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ABSTRACT 

We formulate string field theory geometrically by writing each term in the 

field theory action as an expectation value in the 2-dimensional conformal field 

theory on the world-surface. We show how the symmetries of the theory can 

be analyzed and the gauge-invariance demonstrated from this point of view. As 

an application, we give a complete proof of the gauge-invariance of Witten’s 

open-string field theory. 
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1. Introduction 

The current interest in string theory as a unified model of the fundamental 

interactions has created a renewed interest in the foundations of string theory and 

the formulation of a field-theoretic basis for string mechanics. The original work 

on the quantum mechanics of strings, especially the papers of Goddard, Gold- 

stone, Rebbi, and Thorn,[‘l Mandelstam,[21 and Kaku and Kikkawapl presented 

a complete description of interacting strings and string fields from the viewpoint 

of the light-cone gauge. More recently, Green and Schwarz 14’ have improved this 

light-cone gauge field theory and generalized it to encompass their superstring 

theory. Siegel PI presented a covariant formulation of the field theory of strings, 

and this development led to an explosion of results on gauge-invariant string field 

actions. At this time, there are two complete and successful formulations of the 

open bosonic string theory: The first of these, which generalizes the light-cone 

formulation, has been developed by Siegel,l” and Hata, Itoh, Kugo, Kunitomo, 

and Ogawa!6’71 The last of these groups, in particular, has constructed the theory 

in complete detail and has carefully studied its consistency. The second formu- 

lation, based on a suggestion of differential geometry in the space of strings, was 

invented by Witten 181 and has been amplified and made more concrete by sev- 

eral groups!Q-341 Some parts of these formalisms have been generalized to closed , 

bosonic strings 135-441 and to superstrings!45-541 

Despite this progress, however, the current formulations of string field the- 

ory are unsatisfactory for a number of reasons. The most obvious of these is 

that, while the quadratic term of the string action simplifies beautifully by the 

introduction of ghost variables on the world surface, the interaction terms are 

exceedingly complicated. In all known formulations of string field theory, it is 

a matter of great difficulty to even to verify gauge-invariance explicitly; it costs 

still more trouble to develop the rules of Feynman diagram perturbation theory. 

If string field theory is eventually to be a tool which can aid us in understanding 

string dynamics, we must find some way to simplify its internal structure so that 
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it can become the basis for new computations rather than just a complicated way 

of obtaining known results. Giddings and Martinet 1211 have made an important 

step in this direction, by formulating a set of rules which intuitively correspond to 

Witten’s open string field theory, and showing that these rules lead to the com- 

plete perturbation series. The problem remaining is to complete their formalism 

by deriving their intuitive starting point from a Lagrangian. A second, equally 

pressing problem, is that many different formulations of the interacting theory 

have been proposed~890~65-SQ1 and it is not at all clear what transformations one 

can use to convert one of these formulations into another. 

In sharp contrast to this awkward situation, the perturbation series for string 

interactions follows straightforwardly from considerations of conformally invari- 

ant quantum field theory on the world surface of the string. It seems quite clear 

that this conformal field theory is the natural setting for the calculation of string 

interactions16” In addition, the underlying structure of conformal field theory, 

as laid out by Belavin, Polyakov, and Zamolodchikov 1”’ (BPZ), is beautifully 

simple. We were led to apply this technology to reformulate string field theory, 

with the idea of representing each term in the string field theory action as a 

conformal field theory expectation value; In fact, this reformulation is readily 

accomplished, and what results is a setting for string field theory which is already 

highly geometrical and whose symmetries of transmutation are quite obviously 

displayed. In this series of papers, we will present this new formulation of string 

field theory from start to finish for the case of the bosonic open string. We will 

set up the action, prove its gauge invariance, and derive the perturbation theory 

rules of Giddings and Martinet, making use of intuitive geometrical constructions 

but also supporting these with concrete analysis. 

The plan of the present paper is as follows: In Section 2, we will review the 

formalism presented by BPZ for transcribing between expectation values in 2- 

dimensional conformal field theory and Hilbert space matrix elements. We will 

give particular attention to the Hilbert space inner product introduced by BPZ, 

since this will play a central role in our analysis. In Section 3, we will review in a 
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very schematic form the basic structural elements of string field theory and the 

strategy for proving gauge invariance. In Section 4, we will begin our analysis 

proper, presenting the basic concepts necessary to write the string field theory 

Lagrangian in this language, and we will display a rather general form of the 

string field theory vertex in an expansion in normal modes. In Section 5, we 

will discuss the symmetries of the string field theory vertex and show how the 

conformal field theory formulation make8 these manifest. In Section 6, we will 

make these considerations more concrete by considering two explicit forms for 

the 3-string vertex- the dual model vertex of Sciuto and Caneschi, Schwimmer, 

and Veneziano [621 (CSV), and the 3-string vertex proposed by [81 Witten. We will 

devote considerable space in this series of papers to the CSV vertex, even though 

it will not prove completely satisfactory as a string field theory vertex, because 

this vertex is wonderfully simple and provides the most accessible illustration of 

the rules for analyzing and combining string vertices within our formalism. 

Our discussion of the CSV and Witten vertices will introduce the idea that a 

contraction of string field theory vertices may be interpreted as a gluing together 

of pieces of string world-sheet. As an intuitive notion, this idea has motivated 

much of the development of string field theory, from the original work of Man- 

delstam[21 to the more recent developments of Giddings and Martinet. [213 The 

analysis of this series of papers will be aimed toward defining this notion in a 

precise manner. In Section 7, we will present the first segment of this argument; 

we will demonstrate, by explicit calculation, that the gluing operation suggested 

by the analysis of Section 6 actually does result from explicit operator manip- 

ulations when two CSV vertices are contracted using the BPZ inner product. 

This calculation gives a special case of a more general result which applies to the 

gluing of string field theory vertices of arbitrary form. That ‘Generalized Gluing 

and Resmoothing Theorem’ (GGRT) is the basic result which justifies the use 

of geometric intuition in string field theory, by making precise the way in which 

a given vertex acts to sew together regions of the conformal plane. The proof 

of the theorem in its full generality, is, however, rather involved. We will end 
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Section 7 with a statement of the theorem and reserve the proof to the second 

paper of this series. 

In Section 8, we will return return to our study of the Witten open string 

action and apply the GGRT to give a simple but completely explicit proof of 

its gauge invariance. We will then argue that this vertex is the unique gauge- 

invariant, three-fold symmetric vertex, at least within the class of vertices built 

from contact interactions on the world-sheet. 

The second paper of this series [631 ( w lc h’ h we will refer to as II) will be devoted 

to proving the GGRT for the case of bosonic open and closed strings. The heart 

of the proof will be an explicit demonstration that the elements of the normal 

mode expansion of the vertex presented in Section 5 can be recombined into 

meromorphic functions which reflect directly the geometry of the glued surface. 

This will confirm the precise relation of the operator and geometric pictures of 

string field theory. The third paper of this series le4’ (which we will refer to as 

III) presents the application of this formalism to the derivation of the string 

perturbation series. Here we will show how our formalism provides a coherent 

underpinning for the results of Giddings and Martinet. 

The general idea of setting string interactions onto the conformal plane is, 

of course, an old one, and conformal manipulations played an important role in 

many of the early papers, including those of Ademollo, de1 Guidice, di Vecchia, 

and Fubini!“’ and Mandelstam,[21 as well as a remarkable paper of Lovelace Pw 

which we took up specifically as a source of inspiration. In the recent literature, 

Neveu and West1671 have emphasized the conformal relation of different string 

vertices. Various pieces of our explicit construction have been presented indepen- 

dently by a number of groups: In particular, Itoh, Ogawa and Suehiro 1191 and 

Eastaugh and McCarthy ‘14’ have also derived the explicit form for the Witten 

vertex presented here, and Di Vecchia et 1681 crl. have also found the generalized 

form of the CSV vertex which we will discuss. Gross and Jevicki”’ have given a 

different explicit proof of the gauge invariance of the Witten string field theory 
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action (at least up to the question of overall factors), and Thorn [“I has discussed 

many aspects of the derivation of perturbation theory. 

Our formalism subsumes and unifies these various results. Indeed, we view as 

our most important conclusion just this demonstration that the whole technology 

of string field theory can be discussed in a unified way using the language of 

conformal field theory. We hope that this language will prove useful in stimulating 

further developments in string field theory, and more generally in the study of 

strings. 

2. Conformal Field Theory 

We begin by reviewing the elements of conformal field theory needed for 

our analysis, using as an illustration the example of the bosonic string in a flat 

background space-time. In particular, we would like to review the formulation 

of this theory this theory within the general description of conformally-invariant 

quantum field theories given by Belavin, Polyakov, and Zamolodchikov (BPZ), 

and, especially, to recall the connections presented by BPZ between correlation 

functions of conformal tensors and the underlying Hilbert space structure. Our 

discussion of string theory within this formalism relies heavily on the work of 

Friedan, Martinet, and Shenker!“’ 

We will study the bosonic string in orthonormal gauge, and using a Euclidean 

metric on the world-sheet. After gauge-fixing, the action for modes propagating 

on the world-sheet has the form: 

(2.1) 

where X” is a the space-time coordinate and cE, b,, are the reparametrization 

ghost and antighost. The tensor structure of these parameters reflects the fact 

that cz must transform as a world-sheet reparametrization 6z = t”; b,, trans- 

forms as a metric variation 6g,*. 
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The action (2.1) is an example of a conformally-invariant quantum field the- 

ory. The action is invariant under general conformal transformations z + f(z), 

while the fundamental fields transform as conformal tensors. The transforma- 

tion law of a tensor (or, in the language of BPZ, a primary conformal field) is 

determined by its scaling dimension. We will write the transformation law of a 

primary field 4(z) of dimension d as 

- f [4(z)] = (rY4Y W(4 - P-2) 

The fields d&‘, c”, b,, transform as primary fields of dimension 1, -1, 2, respec- 

tively. 

The correlation functions of any Euclidean field theory may be generated 

from a Hamiltonian evolution by slicing the Euclidean space by planes normal 

to a given fixed vector and then defining the Hamiltonian to be the generator 

of translations along that vector. In a conformally-invariant field theory, one 

has the additional freedom of slicing the space by any set of curves conformally 

equivalent to parallel planes. A particularly convenient choice is shown in Fig. 

1: By mapping from a cylinder sliced by parallel lines, we can consider the 

conformally-invariant field theory on the plane to be generated by an evolution 

in which the equal-time surfaces are concentric circles. The Hamiltonian for this 

evolution is the dilatation generator Lo. This prescription is known as radial 

quantization. It is obvious from the figure that this evolution is closely related 

to the natural time evolution for (closed) strings. 

In radial quantization, charges are defined as integrals around circles: 

P-3) 

If, as is often the case, the charge density is an analytic function, the contour 

of integration may be freely deformed. Since the Hilbert space interpretation 

of a correlation function sets the operators in (radial) time-order, equal-time 
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commutators of charges with operators C+(W) may be written as differences of 

correlations functions with the contour displaced slightly to either side of the 

point w. In other words, 

where the contour encircles the point w. Equal-time commutators may then be 

related directly to singularities of the operator-product expansion of j(z) and 

d(w). A particularly important set of charges are the Virssoro operators, the 

Fourier components of the energy-momentum tensor element T,, 

L, = 
4 

dz 
2niz 

*+l T*,(z) . 

In any conformally-invariant theory, 2’ ZZ is an analytic function of z; in the 

bosonic string, it has the explicit form 

1 
T,,(z) = - --azz“Cad + 2&c=b,, + c”&b,, . 2 

The operator product of T,, with a primary field has the general structure 

this relation is equivalent, by the use of (2.4), to the commutator 

[L,&(W)] = d - nw*q+~) + wn+%d+) - 

(2.6) 

P-7) 

(24 

This is the infinitesimal form of (2.2), for the particular variation 

L, * w + w + ewn+l . (2-g) 

Notice that LO generates an infinitesimal dilatation; this operator is precisely the 

Hamiltonian of radial quantization introduced above. 
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It is convenient to define the Fourier decomposition of an arbitrary primary 

field by 

4(z) = 2 &Z-n-d ; 
n=-00 

4n = f 2 zn+d---l d(z) . (2.10) 

The notation is arranged so that (2.7) leads to 

[LOA] = -4, , (2.11) 

so that the & are ladder operators for LO. For the bosonic string, define (drop- 

ping henceforth the indices of b and c): 

b, = fi z”+‘b(z) 
f 27rr 

(2.12) 

f 

dz 
en = 

2niz 
+-2C(Z) . 

The action (2.1) leads to the free-field propagators 

(z~(z)s”(w)) = -Wlog(z - w) ; (2.13) 

((s(z)s(w)) represents only the part of the contraction which contributes to an- 

alytic, as opposed to anti-analytic, correlation functions.) Using (2.13) together 

with (2.4) and (2.12), we find the commutation relations 

[4xJ = -6%6(n + n) ; {Lc,} = S(n + m) . (2.14) 

Thus, the operators defined in (2.12) are the usual string ladder operators*. 

* A more conventional notation is a[ = ia:, 
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In radial quantization, the point z = 0 (or, more generally, the center of 

the concentric circles) represents t = -oo. In quantum field theory, one usually 

defines the vacuum as the state which develops from t = -oo; the generalization 

to radial quantization is to define the vacuum IO) to be the state which develops 

from the point z = 0 when we put no operator there. More concretely, 

, (2.15) 

with the contour enclosing no other operators. From this it follows that q& 

annihilates IO) if n 2 (1 - d). For the bosonic string, this tells us that 

a; lo) = 0 for n>O 

Cn IO) = 0 for n>2 
(2.16) 

b, IO) = 0 for n 2 -1 

.L IO) = 0 for n 2 -1. 

In string theory, the operator a: is proportional to the center-of-mass momentum 

of the string. We can see that our a: has that property, and identify the states 

of definite momentum, by using the contraction (2.13) to compute 

a: eiP*x(o) IO) = 
4 

2 d,sp(z) eip’x(o) IO) 

= (-ip’) eiP’x(o) I()) . 

(2.17) 

It will be useful to note that exp(ip . X(z)) is a primary conformal field with 

dimension d = p2/2; the reader may verify this by using the propagator (2.13) 

to check the operator product (2.7). 

Now that we have identified the vacuum on the right, we still need to identify 

the vacuum on the left and define a suitable inner product. It is natural to define 
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the left vacuum as the state which develops by evolving backward from t = 00, 

that is, from z = 00. Then, following BPZ, we can set up an inner product as 

follows: Let I(z) be the conformal transformation which interchanges the interior 

and exterior of the unit circle, while taking the upper half plane to itself: 

I(z) = -; . (2.18) 

Each state in the Hilbert space of the conformal field theory may be created from 

IO) by a corresponding operator 

I4 = OA lo) . (2.19) 

0.~ may or may not be a primary field. In any case, define the dual of the state 

IA) created by 0~ as the state created by the operator formed by acting on 0~ 

by the inversion R according to the conformal transformation law (2.2): 

bw = (+A] 0,) * 

It is straightforward to compute, by a change of variables 

I[&] = f 2 zn+d--l ’ ($)“q-;) 

(2.20) 

(2.21) 

= (-l)“+d& ; 

thus, the adjoint operation with respect to this inner product does carry & to 

q5-n, as expected. The inner product (2.21) is linear in both arguments, rather 

than antilinear in one and linear in the other, but, because the two-dimensional 

fields Xp’, b, and c are real, this will be not be a serious difficulty. However, our 

string component fields will be forced to obey a somewhat complicated reality 

condition, to be discussed in Section 4. Because b and c are Grassmann fields, 

whose ordering is crucial, it is important to note that a conformal transforma- 

tion such as I does not change the formal ordering of operators with respect to 

Grassmann multiplication. 
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Eq. (2.20) has the following physical interpretation: The states IA) and IB) 

may be thought of as superpositions of field configurations on the unit circle, with 

IB) defined just inside and IA) defined just outside. The inner product should 

overlap these states with a contact delta-function. The right-hand side of (2.20) 

indicates that we can use the evolution generated by LO to retract IB) and IA) 

to states created by operators acting in the vicinity of 0 and 00. Thus, a rigid 

constraint along a single line can be transformed into a more flexible expression 

involving dynamics on the whole conformal plane. That transformation is shown 

graphically in Fig. 2. This observation will be the key to our analysis of string 

field theory. 

The adjoint of the last relation in (2.16) tells us that 

(01 L = 0 forn<+l. (2.22) 

Thus, the three generators L-1, LO, L1 annihilate both of IO) and (01 and thus are 

symmetries of all conformal field theory matrix elements. These three charges, 

plus the corresponding charges built of anti-analytic fields, generate the SL(2, C) 

subgroup of conformal transformations 

az + b 
z+- 

cz+d’ 
ad-bc=l. (2.23) 

These transformations will be manifest symmetries of string field theory, in a 

sense that will become clear in Section 5. We will refer to IO) henceforth as the 

SL(2, C)- invariant vacuum. 

Since b has the same dimension as T,,, the operators b-1, bo, bl also anni- 

hilate both IO) and (01. On the other hand, the operators c-r, co, cl annihilate 

neither of these states. We may interpret this by saying that the three SL(2, C) 

transformations of the conformal plane are zero modes of the field c(z), and that 

these must be saturated in order to obtain a nonzero matrix element. If this 
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interpretation were correct, we would expect: 

(~(~1)~(~2)~(~3)> = det IZ(q)) , (2.24) 

where the Zi(z) are the three zero modes: &(z) = (l,z, z2) for i = -l,O, 1, and 
j= 1,2,3. Indeed, if we choose a normalization by writing 

(01 c-1COCl lo) = 1 (2.25) 

and use this together with the Fourier expansion (2.10) to evaluate (2.24), we 

find 

(++(~2)+3)) = 

1 1 1 

Zl z2 z3 , (2.26) 

as required. In general, conformal field theory matrix elements will be nonvan- 

ishing only if they contain 3 more c operators than b operators. If we define a 

ghost charge G such that c(z) raises G by 1, and b(z) lowers G by 1, then the 

conformal field theory matrix element annihilates G = 3. It will be convenient to 

define a left vacuum which has a nonzero overlap with the vacuum IO) and can 

give nonzero matrix elements to operators with G = 0. Let us, then, define 

(31 = (Olc-rcoci , so that (310) = 1 . (2.27) 

The ghost charge nonconservation which we have found explicitly here reflects 

a more general law which follows from the gravitational anomaly of the ghost 

number current: AG = -3(g - 1) for conformal field theory on a Riemann 

surface of genus g. We will see this more general conservation law realized in the 

analysis in Section 5 of III. 
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3. A Precis of (Open) String Field Theory 

Having now reviewed the basics of conformal field theory, we should turn next 

to the elements of string field theory. In this section, we will review the basic al- 

gebra of the field theory of open strings and the strategy for constructing a gauge 

invariant action first presented by PI Witten. These basic ingredients have since 

been applied by many groups; in particular, Hata, Itoh, Kugo, Kunitomo, and 

Ogawa16’ have shown in complete detail how a slight generalization of this alge- 

bra appears for their light-cone-like vertex and guarantees the gauge-invariance 

of their action. Our discussion in this section is intentionally schematic; it will 

be the task of the next several sections to make precise the various operations 

introduced here. 

A string field 0 is a functional of string embeddings X“(a). It has proven 

useful to consider Cp also as a functional of the configuration of reparametrization 

ghosts b(a), c(a). A convenient basis for expanding such functionals is provided 

by the LO eigenfunctions of the first-quantized string theory. Keeping the depen- 

dence on the center-of-mass coordinate x of the string in the coefficient functions, 

we may expand: 

~P[44A4441 = [4(x) + A,(+!tl + T,v(~)df,aV_~ + . . .] In) , (3.1) 

where IrZ) is a suitable vacuum state. The string field then contains an infinite 

number of local fields, including states of arbitrarily high spin. These local fields 

should be matrix-valued to incorporate quantum numbers via the Chan-Paton 

prescription. The vacuum In) should be chosen to be the string state of lowest 

LO. Since, as we saw in the previous section, the LO lowering operator cl does 

not annihilate IO), it makes sense to choose In) = cl IO). Then, if its component 

fields 4(x>, A,(x), t e c. are of bosonic character, the string field @ will be an 

anticommuting number. We will be somewhat cavalier about the commutativity 

or anticommutativity of string fields in the remainder of this section; however, 

we will take care to treat this issue correctly in our later discussion. 
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Let us now sketch the construction of an action for 9, of the form 

S = K +gv, (3.2) 

where K is the free-field action, quadratic in a, V is a 3-string interaction term, 

and g is the coupling constant. A suitable form for K can be constructed by 

making use of the BRST charge Q associated with the action (2.1): 

- 
Q-f gj, j =:c{ - $3zx’a,x~ + i3zc’bzz} . 

In the critical dimensionality, d = 26, Q satisfies 

Q2 = 0. 

Thus, if we write 

K = (@IQW , 

(3-3) 

(3.4) 

(3.5) 

this term will have the gauge-invariance 

6 I@) = Q IA) . (3.6) 

It has been checked with care that, if @  is restricted to states of ghost number 

G = l-that is, to the ghost number of the state In)-and A is correspondingly 

restricted to G = 0, this gauge symmetry is exactly what is required to eliminate 

all spurious degrees of freedom, and that the resulting gauge-fixed free-field action 

coincides with the standard string theory in the transverse gauge. If the gauge 

transformation law (3.6) is written in terms of local component fields, the first 

component relation is exactly the linearized gauge transformation law 6A, = 

a,& where X(x) is the leading scalar field in A. 
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We now wish to extend this structure to the interacting theory. Since this 

theory should contain non-Abel&i gauge bosons, the gauge variation of the vector 

field should be generalized to contain the inhomogeneous term 

64 = $,A + g[A,,X] . P-7) 

Thus, the transformation law (3.6) should be generalized to include an inhomo- 

geneous term 

60 = Q@ + g[@,A]. (34 

where 

[@,A] = @*A - A*@, (3-g) 

and * is a suitable product on the space of single-string states. * can be repre- 

sented as an operation joining the Fock spaces of two strings to that of a third 

IA * B), = 05t231 I42 QD IN3 ; (3.10) 

the indices 1,2,3 refer to the three Hilbert spaces. It is instructive to think of 

the coefficients (Vlt2,1 as the structure constants of the string gauge algebra. 

The requirement that the string gauge algebra close, 

produces some non-trivial conditions on IVlt23). In Yang-Mills theory, closure of 

the gauge algebra depends on two properties: the Leibnitz rule for differentiation 

d,[X, i;] = p/J, i] + [A&&i] (3.12) 

and the Jacobi identity 

[[A,,, x], i] + (cyclic) = 0 . (3.13) 

These requirements generalize straightforwardly to the string algebra. The gen- 
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eralization of (3.12) will be satisfied if Q is a derivation of the * algebra 

Q(A*B) = (QA)*B + A*(QB). (3.14) 

Since the Jacobi identity is satisfied for any associative multiplication operation, 

such as matrix multiplication in the case of Yang-Mills theory, the string gener- 

alization of (3.13) will be satisfied if the * algebra is associative 

(Ad) *C = A*(B*C) . (3.15) 

These requirements are easily translated into conditions on (Vl+231. Let (Vl231 

be the operator obtained from (Vl+231 by taking the adjoint of the states in the 

Hilbert space 1. Then the derivation property is equivalent to the condition 

(VI231 (Ql + Q2 + Q3) = o . (3.16) 

The associative property requires that (Vl231 be cyclically symmetric, and also 

that the 4-point vertex obtained by contracting two of these objects be cyclically 

symmetric: 

(vl231 = (b311 = (v3121 . (3.17) 

(v125i (V5t3rll = (v2351 (&,tqll = **- (3.18) 

It is straightforward to check (ignoring Grassmann minus signs) that the 

conditions (3.16), (3.17), and (3.18) provide exactly the information required to 

guarantee the gauge invariance of the action 

s = (@IQ I@) + $I (vl231 I@), @ I@)2 @ lap>3 - (3.19) 

The derivation property and the three-fold cyclicity suffice to prove gauge invari- 

ance to order g. We will see in the next section that these properties are trivial 
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to insure in a large class of string field theory vertices, including vertices which 

are nonlocal on the world sheet. Thus, the demonstration that a string field 

theory action is gauge-invariant to order g should not be taken to be a stringent 

test of its validity. On the other hand, the order g2 terms in the proof of gauge 

invariance require the condition of four-fold cyclicity, and this condition is quite 

nontrivial. We will argue in Section 8 that this criterion is satisfied only for 

Witten’s specific choice of the vertex and a class of its generalizations. (Other 

choices for the vertex require more complicated string actions, involving four- 

and possibly higher-string interactions.) The condition of four-fold cyclicity is 

actually closely related to the duality of string scattering amplitudes, in a sense 

that we will make clear in Sections 3 and 4 of III. 
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4. Construction of String Field Actions 

Now that we have described the operations needed to construct a gauge- 

invariant string field theory, let us try to define these operations precisely. Our 

strategy will be to represent string fields in terms of operators in conformal field 

theory, and then define operations on string fields as conformal field theory matrix 

elements of those operators. 

Let us first set up -a precise prescription for the decomposition of a string 

field into local component fields. Off mass shell, this decomposition is a matter 

of convention and can be altered freely by conformal transformations. Still, it will 

eliminate considerable confusion, especially in our discussion of the symmetries 

of string field theory, to define a canonical decomposition once and for all. Let 

us, then, consider the LO eigenstates of a first-quantized string theory to be 

represented as boundary conditions on the unit circle of a conformal plane, with 

each state evolving from a given collection of operators applied inside the unit 

circle. For the closed string, this procedure is conceptually straightforward: A 

given state may be represented as 

(A) = . . . c-kc-.&-paf,iiY_ne ip-J’x(o) lo) E OA lo) , 

where a-,, b-,, c+ are defined in (2.12) and ii-,,, i-,, Z-,, are the correspond- 

ing quantities built from anti-analytic fields. To discuss open strings, we should 

properly construct conformal field theory on the upper half plane with Neumann 

boundary conditions; however, we will use the shorthand of considering conformal 

field theory on the full plane, but using the analytic sector only. This prescription 

leads to the same algebra of ladder operators; after we cancel one awkward phase 

in the correlation function of exp(ip . X) operators (noted explicitly below), it 

gives the correct result for all string amplitudes. Most of our explicit analysis 

will be done for the analytic sector alone. These results will apply equally well 

to open and closed strings. Using one of these canonical decompositions, then, 
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we can write (3.1) in the form 

@ = x&IA) = ~hO~l0) . (4.2) 
A A 

The label A represents both the ghost and matter oscillator excitations in a given 

string state and the center-of-mass momentum pi. Note that here, in contrast 

to (3.1), we consider our reference vacuum to be the SL(2, C)-invariant vacuum. 

Then the component fields of the classical string field theory (including those 

fields written explicitly in (3.1)) multiply operators of ghost number G = 1. It 

will be useful to give a name to the sum of operators appearing in (4.2): 

(4.3) 

We can now define operations on the string field Cp by mapping the unit circle 

described in the previous paragraph into the conformal plane and computing the 

joint expectation value with other fields. This operation is shown in Fig. 3. For 

open strings, in which the real axis of the original circle represents the boundary 

of the string and thus plays a preferred role, a conformal mapping of the circle 

into the plane is uniquely specified in terms of the image of the boundary of the 

unit circle, the image of the point z = 0, and the orientation of the image of the 

real axis. For closed strings, the real axis is no longer preferred, but one normally 

considers only states which are rotationally invariant in the unit circle. 

It is simplest to begin by constructing the 3-string interaction. This can be 

done by the following simple prescription: map 3 string states into the plane by 

three arbtrarily chosen conformal mappings hi(z), &(z), /Q(Z), analytic for z 

inside the unit circle, by defining 

V(AJ%C) = (h231 IA), @ I@2 @ Ic)3 

= (+A] hZ[OB] h3[4) - 

The action of the conformal mappings on the string operators can be recon- 

structed from (2.2); we will make this transformation explicitly in a moment. 
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For our general geometrical arguments, we must require that the h;(z) are an- 

alytic and invertible for Izl < 1. The condition of gauge-invariance will impose 

stronger restrictions, which we will set out in Sections 5 and 8. 

Notice that the ghost counting in the vertex works out precisely right: each 

string operator has ghost number G = 1, and the conformal field theory matrix 

element annihilates ghost number G = 3. This counting makes it slightly prob- 

lematical to construct a kinetic energy term, since we apparently must include 

together with the two string fields an additional operator with G = 1. But we 

have a natural candidate for this operator; define 

K&B) = (K121 IA), @ IBj2 

= (+i] QOB) . 
(4.5) 

where I is the inversion (2.18) and Q is the BRST charge. Assembling the pieces, 

we propose the following form for the open string field theory action: 

S = (I[“] Q&) + ;g(h[+z[“]h+]) . (4.6) 

To check the validity of (4.6), we must verify that the kinetic energy term has 

the correct form (3.5) and that the three string product satisfies the identities 

listed in the previous section. To do this, it will be helpful to recast each term 

of S in terms of more explicit operations on string states. Let us first discuss 

the kinetic energy term. Before discussing this expression using the full Q, let 

us evaluate this term with Q replaced by Qc = cc&. When we quantize the 

string theory in Section 2 of III and derive the perturbation theory, this will be 

the gauge-tied form of the kinetic energy term. Denote the simplified form of 

K(A,B) as Ko(A,B). 

Our first step is to evaluate Ko(A, B) for A and B tachyon states of the form: 

I4 = ~leiPA’x(o) 10) . (4.7) 

This entails a few subtleties. Before acting I on the operators in (4.7), we should 
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move them slightly away from z = 0. Put the exponential, then, at z = c, with 

the limit c + 0 to be taken after the matrix element is evaluated. With this 

prescription: 

Ko(A,B) = ([ I cleiPA’x(‘) 
1 

coLo cleiPB*x(c) 

co($ - 
1) cle 

iPB*x(e) (4.8) 

1 (~-l~o~l) . (!ipi - 1) . ($)tP:eP**F’i3 l”g((-l/c)--f) . 

To finish this calculation, we must introduce two additional rules: First, it is 

well known that matrix elements of exponentials of free fields in 2 dimensions are 

forced to 0 by infrared factors unless the coefficients in the exponentials sum to 

zero. Let us implement that requirement by associating with every conformal field 

theory matrix element of exponentials a momentum-conserving delta function: 

Imposing momentum conservation on (4.8) causes the factors of (l/c) to cancel; 

then we can smoothly take the limit c + 0. Note that this cancellation does 

not require the tachyon states to be on shell. The second prescription corrects 

for our shorthand treatment of the open string in terms of analytic fields: We 

must replace log(z - w) by log Iz - WI in the matrix elements of exponentials. 

Evaluating (4.8) with these rules, we find 

Ko(A, B) = (a& - 1) - (~R)~~(Ju + PB) ; (4.10) 

this is exactly the desired form for the tachyon kinetic energy term. 

From this point, it is straightforward to evaluate Kc for all other string states. 

Any other string state may be written as a string of Lo-raising ladder operators 
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applied to a tachyon state 

IA) = [. . . b--mc-~c-pa--ma-n.. .] cleiPA’x(o) IO) . (4.11) 

Let us define a phase ( -l)'tA) by 

I [am-b 
[ -mc-~c-pa-madqn -. - cl co = 

I I 
(C-IQ) . (-l)'tA) . [. . . anamcpc~bm . . .] ; 

(4.12) 

the factors of (-1) arise both from the action of I, eq. (2.21), and from the 

indicated reordering of Grassmann operators. For a physical string state, the 

product of ladder operators in brackets in (4.11) has G = 0 and so contains the 

same number of b and c operators. Let us define i to be the state obtained 

from A by interchanging the labels b and c and sending PA + -PA. Using these 

definitions, 

&(A, B) = (fpg + ;M2) . (-l)'tA) .6(A,@ , (4.13) 

where gM2 is the usual bosonic string mass operator, equal to the sum of the 

excitation numbers minus 1. 

To make contact with earlier treatments of the kinetic term, we would like to 

write Ko(&, 6) as a Hilbert space matrix element. To do this, we must impose 

the following reality condition on the component fields: 

UPA) = (-1)“A)(4~(-~~))+ , (4.14) 

where, in this relation, the dependence of the component field on the string 

momentum is indicated explicitly. This condition is essentially the condition that 

the string field be real under the combined operations of Hermitian conjugation 

and reversing the direction of the string coordinate Q. The condition looks less 
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strange if we note that it guarantees the reality of 

(I[“] co&) (4.15) 

and thus reinforces the BPZ inner product. The reader should note that we have 

not yet defined r(A) f or states annihilated by cc; to do this, replace co in (4.12) 

by a simple Grassmann number. With all of these conventions, 

(+]Qoh) = (@IQoI@) . (4.16) 

Having now determined the structure of &,(A, B), it is a simple matter to 

see that K(A, B) has the correct form. First note that if we write 

Q= Qo+AQ, (4.17) 

AQ annihilates the tachyon state. Thus, the desired equivalence 

(I[“] Q&) = (@lQW (4.18) 

holds for the tachyon components. From here we need only note that our reality 

condition converts the string of ladder operators in I[OA] into that in (Al, for 

each higher string state A. The algebraic manipulations required to reduce the 

higher matrix element to a tachyon matrix element are then identical on the two 

sides of (4.18). This establishes (4.18) for all components of @. 

As a check on this identification, it is instructive to show that the expression 

(I[OAIQO > * Y B is s mmetric under interchange of A and B, if A and B are states 

with G = 1. This argument will make use of the SL(2,C) invariance of the 

conformal field theory matrix element and the Grassmann nature of the three 

operators. It will also use an important property of the BRST charge: 

[Q, Ln] = 0 ,for all n ; (4.19) 

in other words, Q commutes with all conformal transformations. This relation, 

which will play a crucial role later in our analysis, is true only in the critical 
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dimension; it is easily proved by noting that, in that case, the operator product 

of the BRST current j(w) with T,, is a total derivative in w. We may apply 

these ingredients as follows: 

= (0A Q+]) 

= ( (-1)2QO~ I[&]) 

(4.20) 

= (I[o~] QUA) , 

as required. The two minus signs in the third line have the following origin: one 

comes from reversing the order of two Grassmann operators, the second comes 

from reversing the direction of the contour of integration for Q. The origin of 

this second sign is shown graphically in Fig. 4. 

The evaluation of the S-string vertex (4.5) in terms of Fock space states is 

even more straightforward; this evaluation can be carried out explicitly for the 

most general conformal mappings hr, h2, h3. For future reference, we note that 

the analysis to follow is left unchanged if we relax both the restriction to 3 states 

and the restriction to states associated with operators of G = 1, as long as we 

continue to insist that the ghost charges of all the operators in the matrix element 

sum to G = 3. To begin this evaluation, write explicitly the conformal transforms 

of the various components of an Operator 0~: 

hl [eip.x(o)] = Ihi Ip2~2eip*X(hl (‘1 

h [a-,] = f 2 cn (h:(a)) &z(h(z)) 

h[b-n] = f$ --n+1 (h:(z))2 b(W)) 
(4.21) 

h [c-n] = f 2 z-+-’ (h;(a))-‘c(h&)) 
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The transforms of On and 0~ are computed similarly. Once all operators are 

placed on the same plane, we can compute their joint expectation value by making 

use of the contractions (2.13). For example, 

1 [ h2 . ..a-.... 1 
f 

dz dw 
-WI (h’,(w)) (h&) _lhz(w))’ - 

(4.22) 
= 

szz 
-n 

izw 

The factors of a,z in the a-, operators can also contract with factors of p - X 

in the exponentials. To complete the evaluation of the correlation function of 

operators built from X(z) , we must compute the matrix element of exponentials: 

rI e~PrJwl (0)) = 

> 
=P( c pz . PJ log lhz(0) - hdo)I) - (+@(~Pz) 

Z Z<J Z 
(4.23) 

The absolute values appearing in this expression and in the first line of (4.21) cor- 

rect our analytic-fields shorthand for the open string. To evaluate the correlation 

function of ghost operators, we need contractions of the form 

h . . .b-, . . . h2 . . .c-.,., . . . 1 [ 1 
dz = 

f- 27ri z -n+l (h:(d)2 f $w-“+~ (h:(w))-’ (hi(z) T h2(W)) . 
(4.24) 

We must also remember that three operators c(t) must be used to saturate the 

three ghost zero modes, as was indicated in eq. (2.24). 

The result of this evaluation can be represented compactly, in just the form 

of (4.5), as an operator acting on three single-string Hilbert spaces: 

(h [o/i] h2 [ozs] h+c]) = b31 IA), @ I@2 @ 103 * (4.25) 

Let us simply write the final expresion for (Vl231; the reader can check that 

it reproduces the results of the calculation just defined for all possible states 
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I4 @  I@2 @ IC>, on which it might act. We find 

h31 = (31, @  1312 @  (313 / (2#@(2’A + PB + PC) 
PA,PB,Pc / $1 Jo A- 1 

.exp(-f x c aiNi;ai + c c c~fif$.,b~ - c c <iMi Abi) , 
Z,J n,m>O Z,J nza J i=fl,O 

w&~-l mz-1 

(4.26) 

where I, J label strings 1,2,3, the subscripts n, m are mode numbers, and i = 

-l,O, 1 labels zero modes. The values of the Neumann coefficients NLA are given 

below. The ci are a set of classical Grassmann variables whose significance will 

be explained in a moment. For the variables a:, n runs over the values 0, 1,2,. . ., 

with ad = -ipz. The Neumann coefficients with nonzero indices represent the 

contraction (4.22). The coefficients with indices 0 represent contractions involv- 

ing the exponentials and the prefactor in the first line of (4.21). These coefficients 

are given explicitly by: 

N’J _ l”gIh’l(0)I I=J, 
00 - 

1% Ihz(o) - b(O)1 I # J , 

N;; d- 
f 

dw 
m tiGw -m (h;(w)) (hz(o) I’,,,,)) ’ 

NzJ =L nm n f * Z-n (h’,(4) ; f 2 w-m (x7(w)) (hz(z) -1hJ(w))2 - 2st 
(4.27) 

For the ghost variables, we should recall that 0~ contains only ghost operators 

which do not annihilate IO), and so the vertex should contain only operators 

which do not annihilate (31. This implies that, for bfl, n runs over -l,O, 1,2,. . ., 

while for cfl, n runs over 2,3,. . . . The Neumann coefficients may be read from 

(4.24): 

$J = dz 
nm 

f- 27k z -n+l (h:(e))2 f 2 w-m-2 (h;(w)) -’ (,+,) I’,,,,)) - 
(4.28) 

The extra minus sign relative to (4.24) compensates an extra Grassmann-inter- 
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change minus sign which appears when the term containing this Nfli is applied 

to a pair of ghost ladder operators b-n l -m IO), 8 *--c-,,, -*a IO), 8 --a. Since the 

ordering of Grassmann operators is the same on both sides of (4.25), this is the 

only correction needed to account for all of the Grassmann minus signs from 

bc contractions The zero modes of c(z) are taken into account in (4.26) by the 

introduction of the classical Grassmann variables <i. We define 

M. J -= 
f 

dw 
am SW -m-2 (h’,(w)) -’ Zi(kz(w)) , (4.29) 

where Z;(z) = zi+l. Then if we set 

/ 
!31s0s-1 = 1 , (4.30) 

fl,SO,S-1 

the integral over the three ci will pick out three operators c(z) and assign them 

to the three zero modes. The reader can check that, again, all the Grassmann 

minus signs are accounted for. 

We have now constructed a string field theory vertex of a very general form 

and given its explicit representation as an operator on three single-string Fock 

spaces. The general form of this representation, in which the Neumann coeffi- 

cients are defined in terms of contour integrals, has been seen many times in dis- 

cussions of specific string vertex functions, beginning with the work of Ademollo, 

de1 Guidice, di Vecchia, and Fubinil6’] Mandelstam,[21 Kaku and Kikkawai”’ and 

Cremmer and Gervais 17r1 on the light-cone vertex. The fact that this decompo- 

sition holds for arbitrary conformal mappings which link the strings is, however, 

a very powerful observation, and we will make strong use of this observation in 

the course of our analysis. 
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5. Symmetries of the 3-String Vertex 

We have now introduced a proposal for the 3-string vertex of a very general 

form, built from three conformal transformations chosen completely arbitrarily. 

We have learned in the discussion just concluded that this general vertex is still 

a very simple object. It is, for example, technically much more transparent than 

the kinetic energy term. We might bolster this conclusion by recalling a deep 

speculation of of Hata, Itoh, Kugo, Kunitomo, and Ogawa I411 and Horowitz, 

Lykken, Rohm, and Strominger. 1281 These authors have argued that in string 

field theory only the 3-string vertex is fundamental, and that the quadratic terms 

in the string field action are generated dynamically by replacing one field by 

its nontrivial vacuum expectation value. Whether one finds this speculation 

compelling or not,* it is certainly worth digressing to work out the symmetries 

of the vertex we have defined and to ask what restrictions must be imposed on 

the general form to build in higher symmetries. 

Before beginning this study, let us remark that the vertex we have proposed 

V(A,B,C) = (h[OA] hz[oB] h+c]) 

is essentially a realization of a deep and, for us, quite mysterious speculation of 

Friedan 1721 that the 3-string vertex should be identified with the operator product 

coefficient of the vertex operators corresponding to the three string states. The 

success of our construction might, then, shed light on other aspects of Friedan’s 

geometrical intuition. 

* We note that the equation {Q, QL}, which is necessary for the proof of equivalence 
between the cubic action and Witten’s, does not hold with the naive definition of the 
BRST current. The autors of refs. [33] and [34] justify it by adding normal-ordering 
terms to the BRST current: 

iBRST = CT= + ca,cb + z-‘c - 22-9,~ + 3/2+ . 

The additional terms of course do not transform like a dimension 1 conformal field. Since 
this property of the BRST current is of vital importance in our approach to string field 
theory, we have reservations about this procedure. 
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Let us now discuss the effect on V(A, B, C) of conformal transformations. 

We consider in turn the two possibilities: 

hz(4 + f 0 hz (2) , 

hz(z) -+hzof (4 3 

The operation (5.2) transforms V according to 

V(A,B,C) + (f 0 +,a] f ohz[OB] f oh+C]) - 

(5.2) 

(5.3) 

(5.4 

It is sometime useful to think of such conformal transformations as being gener- 

ated by the action of the Virasoro operators: Let u(z) = tlns-n+l be the vector 

field generating the conformal transformation z + f(s). Then 

f [4(z)] = [f’(qQ (f(4) = ww;’ 9 w 

where Uf = exp(u-,l,). Th e reader should note that our various definitions are 

consistent in their operator ordering: 

f o h[$(z)] = f [h[4]] = ~.dk#‘(du~?~;~ - (5.6) 

Since conformal field theory matrix elements are SL(2, C)-invariant, we ex- 

pect that V(A, B,C) will be unchanged by the transformation (5.2) if f E 

SL(2, C). Thus, our vertex, even in its most general form, addresses a conjec- 

ture of Banks1731 that the 3-string vertex can be cast into an S&(2, C)-invariant 

form. The exercise of checking this invariance explicitly provides a simple and 

appealing confirmation of the Fock space form for the vertex given in the previ- 

ous section. Let us carry out that analysis, and afterward discuss the situation 

for more general functions f(z). 
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Consider, then, the transformation (5.2), for 

f(w) = g , ad - bc = 1 . (5.7) 

From this form, it follows that 

h:(z) hz(z) - b(z) 
tf ohz)‘(z) F (chz(z) + d)2 ’ f ohz(z)-f ohJ(z) = (chz(z) + d)(chJ(z) + d) ’ 

(5.8) 

Inserting these identities into the transformed Neumann coefficients (4.27), we 

see that the extra factors of (chz + d) neatly cancel out. (In Nii, this cancel- 

lation is automatic. In the first two terms, which involve the zero modes, one 

must also make use of the fact that Cz pz = i Cz a6 = 0.) For the ghosts the 

situation is somewhat more subtle. The SL(2, C) invariance is not yet manifest 

in (4.26), though it can be made manifest by the following set of rearrangements: 

First, consider the action of (4.26) on three states of the form of physical string 

excitations: 

OA = . . . a-na-ma-p.. . cleipA’x(o) , (5-g) 

where the string of ladder operators contains only ans. Using cl = c(0) + 

VW)-‘c(hz(4) t o re P resent the ghost operator on each state, and using the 

three ghost operators which result to saturate the three zero modes, we find for 

the ghost part of the evaluation of V(A, B,C): 

(h:(O)h:(O)hg(O))-‘[(hi(O) - h2(O))(h(O) - hs(O))(ha(O) - b(O))] . (5.10) 

Now consider acting (4.26) on string states with a more general ghost structure. 

It can be shown that the the result can be written as a product of (5.10) with 

antisymmetrized contractions of the other b-n and c-n operators, provided that 
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the contraction is altered slightly from (4.24) to 

f 
dz 
---Qrn+l (h:w2 f $w-m-2 (%(w))-’ (hi(z) ; h2(W)) 27rri 

rI 
VQ (4 - kc (0)) . 

K VW - MO) ’ 

(5.11) 

where K runs over the three strings. The form of (5.11) is easy to understand: It 

is a Fourier transform of the &c propagator in the presence of the three c(h~(0)) 

zero mode operators; these extra ghost operators require the propagator to con- 

tain extra poles and zeros. The proof of this rearrangement is straightforward; we 

give it in the Appendix. The reader can now verify that the expressions (5.10), 

(5.11) return to their original form when we substitute (5.2) and then invoke 

the identities (5.8). Thus, both the coordinate and ghost parts of our vertex are 

explicitly SL(2, C) -invariant, even before we restrict the mappings hi(z). 

Is our vertex invariant to more general conformal transformations? This is 

a subtle question, for the following reason: SL(2, C) transformations are the 

most general conformal transformations which map the complex plane onto itself 

in a single-valued way. Any more general choice for f(z) will carry the plane 

into a Riemann surface with branch points. That brings us outside the class 

vertices defined by (4.4), and we need to extend our prescription to treat this 

case. The most natural way to evaluate conformal field theory expectation value 

on this Riemann surface would be to evaluate the (XX) and (bc) propagators 

by mapping the surface back into a plane. With this definition, the form of 

(4.26) remains unchanged. It is true that the evaluation of expectation values 

for a conformal field on a Riemann surface will also produce a factor of the 

determinant of the Laplacian for that field. However, for Riemann surfaces of 

the topology of a plane, and assuming that we work in the critical dimension, 

the determinant factors should cancel between coordinate and ghost fields. In 

the analysis which we will present in II, we will see that the formalism dictates 

that the branched surfaces which arise from gluing together two vertices should 
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be treated in exactly this way, and that the determinant factors cancel explicitly 

in that case. With this prescription, we find that the vertex (5.1), in the critical 

dimension, is invariant to all conformal transformations of the form (5.2). 

Transformations of the form (5.3) are conformal transformations of the unit 

circle used to define the canonical set of string states. These transformations may 

thus be viewed as field redefinitions. Normally, however, we will wish to leave 

the kinetic energy term in the action unchanged; then we must ask whether these 

transformations leave the form of the vertex invariant. This will be true only if the 

transformations of the form (5.3) h ave appropriate commutation relations with 

the hl to be converted into the form (5.2). The question of which transformations 

have this property can only be discussed case by case for particular forms of the 

vertex. The important special case of the reparametrization (Kn) symmetries of 

Witten’s vertex[8yQ1 will be discussed in Section 8. 

One often wishes to answer the question of whether two different 3-string 

vertices are equivalent on-shell. In our formalism, this question is very easy to 

address. On-shell states correspond to vertex operators 0~ which are primary 

conformal fields of dimension 0, evaluated at z = 0. For three such operators, 

our general vertex takes the form 

(hl [h(O)] h2 [CW] h[Oc(O)]) = (pa&) &+2(O)) &+3(O))) . 
(5.12) 

By SL(2, C), this correlator is a pure number, independent of the three points 

hi(O). Thus, a vertex defined by any other triple of mappings Al(z), fi2(~), he(~) 

will be equivalent on shell. 

Let us now turn to the properties of the vertex needed to establish the gauge- 

invariance of the action, ,according to the logic of Section 4. Consider first the 

property (3.16), which is just the requirement that the vertex have a BRST 

symmetry. We will now show that our vertex is BRST invariant in the general 

form (5.1), even before any specific choice is made for the hz. To see this, note 
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that, for our vertex, (3.16) is equivalent to the condition 

0 = (h [Qh] h2 [b] ha [Oc]) + (-+ (hl [OA] hz [Q&s] ha [Oc] ) 

+ (-1) A+B (hl [O/i] h+b] h[QOC]) , 
(5.13) 

where (-l)A is the Grassmann parity of 0~. But this is manifestly true: Since Q 

commutes with conformal transformations, each factor Q can be carried outside 

the corresponding hz: 

hz[QOA] = Qhz[On] . (5.14) 

The three Qs can be brought to the front in Grassmann ordering (cancelling the 

factors of (-l)A) and their contours joined. The resulting contour can then be 

pushed to infinity, as indicated in Fig. 5. The vertex (5.1) is thus manifestly 

BRST invariant in the critical dimensionality, for all choices of the hr. A similar 

argument has been given, specifically for the Witten vertex, by Itoh et cd.!191 

The second property which we must require is the threefold cyclic symmetry. 

This property places restrictions on the hz, but there is a simple condition which 

insures this symmetry for a large class of vertices. Let us impose this condition 

as follows: 

hl = T20h, h2 = Toh, hS = h, (5.15) 

where T E SL(2, C), T3 = 1. This criterion is slightly too restrictive to include 

the vertex of the light-cone type, which, in any event, does not lead to an open- 

string theory with only cubic interactions. (The application of our formalism 

to light-cone field theories will be discussed elsewhere [741) This form does apply 

to the Witten vertexl*’ and the Caneschi-Schwimmer-Veneziano P21 dual model 

vertex. It also encompasses many other possible vertices, in which the three 

regions which are the images of the unit circle under hl, h2, ha overlap arbitrarily 

on the complex plane. The proof that (5.15) su ffi ces to make V(A, B, C) cyclically 

symmetric is quite similar to the proof of the symmetry of the kinetic energy term 
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given in the previous section (eq. (4.20)). Using the SL(2, C) invariance of the 

conformal field theory matrix element, we can write 

(T’h[OA] Th[OB] h[Oc]) = (T”h[OA] T2h[OB] Th[Oc]) 

= (-l)A*(B+C) (T’h[&] Th[&] h[OA]) . 
(5.16) 

One or all three of the-operators creating A, B, C will be Grassmann-odd. This 

implies that the prefactor in the last line is (+l), and so the vertex is cyclically 

symmetric. 

A similar argument shows that the structure 

(S”h[OA] S2h[OB] Sh[Oc] h[OD]) (5.17) 

has a fourfold cyclic symmetry if S E SL(2,C), S4 = 1, and A, B, C, D 

comprise three states of G = 1 and one of G = 0, corresponding to the gauge 

parameter string field A. A vertex passes all of the requirements needed to form 

a gauge-invariant action with only three-string interactions if the contraction of 

two vertices indicated schematically in eq. (3.18) has the structure of (5.17). The 

main purpose of Section 7 will be to define this contraction operation precisely 

and reduce this operation to geometry, so that a precise comparison with (5.17) 

can be made. Before beginning this analysis, however, it will be worthwhile 

to illustrate our construction at its present state of development by considering 

some interesting specific choices for the hz. 
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6. Examples of String Vertices 

At this point in our development, we admit 3-string vertices of the general 

form 

(T’h[OA] Th[OB] h[Oc]) (6.1) 

with T an SL(2, C) transformation such that T3 = 1 but with h(z) a completely 

arbitrary map of the unit circle into the complex plane. Two choices for h are 

especially simple. The first is h(z) = z, which carries the unit circle into the 

complex plane unchanged. The second is the map which carries the unit circle 

into a wedge covering a 120" angle, so that the images of three unit circles cover 

the plane and abut one another neatly along their boundaries. These two possi- 

bilities are illustrated in Fig. 6. In this section, we would like to work out the 

consequences of these two choices for h(z). The first of these possibilities will 

lead to a string field theory vertex which generalizes the Caneschi-Schwimmer- 

Veneziano PJ21 dual model vertex. This generalization has recently been presented, 

from another viewpoint, by Di Vecchia et uZ!~*~ and by Watamura and Wata- 

mura”” The second choice will be seen to represent the Witten vertex. 

Consider first the case h(z) = z. To construct (6.1), we must supplement 

this choice with a suitable T which acts nontrivially on the unit circle. Since 

T E SL(2,C), t i is specified by its action on three points. Choose, then, 

T:O+ 1 T2 : 0 + oo 

l--,00 1 --+ 0 (6.2) 

oo+o 004 1 

that is, 

Tz = 1 
1-z' 

T3 = z-1. 
z (6.3) 

The three unit circles corresponding to the three coupled strings are shown in 
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Fig. 7. The SL(2,C) transformation 

(6.4 

carries the unit circle into the right half-plane, sending the real axis to the new 

unit circle. Applying this transformation to the vertex according to (5.4), we 

find a second picture of this vertex in which the three strings are mapped to 

three half-planes rotated from one another by 120’ (and thus overlapping in 60” 

sectors). This picture is shown in Fig. 8. 

It is illuminating and also quite straightforward to compute the Neumann 

coefficients NLi associated with the coordinate degrees of freedom. The factors 

N;i all vanish; thus, the expression (4.26) contains factors of the center-of-mass 

momenta p’ only in conjunction with oscillator creation and annihiliation oper- 

ators. In this case, then, all 3-field couplings derived from the string field theory 

vertex are polynomial in momenta, that is, local in space-time. The remaining 

coefficients are nonzero is a cyclically symmetric pattern. Representative coeffi- 

cients are: 
1 ifI=A 

N;z = -= 

0 otherwise. 

NCC=O. mn (6.5) 

(0 otherwise. 

The remaining coefficients can be found by cycling. Inserting these values into 

(4.26), one finds a dependence on the coordinate oscillators which is exactly that 

of the CSV vertex. This close connection between the CSV vertex and the cyclic 

group (6.2) is not surprising; this connection was set out clearly in an early 

lW paper of Lovelace. The full expression (4.26) provides a manifestly BRST- 

invariant generalization of the CSV vertex, in which all couplings, including those 

of auxiliary fields, are local in space time. 
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Is this very simple vertex an acceptable vertex for a string field theory? Since 

we are assured that it is 3-fold cyclic and BRST-invariant, only the condition of 

4-fold cyclicity remains to be checked. The computation suggested by (3.18) is in 

fact straightforward to carry out explicitly for the coordinate oscillators. What 

is needed is the product 

(VABCI (VDEFI IIcD) , (6.6) 

where I&o) is a suitable inner product. The natural choice for this product 

is the BPZ inner product described in Section 2. Considering the coordinate 

oscillators only, we may write (2.20) in the explicit form 

MB) = (IAd IA) @ I@ 3 

where 

(6-V 

(64 

We may define the right inner product as the inverse of this operator 

(1~~1 11~~) = ~CA . (6.9) 

From (6.8), we obtain 

IIAB) = exp(~dnk-rd!n) lo), @  lo), - 
n 

(6.10) 

This expression will suffice for our immediate purposes; a complete representation 

of [XAB), including the ghost pieces, will be given in the next section. 

Combining two CSV vertices according to (6.6) using the explicit inner prod- 

uct (6.10), we obtain the following result: The fused vertex, which is now a 

39 



4-string vertex, has again the general form 

(VABEFI = (31~ @  (31~3 @  (31~ @  (31~ exP(-i c xUiNfiui) * (6.11) 
Z,J n,m 

The Neumann coefficients linking A and B and those linking E and F are un- 

changed from the values indicated in (6.5). The remaining coefficients are given 

by contractions of the coefficients in (6.5); for example, 

00 
j+F - 

mn - c N;F (-l)k+‘k N;; . 
k=l 

Carrying out these summations, we eventually find 

NAF =NEB = 
p-n. (-l)n+l 

mn mn 
0 otherwise. 

NBF mn = F(n + 1,m + 1,2; -1) 

(6.12) 

(6.13) 

NAE =2”+m 
mn - F(n + 1,m + 1,2; -1) . 

These Neumann coefficients do not form a cyclic structure; the result is tantaliz- 

ingly close to cyclic but is ruined by the factors of 2n. Still, (6.13) has a simple 

physical interpretation. It is not difficult to check that this set of Neumann 

coefficients is exactly that obtained from the vertex 

(T’[oA] T[oB] IT~[o+T[oF]) , (6.14) 

where T is still given by (6.3) and I is the inversion. The contraction (6.6) has 

apparently carried out the operation shown in Fig. 9: The two complex planes 

representing the two vertices have been cut along the circles representing the 

states C and D and then glued together by conformally mapping the exterior 

of the D circle via the inversion I into the interior of the C circle. The failure 



of 4-fold cyclic symmetry is apparent in (6.14): This vertex cannot be of the 

form (5.17) because it contains the threefold elements T, T2. One can observe, 

however, that the four points hz(O)-the four points -l,O, 1, oo-have a fourfold 

cyclic symmetry in the sense that they are linked by an SL(2, C) transformation 

S(z) = s (6.15) 

satisfying S4 = 1. The transformation S bear no relation to any of the trans- 

formations appearing in (6.14). Nevertheless, the logic of eq. (5.12) leads us to 

state that the CSV vertex satisfies fourfold cyclicity at least on shell. This fact 

has an amusing physical consequence which we will present in Section 3 of III. 

If the CSV vertex does not give an appropriate string field theory vertex, 

how then do we find one? As a guide in thinking about this question, let us 

assume that the geometrical representation of the BPZ inner product that we 

have partially derived in the previous paragraph is correct and general. Then we 

must search for a way to map three unit circles onto the complex plane in a fashion 

which is threefold symmetric and which, after a cutting and gluing operation 

such as that defined above, produces a figure which is fourfold symmetric. It 

was exactly this geometrical requirement which motivated Witten in his choice 

of vertex. The second possibility shown in Fig. 6 is indeed manifestly threefold 

symmetric. Further, the operation of cutting out one of the three regions on 

each of two planes and then gluing the two planes together produces a fourfold 

symmetric diagram. This diagram is shown in three views in Fig. 10. If the 

second (EF) plane is mapped conformally into the hole left in the first, the 

resulting figure has an angle of 4 . 120” at the joining point. We may represent 

this by drawing a plane with a branch cut, as shown in Fig. 10(a); the figure 

is the covering surface of this cut plane. Rotation of the branch cut reveals the 

whole of region F and, in turn, conceals a part of region B. Alternatively, we may 

use the (formal) conformal invariance of the vertex to map the twisted surface 
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into a simple plane by applying 

f (2) = z3j4 (6.16) 

The effect of this transformation is to smooth out the fold at the joining point 

and convert the surface into Fig. 10(c). 

To see that the construction shown in Fig. 6(b) is indeed equivalent to 

Witten’s prescription, we may proceed in stages. First, as we have discussed 

in our arguments below eq. (2.21), the conformal field theory matrix element 

involving two unit circles which have been mapped so as to abut one another 

has the operator interpretation of a contact delta-function on the world-sheet. In 

each unit circle, the boundary condition is determined from the operators placed 

inside by evolution using the Hamiltonian of radial quantization. If these unit 

circles are mapped so that their boundaries coincide, this adds the constraint 

that these generated boundary conditions be identical. To give the diagram an 

interpretation in terms of open strings, we must specify where the string boundary 

appears on the conformal plane. Throughout our discussion of the Witten vertex, 

we will map unit circles in such a way that the real axis of the original circle is 

mapped to the unit circle of the conformal plane. Then the images of open strings 

can be viewed in the interior of the unit circle on the plane. In Fig. 6(b), the 

interior of the unit circle is neatly trisected into three regions which overlap at 

their boundaries. The string endpoints are mapped to this unit circle; the string 

midpoints are mapped to z = 0. 

To solidify this interpretation, let us work out the operator decomposition 

of our vertex somewhat more explicitly and compare it to other forms for the 

Witten vertex which have been given in the literature. The Neumann coefficients 

for coordinate oscillators are given by the general relation (4.27) in terms of the 

conformal mappings hz(z) which carry unit circles into the plane. The mapping 

which carries a unit circle into a 120” wedge in the right half-plane has been 

written down by a number of authors; [76,9,12,19,11] it is easy to construct by 
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following the steps shown in Fig. 11. The result is 

1 - iZ 213 
w = (m) (6.17) 

The three hz are then given as h, Th and T2h, with T given by the rotation 

Tz = e2*i/3z. Since Ih’,(O) I = 4/3 and IhI - hJ(O) 1 = 8, the piece of V 

quadratic in momenta is given by 

where we have used momentum conservation. The remaining 

cients are given by integrals of the.form 

(6.18) 

Neumann coeffi- 

N;f)g = & f f f St, ‘,,, (h,‘(z)]-“[h;‘(w)]-” . (6.19) 
hr (0) hJ (0) 

This is exactly the form of the Neumann coefficients Gross and Jevickil” used 

as the starting point for their analysis of Witten’s vertex. An elegant proof of 

equivalence of the various formulations of this vertex [12,9,11,14,19] that includes 

14*’ the bc-sector has been given by Suehiro. The explicit expressions for the Neu- 

mann coefficients are necessary to study the local field decomposition of a string 

field theory vertex. However, they are complex and unwieldy, and one might 

hope that they are not actually needed to prove the general properties of the ver- 

tex. We have seen already that our geometrical method allows one to circumvent 

completely the use of the explicit Neumann coefficients in verifying the BRST- 

invariance of the vertex. We have seen above that the geometrical intuition which 

our method supplies allows one to understand the cyclicity conditions as well. It 

is less clear, though, that the fourfold cyclicity condition can actually be proved 

along these lines. It is possible to construct such a proof, however, by giving a 

general proof of the correspondence suggested earlier in this section between the 

contraction with the BPZ inner product and the geometrical operation of gluing. 

We devote the next two sections to the presentation of that proof. 
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7. Gluing Circles to Circles 

In this section, we will present a more precise connection between the op- 

eration of contraction with the BPZ inner product, eq. (6.6), and the gluing 

operation indicated schematically in Fig. 9. For simplicity, we will restrict our- 

selves here to the case where the two states which are contracted are represented 

on the plane by circles; equivalently, we assume that the mappings hz(z) cor- 

responding to the contracted states C and D are elements of SL(2, C). At the 

end of this section, we will generalize the statement of the result to the more 

complicated case in which these hz(z) are general conformal mappings. 

In some sense, the identity we are trying to establish is obvious from the 

beginning. We can view the functional integral defining (VABCI, for fixed state 

C, as a functional integral with definite boundary conditions on the boundary of 

the region into which C is mapped. The contraction of C and D identifies the 

boundaries of their respective regions and sums over possible boundary condi- 

tions. This should produce a single functional integral over the full fused region. 

On the other hand, it would clearly be valuable to make this argument more 

precise. In addition, there are several subtle points which can be settled only by 

careful analysis: What happens to the ghost zero modes on the fused planes? If 

the fusion introduces folds or singular points, as we saw in our examination of 

the Witten vertex, how should these singularities be treated? We will indeed see 

the answers to these questions emerge from our analysis. 

In the literature, a form of the the gluing relation has been assumed in Wit- 

ten’s work ‘8’4s1 and in the papers of Giddings and Martinet. [21’221 Mandelstam’s 

original work PI on the light-cone vertex actually proved a form of this relation 

specific to that case as a set of explicitly derived identities for the Neumann co- 

efficients. This proof was developed and clarified in the work of Cremmer and 

Gervais [711 and Green and Schwarz! The work of Gross and Jevicki IQ1 gives an 

explicit, though not quite complete proof of the gluing relation for the Witten 

vertex in the specific configuration needed to prove gauge-invariance. We are not 
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aware of a previous attempt to formulate this relation as a mathematical identity 

satisfied by a general class of string vertices. 

In this section, we will prove the following identity, which we call the gluing 

theorem for circles: Let hA;(Z) hBj(Z) b e some number of conformal mappings 

bringing an arbitrary number of unit circles into two conformal plane. In each 

conformal plane, we include also one unit circle which has been brought in using 

the identity operator. (For each vertex, any h(z) which belongs to SL(2, C) can 

be reduced to the identity by a tranformation (5.2).) Let (V{AqcI be defined by 

(‘{Ai)CI n IA4 QD lC> E (n(hAi[OAi] > 0~) 
i i 

(7.1) 

and let (v{Bj)DI be defined similarly. Then, if 11~~) is the BPZ inner product, 

the fused vertex 

V-2) 

is given by 

(v{Ai}{Bj}( I-J IA4 @n IBd = (n(hAi[OAi]) n(‘haj[OBj])) - (7-s) 
i j i i 

That is, the operators defining the states Bj are carried into the interior of the 

unit circle in the A plane by the inversion I. (Since I E SL(2,C), this result 

is symmetric under interchange of the Ai and the Bj.) The geometry of this 

construction is illustrated in Fig. 12. The states Ai and BJ’ may have arbitrary 

ghost number, as long as the conservation law at each vertex is satisfied; the 

Grassmann minus signs are properly accounted for if we choose the same ordering 

of the Ai and the Bj in (7.1) and (7.3). 

We cannot begin a proof of the gluing theorem without a more explicit rep- 

resentation of the BPZ inner product. We have already discussed the coordinate 
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oscillator part of the inner product, for which we obtained the representation 

(6.10). We must still analyze the ghost part of the inner product. Let us proceed 

along the route which led to (6.10). Consider, then, the left inner product (6.7), 

defined from the conformal field theory matrix element (2.20). The part of this 

operator which depends on the ghost nonzero modes is reproduced by 

This expression properly accounts for all Grassmann minus signs, as the reader 

may readily discover by trying a few cases. The most straightforward way to 

determine the dependence on ghost zero modes is simply to consider all possible 

way of assigning the operators c-1, cc, cl to the operators creating A and B in 

(2.20). The action of the conformal field theory matrix element, determined by 

(2.21) and (2.25), is reproduced by writing 

(IABI = (31A @  (31B (ktl + bf) @,A - b,B) (b;l + @I > 

= (314@(3lB/ ( WP Ci((-)ibAi 

Sl,SO,S-1 

- b?)) . 
V-5) 

The full expression for (IAB I is then given by combining (6.8)) (7.4)) (7.5), and 

a delta function 6(pA +pB). The inverse of this operator defined by (6.9) is then 

given by 

kD> = exp 2 {uEn~c&} + e {cC,(-l)“bD, - bC,(-l)“cD,} 
n=l n=2 

. 
/ 

(24d6d(pC + PD) . (--l&F - ?I )(c,” + cOD)(CCI - cf) IPC)~ @  IPD)D . 
PC #D 

(7.6) 

This specification of the inner product completes the formulation of the gluing 

theorem. 
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To prove the gluing theorem, we must contract two copies of (4.26) using the 

inner product (7.6). W e may consider the coordinate and ghost pieces separately. 

Since the analysis is more straightforward for the coordinate pieces, let us begin 

with them. 

In order to take advantage of the special form we have chosen for the con- 

tracted states, let us work out the detailed form of the Neumann coefficients 

(4.27) in the case where one of the hz(z) is simply he(z) = Z. In this case, we 

can carry out the contour integrals involving he(z) explicitly, to find: 

NAC 00 = 1% IhA 1 

NAC = Om - $(hA(0))-m 

NfA, = L 
f 

dw - 
m 27ri w -m (G(w)) & 9 

NAC =A nm n f 2 Z-n (hi(z)) ’ ($;)m+l ’ ; 3 

(7.7) 

for A # C. For the diagonal Neumann coefficients, we find 

Ncc = 0 nm 9 (7.8) 

and the same result if n, m, or both are zero. The vanishing of Ngg is actually 

obvious from the definition (4.27): f i n,m > 0, the indicated integrals converge 

well enough that we may push them to infinity, provided that the functions hz(z) 

and their derivatives are analytic outside the unit circle. If hz(z) is the identity, 

or, more generally, if hz(z) is an element of SL(2, C), that analyticity is assured. 

The vanishing of (7.8) is connected to the geometrical simplicity of gluing circles 

to circles. This point will become more clear when we display the significance of 

Ng$, in more general situations of gluing, in the analysis of Section 3 of II. 

The relation (7.8) implies that the coordinate ladder operators CL: appear only 

linearly in the exponent of (4.26). Th is makes it easy to contract those operators 
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with the operators ac, in (7.6). This contraction produced new quadratic terms 

in the exponential which link operators a$ to operators a, . Bi The general form 

of these terms is: 

aAi JAiBj Bi 
n nmam 9 V-9) 

where 

M AiBj - nm - c N$g. (-l)k+lk. Nf% . (7.10) 
k>O 

This can be explicitly evaluated by inserting the expressions (7.7). It will obvi- 

ously be convenient to define 

(7.11) 

as a standard form of the Fourier transform of a one-form w.(z) with respect to 

the string A. Using this notation, the nonzero components of .A/$$ take the 

form 

U$% = 34;3:$ C(-l)k+lk ~ ,,,:+l (w;+l ’ I 
(7.12) 

k>O 

where the Fourier transform for A; is applied to the variable z and that for Bj 

is applied to w. The series is easy to sum: 

(7.13) 

where we have used the action of the inversion: hlBj(W) = (-l/hs,(w)). The 
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final result is exactly 

NAiBj 
nm 

= NAi(ZBi) . 
nm , (7.14) 

the new quadratic terms which are generated are exactly the Neumann coeffi- 

cients that one would find linking A; and Bj after the exterior of the unit circle 

on the B plane is inverted by R and glued into the A plane as shown in Fig. 12. 

Notice that, because the formula for Nf;$ is invariant to SL(2, C) transforma- 

tions, our result is identical to the one we would have obtained by inverting the 

A plane. 

This result generalizes straightforwardly to the terms containing zero modes 

a$, a0 Bi. For the case of one zero mode, U$,“i receives contributions from two 

sources: the sum (7.10) and an additional term which arises, using the momentum 

conservation of the BPZ inner product, by replacing pc by Cj pBi in 

aAi NAi cat 
n n0 0' (7.15) 

These two terms assemble to form 

N ?,“j 2 b--l)k ’ &j& ’ (hs;o))k] 
k=O 3 

= NAi (ZBj) 
n0 *. 

For the case of two zero modes, there are two such additional terms. 

(7.16) 

MAiBi = 
0 0 

N$ig + NDBi 
00 + c N$f - (-l)k+‘k. NFp . (7.17) 

k>O 
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Inserting (7.7)) we can evaluate the indicated sum; then 

IABj = 00 + log hA (0) + ‘OghBi (0) + log (1 + hA, (o;hB 
I i 

(o)) 

= +lW hBi (0) + log [hAi (0) - (-‘/hBi (O))] 

= log h&O) + N$FBi) . 

eqn(7.17) 

There is an extra term left over. This can be rewritten 

1 
5 Ca~i(loghBj(o))a~ =- ~~a~(l~gh~,(O))a~ 

id kj 
(7.18) 

and added to the Bj-Bk zero mode terms: 

N 2;’ - log h&) - log h&) = NgB’)gBk) . (7.19) 

Now the coordinate operator part of the glued product of vertices has been re- 

arranged exactly into the form of the right-hand side of (7.3). 

The computation of the C and D ghost matrix element indicated in (7.2) is 

only slightly more difficult. The main complication comes from the treatment of 

zero modes. One should keep in mind, though, that the ghost Neumann functions 

(4.28) are not themselves SL(2,C)-invariant, so that the fact that the gluing 

operation is independent of which plane is inverted will not be obvious until the 

end of the calculation. For definiteness, I will always consider the inversion to be 

applied to the states Bj. 

Let us begin by computing the matrix element of the nonzero modes. Spe- 

cializing (4.28) to the situation where one of the hz(z) equal the identity, we 

find 

(7.20) 
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where we have defined two more canonical Fourier transforms, 

- Z-n+’ (h’A(d)2 f(h&)) , 
(7.21) 

3$,‘%(41 = f $-m-2 (h;(e))-’ f(h,&)) . 

Again we find 

I;icc = 0 nm 3 (7.22) 

as long as n 2 2, m 2 -1, since, with these restrictions, we can freely push 

the contours to infinity. One further simplification comes from the evaluation of 

(4.29): 

hi* c = &m ; am (7.23) 

this is nonzero only for the case of the zero modes m = -l,O, 1. Then it is 

straightforward to the contract the ghost exponential in (7.6) with the ghost 

exponentials in the two copies of (4.26). Th e result is an exponential with new 

quadratic terms coupling the c operators of each Ai to the b operators of each 

Bj, and vice versa. These new terms have the form (cti.@$zbz), and the 

corresponding terms with A; and Bj interchanged, where 

kAi Bj 
nm = 2 N$f. (-l)k . Nf$ 

k=2 

= 
,,,i,,;,,k-1 I (7.24) 

If we combine the prefactor inside the bracket- (hAi(z -with the integra- 
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tion measure in 3(b)A’ n, e *, we can see this rearranges into the formula 

JAiBi = fiiZAi)z . nm (7.25) 

The analogous relation for the term linking c? with bA,i is 

-BiA. 
Nn d = ficBj)Ai 

m * (7.26) 

Eq. (7.26) is exactly what we wanted to find. However, (7.25) is not equivalent 

to the same formula with the I applied to Bj. Something is missing. 

Leave this result aside for the moment and turn to the ghost zero mode con- 

tributions. The zero mode operators bcr, bg, bf appear in (4.26) both in terms 

involving fi$g and in terms involving Mi g. The terms with Mi g involve the 

supplementary Grassmann variables; we will distinguish the variables associated 

with the A and B planes by denoting them as ~~4, c,F. Now operate on the two 

vertices with the first zero mode factor (cf - c:r) from the second line of (7.6). 

The action of this factor brings down from the exponentials in (4.26) the quantity 

(7.27) 

Integrate this over $, taking into account also the exponential factor in the 

B plane vertex which depends on <r B. We may, however, now ignore the term 

d%!$: = s?bf, since the bp may now be moved to the right to annihilate 

the D vacuum of (7.6). The integral then gives 

using, in the last line, the Grassmann property of the ghost operators. The other 
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two ghost zero mode factors in (7.6), and the remaining two cB integrals, may 

be carried through a similar reduction procedure. 

We must now interpret the three terms in the exponent in the last line of 

(7.28). The easiest to understand is the middle term. Because of the relation 

hRBj(z) = (-l/hBj(%)), (4.29) obeys the inversion formula 

M. Bj (ZBi) 
am = (-I)‘-’ Mt-qrn * (7.29) 

This term then gives the coupling of the inverted Bj ghost operators to c!r 

required to implement the zero modes properly in the expectation value displayed 

in (7.3). 

The first term in the exponential modifies the Neumann coefficient linking 

two Bj ghost operators. We must add this term, and its counterparts in the other 

two factors arising from the ghost zero mode reduction, to the expression (4.28). 

Using (7.20) and the explicit formulae for the Mi 2, we can combine these four 

terms as follows: 

u “BjBk 3(blBi y(b)& n m = 12, 2 m, w 

(7.30) 

= &izBi)EBk) , 

where in the last line we have combined the prefactors w2 .zm4 with the measures 

for the two Fourier integrals. This sets the quadratic term in I3 ghosts into the 

right form to account the action of the inversion on the states Bj. 

Finally, consider the last term in the exponential of (7.28), and its two coun- 

terparts. These are the terms which must combine with (7.24) to give the full 

quadratic term involving one c$ and one b$. Using (7.20) once again, we find 
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that the last line of (7.24) is replaced by 

3ip)ti 3212 t . ’ , I *3 (wz+l) - $ + 5 - ;] 

(7.31) 

Again, the prefactor w2 supplies a factor of (hBj(z))2 necessary to rearrange the 

Fourier integral. Now the ghost factors have also come into the form required 

to represent the right-hand side of (7.3). This completes the proof of the gluing 

theorem for circles. 

This simplest version of the gluing theorem is sufficient to discuss (and dis- 

prove) the gauge-invariance of the string field theory constructed using the CSV 

vertex. However, it is not sufficient for more general situations in which the 

mappings hz(z) which carry string into the plane are not elements of SL(2,C). 

Let us conclude this section by discussing the limitations of the proof we have 

just given and stating a more generally applicable form of this result. The proof 

of the more general theorem is somewhat involved; our paper II will be devoted 

to presenting it in detail. 

One particular circumstance in which a more powerful result is needed is the 

discussion of the gauge-invariance of the string field theory built from the Witten 

vertex. In that case, the gluing procedure has the complication shown in Fig. 10: 

The two regions two be glued together have different shapes, so that joining them 

produces a fold in the world-sheet. Since the only conformal transformations that 

map the plane to itself one-to-one are SL(2, C) t ransformations, we should expect 

always to find branch cuts and nonanalyticity after we identify and glue together 

two strings which have been embedded through general transformations. These 

branch cuts should naturally appear, and should naturally be removed, in a more 

general formulation of gluing. 
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This issue of the appearance of cuts and folds in the world-surface is a crucial 

part of the result that we will prove in II. The geometry of this more general 

gluing is shown in Fig. 13. Let C and D be the states contracted by the BPZ 

inner product, as in the analysis of the previous section. However, let us drop 

the requirement that the mappings which embed the states C and D in the A 

and B planes be SL(2,C). Th en if we glue C to D by mapping C and D to the 

interior and exterior, respectively, of the unit circle on a third plane F, the A 

and B planes will be carried onto this third plane in a manner which is not, in 

general, single-valued. The image of the A plane in the F plane will have branch 

cuts outside the unit circle, and the image of B in the F plane will have branch 

cuts inside the unit circle. However, the Riemann covering surface for F formed 

by joining these exterior regions will have the topology of a plane. Thus, there 

exists a conformal mapping g(z) which maps this covering surface into a final 

plane G in a single-valued manner. (This mapping is unique up to SL(2, C).) 

The mapping g(z) is a smoothing operation which irons out the branch cuts. 

With this geometrical picture in mind, we may state our main result, the 

GeneraZized Gluing and Resmoothing Theorem (GGRT): Let (v{A()CI be defined 

by 

(v{Ai}CI n IAi) @ IC> = (n(hAi [OAi]) hc[&]) (7.32) 
i i 

and let (v{Bj)D( be defined similarly. Then, if IrCD) is the BPZ inner product, 

the fused vertex 

(v{Ai}{Bj}i = (v{Ai}Cl (v{Bj}DI IrCD> (7.33) 

is given by 

(v{Ai}{Bj}l r]: IA4 @ n 1B.d = (n(‘Ai [OAi]) n(iBj[oBj])) 7 (7.34) 
i i i i 
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where 

‘Ai = g o h,’ o hAi 

‘Bi = g o Iohi’ ohgj, 
(7.35) 

and g in these definitions is the smoothing transformation described in the pre- 

vious paragraph. The presence of this element in our final result treats the 

singularities created by the general gluing process and insures that we are free 

to map our -world surface onto a simple cover of the complex plane in order to 

assess its symmetries. In particular, it precisely justifies the argument for the 

symmetry of the Witten vertex displayed in Fig. 10. This theorem will be proved 

in II for the open and closed bosonic string. 
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8. Gauge Invariance of Witten’s String Field Theory 

Now that we have in hand the general relation between the Hilbert-space 

manipulation of contraction with the BPZ inner product and the geometrical 

operation of gluing and smoothing, we have all the formalism we need to complete 

the proof the gauge-invariance of Witten’s string field theory action. In this 

section, we will present that proof, and exhibit some generalizations of it. 

Following the notations of Section 4, we write the Witten action as 

;g(T’h[“] Th[B] h[&]) , 

, (8.1) 

where h(z) is the mapping given in (6.17) and the vertex in the second line is 

that following from this choice. The subscripts label distinct single-string Hilbert 

spaces. We claim that this action is invariant under the transformation 

6 l@)1 = Q IA), + 9 (v2451 1112) [I@), @ iA>5 - iA>4 @ I%] 3 (8.2) 

where IA) is a state of ghost number (-1) and even Grassmann parity. To check 

this, insert (8.2) into (8.1) and study the terms at each order in g. At order 

go, we can use the result (4.20) that the kinetic term is symmetric in its two 

arguments to write the variation as 

H(O) = 2(1rzl I@), 8 Q2 /A)2 = 0 . ( 8.3) 

Using the cylic symmetry of the vertex, we can rewrite the order g1 variation in 
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the form 

bS(l) = 2g (V1451 Q l@jl @ [I@), @ IA>5 - IA)4 @ 1@)5] 

+ 2g (vl231 Q IA) @ I@‘>, @ I@>, 

= 2g (vml [Q I@), @ I@)2 @ IA>3 - 1% @ Q I@)2 @ iA)3 
(84 

+ I@)1 @.I@)2 @  Q IA),3 , 

which vanishes by virtue of the identity (5.13). F inally, the order g2 variation is 

&2) = ;g2 (b3451 I@>, @ I@>, @ [I@), @ iA>5 - IA)4 @ I’),] ) (8.5) 

where the four-string vertex which appears here is that obtained by gluing and 

smoothing two three-string vertices: 

(v23451 = (vl231 (hi451 1116) * (8-6) 

If this object is cyclically invariant, (8.5) is a difference of two terms which 

cancel exactly. That the four-string vertex built from Witten vertices is cyclically 

invariant follows from our geometrical interpretation of gluing (backed by the 

analytical work which we will present in II) and the physical picture of the glued 

vertex shown in Fig. 10. This completes the proof of gauge invariance. The 

argument we have just given is essentially identical to that given in Witten’s 

original paper; here, however, all ingredients of the formalism have been defined 

precisely and all postulated relations of these objects have been verified. 

Now that we can claim to understand fully the Witten open string field 

theory, we should inquire to what extent this theory is unique. We have already 

noted that an arbitrary vertex of the form (6.1) leads to an action which is gauge- 

invariant through order g l. Presumably, given any such vertex, it is possible to 

add four- and higher-string vertices, order by order in g, to achieve any desired 
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level of gauge-invariance. We have not pursued this idea; rather, we will concen- 

trate on the question of whether there exist open-string actions inequivalent to 

Witten’s which terminate after the three-string vertex. 

What constraints must the vertex in such an action satisfy? Obviously, it 

must link open strings; this implies that the mapping h which defines the ver- 

tex must satisfy an appropriate symmetry condition. If the real axis is taken 

to represent the open-string boundary, h must be symmetric with respect to a 

reflection in the real axis. We have found it convenient to represent the string 

boundary as the unit circle, so that T is simply the rotation Tz = e2ri/3z. Then 

h must convert this reflection to an inversion in the unit circle. Indeed, (6.17) 

satisfies 

h(z) = l/h(z) . (8.7) 

A second constraint is much less trivial but follows straightforwardly from the 

logic of eqs. (6.14)-(6.16). Let us formally represent the gluing of two vertices of 

the form (6.1) in the following way: Apply the conformal transformation h-’ to 

bring the third region to the unit circle. (This transformation does not act in a 

single-valued way on the whole plane; we will soon see the consequences of that 

fact.) Then glue to produce a 4-string vertex and restore the original geometry 

by acting with h. This gives: 

(T’h[&] Th[&] hlh-‘T2h[OE] hlh-‘Th[&]) . (8.8) 

To check the cyclic symmetry of this construction, we would cycle A into B by 

acting on each state with the SL(2, C) t ransformation T. Then A cycles into F 

and E into B only if the following conditions hold: 

h = hlh-lTh = hIh-‘T2h. (8.9) 

It seems that we have already reached a contradiction: We apparently require 

2’ = T2, while T3 = 1 but 2’ is nontrivial. However, our discussion of Fig. 
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10 explained that this contradiction is in fact avoided for the Witten vertex. 

The mapping h( z used in the Witten vertex is nonanalytic at two points on ) 

the image of the unit circle. A z2j3 branch cut runs across the complex plane 

from one of these points to the other. Then the mappings ITh(z) and IT2h(z) 

carry the unit circle into two regions with the same coordinates on this plane but 

standing on opposite sides of the branch cut. Precisely because this branch cut 

corresponds to a z2i3 singularity, multiplication by T carries the first region into 

the second.. The singularity structure of the function h(z) given in (6.17) is thus 

not accidental but required for gauge invariance. To put it succinctly, we need 

hI = T-‘h (8.10) 

in Fig. 11: the transformation z --) I(Z) corresponds to w + eirw, and we 

have cut the w-plane in such a way that this rotation gets transformed into 
y + e--2*i/3ya 

A more general gauge-invariant 3-string vertex must also satisfy (8.7) and 

(8.10). Let us investigate whether theere are any additional solutions to these 

constraints which have the form of contact delta-functions on the world-sheet. 

Any such vertex will carry the unit circle to some conformal transform of the 

region which produces the Witten vertex. We should have, then, 

ii=h& (8.11) 

A mapping of this form satisfies (8.7) and (8.10) if i commutes with I and 

if i(z) = 4(z). H owever, mappings satsifying these condition belong to a very 

special class. If we consider a(z) as generated by a vector field U(Z) = C trnzSn+’ 3 

the condition that 4 commute with I implies Iv(z) = V(Z) and hence there is a 

vector field w(z) such that 

c v-n&x = C W-n (Ln - (-)nL-n) = C W-,.Kn , (8.12) 
n n n 

where the Kn are well known to generate the reparametrization symmetries of 

Witten’s vertex. 
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The explicit proof that the Kn are symmetries of the vertex is quite straight- 

forward in our formulation and provides a nice application of the result (8.10). 

We have to show 

(v,,3 1 (Ki’) + Ki2) + Ki3)) = 0 , (8.13) 

for all n > 0, or equivalently, for arbitrary states OA, 0~ and &, 

0 = f zzn+‘{ (T’h[(Tzz(*) -IT,,(*)) &+‘++[Oc]) 

+ (T2h[h]Th[(Tzr(*) -IL(=)) OB]h[&]) (8.14) 

+ (T’h[OA]Th[OB]h[(T~*(*) - IT,,(z)) Oc]) } . 

But by hI = T-‘h the terms on the right hand side cancel pairwise, and this 

completes the proof. Notice that (8.14) holds for any conformal field, including 

the ghost fields. By a similar argument and [Q, Ln] = 0, the Kn also leave the 

kinetic term of the action invariant. 

How can we reconcile the fact that the K, generate nontrivial transforma- 

tions of the form (8.11) with the identity that the Kn leave the Witten vertex 

unchanged? It is instructive to write explicitly the finite conformal transforma- 

tion generated by the operator Kn; this is 

Sk(*) = ( Zn + (-l)nan 1’n 

) 
1+ UnZn l 

(8.15) 

This mapping is analytic in the vicinity of the unit circle, but for a,, small it 

has a complicated branch structure near the origin, with branch points at z = 

-(an)‘k The cancellation shown in (8.14) assumes that the branch cuts which 

emerge from these points are disposed symmetrically with branch cuts at large 

z (2 = (-a;‘)‘/“), and that none of the branch cuts cross the unit circle. The 
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original conformal plane is then mapped to a branched Riemann surface. To 

define the conformal field theory matrix elements on this Riemann surface, we 

smooth out the branch cuts by mapping it back to a plane. This map restores 

the original configuration of the Witten vertex. The transformations (8.11), then, 

produce no new gauge-invariant vertices. 

We would like to point out, however, that our formalism allows a wide class 

of BRST-invariant vertices which are not contact delta-functions but are, rather, 

nonlocal overlaps on the world-surface. We consider it likely that, among this 

class of vertices, additional configurations can be found which satisfy the criteria 

for gauge-invariance. We consider this a promising avenue for further investiga- 

tion. 
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APPENDIX : The SL(2, C)-Covariant Ghost Propagator 

In Section 5, we needed to rearrange the system of ghost propagators and 

zero modes in order to give an economical proof of the SL(2, C)-invariance of 

our vertex. In this appendix, we will prove the validity of that rearrangement. 

The strategy of our argument was the following: In the formulation of the the- 

ory used in most of the paper, nonzero correlation functions of 6 and c operators 

were evaluated by summing all possible contractions of c operators to the b oper- 

ators and to the three zero modes. However, in the proof of SL(2, C)-invariance, 

we found it more convenient to consider three particular ghost operators at the 

three points h1(0) to be contracted to the zero modes. To justify this change in 

the calculational rules, we needed to find a modified ghost propagator which, in 

conjunction with the new rules, reproduces the results of the first formulation. 

To solve this problem, let us generalize and abstract it a bit. Consider a 

system of ghosts with the propagator 

(@+(w)) = G(w) 

and the c zero modes Z,(w), . . . , Z,(w). A correlation function of m b’s and 

(m + n) c’s is then calculated by contracting the c’s to b’s and zero modes in 

all possible ways. Now let the locations of the c’s be divided into two classes: 

Xl )..., xn, Zl,..., z*. We would like to rewrite the formula for the correlation 

function in such a way that the fields c(x;) are contracted only to zero modes 

and the fields c(zi) are contracted only to 6 fields. 

If we compute with the standard rules, a general correlation function has the 

value (up to obvious minus signs which are accounted systematically in our main 
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development) 

@(Zl)b(Z2) * - - q&l)c(x1) ’ l ’ c(xn)c(w) ’ l - &?a)> 

&(x1) --a Z&n) A(w) “’ Qh) 

22(x1) -a- 22 (4 22(w) **a z2(wn) 
. . . . . . . . . . . . . . . . . . 

2,(x1) ‘- * z&J Zn(w1) ‘. * z&h) 

G(zl,xl) 1.. G(zl,xn) G(zl, WI) . . . G(z1, wm) 
. . . . . . . . . . . . . . . . . . 

G(zm, x1) . . . G(z,,,,xn) G(zm, WI) . . . G(zm,wn) 

(A-2) 
. 

But we can rearrange this determinent to isolate the upper left-hand corner. To 

do this, subtract a multiple of the first column from all successive columns to set 

all elements after the first in the top row equal to zero. Now subtract a multiple 

of the new second column from all successive columns to set all elements of the 

second row after the second equal to zero. Proceed through m steps. Then the 

above determinant takes the form: 

&(x1) 0 . . . 0 0 . . . 0 

22(x1) 22,2 ** * 0 0 . . . 0 
. . . . . . . . . . . . . . . . . . 

&(x1) Al,2 - - * imp 0 . . . 0 

G(zl,xl) &,3+1,2 . . . kn+l,m G(zlm) . . . G(z~,wm) 
. . . . . . . . . . . . . . . . . . 

G(z,n,xr) &+n,2 . . . &+n,m G(zm,w) . . . G(zm,wm) 

= 21(~1)22,2---&,~ *detIG(zj,wk)I . 

(A-3) 

This procedure for reducing the original determinant depends mainly on the 

values of the 2 (xi); the final result for any other matrix element depends only on 

the original matrix elements in the same column or the same row. Thus, we can 

recognize the ingredients of the last line of (A.3) in smaller matrices of similar 
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structure. For example, the product of 2% in (A.3) appears in the same way in 

the reduction of the m x m determinant of zero modes alone: 

21(~1)22,2*--f~,~ = detlZi(zj)l . (A.4 

Similarly, the same G(zj, wk) would appear from an (m + 1) x (m + 1) matrix: 

detIZi(zj)I . G(z,w) = 

&(x1) &(x2) *a’ Zl(hn) Z,(w) 

22(x1) 22(x2) --a Z,(%) Z,(w) 
. . . . . . . . . . . . . . . 

zn(~l) an *a * Zm(Gr&) Z,(w) 

G(z, XI) G(z, 52) . - . G(w,) G(z, w) 

With the identification (A.4), we write the result of (A.3) as follows: 

(A-5) 

@(Zl)b(Z2) - - * +h)+l) * - - C(%&(W) - - - +4ia)> 

(A-6) 

= detlZi(zj)l .detIG(zj,t~k)I . 

This is exactly the result we had sought. Eq. (A.6) instructs us to saturate the 

zero modes of c with the fields c(xi) and then contract the b(zj) with the c(wk) 

using the propagator G(z, w). This new propagator depends, of course, on the 

locations of the x;. It may be evaluated explicitly using the formula (A.5). 

For the case of interest to us, set Zi(x) = xi+‘, for i = -l,O, 1, and G(z, w) = 

l/(z - w). Then it is not difficult to work out: 

detlZ;(xj)l = txl - x2)(51 - x3)(22 - 33) 

G(zyw) = (z T w) j=v2 3 

(w - Xi) 

(z - Xi) - 
I , 

P.7) 

This is the Green function which was presented in eq. (5.11). 
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FIGURE CAPTIONS 

1) Hamiltonian evolution on the Euclidean plane, viewed as the conformal 

image of time evolution on a cylinder or string. 

2) Equivalence of a contact delta-function to an operator expectation value. 

3) Construction of string interactions by mapping canonically defined string 

states into the conformal plane. 

4) The conformal transformation which proves the symmetry of the string 

kinetic energy term. 

5) The contour deformation which proves the BRST invariance of the vertex 

in its most general form. 

6) Two simple choices for the conformal mappings which define the 3-string 

vertex. 

7) A view of the CSV vertex, using T given by (6.3). 

8) A second view of the CSV vertex, using 2’ = e2ri/3. 

9) The geometrical operation which corresponds to the contraction of two CSV 

vertices. 

10) The figure which results from the contraction of two Witten vertices, in 

shown in three views. 

11) Derivation of the conformal mapping required for the construction of the 

Witten vertex. 

12) Geometry of the gluing resulting from the contraction of circles by the BPZ 

inner product. 

13) Gluing and subsequent smoothing in the contraction of two string field 

vertices. 

72 



t 

Fig. 1 



OB 

0 (&r 

OA 

@ 

5895A2 

Fig. 2 



I 

5895A3 

Fig. 3 



(TJQ 
11-87 

Fig. 4 



cl 
.Q 

A 

0 B 

0 C 

= 

i i -87 
5895A5 

+ 2 more 

L 
3 

Q 

A 

b B 

QJ C 

Fig. 5 

= 0 



I 

( > a 

< 

--e- a-- 

11-87 

Fig. 6 

5895A6 



Fig. 7 



11-87 5895A8 

Fig. 8 



11-87 

Fig. 9 



11-87 

w 

E 

5895AlO 

Fig. 10 



11-87 5895All 

Fig. 11 



11-87 

I B 0 j 
e3 

D 

5895A12 

Fig. 12 



h I C 

A 

11-87 

c 
g 

0 

5895A13 

Fig. 13 


