou mais evidenciada a

partir da descoberta das D-branas por Polchinski [36]. As D-branas são objetos estendidos,
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que generalizam o conceito de corda. Estes objetos aparecem quando impomos condições de

contorno de Dirichlet ao movimento das pontas da corda fundamental na folha mundo. Na teoria

das D-branas os campos de calibre estão confinados nestas superfı́cies enquanto no infinito

espacial temos o gráviton [17]. Mais precisamente, temos uma teoria supersimétrica de Yang-

Mills definida sobre as D-branas e cordas fechadas (grávitons) desacopladas sobre o espaço-

tempo de Minkoswki no infinito espacial, isto é, muito longe das D-branas.

Por outro lado, existe uma outra classe de objetos estendidos chamados de p-branas negras,

que aparecem como soluções clássicas do setor bosônico de um dos limites da teoria de cordas:

a teoria da supergravidade em 10 dimensões, como foi extensivamente discutido no capı́tulo

2 desta tese. Nessa teoria as p-branas negras são fontes do campo gravitacional e, para certos

valores de p, que é o número de dimensões espaciais da brana, apresentam horizonte de eventos.

Deste modo, é possı́vel tomar as p-branas como buracos negros em dimensões mais altas. Então,

no limite de baixas energia da teoria de cordas considera-se a solução de p-branas como uma

descrição de um conjunto de cordas abertas vivendo em um espaço-tempo AdS próxima do

horizonte de eventos e um conjunto de cordas abertas na infinito espacial. Nesse limite de

baixas energias vale a descrição em termos da supergravidade.

Vemos que ambas as descrições, em termos de D-branas ou p-branas, dão origem a modelos

desacoplados. Ambos apresentam cordas fechadas vivendo em um espaço-tempo de Minkowski

no infinito espacial. Entretanto temos situações diferentes na região próxima: nas D-branas

temos a teoria de Yang-Mills supersimétrica enquanto que nas p-branas negras temos cordas

fechadas vivendo um espaço AdS. É exatamente neste ponto que Maldacena conjecturou a

correspondência entre os modelos na região próxima dos dois objetos: a teoria de Yang-Mills

na descrição em termos de D-branas é equivalente à uma teoria de cordas em AdS [5].

A relevância da correspondência está no mapeamento da teoria de Yang-Mills no regime de

acoplamento forte onde os métodos perturbativos perdem a validade, com o limite de baixas

energias da supergravidade em 10-dimensões, onde existem técnicas bem estabelecidas e nesse

limite puramente clássicas. A correspondência AdS/CFT também pode ser pensada como uma

realização do princı́pio holográfico [37], já que a região onde está definida a teoria de calibre
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tem dimensão (d − 1) enquanto os grávitons estão em um espaço de dimensão d, comumente

chamado de bulk. Alternativamente podemos dizer que a informação dos campos que vivem no

espaço de d dimensões está codificada na sua borda, cuja dimensão é (d −1).

4.2 Um pouco do dicionário AdS/CFT

Segue abaixo uma breve revisão do exemplo original da correspondência AdS/CFT proposto

por Maldacena [5]. As informações contidas nesta seção são baseadas na revisão de Son et

al [13].

Este exemplo, trata da correspondência entre a teoria de cordas do tipo IIB no espaço-tempo

AdS5×S5 e a teoria supersimétrica de Yang-Mills N = 4. A teoria de cordas do tipo IIB possui

um espectro de oscilações que contém um número finito de excitações sem massa, tais como o

dı́laton e o gráviton e, um número infinito de excitações massivas. Essa teoria é caracterizada

fundamentalmente por dois parâmetros, que são o comprimento da corda ls e a constante de

acoplamento gs, que mede o quão intensa é a interação entre as cordas.

O espaço-tempo onde está definida a teoria de cordas tem 10 dimensões dado pela métrica

da 3-brana extrema no limite próximo do horizonte:

ds2 =
R2

z2

(
−dt2 +

3

∑
i=1

dxidxi +dz2

)
+R2dΩ2

5 . (4.1)

Esta métrica é obtida da solução da p-brana extrema (2.43) no limte em que y → a e após a

mudança de coordenadas y = R2/z. Tem-se, portanto, uma solução que representa o produto

de uma esfera em cinco dimensões S5 e o espaço AdS também em cinco dimensões com as

coordenadas t,z,xi. A coordenada z mapeia a fronteira AdS (y → ∞) em z = 0. Além do com-

primento da corda e a constante de acoplamento, o espaço AdS acrescenta um novo parâmetro

na descrição: o raio R do espaço AdS. Desta forma, temos dois parâmetros adimensionais: gs e

a razão R/ls.

Com relação à teoria de calibre, esta também possui dois parâmetros, que são o número

de cores N e o acoplamento g. Como foi mostrado por ’t Hooft [35], quando N é grande,
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a constante de ’t Hooft λ = g2N torna-se o parâmetro fundamental que controla a teoria no

regime perturbativo.

As primeiras duas entradas do dicionário AdS/CFT são referentes ao mapeamento dos

parâmetros fundamentais gs, ls e R pelo lado da teoria de cordas com os da teoria de calibre

g e N [13]

g2 = 4πgs, g2N =
R4

l4
s
. (4.2)

Desta forma, podemos observar a grande habilidade da correspondência proposta por Mal-

dacena: trabalhar com o limite de acoplamento forte na teoria de calibre utilizando-se o limite

de baixas energias da teoria de cordas. A segunda relação de (4.2) estabelece que para λ = g2N

fixo o raio AdS R é muito maior que o comprimento da corda ls. Neste limite é possı́vel mostrar

que a teoria de cordas reduz-se à supergravidade em 10 dimensões. Em outras palavras, no

limite de fraco acoplamento das cordas gs � 1 e o raio AdS muito maior que o comprimento

da corda R � ls, a teoria de cordas se reduz à supergravidade clássica [13].

Talvez a mais importante relação que a correspondência AdS/CFT estabelece seja aquela

entre operadores da teoria de calibre e campos clássico da supergravidade. Os primeiros traba-

lhos a realizar matematicamente tal mapeamento formam os de Gubser et al [38] e Witten [39].

Seja um operador O da teoria de calibre e um campo escalar Φ da supergravidade. Então a

relação GKP-W (Gubser, Klebanov, Polyakov-Witten) estabelece

Z4D[J] = eiS[Φcl ]. (4.3)

O lado esquerdo desta relação temos a função de partição da teoria de campos, cujo termo

de fonte é J. A ação S[Φcl] é a ação clássica da supergravidade, calculada para o campo Φcl que

é solução das equações de movimento como condição de contorno de que este campo assuma

o valor J na fronteira AdS z = 0. Desta forma, o valor do campo na fronteira AdS é a fonte

clássica da função geradora das funções de Green da teoria de campos definida na borda AdS.

Para o cálculo das funções de Green, basta tomarmos derivadas funcionais de S[Φcl] em

relação a J e, por fim, fazer J = 0. Como exemplo, a função de dois pontos da teoria de campos
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pode ser obtida por

G(x− y) =−i〈T O(x)O(y)〉=− δ2S[Φcl]

δJ(x)δJ(y)
|Φcl(z=0)=J. (4.4)

A grosso modo, o mapeamento entre operadores da teoria de calibre e campos clássicos se dá da

seguinte maneira [13]: o campo dilatônico Φ corresponde ao operador primário O, o campo de

calibre Aa definido no bulk corresponde à corrente conservada Ja na teoria de campos e o tensor

métrico gab corresponde ao tensor energia-momento Tab, sendo que gab satisfaz as equações de

Einstein em 5 dimensões e tem comportamento assintótico z = 0 dado pela métrica (4.1).

4.3 Receita de Son-Starinets

Apesar do sucesso da fórmula GKP−W , esta é escrita para um espaço com assinatura eu-

clidiana, isto é, com tempo imaginário. Uma descrição em termos do tempo real era necessária,

principalmente se queremos levar em conta buracos negros no bulk.

Se consideramos a presença de um buraco negro no bulk, a teoria de campos na fronteira

passa a ser caracterizada também pela temperatura Hawking desse buraco negro [39]. Para o

estudo da resposta de tais teorias de campos a pequenos deslocamentos do equilı́brio térmico,

precisamos das funções de correlação escritas em termos do tempo real. Estas funções podem,

em princı́pio, ser obtidas pela continuação analı́tica das versões euclidianas, que em muitos

casos é um problema bastante difı́cil.

Foi devido ao trabalho de Son e Starinets [40], a elaboração de uma prescrição mikowskiana

para o cálculo de funções de dois pontos de teorias de campos térmicas. Apresentamos no que

segue os elementos principais dessa técnica.

Consideremos a métrica de um buraco negro assintóticamente AdS, dada formalmente por

ds2 = gzzdz2 +gab(z)dxadxb , (4.5)

e a ação para um campo escalar Φ(z,xi) de massa m definido nas vizinhanças desse buraco

negro,

S =
∫

dx4
∫ zh

0
dz
√
−g
[
gzz (∂zΦ)2 +gab∂aΦ∂bΦ+m2Φ

]
, (4.6)
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sendo z = zh a localização do horizonte de eventos e z = 0 o horizonte AdS.

A equação de movimento linearizada de Φ é a equação de Klein-Gordon 2Φ−m2Φ = 0,

cuja solução pode ser escrita como

Φ(z,xi) =
∫ d4k

(2π)4 eikixi
fk(z)Φ0(k) , (4.7)

onde Φ0(k) é a transformada de Fourier do campo na fronteira AdS e fk(z) é solução da equação

1√
−g

∂z
(√

−ggzz∂z fk
)
−
(

gabkakb +m2
)

fk = 0 , (4.8)

com a condição de contorno fk(0) = 1 e de ondas que apenas entram no horizonte de eventos.

Desta forma, levando em conta a equação do campo escalar, a ação (4.6) se reduz aos termos

de superfı́cie

S =
∫ d4k

(2π)4 Φ0(−k)F (z,k)Φ0(k)|zh
0 , (4.9)

onde

F (z,k) =
√
−ggzz f−k(u)∂z fk(z) . (4.10)

O postulado de Son-Starinets estabelece que a função de Green retardada correspondente ao

operador O da teoria de campos é dada por

GR(k) =−2F (z,k)|z=0 . (4.11)

Com esta relação, os autores calcularam as funções de Green retardadas em casos onde tais

funções já haviam sido calculadas, como por exemplo, numa teoria de campos conforme bidi-

mensional, e verificaram a validade da relação (4.11).

A interpretação das frequências quasinormais de um buraco negro AdS em termos de uma

teoria de campos conforme foi dada por Birmingham et al [7]. Mostrou-se que há uma con-

cordância exata entre as frequências quasinormais de perturbações de vários spins do buraco

negro BTZ e os pólos da função de Green retardada das correspondentes perturbações na te-

oria conforme dual em duas dimensões, definida na borda do espaço-tempo. Desta forma,

pelo menos em princı́pio, a receita de Son-Starinets nos permite calcular os pólos das funções

de Green retardadas de uma dada teoria de campos e além disso, tais pólos correspondem às
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frequências quasinormais do buraco negro AdS definido no bulk. Portanto, as ferramentas usu-

almente empregadas no estudo das frequências quasinormais de buracos negros em Relatividade

Geral podem ser utilizadas para o estudo das propriedades de teorias de campos por meio da

correspondência AdS/CFT.

Em particular, observamos que os espaços-tempos considerados no lado gravitacional da

correspondência no exemplo original de Maldacena e na obtenção da fórmula GKP-W e de

Son-Starinets são todos obtidos através do limite próximo do horizonte da solução das p-branas

negras obtidas no Capı́tulo 2. É, portanto, justificado um estudo da estabilidade dessas soluções.

Entretanto, não tomaremos o limite próximo do horizonte, pois nosso objetivo é considerar as

soluções mais gerais.



Capı́tulo 5

Perturbação Escalar das p−Branas

Negras

Neste capı́tulo apresentaremos os resultados da estabilidade das p-branas negras frente a

uma perturbação devido a um campo escalar de teste. Vamos escrever a equação de Klein-

Gordon no espaço-tempo da p-brana negra e realizar uma separação de variáveis entre aquelas

do bulk e da brana. Em seguida, utilizaremos o método WKB e da integração caracterı́stica para

encontrar as frequências quasinormais. Os resultados deste capı́tulo foram publicados em [41].

5.1 O campo escalar sem massa

Nossa análise neste trabalho se restringe ao setor escalar das perturbações, ou seja, esta-

mos supondo a existência de uma perturbação que, por definição, obedece à equação de Klein-

Gordon. Para se obter as perturbações de spin mais alto, deverı́amos perturbar diretamente as

equações de Einstein e obter o potencial efetivo correspondente.

Em nosso estudo, basta resolver a equação de Klein-Gordon para a métrica (2.70), que foi

apresentada e discutida no primeiro capı́tulo deste trabalho1.

1Aqui usaremos a seguinte notação para as componentes da métrica: A(y) = K+

K
1
2
−

, B(y) = K−, C(y) = K
− 1

2 − 5−p
7−p

−
K+
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A análise que faremos, será computar o efeito causado por uma perturbação linear na métrica

da p-brana negra utilizando um campo escalar sem massa Φ(xA), onde xA são as coordenadas

do espaço-tempo. Queremos encontrar as frequências quasinormais que surgem da propagação

de Φ(xA) na métrica de fundo (2.70).

Como é sabido, a equação de movimento para um campo escalar sem massa é dada pela

equação de Klein-Gordon

∆10Φ = 0,

sendo ∆10 um operador diferencial que atua em todas as coordenadas de (2.70). É conveniente

escrevermos este operador como a soma de outros dois,

∆10 = ∆p(r,θ(p−1))+∆10−p(t,y,λ(8−p)), (5.1)

sendo que o primeiro atua na parte de Φ que depende das coordenadas do subespaço dxidxi =

dr2 + r2dΩ2
p−1, e o segundo no restante, que são as coordenadas do bulk (t,y,λ(8−p)).

Nosso objetivo imediato é simplesmente escrever o operador (5.1) no espaço-tempo descrito

por (2.70). Para levar isso a cabo, é importante listarmos algumas expressões e definirmos uma

notação. As (p− 1) coordenadas angulares que aparecem no subespaço dr2 + r2dΩ2
p−1 são

denotadas por θ(p−1) e a combinação de sinθ que advêm do elemento de linha dΩ2
p−1 que

aparece no cálculo do determinante do tensor métrico é condensada na função h(θi), sendo que√
h(θi) = sinp−2 θ1 sinp−3 θ2 · · ·sinθp−2 .

De forma análoga para o elemento de linha angular do bulk dΩ2
(8−p) denotaremos as (8− p)

coordenadas angulares por λ(8−p) e a combinação, que aparece no determinante, por g(λ j),

sendo que √
g(λ j) = sin7−p λ1 sin6−p λ2 · · ·sinλ7−p .

Com isso, a raı́z do determinante g do tensor métrico (2.70) é dado por

√
−g =

√
A(y)B(y)pC(y)D(y)(8−p)r(p−1)y(8−p)

√
h(θi)g(λ j). (5.2)

e D(y) = K
1
2−

5−p
7−p

− .
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Tendo a expressão acima, e os componentes da métrica (2.70) podemos escrever cada um dos

termos que formam ∆10. Começando com o operador que depende de (r,θ(p−1))

∆p =
1

r(p−1)
∂r

(
r(p−1)grr∂r

)
+

1√
h(θi)

p−1

∑
i

∂θi

(√
h(θ1)gθiθi∂θi

)
,

sendo grr = 1/B(y), gθiθi = j(θi)/r2B(y) e j(θi) a combinação de sinθi que aparecem nas

componentes angulares do tensor métrico referente ao subespaço dr2 + r2dΩ2
p−1. Logo,

∆p =
1

B(y)

[
1

r(p−1)
∂r

(
r(p−1)∂r

)
+

1
r2 Θ(θi)

]
, (5.3)

sendo

Θ(θi) =
1√

h(θi)

p−1

∑
i

∂θi

(√
h(θi) j(θi)∂θi

)
,

que é a parte angular do operador laplaciano em (p−1) dimensões.

Para o operador ∆10−p teremos

∆10−p =− 1
A(y)

∂2
t +X(y)+

1
y2D(y)

Λ(λ j), (5.4)

sendo

X(y) =
1√

A(y)B(y)pC(y)D(y)(8−p)y8−p
∂y

(√
A(y)B(y)pC(y)−1D(8−p)y8−p∂y

)
,

Λ(λ j) =
1√

g(λi)

8−p

∑
j

∂λ j

(√
g(λ j) j(λ j)∂λ j

)
.

Esta última expressão é a parte angular do operador laplaciano em (8− p) dimensões nas coor-

denadas λ j.

Substituindo (5.3) e (5.4) em (5.1), obtemos a expressão para o operador de Klein-Gordon

em 10 dimensões, que aplicado ao campo escalar sem massa Φ dá como resultado

1
B(y)

[
1

r(p−1)
∂r

(
r(p−1)∂rΦ

)
+

1
r2 Θ(θi)Φ

]
− 1

A(y)
∂2

t Φ+X(y)Φ+
1

y2D(y)
Λ(λ j)Φ = 0 .

Esta equação pode ser separada em duas outras equações diferenciais se tomarmos a seguinte

separação de variáveis para Φ

Φ(xA) = ∑
l,m

Rl(r)Ylm(θi)∑
L,q

ΨL(t,y)YLq(θα) , (5.5)
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onde Yl,m e YL,q são os harmônicos hiper-esféricos em (p−1) e (10− p) dimensões respectiva-

mente [42]. A constante de separação é denotada por β2, e as equações resultantes, para todo m

e q, são

1
r(p−1)

d
dr

(
r(p−1)dRl

dr

)
+

(
β2 − l(l + p−2)

r2

)
Rl = 0 , (5.6)

−B(y)
A(y)

∂2
t ΨL +B(y)X(y)ΨL −

(
β2 +

B(y)
y2D(y)

L(L+7− p)
)

ΨL = 0 ,

(5.7)

onde usamos

Θ(θi)Ylm = −l(l + p−2)Ylm ,

Λ(λ j)YLq = −L(L+7− p)YLq .

A equação (5.6) determina β2, mas pelo fato de não termos nenhuma condição de contorno para

o subespaço onde esta equação está definida, o autovalor β2 terá espectro contı́nuo. A solução

dessa equação é uma combinação de funções de Bessel,

Rl(r) = A1r1−p/2Jγ(βr)+A2r1−p/2Yγ(βr), (5.8)

com γ = 1
2

√
p2 −4p+4−4l(l + p−2), A1 e A2 constantes, Jγ(βr) função de Bessel do pri-

meiro tipo e Yγ(βr) função de Bessel do segundo tipo. Por simplicidade, como se trata de uma

primeira análise, tomaremos β = 0 para a resolução da equação (5.7). O fator β2 pode ser

interpretado como uma massa para o campo de Klein-Gordon inicialmente desprovido desta.

Com o propósito de encontrar as frequências quasinormais devido a perturbação escalar,

vamos decompor em componente de Fourier a parte temporal do campo ΨL, isto é,

ΨL(t,y) = eiωtQL(y) ,

onde ω representa a frequência quasinormal procurada. Disto, nossa equação adquire a forma

h(y)
d2QL

dy2 +g(y)
dQL

dy
+ v(y)QL = 0 , (5.9)
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sendo

h(y) =
A(y)
C(y)

,

g(y) =
(8− p)

y
A(y)
C(y)

+
1

2C(y)
dA(y)

dy
+

pA(y)
2B(y)C(y)

dB(y)
dy

− A(y)
2C(y)2

dC(y)
dy

+
(8− p)

2
A(y)

C(y)D(y)
dD(y)

dy
,

v(y) = ω2 − A(y)
y2D(y)

L(L+7− p) .

5.2 O potencial efetivo

Usaremos o método semi-analı́tico WKB de sexta ordem [29] e a integração caracterı́stica

[30, 31] para determinarmos as frequências quasinormais. Para que isto seja feito, precisamos

determinar o potencial efetivo V (y) correspondente à equação (5.9). Tal potencial pode ser de-

terminado pela redefinição da função de onda QL e através de uma mudança de coordenadas que

nos permita anular o coeficiente da derivada primeira de QL e tornar o coeficiente da derivada

segunda de QL igual à 1

Façamos a redefinição

QL(y) = b(y)ZL(y) ,

y = y(r∗) .

Substituindo em (5.9) temos como resultado2

h(y)ṙ2
∗Z

′′
L +

[
2h(y)

b(y)
′

b(y)
ṙ2
∗+h(y)ṙ∗(ṙ∗)

′
+g(y)ṙ∗

]
Z

′
L

+

[
b(y)

′′

b(y)
h(y)ṙ2

∗+
b(y)

′

b(y)
ṙ∗(ṙ∗)

′
h(y)+

b(y)′

b(y)
g(y)ṙ∗+ v(y)

]
ZL = 0. (5.10)

Para que o coeficiente de Z′′
L seja 1, devemos ter

h(y)ṙ2
∗ = 1 ⇒ dr∗

dy
=

1√
h(y)

. (5.11)

2Aqui usamos a seguinte notação: ·= d
dy e ′ = d

dr∗
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Por outro lado, para que o coeficiente de Z′
L se anule, precisamos que

2b(y)
′
r∗+b(y)(ṙ∗)

′
+ g(y)

h(y)b(y) = 0. (5.12)

Usando o resultado (5.11) ficamos com

2
b(y)

db(y)
dy

− 1
2h(y)

dh(y)
dy

+
g(y)
h(y)

= 0, (5.13)

sendo

g(y)
h(y)

=
(8− p)

y
+

1
2A(y)

dA(y)
dy

+
p
2

1
B(y)

dB(y)
dy

− 1
2

1
C(y)

dC(y)
dy

+
(8− p)

2
1

D(y)
dD(y)

dy
.

(5.14)

Substituindo (5.14) em (5.13) ficamos com

d
dy

lnb(y) =
1
4

d
dy

lnh(y)− (8− p)
2y

− 1
4

d
dy

lnA(y)− p
4

d
dy

lnB(y)

+
1
4

d
dy

lnC(y)− (8− p)
4

d
dy

lnD(y),

o que nos leva a concluir que a função que anula o coefieciente de Z′
L é

b(y) =
1

y(8−p)/2B(y)p/4D(y)(8−p)/4
. (5.15)

Substituindo este resultado e (5.11) em (5.10) obtemos

d2

dr2
∗

ZL −
[

A(y)
y2D(y)

L(L+7− p)− h(y)
b(y)

d2b(y)
dy2 − g(y)

b(y)
db(y)

dy
−ω2

]
ZL = 0.

Com isto, podemos definir o potencial devido a perturbação escalar

V (y) =
[

A(y)
B(y)

−1
]

β2 +
A(y)

y2D(y)
L(L+7− p)− h(y)

b(y)
d2b(y)

dy2 − g(y)
b(y)

db(y)
dy

. (5.16)

Em sı́ntese a equação para perturbação escalar se reduz a

d2

dr2
∗

ZL +
[
k2 −V (y)

]
ZL = 0, (5.17)

onde, por conveniência, definimos k2 = ω2 −β2.
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Pode-se observar o perfil do potencial efetivo nos gráficos (5.1) e (5.2). Vemos que fora do

horizonte de eventos, isto é, para y > a, o potencial adquire um máximo e em seguida decai

suavemente à medida em que y cresce. No infinito os potenciais decaem a zero. Este tipo de

potencial é bem estudado na teoria dos buracos negros [22], como por exemplo no caso de

perturbarmos o buraco negro de Schwarzschild ou Reissner-Nordström com um campo escalar

sem massa. O perfil do potencial efetivo obtido é muito semelhante ao resultado obtido neste

trabalho para as p−branas. Entretanto, observa-se também, que à medida em que o parâmetro

β cresce e o número de dimensões da p-brana também aumenta, o potencial efetivo torna-se

negativo. Tal comportamento pode ser verificado explicitamente nos casos β = 1 para a 5-brana

e para a 6-brana. Em vista disso, nossa análise será focada nos casos em que os potenciais são

positivos definidos no domı́nio a < y < ∞.
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Figura 5.1: Potencial efetivo V (y) com p = 3, L = 0, a = 2 e b = 0.5 para três valores diferentes

do parâmetro massivo β.

5.3 O caso extremo

O potencial efetivo da perturbação escalar no caso da p-brana extrema é obtido tomando a=

b no potencial obtido na seção anterior (5.16). Observamos que para p< 5 o perfil do potencial é
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Figura 5.2: Potencial efetivo V (y) com p = 6, L = 0, a = 2 e b = 0.5 para três valores diferentes

do parâmetro massivo β.

qualitativamente o mesmo que no caso da p-brana negra, veja o gráfico (5.3). Continuando com

a definição da frequência efetiva k2 = ω2 −β2, constatamos que no caso extremo os potenciais

são independentes de β2, já que o único termo do potencial que dependeria desse parâmetro é

zero no caso extremo.

Para p = 6 temos uma singularidade nua tipo tempo em y = a, o que explica o fato do

potencial efetivo divergir na região próxima de y = a como mostrado no gráfico (5.4). No

caso da 5-brana o potencial também diverge em y = a. Em vista disso, no regime extremo nos

restringiremos aos casos em que p < 5.

5.4 Frequências quasinormais: Método WKB

Nesta seção e na subsequente apresentaremos os resultados que obtemos. Vamos primeira-

mente usar o método WKB de sexta ordem para calcular as frequências quasinormais devido à

perturbação escalar, tanto no caso da p-brana extrema quanto no da p-brana negra. Usaremos o

potencial efetivo dado em (5.16) como input do nosso código (veja o Apêndice A).

Caso não extremo
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Figura 5.3: Potencial efetivo V (y) com p = 3, L = 0, a = b = 2 para três valores diferentes do

parâmetro massivo β.
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Figura 5.4: Potencial efetivo V (y) com p = 6, L = 0, a = b = 2 para três valores diferentes do

parâmetro massivo β.

Nas tabelas (5.1) e (5.1) temos as frequências quasinormais para cada valor p, variando o

número multipolar L e o sobreton n. Estes resultados foram obtidos tomando o valor de β2 = 0,
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isto é, a frequência efetiva k2 = ω2. No decorrer apresentaremos os resultados para β > 0.

p = 0 p = 1

L n Re(k) −Im(k) L n Re(k) −Im(k)

0 0 1.2889 0.5506 0 0 1.0812 0.4670

1 0 1.5047 0.5876 1 0 1.3245 0.4963

1 1 0.9858 1.7991 1 1 0.8928 1.5820

2 0 1.9638 0.48123 2 0 1.7264 0.4300

2 1 1.4709 1.6170 2 1 1.3581 1.3904

2 2 0.4087 2.8063 2 2 0.5388 2.5558

p = 2 p = 3

L n Re(k) −Im(k) L n Re(k) −Im(k)

0 0 0.8714 0.3911 0 0 0.6633 0.3202

1 0 1.1311 0.4137 1 0 0.9284 0.3363

1 1 0.7983 1.3408 1 1 0.6930 1.0922

2 0 1.4882 0.3754 2 0 1.2489 0.3161

2 1 1.2223 1.1884 2 1 1.0673 0.9904

2 2 0.6387 2.2091 2 2 0.6904 1.8209

Tabela 5.1: Frequências quasinormais escalares para p = 0, 1, 2, 3 e 4 com a = 2 e b = 0.5.

p = 4 p = 5 p = 6

L n Re(k) −Im(k) L n Re(k) −Im(k) L n Re(k) −Im(k)

0 0 0.4632 0.2514 0 0 0.2824 0.1827 0 0 0.2287 0.1563

1 0 2.3562 0.6854 1 0 0.5179 0.1843 1 0 0.4815 0.1433

1 1 1.7983 1.9035 1 1 0.4399 0.5876 1 1 0.4482 0.4451

2 0 3.1055 0.6587 2 0 0.7690 0.1803 2 0 0.7697 0.1406

2 1 2.6785 1.9772 2 1 0.7109 0.5570 2 1 0.7459 0.4281

2 2 1.5204 3.2295 2 2 0.6098 0.9805 2 2 0.7055 0.7320

Tabela 5.2: Frequências quasinormais escalares para p = 4, 5 e 6 com a = 2 e b = 0.5.
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A dependência das frequências quasinormais em relação ao número de dimensões p da

brana pode ser observado nos gráficos (5.5) e (5.6) para cada valor de multipolo L considerado

neste trabalho. Notamos que quanto maior o número de dimensões espaciais da brana, menor

se tornam a parte real e imaginária de maneira aproximadamente linear.

Podemos interpretar o parâmetro p como um fator de escala das frequências, já que o

espaçamento entre uma freqüência e outra tomadas em dimensões vizinhas é praticamente cons-

tante. A única exceção é para a parte real do caso L= 2, n= 2, onde observamos que a parte real

aumenta à medida em que adicionamos mais dimensões na brana. Tal comportamento anômalo,

talvez seja em função das limitações do método WKB quando tratamos de altos multipolos onde

L = n. Até o momento não conseguimos encontrar outra explicação para este comportamento.
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Figura 5.5: Relação entre a parte real das frequências e o número de dimensões p para L =

0,1,2.

De maneira análoga, podemos medir o efeito do aumento do parâmetro a, que para um

dado b essencialmente representa a massa da p−brana. Observamos que à medida em que a

brana torna-se mais massiva, tanto a parte real quanto a imaginária das freqüências diminui.

Este comportamento é bem semelhante ao que observamos quando aumentamos o número de

dimensões espaciais da brana. Um exemplo deste comportamento é mostrado nos gráficos (5.7)
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Figura 5.6: Relação entre a parte imaginária das frequências e o número de dimensões p para

L = 0,1,2.

e (5.8) onde tomamos com b = 0.5.
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Figura 5.7: Efeito do parâmetro a na parte real das frequências. Os parâmetros da p-brana são

b = 0.5, L = 0 e β = 0

Do que foi mostrado até agora vemos que a adição de massa ou de dimensões extras
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Figura 5.8: Efeito do parâmetro a na parte imaginária das frequências. Os parâmetros da p-

brana são b = 0.5, L = 0 e β = 0

não muda de maneira substancial o comportamento das frequências quasinormais. Em ge-

ral, o cálculo das frequências quasinormais é uma tarefa tı́pica onde devemos usar métodos

numéricos. Apesar disso, com o método WKB é possı́vel encontrarmos uma expressão semi-

analı́tica em um certo regime. Expandindo o potencial efetivo (5.16) em termos de pequenos

valores de 1/L, ou seja, para valores multipolares L grandes e, em seguida, usando o método

WKB em primeira ordem, obtemos a seguinte expressão para as frequências quasinormais:

ω2 = L2Γ(ym)− i
(

n+
1
2

)
LΛ(ym), (5.18)

sendo que

Γ(y) =
A(y)

y2D(y)
,

Λ(y) =−2A(y)
C(y)

√
Γ(y)′

2

[
ln

A(y)
C(y)

]′
+Γ(y)′′ .

O máximo do potencial é determinado por V (y)′ = 0, e ocorre em

ym =

 −2c1(
c2 +

(
c2

2 −8c1
) 1

2
)


1
(7−p)

, (5.19)
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com c1 = (7− p)(ab)7−p e c2 = −(9− p)a7−p. Esta expressão concorda plenamente com os

resultados para L grande levando em conta as seis ordens do WKB.

O caso extremo

Como discutido anteriormente, trataremos no caso extremo apenas as branas com p < 5

devido à divergência do potencial efetivo na vizinhança do horizonte de eventos y = a. Os re-

sultados para estes valores são qualitativamente similares ao caso não extremo. O procedimento

para o cálculo das frequências quasinormais é o mesmo utilizado no caso das p−branas negras.

As frequências obtidas para todas as configurações a não ser para a 5−brana e a 6−brana são

listadas na tabela (5.4).

p = 0 p = 1

L n Re(k) −Im(k) L n Re(k) −Im(k)

0 0 2.4997 0.9551 0 0 2.0407 0.8472

1 0 3.0707 1.0178 1 0 2.6890 0.8636

1 1 2.4132 2.0833 1 1 1.9794 2.1751

2 0 3.8865 0.9316 2 0 3.4758 0.8029

2 1 3.1598 2.7734 2 1 2.8825 2.4061

2 2 0.0876 2.4072 2 2 0.9789 3.5412

p = 2 p = 3 p = 4

L n Re(k) −Im(k) L n Re(k) −Im(k) L n Re(k) −Im(k)

0 0 1.6804 0.6598 0 0 1.5166 0.4295 0 0 1.4002 0.3238

1 0 2.3562 0.6855 1 0 2.0922 0.5226 1 0 2.0082 0.3409

1 1 1.7983 1.9035 1 1 1.7917 1.4665 1 1 1.8299 0.9917

2 0 3.1055 0.6587 2 0 2.7984 0.5134 2 0 2.6720 0.3517

2 1 2.6785 1.9772 2 1 2.5253 1.5580 2 1 2.5245 1.0509

2 2 1.5204 3.2295 2 2 1.9272 2.5721 2 2 2.1955 1.7328

Tabela 5.3: Freqüências quasinormais escalares para p = 0, 1, 2, 3, 4 no caso extremo a = b =

1.

O efeito da dimensão espacial das branas extremas nas frequências quasinormais é o mesmo

que no caso não extremo: tanto a parte real quanto a imaginária decaem à medida em que
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aumentamos p. Da mesma forma que no caso anterior, quanto maior o parâmetro a menor será

a parte imaginária e a parte real das frequências.

5.5 Frequências quasinormais: Integração caracterı́stica

Outra técnica numérica usada no presente trabalho com o fim de calcular as frequências

quasinormais é a chamada integração caracterı́stica. Os resultados obtidos usando este método

corroboram aqueles obtidos na seção anterior onde usamos a técnica WKB. Nas tabelas (5.4)

e (5.5) temos os resultados da frequências calculadas para o caso da p-brana negra. O número

que aparece entre parêntesis ao lado da parte real e imaginária das frequências é o desvio do

resultado obtido usando a integração no domı́nio temporal em relação aos resultados obtidos

com o uso da técnica WKB.

p = 0 p = 1

L Re(k) −Im(k) L Re(k) −Im(k)

0 1.250 (3.0) 0.4980 (9.6) 0 1.042 (3.6) 0.4498 (3.7)

1 1.606 (6.7) 0.4867 (17.2) 1 1.604 (21.1) 0.463 (6.7)

2 1.962 (0.092) 0.4805 (0.15) 2 1.725 (0.079) 0.4295 (0.13)

p = 2 p = 3

L Re(k) −Im(k) L Re(k) −Im(k)

0 0.8346 (4.2) 0.3926 (0.38) 0 0.6376 (3.9) 0.3279 (2.4)

1 1.161 (2.64) 0.3803 (8.1) 1 0.9413 (1.4) 0.3204 (4.7)

2 1.488 (0.013) 0.3749 (0.13) 2 1.249 (0.0056) 0.3157 (0.14)

Tabela 5.4: Frequências quasinormais para p = 0, 1, 2, 3 e 4 com n = 0, a = 2 e b = 0.5 usando

a integração caracterı́stica.

Usando a integração no domı́nio temporal é possı́vel obter o perfil de decaimento da perturbação

escalar ZL(t,r∗), veja por exemplo (5.9). Podemos observar as três partes principais da evolução

dessa perturbação. A primeira parte é chamada de fase transiente e representa a resposta imedi-
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p = 4 p = 5 p = 6

L Re(k) −Im(k) L Re(k) −Im(k) L Re(k) −Im(k)

0 0.4449 (4.0) 0.2555 (1.6) 0 0.2697 (4.5) 0.1990 (8.8) 0 0.1485 (52.6) 0.1290 (116.1)

1 0.7244 (0.46) 0.2438 (6.4) 1 0.5187 (0.16) 0.1828 (0.83) 1 0.3616 (0.22) 0.1150 (0.34)

2 1.008 (0.012) 0.2509 (0.13) 2 0.7691 (0.010) 0.1802 (0.082) 2 0.5889 (0.021) 0.1134 (0.042)

Tabela 5.5: Frequências quasinormais escalares para p = 4, 5 e 6 com n = 0 a = 2 e b = 0.5

usando a integração caracterı́stica.

ata do sistema. Essa fase depende das condições inicias do campo perturbativo. A segunda parte

corresponde aos tempos intermediários, quando a perturbação decai de maneira exponencial.

As frequências de oscilação e amortecimento são determinados pelos modos quasinormais, que

dependem exclusivamente dos parâmetros da p-brana. A última fase da evolução de ZL(t,r∗)

ocorre em tempos longos. O campo nessa etapa decai como uma lei de potência [43].

Figura 5.9: Gráfico Log-Log do valor absoluto de ZL(t,r∗). A fase transiente, quasinormal e a

cauda estão indicadas. Os parâmetros da p-brana são p = 0, a = 2, b = 0.5, L = 1 e β = 0

Longe do horizonte de eventos da p-brana o potencial efetivo (com β = 0), em termos da

coordenada tartaruga r∗, adquire a seguinte forma:
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V (r?) =
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r4
?
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(5.20)

Com este potencial efetivo, foi mostrado por Price [44] e Ching et al [26] que a evolução de

uma perturbação inicial com suporte compacto, em tempos longos evolui de acordo com

ZL ∼ t−α(p,L). (5.21)

O expoente α(p,L) para os casos p = 1,3,5,6 é dado por

α(p,L) =


2L− p+8 com p = 1,3,5

2L+3 com p = 6
(5.22)

Para p = 0,2,4, o resultado numérico sugere uma expressão similar

α(p,L) = 2L− p+10 com p = 0,2,4 (5.23)

O decaimento tipo lei de potência para tempos longos é confirmado pela integração carac-

terı́stica sendo ilustrado em (5.10).

5.6 O caso massivo β > 0

Os resultados apresentados até aqui foram obtidos no regime em que β = 0. Nesta seção

apresentaremos os resultados obtidos da dependência das frequências quasinormais ω=
√

k2 +β2
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Figura 5.10: Caudas para vários valores de p. Os parâmetros da p-brana são a = 2, b = 0.5, L =

0, β = 0. As retas que aparecem logo acima das caudas indicam suas respectivas inclinações.

em β. O perfil de decaimento de ZL(t,r∗) apresenta as mesmas três fases que aparecem quando

β = 0. A novidade neste caso é o aparecimento de uma cauda massiva, que para uma certa

escolha de parâmetros pode sobrepor-se à fase quasinormal, veja (5.11).

Figura 5.11: Gráfico Log-Log do valor absoluto de ZL(t,r∗). A fase transiente, quasinormal e

a cauda massiva estão indicadas. Os parâmetros da p-brana são p = 0, a = 2, b = 0.5, L = 1 e

β = 1

Utilizamos a técnica WKB e a integração caracterı́stica da mesma forma que empregados

no caso anterior. Entretanto, a integração caracterı́stica não é aplicável para valores grandes

de β. Isto decorre do fato de que a cauda massiva, que ocorre devido a presença de termos



5.6 O caso massivo β > 0 75

proporcionais à β2 no potencial, domina sobre os modos quasinormais já em tempos curtos,

veja para o caso p = 6 na figura (5.12). Apesar disso, a integração funciona para valores β

pequenos. Em geral, o que observamos é que as frequências quasinormais no caso massivo se

tornam mais oscilatórias e menos amortecidas.

No caso massivo, o potencial efetivo para r∗ grande é dado por:

V (r?) =


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(5.24)

A forma da cauda massiva em tempos longos é dada por

ZL(t,r∗)∼ sin(βt)t−γ(p,L). (5.25)

No caso p = 6, isto é quando o bulk é quadridimensional, podemos usar diretamente os re-

sultados de Koyama et al [45], que estimou o perfil de caudas em tempos longos de uma

perturbação escalar massiva em buracos negros esfericamente simétricos. No nosso caso te-

mos α(p = 6,α) = 5/6. Este resultado é ilustrado na figura (5.12).

No caso da 2-brana com a = 2, b = 0.5, L = 0, o método WKB e o da integração ca-

racterı́stica dão resultados discrepantes na região próxima de β2, veja as figuras (5.13) (5.14).

Observamos que para pequenos valores de β os dois métodos empregados coincidem perfeita-

mente. A parte real das frequências também têm uma boa concordância pelo menos até β = 2.5.

A razão desses diferentes resultados encontrados na região β = 1 não está clara.

Em relação ao caso extremo, a técnica de integração caracterı́stica é difı́cil de ser aplicada,

pois com exceção do caso p = 3, as p-branas possuem uma singularidade nua [20] e o problema
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Figura 5.12: Cauda massiva para p = 6. Os parâmetros da p-brana são a = 2, b = 0.5, L = 0 e

β = 1.

Figura 5.13: Efeito de β no comportamento da parte real de ω para p = 2 com a = 2, b = 1 e

L = 0. Os dois métodos numéricos foram empregados. Eles são consistentes para β pequeno e

suficientemente grande, mas discrepantes próximo de β = 1

de como condições iniciais evoluem no espaço-tempo não é bem posto. Portanto, esta classe de

soluções não será estudada com este método.

Da extensiva análise das frequências quasinormais devidas à propagação de um campo es-

calar na geometria das p-branas negras, podemos dizer que estes espaços tempos são estáveis

frente a este tipo de deslocamento do equilı́brio. Os dois métodos numéricos empregados dão

bom suporte a este resultado e os valores obtidos em ambas abordagens conicidem. Como foi

comentado, no caso em que β é grande, a integração caracterı́stica não apresenta resultados das



5.6 O caso massivo β > 0 77

Figura 5.14: Efeito de β no comportamento da parte imaginária de ω para p = 2 com a = 2,

b = 1 e L = 0. Os dois métodos numéricos foram empregados. Eles são consistentes para β

pequeno e suficientemente grande, mas discrepantes próximo de β = 1

frequências quasinormais, devido ao domı́nio da cauda massiva sobre a fase quasinormal da

evolução da perturbação inicial.

Dos resultados obtidos, constatamos que as frequências quasinormais, tanto a parte real

quanto a imaginária, decrescem quase linearmente com o aumento do parâmetro a, que para um

dado valor de b representa a massa da brana. Da mesma forma, se aumentarmos o número de

dimensões espaciais da brana as perturbações tornam-se menos oscilantes e amortecidas.



Capı́tulo 6

Supercondutores Holográficos na

Gravidade de Gauss-Bonnet

Neste capı́tulo vamos tratar de uma aplicação da correspondência calibre/gravitação em sua

versão fenomenológica. Usaremos o espaço-tempo de Gauss-Bonnet AdS para modelar esta-

dos supercondutores na teoria de campos definida na borda AdS. Daremos ênfase aos aspectos

semianalı́ticos dos cálculos, que foram nossa principal contribuição ao assunto. Tais apectos e

a análise numérica dos supercondutores holográficos usando o buraco negro de Gauss-Bonnet

foram publicados em [46].

Começaremos fazendo uma breve revisão do assunto, seguido de uma descrição do buraco

negro de Gauss-Bonnet e por fim os cálculos para o condensado supercondutor da teoria de

campos dual usando o dicionário AdS/CFT.

6.1 Supercondutores holográficos

Recentemente tem havido grande interesse em aplicações das idéias da correspondência

AdS/CFT em sistemas gravitacionais que não são soluções da supergravidade em 10 dimensões

como no exemplo original de Maldacena. O que se propõe é uma versão fenomenológica da

correspondência AdS/CFT. Seguindo esta linha, Gubser [10,47] sugeriu que na região próxima
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do horizonte de um buraco negro carregado há uma quebra da simetria U(1) devido a um campo

escalar carregado. Então usa-se a correspondência calibre/gravitação para a construção de duais

gravitacionais para a transição de um estado normal para um estado supercondutor da teoria de

campos na borda AdS [47].

O dual gravitacional de um supercondutor consiste em um sistema formado por um buraco

negro e um campo escalar carregado, em que o buraco negro admite um cabelo escalar para

uma dada temperatura menor que a chamada temperatura crı́tica, enquanto que para tempe-

raturas maiores que a temperatura crı́tica não há a formação desse cabelo escalar [48]. Um

condensado do campo escalar é então formado devido ao seu acoplamento com o campo de

Maxwell de fundo, onde não se levam em conta os efeitos de retroação do campo escalar car-

regado no espaço-tempo. Seguindo esta linha fenomenológica há uma grande quantidades de

investigações em relação à aplicação da correspondência AdS/CFT na fı́sica da matéria conden-

sada, veja as revisões [49] [50] e suas referências.

Devemos sempre ressaltar que esses modelos são fenomenológicos. Os campos clássicos e

as interações no bulk são escolhidas ad hoc. Uma situação mais confortável seria a derivação de

modelos apartir de primeiros princı́pios, veja mais detalhes desta discussão em [51] [52] [53].

Um modelo composto de um campo escalar carregado acoplado ao campo de Maxwell na

geometria definida pelo buraco negro de Gauss-Bonnet 5-dimensional foi apresentado e estu-

dado por Gregory et al [12]. O objetivo foi o de estudar o efeito da inclusão de correções na

geometria, isto é, levando em conta termos proporcionais ao quadrado das componentes do ten-

sor de Riemann na ação, na formação do condensado da teoria de campos dual. A conclusão

foi que a adição dessas correções torna mais difı́cil a formação do condensado. Também nesse

trabalho, os autores apresentam um método semianalı́tico para a determinação da densidade do

condensado na teoria de campos definida na borda AdS em teremos da temperatura crı́tica. Em

nosso trabalho [46] consideramos uma geometria do buraco negro de Gauss-Bonnet-AdS em

d-dimensões que generaliza o caso estudado por Gregory et al [12]. O objetivo é lançar alguma

luz sobre os detalhes de como se dá a influência das correções na geometria quando levamos

em conta um bulk com dimensão maior que cinco.
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6.2 O buraco negro de Gauss-Bonnet AdS

A teoria de Gauss-Bonnet d-dimensional com constante cosmológica negativa Λ = −(d −

1)(d −2)/2L2 é dada pela ação

S =
∫

ddx
√
−g
[

R+
(d −1)(d −2)

L2 + α̃
(

RabcdRabcd −4RabRab +R2
)]

, (6.1)

onde α̃ é a constante de acoplamento de Gauss-Bonnet com dimensão de (comprimento)−2. A

solução das equações de movimento da ação acima para um buraco negro neutro é descrito pelo

elemento de linha [54]

ds2 =− f (r)dt2 +
1

f (r)
dr2 + r2 (dχ2 +hi jdxidx j) , (6.2)

onde

f (r) =
r2

2α

[
1−
(

1+
64πGαM

(d −2)Σrd−1 −
4α
L2

) 1
2
]

, (6.3)

onde α = α̃(d − 3)(d − 4) e M é uma constante de integração relacionada com o horizonte de

eventos r+ do buraco negro por M =
(d−2)Σrd−1

+

16πGL2 . A constante Σ é o volume do espaço plano

(d −3)-dimensional. Observamos que na região assintótica

f (r)∼ r2

2α

[
1−
√

1− 4α
L2

]
, (6.4)

o que nos permite definir a escala efetiva

L2
e f f =

2α

1−
√

1− 4α
L2

, (6.5)

que se reduz a L2 quando α tende a zero e a L2/2 quando α tende a L2/4.

A temperatura Hawking do buraco negro, que é interpretada como a temperatura da teoria

de campos na borda AdS, é dada por

T =
(d −1)
4πL2 r+ . (6.6)

Dada a descrição da geometria, na próxima seção vamos considerar os campos clássicos

definidos ali, que serão úteis para construir o condensado supercondutor na teoria de campos.
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6.3 Campos clássicos definidos no bulk

Na geometria de Gauss-Bonnet AdS d-dimensional dado pela métrica (6.2) consideraremos

o campo de Maxwell Fab e um campo escalar complexo carregado Ψ através da ação

S =
∫

ddx
√
−g
[
−1

4
FabFab −|∇Ψ− iAΨ|2 −m2|Ψ|2

]
, (6.7)

sendo Aa o potencial vetor.

Nesta análise não levaremos em conta a retroação dos campos na geometria, isto é, os cam-

pos são fracamente acoplados à gravidade. Usando como Ansatz Ψ = Ψ(r), At = φ(r), as

equações de movimento para esses campos são

φ(r)′′+
(d −2)

r
φ(r)′− 2Ψ(r)2φ(r)

f (r)
= 0 , (6.8)

Ψ(r)′′+
[

f (r)′

f (r)
+

d −2
r

]
Ψ(r)′+

φ(r)2Ψ(r)
f (r)2 − m2Ψ(r)

f (r)
= 0 . (6.9)

Na resolução do sistema de equações acima, é possı́vel aplicar um método semianalı́tico

para estudar as propriedades das soluções sem precisar apelar para métodos numéricos. O

método consiste em procurar por soluções aproximadas tanto na região próxima do horizonte de

eventos quanto na região assintótica próximo do horizonte AdS e colar suavemente as soluções

em um ponto intermediário. Em particular no trabalho [12], foi obtida uma expressão semia-

nalı́tica para a temperatura crı́tica usando tal técnica e o resultado corrobora com os resultados

numéricos. Na próxima seção vamos utilizar a mesma técnica para o presente caso.

6.4 Soluções semianalı́ticas

Primeiramente reescrevemos as equações (6.8) e (6.9) em termos da coordenada z = r+/r:

Ψ′′+

(
f ′

f
− (d −4)

z

)
Ψ′+

r2
+

z4

(
φ2

f 2 −
m2

f

)
Ψ = 0 , (6.10)

φ′′− (d −4)
z

φ′−
r2
+

z4
2Ψ2

f
φ = 0 , (6.11)
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onde a diferenciação é tomada em relação a z. Impondo regularidade no horizonte z= 1 obtemos

Ψ(1) =−d −1
m2L2 Ψ′(1), Φ(1) = 0 . (6.12)

Na região próxima da borda AdS (z = 0) temos

Ψ =C−zλ− +C+zλ+, ψ = µ− ρ
rd−3
+

zd−3 . (6.13)

No que segue, tomaremos C− = 0 e fixaremos ρ.

Expandindo as equações (6.10) e (6.11) em torno de z= 1 usando a condição de regularidade

no horizonte de eventos (6.12), obtemos a seguinte solução aproximada nas vizinhanças do

horizonte de eventos

Ψ(z) =

(
1+

m2L2

d −1

)
Ψ(1)− m2L2

d −1
Ψ(1)z

+
1
4

{[
2+

m2L2

d −1
− 2(d −1)α

L2

]
m2L2

d −1
− L4

(d −1)2r2
+

φ′(1)2
}

ψ(1)(1− z)2 · · · ,

(6.14)

φ(z) =−φ′(z)(1− z)+
1
2

[
(d −4)− 2L2

d −1
Ψ(1)2

]
φ′(1)(1− z)2 · · · . (6.15)

As soluções próximas da borda AdS são

ψ =C+zλ+, ψ = µ− ρ
rd−3
+

zd−3 . (6.16)

Colando as soluções (6.14) (6.15) e (6.16) em um ponto intermediário zm com 0 < zm < 0

obtemos as equações

C+zλ+
m =

(
1+

m2L2

d −1

)
a− m2L2

d −1
zma

+
1
4

{[
2+

m2L2

d −1
− 2(d −1)α

L2

]
m2L2

d −1
− L4

(d −1)2r2
+

b2
}
(1− z)2a ,

(6.17)

λ+C+zλ+−1
m = −m2L2

d −1

− 1
2

{[
2+

m2L2

d −1
− 2(d −1)α

L2

]
m2L2

d −1
− L4

(d −1)2r2
+

b2
}
(1− z)a

(6.18)
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µ− ρ
rd−3
+

zd−3
m = (1− zm)b−

1
2

[
(d −4)− 2L2

d −1
a2
]
(1− z)2b , (6.19)

− (d −3)
ρ

rd−3
+

zd−4
m =−b+

[
(d −4)− 2L2

d −1
a2
]
(1− zm)b , (6.20)

onde definimos Ψ(1) ≡ a e −φ′(1) ≡ b com a,b > 0, o que faz com que Ψ(z) e φ(z) sejam

positivos nas vizinhanças do horizonte de eventos. Usando as equações (6.17) e (6.18), podemos

eliminar b e encontrar

C+ =
2(d −1)+m2L2(1− zm)

(d −1) [2zm +(1− zm)λ+]z
λ+−1
m

a . (6.21)

Subtituindo (6.21) em (6.18), obtemos

b = 2(d −1)
r+
L2 ×√

[2(d −1)+m2L2(1− zm)]λ+

2(d −1)(1− zm) [2zm +(1− zm)λ+]
+

(2− zm)m2L2

2(d −1)(1− zm)
+

[
m2L2

2(d −1)

]2

− m2α
2

.

(6.22)

Da mesma forma, usando as equações (6.19) e (6.20) encontramos

a2 =
(d −1)(d −3)zd−4

m ρ
2(1− zm)L2rd−3

+ b

{
1−

[1+(4−d)(1− zm)]rd−3
+ b

(d −3)zd−4
m ρ

}
. (6.23)

Usando a expressão da temperatura Hawking do buraco negro (6.6), podemos reescrever a ex-

pressão acima como

a2 =
(d −1) [1+(4−d)(1− zm)]

2(1− zm)L2

(
Tc

T

)d−2
[

1−
(

T
Tc

)d−2
]

, (6.24)

onde a temperatura crı́tica Tc é dada por

Tc =
d −1
4πL2

{
(d −3)zd−4

m L2ρ
[1+(4−d)(1− zm)] b̃

}
, (6.25)

sendo b = b̃r+/L2.

Seguindo o dicionário AdS/CFT [12], a expressão para o valor esperado 〈O〉, sendo O um

operador da teoria de campos definida na borda AdS, é dada por 〈O〉 ≡ LC+rλ+
+ L−2λ+ . Usando

(6.19) e (6.24), podemos reescrever esta expressão como

〈O〉
1

λ+

Tc
= ϒ

T
Tc

{(
Tc

T

)d−2
[

1−
(

T
Tc

)d−2
]} 1

2λ+

, (6.26)
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sendo ϒ uma função que depende essencialmente da dimensão d e do valor de zm.

Uma observação interessante tirada das relações (6.23) e (6.25) é que se tomarmos zmd =

(d −5)/d −4 a temperatura crı́tica diverge. Além disso, se usarmos o valor zm = 1/2 no caso

d = 6 o método aqui empregado não funciona mais, diferentemente o que foi calculado em [12]

para d = 5. Desta forma, concluı́mos que a escolha de zm não é totalmente arbitrária. Para

obtermos uma temperatura crı́tica que não diverge devemos escolher zm no intervalo zmd < zm <

1. Com isso, os resultado da temperatura crı́tica obtidos através da expressão (6.25) corroboram

perfeitamente com os resultados numéricos apresentados em [46] para T ≈ Tc.

Nas figuras (6.1) e (6.2) apresentamos como ilustração a formação do condensado 〈O+〉

quando T < Tc para vários valores de massa do campo escalar. As curvas foram obtidas nume-

ricamente em [46].

Figura 6.1: Condensado em função da temperatura com α = 0.0001 para vários valores de

massa do campo escalar em d = 5. As quatro linhas de cima para baixo correspondem ao

valores de massa m2L2 =−4, −3, −2 e −1 respectivamente.
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Figura 6.2: Condensado em função da temperatura com α = 0.2 para vários valores de massa

do campo escalar em d = 5. As quatro linhas de cima para baixo correspondem ao valores de

massa m2L2 =−4, −3, −2 e −1 respectivamente.



Capı́tulo 7

Comentários Finais

O trabalho desenvolvido nesta tese teve como objetivo principal explorar as aplicações da

teoria de perturbações da Relatividade Geral no contexto da correspondência calibre/gtavitação.

Em particular, abordamos a questão das frequências quasinormais de um campo escalar sem

massa na geometria das p-branas negras e algumas propriedades do sistema formado por um

campo escalar carregado nas vizinhanças do buraco negro de Gauss-Bonnet AdS com o objetivo

de estudar estados supercondutores da teoria de campos definida na borda AdS.

Descrevemos em detalhes a derivação da soluções tipo p-brana negra e extrema e obtemos

uma expressão para o escalar de Kretschmann para qualquer dimensão p e, portanto, foi possı́vel

localizar as singularidades fı́sicas desses espaços-tempos. Usamos a definição de superfı́cies de

redshift infinito que somado ao comportamento da métrica para certos valores da coordenada

radial nos possibilitou encontrar os horizontes de eventos das p-branas. Desta forma, estabele-

cemos que as p-branas podem ser tratadas como buracos negros esféricos em 10 dimensões.

Analisamos a evolução de um campo escalar sem massa na geometria das p-branas. Ob-

temos explicitamente as equações que regem a dinâmica desse campo e mostramos que este

adquire um termo massivo devido à separação entre as variáveis da brana e as do bulk. Cal-

culamos as frequências quasinormais utilizando o método semianalı́tico WKB e a integração

caracterı́stica. No caso da p-brana negra com o termo massivo do campo escalar zero, os dois

métodos concordam muito bem, indicando que os resultados são confiáveis mostrando que não
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há instabilidades provocadas pelo campo escalar. Em relação ao caso extremo, não temos mais

um horizonte de eventos mas sim uma singularidade nua. Deste modo fica impossibilitada a

aplicação da interação no domı́nio temporal já que o problema de Cauchy nessas circunstâncias

não é bem definido. Com isso, aplicamos apenas o método WKB para calcular as frequências

quasinormais das p-branas extremas para p < 5, já que para p = 5 e p = 6 o potencial efe-

tivo diverge na região próxima do horizonte de eventos. Neste caso, também não encontramos

nenhuma instabilidade.

Quando levamos em conta o termo massivo do campo escalar, a cauda massiva da perturbação

domina a propagação já na fase quasinormal, impossibilitando o cálculo das frequências através

da integração caracterı́stica. Entretanto para valores pequenos do termo massivo os dois métodos

concordam plenamente. A região onde os métodos dicordam corresponde a β ≈ 1, como pôde

ser observado na discussão realizada no capı́tulo 5.

O outro ponto abordado nessa tese foi o do supercondutor holográfico modelado usando

como bulk o espaço-tempo defindo pelo buraco negro de Gauss-Bonnet AdS d-dimensional.

Apresentamos o cálculo semianalı́tico para a obtenção da expressão do valor esperado de um

operador primário da teoria de campos definida na borda em termos da temperatura Hawking do

buraco negro de Gauss-Bonnet AdS e da temperatura crı́tica. Tal expressão corrobora com os

resultados obtidos numericamente para valores de temperatura muito próximos da temperatura

crı́tica [46].

Uma possı́vel extensão do trabalho aqui desenvolvido é a de considerar a evolução de outros

campos, tais como o campo eletromagnético e espinorial com o objetivo de testar a estabilidade

desses espaços-tempos através desses campos de teste. Além disso, aplicar o formalismo inva-

riante de calibre de Kodama [55] para obter as perturbações gravitacionais das p-branas negras

e, se possı́vel, estudar suas frequências quasinormais hidrodinâmicas.

A questão da obtenção dos modos quasinormais levando-se em conta a retroação devido a

correções semiclássicas nas vizinhanças de horizontes de eventos foi também estudada em [56],

mas não foi incluı́da no corpo da tese. Como extensão do trabalho nesse linha, podemos consi-

derar outros espaços-tempos em que se tenha acesso a uma expressão aproximada para o tensor
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energia-momento semiclássico e calcular o efeito dessas correções no espectro quasinormal.



Apêndice A

Fórmula WKB de sexta ordem

Neste apêndice apresentamos o código escrito para o software MATHEMATICA, que faz

uso da fórmula WKB de sexta ordem obtida por Konoplya [29] para calcular as frequências

quasinormais.

Declaração dos parâmetros

a, b, p, L, β

p = p;p = p;p = p;

a = a;a = a;a = a;

b = b;b = b;b = b;

L = L;L = L;L = L;

β = 0.0;β = 0.0;β = 0.0;

α1 =−1
2 −

(5−p)
(7−p) ;α1 =−1

2 −
(5−p)
(7−p) ;α1 =−1

2 −
(5−p)
(7−p) ;

α2 =
1
2 −

(5−p)
(7−p) ;α2 =

1
2 −

(5−p)
(7−p) ;α2 =

1
2 −

(5−p)
(7−p) ;

Declaração de algumas funções úteis

A =

(
1− a7−p

r7−p

)
√(

1− b7−p

r7−p

) ;A =

(
1− a7−p

r7−p

)
√(

1− b7−p

r7−p

) ;A =

(
1− a7−p

r7−p

)
√(

1− b7−p

r7−p

) ;

B =

√(
1− b7−p

r7−p

)
;B =

√(
1− b7−p

r7−p

)
;B =

√(
1− b7−p

r7−p

)
;
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G =

(
1− b7−p

r7−p

)α1(
1− a7−p

r7−p

) ;G =

(
1− b7−p

r7−p

)α1(
1− a7−p

r7−p

) ;G =

(
1− b7−p

r7−p

)α1(
1− a7−p

r7−p

) ;

H =
(

1− b7−p

r7−p

)α2
;H =

(
1− b7−p

r7−p

)α2
;H =

(
1− b7−p

r7−p

)α2
;

h = A
G ;h = A
G ;h = A
G ;

g = (8−p)A
rG + 1

2GD[A,r]+ pA
2BGD[B,r]− A

2G2 D[G,r]+ (8−p)A
2GH D[H,r];g = (8−p)A

rG + 1
2GD[A,r]+ pA

2BGD[B,r]− A
2G2 D[G,r]+ (8−p)A

2GH D[H,r];g = (8−p)A
rG + 1

2GD[A,r]+ pA
2BGD[B,r]− A

2G2 D[G,r]+ (8−p)A
2GH D[H,r];

v = 1

r
(8−p)

2 B
p
4 H

(8−p)
4

;v = 1

r
(8−p)

2 B
p
4 H

(8−p)
4

;v = 1

r
(8−p)

2 B
p
4 H

(8−p)
4

;

V = SetPrecision
[
Simplify

[
A
Bβ− g

v D[v,r]+ AL(L+7−p)
r2H − h

v D[v,{r,2}]
]
,50
]

;V = SetPrecision
[
Simplify

[
A
Bβ− g

v D[v,r]+ AL(L+7−p)
r2H − h

v D[v,{r,2}]
]
,50
]

;V = SetPrecision
[
Simplify

[
A
Bβ− g

v D[v,r]+ AL(L+7−p)
r2H − h

v D[v,{r,2}]
]
,50
]

;

Cálculo das derivadas do potencial V (r)

V1 = SetPrecision
[
Simplify

[
h

1
2 D[V,r]

]
,50
]

;V1 = SetPrecision
[
Simplify

[
h

1
2 D[V,r]

]
,50
]

;V1 = SetPrecision
[
Simplify

[
h

1
2 D[V,r]

]
,50
]

;

V2 = SetPrecision
[
Simplify

[
h

1
2 D[V1,r]

]
,50
]

;V2 = SetPrecision
[
Simplify

[
h

1
2 D[V1,r]

]
,50
]

;V2 = SetPrecision
[
Simplify

[
h

1
2 D[V1,r]

]
,50
]

;

V3 = SetPrecision
[
Simplify

[
h

1
2 D[V2,r]

]
,50
]

;V3 = SetPrecision
[
Simplify

[
h

1
2 D[V2,r]

]
,50
]

;V3 = SetPrecision
[
Simplify

[
h

1
2 D[V2,r]

]
,50
]

;

V4 = SetPrecision
[
Simplify

[
h

1
2 D[V3,r]

]
,50
]

;V4 = SetPrecision
[
Simplify

[
h

1
2 D[V3,r]

]
,50
]

;V4 = SetPrecision
[
Simplify

[
h

1
2 D[V3,r]

]
,50
]

;

V5 = SetPrecision
[
Simplify

[
h

1
2 D[V4,r]

]
,50
]

;V5 = SetPrecision
[
Simplify

[
h

1
2 D[V4,r]

]
,50
]

;V5 = SetPrecision
[
Simplify

[
h

1
2 D[V4,r]

]
,50
]

;

V6 = SetPrecision
[
Simplify

[
h

1
2 D[V5,r]

]
,50
]

;V6 = SetPrecision
[
Simplify

[
h

1
2 D[V5,r]

]
,50
]

;V6 = SetPrecision
[
Simplify

[
h

1
2 D[V5,r]

]
,50
]

;

V7 = SetPrecision
[
Simplify

[
h

1
2 D[V6,r]

]
,50
]

;V7 = SetPrecision
[
Simplify

[
h

1
2 D[V6,r]

]
,50
]

;V7 = SetPrecision
[
Simplify

[
h

1
2 D[V6,r]

]
,50
]

;

V8 = SetPrecision
[
Simplify

[
h

1
2 D[V7,r]

]
,50
]

;V8 = SetPrecision
[
Simplify

[
h

1
2 D[V7,r]

]
,50
]

;V8 = SetPrecision
[
Simplify

[
h

1
2 D[V7,r]

]
,50
]

;

V9 = SetPrecision
[
Simplify

[
h

1
2 D[V8,r]

]
,50
]

;V9 = SetPrecision
[
Simplify

[
h

1
2 D[V8,r]

]
,50
]

;V9 = SetPrecision
[
Simplify

[
h

1
2 D[V8,r]

]
,50
]

;

V10 = SetPrecision
[
Simplify

[
h

1
2 D[V9,r]

]
,50
]

;V10 = SetPrecision
[
Simplify

[
h

1
2 D[V9,r]

]
,50
]

;V10 = SetPrecision
[
Simplify

[
h

1
2 D[V9,r]

]
,50
]

;

V11 = SetPrecision
[
Simplify

[
h

1
2 D[V10,r]

]
,50
]

;V11 = SetPrecision
[
Simplify

[
h

1
2 D[V10,r]

]
,50
]

;V11 = SetPrecision
[
Simplify

[
h

1
2 D[V10,r]

]
,50
]

;

V12 = SetPrecision
[
Simplify

[
h

1
2 D[V11,r]

]
,50
]

;V12 = SetPrecision
[
Simplify

[
h

1
2 D[V11,r]

]
,50
]

;V12 = SetPrecision
[
Simplify

[
h

1
2 D[V11,r]

]
,50
]

;

Cálculo de rmax

F = SetPrecision[x/.FindRoot[V1 == 0,{x,a+0.4,a+1.5}],50]F = SetPrecision[x/.FindRoot[V1 == 0,{x,a+0.4,a+1.5}],50]F = SetPrecision[x/.FindRoot[V1 == 0,{x,a+0.4,a+1.5}],50]

Fórmula para calcular ω
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b = 1/2+ν;r = rmaxb = 1/2+ν;r = rmaxb = 1/2+ν;r = rmax

ν = 2;ν = 2;ν = 2;

N
[
Sqrt

[
V + 1

8 ×
(V4

V2

)
×
(
b2 + 1

4

)
− 1

288 ×
(
7+60×b2)× (V3

V2

)∧{2}N
[
Sqrt

[
V + 1

8 ×
(V4

V2

)
×
(
b2 + 1

4

)
− 1

288 ×
(
7+60×b2)× (V3

V2

)∧{2}N
[
Sqrt

[
V + 1

8 ×
(V4

V2

)
×
(
b2 + 1

4

)
− 1

288 ×
(
7+60×b2)× (V3

V2

)∧{2}

−i×Sqrt[−2×V2]×b−i×Sqrt[−2×V2]×b−i×Sqrt[−2×V2]×b

(1 −(1 −(1 −
1

2×V2

( 5
6912 ×

((V3
V2

)∧{4}
)
×
(
77+188×b2)−1

2×V2

( 5
6912 ×

((V3
V2

)∧{4}
)
×
(
77+188×b2)−1

2×V2

( 5
6912 ×

((V3
V2

)∧{4}
)
×
(
77+188×b2)−

1
384 ×

(
V4×(V3)∧{2}
(V2)∧{3}

)
×
(
51+100×b2)+1

384 ×
(

V4×(V3)∧{2}
(V2)∧{3}

)
×
(
51+100×b2)+1

384 ×
(

V4×(V3)∧{2}
(V2)∧{3}

)
×
(
51+100×b2)+

1
2304 ×

((V4
V2

)∧{2}
)
×
(
67+68×b2)+ 1

288 ×
(

V5×(V3)
(V2)∧{2}

)
×
(
19+28×b2)−1

2304 ×
((V4

V2

)∧{2}
)
×
(
67+68×b2)+ 1

288 ×
(

V5×(V3)
(V2)∧{2}

)
×
(
19+28×b2)−1

2304 ×
((V4

V2

)∧{2}
)
×
(
67+68×b2)+ 1

288 ×
(

V5×(V3)
(V2)∧{2}

)
×
(
19+28×b2)−

1
288 ×

(V6
V2

)
×
(
5+4×b2)))+1

288 ×
(V6

V2

)
×
(
5+4×b2)))+1

288 ×
(V6

V2

)
×
(
5+4×b2)))+

i×
√
−2×V2×i×

√
−2×V2×i×

√
−2×V2×(

1
597196800

√
2(V2)7

√
−V2

(
1

597196800
√

2(V2)7
√
−V2

(
1

597196800
√

2(V2)7
√
−V2(

i
(
2536975(V3)6 −9886275(V2)(V3)4(V4)+5319720(V2)2(V3)3(V5)−

(
i
(
2536975(V3)6 −9886275(V2)(V3)4(V4)+5319720(V2)2(V3)3(V5)−

(
i
(
2536975(V3)6 −9886275(V2)(V3)4(V4)+5319720(V2)2(V3)3(V5)−

225V22V32 (−40261V42 +9688V2V6
)
+225V22V32 (−40261V42 +9688V2V6
)
+225V22V32 (−40261V42 +9688V2V6
)
+

3240V23V3(−1889V4V5+220V2V7)−3240V23V3(−1889V4V5+220V2V7)−3240V23V3(−1889V4V5+220V2V7)−

729V23 (1425V43 −1400V2V4V6+8V2
(
−123V52 +25V2V8

))))
+729V23 (1425V43 −1400V2V4V6+8V2

(
−123V52 +25V2V8

))))
+729V23 (1425V43 −1400V2V4V6+8V2

(
−123V52 +25V2V8

))))
+

1
4976640

√
2(V2)7

√
−V2

1
4976640

√
2(V2)7

√
−V2

1
4976640

√
2(V2)7

√
−V2(

i
(
348425V36 −1199925V2V34V4+572760V22V33V5−

(
i
(
348425V36 −1199925V2V34V4+572760V22V33V5−

(
i
(
348425V36 −1199925V2V34V4+572760V22V33V5−

45V22V32 (−20671V42 +4552V2V6
)
+1080V23V3(−489V4V5+52V2V7)−45V22V32 (−20671V42 +4552V2V6
)
+1080V23V3(−489V4V5+52V2V7)−45V22V32 (−20671V42 +4552V2V6
)
+1080V23V3(−489V4V5+52V2V7)−

27V23 (2845V43 −2360V2V4V6+56V2
(
−31V52 +5V2V8

)))
b2)+27V23 (2845V43 −2360V2V4V6+56V2

(
−31V52 +5V2V8

)))
b2)+27V23 (2845V43 −2360V2V4V6+56V2

(
−31V52 +5V2V8

)))
b2)+

1
2488320

√
2(V2)7

√
−V2

1
2488320

√
2(V2)7

√
−V2

1
2488320

√
2(V2)7

√
−V2(

i
(
192925V36 −581625V2V34V4+234360V22V33V5−

(
i
(
192925V36 −581625V2V34V4+234360V22V33V5−

(
i
(
192925V36 −581625V2V34V4+234360V22V33V5−

45V22V32 (−8315V42 +1448V2V6
)
+1080V23V3(−161V4V5+12V2V7)−45V22V32 (−8315V42 +1448V2V6
)
+1080V23V3(−161V4V5+12V2V7)−45V22V32 (−8315V42 +1448V2V6
)
+1080V23V3(−161V4V5+12V2V7)−

27V23 (625V43 −440V2V4V6+8V2
(
−63V52 +5V2V8

)))
b4))−27V23 (625V43 −440V2V4V6+8V2

(
−63V52 +5V2V8

)))
b4))−27V23 (625V43 −440V2V4V6+8V2

(
−63V52 +5V2V8

)))
b4))−

i×
√
−2V2×i×

√
−2V2×i×

√
−2V2×(

1
7166361600V210

(
1

7166361600V210

(
1

7166361600V210(
(1+2ν)

(
15552V10V27 (15+16ν+18ν2 +4ν3 +2ν4)−(

(1+2ν)
(
15552V10V27 (15+16ν+18ν2 +4ν3 +2ν4)−(

(1+2ν)
(
15552V10V27 (15+16ν+18ν2 +4ν3 +2ν4)−
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720V22V35V5
(
504060+1171942ν+1640011ν2 +936138ν3 +468069ν4)−720V22V35V5
(
504060+1171942ν+1640011ν2 +936138ν3 +468069ν4)−720V22V35V5
(
504060+1171942ν+1640011ν2 +936138ν3 +468069ν4)−

175V38 (916705+2411163ν+3552504ν2 +2282682ν3 +1141341ν4)+175V38 (916705+2411163ν+3552504ν2 +2282682ν3 +1141341ν4)+175V38 (916705+2411163ν+3552504ν2 +2282682ν3 +1141341ν4)+
300V2V36V4

(
2493131+6188289ν+8909532ν2 +5442486ν3+300V2V36V4
(
2493131+6188289ν+8909532ν2 +5442486ν3+300V2V36V4
(
2493131+6188289ν+8909532ν2 +5442486ν3+

2721243ν4)−4320V23V332721243ν4)−4320V23V332721243ν4)−4320V23V33(
8V2V7

(
1306+2535ν+3270ν2 +1470ν3 +735ν4)−(

8V2V7
(
1306+2535ν+3270ν2 +1470ν3 +735ν4)−(

8V2V7
(
1306+2535ν+3270ν2 +1470ν3 +735ν4)−

5V4V5
(
35282+75366ν+102603ν2 +54474ν3 +27237ν4))+5V4V5
(
35282+75366ν+102603ν2 +54474ν3 +27237ν4))+5V4V5
(
35282+75366ν+102603ν2 +54474ν3 +27237ν4))+

90V22V34 (8V2V6
(
194828+416530ν+560485ν2 +287910ν3 +143955ν4)−90V22V34 (8V2V6
(
194828+416530ν+560485ν2 +287910ν3 +143955ν4)−90V22V34 (8V2V6
(
194828+416530ν+560485ν2 +287910ν3 +143955ν4)−

25V42 (459337+1060403ν+1485968ν2 +851130ν3 +425565ν4))−25V42 (459337+1060403ν+1485968ν2 +851130ν3 +425565ν4))−25V42 (459337+1060403ν+1485968ν2 +851130ν3 +425565ν4))−
27V24 (−80V2V42V6

(
11220+16342ν+19471ν2 +6258ν3 +3129ν4)+27V24 (−80V2V42V6
(
11220+16342ν+19471ν2 +6258ν3 +3129ν4)+27V24 (−80V2V42V6
(
11220+16342ν+19471ν2 +6258ν3 +3129ν4)+

25V44 (30885+49927ν+60616ν2 +21378ν3 +10689ν4)+25V44 (30885+49927ν+60616ν2 +21378ν3 +10689ν4)+25V44 (30885+49927ν+60616ν2 +21378ν3 +10689ν4)+
32V22 (36V5V7

(
199+288ν+354ν2 +132ν3 +66ν4)+32V22 (36V5V7
(
199+288ν+354ν2 +132ν3 +66ν4)+32V22 (36V5V7
(
199+288ν+354ν2 +132ν3 +66ν4)+

V62 (3495+4538ν+5324ν2 +1572ν3 +786ν4))+V62 (3495+4538ν+5324ν2 +1572ν3 +786ν4))+V62 (3495+4538ν+5324ν2 +1572ν3 +786ν4))+
576V2V4

(
15V2V8

(
15+19ν+22ν2 +6ν3 +3ν4)−576V2V4

(
15V2V8

(
15+19ν+22ν2 +6ν3 +3ν4)−576V2V4

(
15V2V8

(
15+19ν+22ν2 +6ν3 +3ν4)−

V52 (2196+3647ν+4676ν2 +2058ν3 +1029ν4)))−V52 (2196+3647ν+4676ν2 +2058ν3 +1029ν4)))−V52 (2196+3647ν+4676ν2 +2058ν3 +1029ν4)))−
432V24V3

(
−240V2V4V7

(
366+611ν+758ν2 +294ν3 +147ν4)+432V24V3

(
−240V2V4V7

(
366+611ν+758ν2 +294ν3 +147ν4)+432V24V3

(
−240V2V4V7

(
366+611ν+758ν2 +294ν3 +147ν4)+

25V42V5
(
24692+46362ν+60621ν2 +28518ν3 +14259ν4)+25V42V5
(
24692+46362ν+60621ν2 +28518ν3 +14259ν4)+25V42V5
(
24692+46362ν+60621ν2 +28518ν3 +14259ν4)+

4V2
(
5V2V9

(
255+368ν+434ν2 +132ν3 +66ν4)−4V2

(
5V2V9

(
255+368ν+434ν2 +132ν3 +66ν4)−4V2

(
5V2V9

(
255+368ν+434ν2 +132ν3 +66ν4)−

V5V6
(
30107+51174ν+64992ν2 +27636ν3 +13818ν4)))+V5V6
(
30107+51174ν+64992ν2 +27636ν3 +13818ν4)))+V5V6
(
30107+51174ν+64992ν2 +27636ν3 +13818ν4)))+

540V23V32 (−24V2V4V6
(
15498+29590ν+38515ν2 +17850ν3 +8925ν4)+540V23V32 (−24V2V4V6
(
15498+29590ν+38515ν2 +17850ν3 +8925ν4)+540V23V32 (−24V2V4V6
(
15498+29590ν+38515ν2 +17850ν3 +8925ν4)+

25V43 (31015+64549ν+87124ν2 +45150ν3 +22575ν4)+25V43 (31015+64549ν+87124ν2 +45150ν3 +22575ν4)+25V43 (31015+64549ν+87124ν2 +45150ν3 +22575ν4)+
8V2

(
2V2V8

(
1325+2263ν+2794ν2 +1062ν3 +531ν4)−8V2

(
2V2V8

(
1325+2263ν+2794ν2 +1062ν3 +531ν4)−8V2

(
2V2V8

(
1325+2263ν+2794ν2 +1062ν3 +531ν4)−

V52 (28643+55916ν+74228ν2 +36624ν3 +18312ν4))))))−V52 (28643+55916ν+74228ν2 +36624ν3 +18312ν4))))))−V52 (28643+55916ν+74228ν2 +36624ν3 +18312ν4))))))−
i×

√
−2V2×i×

√
−2V2×i×

√
−2V2×(

−
(
i
(
−171460800V12V29 +1714608000V11V28V3−10268596800V10V27V32+

(
−
(
i
(
−171460800V12V29 +1714608000V11V28V3−10268596800V10V27V32+

(
−
(
i
(
−171460800V12V29 +1714608000V11V28V3−10268596800V10V27V32+

970010662775V310 +3772137600V10V28V4−6262634175525V2V38V4+970010662775V310 +3772137600V10V28V4−6262634175525V2V38V4+970010662775V310 +3772137600V10V28V4−6262634175525V2V38V4+

13782983196150V22V36V42 −11954148125850V23V34V43+13782983196150V22V36V42 −11954148125850V23V34V43+13782983196150V22V36V42 −11954148125850V23V34V43+

3449170577475V24V32V44 −144528059025V25V45+3449170577475V24V32V44 −144528059025V25V45+3449170577475V24V32V44 −144528059025V25V45+

3352602187200V22V37V5−12300730092000V23V35V4V5+3352602187200V22V37V5−12300730092000V23V35V4V5+3352602187200V22V37V5−12300730092000V23V35V4V5+
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11994129604800V24V33V42V5−2624788605600V25V3V43V5+11994129604800V24V33V42V5−2624788605600V25V3V43V5+11994129604800V24V33V42V5−2624788605600V25V3V43V5+

2580769643760V24V34V52 −3453909784416V25V32V4V52+2580769643760V24V34V52 −3453909784416V25V32V4V52+2580769643760V24V34V52 −3453909784416V25V32V4V52+

438440697072V26V42V52 +260524397952V26V3V53−438440697072V26V42V52 +260524397952V26V3V53−438440697072V26V42V52 +260524397952V26V3V53−

1475306441280V23V36V6+4329682610400V24V34V4V6−1475306441280V23V36V6+4329682610400V24V34V4V6−1475306441280V23V36V6+4329682610400V24V34V4V6−

2865128172480V25V32V42V6+233443879200V26V43V6−2865128172480V25V32V42V6+233443879200V26V43V6−2865128172480V25V32V42V6+233443879200V26V43V6−

1660199804928V25V33V5V6+1281705296256V26V3V4V5V6−1660199804928V25V33V5V6+1281705296256V26V3V4V5V6−1660199804928V25V33V5V6+1281705296256V26V3V4V5V6−

87403857408V27V52V6+231105873600V26V32V62−87403857408V27V52V6+231105873600V26V32V62−87403857408V27V52V6+231105873600V26V32V62−

68412859200V27V4V62 +552968700480V24V35V7−68412859200V27V4V62 +552968700480V24V35V7−68412859200V27V4V62 +552968700480V24V35V7−

1231789749120V25V33V4V7+470726303040V26V3V42V7+1231789749120V25V33V4V7+470726303040V26V3V42V7+1231789749120V25V33V4V7+470726303040V26V3V42V7+

413953400448V26V32V5V7−126242178048V27V4V5V7−413953400448V26V32V5V7−126242178048V27V4V5V7−413953400448V26V32V5V7−126242178048V27V4V5V7−

91489305600V27V3V6V7+5619715200V28V72−91489305600V27V3V6V7+5619715200V28V72−91489305600V27V3V6V7+5619715200V28V72−

175752294480V25V34V8+271759652640V26V32V4V8−175752294480V25V34V8+271759652640V26V32V4V8−175752294480V25V34V8+271759652640V26V32V4V8−

39736040400V27V42V8−73378363968V27V3V5V8+39736040400V27V42V8−73378363968V27V3V5V8+39736040400V27V42V8−73378363968V27V3V5V8+

9773265600V28V6V8+47107126080V26V33V9−9773265600V28V6V8+47107126080V26V33V9−9773265600V28V6V8+47107126080V26V33V9−

43345290240V27V3V4V9+7400248128V28V5V9
))/

43345290240V27V3V4V9+7400248128V28V5V9
))/

43345290240V27V3V4V9+7400248128V28V5V9
))/(

202263389798400
√

2(V2)12√−V2
)
+

(
202263389798400

√
2(V2)12√−V2

)
+

(
202263389798400

√
2(V2)12√−V2

)
+

−
(
i
(
−4551552V12V29 +60279552V11V28V3−425036160V10V27V32+−

(
i
(
−4551552V12V29 +60279552V11V28V3−425036160V10V27V32+−

(
i
(
−4551552V12V29 +60279552V11V28V3−425036160V10V27V32+

73727194625V310 +116743680V10V28V4−443649208275V2V38V4+73727194625V310 +116743680V10V28V4−443649208275V2V38V4+73727194625V310 +116743680V10V28V4−443649208275V2V38V4+

901144103850V22V36V42 −711096726150V23V34V43+901144103850V22V36V42 −711096726150V23V34V43+901144103850V22V36V42 −711096726150V23V34V43+

182164306725V24V32V44 −6289615575V25V45+182164306725V24V32V44 −6289615575V25V45+182164306725V24V32V44 −6289615575V25V45+

222467624400V22V37V5−746418445200V23V35V4V5+222467624400V22V37V5−746418445200V23V35V4V5+222467624400V22V37V5−746418445200V23V35V4V5+

653423900400V24V33V42V5−124319674800V25V3V43V5+653423900400V24V33V42V5−124319674800V25V3V43V5+653423900400V24V33V42V5−124319674800V25V3V43V5+

143980943040V24V34V52 −169712521920V25V32V4V52+143980943040V24V34V52 −169712521920V25V32V4V52+143980943040V24V34V52 −169712521920V25V32V4V52+
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[16] L. I. Beviláqua. Branas em Supergravidade. Tese de Mestrado, Universidade de São

Paulo, Instituto de Fı́sica, São Paulo (2007). URL http://www.teses.usp.br/teses/

disponiveis/43/43134/tde-29032007-211600/. 17

[17] C. V. Johnson. D-Branes. Cambridge University Press (2003). 33, 38, 51

[18] M. B. Green, J. H. Schwarz, E. Witten. Superstring Theory, volume II. Cambridge Uni-

versity Press (1987). 33

[19] R. Adler. Introduction to General Relativity. McGraw-Hill (1975). 36

http://arxiv.org/abs/hep-th/0505189
http://arxiv.org/abs/hep-th/0904.1975
http://arxiv.org/abs/hep-th/0907.3203
http://arxiv.org/abs/hep-th/0704.0240
http://arxiv.org/abs/hep-th/9807171
http://arxiv.org/abs/hep-th/9701088
http://arxiv.org/abs/hep-th/9701088
http://www.teses.usp.br/teses/disponiveis/43/43134/tde-29032007-211600/
http://www.teses.usp.br/teses/disponiveis/43/43134/tde-29032007-211600/


Referências Bibliográficas 98
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