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RESUMO

Esta tese visa realizar um estudo acerca das frequéncias quasinormais das p-branas negras
utilizando um campo escalar de teste. No contexto da correspondéncia AdS/CFT estudamos
alguns aspectos da formacgao de estados supercondutores na teoria de campos definida na borda
do espaco-tempo de Gauss-Bonnet AdS d-dimensional.

Apresentamos a derivacdo das solu¢des das p-branas negras, bem como a andlise de sua
estrutura causal. Revisamos o regime perturbativo da Relatividade Geral e a interpretacdo dos
modos quasinormais de um buraco negro em termos dos elementos que compdem a corres-
pondéncia AdS/CFT.

Estudamos a evolugdo de um campo escalar sem massa na geometria das p-branas negras
em detalhe, sendo que utilizamos o método semianalitico WKB e a integracdo caracteristica
(Problema de Goursat) para calcular as frequéncias quasinormais correspondentes. Por fim,
apresentamos uma expressao aproximada de um estado supercondutor na teoria de campos

definida na borda do buraco negro de Gauss-Bonnet AdS através do dicionario AdS/CFT.



ABSTRACT

This thesis aims at studying the quasinormal frequencies of black p-branes using a scalar
field in the probe limit. In the context of AdS/CFT correspondence we study some aspects
regarding the formation of superconductor states in the field theory set on the AdS boundary of
the Gauss-Bonnet AdS spacetime.

We present the derivation of black p-brane solutions, as well as the analysis of its causal
structure. We review the perturbative regime of General Relativity and the interpretation of the
black hole quasinormal modes in terms of the correspondence AdS/CFT.

We study the evolution of a massless scalar field in the geometry of black p-branes in detail,
and we use the WKB method and the characteristic integration (Goursat’s problem) in order to
calculate the corresponding quasinormal frequencies. Ultimately, we present an approximate
expression for a superconductor state in the field theory defined in the AdS boundary of Gauss-

Bonnet AdS spacetime.
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“Por vezes a noite hd um rosto

Que nos olha do fundo de um espelho
E a arte deve ser como esse espelho
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-Jorge Luis Borges
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Capitulo 1

Introducao

A Relatividade Geral € a teoria fisica mais bem sucedida em explicar o universo em larga
escala. Relaciona o conteido de energia e matéria de uma dada regidao do espaco-tempo com a

dindmica de sua geometria. A equacdo que rege esta dindmica € a equacdo de Einstein,

8nG
Gab "J’_Agab = c_4Tab 5 (1-1)

onde o lado direito representa o conteido de energia e matéria e o esquerdo as propriedades
da geometria. Sao muitos os fendmenos fisicos descritos por estas equacdes. Podemos citar
o desvio da trajetdria de raios luminosos devido a campos gravitacionais, o arraste do espago-
tempo nas vizinhancas de corpos massivos em rotacao, a previsdo de ondas gravitacionais e,
talvez a previsdo mais intressante, a da existéncia de buracos negros.

Buracos negros surgem naturalmente como solucdes exatas das equacdes de Einstein. Sao
de grande importancia para o entendimento da gravitagdo quantica, ja que descrevem um estado
extremo da matéria: uma quantidade enorme de massa concentrada em uma regido de volume
zero. Pelo lado astrofisico, os buracos negros sdo de suma importancia pois aparecem como o
produto final do colapso gravitacional de estrelas massivas. Possiveis candidatos incluem cor-
pos extremamente massivos € densos, cuja explicagdo tedrica mais aceita € que sejam buracos
negros. Recentemente, estudos sobre a estrutura galdctica e observacdes de Orbitas de corpos
indicam que em todas as galdxias espirais, tal como a Via Lictea, possuem um buraco negro

super massivo no seu bojo central.
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As equagodes da Relatividade Geral sao altamente nao-lineares, devido a isso a utilizacao de
técnicas aproximativas € bastante comum. Em particular, para o estudo de perturbacoes em bu-
racos negros, a teoria de perturbacdes em Relatividade Geral é amplamente aplicada. Tal estudo
teve inicio com o trabalho de Regge e Wheeler [ 1] na década de 1950. Naquele trabalho, foi ana-
lisada a estabilidade do buraco negro de Schwarzschild usando para isto pequenas perturbagdes
em sua geometria usando técnicas que sdo empregadas até hoje nesse tipo de estudo. Outros
trabalhos pioneiros na mesma linha s@o os de Vishveshwara [2] e de Zerilli [3].

De um modo geral, perturbagdes devido a campos de teste ou mesmo a geometria nas
vizinhancas de horizonte de eventos de um buraco negro evoluem com frequéncias bem ca-
racterisicas denominadas frequéncias quasinormais. Este termo foi introduzido por Press [4].
As frequéncias quasinormais dependem exclusivamente dos parametros que definem a familia
de buracos negros considerada, e ndo da perturbacao inicial. Além disso, conforme serd visto
em mais detalhes no presente trabalho, analisando o espectro quasinormal de um buraco negro
podemos descobrir se a solu¢do € estavel ou ndo frente a pequenas perturbagdes: se a parte
imagindria dessas frequéncias for positiva significa que as perturbacdes crescem com o tempo
tornando o sistema instdvel.

Além das aplicacdes em astrofisica, recentemente tem havido forte interesse no estudo dos
modos quasinormais no contexto da correspondéncia AdS/CFT (Anti-de Sitter/Conformal Field
Theory), proposta inicialmente por Maldacena [5]. Segundo esta conjectura, existe uma relacao
de correspondéncia entre uma teoria de cordas num espacgo-tempo do tipo AdS e uma teoria
de campos conforme sobre a fronteira desse espaco. De modo que buracos negros no espago
AdS correspondem a um estado aproximadamente térmico na teoria de campos. Foi devido
ao trabalho de Horowitz e Hubeny [6] a primeira interpretacdo dos modos quasinormais em
termos da correspondéncia AdS/CFT. Nessa interpretacao, perturbar um buraco negro significa
perturbar o estado térmico correspondente na teoria de campos. O tempo de amortecimento, isto
€, o tempo que este estado térmico da teoria de campos leva para voltar ao equilibrio, é dado
pela parte imaginaria da frequéncia quasinormal fundamental. Mais tarde, Birmigham et al [7]

mostraram que hd uma concordancia exata entre as frequéncias quasinormais de perturbacoes
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de varios spins do buraco negro BTZ(Bariados, Teitelboim, Zanelli) [8] e os polos da funcio de
Green retardada das correspondentes perturbacdes na teoria conforme dual em duas dimensdoes,
definida na borda do espago-tempo.

Um dos ingredientes fundamentais da corresponéncia AdS/CFT sdo as solug¢des das p-
branas negras. Tais solu¢des foram obtidas por Horowitz e Strominger [9] no limite de baixas
energias da teoria de cordas do tipo IIA/B. Como serd tratado no capitulo 2 deste trabalho, as
p-branas negras podem ser interpretadas como buracos negros em 10 dimensoes, ja que, para
uma dada escolha de parametros, apresentam uma singularidade fisca coberta por um horizonte
de eventos, que também € uma superficie de redshift infinito. No limite préximo do horizonte as
p-branas se reduzem ao espaco-tempo AdS, que no exemplo original de Maldacena [5] € usado
como dual gravitacional da teoria de Yang-Mills através do uso da correspondéncia AdS/CFT.

Além do escopo do estudo dos modos quasinormais, buracos negros AdS t€m outras aplicagoes
no contexto da correspondéncia AdS/CFT. Em particular, o estudo de estados supercondutores
na teoria de campos dual, usando para isso um sistema gravitacional formado por um buraco
negro carregado AdS e um campo escalar carregado. Esta proposta é devida a Gubser [10].
Indmeros outros trabalhos seguindo esta linha formam levados a cabo, veja a revisao de Her-
zog [11] e suas referéncias. Em particular, destacamos o estudo do efeito de corre¢des na
curvatura da geometria do bulk na formacao do estado supercondutor na borda [12].

O trabalho apresentado nesta tese consiste no estudo das frequéncias quasinormais das p-
branas negras com o objetivo de observar a estabilidade desses espacos-tempos. Analisaremos
a evolugdo de um campo escalar sem massa na vizinhanca do horizonte e eventos através do
método semianalitico WKB e um método numérico baseado no problema de condi¢des iniciais
caracteristicas. Outro ponto analisado nesta tese, ¢ o da formac¢do de um supercondutor ho-
lografico tendo como dual gravitacional o buraco negro de Gauss-Bonnet AdS em d dimensoes.

Os assuntos abordados estao divididos da seguinte maneira.

No capitulo 2 faremos uma revisao pormenorizada da derivacao das solucdes das p-branas
extremas e das p-branas negras e analisaremos a sua estrutura causal. O principal objetivo €

caracteriza-las como buracos negros em dimensdes mais altas. Procuraremos pela localizagdo
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das singularidades, horizontes de eventos e superficies de redshift infinito.

No capitulo 3 faremos uma breve revisao da teoria de perturbacoes em Relatividade Geral e
definiremos modos quasinormais em termos de p6los das fungdes de Green retardadas. Também
apresentaremos os rudimentos dos dois métodos numéricos empregados neste trabalho para o
calculo das frequéncias quasinormais das p-branas.

O capitulo 4 basicamente traz as motivacdes do porque estudar modos quasinormais no
contexto da correspondéncia AdS/CFT. Em particular a sua interpretagdo em termos dos pélos
das funcdes de Green retardadas da teoria de campos definida na borda AdS. Daremos énfase ao
trabalho realizado por Son et al [13] que postularam uma prescricao para o calculo das funcdes
de Green retardadas baseada apenas na anélise da evolucdo de campos de teste no bulk.

No capitulo seguinte tratamos em detalhe as frequéncia quasinormais escalares das p-branas
extremas e negras que compoem o principal resultado desta tese.

O capitulo 6 trata do método semianalitico para a obtencdo da densidade de um estado
supercondutor de uma teoria de campos definida na borda do espago-tempo do buraco negro de
Gauss-Bonnet AdS.

Por fim, temos as conclusdes do trabalho e as perspectivas futuras.



Capitulo 2

As p—Branas Negras

Estudaremos neste capitulo as solucdes das p—branas negras. Tais objetos podem ser in-
terpretados como uma familia de buracos negros extendidos em D dimensdes caracterizada por
dois parametros.

Nosso ponto de partida serd uma acdo bem geral em D dimensdes, para em seguida obter
as equagdes de movimento dos campos envolvidos. Por fim, faremos uma escolha adequada de
parametros € imporemos as simetrias convenientes para obtermos as p-branas negras. Seguire-

mos de perto as revisoes de R. Argurio [14], K. Stelle [15] e a dissertagdo de L. Bevildqua [16].

2.1 Acao das p-branas e equacoes de movimento

Consideremos uma teoria cldssica em D dimensdes que inclua gravitacdo, um campo di-

latdbnico e uma n—forma intensidade de campo, cuja a¢do € dada por

1
167‘CGD

P

2n!F" ’

/ dPx/—g [R — %aacpaacb — 2.1)

sendo Gp a constante da gravitacdo em D dimensdes, A € a constante de acoplamento entre o
dilaton e a n-forma, R o escalar de Ricci, g o determinante do tensor métrico g5, Y o campo
escalar dilatonico e F, a n-forma intensidade de campo. Os indices latinos a, b referem-se as

coordenadas de todo o espaco-tempo D-dimensional, isto é a,b = 0,1...,(D — 1) e o indice n
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representa a ordem da n-forma'.

Nosso ponto de partida para o estudo das p-branas negras serd a acdo acima descrita. O
primeiro aspecto a ser estudado é o das equacdes de movimento, que sdo obtidas utilizando-se
o principio da minima acao aplicado a cada um dos campos que compdem a teoria.

Comecando pelo campo dilatdnico P, a variagdo da acdo / em relacdo a este campo €

Y G
2n! Ex

dpl = (2.2)

D — _1 a b .
167Gp /d v g[ 200 (g“ba ©0 q’)

Da total simetria do tensor métrico g,p, 0 primeiro termo do integrando pode ser escrito
como —g,,0°®d,(dp). O segundo termo pode ser escrito como —zin!eA‘DSCI). Substituindo

estes dois resultados em (2.2), obtemos

Ol =

— G / de\/_{ 20 D (5D) — eAq’(acp)F,f] 2.3)

A primeira integral que aparece pode ser simplificada através de uma integracao por partes.

Usando o resultado

[ P30y @(6®)) = [ dPry/ =g (60) + [ dPxd(v/~ggud®)5®

reescrevemos a primeira integral como?

/ AP/ —gayd D (50) — / AP x|/ =g B)5D
Com isso, a variacdo da acdo em relacdo ao campo dilatdonico fica

/de {aa (\/—_ggababd)) — %FHZ} 3.

dpl =
@ 167‘CGD

Do principio da minima a¢do vem que 8¢/ = 0 para qualquer 3P, o que implica na equagdo de

movimento para o campo dilatonico

1 A,

\/—__gaa <\/ —ggababcl>> = 2 ‘ Fn (24)
lParan=2eD=4,F, é simplesmente o tensor de Maxwell F>, = %Fabdx" Adxb.

No passo anterior, usamos a seguinte identidade V¢[\/—gT,] = 9*[\/—gT.], jd que, sendo T% = g,,0”¢ um

vetor, o objeto /—gT“ é uma densidade tensorial de peso +1.
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Quando ndo ha interagdo entre o campo dilatdnico e a n-forma, isto €, quando A = 0, o
termo de fonte desta equacdo é zero. A equagdo resultante € a equacdo de Klein-Gordon para
um campo escalar sem massa.

Variando a agdo (2.1) em relagdo ao tensor métrico g, obtemos

eAfb

~ tors [ 5 v - Ja e - s el e

)
& 16nGp

Explicitando a dependéncia do escalar de Ricci R na métrica g,, como R = ga;,R"b , O pri-

meiro termo do lado esquerdo da equacdo acima fica
D D 1 ab D ab
/d x84 (v/—&R) :/d x/—g [—EgabR—l—Rab] dg +/d x/—88"8Rap

sendo que usamos o resultado 8yv/—g = —1/21/—88.»08".

O proximo passo € mostrar que a segunda integral do lado direito da equac@o acima pode
ser escrita como uma derivada total. O objetivo € usar o fato de que as variagdes dos campos
nos extremos € zero, para assim, anular esta integral.

Este trabalho € realizado langando mdo da equagdo de Palatini. Esta equagdo relaciona 8,R
com as primeiras derivadas das conexdes métricas I';, escritas em um sistema de coordenadas
tal que I'; . = 0 mas ndo suas derivadas. Além disso, derivadas covariantes e parciais ordinarias

coincidem. Esta equacdo é dada por
a

SgRab =V, [Sgrﬁb] — Vb [Sgrdd} .

Apesar dessa equacao ter sido obtida em um particular sistema de coordenadas, o resultado €

uma equacao tensorial, ou seja, podemos usa-la em qualquer outro sistema. Assim,
/ dPxy/—gg™8,Rup = / dhey/ =g (V. [3,15,) — Vi [8,T0, ]}

Usando o fato de que V. [\/=gT"] = V=gV T¢ e que Vg% = 0, a equagdo anterior fica
/de\/—_gg“ngRab = /ddeC [\/—_g (g“bﬁgl“gb - g"cﬁgl’flldﬂ :

O termo entre colchetes € uma densidade tensorial de peso +1, portanto usando o teorema da

divergéncia obtemos uma integral de superficie. Da hip6tese de que os campos se anulem nessa



2.1 Acao das p-branas e equacoes de movimento 20

superficie, obtemos o resultado que procuradvamos,
/de\/—_gg“ngRab =0
Logo a variacdo do termo de Einstein-Hilbert em relagdo a métrica é simplesmente
[ P58, (V=gR) = [ dPxGurde”. 2.6)

sendo G, = Ryp — 1/2g4R o tensor de Einstein.
Continuando, o proximo termo a ser considerado € a segunda integral de (2.5). Usando o

resultado para variacdo de \/—g em relagdo a métrica, esta integral se escreve como

/ dPx8, <%\/_—gg“baacl>abcb) / dPx { [a ®9, P — %gaba%ba cb} }Bg"b. (2.7)

Por altimo temos a variacao da n—forma F,. Expandindo a ultima integral de (2.5), temos

/d x5 \/ F2 /dD a1 anFal a"+\/ 8(611 anFa1 an)]a
usando o fato de que?
5g(Fa1---anmean) — nFaaz---a,,Fb 612"'ar15g01b7

e a expressdo da variagao de /—g, obtemos

p [ 1 aran | \ 5 ab
/d X5 2gabF nFua,...q,F, dg?. (2.8)

Substituindo o resultado acima e as expressdes (2.6) (2.7) em ./ e em seguida usando o
principio da minima a¢do, obtemos a equagdo de movimento para o tensor métrico

eAqD

1 1 .
Gab = E (aaq)abq) - Egabacq)a CI)) 2 |

LgabF Faaz...aan“Z"'“”}. (2.9)

Resta-nos encontrar a equagdo de movimento para a n-forma intensidade de campo F,,. Para

isso, vamos escrevé-la em termos do potencial A,_1,

Fu :dAnfla

3Neste ponto explicitamos a dependéncia na métrica da n-forma da seguinte maneira: Fn2 =

b b
gL .. glhn nFal aanln-bn-
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sendo que d denota a derivada exterior®. Esta expressao em componentes fica Fy, ...q, = a[alAa2~~-an] ,

que para n = 2 se reduz ao conhecido tensor de Maxwell F, 4, = 04,Aq, — 04,44, -

Em vista disso, a variacdo da acdo / serd tomada em relacdo ao potencial A,,, ou seja,

D AP >
/d x\/?g{—ﬁﬁ m(Fn)}. (2.10)

1
16nGp

614]71[ =
A expressio de F? termos de A,, é dada por
F? = n!(04,Aaya, JF1 7,

Ainda precisamos calcular a variagdo da expressdo acima em relagdo ao potencial A,,. Nova-

mente, por simplicidade, calcularemos explicitamente para o caso n = 2,
d4,, (FabFab) = 2gacgbdsAm [0cA4(daAp — 0pAL)]

que usado em (2.10), nos permite realizar uma integracao por partes em cada termo do tipo

0.(8A4)9,Ap, ja que podemos escrever

vV —gaC(SAd)aaAb = BC (\/ —gSAd)aaAb> — ac (\/ —gaaAb) 5Ad.

O primeiro termo do lado direito € uma derivada total, que integrada da zero ja que as variagdes

0A,4 nos extremos se anulam. Portanto, sobra apenas o segundo termo, ou seja,

1

4,0 =2) = 1 / aPx{a, [v=gA?F] oy,

que implica na equacao de movimento,
94 [\/—_geA(bF”b] =0

O procedimento andlogo pode ser feito no caso geral de uma n-forma F;,. O que se obtém € a

equacgao de movimento para a n-forma intensidade de campo F,

A, [\/—_geAq’F“I"'“n —0. 2.11)

“Por exemplo, a derivada exterior de uma 1-forma @ = A jdxj , sendo A; as componentes de um campo vetorial

covariante € dx/ deslocamentos infinitesimais, € uma 2-forma d® dada por dw = % (0;Ar — OkA ;) dx! N dx*
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Assim, dos resultados (2.4), (2.9) e (2.11) e da identidade de Bianchi para a n-forma, o

nosso sistema de equagdes de movimento originadas da variacdo da acao (2.1) é

1 1 AP
Gap = = (aacbabCD— —gabacCDBC@) {2 8avFie — NFugyea B, @7, (2.12)

!

AeA‘I’
\/_ (,/ g“babd)) SorE (2.13)
Oay [x/—geAq’F“l“'“’“] =0 (2.14)
ey Fayoa) =0 - (2.15)

2.2 A escolha do ansatz para solugoes extensas

Procuraremos resolver o sistema de equacdes deduzido na secdo anterior, impondo certas
restri¢cdes de simetria convenientes. Para tanto, faremos escolhas de ansatz apropriados para os
campos envolvidos, a saber, a métrica g, 0 campo dilatdnico ® e a n-forma F,.

Estamos interessados em solugdes do tipo p-brana, que sdo solugdes cldssicas estendidas em
p direcdes. Consideraremos o espaco-tempo com D dimensdes, sendo p destas as dimensodes da
brana e (D — p) as dimensdes do espago-tempo ambiente (bulk). Representamos as p dimensdes
da brana pelas coordenadas {x'} e as do bulk por t,z%, sendo x’ as p coordenadas tipo-espaco da
brana, ¢ a coordenada tipo-tempo e z# as (D — p — 1) coordenadas tipo-espago do bulk. Deste

modo, todo o espago-tempo € descrito pelas coordenadas
ya:{tuxiuzlu}v i:17"'ap7 ,U:LaD_p_l

Em nosso estudo consideraremos as p direcdes da brana todas equivalentes, de modo que
haja simetria de translacdo nessas dire¢des. Como a brana tem uma posicao definida em ter-
mos das coordenadas z* a invariancia por translagdes é quebrada nas direcdes espaciais que
compdem o bulk, com exce¢do da coordenada tipo-tempo. Isto implica que consideraremos
solugdes estaticas. Além disso, postularemos que o bulk tenha simetria esférica.

Isto posto, o elemento de linha que usaremos como ansatz para 0 campo gravitacional serd

ds® = d§* + C*(r)dx'dx; | (2.16)
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onde d§* representa o elemento de linha do bulk, que, como foi dito, representa um espaco-

tempo (D — p)-dimensional estéatico dotado de simetria esférica. Desta forma, podemos escrever
d§* = —B(r)dt* + F*(r)dr* + > G*(r)dQj 5, (2.17)

sendo d o nimero de dimensodes do bulk, isto é, d =D —p e inz o elemento de linha da
esfera (d — 2)-dimensional.

Substituindo (2.17) em (2.16) temos explicitamente o elemento de linha total
ds* = —B*(r)de* + F(r)dr* + r* G*(r)dQ3_, + C*(r)dx'dx; . (2.18)

Notemos que se p =0, o elemento de linha € simplesmente o de um espaco-tempo esfericamente
simétrico. Como nosso objetivo s@o solugdes extensas que possuam horizonte de eventos, o
problema a ser resolvido neste caso € o de simplesmente encontrar solucdes de buracos negros
esfericamente simétricos em d dimensoes.

Uma escolha adequada para a n-forma intensidade de campo é o chamado ansatz elétrico,

que consiste na (p + 2)-forma
Ecl...cpr - 801...GparE(r> y (219)

sendo €50, @ densidade tensorial de Levi-Civita>. Esta escolha para F, satisfaz a identidade
de Bianchi trivialmente.

Devido a simetria esférica do bulk, o campo dilatonico deve depender apenas da coordenada
radial r, logo

d=>(r) . (2.20)

Lancando mao das escolhas feitas para os campos do nosso sistema, podemos explicitar as

equagdes de movimento para em seguida buscar algumas de suas solugdes.

5 A densidade de Levi-Civita €60, € uma densidade tensorial de peso +1 totalmente antissimétrica, cujo valor,

L.

em qualquer sistema de coordenadas x' = (x oo, xP ) € +1ou —1se 0y ---0, € uma permutagdo par ou impar de

17"'7p'
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A dindmica da n-forma intensidade de campo F;, € regida pela equagdo (2.14). Utilizando o

ansatz elétrico para a (p +2)-forma nessa equacio, obtemos®:

#0075 b

ar Q;TCP r

como se observa, o argumento da derivada € igual a uma constante. Chamando-a de Q, tiramos

o valor de d,E(r)

que substituido em (2.19) nos dd a soluc¢@o para a (p + 2)-forma intensidade de campo em

termos das componentes do tensor métrico e do campo de dilaton

Fig,.c,r = €o,.-c, B Ferere 2| 2.21)

(Gr)*?

Este resultado nos permite calcular os termos do lado direito das outras equacdes de movi-

mento que dependam de F,,. Para tanto, vamos colecionar algumas expressoes:

F(%Hz) = (p+2)'Fg,..o,F'° ",

onde usamos o fato de que &,...5,€° %7 = (p+2)!.

Substituindo (2.21) na expressao acima, obtemos

2
2 e Q
Outra expressao muito util é
sa a0 O
Fa(51 0p+2Fb01___cp+2 = —(p —"— 1) !BZe W, (223)

onde &7 = 878, + 8¢5} + 8¢5.
Devido ao fato do campo dilatonico depender apenas da coordenada radial, o lado esquerdo

da equacdo (2.13) é simplesmente

52 {qn” + {(m BY + p(nCY — (InFY + (d—2)(nG) + 1=2 } @’} L 24

9Também usamos o valor da raiz do determinante da métrica /—g = BC? F (Gr)?2f(0q). As fungdes f(8,)
dependem das coordenadas angulares que compdem o elemento de linha esférico dchi—z = de% + sinzﬂldG% +

-+ +4sin?0O; - --sin? 9d73d9§72. Estas fungdes se cancelam com o denominador fora da derivada.



2.2 A escolha do ansatz para solugoes extensas 25

Usando a expressdo (2.22) no lado direito de (2.13) e igualando ao resultado acima, obtemos a

equac¢do de movimento do dilaton em termos das componentes da métrica

F2 {cb” + {(mc/s)’jup(m C) —(InF) +(d-2)(InG) + @} cb’} =
Ae—A(D Q2
G (2.25)

Vamos agora escrever explicitamente as equacdes de Einstein (2.12) em termos da métrica
(2.16) e usando as expressoes (2.22), (2.23). Antes disso € ttil reescrever o tensor de Einstein,

usando o escalar de Ricci, dado por

1 e ®02n-D) ,

As equagdes de Einstein sdo totalmente diagonais nesse sistema de coordenadas. Listamos

. - i 0
abaixo as equagdes na ordem R/, Rii’ Ry e Rez’

72 {8~ () [(nB) + pnCY ~ (n 7Y + 0 ~2)ng) + 2| | =
| (o=-) et
(

2 (D=2) Gr)2d-2
(2.26)
F2 {—(lnC)// —(nC) {(lnﬂ%)urp(lnc)/ () +(d—2)(nG) + (d ; 2)] } )
A (CEDELLEL) PR
2 (D - 2) (gr)z(dfz) )
(2.27)

T_z{ —(InB)" = p(nC)" = (InB)* = p(InC) >+ (InB)'(In F)' + p(In €)' (In F )’

~(@=2)|nG)"+1nG)>+ 2(nGY - (nG) (7Y ~ L Y] }

1 5 1 [((n—=1)—(D-2)\ e “*Q?
=37 @ (g )(gr>2<d2>’

(2.28)
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(d-2)

7—2{ — B + (In g)’} {(m B) +p(InC) —(InF) +(d—-2)(InG) +

oo F\ 1(n—1) _ 0*
~nG) +ﬁ+<d‘3>@}‘iw—z>e g

(2.29)

2.3 p-branas extremas

Neste ponto estamos em condi¢des de obter a nossa primeira solu¢do. Vamos resolver o
sistema de equagdes (2.25)-(2.29) para as chamadas p-branas extremas. Estas solucdes sao ca-
racterizadas por apenas um parametro, portanto quando formos resolver o sistema de equacoes
devemos atentar para o fato de ndo podermos introduzir nenhuma outra constante além daquela
introduzida em (2.21). Além disso, vamos simplificar as equacdes escolhendo o chamado cali-

bre isotrépico, que nada mais é que uma redefinicdo da coordenada radial r tal que
¥ =g,

fazendo com que a métrica do bulk possa ser escrita simplesmente como a multiplicacao da
funcdio G2 por uma métrica plana em d dimensdes.

Outra restricdo que faremos é motivada pela semelhanca do lado esquerdo das equagdes
(2.26) e (2.27). Vemos que estas equacdes sao idénticas se tomarmos B = (. Tal escolha se
traduz na imposicdo da invariancia de Lorentz SO(1, p) no volume-mundo’ da brana.

Com estas escolhas o ansatz (2.18) se reduz em
ds* = B2 [—alt2 +dxidxi} + g2 [a’r2 + rde%dfz)] ,

e o sistema de cinco equacdes (2.25)-(2.29) se reduz a quatro, dado que (2.26) e (2.27) se tornam

7Volume-mundo € a trajetéria da p-brana no espaco-tempo, da mesma forma que uma particula descreve uma

linha-mundo e uma corda uma folha-mundo.
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idénticas:
Vi (d—2) / / / /
— (InB)" - - (InB) — (InB)' [(p+1)(InB)' + (d —3)(InG)'] =
B d—3 g72(d73)e_A(DQ2
2(D-2) p2d=2) 7
(2.30)
—(p+1)(InB)" - (d—2)(In g)”—(p+1)(1n$)’2+(p+1)(1n$)/(1n G)
. . . e AP)2
_ (d ; 2) (ln g)/ o %((I)) 2 _ _z(dD _32) g—Z(d73) rz(d% :
(2.31)
/ 1 / / " d—2 /
- [ngy 2] [+ 1By + (@-3)n Y] ~ (ng)' - T 2(ing) -
(p+1) gfz(d%)e_Aq)Q2
2(D—-2) p2d-2) 7
(2.32)
cp”+@cb’+cb’ [(p+1)(InB) +(d—3)(InG)']| =
Ae—A'fIJ o QZ
5
(2.33)

Tomando a combinagdo {(p+ 1) x eq.(2.30) + (d — 3) x eq.(2.32)}, obtemos a equagio

(2d —5)

o +02+ o =0, (2.34)

onde definimos ¢ = (p+1)(InB) + (d — 3)(In G). Uma solugdo para esta equagdo seria ¢ = b,
sendo b uma constante. Entretanto, estariamos violando a nossa hipétese de que a p-brana
seja extrema, isto €, uma solu¢do que dependa apenas de um parametro. Entdo escolhemos

simplesmente b = 0 e temos
(p+1)InB+(d—2)InG=0

o que implica na relagao

B+ Gd=3 — 1. (2.35)
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Usando este resultado nas equagoes restantes, nosso sistema reduz-se a tr€s equagdes para G e

@
(ngG)'+ " 2(ng) = %9‘ 2 3)% , (236)
@'+ @cp’ = —%e—A‘I’g—Z(H)ng—; , (2.37)
(D —(pzzr(cf)— 3) (InG)2+ ;q) 2 ; AP 5-2(d-3) rzgiz) ‘ (2.38)
Da combinagio {A X eq.(2.36) — pH X eq. (2.37)} resulta
N+N=0 , (2.39)

emque A=AlnG— p +1 >®. Novamente, fixamos A = 0 para que néo aparecam novos parimetros

na solucdo. Portanto,

(p+1)

AlnG — D2

=0 |,

ou seja,

G=eD? (2.40)
Desta forma, a equacdo restante (2.38) fica:

[(d—3)(p—{—1)—|—%A2(D—2)] P2 — le (D %) [(d=3)(p+1)+3A4%(D-2)] 0

A2(D—2) 2 2d2)

Definindo o objeto A= (d —3)(p+1) + %AZ(D —2) e tomando a raiz quadrada da equacao

acima, obtemos

[emﬂ/:i 2(D— 2)r|dQ| ’

A g 1 A0
w2® — N 2.41
¢ A=\ 20— (241)

em que usamos a condi¢do de que o valor do campo @ seja zero no infinito espacial r — oo,

Além disso, o sinal do lado direito da equagdo anterior foi escolhido de forma que ® niao seja

singular para valores de r > 0.
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Mostra-se conveniente definirmos a seguinte funcdo em termos de P:

B 1 A Y
}[_1+(d—3)\/2(D—2)rd*3_1+E’

A(D—2)
e =9

que implica em

Desta forma, as componentes da métrica, o campo dilatonico e a (p + 2)-forma intensidade de

campo ficam determinadas:

(d-3) (p+1) 2 Q0 /2(D-2)

B2, G=H'5, =9 % F,Gl...(,p,:@ A (HYY. (2.42)

Portanto, a solu¢do de uma p-brana extrema esfericamente simétrica é

(p+1)

—3)
ds? = 25 (—dr* +dxi+---+dx)) + >4 (dr2+r2dgfd_2)) : (2.43)

No decorrer deste trabalho, analisaremos em detalhe as propriedades desta solu¢do. Por hora,
vamos generaliza-la para o caso fora do limite extremo, isto €, considerando mais um parametro

nas solucdes.

2.4 p-branas negras

Uma solugdo mais geral do que a que acabamos de obter pode ser encontrada se considerar-
mos que esta depende de mais um parametro além daquele que obtemos quando resolvemos a
equagdo para (p + 2)-forma intensidade de campo.

Similarmente ao que foi feito no caso extremo, nosso ponto de partida serd a métrica (2.18)
e o ansatz elétrico (2.19) para a (p + 2)-forma. Com isto, o sistema de equagdes que temos que
resolver € 0o mesmo que no caso anterior (2.25)-(2.29). Entretanto, no caso extremo, observamos

que vale a relagc@o

$p+1 gd73 —1 ,

com B= (Ce F = G, o que ndo € verdade no caso das p-branas negras. Neste caso, vamos

introduzir uma funcao f tal que

BCPFlGIT=f | (2.44)
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que generaliza a relac@o anterior, que € obtida tomando-se f = 1.
Observando o lado direito das equagdes (2.25)-(2.29) € util definir o objeto

2(D—2)

—AdD Q2

O Tt A A= (2.45)

que permite-nos rescrever o sistema (2.25)-(2.29) como

(InB)" + d;z(ln B) + (InB) (Inf)' = (d —3)$*> (2.46)

r

(n )+ 2 C) +(nCY (nf) = (@ -3)8> (2.47)

(Inf)"+(InF) —(nF)(Inf) — (nF)*+(nB)*+ p(In€) >+ (d —2)(In G) >

2 gy - 2 ngy s @) =@ - 35
(2.48)
— _ 2
(InG)"+ d - 2 (InG) +(InG)'(Inf) + %(lnf)'—k (dr - %)
(p+1)s*
(2.49)
o172 . 20/ 4+ (In )& = —A(D—-2)5* . (2.50)

E conveniente rescrever In B e In F nas formas
nB=InC+InB, ImF=InG+In¥,
onde vemos que o caso extremo € obtido tomando B=1e F = 1. Desta forma (2.46) fica

(In @)" + (d=2)

(InB) +(InB)(nf) =0 (2.51)

,
onde eliminamos $? usando a equacio (2.47).

Inspirando-se no caso extremo, vamos considerar a seguinte combinagio de equagdes (p +
1) X eq.(2.47) + (d — 3) x eq.(2.49), com a defini¢do do campo y = (p+1)InC+ (d —3)InG.

Obtemos a equacao diferencial

v+ {(d;z) + (1nf)’1 v+ (d=3) [(1nf)’+ c

(1-F)| =0 . (2.52)
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Nosso objetivo € encontrar uma solu¢@o que dependa de dois parametros, ou seja, vamos
reduzir nosso sistema a duas fungdes independentes. E plausivel, portanto, tomarmos Y = 0 a

fim de obtermos uma relagdo entre Ce G
Ccrlgi3 =1, (2.53)

ja que no final dos célculos relacionaremos ® e G. A outra fun¢do independente que nos resta
¢ f. Observando que In @, In fAF e In f sdo zero no limite extremo, € consistente tomarmos In B

eln¥ proporcionais a In f, ou seja,
InB=cglnf, InF =cplnf |, (2.54)

onde cp e cF sdo constantes, que se relacionam por cg — cr = 1 devido a (2.44).

Escrevendo (2.51) em termos de In f, obtemos

in )"+ )2+ Dinpy =0

que, fazendo a mudanga (In 1)’ = @, fica

2 _
g=_8 +d-3)g 2.55)
r
Integrada, da o resultado
_ 2u(d-3)
Portanto,
2u
f=1- i A (2.56)

sendo u uma constante de integracao, que € o parametro adicional que estdvamos procurando,
para generalizarmos o caso extremo.

As constantes cp e cr sdo determinadas através da equacao (2.52) fazendo y = 0,

(d;3) [(lnf)/+ @ (1 — eZCFlnfﬂ

Usando f' = (d—3)% =43(1— f) e cg—cF = 1, encontramos
1 1
- __ = 2.57
Cr 7 B 7 ( )
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0 que implica em

—_

B=f,  F=ft . (2.58)
Substituindo Yy = 0 em (2.52) e usando o resultado em (2.49) obtemos a equacdo
(nG)' d=2(inG) (ingGy
(p+1)  r (p+1) (p+1)

que se for comparada com a equacdo do dilaton (2.50)

" (d-2) @ @' ,
AD—2) & A(D—2)+A(D—2)(lnf):_52 !

(lnf)/ = _52 )

justifica fortemente a seguinte igualdade entre G e ®

(p+1) o

G=e0a® (2.59)

da mesma forma que no caso da p-brana extrema (2.40). Substituindo esta igualdade na defini¢ao

de S, obtemos
2A
1 e A2
2(D—-2)f r2d-2)
Com isto, a equacao do dilaton (2.50) fica
(d

2) / ! &/ -
“w=< __4 bayP_X
@ + (Inf) P Zfe A(D 34

§=

2A 2
o + 5o Q (2.60)

Substituindo S? obtido acima na equagio (2.48) e usando nesta a equagdo (2.49), obtemos

outra equagao para @

A ’ A —_2A & Q2
D2 _(Infld = Lo ap¥ 2 2.61
que somada a equacao anterior, fornece:
" _ /
(gﬁﬂ n d—2 (e‘T<Lz>A—2>‘I’) —0 (2.62)
r
cuja solugdo € do tipo
__ 20 k43
e A2 =14 E =K . (2.63)

A constante kY3 é determinada através da equacdo (2.61) usando a funcio f(4.8). Disto,

encontramos uma equacio algébrica de segundo grau para k=3, cuja solugio é:

d-2 _ _ 2 A 2
k = ,u+\/y +2(D—2)(d—3)2Q . (2.64)
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A p-brana negra € totalmente caracterizada em termos das fun¢des f e X e de dois parametros

Q(ou h) e u:

L d=3 _d=3 _1 _ _ptl p+l
@:fz]( , C=%X A, f:fszA7 gZKA ,
o AD=2 . Q \/2(D—2)\/ 2,u N
e _K A7 EG]-~-Gpr_’Q| A 1+kd73(7( ) . (265)

Note que para u =0, f = 1 obtemos o valor dessas fun¢des no caso extremo (2.42). Isto posto,

temos a solucdo da p-brana negra:

ds? = K25 (—fdi* +dy}+ - +dyd) + K25 (FldP+2d0) ) | (2.66)

2.5 Quadro de Einstein e o quadro de cordas

As solugdes que obtivemos nas secoes precedentes sdo puramente cldssicas. O nosso ponto
de partida foi a acdo (2.1), que consiste no termo candnico de Einstein-Hilbert e o termo cinético
de um campo escalar (dilaton) e o acoplamento deste com uma n-forma intensidade de campo.
Entretanto, tal acao tem origem no setor bosdnico da supergravidade, que por sua vez € a teoria
efetiva no limite de baixas energias da teoria de cordas (veja secdo 2.7 de [17] e a secdo 3.4
de [18]).

No presente trabalho, estamos interessados nas solu¢des de p-branas no limite de baixas
energias de um tipo particular de teoria de cordas, mas precisamente na teoria das cordas fecha-
das, que contém a gravitacao no seu espectro de oscilagdes. Tais teorias sdo a teoria de cordas
do tipo IIB/IIA® com D = 10, cuja agéo do setor bosdnico no limite de baixas energias é dada
pela acdo da supergravidade em 10 dimensdes [9]

10 ) a 262 2
S:/d xv/—gle ~ (R+40,D°D) — n' F; |, (2.67)

8Estas teorias descrevem o espectro da corda aberta, sendo a teoria IIB é quiral e a IIA é ndo quiral. Além
disso, na teoria IIA, o nimero p de dimensdes espaciais da brana € par e o da teoria IIB é impar. De fato, em nosso
trabalho, a questdo da quiralidade nao tem relevancia ja que estamos interessados apenas no setor bosdnico. Em

vista disso, omitiremos a designacdo IIA/B.
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sendo R o escalar de Ricci, @ o campo de dilaton, F;, a n-forma intensidade de campo e o
uma constante. Comparando esta acdo com a que consideramos para obter as equacdes de
movimento (2.1), vemos que os campos envolvidos sdo os mesmos. Entretanto, aparece um
termo de acoplamento entre o escalar de Ricci e o dilaton ~ [ dPxe~®R. O que ocorre, é que a
métrica na a¢cdo da supergravidade estd escrita no quadro de cordas, que nada mais € que uma
transformacdo conforme da métrica no quadro de Einstein. Esta ultima é a que consideramos
na acgdo inicial (2.1). O fator conforme que relaciona os dois quadros é e®/2,

Seja, portanto, g, a métrica no quadro de Einstein e gib a métrica no quadro de cordas.

Elas relacionam-se por
o}

er=e2gw - (2.68)

Pode-se mostrar que através de tal transformacgdo conforme a acdo da supergravidade (2.67)
recai na ac¢do inicial (2.1). Desta forma, podemos traduzir tanto a solu¢iao da p-brana extrema
quanto a da negra para o quadro de cordas, tendo assim, solu¢gdes genuinas do setor bosdnico
da supergravidade.

Para que obtenhamos as solugdes tipo p-branas no quadro de cordas que aparecem no tra-
balho pioneiro de Horowitz e Strominger [9], transformaremos a métrica da p-brana extrema
(2.43) e da p-brana negra (2.66) para o quadro de cordas segundo (2.68) e em seguida faremos
uma transformacao conveniente de coordenadas. Os detalhes dos cdlculos seguem abaixo.

Passar a métrica da p-brana negra para o quadro de cordas consiste basicamente em mul-
tiplicar cada componente por KA%. Além disso, definindo uma nova coordenada radial y
através da relacao

A3 = =3 g3

Y

assim como as fungdes

d—3 bd—3
K+:l__7 Kle__ )
yd73 yd73

K=%x"" f=%K K"
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Estas defini¢Oes nos permitem escrever a p-brana negra como

hd=3_ artl_d=s
Pk KT A g (dx1+ o)+ KK TR T ay? +7g NEIN2a0%

(2.69)

No caso D = 10 com A = =52, obtemos as p-branas negras descritas por Horowitz e Stro-

minger [9] e que sdo um dos ingredientes principais da correspondéncia AdS/CFT e que serdo

nosso objeto de estudo:

1_ 5=

1 e
ds? = — X gp2 +K(dx%+-~'+dxf,)+KTdy +YKE A, | (270)
?(;2 o+

S|

\1
‘t
—_

2.6 Singularidade e horizonte de eventos

Esta secdo é dedicada ao estudo da estrutura causal das p-branas negras dadas por (2.70).
Vamos determinar onde a métrica é singular e onde localizam-se os horizontes de eventos.
Para tanto, calcularemos o escalar de Kretschmann Q{p(y) = R peaR, que é uma quantidade
escalar construida usando-se o tensor de curvatura R4, portanto independente do sistema de
coordenadas. Os valores de y onde este objeto divergir, implica necessariamente na existéncia
de uma singularidade espago-temporal neste ponto. Vamos sempre considerar o caso em que
a>b.

O escalar de Kretschmann para a solugdo (2.70) é dado por

Rp(y) = (2.71)

sendo que
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(

75 [(14+p) +2(5—-p)]
se p for par.

8, = (2.72)

Lp—Dp-3)—Lp-1)(p-35)+L(P-3)(p->3)

(sep for impar,
e P,(y) € um polindmio cujo grau n ¢ menor que a poténcia do denominador para qualquer valor
de p < 7. Observando o denominador de K, (y), vemos que este diverge para todo valor de p
no ponto y = b, indicando uma singularidade genuina neste ponto. Entretanto, ®,(y) ¢ uma
constante em y = a, apesar de nesse ponto a componente gy, da métrica divergir e g;; ser zero.
Disto, concluimos tal divergéncia € apenas uma patologia do sistema de coordenadas.
Analogamente ao caso dos buracos negros esféricamente simétricos, a divergéncia da métrica
em y = a da um indicativo de que esta hipersuperficie € um horizonte de eventos. Além disso,
nos casos conhecidos de buracos negros com simetria esférica, o horizonte de eventos coincide
com a superficie de redshift infinito. Vamos procurar por tais superficies usando o caso do
buraco negro de Schwarzschild como auxiliar.
As superficies de redshift infinito, para uma dada métrica, podem ser encontradas usando a

seguinte equagao [19]

800(Xonze)

—_— 2.73
20 (2.73)

que relaciona a frequéncia medida v por um observador em repouso afastado da fonte, cuja
frequéncia de emissao, digamos de pulsos luminosos, é vy. Para que tenhamos uma superficie
de redshift infinito, a frequéncia v deve ser zero, isto €, que a frequéncia emitida v foi infinita-
mente atrasada devido a efeitos gravitacionais. Um exemplo disso € um observador em repouso
medindo a frequéncia emitida por algo que se aproxima do horizonte de eventos do buraco ne-
gro de Schwarzschild, emitindo periodicamente um pulso luminoso de frequéncia vo. Em um
dado momento, tal observador levard um tempo infinito para receber o pulso luminoso emitido,

ele nunca saberd se o aparato atravessou o horizonte. E facil perceber, que da equagio (2.73), a
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igualdade
800(¥sonte) = 0, (2.74)

nos diz a localizacdo de superficies de redshift infinito. Usando a solu¢do de Schwarzchild

como exemplo, a superficie de redshift infinito aparece como

(1— 2_M) =0, (2.75)

r

isto é, r = 2M define uma superficie em que o redshift da radiacdo emitida nesta superficie vai
ao infinito. O que significa que um observador no infinito espacial nunca detectard tal radiacao.
E importante observarmos, que o fato de o redshift da radicdo ir ao infinito ndo caracteriza um
horizonte de eventos: corpos materiais ainda podem atravessar a superficie de redshift infinito
a partir de qualquer lado da mesma. No caso de um horizonte de eventos, as geodésicas das
particulas fisicas s6 podem seguir uma dire¢ao para atravessar tal supeficie, sem em nenhuma
hipétese, pelo menos classicamente, poder voltar. E o que se chama de membrana de méo tnica.

Usando a expressao (2.73) na solucdo da p-brana negra (2.70), encontramos que a superficie
onde v — 0 ocorre quando

y=a,Vp (2.76)

0 que a caracteriza como uma superficie de redshift infinito.

Vamos agora procurar por membranas de mao dnica, que sdo hipersuperficies cujo vetor
normal 1, tem norma nula, ou seja, ¢ um vetor nulo. As membranas de mao tinicas representam
a regido critica onde os papéis de ¢ como coordenada temporal e y como coordenada espacial
invertem-se.

Seja entdo uma hipersuperficie dada pela equagdo u(x) = constante. A defini¢do de vetor

normal 1, a uma superficie u(x“) é

du(x)
Ma= 5
portanto €m nosso caso terem089
Na = (07 17070)7

9Tomamos aqui as coordenadas x’ da brana e as coordenadas angulares 8, do bulk como constantes.
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e da condi¢do de que este vetor normal seja nulo,

g““namp = 0,

vem que

g’=0 se y=a (2.77)

A superficie y = a possui duas caracteristicas interessantes: € uma superficie de redshift
infinito e também é uma membrana de mado Unica e como ndo hé divergéncias no escalar de
Kretschmann esta superficie € um horizonte de eventos. Concluimos que existe uma singula-
ridade real em y = b e que y = a é uma membrana de mdo Unica ndo singular e também uma
superficie de redshift infinito. A configuracdo p < 6 com a > b pode ser interpretada como um
buraco negro em 10 dimensdes.

Dessas consideragdes, vamos tratar de perturbacdes escalares na solucdo (2.70) usando as
técnicas comumente utilizadas no caso de buracos negros da Relatividade Geral.

No caso das p-branas extremas, isto é, quando a = b vemos que a singularidade fisica
em y = b e o horizonte de eventos concidem. Nesse caso temos uma singularidade nua em
y =a [20]. A unica excecdo € a 3—brana extrema, que continua tendo um horizonte de eventos
em y = a, mas agora a singularidade estd em y = 0.

Quando tomamos o limite préximo do horizonte de eventos da métrica das p-branas negras,
isto €, na regido em que y — a, esta métrica reduz-se ao produto AdS, 2 X S8=P no caso ex-
tremo e, para a > b obtem-se o produto AdS, > x Mg_,, sendo Mz_, solugdo das equacdes
de Einstein [21]. Esse limite préximo do horizonte € bastante similar ao que aparece no caso
do buraco negro de Reissner-Nordstrom extremo. Neste caso temos o chamado universo de
Bertotti-Robinson, que € o produto AdS, x S2[17].

E importante ressaltarmos como é a geometria nas vizinhangas do horizonte de eventos
da p-brana, pois € nesse regime que se da a correspondéncia AdS/CFT. A grosso modo, sdao
esses espacos-tempos que realizam o lado gravitacional da correspondéncia. Todos eles sdao

originarios da métrica da p-brana negra [5]. Este ponto serd abordado novamente no capitulo 4.



Capitulo 3

Perturbacoes Lineares em Relatividade

Geral e Modos Quasinormais

Neste capitulo apresentaremos uma breve revisao da teoria de perturbacdes lineares em
espacos-tempos curvos, em particular aqueles que descrevem buracos negros. O objetivo prin-
cipal € o de estudar propriedades classicas que caracterizam estados na vizinhanca do equlilibrio
desses espacos-tempos, através da propagacdo de campos teste nessa geometria.

Além disso, daremos uma introducao aos chamados modos quasinormais e sua relacio com
a estabilidade de buracos negros, bem como sua interpretacao em termos da correspondéncia
AdS/CFT. Definiremos os modos quasinormais usando a técnica de fun¢des de Green aplica-
das a equacgdes diferenciais parciais. Este caminho serd adotado devido a imediata aplicac@o
desta defini¢do para o caso do estudo de campos testes (escalar, eletromagnético, espinorial)
evoluindo em uma geometria de fundo e para flutuagdes em torno do equilibrio da prépria geo-
metria.

Apesar de estarmos interessados principalmente em aspectos da propagacao de campos es-
calares na geometria das p-branas negras, € instrutivo gastarmos algum espaco descrevendo
as flutuacdes da propria geometria no regime linear, ja que estas obedecem o mesmo tipo de

equacao que aquelas que obtemos quando estudamos a dindmica de campos teste.
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3.1 Relatividade Geral linearizada

A teoria da Relatividade Geral é uma teoria de gravitacdo que requer que o espaco-tempo
onde se desenvolvem os eventos fisicos seja definido por uma variedade diferencidvel que pos-
sua uma métrica lorentiziana. Além disso, € necessario que as equacoes da relatividade especial
sejam validas em um sistema inercial local.

A dinamica do espago-tempo, descrita pela relatividade geral, € vinculada ao seu conteudo

de massa e energia. Matematicamente, esta relacio € representada pelas equacdes de Einstein:
Gap +Agab = 38nTup ’ (31)

sendo que G, € o tensor de Einstein, g,;, a métrica do espago-tempo, A € a constante cos-
moldgica e T, € o tensor energia-momento.

A equacdo tensorial (3.1) em 4 dimensdes € um sistema de 10 equacdes diferenciais par-
ciais de segunda ordem niao-lineares acopladas para as componentes da métrica g,,. Devido
a esta complexidade, encontrar uma solucdo geral para este sistema é ainda um problema em
aberto. Entretanto, para sistemas dotados de uma certa dose de simetria, e outras hipéteses
simplificadoras, tais como estacionaridade, é possivel resolver as equacdes de Einstein analiti-
camente. Podemos citar a solu¢do de Schwarzschild, que € a solu¢do para um corpo massivo
esféricamente simétrico, e a solucdo de Reissner-Nordstrom no caso do mesmo sistema com
carga elétrica.

Em contrapartida, na maior parte dos casos nao € possivel resolver (3.1) analiticamente.
Como na maioria dos ramos da fisica devemos utilizar técnicas aproximativas, onde destaca-
mos a teoria de perturbagdes. No caso da Relatividade Geral, isto significa aplicar um pequeno
deslocamento do equilibrio a uma solucdo exata conhecida, desde que esta ndo seja substanci-
almente modificada. Mais precisamente, se g,, € um tensor métrico que € solucdo exata das

equagoes de Einstein e h,;, uma pequena perturbacio, entao a solucao perturbada serd dada por

8ab = &ab+ hap - (3.2)
Por simplicidade, vamos considerar como exemplo a solu¢ao de Schwarzschild. Substituindo a

decomposicao (3.2) nas equagdes de Einstein (3.1) e desprezando os termos de segunda ordem
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nas componentes de /., obtemos as equacdes que governam as perturbacdes /., na métrica
8ap- Estas equacdes sdo simplificadas através de uma decomposi¢cao em harmodnicos esféricos,
fornecendo duas classes distintas de solugdes: as solucdes axiais e as solucdes polares' [22].

Estas duas classes de solucoes levam a equagdes diferenciais desacopladas, respectivamente:

074 ) M)

o or2 +f(r>§ (f(r) or ) =VaxWax 3.3)
"W o d o,

o a[é’ l +f(r)a_r (f(l") a: l) = Vpal‘Ppol s (34)

onde os potenciais efetivos sdo dados por

I(l+1) oM
V) = 1) |1 -] 65
21 (r) OM? +302Mr? +A*r3 (1 4+ L) +9M>A
Vpol(r) = fg ) (2 ) ) (3.6)
r (3M + Ar)
sendo M a massa do buraco negro, f(r) =1—22 e A = I[I(1+1)—2]. O potencial das

perturbacdes gravitacionais axiais V,, € também conhecido como potencial de Regge-Wheeler,
que foi obtido no trabalho pioneiro de Regge e Wheeler [1] que visava estudar a estabilidade
do horizonte de eventos do buraco negro de Schwarzschild contra pequenos deslocamentos do
equilibrio. Este estudo foi completado por Zerilli [3] que estudou as perturbagdes polares ob-
tendo o potencial gravitacional polar V), chamado de potencial de Zerilli.

Consideraremos agora a evolu¢do de um campo de teste escalar se propagando no espaco-
tempo dado pela solu¢do de Schwarzschild. Como ja mencionamos, o trabalho aqui desenvol-
vido se dard no dmbito do regime linear possibilitando-nos tratar o campo escalar como uma
perturbacdo evoluindo em um fundo fixo, e a retroacdo (reacdo de radia¢do) deste campo na
geometria desprezada.

Associado a este campo, temos 0 seu tensor energia-momento que esta presente nas equacoes
de movimento. Nao levar em conta a retroacdo deste campo significa que podemos desprezar o

seu respectivo tensor energia-momento. Logo, a métrica € mantida fixa, e somente as varidveis

'Esta nomeclatura deve-se a0 modo como as perturbagdes se transformam por uma inversio espacial na coor-

l

denada azimutal ¢: as axiais se transformam como (—1)**! e as polares como (—1), sendo o niimero multipolar.
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de campo possuem uma dinamica descrita pelas equagdes de movimento lineares. No caso do

campo escalar sem massa basta considerar a equacao de Klein-Gordon

L9
NaTE

que para o buraco negro de Schwarzschild se reduz a

oY
(\/__ggabW) =0 )

az‘Pl d a\Pl _
- 105 (FO 5 ) =Vt (3.7)

cujo potencial efetivo V,, € dado por

Vese(r) = f(r) [M + lﬁ}

r? rdr

Temos entdo para cada modo /, uma equacdo parcial linear hiperbdlica para a fun¢do ¥, (r,)
que descreve a dindmica da componente [ do campo escalar W(r,7). No decorrer deste traba-
lho, obteremos a equagdo que descreve a perturbagdo escalar na geometria das p-branas negras

introduzidas no capitulo anterior, de maneira andloga ao que foi feito aqui.

3.2 Modos quasinormais

Os modos quasinormais (mqn’s) sdo solugdes das equacdes de perturbacdo, que possuem
frequéncias de oscilagdo caracteristicas complexas e satisfazem condi¢gdes de contorno especificas.
Apesar de serem definidos no contexto da teoria de perturbagdes de buracos negros, os mqn’s
se aplicam a outros sistemas fisicos dissipativos. Podemos exemplificar isto através de um sis-
tema formado por uma corda vibrando acoplada ao meio mecanico que a cerca, transmitindo
energia para esse meio. As frequéncias caracteristicas dessa corda decaem com o tempo devido
a dissipagdo com o meio.

Em Relativiade Geral, estas oscilagdes amortecidas foram observadas por Vishveshwara [2]
quando estudava a evolucdo de um pacote de ondas gaussiano na geometria de Schwarzschild.
Tal evolug@o consiste basicamente de trés etapas, a primeira é um rdpido pulso inicial, proce-
dido por oscilacdes amortecidas, denominadas modos quasinormais e, por fim, as oscilagdes

amortecidas dao lugar a um decaimento tipo lei de poténcia, como mostrado na Figura 3.1.
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Figura 3.1: Decaimento da perturbacdo gravitacional axial nas proximidades do buraco negro

de Schwarzschild,comM =1el=2.

O estdgio intermedidrio, dominado pela oscilacdo quasinormal, possui frequéncias que de-
pendem apenas dos parametros que caracterizam o buraco negro, sendo totalmente indepen-
dente da perturbacdo inicial [23] [24] [25]. Além das condig¢des inicias, devemos impor condicdes
de contorno adequadas para a obtencdo dos mqn’s. Para espacos assintoticamente Miskowski
como o buraco negro de Schwarzschild ou as p-branas negras, o potencial V(r) € positivo e
se anula tanto no infinito espacial, quanto no horizonte de eventos. Portanto, a solucdo nessas

regides serd uma combinagao de ondas planas

W(r, — foo) ~ O (3.8)

sendo r, a chamada coordenada tartaruga que € uma funcdo da coordenada radial r e que a ma-
peia do intervalo (2M, o) em (—oo,+c0). Disto, temos que 0os mqn’s sdo solu¢des das equagdes
de perturbacdo cujas frequéncias sdo complexas e que descrevem ondas apenas entrando no

horizonte de eventos e ondas puramente emergindo no infinito. Isto se justifica pelo fato de
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estarmos interessados na propagacao de campos na regido fora do horizonte de eventos, € ndao
desejamos que onda provenientes do infinito continuem a perturbar o buraco negro [24].

A questdo da estabilidade das solu¢des define o sinal da parte imaginéria das frequéncias
quasinormais ® = R(w) + i3 (w). A perturbagio inicial deve decair de maneira amortecida,

ot _ ,—iR(0),3(w)

portanto para ¢ — oo, devemos ter e~ " — 0, que somente serd possivel se

S(w) < 0|

A motivagdo inicial para o estudo dos mqn’s € astrofisica. Testar a estabilidade das solugdes
frente pequenas oscilagdes em torno do equilibrio e obter seu espectro para assim conhecer
os parametros fundamentais da solu¢do, tais como massa, carga, momento angular no caso de
buracos negros ou raio, massa no caso de estrelas [23]. Entretanto, recentemente tem havido
grande interesse nas frequéncias quasinormais no ambito da correspondéncia AdS/CFT. Se-
gundo essa conjectura, a parte imagindria da frequéncia quasinormal fundamental é o tempo de
termalizacdo de uma teoria de campos conforme na fronteira do espaco-tempo AdS, no qual se
da a correspondéncia. No proximo capitulo estudaremos em mais detalhes este ponto.

Formalmente, os mqn’s podem ser definidos como os pdlos da func¢do de Green associada
as equagdes de perturbacdo. Por questdo de simplicidade, vamos tratar da propagacdo de um
campo escalar sem massa na geometria de Schwarzschild com d = 4. Tal campo obededece a
equacao de Klein-Gordon,

02 9?

V(r*)] WY(r,,1) =0

Seguindo o trabalho de Ching et al [26], a evolugao temporal do campo W¥(r,,¢) descrito pela

equacgao acima pode ser escrita, parat > 0, como
W(rot) = [arGiryin T 0D o [ 200X g g) (3.9)
sendo G(r,y;t) a funcdo de Green retardada definida por
DG(rs,y:t) = 8()8(rv —y)

e pela condicdo inicial G(r.,y;t) =0 parar < 0. A transformada de Fourier de G(r.,y;?) é dada
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por
G(ry,t) = / dtG(ry,y;1)e"™ | (3.10)
0
e satisfaz a equagdo
DG = [—(D — 8_;1,% +V(r*)} G=29(r.—y)

A funcio de Green G pode ser expressa em termos de duas solugdes linearmente indepen-
dentes da equacio homogénea D¥ = 0. Sejam tais solucdes denotadas por f(r, ®) e g(r.,®),
sendo que Df (r,,®) = Dg(r.,®) = 0. A fungido f(r,, ) é tal que satisfaz a condi¢io de onda
entrando (ingoing) no horizonte de eventos e g(r.,®) as condi¢des de ondas saindo (outgoing)
no infinito.

Sendo assim, a funcdo de Green G é escrita como

[(r,0)g(y.0)
Glroo)={ W)  PRTESY
" Fre3)8(r,0) ’
W para r« > y

sendo W (w) = gj—ri —f j—i o wronskiano dessas duas solugoes.

O wronskiano presente na equagdo (3.2) pode conter zeros, o que implica que as solugdes
f(re,®) e g(r«,®) correspondentes sdo linearmente dependentes. De fato, pela definicao do
wronskiano, estas solucdes sdo proporcionais entre si, consequentemente satisfazem ambas
as condi¢des de contorno. Estas solugdes sdo, por defini¢do [26], os mqgn’s cujo espectro de

frequéncias sao identificados como os pélos da funcio de Green.

3.3 O método WKB

A aplicacdo do método WKB (Wentzer, Kramers, Brillouin) ao problema de encontrar as
frequéncias quasinormais foi realizada por Schutz e Will [27] e mais tarde melhorado por Iyer
e Will [28]. Mais recentemente Konoplya [29] extendeu a técnica WKB até a sexta ordem
da aproximacdo da funcdo de onda em torno do pico do potencial na regido préxima do hori-
zonte de eventos. Neste trabalho usaremos o método WKB de sexta ordem desenvolvido por

Konoplya.
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A motivacao para usar a técnica WKB € a similaridade entre as equagdes que descrevem
as perturbagdes lineares em buracos negros e a equacao de Schrodinger para uma barreira de
potencial. Em ambos os casos temos equagdes do tipo

2

% +O0(x)y=0
No caso dos buracos negros, Y representa a parte radial do campo perturbativo, sendo que
consideramos a dependéncia temporal do tipo /. A coordenada x é a coordenada tarta-
ruga r, cujo valor no horizonte de eventos é —eo e +o0 no infinito espacial. A funcdo Q(x) =
o+ V(x) é finita em x = H-o0, mas ndo necessariamente a mesma, e possui um maximo nas
vizinhangas do horizonte de eventos. Na Mecénica Quantica temos Q(x) = %’ [E —V (x)]. Desta
semelhanga, vemos que podemos usar a técnica WKB para calcular as frequéncias ® do pro-
blema de perturbac¢des em buracos negros.

Usando a extensiao de Konoplya, a formula WKB que determina os modos quasinormais é
dada por

W =Vy

1
ZTVO//—ZH]:I’Z—FE, n:0,1,2,3-~- N (311)

sendo V) a derivada em relagdo a r, do potencial no pico préximo do horizonte, ® a frequéncia
quasinormal, n o valor de sobreton (n = 0 d4 o0 modo fundamental de oscilagdo e assim por
diante). Os termos I1; dependem do valor do potencial efetivo e suas derivadas (at€ a ordem 2 j).
Esta férmula generaliza aquelas obtidas por Schutz e Will (I) e as de Iyer e Will (I + I13).
A forma explicita das corregoes I1; € dada no Apéndice A.

Usaremos a formula (3.11) em nosso estudo das frequéncias quasinormais devido a uma
perturbacao escalar no espaco-tempo descrito pelas p-branas. Atentaremos para uma regido de
parametros em que o potencial efetivo possua as caracteristicas necessdarias para o uso dessa

técnica.
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3.4 Integracao caracteristica

Este método de integracao usa o sistema de coordenadas nulas
U=t—ry ,
V=I+re |,

afim de estudar a evolucdo da perturba¢do W que obedece uma equagao do tipo

Y, 9Py,
T T or2 TVLr)¥L=0 312

Na integracao caracteristica, também chamada de problema de condicdes iniciais carac-
teristicas [30], especificam-se as condi¢des iniciais do campo em hipersuperficies nulas. Um
esquema especifico € o problema das duplas coordenadas nulas, que consiste em escrever a
equagdo de movimento (3.12) em termos das coordenadas nulas u e v. Com isso a equagdo de
movimento fica

*P(u,v) 1

oy — a7’ ) ¥uy). (3.13)

Desta forma, especificamos o campo na fronteira de um angulo delimitado pelas semi-retas
u=up(v>vg)ev=vo(u>up). Opréximo passo é discretizar o campo ¥(u,v) em termos de
pontos no plano (u,v). O esquema serd o que estd ilustrado na figura (3.2).

Vemos nesta figura que o valor do campo ¥ no ponto N depende apenas do valor desse nos
pontos S, E e W. Dado um conjunto de condi¢des iniciais nas retas u = 0 e v = 0, encontra-se o
valor de W dentro de um angulo formado por estas retas. Mais precisamente, o valor de ¥(N) e

dado por [30]

V(S)AuAv
8

Usando esta discretizag@o, o algoritmo bdsico consiste em iterar a regido de interesse, e apartir

W(N) =W(E)+¥(W)—¥(S)— W(E)+P(W)]+0(a%) . (3.14)

de trés pontos conhecidos, calcula-se o quarto. Feito isso, tem-se a evolucdo de W para tem-
pos arbitrarios, de forma que é possivel encontrar a regido de oscilacdo quasinormal e fitar a
frequéncia quasinormal fundamental. O c6digo numérico utilizado neste trabalho foi desenvol-
vido pelo nosso grupo de pesquisa e foi extensivamente discutido na Tese de C. Molina [30] e

aplicado em diversos trabalhos [31] [32] [33] [34].
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Figura 3.2: Regido retangular no plano (u,v) delimitada pelos pontos N, S, E, W e C.



Capitulo 4

Interpretacao dos MQN’s na
Correspondencia AdS/CFT

Neste capitulo faremos uma breve revisao acerca das origens da correspondéncia AdS/CFT.
Daremos énfase aos aspectos que consideramos importantes para o presente trabalho. Em espe-
cial a interpretacdo das frequéncias quasinormais em termos dessa correspondéncia. Apresenta-
remos qual o papel desempenhado pelas p-branas nesse contexto e a prescri¢do de Son-Starinets
para a obtencao das fung¢des de Green, cujos pdlos sdo interpretados como as frequéncias qua-
sinormais calculadas no bulk. Nao iremos nos aprofundar nesse tema, apenas inserir o presente
trabalho no contexto da correspondéncia calibre/gravitacdo. Para mais detalhes, o leitor € con-

vidado a consultar as excelentes revisoes de Ahorony et al [20] e Klebanov [21].

4.1 Origens da correspondéncia

A primeira realizacio da correspondéncia AdS/CFT, ou correspondéncia calibre/gravitagao
para usar o termo mais abrangente, € devida ao trabalho pioneiro de Juan Maldacena [5].
Mostrou-se a correspondéncia entre uma teoria de cordas do tipo IIB no espaco-tempo AdSs x
3 e a teoria supersimétrica de Yang-Mills A = 4.

A 1idéia principal da correspondéncia calibre/gravitacdo €, pelo menos em sua origem, a
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descricao da teoria de cordas através de teorias de calibre. A teoria de cordas teve sua origem
na década de 1970 como uma tentativa de se compreender a interacao nuclear forte. Contudo,
devido ao surgimento da cromodindmica quantica, que € até hoje a descricao padrao da interacdo
forte, a teoria de cordas perdeu apelo nessa drea. Com isso, o tema dominante na drea de cordas
passou a ser a unificacdo das forcas fundamentais da fisica em uma unica descri¢do, ja que a
teoria de cordas, contém a Relatividade Geral em seu espectro. Portanto, a teoria de cordas
pode ser tomada como uma descricao para a gravidade quantica.

Com o advento da correspondéncia calibre/gravitacdo, pode-se dizer que a teoria de cordas
ganhou uma nova aplicacdo além do escopo da unificagdo das forcas, que consiste em com-
preender fenomenos inerentes a teorias de calibre no regime em que os métodos perturbativos
perdem a validade.

Apesar do imenso sucesso da cromodindmica quantica em detrimento da teoria de cordas na
descricao da interacdo forte, ainda restava a questao de como a acdo de Yang-Mills poderia dar
uma descricdo de cordas no limite em que o acoplamento € forte. A cromodindmica quantica
descreve um méson como o estado ligado formado por um par quark e anti-quark, cuja interagao
se dé através de glions. As linhas de campo de tal interagdo formam um tubo de fluxo, em cujos
extremidades se encontram o quark/anti-quark. Este tubo de fluxo pode ser encarado com um
objeto fundamental, dando origem a intepretacdo do méson como sendo uma corda com uma
dada tensdo. Sendo assim, vemos que deve haver uma relacdo entre as cordas (tubo de fluxo) e
a acdo de Yang-Mills.

O trabalho de 't Hooft [35] langou mais luz sobre esta questdo. Nesse trabalho é sugerida
uma relacdo entre teorias de calibre no limite de N (ntimero de cores) muito grande e a teoria
de cordas. Foi mostrado que a expansao perturbativa da teoria de calibre se organiza da mesma
forma que na teoria de cordas também no limite perturbativo: soma de diagramas planares que
dependem do génus g. Esta semelhancga entre as duas expansodes perturbativas € outro indicativo
da relacdo entre teorias de cordas e pelo menos algumas teorias de calibre.

A correspondéncia entre teorias de calibre e teorias de cordas ficou mais evidenciada a

partir da descoberta das D-branas por Polchinski [36]. As D-branas sdo objetos estendidos,
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que generalizam o conceito de corda. Estes objetos aparecem quando impomos condi¢des de
contorno de Dirichlet a0 movimento das pontas da corda fundamental na folha mundo. Na teoria
das D-branas os campos de calibre estdo confinados nestas superficies enquanto no infinito
espacial temos o graviton [17]. Mais precisamente, temos uma teoria supersimétrica de Yang-
Mills definida sobre as D-branas e cordas fechadas (gravitons) desacopladas sobre o espaco-
tempo de Minkoswki no infinito espacial, isto é, muito longe das D-branas.

Por outro lado, existe uma outra classe de objetos estendidos chamados de p-branas negras,
que aparecem como solugdes cléssicas do setor bosonico de um dos limites da teoria de cordas:
a teoria da supergravidade em 10 dimensdes, como foi extensivamente discutido no capitulo
2 desta tese. Nessa teoria as p-branas negras sao fontes do campo gravitacional e, para certos
valores de p, que € o numero de dimensdes espaciais da brana, apresentam horizonte de eventos.
Deste modo, € possivel tomar as p-branas como buracos negros em dimensdes mais altas. Entao,
no limite de baixas energia da teoria de cordas considera-se a solucao de p-branas como uma
descricao de um conjunto de cordas abertas vivendo em um espaco-tempo AdS préxima do
horizonte de eventos € um conjunto de cordas abertas na infinito espacial. Nesse limite de
baixas energias vale a descricdo em termos da supergravidade.

Vemos que ambas as descri¢des, em termos de D-branas ou p-branas, dao origem a modelos
desacoplados. Ambos apresentam cordas fechadas vivendo em um espaco-tempo de Minkowski
no infinito espacial. Entretanto temos situacdes diferentes na regido proxima: nas D-branas
temos a teoria de Yang-Mills supersimétrica enquanto que nas p-branas negras temos cordas
fechadas vivendo um espaco AdS. E exatamente neste ponto que Maldacena conjecturou a
correspondéncia entre os modelos na regidao proxima dos dois objetos: a teoria de Yang-Mills
na descri¢ao em termos de D-branas € equivalente a uma teoria de cordas em AdS [5].

A relevancia da correspondéncia estd no mapeamento da teoria de Yang-Mills no regime de
acoplamento forte onde os métodos perturbativos perdem a validade, com o limite de baixas
energias da supergravidade em 10-dimensdes, onde existem técnicas bem estabelecidas e nesse
limite puramente classicas. A correspondéncia AdS/CFT também pode ser pensada como uma

realizacdo do principio holografico [37], j4 que a regido onde estd definida a teoria de calibre
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tem dimensdo (d — 1) enquanto os gravitons estdo em um espago de dimenséo d, comumente
chamado de bulk. Alternativamente podemos dizer que a informacao dos campos que vivem no

espaco de d dimensdes estd codificada na sua borda, cuja dimensao é (d — 1).

4.2 Um pouco do dicionario AdS/CFT

Segue abaixo uma breve revisao do exemplo original da correspondéncia AdS/CFT proposto
por Maldacena [5]. As informacdes contidas nesta secdo sdo baseadas na revisdo de Son et
al [13].

Este exemplo, trata da correspondéncia entre a teoria de cordas do tipo //B no espago-tempo
AdSs5 x §° e a teoria supersimétrica de Yang-Mills A’ = 4. A teoria de cordas do tipo IIB possui
um espectro de oscilacdes que contém um ndmero finito de excitagdes sem massa, tais como o
dilaton e o graviton e, um nimero infinito de excitacdes massivas. Essa teoria € caracterizada
fundamentalmente por dois parametros, que s@o o comprimento da corda /; e a constante de
acoplamento g, que mede o qudo intensa € a interacao entre as cordas.

O espaco-tempo onde estd definida a teoria de cordas tem 10 dimensdes dado pela métrica
da 3-brana extrema no limite préximo do horizonte:

R2 3 ,
ds® = = —dr* + Zidxidx’ +d7? | +R*dQZ . (4.1)
i=

Esta métrica € obtida da solucdo da p-brana extrema (2.43) no limte em que y — a e apds a
mudanca de coordenadas y = R?/z. Tem-se, portanto, uma solugio que representa o produto
de uma esfera em cinco dimensdes S° e o espaco AdS também em cinco dimensdes com as
coordenadas #,7,x'. A coordenada z mapeia a fronteira AdS (y — o) em z = 0. Além do com-
primento da corda e a constante de acoplamento, o espaco AdS acrescenta um novo parametro
na descri¢do: o raio R do espaco AdS. Desta forma, temos dois parametros adimensionais: g; €

arazdo R/I.
Com relacdo a teoria de calibre, esta também possui dois pardmetros, que sdo o ndmero

de cores N e o acoplamento g. Como foi mostrado por ’t Hooft [35], quando N € grande,
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a constante de 't Hooft A = g?N torna-se o parimetro fundamental que controla a teoria no
regime perturbativo.

As primeiras duas entradas do diciondrio AdS/CFT sao referentes ao mapeamento dos
parametros fundamentais g, [; € R pelo lado da teoria de cordas com os da teoria de calibre

geN[13]

R4

g2 = 4mgy, gzN = T 4.2)
S

Desta forma, podemos observar a grande habilidade da correspondéncia proposta por Mal-
dacena: trabalhar com o limite de acoplamento forte na teoria de calibre utilizando-se o limite
de baixas energias da teoria de cordas. A segunda relagio de (4.2) estabelece que para A = g?N
fixo o raio AdS R é muito maior que o comprimento da corda /5. Neste limite é possivel mostrar
que a teoria de cordas reduz-se a supergravidade em 10 dimensdes. Em outras palavras, no
limite de fraco acoplamento das cordas g; < 1 e o raio AdS muito maior que 0 comprimento
da corda R > [, a teoria de cordas se reduz a supergravidade cléssica [13].

Talvez a mais importante relacdo que a correspondéncia AdS/CFT estabelece seja aquela
entre operadores da teoria de calibre e campos cldssico da supergravidade. Os primeiros traba-
lhos a realizar matematicamente tal mapeamento formam os de Gubser et al [38] e Witten [39].
Seja um operador O da teoria de calibre e um campo escalar @ da supergravidade. Entdo a

relacdo GKP-W (Gubser, Klebanov, Polyakov-Witten) estabelece
ZuplJ] = 5%l (4.3)

O lado esquerdo desta relacdo temos a funcdo de particao da teoria de campos, cujo termo
de fonte € J. A agdo S|®,;] é a acdo cldssica da supergravidade, calculada para o campo ®,; que
¢ solucao das equagdes de movimento como condi¢do de contorno de que este campo assuma
o valor J na fronteira AdS z = 0. Desta forma, o valor do campo na fronteira AdS € a fonte
classica da fungdo geradora das funcdes de Green da teoria de campos definida na borda AdS.

Para o cdlculo das fun¢des de Green, basta tomarmos derivadas funcionais de S[®.] em

relacdo a J e, por fim, fazer J/ = 0. Como exemplo, a fun¢do de dois pontos da teoria de campos
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pode ser obtida por

2
Glx—) = ~i{TO()00)) =~ 7o oy (@)

A grosso modo, o mapeamento entre operadores da teoria de calibre e campos cldssicos se da da
seguinte maneira [13]: o campo dilatonico ® corresponde ao operador primdrio O, o campo de
calibre A, definido no bulk corresponde a corrente conservada J, na teoria de campos e o tensor
métrico g, corresponde ao tensor energia-momento 7, sendo que g, satisfaz as equacdes de

Einstein em 5 dimensdes e tem comportamento assintético z = 0 dado pela métrica (4.1).

4.3 Receita de Son-Starinets

Apesar do sucesso da féormula GKP — W, esta € escrita para um espago com assinatura eu-
clidiana, isto é, com tempo imaginario. Uma descri¢do em termos do tempo real era necessaria,
principalmente se queremos levar em conta buracos negros no bulk.

Se consideramos a presenca de um buraco negro no bulk, a teoria de campos na fronteira
passa a ser caracterizada também pela temperatura Hawking desse buraco negro [39]. Para o
estudo da resposta de tais teorias de campos a pequenos deslocamentos do equilibrio térmico,
precisamos das funcdes de correlacao escritas em termos do tempo real. Estas fun¢des podem,
em principio, ser obtidas pela continuacdo analitica das versdes euclidianas, que em muitos
casos € um problema bastante dificil.

Foi devido ao trabalho de Son e Starinets [40], a elaboragdo de uma prescri¢do mikowskiana
para o célculo de fun¢des de dois pontos de teorias de campos térmicas. Apresentamos no que
segue os elementos principais dessa técnica.

Consideremos a métrica de um buraco negro assintdticamente AdS, dada formalmente por
ds® = g2’ + gap(2)dx"dx" 4.5)

e a acdo para um campo escalar ®(z,x') de massa m definido nas vizinhancas desse buraco
negro,

s= [a* [ az= [ZZBCIJZ ab3) $d,d -+ m2d 46
= Oz\/gg(z)+gab+m : (4.6)
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sendo z = z, a localizacao do horizonte de eventos e z = 0 o horizonte AdS.
A equagio de movimento linearizada de ® é a equacio de Klein-Gordon O® — m?® = 0,

cuja solugdo pode ser escrita como

. 4 oo
D(z,x') = / %e’k’“ fi2)@o(k) (4.7)

onde Py (k) é a transformada de Fourier do campo na fronteira AdS e fi(z) é solu¢do da equagio

1 2z . ab 2 _
=0 (VERE0A) — (¢ Kaky ) fe =0, (48)

com a condicdo de contorno f;(0) = 1 e de ondas que apenas entram no horizonte de eventos.
Desta forma, levando em conta a equacio do campo escalar, a a¢do (4.6) se reduz aos termos
de superficie
s= | T (=) F (2.0 Do () (4.9)
- (27[)4 0 Z? 0 0 ) .
onde

F(z,k) = /—g8% f-i(u)d fi(z) - (4.10)

O postulado de Son-Starinets estabelece que a funcao de Green retardada correspondente ao

operador O da teoria de campos € dada por

GR(k) = —2F (,k) ;=0 - (4.11)

Com esta relacdo, os autores calcularam as fun¢des de Green retardadas em casos onde tais
fungdes ja haviam sido calculadas, como por exemplo, numa teoria de campos conforme bidi-
mensional, e verificaram a validade da relacao (4.11).

A interpretacdo das frequéncias quasinormais de um buraco negro AdS em termos de uma
teoria de campos conforme foi dada por Birmingham et al [7]. Mostrou-se que hd uma con-
cordancia exata entre as frequéncias quasinormais de perturbacdes de varios spins do buraco
negro BTZ e os polos da funcdo de Green retardada das correspondentes perturbacdes na te-
oria conforme dual em duas dimensdes, definida na borda do espago-tempo. Desta forma,
pelo menos em principio, a receita de Son-Starinets nos permite calcular os p6los das fungdes

de Green retardadas de uma dada teoria de campos e além disso, tais pdlos correspondem as
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frequéncias quasinormais do buraco negro AdS definido no bulk. Portanto, as ferramentas usu-
almente empregadas no estudo das frequéncias quasinormais de buracos negros em Relatividade
Geral podem ser utilizadas para o estudo das propriedades de teorias de campos por meio da
correspondéncia AdS/CFT.

Em particular, observamos que os espagos-tempos considerados no lado gravitacional da
correspondéncia no exemplo original de Maldacena e na obtenc¢do da féormula GKP-W e de
Son-Starinets sao todos obtidos através do limite préximo do horizonte da solugdo das p-branas
negras obtidas no Capitulo 2. E, portanto, justificado um estudo da estabilidade dessas solugdes.
Entretanto, ndo tomaremos o limite proximo do horizonte, pois nosso objetivo é considerar as

solugdes mais gerais.



Capitulo 5

Perturbacao Escalar das p—Branas

Negras

Neste capitulo apresentaremos os resultados da estabilidade das p-branas negras frente a
uma perturbacdo devido a um campo escalar de teste. Vamos escrever a equacao de Klein-
Gordon no espago-tempo da p-brana negra e realizar uma separacdo de variaveis entre aquelas
do bulk e da brana. Em seguida, utilizaremos o método WKB e da integragdo caracteristica para

encontrar as frequéncias quasinormais. Os resultados deste capitulo foram publicados em [41].

5.1 O campo escalar sem massa

Nossa andlise neste trabalho se restringe ao setor escalar das perturbacdes, ou seja, esta-
mos supondo a existéncia de uma perturbacdo que, por defini¢do, obedece a equacao de Klein-
Gordon. Para se obter as perturbacdes de spin mais alto, deveriamos perturbar diretamente as
equacoes de Einstein e obter o potencial efetivo correspondente.

Em nosso estudo, basta resolver a equacao de Klein-Gordon para a métrica (2.70), que foi

apresentada e discutida no primeiro capitulo deste trabalho'.

5—

=

1

2

! Aqui usaremos a seguinte notagio para as componentes da métrica: A(y) = %, B(y)=%_,C(y) = K*T
X

N
=
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A andlise que faremos, sera computar o efeito causado por uma perturbagdo linear na métrica
da p-brana negra utilizando um campo escalar sem massa ®(x*), onde x* sio as coordenadas
do espaco-tempo. Queremos encontrar as frequéncias quasinormais que surgem da propagacao
de ®(x*) na métrica de fundo (2.70).

Como € sabido, a equagdo de movimento para um campo escalar sem massa € dada pela

equacdo de Klein-Gordon
AP =0,

sendo Ajp um operador diferencial que atua em todas as coordenadas de (2.70). E conveniente

escrevermos este operador como a soma de outros dois,

AIO:Ap(rve(pfl))+A107p(t7y7;\'(87p))7 (51)

sendo que o primeiro atua na parte de ® que depende das coordenadas do subespaco dx'dx; =
dr? + ’”2‘19271’ e 0 segundo no restante, que sdo as coordenadas do bulk (#,y,Ag_p))-

Nosso objetivo imediato é simplesmente escrever o operador (5.1) no espaco-tempo descrito
por (2.70). Para levar isso a cabo, € importante listarmos algumas expressoes e definirmos uma
notacdo. As (p — 1) coordenadas angulares que aparecem no subespago dr? + rzdﬂf,fl sao

denotadas por 6(,_1) e a combinagdo de sin® que advém do elemento de linha dQI%_ | que

aparece no cdlculo do determinante do tensor métrico é condensada na fungdo i(6;), sendo que
h(6;) = sin” 20, sin” > @, ---sin@,_»
De forma analoga para o elemento de linha angular do bulk dQ%Sfp) denotaremos as (8 — p)

coordenadas angulares por A(z_,) € a combinagdo, que aparece no determinante, por g(A;),

sendo que
g(hj) = sin’ P A sin® P A, - - sin M—p

Com isso, a raiz do determinante g do tensor métrico (2.70) é dado por

V=8 = \JAW)BOICHID) 270350, [i(8,)g (). 52

1_5-p

eD(y) =% 7.
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Tendo a expressao acima, e os componentes da métrica (2.70) podemos escrever cada um dos

termos que formam Ajg. Comegando com o operador que depende de (r, S p—l))

A, = ﬁar (rr-g7a,) + Z 9, (V/A01)2"%,).

sendo g"" = 1/B(y), g%% = j(0,)/r*B(y) e j(G,-) a combinag@o de sin®; que aparecem nas

componentes angulares do tensor métrico referente ao subespaco dr> + rdelz)_l. Logo,

1 1 1
= | — (p—1) 2 arm.
AP - B(y) |:r(p_1)ar (r ar) + r2 ®(el):| , (53)

sendo

i L (V600

i

que € a parte angular do operador lapla01an0 em (p — 1) dimensdes.

Para o operador Ay, teremos

1
Ajo—p = _mat +X(y) + y—AO“j)a (5.4)

1
X(y) = dy [ \/A(Y)B()PC(y)~1DBE-P)y*P0, |,
VAG)BO)PCHIDG)E-)ys—r YW )

A0 = e 30, (el ).
J

g(A\)

Esta ultima expressdo € a parte angular do operador laplaciano em (8 — p) dimensdes nas coor-
denadas A ;.
Substituindo (5.3) e (5.4) em (5.1), obtemos a expressao para o operador de Klein-Gordon

em 10 dimensdes, que aplicado ao campo escalar sem massa ® da como resultado

! {Lar (rrVa,@) + r—12®(e,-)c1>} — L Ro4 X (1) —aA()D =0

B(y) Lrlp=1) A(y) ¥2D(y)
Esta equagdo pode ser separada em duas outras equagdes diferenciais se tomarmos a seguinte

separacgdo de varidveis para @

ZRI )i (8:) Y WL(1,9)Yg(8a) (5.5)
Lq
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onde Y; ,, e Y, 4 sdo os harmdnicos hiper-esféricos em (p — 1) e (10 — p) dimensoes respectiva-

mente [42]. A constante de separacio é denotada por B2, e as equacdes resultantes, para todo m

e g, sao
1 d _1dR (l+p-2)
_ - “ | (-1 2 Wb TpP—4) _
r(p=1) dr (r cz’l*)_|—([3 r? )Rl_o ’ (5.6)
_B(y) (a2, BO) B B
5.7
onde usamos
O0)Y = —Il(l+p—2)Y
AMjYg = —LIL+7-p)Yiq

A equacdo (5.6) determina B2, mas pelo fato de ndo termos nenhuma condigio de contorno para
o subespaco onde esta equacio estd definida, o autovalor B? terd espectro continuo. A solugio

dessa equagdo € uma combinacdo de funcdes de Bessel,

Ri(r) = Arr' P2 1y(Br) + Aar'PPYy(Br), (5.8)

com Y= 31/p>—4p+4—4I(I+p—2), A e A, constantes, Jy(r) fungdo de Bessel do pri-
meiro tipo e Yy(Br) fun¢do de Bessel do segundo tipo. Por simplicidade, como se trata de uma
primeira anélise, tomaremos B = 0 para a resolucio da equagdo (5.7). O fator B> pode ser
interpretado como uma massa para o campo de Klein-Gordon inicialmente desprovido desta.
Com o propdsito de encontrar as frequéncias quasinormais devido a perturbacdo escalar,

vamos decompor em componente de Fourier a parte temporal do campo ¥y, isto €,

Wi(r,y) =€ 0L(y)

onde o representa a frequéncia quasinormal procurada. Disto, nossa equacdo adquire a forma

d*Qr
dy?

h(y) +g(y)——+v(y)QL=0 (5.9)
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sendo
_ AW
_ (8=p)AY) 1 dA(y) = pA(y) dB(y) A(y) dC(y)
s0) = v Cly) 2C0) dy | 2BO)CH) dy  2CO)2 dy
n (8—p) A(y) dD(y)
2 C(yD(y) dy
_ A(y)
v(y) = o> — D) L(L+7-p)

5.2 O potencial efetivo

Usaremos o método semi-analitico WKB de sexta ordem [29] e a integracao caracteristica
[30,31] para determinarmos as frequéncias quasinormais. Para que isto seja feito, precisamos
determinar o potencial efetivo V(y) correspondente a equagdo (5.9). Tal potencial pode ser de-
terminado pela redefinicao da funcao de onda Q; e através de uma mudanca de coordenadas que
nos permita anular o coeficiente da derivada primeira de Q; e tornar o coeficiente da derivada
segunda de Qy igual a 1

Facamos a redefini¢do

oLly) = b()ZLly) ,

y = y(r)

Substituindo em (5.9) temos como resultado?

/

21(3) 22 2 ) () + g0

h(y)r2Z; + 2 v/
( ) L b(y) L
b) o bO) Ly by .
+ | —==h()r2 + —F (i) h(y) + ——g(¥)F. +v(y) | ZL = 0. (5.10)
i N0V G () HO) + G0+ 0)
Para que o coeficiente de Z; seja 1, devemos ter
5 dl"* 1
hy)r2=1= = . (5.11)
v dy — /h(y)

2 Aqui usamos a seguinte notagio: - = diy e = %
*
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Por outro lado, para que o coeficiente de Z; se anule, precisamos que

2b(y) 1o +b(y) (i) + £2b(y) = 0. (5.12)

Usando o resultado (5.11) ficamos com

2 db 1 dh
) 0) , 80) _ (5.13)
b(y) dy  2h(y) dy ~ h(y)
sendo
g0») _@®—p) 1 dAly) p 1 dB) 1 1 dChy) (8—p) 1 dDO)
h(y) y  2A(y) dy  2B(y) dy 2C(y) dy 2 D(y) dy
(5.14)
Substituindo (5.14) em (5.13) ficamos com
d 1d 8—p) 1d pd
—Inb = ——Inh(y)——————-—InA(y) —~—1InB
" () iy () 5 dap" () say" ()
1d (8—p) d
——1 ———InD
* 1a nCly)——, " ),
o que nos leva a concluir que a fungéo que anula o coefieciente de Z; é
b(y) = 1 (5.15)
Y =P 2B (y)PAD(y)B-P)/A '
Substituindo este resultado e (5.11) em (5.10) obtemos
d’ { A(y) h(y)d®b(y)  g(y)db(y)
—7Zr — L(L+7—p)— — -0 Z,=0.
dr; ¥2D(y) ( ) b(y) dy*  b(y) dy
Com isto, podemos definir o potencial devido a perturbacao escalar
A(y) } 2, AD) h(y) d*b(y)  g(y) db(y)
V)= |=—7<-1 + L(L+7—p)— — . (5.16)
) [B(y) P y2D(y) \ ) b(y) dy*  b(y) dy
Em sintese a equacao para perturbacao escalar se reduz a
@ ZL+ [k =V(y)]Z,=0 (5.17)
dr? ’ '

onde, por conveniéncia, definimos k* = ®?> — B?.
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Pode-se observar o perfil do potencial efetivo nos graficos (5.1) e (5.2). Vemos que fora do
horizonte de eventos, isto €, para y > a, o potencial adquire um méaximo e em seguida decai
suavemente a medida em que y cresce. No infinito os potenciais decaem a zero. Este tipo de
potencial € bem estudado na teoria dos buracos negros [22], como por exemplo no caso de
perturbarmos o buraco negro de Schwarzschild ou Reissner-Nordstrom com um campo escalar
sem massa. O perfil do potencial efetivo obtido é muito semelhante ao resultado obtido neste
trabalho para as p—branas. Entretanto, observa-se também, que a medida em que o parametro
BB cresce e o nimero de dimensdes da p-brana também aumenta, o potencial efetivo torna-se
negativo. Tal comportamento pode ser verificado explicitamente nos casos 3 = 1 para a 5-brana
e para a 6-brana. Em vista disso, nossa andlise serd focada nos casos em que os potenciais sao

positivos definidos no dominio a < y < oo.

0.8

0.4

Figura 5.1: Potencial efetivo V(y) comp =3, L =0, a =2 e b = 0.5 para trés valores diferentes

do pardmetro massivo f.

5.3 O caso extremo

O potencial efetivo da perturbacao escalar no caso da p-brana extrema € obtido tomando a =

b no potencial obtido na se¢ao anterior (5.16). Observamos que para p < 5 o perfil do potencial é
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Figura 5.2: Potencial efetivo V(y) comp =6, L =0, a =2 e b = 0.5 para trés valores diferentes

do pardmetro massivo f3.

qualitativamente o mesmo que no caso da p-brana negra, veja o grafico (5.3). Continuando com

a defini¢do da frequéncia efetiva k* = o> — B2, constatamos que no caso extremo os potenciais

sdo independentes de B2, ja que o tnico termo do potencial que dependeria desse parimetro é

Z€ro no caso extremo.

Para p = 6 temos uma singularidade nua tipo tempo em y = a, o que explica o fato do

potencial efetivo divergir na regido proxima de y = a como mostrado no grafico (5.4). No

caso da 5-brana o potencial também diverge em y = a. Em vista disso, no regime extremo nos

restringiremos aos casos em que p < 5.

5.4 Frequeéncias quasinormais: Método WKB

Nesta secdo e na subsequente apresentaremos os resultados que obtemos. Vamos primeira-

mente usar o método WKB de sexta ordem para calcular as frequéncias quasinormais devido a

perturbacdo escalar, tanto no caso da p-brana extrema quanto no da p-brana negra. Usaremos o

potencial efetivo dado em (5.16) como input do nosso cédigo (veja o Apéndice A).

Caso nao extremo
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T
1.2

V(y)

Figura 5.3: Potencial efetivo V(y) com p =3, L =0, a = b = 2 para trés valores diferentes do
pardmetro massivo .

\ p=0.0 - =
. B=05 - -
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2 4 6 8 10 12

y

Figura 5.4: Potencial efetivo V(y) com p =6, L =0, a = b = 2 para trés valores diferentes do
pardmetro massivo .

Nas tabelas (5.1) e (5.1) temos as frequéncias quasinormais para cada valor p, variando o

nimero multipolar L e o sobreton n. Estes resultados foram obtidos tomando o valor de [32 =0,
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isto é, a frequéncia efetiva k> = ®”. No decorrer apresentaremos os resultados para B > 0.

L{n| Re(k) | =Im(k) || L | n | Re(k) | —Im(k)

1.2889 [ 0.5506 || O 1.0812 | 0.4670

1.5047 | 0.5876 || 1 1.3245 | 0.4963

1]17]09858 | 1.7991 1]11]0.8928 [ 1.5820

0| 1.9638 | 0.48123 0 [ 1.7264 | 0.4300

2 2
211]14709 | 1.6170 || 2 | 1 | 1.3581 | 1.3904
2 2

2 [ 0.4087 | 2.8063 2 [ 0.5388 [ 2.5558

L|n| Re(k) | =Im(k) || L | n| Re(k) | —Im(k)

0.8714 | 0.3911 || O 0.6633 | 0.3202

1.1311 | 0.4137 |l 1 0.9284 | 0.3363

11107983 [ 1.3408 [ 1 | 1| 0.6930 | 1.0922

0| 1.4882 | 0.3754 0 [ 1.2489 | 0.3161

1.2223 | 1.1884 1.0673 | 0.9904

[NSI I NS B ]
—_

[N I NS B S
—_

21 0.6387 | 2.2091 21 0.6904 | 1.8209

Tabela 5.1: Frequéncias quasinormais escalares para p =0, 1,2,3e4 coma=2eb=0.5.

p=4 p=> p==6

L|n| Re(k) | —Im(k) | L| n| Re(k) | —Im(k) || L | n | Re(k) | —Im(k)

04632 | 0.2514 || O 0.2824 | 0.1827 || O 0.2287 | 0.1563

2.3562 | 0.6854 | 1 0.5179 | 0.1843 | 1 0.4815 | 0.1433

1]1]1.7983 | 19035 ([ 1] 104399 | 05876 || 1 [ 1 | 0.4482 | 0.4451

0 | 3.1055 | 0.6587 007690 | 0.1803 || 2 | 0| 0.7697 | 0.1406

2.6785 | 1.9772 0.7109 [ 0.5570 || 2 | 1| 0.7459 | 0.4281

NS I (O I\
—
NN
—

2 [ 1.5204 | 3.2295 2 (0.6098 | 09805 || 2 |2 | 0.7055 | 0.7320

Tabela 5.2: Frequéncias quasinormais escalares para p=4,5e 6 coma=2e b =0.5.
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A dependéncia das frequéncias quasinormais em relacdo ao nimero de dimensdes p da
brana pode ser observado nos graficos (5.5) e (5.6) para cada valor de multipolo L considerado
neste trabalho. Notamos que quanto maior o nimero de dimensdes espaciais da brana, menor
se tornam a parte real e imagindria de maneira aproximadamente linear.

Podemos interpretar o parametro p como um fator de escala das frequéncias, j4 que o
espacamento entre uma freqii€ncia e outra tomadas em dimensdes vizinhas é praticamente cons-
tante. A Unica excecdo € para a parte real do caso L =2, n =2, onde observamos que a parte real
aumenta a medida em que adicionamos mais dimensdes na brana. Tal comportamento andmalo,
talvez seja em func¢do das limitacdes do método WKB quando tratamos de altos multipolos onde

L = n. Até o momento ndo conseguimos encontrar outra explicagdo para este comportamento.

16 b

1.4t 1

Re(w)

06 f -

02 ! ! !

p

Figura 5.5: Relacdo entre a parte real das frequéncias e o nimero de dimensdes p para L =

0,1,2.

De maneira andloga, podemos medir o efeito do aumento do parametro a, que para um
dado b essencialmente representa a massa da p—brana. Observamos que a medida em que a
brana torna-se mais massiva, tanto a parte real quanto a imagindria das freqiiéncias diminui.
Este comportamento é bem semelhante ao que observamos quando aumentamos o nimero de

dimensodes espaciais da brana. Um exemplo deste comportamento € mostrado nos gréficos (5.7)



5.4 Frequéncias quasinormais: Método WKB 68

06 T T T T
L=0 o
0.55 . L=
L=
05 r » i
0.45 .

0.4 | e 1

-Im(w)

035 | -

P

0.25 | -
02 | 1

0.15 |

Ol | | | | |

Figura 5.6: Relacao entre a parte imaginaria das frequéncias e o nimero de dimensdes p para

L=0,1,2.

e (5.8) onde tomamos com b = 0.5.

25 T T T
p:O rrrrr oo
2.25 - p=1 .
p:2 *
> Lp=3 - ;
p:4 —e—
1.75 i
S 125} s ]
o ///
1 _ 1
Ea M ///
0.75 | . P .
,'Q *> ///
05 | S e .
o e -
025 |  xite o7 1
BHoo®
0 1 1 1
0 0.25 0.5 0.75 1
1/a

Figura 5.7: Efeito do parametro a na parte real das frequéncias. Os pardmetros da p-brana sao

b=05L=0eB=0

Do que foi mostrado até agora vemos que a adicdo de massa ou de dimensdes extras
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Figura 5.8: Efeito do parametro a na parte imagindria das frequéncias. Os parametros da p-

branasdob=0.5,L=0ef =0

nao muda de maneira substancial o comportamento das frequéncias quasinormais. Em ge-
ral, o célculo das frequéncias quasinormais é uma tarefa tipica onde devemos usar métodos
numéricos. Apesar disso, com o método WKB € possivel encontrarmos uma expressao semi-
analitica em um certo regime. Expandindo o potencial efetivo (5.16) em termos de pequenos
valores de 1/L, ou seja, para valores multipolares L grandes e, em seguida, usando o método

WKB em primeira ordem, obtemos a seguinte expressao para as frequéncias quasinormais:

o® = LT (y,) —i(n—I—%) LA(yp), (5.18)

sendo que

__2A0) TO) [, A0 y
AD) = C(y)\/ {l C(y)} +10)

O méximo do potencial é determinado por V(y)’ = 0, e ocorre em

1

(7-p)

—2c

(cz+(c%—8cl)%) ,

Ym = (5.19)
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com ¢ = (7—p)(ab)’"P e c; = —(9 — p)a’P. Esta expressio concorda plenamente com os
resultados para L grande levando em conta as seis ordens do WKB.

O caso extremo

Como discutido anteriormente, trataremos no caso extremo apenas as branas com p < 5
devido a divergéncia do potencial efetivo na vizinhanga do horizonte de eventos y = a. Os re-
sultados para estes valores sdo qualitativamente similares ao caso nao extremo. O procedimento
para o calculo das frequéncias quasinormais € o mesmo utilizado no caso das p—branas negras.
As frequéncias obtidas para todas as configuragdes a ndo ser para a S—brana e a 6—brana sao

listadas na tabela (5.4).

L|n| Re(k) | —=Im(k) || L | n | Re(k) | —Im(k)

24997 | 09551 || O 2.0407 | 0.8472

[l ]
[l e

3.0707 | 1.0178 | 1 2.6890 | 0.8636

1124132 20833 (1] 1] 19794 | 2.1751

0 [ 3.8865 | 0.9316 0 [ 3.4758 | 0.8029

2 2
2|1 (31598 [ 27734 [ 2 | 1| 2.8825 | 2.4061
2 2

21 0.0876 | 2.4072 2109789 | 3.5412

L|n| Re(k) | —Im(k) | L| n| Re(k) | —Im(k) || L | n | Re(k) | —Im(k)

1.6804 [ 0.6598 || O 1.5166 | 0.4295 | O 1.4002 | 0.3238

S| O
oS | O
[l ]

2.3562 | 0.6855 | 1 2.0922 | 0.5226 | 1 2.0082 | 0.3409

1]1]1.7983 | 19035 ([ 1| 1| 17917 | 1.4665 | 1 [ 1 | 1.8299 [ 0.9917

0 | 3.1055 | 0.6587 027984 | 05134 || 2| 0| 2.6720 | 0.3517

2.6785 | 1.9772 25253 | 1.5580 || 2 | 1 | 2.5245 | 1.0509

NS I (S I\
—

NS I (O I\
—

2 [ 1.5204 | 3.2295 2 [ 1.9272 | 25721 || 2| 2| 2.1955 | 1.7328

Tabela 5.3: Freqgiiéncias quasinormais escalares para p =0, 1, 2, 3, 4 no caso extremo a = b =

1.

O efeito da dimensao espacial das branas extremas nas frequéncias quasinormais é o mesmo

que no caso ndo extremo: tanto a parte real quanto a imaginaria decaem a medida em que
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aumentamos p. Da mesma forma que no caso anterior, quanto maior o parametro @ menor sera

a parte imagindria e a parte real das frequéncias.

5.5 Frequeéncias quasinormais: Integracao caracteristica

Outra técnica numérica usada no presente trabalho com o fim de calcular as frequéncias
quasinormais € a chamada integragdo caracteristica. Os resultados obtidos usando este método
corroboram aqueles obtidos na sec¢do anterior onde usamos a técnica WKB. Nas tabelas (5.4)
e (5.5) temos os resultados da frequéncias calculadas para o caso da p-brana negra. O niimero
que aparece entre paréntesis ao lado da parte real e imaginéria das frequéncias € o desvio do
resultado obtido usando a integragdo no dominio temporal em relagdo aos resultados obtidos

com o uso da técnica WKB.

p=0 p=1
L Re(k) —Im(k) Re(k) —Im(k)
0 1.250 (3.0) 0.4980 (9.6) 1.042 (3.6) 0.4498 (3.7)
1 1.606 (6.7) | 0.4867 (17.2) 1.604 (21.1) 0.463 (6.7)
2 | 1.962 (0.092) | 0.4805 (0.15) 1.725 (0.079) | 0.4295 (0.13)
p=2 p=3
L Re(k) —Im(k) Re(k) —Im(k)
0 | 0.8346(4.2) | 0.3926 (0.38) 0.6376 (3.9) 0.3279 (2.4)
1| L1.161(2.64) | 0.3803 (8.1) 0.9413 (1.4) 0.3204 (4.7)
2 | 1.488(0.013) | 0.3749 (0.13) 1.249 (0.0056) | 0.3157 (0.14)

Tabela 5.4: Frequéncias quasinormais para p =0, 1,2,3e4 comn=0,a=2 e b=0.5 usando

a integragdo caracteristica.

Usando a integracdo no dominio temporal € possivel obter o perfil de decaimento da perturbagao
escalar Zy (t,r.), veja por exemplo (5.9). Podemos observar as trés partes principais da evolugao

dessa perturbacdo. A primeira parte € chamada de fase transiente e representa a resposta imedi-
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p=4 p=35 p=06

L Re(k) —Im(k) L Re(k) —Im(k) L Re(k) —Im(k)

0| 0.4449 (4.0) | 0.2555(1.6) || O | 0.2697 (4.5) 0.1990 (8.8) 0| 0.1485(52.6) | 0.1290 (116.1)

1| 0.7244 (0.46) | 02438 (6.4) || 1| 0.5187(0.16) | 0.1828(0.83) || 1 | 0.3616 (0.22) | 0.1150 (0.34)

2 | 1.008 (0.012) | 0.2509 (0.13) || 2 | 0.7691 (0.010) | 0.1802 (0.082) || 2 | 0.5889 (0.021) | 0.1134 (0.042)

Tabela 5.5: Frequéncias quasinormais escalares para p =4,5e 6 comn=0a=2e b=0.5

usando a integracdo caracteristica.

ata do sistema. Essa fase depende das condicdes inicias do campo perturbativo. A segunda parte
corresponde aos tempos intermedidrios, quando a perturbacdo decai de maneira exponencial.
As frequéncias de oscilagdo e amortecimento sdo determinados pelos modos quasinormais, que
dependem exclusivamente dos parimetros da p-brana. A dltima fase da evolucdo de Zj (¢,r)

ocorre em tempos longos. O campo nessa etapa decai como uma lei de poténcia [43].

Transiente Cauda em

tempos
longos

17, |

Modos
quasinormais

Figura 5.9: Graifico Log-Log do valor absoluto de Z; (¢, r,). A fase transiente, quasinormal e a

cauda estdo indicadas. Os parimetros da p-branasao p=0,a=2,b=05,L=1ep =0

Longe do horizonte de eventos da p-brana o potencial efetivo (com f = 0), em termos da

coordenada tartaruga r,, adquire a seguinte forma:
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|
(r+5) (e 52) 30

se0<p<6

LL+1) [5+(a—b)2x] + 0 (1)

(5.20)
sep=6eL=0

LL+1) [r—lz—l—(Za—b)]'%] +o<‘%>

*

sep=6elL>0
\
Com este potencial efetivo, foi mostrado por Price [44] e Ching et al [26] que a evolugdo de

uma perturbacao inicial com suporte compacto, em tempos longos evolui de acordo com
7y ~ 1L, (5.21)
O expoente a(p, L) para os casos p = 1,3,5,6 é dado por

2L—p+8 comp=1,3,5
a(p,L) = (5.22)

2L+3 comp=~6

Para p =0, 2,4, o resultado numérico sugere uma expressao similar
o(p,L)=2L—p+10com p=0,2.4 (5.23)

O decaimento tipo lei de poténcia para tempos longos € confirmado pela integracdo carac-

teristica sendo ilustrado em (5.10).

5.6 O caso massivo § > 0

Os resultados apresentados até aqui foram obtidos no regime em que 3 = 0. Nesta se¢do

apresentaremos os resultados obtidos da dependéncia das frequéncias quasinormais ® = /k? + 2
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Figura 5.10: Caudas para vérios valores de p. Os parametros da p-brana saoa =2,b=0.5,L =

0, B = 0. As retas que aparecem logo acima das caudas indicam suas respectivas inclinagdes.

em P. O perfil de decaimento de Z; (¢, r,) apresenta as mesmas trés fases que aparecem quando
B = 0. A novidade neste caso é o aparecimento de uma cauda massiva, que para uma certa
escolha de parametros pode sobrepor-se a fase quasinormal, veja (5.11).

10° -

Cauda em
tempos longos

10°

Modos
Quasinormais

— E
N" 10'6 — Transiente

Figura 5.11: Gréfico Log-Log do valor absoluto de Z; (¢,r). A fase transiente, quasinormal e

a cauda massiva estdo indicadas. Os parametros da p-branasdo p=0,a=2,b=05,L=1¢

B=1

Utilizamos a técnica WKB e a integracdo caracteristica da mesma forma que empregados
no caso anterior. Entretanto, a integrac@o caracteristica nao € aplicavel para valores grandes

de B. Isto decorre do fato de que a cauda massiva, que ocorre devido a presenca de termos
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proporcionais a B2 no potencial, domina sobre os modos quasinormais ja em tempos curtos,
veja para o caso p = 6 na figura (5.12). Apesar disso, a integracao funciona para valores [
pequenos. Em geral, o que observamos é que as frequéncias quasinormais no caso massivo se
tornam mais oscilatérias e menos amortecidas.

No caso massivo, o potencial efetivo para r, grande € dado por:

(
o (10) (1) 40 ) oz s
ry Vi

Bz+[Bz+L2+2L+§—Jriz+o(ri3),sep:5

V(r,) = (5.24)

|—

[32(14—!’;")+O<r\),sep:6eL:0

* W)

B2 (122 + [Bh(b—a) +L(L+ 1)+ 0 (5 ) se p=6eL >0
\ * r*

G

A forma da cauda massiva em tempos longos € dada por

Z1(t,ry) ~ sin (Br)s VP, (5.25)

No caso p = 6, isto € quando o bulk é quadridimensional, podemos usar diretamente os re-
sultados de Koyama et al [45], que estimou o perfil de caudas em tempos longos de uma
perturbacao escalar massiva em buracos negros esfericamente simétricos. No nosso caso te-
mos op = 6,0) = 5/6. Este resultado € ilustrado na figura (5.12).

No caso da 2-brana com a =2, b = 0.5, L = 0, o método WKB e o da integracdo ca-
racteristica ddo resultados discrepantes na regido préxima de B2, veja as figuras (5.13) (5.14).
Observamos que para pequenos valores de B os dois métodos empregados coincidem perfeita-
mente. A parte real das frequéncias também tém uma boa concordincia pelo menos até 3 = 2.5.
A razao desses diferentes resultados encontrados na regiao § = 1 ndo esta clara.

Em relacdo ao caso extremo, a técnica de integracdo caracteristica € dificil de ser aplicada,

pois com excecao do caso p = 3, as p-branas possuem uma singularidade nua [20] e o problema



5.6 O caso massivo 3 > 0 76

100 T T T T T 17T

| Z |

—_ —_

o =]
|I|T|'|I |II|'|||| |

oo

10 10

Figura 5.12: Cauda massiva para p = 6. Os parametros da p-branasioa=2,b=0.5,L=0¢

B=1.
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Figura 5.13: Efeito de  no comportamento da parte real de @ parap=2coma=2,b=1¢e
L = 0. Os dois métodos numéricos foram empregados. Eles sdo consistentes para 3 pequeno e

suficientemente grande, mas discrepantes proximo de f = 1

de como condicdes iniciais evoluem no espaco-tempo nao € bem posto. Portanto, esta classe de
solugcdes ndo serd estudada com este método.

Da extensiva andlise das frequéncias quasinormais devidas a propagacao de um campo es-
calar na geometria das p-branas negras, podemos dizer que estes espagcos tempos sdo estdveis
frente a este tipo de deslocamento do equilibrio. Os dois métodos numéricos empregados dao
bom suporte a este resultado e os valores obtidos em ambas abordagens conicidem. Como foi

comentado, no caso em que 3 é grande, a integrag@o caracteristica ndo apresenta resultados das
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0.6

— WKB 7]
@®Dominio temporal

Figura 5.14: Efeito de B no comportamento da parte imaginaria de ® para p =2 com a = 2,
b=1eL=0. Os dois métodos numéricos foram empregados. Eles sdo consistentes para [3

pequeno e suficientemente grande, mas discrepantes préoximo de § = 1

frequéncias quasinormais, devido ao dominio da cauda massiva sobre a fase quasinormal da
evolucdo da perturbacao inicial.

Dos resultados obtidos, constatamos que as frequéncias quasinormais, tanto a parte real
quanto a imagindria, decrescem quase linearmente com o aumento do parametro a, que para um
dado valor de b representa a massa da brana. Da mesma forma, se aumentarmos o nimero de

dimensdes espaciais da brana as perturbagdes tornam-se menos oscilantes e amortecidas.



Capitulo 6

Supercondutores Holograficos na

Gravidade de Gauss-Bonnet

Neste capitulo vamos tratar de uma aplicag¢ao da correspondéncia calibre/gravitacdo em sua
versao fenomenoldgica. Usaremos o espaco-tempo de Gauss-Bonnet AdS para modelar esta-
dos supercondutores na teoria de campos definida na borda AdS. Daremos €nfase aos aspectos
semianaliticos dos célculos, que foram nossa principal contribui¢do ao assunto. Tais apectos e
a andlise numérica dos supercondutores holograficos usando o buraco negro de Gauss-Bonnet
foram publicados em [46].

Comecaremos fazendo uma breve revisao do assunto, seguido de uma descri¢cao do buraco
negro de Gauss-Bonnet e por fim os cédlculos para o condensado supercondutor da teoria de

campos dual usando o diciondrio AdS/CFT.

6.1 Supercondutores holograficos

Recentemente tem havido grande interesse em aplicagdes das idéias da correspondéncia
AdS/CFT em sistemas gravitacionais que nao sao solucdes da supergravidade em 10 dimensdes
como no exemplo original de Maldacena. O que se propde € uma versdo fenomenologica da

correspondéncia AdS/CFT. Seguindo esta linha, Gubser [10,47] sugeriu que na regido préxima
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do horizonte de um buraco negro carregado hd uma quebra da simetria U (1) devido a um campo
escalar carregado. Entdo usa-se a correspondéncia calibre/gravitacao para a construcao de duais
gravitacionais para a transicao de um estado normal para um estado supercondutor da teoria de
campos na borda AdS [47].

O dual gravitacional de um supercondutor consiste em um sistema formado por um buraco
negro e um campo escalar carregado, em que o buraco negro admite um cabelo escalar para
uma dada temperatura menor que a chamada temperatura critica, enquanto que para tempe-
raturas maiores que a temperatura critica ndao ha a formagdo desse cabelo escalar [48]. Um
condensado do campo escalar é entdo formado devido ao seu acoplamento com o campo de
Maxwell de fundo, onde nao se levam em conta os efeitos de retroagdo do campo escalar car-
regado no espaco-tempo. Seguindo esta linha fenomenoldgica hd uma grande quantidades de
investigagdes em relacdo a aplicacdo da correspondéncia AdS/CFT na fisica da matéria conden-
sada, veja as revisoes [49] [50] e suas referéncias.

Devemos sempre ressaltar que esses modelos sao fenomenoldgicos. Os campos cldssicos e
as interacoes no bulk sdo escolhidas ad hoc. Uma situagcdo mais confortavel seria a derivacdo de
modelos apartir de primeiros principios, veja mais detalhes desta discussao em [51] [52] [53].

Um modelo composto de um campo escalar carregado acoplado ao campo de Maxwell na
geometria definida pelo buraco negro de Gauss-Bonnet 5-dimensional foi apresentado e estu-
dado por Gregory et al [12]. O objetivo foi o de estudar o efeito da inclusdao de corre¢des na
geometria, isto é, levando em conta termos proporcionais ao quadrado das componentes do ten-
sor de Riemann na a¢do, na formagdo do condensado da teoria de campos dual. A conclusao
foi que a adicdo dessas correcdes torna mais dificil a forma¢do do condensado. Também nesse
trabalho, os autores apresentam um método semianalitico para a determinacdo da densidade do
condensado na teoria de campos definida na borda AdS em teremos da temperatura critica. Em
nosso trabalho [46] consideramos uma geometria do buraco negro de Gauss-Bonnet-AdS em
d-dimensdes que generaliza o caso estudado por Gregory et al [12]. O objetivo € lancar alguma
luz sobre os detalhes de como se da a influéncia das correcdes na geometria quando levamos

em conta um bulk com dimensao maior que cinco.
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6.2 O buraco negro de Gauss-Bonnet AdS

A teoria de Gauss-Bonnet d-dimensional com constante cosmoldgica negativa A = —(d —
1)(d —2)/2L? é dada pela agio

(d—1)(d—2)

S = / dx/—g [R +—— +0 (RabcdR"de — 4R R + Rzﬂ . (6.1)

onde & é a constante de acoplamento de Gauss-Bonnet com dimensio de (comprimento)™2. A
solugdo das equagdes de movimento da agdo acima para um buraco negro neutro é descrito pelo

elemento de linha [54]

ds® = —f(r)dr* + ﬁdﬂ + 77 (dy? + hyjdx'dx’) (6.2)

onde .
f(r)= % [1 — (1 + .(d6i7t26)?grﬂj_l N i_(;) 2] ’ (6.3)
onde a0 = &(d —3)(d —4) e M é uma constante de integragio relacionada com o horizonte de
eventos r; do buraco negro por M = %. A constante ¥ € o volume do espago plano

(d — 3)-dimensional. Observamos que na regido assintdtica

2
r 4ol
~—|1=/1—— 6.4
0 que nos permite definir a escala efetiva
200
Lgff = (6.5)
l—y/1-77

que se reduz a L? quando o tende a zero e a L?/2 quando o tende a L? /4.
A temperatura Hawking do buraco negro, que € interpretada como a temperatura da teoria

de campos na borda AdS, é dada por

(d-1)

T=X"_
Ami? |t

(6.6)

Dada a descri¢do da geometria, na préxima se¢ao vamos considerar os campos classicos

definidos ali, que serdo uteis para construir o condensado supercondutor na teoria de campos.
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6.3 Campos classicos definidos no bulk

Na geometria de Gauss-Bonnet AdS d-dimensional dado pela métrica (6.2) consideraremos

o campo de Maxwell F,;, e um campo escalar complexo carregado ¥ através da acao
1
S = /ddx\/_—g [—ZFabF“b — |V¥ — A2 — m?|P)?| (6.7)

sendo A, o potencial vetor.
Nesta andlise nao levaremos em conta a retroagdo dos campos na geometria, isto €, os cam-
pos sdo fracamente acoplados a gravidade. Usando como Ansarz ¥ = W(r), A; = ¢(r), as

equagdes de movimento para esses campos Sao

A\ (d-2) r/_2lP(r)2¢(r)_
olry+ D gy - 2R o 68)
A0 d-2] 0P me()
¥ +[f(r)+ ; ]‘””” G R (©9)

Na resolucdo do sistema de equagdes acima, € possivel aplicar um método semianalitico
para estudar as propriedades das solucdes sem precisar apelar para métodos numéricos. O
método consiste em procurar por solugdes aproximadas tanto na regiao proxima do horizonte de
eventos quanto na regido assintdtica proximo do horizonte AdS e colar suavemente as solugdes
em um ponto intermedidrio. Em particular no trabalho [12], foi obtida uma expressdo semia-
nalitica para a temperatura critica usando tal técnica e o resultado corrobora com os resultados

numéricos. Na proxima se¢do vamos utilizar a mesma técnica para o presente caso.

6.4 Solucoes semianaliticas

Primeiramente reescrevemos as equagdes (6.8) e (6.9) em termos da coordenada z = r /r:

/ o 2 2 2
I I EE
(d—4) , r229?

¢ ———0' 5 —0=0 , (6.11)
< <
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onde a diferenciagdo € tomada em relacdo a z. Impondo regularidade no horizonte z = 1 obtemos
——¥(1), ®(1)=0 . (6.12)
Na regidao préoxima da borda AdS (z = 0) temos

W= 4O, = 6.13)
"+
No que segue, tomaremos C_ = 0 e fixaremos p.

Expandindo as equagdes (6.10) e (6.11) em torno de z = 1 usando a condi¢do de regularidade
no horizonte de eventos (6.12), obtemos a seguinte solu¢do aproximada nas vizinhangas do

horizonte de eventos

m*L? m*L?
1 m?*L?  2(d—1)o] m*L? L, )
+ 4_‘_{|:2 d_l_ 12 :|d_1_(d—1)273_¢(1) }W(l)(l_z) I
(6.14)
/ 1 217 2| o 2
0(2) = -0'(&)(1 —2)+ 5 {(d—4)—d_1‘11(1) }¢(1)(1—Z) SO (6.15)
As solugdes proximas da borda AdS sao
y=Cd, y=pe Pt (6.16)
T+

Colando as solucdes (6.14) (6.15) e (6.16) em um ponto intermediario z,, com 0 < z,, <0

obtemos as equagdes

Moo (g
G ( Tam1)4 A
1 212 2(d-1 212 L4
4+ - 2 m B (d )OC m _ bz (I—Z)za :
4 d—1 12 d—1 (d-1)%2%
(6.17)
272
Ao — m-L
7\'+C+Zm+l - _d—l
1 21?2 2(d—1 21? L4
_ Ly mit 2d - Do LT P24 (1-2)a
2 d—1 12 d—1 (d—-1)%%

(6.18)
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P a3 1 o 217 2 )2
Mo st (1 —2m)b {(d 4)— | (1=2)% (6.19)
(g P d-a_ o2 L)

(d S)ri_3zm = b+{(d 4) d_la}(l Zm)b (6.20)

onde definimos ¥(1) =a e —¢/(1) = b com a,b > 0, 0 que faz com que ¥(z) e 0(z) sejam
positivos nas vizinhancgas do horizonte de eventos. Usando as equacdes (6.17) e (6.18), podemos

eliminar b e encontrar

_ 271201 _
C, - 2(d—1)4+m"L=(1 —z,) 0 6.21)

(d— 1) Rzm+ (1 — zm)Asy] 2
Subtituindo (6.21) em (6.18), obtemos

b = 2(d—1)2—+2><

[2(d — 1) +m2L2(1 — z,y)] Ay (2 — zpm)m2L2 m2L?2 1% mla
2(d lZ )] -

(0 —z0) Ran+ (1 —zmhy] | 2d—D(1—z0) ' [2d-D))| ~ 2
(6.22)
Da mesma forma, usando as equacdes (6.19) e (6.20) encontramos
—1)(d —3)z%4 144 —d)(1—2z,)]r1 3
612 — (d )(d 3)5”13 p 1 — [ +( )( dZ4 )] ry (623)
2(1 —zw)L2r7b (d—3)zm 'p

Usando a expressao da temperatura Hawking do buraco negro (6.6), podemos reescrever a ex-

pressdo acima como

d=D)[1+@—d)(1—2z,)] (T.\? 7\ 42
@ = 21—z, (?) ll—(fj : (6.24)

onde a temperatura critica 7. é dada por

_d—1 (d—3)z4*L*p }
C_4nL2{[1+(4—d)(1—zm)]E ’ 6.25)

sendo b = br /L?.
Seguindo o diciondrio AdS/CFT [12], a expressdo para o valor esperado (O), sendo O um
operador da teoria de campos definida na borda AdS, é dada por (O) = LC r?‘p‘L’zM. Usando

(6.19) e (6.24), podemos reescrever esta expressao como

L d—2 d-27Y 77
(o) T { (Z) [1 _ (Z) ] } , (6.26)
T. I. | \T T.
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sendo Y uma funcdo que depende essencialmente da dimensao d e do valor de z,.

Uma observagdo interessante tirada das relacoes (6.23) e (6.25) é que se tomarmos z,,; =
(d —5)/d — 4 a temperatura critica diverge. Além disso, se usarmos o valor z,, = 1/2 no caso
d = 6 o método aqui empregado nao funciona mais, diferentemente o que foi calculado em [12]
para d = 5. Desta forma, concluimos que a escolha de z,, ndo € totalmente arbitrdria. Para
obtermos uma temperatura critica que nao diverge devemos escolher z,, no intervalo 2, < z, <
1. Com isso, os resultado da temperatura critica obtidos através da expressao (6.25) corroboram
perfeitamente com os resultados numéricos apresentados em [46] para T ~ T..

Nas figuras (6.1) e (6.2) apresentamos como ilustragdo a formacdo do condensado (O;)
quando T < T, para vérios valores de massa do campo escalar. As curvas foram obtidas nume-

ricamente em [46].

6 ]
50
41
l_ L
<O, >4 3L
TC :
2
I d=5,2=0.0001
() : Il 1 L 1 Il Il 1 i I I 1
02 0.4 0.6 08 10
T
T.

Figura 6.1: Condensado em funcdo da temperatura com o = 0.0001 para vérios valores de
massa do campo escalar em d = 5. As quatro linhas de cima para baixo correspondem ao

valores de massa m?L? = —4, —3, —2¢e —1 respectivamente.
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Figura 6.2: Condensado em fungdo da temperatura com o = (.2 para varios valores de massa

do campo escalar em d = 5. As quatro linhas de cima para baixo correspondem ao valores de

massa m2L2 = —4, -3, —2e —1 respectivamente.



Capitulo 7

Comentarios Finais

O trabalho desenvolvido nesta tese teve como objetivo principal explorar as aplicacdes da
teoria de perturbacdes da Relatividade Geral no contexto da correspondéncia calibre/gtavitagao.
Em particular, abordamos a questdo das frequéncias quasinormais de um campo escalar sem
massa na geometria das p-branas negras e algumas propriedades do sistema formado por um
campo escalar carregado nas vizinhancas do buraco negro de Gauss-Bonnet AdS com o objetivo
de estudar estados supercondutores da teoria de campos definida na borda AdS.

Descrevemos em detalhes a derivagdo da solucdes tipo p-brana negra e extrema e obtemos
uma expressao para o escalar de Kretschmann para qualquer dimensao p e, portanto, foi possivel
localizar as singularidades fisicas desses espacos-tempos. Usamos a definicdo de superficies de
redshift infinito que somado ao comportamento da métrica para certos valores da coordenada
radial nos possibilitou encontrar os horizontes de eventos das p-branas. Desta forma, estabele-
cemos que as p-branas podem ser tratadas como buracos negros esféricos em 10 dimensoes.

Analisamos a evolu¢do de um campo escalar sem massa na geometria das p-branas. Ob-
temos explicitamente as equacdes que regem a dindmica desse campo e mostramos que este
adquire um termo massivo devido a separagdo entre as varidveis da brana e as do bulk. Cal-
culamos as frequéncias quasinormais utilizando o método semianalitico WKB e a integracdo
caracteristica. No caso da p-brana negra com o termo massivo do campo escalar zero, os dois

métodos concordam muito bem, indicando que os resultados sdo confidveis mostrando que nao
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ha instabilidades provocadas pelo campo escalar. Em relagdo ao caso extremo, ndo temos mais
um horizonte de eventos mas sim uma singularidade nua. Deste modo fica impossibilitada a
aplicacdo da interacdo no dominio temporal ja que o problema de Cauchy nessas circunstincias
nao é bem definido. Com isso, aplicamos apenas o método WKB para calcular as frequéncias
quasinormais das p-branas extremas para p < 5, jd que para p =5 e p = 6 o potencial efe-
tivo diverge na regido proxima do horizonte de eventos. Neste caso, também ndo encontramos
nenhuma instabilidade.

Quando levamos em conta o termo massivo do campo escalar, a cauda massiva da perturbacao
domina a propagacao ja na fase quasinormal, impossibilitando o calculo das frequéncias através
da integracdo caracteristica. Entretanto para valores pequenos do termo massivo os dois métodos
concordam plenamente. A regido onde os métodos dicordam corresponde a 3 =~ 1, como pode
ser observado na discussao realizada no capitulo 5.

O outro ponto abordado nessa tese foi o do supercondutor holografico modelado usando
como bulk o espaco-tempo defindo pelo buraco negro de Gauss-Bonnet AdS d-dimensional.
Apresentamos o cdlculo semianalitico para a obtencdo da expressdo do valor esperado de um
operador primdrio da teoria de campos definida na borda em termos da temperatura Hawking do
buraco negro de Gauss-Bonnet AdS e da temperatura critica. Tal expressao corrobora com 0s
resultados obtidos numericamente para valores de temperatura muito préximos da temperatura
critica [46].

Uma possivel extensao do trabalho aqui desenvolvido é a de considerar a evolucao de outros
campos, tais como o campo eletromagnético e espinorial com o objetivo de testar a estabilidade
desses espacos-tempos através desses campos de teste. Além disso, aplicar o formalismo inva-
riante de calibre de Kodama [55] para obter as perturbagdes gravitacionais das p-branas negras
e, se possivel, estudar suas frequéncias quasinormais hidrodinamicas.

A questdo da obtengdo dos modos quasinormais levando-se em conta a retroacao devido a
correcdes semicldssicas nas vizinhangas de horizontes de eventos foi também estudada em [56],
mas nao foi incluida no corpo da tese. Como extensao do trabalho nesse linha, podemos consi-

derar outros espacos-tempos em que se tenha acesso a uma expressao aproximada para o tensor
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energia-momento semicldssico e calcular o efeito dessas corre¢cdes no espectro quasinormal.



Apéndice A
Formula WKB de sexta ordem

Neste apéndice apresentamos o c6digo escrito para o software MATHEMATICA, que faz

uso da formula WKB de sexta ordem obtida por Konoplya [29] para calcular as frequéncias

quasinormais.
Declaracdo dos parametros
a,b,p,L, B
P=Pp;
a=a;
b=b;
L=L;
B=0.0;
o = —% - g%ﬁ%;
0 = % - g:—ﬁ%;

Declaragdo de algumas fungdes uteis
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l_b7—p al
G=—,
="
_ [V
H= (1 _g;__;) 29
_A.
h=4;
8— —p)A
g=EDA L LDIA,A+ LA D(B,r - A,D[G,r + SLADIH, ;

V="&n » &’

r 2 BAH 4

V = SetPrecision Simplify[ B— £D[y,r] + 2LLT-R) _hpyy, {r,z}]] ,50];

Cilculo das derivadas do potencial V (r)

V1 = SetPrecision -Simplify h7D[V r]] ]

V2 = SetPrecision | Simplify [hD[V1, l 1,50];
V3 = SetPrecision :Simplify hiD[VZ,r] ,50: ;
V4 = SetPrecision |Simplify [ D[V3, 7] ,50] ;
V5 = SetPrecision :Simplify :h%D[V4,r]: ,50: ;
V6 = SetPrecision :Simplify :h%D[vs,r]: 50|
V7 = SetPrecision |Simplify [ D[V6, 1| ,50] ;
V8 = SetPrecision | Simplify WD[v7,1] 50| :
V9 = SetPrecision :Simplify WD[VS, 1] ,50: ;
V10 = SetPrecision [Slmphfy[ 7D[V9 r]] ]

V11 = SetPrecision [Slmphfy [h D[VlO,r]] ,50] :
V12 = SetPrecision [Slmphfy [h%D[Vll,r]] ,50] ;

Calculo de 74

F = SetPrecision[x/.FindRoot[V1 == 0, {x,a+0.4,a+ 1.5}],50]

Férmula para calcular ®
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b=1/24Vir=rma

v=2;

N[Sqrt[V+3 x (V3) % (> +3) — 585 x (7+60 x b?) x (33) {2}

—ix Sqrt[—2x V2] x b

(1-

573 (g5 X ((F3) M{4}) x (77+188 x b?) —
ﬁx(%‘ﬁ%}ﬁ)x(suloom%wt

s % () M2}) x (67+68 x b?) + 5k X (Z‘%%%) x (1928 x b?) —
5z X (V9) X (5+4xb?))) +

iXv/—2xV2x
1
(597196800\/§(V2)7\/—V2

(i (2536975(V3)® — 9886275(V2)(V3)*(V4) +5319720(V2)2(V3)3(V5)—
225V2%V3? (—40261V4> + 9688V2V6) +

3240V23V3(—1889V4VS5 +220V2V7)—

729V23 (1425V43 — 1400V2V4V6 + 8V2 (—123V5% +25V2V8)))) +

B AV

(i (348425V3° — 1199925V2V3*V4 + 572760V2*V33V5—

45V22V3? (—20671V4? +4552V2V6) + 1080V2>V3(—489V4V5 + 52V2V7)—
27V23 (2845V4? — 2360V2V4V6 + 56V2 (—31V5% + 5V2V8)) ) b?) +
SOV

(i (192925V3° — 581625V2V3*V4 +234360V22V33V5—

45V22V3? (—8315V4? + 1448V2V6) + 1080V23V3(—161V4V5 + 12V2V7)—
27V2? (625V4® — 440V2V4V6 + 8V2 (—63V5> +5V2V8))) b%)) —

i X/—2V2x

1
(7166361600V2“s
((1+2v) (15552V10V27 (15+16v+ 18v2 +4v3 +2v4) —
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720V22V33V5 (504060 + 1171942V + 1640011v2 + 936138V + 468069v*) —
175V3® (916705 + 2411163V + 3552504v% + 22826823 + 1141341v*) +
300V2V36V4 (2493131 + 6188289v + 89095322 + 5442486v>+
2721243v*) —4320V23V33
(8V2V7 (1306 +2535v +3270v2 + 1470v3 + 735v*) —
5V4VS5 (35282 + 75366V + 102603v? + 54474v +27237v*) ) +
90V22V3* (8V2V6 (194828 + 416530V + 560485v2 + 287910v> + 143955v*) —
25V4? (459337 + 1060403V + 1485968v2 + 851130v> + 425565v*) ) —
27V2* (—80V2V42V6 (11220 + 16342v + 19471v2 + 6258v3 + 3129v*) +
25V4* (30885 +49927v + 60616v2 + 21378v> + 10689v*) +
32V22 (36V5V7 (199 +288v + 354v2 + 132v3 + 66v*) +
V62 (3495 +4538v + 5324v2 + 1572v3 + 786v*) ) +
576V2V4 (15V2V8 (15+ 19v +22v2 + 6v3 + 3v4) —
V52 (2196 + 3647V + 4676v> + 20583 + 1029v*) ) ) —
432V2*V3 (—240V2V4V7 (366 + 611V + 758v2 + 2943 + 147v*) +
25V4>V5 (24692 + 46362V + 60621v2 + 28518v> + 14259v*) +
4V2 (5V2V9 (255 + 368v +434v> + 132v> + 66v*) —
V5V6 (30107 + 51174v + 64992v% + 27636v> + 13818v*)) ) +
540V23V32 (—24V2V4V6 (15498 + 29590V + 38515v% + 17850v> + 8925v#) +
25V4? (31015 + 64549v + 87124v2 + 45150v3 +22575v*) +
8V2 (2V2V8 (1325+2263v +2794v> +1062v> + 531v*) —

V52 (28643 + 55916V + 742282 +36624v> + 18312v4) ) )))) —
i X /=2V2x
(— (i (—171460800V12V2° + 1714608000V 11V28V3 — 10268596800V 10V27V32+
970010662775V310 + 3772137600V10V28V4 — 6262634175525V2V38V4+
13782983196150V22V36V4? — 11954148125850V2>V3*v43+
3449170577475V24V32V4* — 144528059025V2°V4> +
3352602187200V2>V37V5 — 12300730092000V2*V3°V4V5+
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11994129604800V2*V33V42V5 — 2624788605600V2°V3V43V5+
2580769643760V24V34V52 — 3453909784416V2°V32V4V52 4+
438440697072V25V42V52 4 260524397952V26V3V53 —
1475306441280V23V3%V6 4 4329682610400V24V34V4V6—
2865128172480V23V32V42V6 +233443879200V2V43V6—
1660199804928V2°V33V5V6 4 1281705296256V25V3V4V5V6—
87403857408V27V52V6 +231105873600V26V32V62 —
68412859200V27V4V6? 4 552968700480V24 V3 V7—
1231789749120V2°V33V4V7 4 470726303040V26V3V42V 7+
413953400448V26V32V5V7 — 126242178048V27V4V5V7—
91489305600V27V3V6V7 +5619715200V28 V72—
175752294480V23V3*V8 4+ 271759652640V2V32V4V8 —
39736040400V27V42V8 — 73378363968V2'V3V5V8+
9773265600V28V6V8 +47107126080V26V33Vv9—
43345290240V27V3V4V9 + 7400248128V28V5V9)) /
(202263389798400v2(v2) 2/ =V2) +
— (i (—4551552V12V2° + 60279552V11V28V3 — 425036160V10V2' V3> +
73727194625V310 4 116743680V10V28V4 — 443649208275V2V38V4+
901144103850V22V36V42 —711096726150V23V3*v43 +
182164306725V24V32V4* — 6289615575V2 V4 +
222467624400V22V37V5 — 746418445200V23V3°V4V5+
653423900400V24V33V42V5 — 124319674800V2°V3V43V5+
143980943040V2*V34V52 — 169712521920V23V32V4V52 4+
18188188416V26V42V52 + 11240861184V26V3V53 —
91198200240V23V3V6 +241513732080V24V34V4V6—
140030897040V23V32V42V6 4 9200103120V26V43V6—
84218693760V2°V33V5V6 + 55248386688V26V3V4V5V6—
3173043456V27V52V6 4 10464952896V26V32V6? —
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2403421632V27VAV6? +31637744640V24V37V7—
62649953280V23V33V4V7 + 20409822720V25V3V42V7+
18860532480V2°V32V5V7 — 4693344768V2'V4V5V7—
3625731072V27V3V6V7 + 188054784V28 V72 — 9155635200V23V34V8+
12238024320V25V32V4V8 — 1405278720V27V42V8—
2866700160V27V3V5V8 +303295104V28V6V8 +2210705280V26V33Vo—
1685525760V27V3VAV9 + 235488384V25V5V9) (v -+ 4)*) /
(687970713600\/§(V2)12\/—_\L’2) n
— (i (—66528V12V2° + 1245888V11V28V3 — 11158560V10V27V32+
4668804525V310 +2116800V10V28V4 — 25898331375V2V38V4a+
47959232650V22V3%V42 — 33861927750V23V34va3+
7454763225V24V32V4* — 184988475V2° V4’ 4 11891917800V22V37V5—
36105463800V23V33V4V5 +27953667000V24V33V42V5—
4457716200V2°V3V43V5 + 6285855240V24V34V52 —
6471756144V25V32V4V52 4 565259688V26V4>V52+
380939328V2°V3V53 —4375251160V23V30V6+
10317018600V24V34V4V6 — 5113813320V2°V32V42V6+
238888440V26V43V6 — 3203871552V23V33V5V6+
1758685824V25V3V4V5V6 — 88566912V2V52V6+
335466432V2°6V32V6? — 55073088V27V4V6? 4 1351294560V24 V3 V7—
2341442880V2°V33V4V7 4 626542560V20V3V42V7+
619520832V2°V32V5V7 — 123524352V27V4V5VT—
96574464V27V3V6V7 +4048704V28V72 — 341160120V23V3+4V8+
386210160V2°V32V4V8 —30837240V27V42V8 — 78073632V2'V3V5V8+
5848416V23V6V8 +70415520V25V33V9 — 43424640V27V3V4V9+
5255712v28V5v9) (v-+4)*) / (20065812480v2(v2) 2V=V2) +
— (i (=72576V12V2° + 1886976V11V28V3 — 22135680V10V27V32+
27463538375V310 +2903040V10V28V4 — 141448688325V2V33va+



240655765350V22V3°V4? — 152907158250V23V34V43 +
28724479875V24V32V4* — 413669025V23V4’ 4+ 59058073200V22V37V5—
164264209200V23V33V4VS5 + 113654696400V24V33V42V5—
15166342800V2°V3V43V5 +26061194880V24V3*v52 —
23876233920V2°V32V4V52 + 1767189312V26V42V52 4
1292433408V25V3V53 — 18902165520V23V3°V6+
40256773200V24V3*V4V6 — 17116974000V23V32V42V6+
483582960V26V43V6 — 11384150400V23V33V5V6+
5285056896V26V3V4V5V6 — 246903552V2V52V6+
992779200V2°V32V6? — 101860416V27V4AV6? 4+ 4966859520V24V3°V7—
7661606400V2°V33V4V7 4 1683037440V26V3V42V 7+
1861574400V26V32V5V7 — 316141056V2’V4V5V7—
235146240V27V3V6V7 + 8895744V28V72 — 1042372800V2°V34V8+
1016789760V28V32V4V8 — 52436160V2’ V42V8—
189060480V27V3V5V8 +9217152V28V6V8 + 175190400V26V33V9—
87816960V27V3V4V9 + 10378368V28V5V9) (V+ 1) 6) /

(300987187200\/§(V2)12\/—_VZ))]]
{0.705511 — 0.732056i}
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