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ABSTRACT

We formulate s.triné field theory geometrically by writing each term in the
field theory action as an expectation value in the 2-dimensional conformal field
theory on the world-surface. We show how the symmetries of the theory can
be analyzed and the gauge-invariance demonstrated from this point of view. As
an application, we give a complete proof of the gauge-invariance of Witten’s

open-string field theory.



1. Introduction

The current interest in strihg theory as a unified model of the fundamental
interactions has created a renewed interest in the foundations of string theory and
the formulation of a field-theoretic basis for string mechanics. The original work
on the quantum mechanics of strings, especially the papers of Goddard, Gold-
stone, Rebbi, and Thorn,m Ma.ndelsta.m,m and Kaku and Kikkawa!al presented
a complete description of interacting strings and string fields from the viewpoint
of the light-cone gauge. More recently, Green and Schwarz [4] have improved this
light-cone gauge field theory and generalized it to encompass their superstring

theory. Siegel (5]

presented a covariant formulation of the field theory of strings,
and this development led to an explosion of results on gauge-invariant string field
actions. At this time, there are two complete and successful formulations of the
open bosonic string theory: The first of these, which generalizes the light-cone
formulation, has been developed by Siegel,ls] and Hata, Itoh, Kugo, Kunitomo,
and Ogawa.[6’7] The last of these groups, in particular, has constructed the theory
in complete detail and has carefully studied its consistency. The second formu-
lation, based on a suggestion of differential geometry in the space of strings, was

invented by Witten (8]

[

eral groups.9_34] Some parts of these formalisms have been generalized to closed

35441 ,nd to superstrings.[“_“]

and has been amplified and made more concrete by sev-

bosonic strings

Despite this progress, however, the current formulations of string field the-
ory are unsatisfactory for a number of reasons. The most obvious of these is
that, while the quadratic term of the string action simplifies beautifully by the
introduction of ghost variables on the world surface, the interaction terms are
exceedingly complicated. In all known formulations of string field theory, it is
a matter of great difficulty to even to verify gauge-invariance explicitly; it costs
still more trouble to develop the rules of Feynman diagram perturbation theory.
If string field theory is eventually to be a tool which can aid us in understanding

string dynamics, we must find some way to simplify its internal structure so that



it can become the basis for new computations rather than just a complicated way

[

of obtaining known results. Giddings and Martinec 21] have made an important
step in this direction, by formulating a set of rules which intuitively correspond to
Witten’s open string field theory, and showing that these rules lead to the com-
plete perturbation series. The problem remaining is to complete their formalism
by deriving their intuitive starting point from a Lagrangian. A second, equally
pressing problem, is that many different formulations of the interacting theory
have been proposed,[a’s—’ss—sg] and it is not at all clear what transformations one

can use to convert one of these formulations into another.

In sharp contrast to this awkward situation, the perturbation series for string
interactions follows straightforwardly from considerations of conformally invari-
ant quantum field theory on the world surface of the string. It seems quite clear
that this conformal field theory is the natural setting for the calculation of string
interactions.leo] In addition, the underlying structure of conformal field theory,
as laid out by Belavin, Polyakov, and Zamolodchikov l61] (BPZ), is beautifully
simple. We were led to apply this technology to reformulate string field theory,
with the idea of representing each term in the string field theory action as a
conformal field theory expectation value. In fact, this reformulation is readily
accomplished, and what results is a setting for string field theory which is already
highly geometrical and whose symmetries of transmutation are quite obviously
displayed. In this series of papers, we will present this new formulation of string
field theory from start to finish for the case of the bosonic open string. We will
set up the action, prove its gauge invariance, and derive the perturbation theory

rules of Giddings and Martinec, making use of intuitive geometrical constructions

but also supporting these with concrete analysis.

The plan of the present paper is as follows: In Section 2, we will review the
formalism presented by BPZ for transcribing between expectation values in 2-
dimensional conformal field theory and Hilbert space matrix elements. We will
give particular attention to the Hilbert space inner product introduced by BPZ,

since this will play a central role in our analysis. In Section 3, we will review in a



very schematic form the basic structural elements of string field theory and the
strategy for proving gauge invariance. In Section 4, we will begin our analysis
proper, presenting the basic concepts necessary to write the string field theory
Lagrangian in this language, and we will display a rather general form of the
string field theory vertex in an expansion in normal modes. In Section 5, we
will discuss the symmetries of the string field theory vertex and show how the
conformal field theory formulation makes these manifest. In Section 6, we will
make these considerations more concrete by considering two explicit forms for
the 3-string vertex—the dual model vertex of Sciuto and Caneschi, Schwimmer,
and Veneziano °?! (CSV), and the 3-string vertex proposed by Witten!®) We will
devote considerable space in this series of papers to the CSV vertex, even though
it will not prove completely satisfactory as a string field theory vertex, because
this vertex is wonderfully simple and provides the most accessible illustration of

the rules for analyzing and combining string vertices within our formalism.

Our discussion of the CSV and Witten vertices will introduce the idea that a
contraction of string field theory vertices may be interpreted as a gluing together
of pieces of string world-sheet. As an intuitive notion, this idea has motivated
much of the development of string field theory, from the original work of Man-
delstamm to the more recent developments of Giddings and Martinec/*!! The
analysis of this series of papers will be aimed toward defining this notion in a
precise manner. In Section 7, we will present the first segment of this argument;
we will demonstrate, by explicit calculation, that the gluing operation suggested
by the analysis of Section 6 actually does result from explicit operator manip-
ulations when two CSV vertices are contracted using the BPZ inner product.
This calculation gives a special case of a more general result which applies to the
gluing of string field theory vertices of arbitrary form. That ‘Generalized Gluing
and Resmoothing Theorem’ (GGRT) is the basic result which justifies the use
of geometric intuition in string field theory, by making precise the way in which
a given vertex acts to sew together regions of the conformal plane. The proof

of the theorem in its full generality, is, however, rather involved. We will end



Section 7 with a statement of the theorem and reserve the proof to the second

paper of this series.

In Section 8, we will return return to our study of the Witten open string
action and apply the GGRT to give a simple but completely explicit proof of
its gauge invariance. We will then argue that this vertex is the unique gauge-
invariant, three-fold symmetric vertex, at least within the class of vertices built

from contact interactions on the world-sheet.

fes] (which we will refer to as II) will be devoted

The second paper of this series
to proving the GGRT for the case of bosonic open and closed strings. The heart
of the proof will be an explicit demonstration that the elements of the normal
mode expansion of the vertex presented in Section 5 can be recombined into
meromorphic functions which reflect directly the geometry of the glued surface.
This will confirm the precise relation of the operator and geometric pictures of
string field theory. The third paper of this series [64] (which we will refer to as
III) presents the application of this formalism to the derivation of the string

perturbation series. Here we will show how our formalism provides a coherent

underpinning for the results of Giddings and Martinec.

The general idea of setting string interactions onto the conformal plane is,
of course, an old one, and conformal manipulations played an important role in
many of the early papers, including those of Ademollo, del Guidice, di Vecchia,
and Fubini£65] and Mandelstam,m as well as a remarkable paper of Lovelace [66]
which we took up specifically as a source of inspiration. In the recent literature,
Neveu and West [67] have emphasized the conformal relation of different string
vertices. Various pieces of our explicit construction have been presented indepen-

[19] and

dently by a number of groups: In particular, Itoh, Ogawa and Suechiro
Eastaugh and McCarthy[M] have also derived the explicit form for the Witten
vertex presented here, and Di Vecchia et al.[esl have also found the generalized
form of the CSV vertex which we will discuss. Gross and Jevicki 1 have given a

different explicit proof of the gauge invariance of the Witten string field theory



[

action (at least up to the question of overall factors), and Thorn % has discussed

many aspects of the derivation of perturbation theory.

Our formalism subsumes and unifies these various results. Indeed, we view as
our most important conclusion just this demonstration that the whole technology
of string field theory can be discussed in a unified way using the language of
conformal field theory. We hope that this language will prove useful in stimulating
further developments in string field theory, and more generally in the study of

strings.

2. Conformal Field Theory

We begin by reviewing the elements of conformal field theory needed for
our analysis, using as an illustration the example of the bosonic string in a flat
background space-time. In particular, we would like to review the formulation
of this theory this theory within the general description of conformally-invariant
quantum field theories given by Belavin, Polyakov, and Zamolodchikov (BPZ),
and, especially, to recall the connections presented by BPZ between correlation
functions of conformal tensors and the underlying Hilbert space structure. Our
discussion of string theory within this formalism relies heavily on the work of

(60]

Friedan, Martinec, and Shenker.

We will study the bosonic string in orthonormal gauge, and using a Euclidean
metric on the world-sheet. After gauge-fixing, the action for modes propagating

on the world-sheet has the form:

d?z .1 -
S = _—{‘EazX“aEX” + bzzaicz + bﬁazcz} . (2-1)
T
where X* is a the space-time coordinate and c?, b;, are the reparametrization
ghost and antighost. The tensor structure of these parameters reflects the fact
that ¢® must transform as a world-sheet reparametrization 6z = £%; b,, trans-

forms as a metric variation é¢,..



The action (2.1) is an example of a conformally-invariant quantum field the-
ory. The action is invariant under general conformal transformations z — f(z),
while the fundamental fields transform as conformal tensors. The transforma-
tion law of a tensor (or, in the language of BPZ, a primary conformal field) is
determined by its scaling dimension. We will write the transformation law of a

primary field ¢(z) of dimension d as

1] = (@) - (2:2)

The fields 8,z#, ¢*, b., transform as primary fields of dimension 1, -1, 2, respec-

tively.

The correlation functions of any Euclidean field theory may be generated
from a Hamiltonian evolution by slicing the Euclidean space by planes normal
to a given fixed vector and then defining the Hamiltonian to be the generator
of translations along that vector. In a conformally-invariant field theory, one
has the additional freedom of slicing the space by any set of curves conformally
equivalent to parallel planes. A particularly convenient choice is shown in Fig.
1: By mapping from a cylinder sliced by parallel lines, we can consider the
conformally-invariant field theory on the plane to be generated by an evolution
in which the equal-time surfaces are concentric circles. The Hamiltonian for this
evolution is the dilatation generator Lo. This prescription is known as radial
quantsization. It is obvious from the figure that this evolution is closely related

to the natural time evolution for (closed) strings.

In radial quantization, charges are defined as integrals around circles:

dz
= —7(2) . 2.3
Q o (2) (2.3)
If, as is often the case, the charge density is an analytic function, the contour
of integration may be freely deformed. Since the Hilbert space interpretation

of a correlation function sets the operators in (radial) time-order, equal-time



commutators of charges with operators ¢(w) may be written as differences of
correlations functions with the contour displaced slightly to either side of the

point w. In other words,

L @ bw) ) (2.4)

271

(o [@dlw)] ) =

where the contour encircles the point w. Equal-time commutators may then be
related directly to singularities of the operator-product expansion of j(2) and
#(w). A particularly important set of charges are the Virasoro operators, the

Fourier components of the energy-momentum tensor element T,

d
L, = f—Z%z"‘H T22(2) . (2.5)

In any conformally-invariant theory, T,, is an analytic function of z; in the

bosonic string, it has the explicit form
1
Tz2(2) =— 56,1:"6,:1:“ 4+ 20,¢%b,, + c%03b,; . (2.6)

The operator product of T, with a primary field has the general structure

Toa(2) 8(w) ~ =gz 6l0) + + 2y dud(u) (2.7

this relation is equivalent, by the use of (2.4), to the commutator
[Ln,¢(w)] = d-nw"¢(w) + w"t18,¢(w) . (2.8)

This is the infinitesimal form of (2.2), for the particular variation
L, & w—w+ ew"t, (2.9)

Notice that Lo generates an infinitesimal dilatation; this operator is precisely the

Hamiltonian of radial quantization introduced above.



It is convenient to define the Fourier decomposition of an arbitrary primary
field by

(e o]
dz
— —-n—d . — Yo ntd-1
$(2) = D bnz"Y5 bu = § o2 é(2) . (2.10)
n=—oo
The notation is arranged so that (2.7) leads to
[Lo,¢n] = —nén, (2.11)

so that the ¢, are ladder operators for Lo. For the bosonic string, define (drop-
ping henceforth the indices of b and ¢):

at = %znazx“(z)
by = ]( %z"“b(z) (2.12)
Cn = %z"'zc(z) .

The action (2.1) leads to the free-field propagators

1
(- w)

(#(2)a* (w) = —6¥log(z —w);  (b()e(w)) =

(2.13)

({(z(2)z(w)) represents only the part of the contraction which contributes to an-
alytic, as opposed to anti-analytic, correlation functions.) Using (2.13) together

with (2.4) and (2.12), we find the commutation relations
[ak,ak,] = —6*"né(n+ m) ; {bn,em} = 6(n+m). (2.14)

Thus, the operators defined in (2.12) are the usual string ladder operators ™.

* A more conventional notation is of = iak.

10



In radial quantization, the point z = 0 (or, more generally, the center of
the concentric circles) represents t = —co. In quantum field theory, one usually
defines the vacuum as the state which develops from t = —oo; the generalization
to radial quantization is to define the vacuum |0) to be the state which develops

from the point 2 = 0 when we put no operator there. More concretely,

(- ul0) = < ﬁ"'—z"“**qs(z)} , (2.15)

27t

with the contour enclosing no other operators. From this it follows that ¢,

annihilates |0) if n > (1 — d). For the bosonic string, this tells us that

akl0) = 0 forn>0

Il
=)

cn |0) forn > 2
(2.16)

b |0)

fl
=)

forn > —1

L,|0) =0 forn>-1.

In string theory, the operator a! is proportional to the center-of-mass momentum
of the string. We can see that our af has that property, and identify the states

of definite momentum, by using the contraction (2.13) to compute

1

= (—ipk) P XO o)

It will be useful to note that exp(ip - X(2)) is a primary conformal field with
dimension d = p?/2; the reader may verify this by using the propagator (2.13)
to check the operator product (2.7).

Now that we have identified the vacuum on the right, we still need to identify

the vacuum on the left and define a suitable inner product. It is natural to define

11



the left vacuum as the state which develops by evolving backward from ¢ = oo,
that is, from 2z = oco. Then, following BPZ, we can set up an inner product as
follows: Let I(z) be the conformal transformation which interchanges the interior

and exterior of the unit circle, while taking the upper half plane to itself:
1
I(z) = - (2.18)

Each state in the Hilbert space of the conformal field theory may be created from

|0) by a corresponding operator
lA) = 04 ]0) . (2.19)

O4 may or may not be a primary field. In any case, define the dual of the state
|A) created by O4 as the state created by the operator formed by acting on O4

by the inversion R according to the conformal transformation law (2.2):
(A|B) = (I[o,,] 0s) - (2.20)

It is straightforward to compute, by a change of variables

= § 9% nva-r (Lyay 1
I[¢"] B f27ri e (zz) ¢ z) (2.21)
— (_1)n+d ¢_n :

thus, the adjoint operation with respect to this inner product does carry ¢, to
#—n, as expected. The inner product (2.21) is linear in both arguments, rather
than antilinear in one and linear in the other, but, because the two-dimensional
fields X#, b, and ¢ are real, this will be not be a serious difficulty. However, our
string component fields will be forced to obey a somewhat complicated reality
condition, to be discussed in Section 4. Because b and ¢ are Grassmann fields,
whose ordering is crucial, it is important to note that a conformal transforma-
tion such as I does not change the formal ordering of operators with respect to

Grassmann multiplication.

12



Eq. (2.20) has the following physical interpretation: The states |A) and |B)
may be thought of as superpositions of field configurations on the unit circle, with
|B) defined just inside and |A) defined just outside. The inner product should
overlap these states with a contact delta-function. The right-hand side of (2.20)
indicates that we can use the evolution generated by Lo to retract |B) and |A)
to states created by operators acting in the vicinity of 0 and co. Thus, a rigid
constraint along a single line can be transformed into a more flexible expression
involving dynamics on the whole conformal plane. That transformation is shown

graphically in Fig. 2. This observation will be the key to our analysis of string
field theory.

The adjoint of the last relation in (2.16) tells us that
(0| L, = 0 forn<+1. (2.22)

Thus, the three generators L_,, Lo, L; annihilate both of |0) and (0| and thus are
symmetries of all conformal field theory matrix elements. These three charges,
plus the corresponding charges built of anti-analytic fields, generate the SL(2, C)

subgroup of conformal transformations

az+b
cz+d’

2 —

ad—bc=1. (2.23)

These transformations will be manifest symmetries of string field theory, in a
sense that will become clear in Section 5. We will refer to |0) henceforth as the

SL(2,C)-invariant vacuum.

Since b has the same dimension as T, the operators b_;, bo, b; also anni-
hilate both |0) and (0|. On the other hand, the operators c_;, ¢o, ¢ annihilate
nesther of these states. We may interpret this by saying that the three SL(2,C)
transformations of the conformal plane are zero modes of the field ¢(z), and that

these must be saturated in order to obtain a nonzero matrix element. If this

13



interpretation were correct, we would expect:

(e(z1)e(22)c(23)) = det|Zi(z;)| ' (2.24)

where the Z;(z) are the three zero modes: Z;(z) = (1, 2, 2%) for ¢+ = —1,0, 1, and

7 =1,2,3. Indeed, if we choose a normalization by writing
(0‘6_16061 |0) =1 ) (2.25)

and use this together with the Fourier expansion (2.10) to evaluate (2.24), we
find

1 1 1
(c(z1)c(22)c(28)) = |21 22 =z3), (2.26)
2} 23 23

as required. In general, conformal field theory matrix elements will be nonvan-
ishing only if they contain 3 more ¢ operators than b operators. If we define a
ghost charge G such that ¢(z) raises G by 1, and b(z) lowers G by 1, then the
conformal field theory matrix element annihilates G = 3. It will be convenient to
define a left vacuum which has a nonzero overlap with the vacuum |0) and can

give nonzero matrix elements to operators with G = 0. Let us, then, define

(3] = (0]c—1coc1, sothat (3|0) = 1. (2.27)

The ghost charge nonconservation which we have found explicitly here reflects
a more general law which follows from the gravitational anomaly of the ghost
number current: AG = —3(g — 1) for conformal field theory on a Riemann
surface of genus g. We will see this more general conservation law realized in the

analysis in Section 5 of III.

14



3. A Precis of (Open) String Field Theory

Having now reviewed the basics of conformal field theory, we should turn next
to the elements of string field theory. In this section, we will review the basic al-
gebra of the field theory of open strings and the strategy for constructing a gauge
invariant action first presented by Witten®! These basic ingredients have since
been applied by many groups; in particular, Hata, Itoh, Kugo, Kunitomo, and
Ogawa 6] have shown in complete detail how a slight generalization of this alge-
bra appears for their light-cone-like vertex and guarantees the gauge-invariance
of their action. Our discussion in this section is intentionally schematic; it will
be the task of the next several sections to make precise the various operations

introduced here.

A string field @ is a functional of string embeddings X#(c). It has proven
useful to consider ® also as a functional of the configuration of reparametrization
ghosts b(o), ¢(0). A convenient basis for expanding such functionals is provided
by the Lo eigenfunctions of the first-quantized string theory. Keeping the depen-
dence on the center-of-mass coordinate z of the string in the coefficient functions,

we may expand:
0[z(0),b(0),c(0)] = [¢(z) + Au(z)al; + Tyu(z)at a”, +...]10) , (3.1)

where |(?) is a suitable vacuum state. The string field then contains an infinite
number of local fields, including states of arbitrarily high spin. These local fields
should be matrix-valued to incorporate quantum numbers via the Chan-Paton
prescription. The vacuum [1) should be chosen to be the string state of lowest
Ly. Since, as we saw in the previous section, the Lo lowering operator ¢; does
not annihilate |0), it makes sense to choose |1} = ¢; |0). Then, if its component
fields ¢(z), A.(z), etc. are of bosonic character, the string field ® will be an
anticommuting number. We will be somewhat cavalier about the commutativity
or anticommutativity of string fields in the remainder of this section; however,

we will take care to treat this issue correctly in our later discussion.

15



Let us now sketch the construction of an action for ®, of the form
S =K +gV, | (3.2)

where K is the free-field action, quadratic in ®, V is a 3-string interaction term,
and g is the coupling constant. A suitable form for K can be constructed by
making use of the BRST charge Q associated with the action (2.1):

dz

. 4 1
Q= poni, J=:¢{-30:2"0z" +0.c%.,.} . (3.3)

In the critical dimensionality, d = 26, Q satisfies
Q2 =0. (3.4)

Thus, if we write

K = (2|Q|2), (3.5)

this term will have the gauge-invariance

5|1®) = QJA) . (3.6)

It has been checked\with care that, if ® is restricted to states of ghost number
G = 1—that is, to the ghost number of the state |{?)—and A is correspondingly
restricted to G = 0, this gauge symmetry is exactly what is required to eliminate
all spurious degrees of freedom, and that the resulting gauge-fixed free-field action
coincides with the standard string theory in the transverse gauge. If the gauge
transformation law (3.6) is written in terms of local component fields, the first
component relation is exactly the linearized gauge transformation law 64, =

9., where A(z) is the leading scalar field in A.

16



We now wish to extend this structure to the interacting theory. Since this
theory should contain non-Abelian gauge bosons, the gauge variation of the vector

field should be generalized to contain the inhomogeneous term
6A, = X + g[AL, ). (3.7)

Thus, the transformation law (3.6) should be generalized to include an inhomo-

geneous term
| 56 = QP + g[8,4]. (3.8)
where
[B,A] = @xA — AxdD, (3.9)

and * is a suitable product on the space of single-string states. * can be repre-

sented as an operation joining the Fock spaces of two strings to that of a third
|A*B), = (Vitzs| |4), ® |B); ; (3.10)

the indices 1,2, 3 refer to the three Hilbert spaces. It is instructive to think of

the coefficients (V123 as the structure constants of the string gauge algebra.

The requirement that the string gauge algebra close,
(6A5]L — 536,\)@ = 6[!&,]{] o, (3.11)

produces some non-trivial conditions on |V}t43). In Yang-Mills theory, closure of

the gauge algebra depends on two properties: the Leibnitz rule for differentiation
AN = [8uMA] + [A,8,2] (3.12)

and the Jacobi identity
[[A4,A],A] + (cyclic) = 0. (3.13)
These requirements generalize straightforwardly to the string algebra. The gen-

17



eralization of (3.12) will be satisfied if Q is a derivation of the * algebra
Q(A*B) = (QA)*B + Ax(QB). (3.14)

Since the Jacobi identity is satisfied for any associative multiplication operation,
such as matrix multiplication in the case of Yang-Mills theory, the string gener-

alization of (3.13) will be satisfied if the * algebra is associative
(A*B)xC = Ax(Bx*C). (3.15)

These requirements are easily translated into conditions on (Vjt53|. Let (Vj23]
be the operator obtained from (V;193| by taking the adjoint of the states in the

Hilbert space 1. Then the derivation property is equivalent to the condition

(Vizs] (Q1 + Q2 + Qs) = 0. (3.16)

The associative property requires that (V23| be cyclically symmetric, and also
that the 4-point vertex obtained by contracting two of these objects be cyclically

symmetric:

(Viza| = (Vaa1| = (Vaio| . (3.17)
(Vi2s| (Vstaa| = (Vass| (Vtar| = --- (3.18)

It is straightforward to check (ignoring Grassmann minus signs) that the
conditions (3.16), (3.17), and (3.18) provide exactly the information required to

guarantee the gauge invariance of the action
2
s = (9|Ql®) + 39 (Vi2s| |@), ® |®), @ |®), . (3.19)

The derivation property and the three-fold cyclicity suffice to prove gauge invari-

ance to order g. We will see in the next section that these properties are trivial

18



to insure in a large class of string field theory vertices, including vertices which
are nonlocal on the world sheet. Thus, the demonstration that a string field
theory action is gauge-invariant to order g should not be taken to be a stringent
test of its validity. On the other hand, the order g? terms in the proof of gauge
invariance require the condition of four-fold cyclicity, and this condition is quite
nontrivial. We will argue in Section 8 that this criterion is satisfied only for
Witten’s specific choice of the vertex and a class of its generalizations. (Other
choices for the vertex require more complicated string actions, involving four-
and possibly highef-string interactions.) The condition of four-fold cyclicity is
actually closely related to the duality of string scattering amplitudes, in a sense

that we will make clear in Sections 3 and 4 of IIl.

19



4. Construction of String Field Actions

Now that we have described the operations needed to construct a gauge-
invariant string field theory, let us try to define these operations precisely. Our
strategy will be to represent string fields in terms of operators in conformal field
theory, and then define operations on string fields as conformal field theory matrix

elements of those operators.

Let us first set up a precise prescription for the decomposition of a string
field into local component fields. Off mass shell, this decomposition is a matter
of convention and can be altered freely by conformal transformations. Still, it will
eliminate considerable confusion, especially in our discussion of the symmetries
of strihg field theory, to define a canonical decomposition once and for all. Let
us, then, consider the Lo eigenstates of a first-quantized string theory to be
represented as boundary conditions on the unit circle of a conformal plane, with
each state evolving from a given collection of operators applied inside the unit
circle. For the closed string, this procedure is conceptually straightforward: A

given state may be represented as
|A) = --rc_ge_gb_pa*,a”, P4 X0 0) = 04)0) (4.1)

where a_p, b_p, ¢_p, are defined in (2.12) and @_,, b_y, €—,, are the correspond-
ing quantities built from anti-analytic fields. To discuss open strings, we should
properly construct conformal field theory on the upper half plane with Neumann
boundary conditions; however, we will use the shorthand of considering conformal
field theory on the full plane, but using the analytic sector only. This prescription
leads to the same algebra of ladder operators; after we cancel one awkward phase
in the correlation function of exp(ip - X) operators (noted explicitly below), it
gives the correct result for all string amplitudes. Most of our explicit analysis
will be done for the analytic sector alone. These results will apply equally well

to open and closed strings. Using one of these canonical decompositions, then,
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we can write (3.1) in the form
& = ) dald) = ) 640410) . . (4.2)
A A

The label A represents both the ghost and matter oscillator excitations in a given
string state and the center-of-mass momentum p%. Note that here, in contrast
to (3.1), we consider our reference vacuum to be the SL(2, C)-invariant vacuum.
Then the component fields of the classical string field theory (including those
fields written explicitly in (3.1)) multiply operators of ghost number G = 1. It

will be useful to give a name to the sum of operators appearing in (4.2):

& =) 4404. (4.3)
A

We can now define operations on the string field ® by mapping the unit circle
described in the previous paragraph into the conformal plane and computing the
joint expectation value with other fields. This operation is shown in Fig. 3. For
open strings, in which the real axis of the original circle represents the boundary
of the string and thus plays a preferred role, a conformal mapping of the circle
into the plane is uniquely specified in terms of the image of the boundary of the
unit circle, the image of the point z = 0, and the orientation of the image of the
real axis. For closed strings, the real axis is no longer preferred, but one normally

considers only states which are rotationally invariant in the unit circle.

It is simplest to begin by constructing the 3-string interaction. This can be
done by the following simple prescription: map 3 string states into the plane by
three arbtrarily chosen conformal mappings hi(z), h2(z), hs(z), analytic for 2

inside the unit circle, by defining

V(4,B,C) = (V13| |4),® |B), ® |C);

= ([0a] ha[0s] s|c])

The action of the conformal mappings on the string operators can be recon-

(4.4)

structed from (2.2); we will make this transformation explicitly in a moment.
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For our general geometrical arguments, we must require that the h;(z) are an-
alytic and invertible for |2| < 1. The condition of gauge-invariance will impose

stronger restrictions, which we will set out in Sections 5 and 8.

Notice that the ghost counting in the vertex works out precisely right: each
string operator has ghost number G = 1, and the conformal field theory matrix
element annihilates ghost number G = 3. This counting makes it slightly prob-
lematical to construct a kinetic energy term, since we apparently must include
together with the two string fields an additional operator with G = 1. But we

have a natural candidate for this operator; define

K(A,B) = (Ki2| |4), ®|B),
= (1{os] @0s) .

where I is the inversion (2.18) and Q is the BRST charge. Assembling the pieces,

(4.5)

we propose the following form for the open string field theory action:
S = (1[6] Qé) + -z-g (b [«p] ha [@] he[8]) - (4.6)

To check the validity of (4.6), we must verify that the kinetic energy term has
the correct form (3.5) and that the three string product satisfies the identities
listed in the previous section. To do this, it will be helpful to recast each term
of S in terms of more explicit operations on string states. Let us first discuss
the kinetic energy term. Before discussing this expression using the full Q, let
us evaluate this term with Q replaced by Qo = ¢oLo. When we quantize the
string theory in Section 2 of III and derive the perturbation theory, this will be
the gauge-fixed form of the kinetic energy term. Denote the simplified form of
K (A, B) as Ko(A, B).

Our first step is to evaluate Ko(A, B) for A and B tachyon states of the form:
|A) = ¢,eP24X(0)|0) . (4.7)
This entails a few subtleties. Before acting I on the operators in (4.7), we should
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move them slightly away from 2 = 0. Put the exponential, then, at z = ¢, with
the limit ¢ — O to be taken after the matrix element is evaluated. With this

prescription:

Ko(A,B) = <I[c1e"PA~X(€)] coLo cleipB-X(c)>

= <c_1(el2)%"?4€im-x(—%) co(%ng - 1) c1e"”"'x(‘)> (4.8)
- ‘ 14 1 V3P4 pa-pslog((—1/€)—¢)
= (c_1c0c1) - (‘2'1’3 -1)- (6—2) e .

To finish this calculation, we must introduce two additional rules: First, it is
well known that matrix elements of exponentials of free fields in 2 dimensions are
forced to O by infrared factors unless the coefficients in the exponentials sum to
zero. Let us implement that requirement by associating with every conformal field

theory matrix element of exponentials a momentum-conserving delta function:

<H €t'}’1~}((2-'1)> ~ (zw)dad(z PI) . (4'9)
1 I

Imposing momentum conservation on (4.8) causes the factors of (1/¢) to cancel;
then we can smoothly take the limit ¢ — 0. Note that this cancellation does
not require the tachyon states to be on shell. The second prescription corrects
for our shorthand treatment of the open string in terms of analytic fields: We
must replace log(z — w) by log |z — w| in the matrix elements of exponentials.

Evaluating (4.8) with these rules, we find

Ko(A,B) = (%sz — 1) - (2m)%6%(pa + p5) ; (4.10)

this is exactly the desired form for the tachyon kinetic energy term.

From this point, it is straightforward to evaluate K for all other string states.

Any other string state may be written as a string of Lo-raising ladder operators
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applied to a tachyon state
IA) = [ ~b_me_gc_pa_ma_n-- ] clc‘.p"'x(o) '0> . (4'11)
Let us define a phase (—1)"(4) by

I[[- bmmCtCeplmn ---]cl] co = (c—160)* (=1)"™ . |-+ apamepeebm -] ;

' (4.12)
the factors of (—1) arise both from the action of I, eq. (2.21), and from the
indicated reordering of Grassmann operators. For a physical string state, the
product of ladder operators in brackets in (4.11) has G = 0 and so contains the
same number of b and ¢ operators. Let us define A to be the state obtained
from A by interchanging the labels b and ¢ and sending p4 — —p4. Using these

definitions,
1 1 ~
KO(AaB) = (Esz + EMz) ’ (_l)r(A) ‘ G(A’B) ’ (4'13)

where -;—Mz is the usual bosonic string mass operator, equal to the sum of the

excitation numbers minus 1.

To make contact with earlier treatments of the kinetic term, we would like to
write Ko (<i>, <i>) as a Hilbert space matrix element. To do this, we must impose

the following reality condition on the component fields:

dalpa) = (—1)'("‘)(d’A(—pA))f ) (4.14)

where, in this relation, the dependence of the component field on the string
momentum is indicated explicitly. This condition is essentially the condition that
the string field be real under the combined operations of Hermitian conjugation

and reversing the direction of the string coordinate 0. The condition looks less
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strange if we note that it guarantees the reality of

<I[<i>] co <i>> (4.15)

and thus reinforces the BPZ inner product. The reader should note that we have
not yet defined r(A) for states annihilated by co; to do this, replace ¢o in (4.12)

by a simple Grassmann number. With all of these conventions,
,_ <I[<i>] Qé) = (2|Qol®) . (4.16)

Having now determined the structure of Ko(A, B), it is a simple matter to

see that K (A, B) has the correct form. First note that if we write

Q = Q + AQ, (4.17)

AQ annihilates the tachyon state. Thus, the desired equivalence

(18] Q&) = (2|Qle) (4.18)

holds for the tachyon components. From here we need only note that our reality
condition converts the string of ladder operators in I[04] into that in (A|, for
each higher string state A. The algebraic manipulations required to reduce the
higher matrix element to a tachyon matrix element are then identical on the two

sides of (4.18). This establishes (4.18) for all components of &.

As a check on this identification, it is instructive to show that the expression
(I|04]QOB) is symmetric under interchange of A and B, if A and B are states
with G = 1. This argument will make use of the SL(2,C) invariance of the
conformal field theory matrix element and the Grassmann nature of the three

operators. It will also use an important property of the BRST charge:
(Q,L,] = 0 ,foralln ; (4.19)

in other words, Q commutes with all conformal transformations. This relation,

which will play a crucial role later in our analysis, is true only in the critical
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dimension; it is easily proved by noting that, in that case, the operator product
of the BRST current j(w) with T, is a total derivative in w. We may apply

these ingredients as follows:

(1o aca) -

(4.20)

as required. The two minus signs in the third line have the following origin: one
comes from reversing the order of two Grassmann operators, the second comes
from reversing the direction of the contour of integration for Q. The origin of

this second sign is shown graphically in Fig. 4.

The evaluation of the 3-string vertex (4.5) in terms of Fock space states is
even more straightforward; this evaluation can be carried out explicitly for the
most general conformal mappings ki, h2, hs. For future reference, we note that
the analysis to follow is left unchanged if we relax both the restriction to 3 states
and the restriction to states associated with operators of G = 1, as long as we
continue to insist that the ghost charges of all the operators in the matrix element
sum to G = 3. To begin this evaluation, write explicitly the conformal transforms

of the various components of an operator O4:

hy [eip.x(o): _ Ihll (z)lpz/zeipA.X(hl (0)
hafass] = % 2= () (2)) 85z (1 (2)
_ J (4.21)
hifo-n] = § o2 (h1(2) b(ka(2))
h1 [c_n] = f 5‘-17% 27 "2 (h} (z:))_1 c(h1(2))
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The transforms of Op and Oc are computed similarly. Once all operators are
placed on the same plane, we can compute their joint expectation value by making

use of the contractions (2.13). For example,

bl am Jha] e -]

4.22
dz 1 ( )

—n (B! (2 d_ww_"‘ " (w —
= mz (hl( )) f27n' (hz( )) (R1(2) = ha(w))?

The factors of 3,z in the a_, operators can also contract with factors of p- X

in the exponentials. To complete the evaluation of the correlation function of

operators built from X(z), we must compute the matrix element of exponentials:

<H e‘”""""(°)’> = exp(Y pr-pslog h1(0) — hs(0)]) - (2m)%6%(3 o)
7 I

I<J
(4.23)

The absolute values appearing in this expression and in the first line of (4.21) cor-
rect our analytic-fields shorthand for the open string. To evaluate the correlation

function of ghost operators, we need contractions of the form

b o]

= f o G f e )™ ey

(4.24)

We must also remember that three operators ¢(z) must be used to saturate the

three ghost zero modes, as was indicated in eq. (2.24).

The result of this evaluation can be represented compactly, in just the form

of (4.5), as an operator acting on three single-string Hilbert spaces:
<h1 [OA] h2 [03] h3[00]> = (Vi3] |4}, ® |B), ®|C); - (4.25)

Let us simply write the final expresion for (V)23|; the reader can check that

it reproduces the results of the calculation just defined for all possible states
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|A); ® |B), ® |C); on which it might act. We find

(Vazs| = (3], ® (3], ® (3] ] (2m)%6%(pa + pp + pC)
PAPB,PC €13605$—1
(25 Y i + 3 AR - 5 ML)
I,J n,m2>0 1,J ':>>21 J -;;:_1_;)

(4.26)

where I,J label strings 1,2,3, the subscripts n,m are mode numbers, and ¢ =
-1,0,1 labels zero modes. The values of the Neumann coefficients NI are given
below. The ¢; are a set of classical Grassmann variables whose significance will
be explained in a moment. For the variables al, n runs over the values 0,1,2,...,
with a} = —ip;. The Neumann coefficients with nonzero indices represent the
contraction (4.22). The coefficients with indices O represent contractions involv-
ing the exponentials and the prefactor in the first line of (4.21). These coefficients
are given explicitly by:

NIJ _ {loglh 7(0)] I=J,
oo log |h1(0) — hys(0)] I#J,
1 dw - —1
Nom = f 2m " B50) o =)y
Nz =L L8 e )) 20w (hy(w) 1 '
nm 27rz 27rt (h1(2) — hy(w))?

(4.27)
For the ghost variables, we should recall that O4 contains only ghost operators
which do not annihilate |0), and so the vertex should contain only operators

which do not annihilate (3|. This implies that, for 5%, n runs over —1,0,1,2,...,

while for ¢I, n runs over 2,3,.... The Neumann coefficients may be read from
(4.24):
~ dz 2 [ dw -1
1J 8z i1 (g w2
Nom = f 27 - (h,(z)) 2mi (A (w)) (h1(2) = hy(w)) ~
(4.28)

The extra minus sign relative to (4.24) compensates an extra Grassmann-inter-
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change minus sign which appears when the term containing this N1J is applied
to a pair of ghost ladder operators b_,---|0); ® ---¢_p :++|0), ® - --. Since the
ordering of Grassmann operators is the same on both sides of (4.25), this is the
only correction needed to acéount for all of the Grassmann minus signs from
b-c contractions The zero modes of ¢(2) are taken into account in (4.26) by the
introduction of the classical Grassmann variables ¢;. We define

dw

M7= ¢ w2 (R(w) 7 Zi(hs(w)) (4.29)

where Z;(z) = 2**1. Then if we set

/ 1g0$—1 = 1, (4.30)
§1+50,5—1

the integral over the three ¢; will pick out three operators ¢(2) and assign them
to the three zero modes. The reader can check that, again, all the Grassmann

minus signs are accounted for.

We have now constructed a string field theory vertex of a very general form
and given its explicit representation as an operator on three single-string Fock
spaces. The general form of this representation, in which the Neumann coeffi-
cients are defined in terms of contour integrals, has been seen many times in dis-
cussions of specific string vertex functions, beginning with the work of Ademollo,

del Guidice, di Vecchia, and FubiniEes] Mandelstam,m Kaku and KikkawaEm] and

(71]

Cremmer and Gervais'  on the light-cone vertex. The fact that this decompo-
sition holds for arbitrary conformal mappings which link the strings is, however,
a very powerful observation, and we will make strong use of this observation in

the course of our analysis.
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5. Symmetries of the 3-String Vertex

We have now introduced a proposal for the 3-string vertex of a very general
form, built from three conformal transformations chosen completely arbitrarily.
We have learned in the discussion just concluded that this general vertex is still
a very simple object. It is, for example, technically much more transparent than
the kinetic energy term. We might bolster this conclusion by recalling a deep
speculation of of Hata, Itoh, Kugo, Kunitomo, and Ogawa[“] and Horowitz,
Lykken, Rohm, and Strominger.[281 These authors have argued that in string
field theory only the 3-string vertex is fundamental, and that the quadratic terms
in the string field action are generated dynamically by replacing one field by
its nontrivial vacuum expectation value. Whether one finds this speculation
compelling or not,” it is certainly worth digressing to work out the symmetries
of the vertex we have defined and to ask what restrictions must be imposed on

the general form to build in higher symmetries.

Before beginning this study, let us remark that the vertex we have proposed
V(4,B,C) = (m [oA] ha[05] ha [oc] ) (5.1)

is essentially a realization of a deep and, for us, quite mysterious speculation of

[72] that the 3-string vertex should be identified with the operator product

Friedan
coefficient of the vertex operators corresponding to the three string states. The
success of our construction might, then, shed light on other aspects of Friedan’s

geometrical intuition.

* We note that the equation {Q, QL}, which is necessary for the proof of equivalence
between the cubic action and Witten’s, does not hold with the naive definition of the
BRST current. The autors of refs. [33] and [34] justify it by adding normal-ordering
terms to the BRST current:

JBRST = ¢T® + cBychb + 27 2c — 227 28,c + 3/20%c .
The additional terms of course do not transform like a dimension 1 conformal field. Since

this property of the BRST current is of vital importance in our approach to string field
theory, we have reservations about this procedure.
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Let us now discuss the effect on V(A4, B,C) of conformal transformations.

We consider in turn the two possibilities:

hi(z) — fohs(2), (5.2)

hi(z) — hro f(2), (5.3)

The operation (5‘2). transforms V according to
V(4,B,C) — <f o hy [o,.] fohy [03] fohs [oc] ) . (5.4)

It is sometime useful to think of such conformal transformations as being gener-
ated by the action of the Virasoro operators: Let v(z) = v,2~"*! be the vector

field generating the conformal transformation z — f(z). Then

7[8(2)] = /(@)% (1(2) = Usd(2)U* (5.5)

where Uy = exp(v—nLy,). The reader should note that our various definitions are

consistent in their operator ordering:
fohlp(2)] = f[n[8]] = vt sz U U (5.6)

Since conformal field theory matrix elements are SL(2,C)-invariant, we ex-
pect that V(A,B,C) will be unchanged by the transformation (5.2) if f €
SL(2,C). Thus, our vertex, even in its most general form, addresses a conjec-
ture of Banks'"*! that the 3-string vertex can be cast into an SL(2,C)-invariant
form. The exercise of checking this invariance explicitly provides a simple and
appealing confirmation of the Fock space form for the vertex given in the previ-
ous section. Let us carry out that analysis, and afterward discuss the situation

for more general functions f(z).
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Consider, then, the transformation (5.2), for

fw) = , ad—bc=1. (5.7)

From this form, it follows that

hi(z) — hy(2)
(chi(2) + d)(chs(2) +d)
(5.8)

’
(Fohi)(@) = Gritiags » fohile)—fohals) =
Inserting these identities into the transformed Neumann coefficients (4.27), we
see that the extra factors of (chy + d) neatly cancel out. (In N17  this cancel-
lation is automatic. In the first two terms, which involve the zero modes, one
must also make use of the fact that 3, pr = i) ,a] = 0.) For the ghosts the
situation is somewhat more subtle. The SL(2,C) invariance is not yet manifest
in (4.26), though it can be made manifest by the following set of rearrangements:
First, consider the action of (4.26) on three states of the form of physical string

excitations:

OA = "'a—na-—ma_p"‘CICipA.x(o) s (5_9)

where the string of ladder operators contains only a,s. Using ¢; = ¢(0) —
(R7(2))e(h1(2)) to represent the ghost operator on each state, and using the
three ghost operators which result to saturate the three zero modes, we find for
the ghost part of the evaluation of V(4, B, C):

(3(0)A%(0)25(0)) ™" [(R1(0) — h2(0))(h1(0) — hs(0))(h2(0) — h3(0))] - (5.10)

Now consider acting (4.26) on string states with a more general ghost structure.
It can be shown that the the result can be written as a product of (5.10) with

antisymmetrized contractions of the other b_,, and ¢_, operators, provided that
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the contraction is altered slightly from (4.24) to

= (@) f e ()

27t

1
(h1(2) — h2(w))

17 (h2(w) — hk(0))
I,;I (h1(2) — kk(0)) ’

(5.11)

where K runs over the three strings. The form of (5.11) is easy to understand: It
is a Fourier transform of the b-c propagator in the presence of the three ¢(hx(0))
zero mode operators; these extra ghost operators require the propagator to con-
tain extra poles and zeros. The proof of this rearrangement is straightforward; we
give it in the Appendix. The reader can now verify that the expressions (5.10),
(5.11) return to their original form when we substitute (5.2) and then invoke
the identities (5.8). Thus, both the coordinate and ghost parts of our vertex are

explicitly SL(2,C)-invariant, even before we restrict the mappings hy(z).

Is our vertex invariant to more general conformal transformations? This is
a subtle question, for the following reason: SL(2,C) transformations are the
most general conformal transformations which map the complex plane onto itself
in a single-valued way. Any more general choice for f(z) will carry the plane
into a Riemann surface with branch points. That brings us outside the class
vertices defined by (4.4), and we need to extend our prescription to treat this
case. The most natural way to evaluate conformal field theory expectation value
on this Riemann surface would be to evaluate the (XX) and (bc) propagators
by mapping the surface back into a plane. With this definition, the form of
(4.26) remains unchanged. It is true that the evaluation of expectation values
for a conformal field on a Riemann surface will also produce a factor of the
determinant of the Laplacian for that field. However, for Riemann surfaces of
the topology of a plane, and assuming that we work in the critical dimension,
the determinant factors should cancel between coordinate and ghost fields. In
the analysis which we will present in II, we will see that the formalism dictates

that the branched surfaces which arise from gluing together two vertices should
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be treated in exactly this way, and that the determinant factors cancel explicitly
in that case. With this prescription, we find that the vertex (5.1), in the critical

dimension, is invariant to all conformal transformations of the form (5.2).

Transformations of the form (5.3) are conformal transformations of the unit
circle used to define the canonical set of string states. These transformations may
thus be viewed as field redefinitions. Normally, however, we will wish to leave
the kinetic energy term in the action unchanged; then we must ask whether these
transformations leave the form of the vertex invariant. This will be true only if the
transformations of the form (5.3) have appropriate commutation relations with
the h; to be converted into the form (5.2). The question of which transformations
have this property can only be discussed case by case for particular forms of the
vertex. The important special case of the reparametrization (K,) symmetries of

(8,9]

Witten’s vertex will be discussed in Section 8.

One often wishes to answer the question of whether two different 3-string
vertices are equivalent on-shell. In our formalism, this question is very easy to
address. On-shell states correspond to vertex operators 04 which are primary
conformal fields of dimension 0, evaluated at z = 0. For three such operators,

our general vertex takes the form

(h1]04(0)] h2[05(0)] hs[0c(@)] ) = (0a(h1(0) O(h2(0)) Cclhs(0))) -
(5.12)
By SL(2,C), this correlator is a pure number, independent of the three points
kh1(0). Thus, a vertex defined by any other triple of mappings k1(z), ha(z2), hs(z)

will be equivalent on shell.

Let us now turn to the properties of the vertex needed to establish the gauge-
invariance of the action, according to the logic of Section 4. Consider first the
property (3.16), which is just the requirement that the vertex have a BRST
symmetry. We will now show that our vertex is BRST invariant in the general

form (5.1), even before any specific choice is made for the hj. To see this, note
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that, for our vertex, (3.16) is equivalent to the condition
0 = {is[a0u]sfon] m[oc]) + (- io] m[0s] ]

oy (o] a[on] [

(5.13)
where (—1)4 is the Grassmann parity of O4. But this is manifestly true: Since Q
commutes with conformal transformations, each factor Q can be carried outside

the corresponding h;:
h;p [QOA] = Qhy [OA] . (5.14)

The three Qs can be brought to the front in Grassmann ordering (cancelling the
factors of (—1)4) and their contours joined. The resulting contour can then be
pushed to infinity, as indicated in Fig. 5. The vertex (5.1) is thus manifestly
BRST invariant in the critical dimensionality, for all choices of the k;. A similar
argument has been given, specifically for the Witten vertex, by Itoh et P
The second property which we must require is the threefold cyclic symmetry.
This property places restrictions on the hj, but there is a simple condition which
insures this symmetry for a large class of vertices. Let us impose this condition

as follows:

h1 =T20h, h2=TOh, h3=h, (5.15)

where T € SL(2,C), T® = 1. This criterion is slightly too restrictive to include
the vertex of the light-cone type, which, in any event, does not lead to an open-
string theory with only cubic interactions. (The application of our formalism
to light-cone field theories will be discussed elsewhere [74]) This form does apply
to the Witten vertex'® and the Caneschi-Schwimmer-Veneziano ° dual model
vertex. It also encompasses many other possible vertices, in which the three
regions which are the images of the unit circle under k,, hs, hs overlap arbitrarily
on the complex plane. The procf that (5.15) suffices to make V (4, B, C) cyclically

symmetric is quite similar to the proof of the symmetry of the kinetic energy term
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given in the previous section (eq. (4.20)). Using the SL(2,C) invariance of the

conformal field theory matrix element, we can write
(1*h[04] Th[05] h[0c]) = (T°h[04] T2h[05] Th[0C] )

= (-1)4B+9) (T2h[05| Th[0c| h04]) -
(5.16)
One or all three of the operators creating A, B,C will be Grassmann-odd. This

implies that the prefactor in the last line is (+1), and so the vertex is cyclically

symmetric.

A similar argument shows that the structure
<s3h[oA] Szh[OB] Sh [oc] h[OD]> (5.17)

has a fourfold cyclic symmetry if S € SL(2,C), S* = 1, and A, B, C, D
comprise three states of G = 1 and one of G = 0, corresponding to the gauge
parameter string field A. A vertex passes all of the requirements needed to form
a gauge-invariant action with only three-string interactions if the contraction of
two vertices indicated schematically in eq. (3.18) has the structure of (5.17). The
main purpose of Section 7 will be to define this contraction operation precisely
and reduce this operation to geometry, so that a precise comparison with (5.17)
can be made. Before beginning this analysis, however, it will be worthwhile
to illustrate our construction at its present state of development by considering

some interesting specific choices for the hj.
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6. Examples of String Vertices

At this point in our development, we admit 3-string vertices of the general

(T7h [oA] Th [oB] h[oc] ) (6.1)

with T an SL(2,C) transformation such that T3 = 1 but with h(z) a completely
arbitrary map of the unit circle into the complex plane. Two choices for h are
especially sﬁnple. The first is h(2) = 2, which carries the unit circle into the
complex plane unchanged. The second is the map which carries the unit circle
into a wedge covering a 120° angle, so that the images of three unit circles cover
the plane and abut one another neatly along their boundaries. These two possi-
bilities are illustrated in Fig. 6. In this section, we would like to work out the
consequences of these two choices for h(z). The first of these possibilities will
lead to a string field theory vertex which generalizes the Caneschi-Schwimmer-

®2] Qual model vertex. This generalization has recently been presented,

]

Veneziano

from another viewpoint, by Di Vecchia et all®®

[

mura!™ The second choice will be seen to represent the Witten vertex.

and by Watamura and Wata-

Consider first the case h(z) = 2. To construct (6.1), we must supplement
this choice with a suitable T' which acts nontrivially on the unit circle. Since

T € SL(2,C), it is specified by its action on three points. Choose, then,

T 0o —- 1 T? 0 - o
1 - o 1 — 0 (6.2)
oo — 0 oo — 1
that is,
T = 1, Th=221. (6.3)

The three unit circles corresponding to the three coupled strings are shown in
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Fig. 7. The SL(2,C) transformation

10 = - (A5 (6.4

carries the unit circle into the right half-plane, sending the real axis to the new
unit circle. Applying this transformation to the vertex according to (5.4), we
find a second picture of this vertex in which the three strings are mapped to
three half-planes rotated from one another by 120° (and thus overlapping in 60°
sectors). This picture is shown in Fig. 8.

It is illuminating and also quite straightforward to compute the Neumann
coefficients N associated with the coordinate degrees of freedom. The factors
N1J all vanish; thus, the expression (4.26) contains factors of the center-of-mass
momenta p! only in conjunction with oscillator creation and annihiliation oper-
ators. In this case, then, all 3-field couplings derived from the string field theory

vertex are polynomial in momenta, that is, local in space-time. The remaining

coefficients are nonzero is a cyclically symmetric pattern. Representative coeffi-

cients are:
1 .
—= ifI=A
IC m
NOm = {
0 otherwise.
NSC=o0. (6.5)
_ +1_(n—1)
NBC _ ( l)m ml(n-m)! n2m
mn
0 otherwise.

The remaining coefficients can be found by cycling. Inserting these values into
(4.26), one finds a dependence on the coordinate oscillators which is exactly that
of the CSV vertex. This close connection between the CSV vertex and the cyclic
group (6.2) is not surprising; this connection was set out clearly in an early
paper of Lovelace!®® The full expression (4.26) provides a manifestly BRST-
invariant generalization of the CSV vertex, in which all couplings, including those

of auxiliary fields, are local in space time.
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Is this very simple vertex an acceptable vertex for a string field theory? Since
we are assured that it is 3-fold cyclic and BRST-invariant, only the condition of
4-fold cyclicity remains to be checked. The computation suggested by (3.18) is in
fact straightforward to carry out explicitly for the coordinate oscillators. What

is needed is the product

(Vasc|(Vper| |IcD) , (6.6)
where |Icp) is a suitable inner product. The natural choice for this product

is the BPZ inner product described in Section 2. Considering the coordinate

oscillators only, we may write (2.20) in the explicit form
(A|B) = (IasB| |4)®|B) , (6.7)

where

(Lusl = (3@ (3l -exp (Y ot ) (©9)

n

We may define the right inner product as the inverse of this operator

(IaB| |IcB) = 1ca - - (6.9)

From (6.8), we obtain

145} = exp(Y et %2 ) 0y, 0100 (6.10)

n

This expression will suffice for our immediate purposes; a complete representation

of |I4B), including the ghost pieces, will be given in the next section.

Combining two CSV vertices according to (6.6) using the explicit inner prod-

uct (6.10), we obtain the following result: The fused vertex, which is now a
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4-string vertex, has again the general form

(VaBer| = (3|, ® (3|5 ® (3|5 ® (3|5 exp( __ZZ"IN'I*# 7). (6.11)
1,J n,m

The Neumann coefficients linking A and B and those linking £ and F are un-
changed from the values indicated in (6.5). The remaining coefficients are given

by contractions of the coefficients in (6.5); for example,

oo
NAT = 3O NAG (MR NEL . (6:12)
k=1

Carrying out these summations, we eventually find
2m—n . (—-1)**H?1 !m—l !! m>n
AF EB nl(m—n =
Nmn = Nmn =

0 otherwise.

(6.13)
NEBF — F(n+1,m+1,2;-1)

NAE _gnim . Fn+1,m+1,2;-1) .

These Neumann coefficients do not form a cyclic structure; the result is tantaliz-
ingly close to cyclic but is ruined by the factors of 2". Still, (6.13) has a simple
physical interpretation. It is not difficult to check that this set of Neumann

coefficients is exactly that obtained from the vertex
<T2 [OA] T[OB] IT? [OE] IT[OF]> , (6.14)

where T is still given by (6.3) and I is the inversion. The contraction (6.6) has
apparently carried out the operation shown in Fig. 9: The two complex planes
representing the two vertices have been cut along the circles representing the
states C and D and then glued together by conformally mapping the exterior

of the D circle via the inversion I into the interior of the C circle. The failure
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of 4-fold cyclic symmetry is apparent in (6.14): This vertex cannot be of the
form (5.17) because it contains the threefold elements T, T2. One can observe,
however, that the four points h;(0)—the four points —1,0, 1, co—have a fourfold
cyclic symmetry in the sense that they are linked by an SL(2,C) transformation

S(z) = (6.15)

satisfying S4 = 1. The transformation S bear no relation to any of the trans-
formations appearing in (6.14). Nevertheless, the logic of eq. (5.12) leads us to
state that the CSV vertex satisfies fourfold cyclicity at least on shell. This fact

has an amusing physical consequence which we will present in Section 3 of III.

If the CSV vertex does not give an appropriate string field theory vertex,
how then do we find one? As a guide in thinking about this question, let us
assume that the geometrical representation of the BPZ inner product that we
have partially derived in the previous paragraph is correct and general. Then we
must search for a way to map three unit circles onto the complex plane in a fashion
which is threefold symmetric and which, after a cutting and gluing operation
such as that defined above, produces a figure which is fourfold symmetric. It
was exactly this geometrical requirement which motivated Witten in his choice
of vertex. The second possibility shown in Fig. 6 is indeed manifestly threefold
symmetric. Further, the operation of cutting out one of the three regions on
each of two planes and then gluing the two planes together produces a fourfold
symmetric diagram. This diagram is shown in three views in Fig. 10. If the
second (EF) plane is mapped conformally into the hole left in the first, the
resulting figure has an angle of 4 - 120° at the joining point. We may represent
this by drawing a plane with a branch cut, as shown in Fig. 10(a); the figure
is the covering surface of this cut plane. Rotation of the branch cut reveals the
whole of region F and, in turn, conceals a part of region B. Alternatively, we may

use the (formal) conformal invariance of the vertex to map the twisted surface
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into a simple plane by applying
f(z) = 28/4 (6.16)

The effect of this transformation is to smooth out the fold at the joining point

and convert the surface into Fig. 10(c).

To see that the construction shown in Fig. 6(b) is indeed equivalent to
Witten’s prescription, we may proceed in stages. First, as we have discussed
in our arguments bélow eq. (2.21), the conformal field theory matrix element
involving two unit circles which have been mapped so as to abut one another
has the operator interpretation of a contact delta-function on the world-sheet. In
each unit circle, the boundary condition is determined from the operators placed
inside by evolution using the Hamiltonian of radial quantization. If these unit
circles are mapped so that their boundaries coincide, this adds the constraint
that these generated boundary conditions be identical. To give the diagram an
interpretation in terms of open strings, we must specify where the string boundary
appears on the conformal plane. Throughout our discussion of the Witten vertex,
we will map unit circles in such a way that the real axis of the original circle is
mapped to the unit circle of the conformal plane. Then the images of open strings
can be viewed in the interior of the unit circle on the plane. In Fig. 6(b), the
interior of the unit circle is neatly trisected into three regions which overlap at
their boundaries. The string endpoints are mapped to this unit circle; the string

midpoints are mapped to z = 0.

To solidify this interpretation, let us work out the operator decomposition
of our vertex somewhat more explicitly and compare it to other forms for the
Witten vertex which have been given in the literature. The Neumann coefficients
for coordinate oscillators are given by the general relation (4.27) in terms of the
conformal mappings hy(2) which carry unit circles into the plane. The mapping
which carries a unit circle into a 120° wedge in the right half-plane has been

[76,9,12,19,11]

written down by a number of authors; it is easy to construct by
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following the steps shown in Fig. 11. The result is

h(z) = (i;—:::)’/ 3 | (6.17)

The three h; are then given as h, Th and T?h, with T given by the rotation
Tz = e2**/3z. Since |h}(0)] = 4/3 and |hr(0) — hs(0)] = /3, the piece of V
quadratic in momenta is given by

4,1p? 1 4
LI IL st = T1155

I#J

Ll (6.18)

where we have used momentum conservation. The remaining Neumann coeffi-

cients are given by integrals of the form

NBC — — f o f Gt P )2[h11(z)]—"[hJ1(w)]-m, (6.19)
hr(0) hs(0)

This is exactly the form of the Neumann coefficients Gross and Jevicki o] used
as the starting point for their analysis of Witten’s vertex. An elegant proof of
equivalence of the various formulations of this vertex[lz’g’u’u'lgl that includes

(48

the be-sector has been given by Suehiro. ! The explicit expressions for the Neu-
mann coefficients are necessary to study the local field decomposition of a string
field theory vertex. However, they are complex and unwieldy, and one might
hope that they are not actually needed to prove the general properties of the ver-
tex. We have seen already that our geometrical method allows one to circumvent
completely the use of the explicit Neumann coefficients in verifying the BRST-
invariance of the vertex. We have seen above that the geometrical intuition which
our method supplies allows one to understand the cyclicity conditions as well. It
is less clear, though, that the fourfold cyclicity condition can actually be proved
along these lines. It is possible to construct such a proof, however, by giving a
general proof of the correspondence suggested earlier in this section between the

contraction with the BPZ inner product and the geometrical operation of gluing.

We devote the next two sections to the presentation of that proof.
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7. Gluing Circles to Circles

In this section, we will present a more precise connection between the op-
eration of contraction with the BPZ inner product, eq. (6.6), and the gluing
operation indicated schematically in Fig. 9. For simplicity, we will restrict our-
selves here to the case where the two states which are contracted are represented
on the plane by circles; equivalently, we assume that the mappings h;(z) cor-
responding to the contracted states C and D are elements of SL(2,C). At the
end of this section, we will generalize the statement of the result to the more

complicated case in which these h;(z) are general conformal mappings.

In some sense, the identity we are trying to establish is obvious from the
beginning. We can view the functional integral defining (Vapc|, for fixed state
C, as a functional integral with definite boundary conditions on the boundary of
the region into which C is mapped. The contraction of C and D identifies the
boundaries of their respective regions and sums over possible boundary condi-
tions. This should produce a single functional integral over the full fused region.
On the other hand, it would clearly be valuable to make this argument more
precise. In addition, there are several subtle points which can be settled only by
careful analysis: What happens to the ghost zero modes on the fused planes? If
the fusion introduces folds or singular points, as we saw in our examination of
the Witten vertex, how should these singularities be treated? We will indeed see

the answers to these questions emerge from our analysis.

In the literature, a form of the the gluing relation has been assumed in Wit-
ten’s work [8,45] and in the papers of Giddings and Martinec.[21’22] Mandelstam’s
original work ) on the light-cone vertex actually proved a form of this relation
specific to that case as a set of explicitly derived identities for the Neumann co-
efficients. This proof was developed and clarified in the work of Cremmer and

Gervais [71] and Green and Schwarz!“] The work of Gross and Jevicki (] gives an
explicit, though not quite complete proof of the gluing relation for the Witten

vertex in the specific configuration needed to prove gauge-invariance. We are not
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aware of a previous attempt to formulate this relation as a mathematical identity

satisfied by a general class of string vertices.

In this section, we will prove the following identity, which we call the gluing
theorem for circles: Let h4i(2) hpj(2) be some number of conformal mappings
bringing an arbitrary number of unit circles into two conformal plane. In each
conformal plane, we include also one unit circle which has been brought in using
the identity operator. (For each vertex, any h(z) which belongs to SL(2,C) can
be reduced to the identity by a tranformation (5.2).) Let (V{ Ai}Cl be defined by

%

(Vianol H'Ai>® IC) = <H(hAi[OAi]) Oc> (7.1)

and let (V{ Bj} Dl be defined similarly. Then, if |Icp) is the BPZ inner product,

the fused vertex

(Viasyieiy] = (Vianel (Visiyn| |Iep) (7.2)

is given by

(Viann! [T140 @ J] 185 = <H(hA,-[oA.-]) H(Ith[OBj])> . (1.3)

]

That is, the operators defining the states By are carried into the interior of the
unit circle in the A plane by the inversion I. (Since I € SL(2,C), this result
is symmetric under interchange of the A¢ and the Bj.) The geometry of this
construction is illustrated in Fig. 12. The states A: and Bj may have arbitrary
ghost number, as long as the conservation law at each vertex is satisfied; the

Grassmann minus signs are properly accounted for if we choose the same ordering
of the A7 and the Bj in (7.1) and (7.3).

We cannot begin a proof of the gluing theorem without a more explicit rep-

resentation of the BPZ inner product. We have already discussed the coordinate
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oscillator part of the inner product, for which we obtained the representation
(6.10). We must still analyze the ghost part of the inner product. Let us proceed
along the route which led to (6.10). Consider, then, the left inner product (6.7),
defined from the conformal field theory matrix element (2.20). The part of this

operator which depends on the ghost nonzero modes is reproduced by

(IaB| = (3|, ®(3|p e"p(z {b:(—l)"cf - c:(—l)"bf}) . (7.4)

n>2

This expression properly accounts for all Grassmann minus signs, as the reader
may readily discover by trying a few cases. The most straightforward way to
determine the dependence on ghost zero modes is simply to consider all possible
way of assigning the operators ¢_y, ¢o, ¢; to the operators creating A and B in
(2.20). The action of the conformal field theory matrix element, determined by
(2.21) and (2.25), is reproduced by writing

(Ias| = (3|, ® (3|p (b2, +b7) (b5 - b5) (b +b2,)

= Glao Gl [ en(s()4-87).

€1550,5—1

(7.5)

The full expression for (I4p| is then given by combining (6.8), (7.4), (7.5), and
a delta function 6(p4 + ps). The inverse of this operator defined by (6.9) is then
given by

ton) = e 362, Ea2,) 4 3 e8uare2, -, ()
n=2
' / (2m)%6%(pc + pp) - (=1)(ef — €2,)(c§ + ¢§)(cC1 — ¢T) Ipc)c ® IPD)p -
P
PcyPD (7.6)
This specification of the inner product completes the formulation of the gluing

theorem.
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To prove the gluing theorem, we must contract two copies of (4.26) using the
inner product (7.6). We may consider the coordinate and ghost pieces separately.
Since the analysis is more straightforward for the coordinate pieces, let us begin
with them.

In order to take advantage of the special form we have chosen for the con-
tracted states, let us work out the detailed form of the Neumann coefficients
(4.27) in the case where one of the h;(z) is simply hc(2) = 2. In this case, we

can carry out the contour integrals involving hc(z) explicitly, to find:

N§§ = log|ha(0)]

1 _
Nim = — —(ha(0))™"
ca _1 [dw .., 1 (7.7)
Nom = mfem” (R () ha(w)’
ac _ 1 [dz _nppony._ m 1
Nom =ofam® b)) Gy =

for A # C. For the diagonal Neumann coefficients, we find
NSS =0, (7.8)

and the same result if n, m, or both are zero. The vanishing of N$€ is actually
obvious from the definition (4.27): if n,m > 0, the indicated integrals converge
well enough that we may push them to infinity, provided that the functions h(z)
and their derivatives are analytic outside the unit circle. If hy(2) is the identity,
or, more generally, if hy(2) is an element of SL(2,C), that analyticity is assured.
The vanishing of (7.8) is connected to the geometrical simplicity of gluing circles
to circles. This point will become more clear when we display the significance of

NS¢ in more general situations of gluing, in the analysis of Section 3 of II.

The relation (7.8) implies that the coordinate ladder operators a$ appear only

linearly in the exponent of (4.26). This makes it easy to contract those operators
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with the operators a€,, in (7.6). This contraction produced new quadratic terms
in the exponential which link operators a¢ to operators ali. The general form

of these terms is:

adi NAiDigli | (7.9)
where
NAGE = 3 N&C-(-1)*%.NPwi . (7.10)
k>0

This can be explicitly evaluated by inserting the expressions (7.7). It will obvi-

ously be convenient to define

FA W) = 2§ 22 2 (Wy(2) wa(hal2) (7.11)

271
as a standard form of the Fourier transform of a one-form w.(z) with respect to
the string A. Using this notation, the nonzero components of N #‘5{' take the

form

A:B; A k+1 1
NAT = f,,,?mw[;( 1)1k (z)m (w)m], (7.12)

where the Fourier transform for A; is applied to the variable z and that for B;

is applied to w. The series is easy to sum:

. B, . +B; 1
R A

(zw + 1)2
dw _ ' 1 . :
= 74 f oo™ ) G (z—(—l/(hsa-(w)))]

_ 74 IB, 1
(z—w)?’
(7.13)
where we have used the action of the inversion: h;p,;(w) = (—1/hp,(w)). The
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final result is exactly
NADS = NAQB) (7.14)

the new quadratic terms which are generated are exactly the Neumann coeffi-
cients that one would find linking A; and B; after the exterior of the unit circle
on the B plane is inverted by R and glued into the A plane as shown in Fig. 12.
Notice that, because the formula for N, 7 is invariant to SL(2,C) transforma-

tions, our result is identical to the one we would have obtained by inverting the

A plane.

This result generalizes straightforwardly to the terms containing zero modes
ads, ao For the case of one zero mode, N A'o’ receives contributions from two
sources: the sum (7.10) and an additional term which arises, using the momentum

conservation of the BPZ inner product, by replacing pc by ZJ- pB, in
alAiN4:CaS . (7.15)

These two terms assemble to form

: — "P 3 1 :
_ ?’:‘;. 1 ] (7.16)
Lz = (-1/hs,(0))
N

For the case of two zero modes, there are two such additional terms.

NAB = NAS 4 NPB 4 YD NAC.(-)M-NPP. (1)
k>0
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Inserting (7.7), we can evaluate the indicated sum; then

Y \ 1
Ng‘s? = + logha,(0) + loghs,(0) + log(1 + m)

= +loghp(0) + log[hA.,(o) - (_l/th(o))] eqn(7.17)

= loghga,(0) + NA:{IB)

There is an extra term left over. This can be rewritten
—Zao'(loghg ) = - -—Za (loghB,.(O))ag" (7.18)

and added to the B;—By zero mode terms:
NZiB% — loghp,(0) — loghp,(0) = N{BIUBW (7.19)

Now the coordinate operator part of the glued product of vertices has been re-

arranged exactly into the form of the right-hand side of (7.3).

The computation of the C and D ghost matrix element indicated in (7.2) is
only slightly more difficult. The main complication comes from the treatment of
zero modes. One should keep in mind, though, that the ghost Neumann functions
(4.28) are not themselves SL(2,C)-invariant, so that the fact that the gluing
operation is independent of which plane is inverted will not be obvious until the
end of the calculation. For definiteness, I will always consider the inversion to be

applied to the states B;.

Let us begin by computing the matrix element of the nonzero modes. Spe-

cializing (4.28) to the situation where one of the hr(z) equal the identity, we
find

~ [ 1
A;C __ b)A;
W% = 208 o

I | +1
Now = 7w _'(w‘)"-l} !

50



where we have defined two more canonical Fourier transforms,

FOUIE] = § 22 (Ka(2)? S (hale)) 5
) (7.21)
FOLIE)] = ¢ =22 (Ba(2) 7 £(hal?)) -
Again we find
NS¢ =0, (7.22)

as long as n > 2, m > —1, since, with these restrictions, we can freely push
the contours to infinity. One further simplification comes from the evaluation of
(4.29):

Mo = bim; (7.23)

this is nonzero only for the case of the zero modes m = —1,0,1. Then it is
straightforward to the contract the ghost exponential in (7.6) with the ghost
exponentials in the two copies of (4.26). The result is an exponential with new
quadratic terms coupling the ¢ operators of each A; to the b operators of each
B;, and vice versa. These new terms have the form (c4i NA:5bp/), and the

corresponding terms with A; and Bj interchanged, where

o0
B = 3 NAE (1)t NPR

k=2
. (c)B; [ —
= 7755’):'7'5‘,) Z k+2( )k 1] (7.24)
= |t L <.
’ o L(2)4 ((—-l/z) - w)

If we combine the prefactor inside the bracket— (h4,(2))~* —with the integra-
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tion measure in .T,S,b );"', we can see this rearranges into the formula

NAB = NUANE (7.25)
The analogous relation for the term linking cf’ with b4 is

NBiA:i — R{IB)A: (7.26)

Eq. (7.26) is exactly what we wanted to find. However, (7.25) is not equivalent

to the same formula with the I applied to B;. Something is missing.

Leave this result aside for the moment and turn to the ghost zero mode con-
tributions. The zero mode operators b€, b5, b{ appear in (4.26) both in terms
involving NA:C and in terms involving M; .. The terms with M; C, involve the
supplementary Grassmann variables; we will distinguish the variables associated
with the A and B planes by denoting them as ¢A, ¢?. Now operate on the two
vertices with the first zero mode factor (¢ — ¢2,) from the second line of (7.6).

The action of this factor brings down from the exponentials in (4.26) the quantity
E1 = —¢A + cANAC) + ¢F — R NTD . (7.27)

Integrate this over ¢, taking into account also the exponential factor in the
B plane vertex which depends on ¢£. We may, however, now ignore the term
¢EM,; DD = ¢BbP, since the bP may now be moved to the right to annihilate

the D vacuum of (7.6). The integral then gives
/E exp(—g‘fB - [My ﬁ"bﬁj]) - &
$1
- -(1 — cBiINPIDM, BepBr 4 oA M, BibD — ANAC M, ﬁ"bﬁ")

. ~B. . . L~ oA B:, B
= -exp(— chNleDMlzkbg‘k +§51M1 g’bgi’ - C:'N:'glMlmJ mJ) ’
(7.28)

using, in the last line, the Grassmann property of the ghost operators. The other
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two ghost zero mode factors in (7.6), and the remaining two ¢? integrals, may

be carried through a similar reduction procedure.

We must now interpret the three terms in the exponent in the last line of
(7.28). The easiest to understand is the middle term. Because of the relation
hrp;(z) = (—1/hB,;(2)), (4.29) obeys the inversion formula

Mgl = (1P M_y0®) . (7.29)
This term then gives the coupling of the inverted B; ghost operators to ¢4,
required to implement the zero modes properly in the expectation value displayed
in (7.3).

The first term in the exponential modifies the Neumann coefficient linking
two B; ghost operators. We must add this term, and its counterparts in the other
two factors arising from the ghost zero mode reduction, to the expression (4.28).
Using (7.20) and the explicit formulae for the M; Bx, we can combine these four

terms as follows:

2
0BiBr _ g()Big@)B|_~1 1  w o w®
NEiB ALK ?m,w[(z_w)+z+zz+ =

’ W[ 1 _
= 707 7B L4 ((_1/2)_(_1/w))] (7.30)

= JVS;IBj)gB*) ’

2. 24 with the measures

where in the last line we have combined the prefactors w
for the two Fourier integrals. This sets the quadratic term in B ghosts into the

right form to account the action of the inversion on the states B;.

Finally, consider the last term in the exponential of (7.28), and its two coun-
terparts. These are the terms which must combine with (7.24) to give the full

quadratic term involving one ¢/ and one b,B;," . Using (7.20) once again, we find
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that the last line of (7.24) is replaced by

FBA: 7(0)B; [_1..___1__ 1w v
n, z “m, 23 (wz+1) 23 22 P

- AP L] ()
(z—(—l/w))

_ ﬁﬁ' gBj) .

Again, the prefactor w? supplies a factor of (h B;(2))? necessary to rearrange the
Fourier integral. Now the ghost factors have also come into the form required
to represent the right-hand side of (7.3). This completes the proof of the gluing

theorem for circles.

This simplest version of the gluing theorem is sufficient to discuss (and dis-
prove) the gauge-invariance of the string field theory constructed using the CSV
vertex. However, it is not sufficient for more general situations in which the
mappings hr(2) which carry string into the plane are not elements of SL(2,C).
Let us conclude this section by discussing the limitations of the proof we have
just given and stating a more generally applicable form of this result. The proof
of the more general theorem is somewhat involved; our paper II will be devoted

to presenting it in detail.

One particular circumstance in which a more powerful result is needed is the
discussion of the gauge-invariance of the string field theory built from the Witten
vertex. In that case, the gluing procedure has the complication shown in Fig. 10:
The two regions two be glued together have different shapes, so that joining them
produces a fold in the world-sheet. Since the only conformal transformations that
map the plane to itself one-to-one are SL(2, C) transformations, we should expect
always to find branch cuts and nonanalyticity after we identify and glue together
two strings which have been embedded through general transformations. These
branch cuts should naturally appear, and should naturally be removed, in a more

general formulation of gluing.
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This issue of the appearance of cuts and folds in the world-surface is a crucial
part of the result that we will prove in II. The geometry of this more general
gluing is shown in Fig. 13. Let C and D be the states contracted by the BPZ
inner product, as in the analysis of the previous section. However, let us drop
the requirement that the mappings which embed the states C and D in the A
and B planes be SL(2,C). Then if we glue C to D by mapping C and D to the
interior and exterior, respectively, of the unit circle on a third plane F, the A
and B planes will be carried onto this third plane in a manner which is not, in
general, single—va.lue»d. The image of the A plane in the F plane will have branch
cuts outside the unit circle, and the image of B in the F plane will have branch
cuts inside the unit circle. However, the Riemann covering surface for F formed
by joining these exterior regions will have the topology of a plane. Thus, there
exists a conformal mapping g(z) which maps this covering surface into a final
plane G in a single-valued manner. (This mapping is unique up to SL(2,C).)

The mapping ¢(z) is a smoothing operation which irons out the branch cuts.

With this geometrical picture in mind, we may state our main result, the
Generalized Gluing and Resmoothing Theorem (GGRT): Let (V{ Ai}Cl be defined
by

(Vianc| HlA:‘)®|C> = <H(h4.. [OA,.]) hc[oc]> (7.32)

1]

and let <V{ Bj) D| be defined similarly. Then, if |Icp) is the BPZ inner product,

the fused vertex

(Viaiyeiyl = (Viasye| (Vissip| lIcp) (7.33)

is given by

1

<V{Ai}{BJ'}| H|Ai>®H|BJ.) = <H(ilA. [OAi]) H(i‘Bj[ij])> , (7.34)
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where

ha;, = g o hZ! ohy,
(7.35)
hB' = gOIOhBl Otha

and g in these definitions is the smoothing transformation described in the pre-
vious paragraph. The presence of this element in our final result treats the
singularities created by the general gluing process and insures that we are free
to map our -world surface onto a simple cover of the complex plane in order to
assess its symmetries. In particular, it precisely justifies the argument for the
symmetry of the Witten vertex displayed in Fig. 10. This theorem will be proved

in II for the open and closed bosonic string.
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8. Gauge Invariance of Witten’s String Field Theory

Now that we have in hand the general relation between the Hilbert-space
manipulation of contraction with the BPZ inner product and the geometrical
operation of gluing and smoothing, we have all the formalism we need to complete
the proof the gauge-invariance of Witten’s string field theory action. In this

section, we will present that proof, and exhibit some generalizations of it.
Followiﬁg the notations of Section 4, we write the Witten action as
_ 2 2 2 2; [& & 4
s = (18] Qé) + Z9(T°h (8] Th[8) 1 [8]) ,

SRV
= (1] 12), 8 QI3); + 39 (Viasl [2), ® [8), ® |8

where h(z) is the mapping given in (6.17) and the vertex in the second line is
that following from this choice. The subscripts label distinct single-string Hilbert

spaces. We claim that this action is invariant under the transformation
518), = QIA), + ¢ (Vass| [1n2) [[@), @ [0)s ~ M), @[8);], (82

where |A) is a state of ghost number (—1) and even Grassmann parity. To check
this, insert (8.2) into (8.1) and study the terms at each order in g. At order
g°, we can use the result (4.20) that the kinetic term is symmetric in its two

arguments to write the variation as
65©) = 2(I;| |8), ®Q%|A), = 0. (8.3)

Using the cylic symmetry of the vertex, we can rewrite the order g! variation in
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the form
6SW = 29 (Vis| Q18), ® [[8),® 14)5 — [4), @ |8),]

+ 29 (V23| Q[4) ®|2), ® [®)4
(8.4)
= 20 (Vizs| [Q12),@18), @18} ~ [8),@Q8), ® |A)s

+ 19),818), ®Q|A),] ,
which vanishes by virtue of the identity (5.13). Finally, the order g2 variation is
2) = 2,2
65 = 29°(Vas45|[2),; @ [2)5 ® |[2), ® [A)5 — |4),@[B)5],  (8:5)

where the four-string vertex which appears here is that obtained by gluing and

smoothing two three-string vertices:

(Vaaas| = (Viza| (Veas||T1e) - (8.6)

If this object is cyclically invariant, (8.5) is a difference of two terms which
cancel exactly. That the four-string vertex built from Witten vertices is cyclically
invariant follows from our geometrical interpretation of gluing (backed by the
analytical work which we will present in II) and the physical picture of the glued
vertex shown in Fig. 10. This completes the proof of gauge invariance. The
argument we have just given is essentially identical to that given in Witten’s
original paper; here, however, all ingredients of the formalism have been defined

precisely and all postulated relations of these objects have been verified.

Now that we can claim to understand fully the Witten open string field
theory, we should inquire to what extent this theory is unique. We have already
noted that an arbitrary vertex of the form (6.1) leads to an action which is gauge-
invariant through order g!. Presumably, given any such vertex, it is possible to

add four- and higher-string vertices, order by order in g, to achieve any desired
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level of gauge-invariance. We have not pursued this idea; rather, we will concen-
trate on the question of whether there exist open-string actions inequivalent to

Witten’s which terminate after the three-string vertex.

What constraints must the vertex in such an action satisfy? Obviously, it
must link open strings; this implies that the mapping h which defines the ver-
tex must satisfy an appropriate symmetry condition. If the real axis is taken
to represent the open-string boundary, h must be symmetric with respect to a
reflection in the real axis. We have found it convenient to represent the string
boundary as the unit circle, so that T is simply the rotation Tz = e27%/3z, Then
h must convert this reflection to an inversion in the unit circle. Indeed, (6.17)

satisfies

h(z) = 1/R(z) . (8.7)

A second constraint is much less trivial but follows straightforwardly from the
logic of egs. (6.14)—(6.16). Let us formally represent the gluing of two vertices of
the form (6.1) in the following way: Apply the conformal transformation A~! to
bring the third region to the unit circle. (This transformation does not act in a
single-valued way on the whole plane; we will soon see the consequences of that
fact.) Then glue to produce a 4-string vertex and restore the original geometry

by acting with k. This gives:
(T2h[04] Th[OB] hIh“Tzh[OE] RIR1Th[OF|) . (8.8)

To check the cyclic symmetry of this construction, we would cycle A into B by
acting on each state with the SL(2,C) transformation T. Then A cycles into F
and E into B only if the following conditions hold:

h = hIh~'Th = hIh"'T?h . (8.9)

It seems that we have already reached a contradiction: We apparently require

T = T2, while T® = 1 but T is nontrivial. However, our discussion of Fig.
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10 explained that this contradiction is in fact avoided for the Witten vertex.
The mapping h(z) used in the Witten vertex is nonanalytic at two points on
the image of the unit circle. A 22/3 branch cut runs across the complex plane
from one of these points to the other. Then the mappings ITh(z) and IT2h(z)
carry the unit circle into two regions with the same coordinates on this plane but
standing on opposite sides of the branch cut. Precisely because this branch cut
corresponds to a z2/3 singularity, multiplication by T carries the first region into
the second. The singularity structure of the function h(z) given in (6.17) is thus

not accidental but ‘required for gauge invariance. To put it succinctly, we need
hI=T"'h (8.10)

in Fig. 11: the transformation z — I(z) corresponds to w — €*"w, and we

have cut the w-plane in such a way that this rotation gets transformed into

y — e-21ri/3y.

A more general gauge-invariant 3-string vertex must also satisfy (8.7) and
(8.10). Let us investigate whether theere are any additional solutions to these
constraints which have the form of contact delta-functions on the world-sheet.
Any such vertex will carry the unit circle to some conformal transform of the

region which produces the Witten vertex. We should have, then,
h=hj. (8.11)

A mapping of this form satisfies (8.7) and (8.10) if § commutes with I and
if §(z) = m However, mappings satsifying these condition belong to a very
special class. If we consider §(z) as generated by a vector field v(z) = Y vz~ "1,
the condition that § commute with I implies Jv(2) = v(2) and hence there is a

vector field w(z) such that
Y v aln=) w_n(Ln—(-)"Lon)=) w_nKn (8.12)
n n n

where the K, are well known to generate the reparametrization symmetries of

Witten’s vertex.
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The explicit proof that the K, are symmetries of the vertex is quite straight-
forward in our formulation and provides a nice application of the result (8.10).

We have to show

(V23| (K,‘}) + K& + K,(,s)) =0 , (8.13)

for all n > 0, or equivalently, for arbitrary states 04, Op and Oc¢,

27t

0 = idi_'z"‘”{(T% :(Tn(z) — IT,.(2)) OA] Th [OB]h[on >

+(T2h[04| Th[(T2s(2) - IT.u(2)) O8] [oc]) (8.14)

+ <T2h :o,.] Th [oB] h [(T,,(z) — IT,.(2)) ocj ) } .

But by hI = T~ 1h the terms on the right hand side cancel pairwise, and this
completes the proof. Notice that (8.14) holds for any conformal field, including
the ghost fields. By a similar argument and [Q, L,] = 0, the K,, also leave the

kinetic term of the action invariant.

How can we reconcile the fact that thg K, generate nontrivial transforma-
tions of the form (8.11) with the identity that the K, leave the Witten vertex
unchanged? It is instructive to write explicitly the finite conformal transforma-

tion generated by the operator K,; this is

gn(2) = (zn L (ﬁl)na")l/n : (8.15)

1+a,2n

This mapping is analytic in the vicinity of the unit circle, but for a,, small it
has a complicated branch structure near the origin, with branch points at z =
—(an)'/™. The cancellation shown in (8.14) assumes that the branch cuts which
emerge from these points are disposed symmetrically with branch cuts at large

z (z = (—a;1)'/"), and that none of the branch cuts cross the unit circle. The
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original conformal plane is then mapped to a branched Riemann surface. To
define the conformal field theory matrix elements on this Riemann surface, we
smooth out the branch cuts by mapping it back to a plane. This map restores
the original configuration of the Witten vertex. The transformations (8.11), then,

produce no new gauge-invariant vertices.

We would like to point out, however, that our formalism allows a wide class
of BRST-invariant vertices which are not contact delta-functions but are, rather,
nonlocal overlaps on the world-surface. We consider it likely that, among this
class of vertices, additional configurations can be found which satisfy the criteria
for gauge-invariance. We consider this a promising avenue for further investiga-

tion.
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APPENDIX : The SL(2,C)-Covariant Ghost Propagator

In Section 5, we needed to rearrange the system of ghost propagators and
zero modes in order to give an economical proof of the SL(2,C)-invariance of

our vertex. In this appendix, we will prove the validity of that rearrangement.

The strategy of our argument was the following: In the formulation of the the-
ory used in most of the paper, nonzero correlation functions of b and ¢ operators
were evaluated by summing all possible contractions of ¢ operators to the b oper-
ators and to the three zero modes. However, in the proof of SL(2,C)-invariance,
we found it more convenient to consider three particular ghost operators at the
three points h;(0) to be contracted to the zero modes. To justify this change in
the calculational rules, we needed to find a modified ghost propagator which, in

conjunction with the new rules, reproduces the results of the first formulation.

To solve this problem, let us generalize and abstract it a bit. Consider a

system of ghosts with the propagator

(b(2)e(w)) = G(z,w) (A.1)

and the ¢ zero modes Zy(w),...,Z,(w). A correlation function of m b’s and
(m 4+ n) ¢’s is then calculated by contracting the ¢’s to b’s and zero modes in
all possible ways. Now let the locations of the ¢’s be divided into two classes:
T1y.-03Zpy Z1,--.,2m. We would like to rewrite the formula for the correlation
function in such a way that the fields ¢(z;) are contracted only to zero modes

and the fields ¢(z;) are contracted only to b fields.

If we compute with the standard rules, a general correlation function has the

value (up to obvious minus signs which are accounted systematically in our main
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development)

(b(21)b(22) - - - b(zm)c(21) - - ¢(zn)e(w1) - - - c(wim))

Zl(zl) Zl(:z:n) Zl(wl) Zl(wm)
22(.’171) Zz(zn) Zz(wl) o Zz(wm)
: : : : : : (A.2)
Za(z1) ... Zn(za) Za(wy) ... Zp(wm)
G(z1,21) ... G(z1,z5) G(z1,w1) ... G(z1,wm)
G(zm,z1) ... G(2myZn) G(zm,w1) ... G(zm,wm)

But we can rearrange this determinent to isolate the upper left-hand corner. To
do this, subtract a multiple of the first column from all successive columns to set
all elements after the first in the top row equal to zero. Now subtract a multiple
of the new second column from all successive columns to set all elements of the
second row after the second equal to zero. Proceed through m steps. Then the

above determinant takes the form:

21(21) 0

22(21) 22,2 0 0 0

Z,,(:cl) 2m,2 Z~m,m 0 0
G(zl,zl) ém+1,2 ém+l,m G(zl,wl) G(zl,wm) (A'3)
G(zm,z1) ém+n,2 cen ém+n,m G(zm,w1) ... G{zm,wm)

= 21(21)22,2"'2";,"; -deth(z_,-,wk)I .

This procedure for reducing the original determinant depends mainly on the
values of the Z(z;); the final result for any other matrix element depends only on
the original matrix elements in the same column or the same row. Thus, we can

recognize the ingredients of the last line of (A.3) in smaller matrices of similar
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structure. For example, the product of 2’sin (A.3) appears in the same way in

the reduction of the m x m determinant of zero modes alone:
21(21)22,2 vee Zm,m = detlZ,-(xj)I . (A.4)

Similarly, the same G(2;,wx) would appear from an (m + 1) X (m + 1) matrix:

detlZ,-(:z:,-)lv- G(z,w) =

Zi(z)  Zi(za) ... Zi(zm)  Zi(w)
22(1:1) 22(1:2) e 22(1:".) 22(w) (A.5)

Zm(z1) Zm(z2) ... Zm(zm) Zm(w)
G(z,z1) G(z,z2) ... G(z,zm) G(z,w)

With the identification (A.4), we write the result of (A.3) as follows:

(b(21)b(22) - - b(zm)e(z1) - - - e(zn)c(wi) - - - €(wm))
(A.6)
= det|Z;(z;)| - det|G(z;, wx)| .

This is exactly the result we had sought. Eq. (A.6) instructs us to saturate the
zero modes of ¢ with the fields ¢(z;) and then contract the b(z;) with the ¢(wg)
using the propagator G(z,w). This new propagator depends, of course, on the

locations of the z;. It may be evaluated explicitly using the formula (A.5).

For the case of interest to us, set Z;(z) = z**!, for i = —~1,0,1, and G(z,w) =

1/(z — w). Then it is not difficult to work out:

detIZ{(ZJ')l = (.’Bl - 132)(1:1 - 23)(:52 - .1:3)
w—ZTg (A'7)
G(z,w) = —(z _1 ) ._11_]; . ((z — -'B;')) .

This is the Green function which was presented in eq. (5.11).
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FIGURE CAPTIONS

Hamiltonian evolution on the Euclidean plane, viewed as the conformal

image of time evolution on a cylinder or string.
Equivalence of a contact delta-function to an operator expectation value.

Construction of string interactions by mapping canonically defined string

states into the conformal plane.

The conformal transformation which proves the symmetry of the string

kinetic energy term.

The contour deformation which proves the BRST invariance of the vertex

in its most general form.

Two simple choices for the conformal mappings which define the 3-string

vertex.
A view of the CSV vertex, using T given by (6.3).
A second view of the CSV vertex, using T = e2%%/3,

The geometrical operation which corresponds to the contraction of two CSV

vertices.

The figure which results from the contraction of two Witten vertices, in

shown in three views.

Derivation of the conformal mapping required for the construction of the

Witten vertex.

Geometry of the gluing resulting from the contraction of circles by the BPZ

inner product.

Gluing and subsequent smoothing in the contraction of two string field

vertices.
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